WO2016157956A1 - Lubricating oil composition for automatic transmission - Google Patents

Lubricating oil composition for automatic transmission Download PDF

Info

Publication number
WO2016157956A1
WO2016157956A1 PCT/JP2016/051861 JP2016051861W WO2016157956A1 WO 2016157956 A1 WO2016157956 A1 WO 2016157956A1 JP 2016051861 W JP2016051861 W JP 2016051861W WO 2016157956 A1 WO2016157956 A1 WO 2016157956A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
acid
automatic transmission
group
Prior art date
Application number
PCT/JP2016/051861
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 知念
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to JP2017509323A priority Critical patent/JPWO2016157956A1/en
Publication of WO2016157956A1 publication Critical patent/WO2016157956A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/78Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids
    • C10M129/82Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Definitions

  • the present invention relates to a lubricating oil composition for a transmission, and more particularly, an automatic transmission for an automobile, continuously variable, having excellent fatigue life and extreme pressure even with low viscosity, and does not deteriorate extreme pressure performance even after long-term use.
  • the present invention relates to a lubricating oil composition for a transmission suitable for a transmission, a final reduction gear, and the like.
  • One way to save fuel in transmissions and final reduction gears is to reduce the viscosity of lubricating oil.
  • automotive automatic transmissions and continuously variable transmissions have torque converters, wet clutches, gear bearing mechanisms, oil pumps, hydraulic control mechanisms, etc.
  • final reduction gears have gear bearing mechanisms.
  • Viscosity index improvers can improve the viscosity characteristics of lubricating oils at low or practical temperatures, but are generally not expected to improve fatigue life and extreme pressure properties. When used, it is known to cause a decrease in viscosity due to shear over a long period of use.
  • compositions that can solve such problems have not been sufficiently studied so far.
  • the present invention has been made in view of such circumstances, and the purpose of the present invention is to provide a transmission (manual transmission) having a long fatigue life even with a low viscosity and sufficient extreme pressure even after initial and long-term use. Excluding lubricating oil compositions suitable for automobile automatic transmissions, continuously variable transmissions, final reduction gears, etc., having both fuel saving performance and sufficient durability such as gears and bearings It is to provide.
  • the present invention comprises (A) a lubricating base oil having a kinematic viscosity at 100 ° C. of 3.0 mm 2 / s or less, and (B) an ester having a kinematic viscosity at 100 ° C. of 500 mm 2 / s or more and 5000 mm 2 / s or less.
  • a lubricating oil composition for an automatic transmission comprising a compound in an amount of 0.1% by mass to 12.0% by mass based on the total amount of the composition.
  • the present invention is the above-mentioned lubricating oil composition for an automatic transmission, further comprising (C) a poly (meth) acrylate having a weight average molecular weight of 10,000 to 50,000.
  • the present invention is also the above automatic transmission characterized in that the kinematic viscosity at 40 ° C. is 30.0 mm 2 / s or less, the kinematic viscosity at 100 ° C. is 6.5 mm 2 / s or less, and the viscosity index is 180 or more.
  • Lubricating oil composition is also the above automatic transmission characterized in that the kinematic viscosity at 40 ° C. is 30.0 mm 2 / s or less, the kinematic viscosity at 100 ° C. is 6.5 mm 2 / s or less, and the viscosity index is 180 or more.
  • Lubricating oil composition is also the above automatic transmission characterized in that the kinematic viscosity at 40 ° C. is 30.0 mm 2 / s or less, the kinematic viscosity at 100 ° C. is 6.5 mm 2 / s or less, and the viscosity index is 180 or more.
  • the present invention is the above-mentioned lubricating oil composition for an automatic transmission, wherein (B) the ester compound is a polyester of polyhydric alcohol and polybasic acid.
  • the present invention provides the above-mentioned lubricating oil composition for an automatic transmission, wherein (B) the ester compound is a neopentyl glycol type polyester.
  • the pitching prevention life F (50) by the Unisteel fatigue life test (1.8 GPa, 120 ° C., 1410 rpm, needle bearing) is 4500 or more. It is a thing.
  • the present invention contains at least one of a cleaning dispersant, an antioxidant, an antiwear agent, a friction modifier, a rust inhibitor, a metal deactivator, a pour point depressant, and an antifoaming agent.
  • a cleaning dispersant for an automatic transmission.
  • the lubricating oil composition for an automatic transmission ensures fuel savings by lowering the viscosity in the normal temperature range (20 to 80 ° C.) and has excellent anti-pitching properties, resulting in improved component durability. Excellent. Furthermore, since it has a high viscosity index and excellent shear stability, it has excellent reliability. This is particularly effective for continuously variable transmissions.
  • the lubricating oil composition of the present invention contains a lubricating base oil having a kinematic viscosity at 100 ° C. of 3.0 mm 2 / s or less as the component (A).
  • a lubricating base oil having a kinematic viscosity at 100 ° C. of 3.0 mm 2 / s or less.
  • the lubricating base oil include a mineral lubricating base oil and a synthetic lubricating base oil.
  • a mineral oil base oil a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining.
  • paraffinic and naphthenic mineral oil base oils, normal paraffins, isoparaffins, and the like which are refined by appropriately combining purification treatments such as sulfuric acid washing and clay treatment, and the like.
  • a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and reduced pressure distillation can be subjected to solvent removal, solvent extraction, hydrocracking, solvent removal.
  • Oils such as paraffinic and naphthenic oils that are refined by a single or a combination of two or more purification treatments such as wax, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment can be used.
  • These base oils may be used alone or in combination of two or more at any ratio.
  • Preferred mineral oil base oils include the following base oils.
  • the normal refining method here is not particularly limited, and a refining method used in the production of the lubricating base oil can be arbitrarily employed.
  • conventional purification methods include (a) hydrorefining such as hydrocracking and hydrofinishing, (b) solvent purification such as furfural solvent extraction, and (c) dewaxing such as solvent dewaxing and catalytic dewaxing. And (d) white clay refining with acid clay and activated clay, and (e) chemical (acid or alkali) purification such as sulfuric acid washing and caustic soda washing. In the present invention, one or more of these can be used in any combination and in any order.
  • the mineral oil base oil used in the present invention is particularly preferably a base oil obtained by subjecting a base oil selected from the above [1] to [8] to the following treatment. That is, the base oil selected from the above [1] to [8] is used as it is, or the lubricating oil fraction recovered from this base oil is hydrocracked or wax-isomerized, and the product is used as it is or from now on.
  • Hydrocracked mineral oil and / or wax isomerized isoparaffinic base oil produced by treatment is preferably used.
  • the hydrocracked mineral oil and / or wax isomerized isoparaffin base oil is preferably 30% by mass or more, more preferably 50% by mass or more, particularly preferably 70% by mass or more, and most preferably 90% by mass based on the total amount of the base oil. % Or more is desirable.
  • Synthetic lubricating base oils include, for example, poly ⁇ -olefins or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (eg, ditridecylglutarate, di-2-ethylhexyl adipate, Diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.), polyol esters (eg, trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), Polyoxyalkylene glycol, dialkyl diphenyl ether, polyphenyl ether and the like can be mentioned.
  • a preferred synthetic lubricating base oil is poly ⁇ -olefin.
  • the poly ⁇ -olefin is typically an ⁇ -olefin oligomer or co-oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms (eg, 1-octene oligomer, 1-decene oligomer, ethylene-propylene co-oligomer). And hydrides thereof.
  • poly ⁇ -olefin there is no particular limitation on the production method of poly ⁇ -olefin, but for example, aluminum trichloride, boron trifluoride or boron trifluoride and water, alcohol (eg ethanol, propanol or butanol), carboxylic acid, or ester (eg acetic acid) And polymerization of ⁇ -olefin in the presence of a polymerization catalyst such as a Friedel-Crafts catalyst containing a complex with ethyl or ethyl propionate).
  • a polymerization catalyst such as a Friedel-Crafts catalyst containing a complex with ethyl or ethyl propionate.
  • the lubricating base oil may be a mixture of two or more mineral oil base oils or a mixture of two or more synthetic oil base oils. Even a mixture of these can be used. And the mixing ratio of 2 or more types of base oil in the said mixture can be chosen arbitrarily.
  • a kinematic viscosity at 100 ° C. of the lubricating base oil is required to be less 3.0 mm 2 / s, preferably not more than 2.8 mm 2 / s, more preferably at most 2.6 mm 2 / s .
  • the kinematic viscosity at 100 ° C. of (A) the lubricating base oil is preferably 0.5 mm 2 / s or higher, more preferably at least 1.0mm 2 / s, 1.2mm 2 / s or more preferable.
  • a lubricating base oil having a kinematic viscosity at 100 ° C. of 0.5 mm 2 / s or more is sufficient to form an oil film, to improve lubricity, and to reduce the base oil evaporation loss under high temperature conditions. It becomes possible to obtain a composition.
  • the viscosity index of the lubricating base oil is not particularly limited, but is preferably 80 or more, more preferably 90 or more, and particularly preferably 95 or more. By setting the viscosity index to 80 or more, it is possible to obtain a composition that is more excellent in fatigue life, extreme pressure after initial use and long-term use.
  • the upper limit is not particularly limited, but is preferably 150 or less, more preferably 140 or less, and particularly preferably 130 or less. When it exceeds 150, normal paraffin increases in the base oil, and thus low temperature fluidity tends to deteriorate, which is not preferable.
  • the lubricating oil composition of the present invention contains an ester compound having a kinematic viscosity at 100 ° C. of 500 to 5000 mm 2 / s as the component (B).
  • Component ester compounds include polyesters of polyhydric alcohols and polybasic acids.
  • the ester compound may be composed of only one type, or may be composed of a mixture of two or more types.
  • the ester compound may be a complete ester in which all the hydroxyl groups in the polyhydric alcohol are esterified, or a partial ester in which some of the hydroxyl groups are not esterified and remain as hydroxyl groups. Moreover, the complete ester by which all the carboxyl groups in a polybasic acid were esterified may be sufficient, or the partial ester which a part of carboxyl group is not esterified and remains with the carboxyl group may be sufficient.
  • Complete esters include those obtained by esterifying a hydroxyl group at the end of a polyester with a monobasic acid and those obtained by esterifying a carboxyl group with a monohydric alcohol.
  • polyhydric alcohol constituting the ester compound those having 2 to 10 valences, preferably 2 to 6 valences are usually used, which may be linear or branched, and may be saturated. It may be saturated.
  • polyhydric alcohols include ethylene glycol, propylene glycol, neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol, sorbitan, and the like.
  • polyhydric alcohols having a neopentyl structure such as neopentyl glycol, trimethylolpropane, and pentaerythritol are preferable, and neopentyl glycol is particularly preferable.
  • dibasic acid and trimellitic acid having 2 to 16 carbon atoms are used, which may be linear or branched, and saturated or unsaturated. It may be.
  • polybasic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, dodecane-1,12-dicarboxylic acid, plasylic acid, dimer acid, phthalic acid Dibasic acids such as isophthalic acid and terephthalic acid, propylene-1,2,3-tricarboxylic acid, propane-1,2,3-tricarboxylic acid, 2-oxypropane-1,2,3-tricarboxylic acid, 4- Tribasic acids such as oxypentane-1,3,4-tricarboxylic acid, 2-oxyheptadecane-1,2,3-tricarboxylic acid, hemimellitic acid, trimelli
  • the monohydric alcohol used when esterifying the carboxyl group at the terminal of the ester compound those having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms are used, which may be linear or branched. It may be saturated or unsaturated.
  • Examples of such monohydric alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol and the like.
  • the monohydric alcohol is preferably a monoalkyl alcohol.
  • the monobasic acid used for esterifying the hydroxyl group at the end of the ester compound is usually a fatty acid having 2 to 24 carbon atoms, which may be linear or branched, and saturated. However, it may be unsaturated.
  • monobasic acids include saturated fatty acids such as acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and decanoic acid; acrylic acid, methacrylic acid, butenoic acid and pentenoic acid.
  • unsaturated fatty acids such as hexenoic acid.
  • the ester compound is most preferably a polyester of neopentyl glycol and a polybasic acid (neopentyl glycol type polyester).
  • the ester compound may be a complete ester or a partial ester, but a complete ester is preferred.
  • the terminal carboxyl group of the partial ester may be esterified to make a complete ester.
  • the monohydric alcohol used at this time is preferably a monoalkyl alcohol.
  • ester compound production method for example, one or more polyhydric alcohols and a mixture of a monobasic acid and a polybasic acid or a mixture of a monobasic acid ester and a polybasic acid ester are esterified.
  • a method of obtaining an ester compound by performing a transesterification and adjusting the degree of polymerization so that the kinematic viscosity at 100 ° C. is 500 to 5000 mm 2 / s can be mentioned.
  • These may contain, for example, alkylene oxide or polyalkylene oxide in the molecule.
  • the reaction is performed at 100 to 250 ° C., preferably 140 to 240 ° C. in one step or two or more steps, the unreacted substances are distilled off, the catalyst is removed, And purification by dehydration by heating under reduced pressure.
  • toluene, benzene, xylene or the like may be used as an azeotropic dehydration solvent, or an inert gas such as nitrogen may be introduced for the purpose of removing reaction water, or the reaction may be performed under reduced pressure.
  • an acidic catalyst such as sulfuric acid or paratoluenesulfonic acid
  • an alkaline catalyst such as potassium hydroxide, lithium hydroxide, or lithium acetate
  • a metal oxide such as zinc oxide
  • Kinematic viscosity at 100 ° C. of (B) an ester compound is required to be 500 ⁇ 5000mm 2 / s, preferably 600 ⁇ 4500mm 2 / s, more preferably 800 ⁇ 4000mm 2 / s, 1000 ⁇ 3500mm 2 / S is more preferable.
  • an ester compound having a kinematic viscosity at 100 ° C. in the above range excellent fatigue life, extreme pressure after initial use and long-term use can be imparted.
  • the viscosity index of the ester compound is not particularly limited, but is preferably 150 or more, more preferably 160 or more, preferably 400 or less, more preferably 300 or less, and particularly preferably 280 or less.
  • the content of the (B) ester compound needs to be 0.1% by mass or more based on the total amount of the composition in order to impart excellent fatigue life, extreme pressure after initial and long-term use, and 0 0.5 mass% or more is preferable, 1.0 mass% or more is more preferable, and 2.0 mass% or more is more preferable.
  • the lubricating oil composition of the present invention preferably contains poly (meth) acrylate (PMA) having a weight average molecular weight of 10,000 to 60,000 as the component (C).
  • poly (meth) acrylate (PMA) having a weight average molecular weight of 10,000 to 60,000
  • the (meth) acrylate here is a general term for acrylate and methacrylate
  • the poly (meth) acrylate is preferably a (meth) acrylate monomer represented by the following general formula (1) (hereinafter referred to as “monomer M-1”). ").).
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a linear or branched hydrocarbon group having 1 to 750 carbon atoms.
  • the poly (meth) acrylate obtained by one kind of homopolymer of the monomer represented by the general formula (1) or copolymerization of two or more kinds is a so-called non-dispersed poly (meth) acrylate.
  • the poly (meth) acrylate is composed of the monomer M-1 represented by the general formula (1) and one or more monomers selected from the following general formulas (2) and (3) (hereinafter referred to as “monomer M-2”, respectively). And a so-called dispersed poly (meth) acrylate obtained by copolymerization of “monomer M-3”).
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkylene group having 1 to 18 carbon atoms
  • E 1 represents 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.
  • Each represents an amine residue or a heterocyclic residue
  • a represents 0 or 1.
  • R 5 represents a hydrogen atom or a methyl group
  • E 2 represents an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.
  • hydrocarbon group having 1 to 750 carbon atoms represented by R 2 in the general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • Octyl group nonyl group, decyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, and octadecyl group (these alkyl groups may be linear or branched) And an alkyl group such as hydride of a polymer of butadiene or isoprene.
  • alkylene group having 1 to 18 carbon atoms represented by R 4 in the general formula (2) include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group.
  • Specific examples of the groups represented by E 1 and E 2 in the general formulas (2) and (3) include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, and a toluidino group.
  • Preferable examples of the monomer M-2 and the monomer M-3 are specifically dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, morpholinomethyl methacrylate. Morpholinoethyl methacrylate, N-vinylpyrrolidone, and mixtures thereof.
  • the weight average molecular weight of the (C) poly (meth) acrylate used in the present invention is required to be 10,000 to 60,000, preferably 15,000 to 59,000, and preferably 20,000 to 58,000. More preferred. When the weight average molecular weight is less than 10,000, it is difficult to increase the viscosity index, and when it exceeds 60,000, the viscosity is significantly lowered due to shearing, and both lead to a decrease in reliability as a lubricating oil.
  • the lubricating oil composition of the present invention contains (C) poly (meth) acrylate
  • its content is 0.5 to 20% by mass, preferably 1 to 15% by mass, based on the total amount of the composition.
  • the content exceeds 20% by mass, it is not preferable because it is difficult to maintain the initial extreme pressure property for a long period of time.
  • the lubricating oil composition of the present invention can contain any additive generally used in lubricating oils for the purpose of further improving the performance.
  • additives include metal detergents, ashless dispersants, extreme pressure agents, antioxidants, corrosion inhibitors, friction modifiers, rubber swelling agents, rust inhibitors, pour point depressants, antifoaming agents, and coloring. You may mix
  • any compound usually used as a metal detergent for lubricating oil can be used.
  • alkali metal or alkaline earth metal sulfonate, phenate, salicylate, naphthenate, etc. These compositions can be used alone or in combination of two or more.
  • alkali metal include sodium and potassium
  • examples of the alkaline earth metal include calcium and magnesium.
  • calcium or magnesium sulfonates, phenates, and salicylates are preferably used as specific metal detergents.
  • the total base number and addition amount of these metal detergents can be arbitrarily selected according to the required performance of the lubricating oil.
  • the ashless dispersant include nitrogen-containing compounds having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, or derivatives thereof.
  • the alkyl group or alkenyl group may be linear or branched, but is preferably a branch derived from an olefin oligomer such as propylene, 1-butene and isobutylene or a co-oligomer of ethylene and propylene.
  • An alkyl group and a branched alkenyl group One of these compounds may be used alone, or a mixture of two or more compounds in an arbitrary mixing ratio may be used.
  • Succinimide having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof
  • At least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule examples include benzylamine having a derivative thereof, or (iii) a polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or one or more compounds selected from derivatives thereof. it can.
  • examples of the succinimide include compounds represented by the following general formula (4) or (5).
  • R 6 to R 8 each independently represents an alkyl group or an alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and b is 1 to 5, Preferably, it represents a number from 2 to 4, and c represents a number from 0 to 4, preferably from 1 to 3.
  • the method for producing this succinimide is not limited in any way.
  • a polyolefin such as propylene oligomer, polybutene, ethylene-propylene copolymer or the like
  • maleic anhydride to obtain alkenyl succinic anhydride
  • diethylenetriamine is obtained.
  • polyamines such as triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and the like.
  • the succinimide is added with a so-called monotype succinimide represented by the general formula (4) in which succinic anhydride is added to one end of the polyamine and succinic anhydride is added to both ends of the polyamine.
  • monotype succinimide represented by the general formula (4)
  • succinic anhydride is added to one end of the polyamine
  • succinic anhydride is added to both ends of the polyamine.
  • bis-type succinimides represented by the general formula (5), any of which can also be used as a mixture thereof.
  • examples of benzylamine include compounds represented by the following general formula (6).
  • R 9 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and d represents a number of 1 to 5, preferably 2 to 4, respectively.
  • a polyolefin such as a propylene oligomer, polybutene, or ethylene-propylene copolymer is reacted with phenol to form an alkylphenol, followed by formaldehyde, diethylenetriamine, or triethylene. It can be obtained by reacting polyamines such as tetramine, tetraethylenepentamine, pentaethylenehexamine and the like by Mannich reaction.
  • examples of the polyamine include compounds represented by the following general formula (7).
  • R 10 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and e represents a number of 1 to 5, preferably 2 to 4, respectively. Yes.
  • the production method of this polyamine is not limited in any way.
  • a polyolefin such as propylene oligomer, polybutene, or ethylene-propylene copolymer
  • ammonia ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylene are added thereto. It can be obtained by reacting a polyamine such as pentamine or pentaethylenehexamine.
  • any compound usually used as an extreme pressure additive for lubricating oils can be used, and examples thereof include sulfur compounds such as disulfides, sulfurized olefins, and sulfurized fats and oils. .
  • sulfur compounds such as disulfides, sulfurized olefins, and sulfurized fats and oils.
  • One or two or more compounds arbitrarily selected from these can be contained in any amount, but the content is usually 0.01 to 5.0 based on the total amount of the lubricating oil composition. It is desirable that it is mass%.
  • any phenolic compound or amine compound that is generally used in lubricating oils can be used.
  • alkylphenols such as 2,6-di-tert-butyl-4-methylphenol and bisphenols such as methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol)
  • Naphthylamines such as phenyl- ⁇ -naphthylamine, dialkyldiphenylamines, zinc dialkyldithiophosphates such as zinc di-2-ethylhexyldithiophosphate, (3,5-di-tert-butyl-4-hydroxyphenyl) fatty acid
  • an ester of monovalent or polyhydric alcohol such as methanol, octadecanol, 1,6 hexadiol, neopentyl glycol, thiodiethylene glycol, triethylene glycol, pentaerythritol and the like.
  • any compound usually used as a corrosion inhibitor for lubricating oils can be used, and examples thereof include benzotriazole, tolyltriazole, and imidazole compounds.
  • any compound usually used as a friction modifier for lubricating oils can be used, but an alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a linear alkyl group having 6 to 30 carbon atoms.
  • amine compounds, fatty acid esters, fatty acid amides, fatty acid metal salts, and the like having at least one linear alkenyl group in the molecule are included.
  • succinimide and the like which are a reaction product with polyamine are also included. These include those modified with boron compounds and phosphorus compounds.
  • Examples of the amine compound include linear or branched, preferably linear aliphatic monoamines having 6 to 30 carbon atoms, linear or branched, preferably linear aliphatic polyamines, or fatty acids thereof.
  • An alkylene oxide adduct of a group amine can be exemplified.
  • Examples of the fatty acid ester include esters of linear or branched, preferably linear, fatty acids having 7 to 31 carbon atoms with aliphatic monohydric alcohols or aliphatic polyhydric alcohols.
  • Examples of the fatty acid amide include amides of linear or branched, preferably linear fatty acids having 7 to 31 carbon atoms, and aliphatic monoamines or aliphatic polyamines.
  • the fatty acid metal salt examples include an alkaline earth metal salt (magnesium salt, calcium salt, etc.) or zinc salt of a linear or branched, preferably linear fatty acid having 7 to 31 carbon atoms.
  • an alkaline earth metal salt magnesium salt, calcium salt, etc.
  • one kind or two or more kinds of compounds arbitrarily selected from these friction modifiers can be contained in any amount, but usually the content thereof is a lubricating oil composition. It is desirable that the content is 0.01 to 5.0% by mass, preferably 0.03 to 3.0% by mass.
  • any compound usually used as a seal swelling agent for lubricating oils can be used, and examples thereof include ester-based, sulfur-based, aromatic-based seal swelling agents.
  • rust inhibitor examples include alkenyl succinic acid ester, polyhydric alcohol ester, petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, and the like.
  • any compound usually used as a pour point depressant for lubricating oils can be used, but polymethacrylate pour point depressants are particularly preferred.
  • the weight average molecular weight of the pour point depressant is preferably 10,000 to 300,000, more preferably 50,000 to 200,000.
  • the content of the pour point depressant is preferably 0.05 to 20% by mass based on the total amount of the lubricating oil composition.
  • any compound that is usually used as an antifoaming agent for lubricating oils can be used.
  • silicones such as dimethyl silicone and fluorosilicone can be used. Can be mentioned.
  • One or two or more compounds arbitrarily selected from these can be contained in any amount, but the content is usually 0.001 to 0.00 on the basis of the total amount of the lubricating oil composition. It is desirable that it is 05 mass%.
  • the colorant that can be used in combination with the lubricating oil composition of the present invention is arbitrary and can be contained in any amount, but the content is usually 0.001 to 1.% based on the total amount of the lubricating oil composition. It is preferably 0% by mass.
  • Kinematic viscosity at 40 ° C. of the lubricating oil composition of the present invention is not particularly limited, it is preferably 30.0 mm 2 / s or less, more preferably 29.0mm 2 / s, 28.0mm 2 / s The following is more preferable, and 27.0 mm 2 / s or less is particularly preferable. Further preferably 13.0mm at 2 / s or greater, more preferably at least 15.0 mm 2 / s.
  • Kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is not particularly limited, preferably not more than 6.5 mm 2 / s, more preferably not more than 6.4mm 2 / s, 6.3mm 2 / s
  • the following is more preferable, and 6.2 mm 2 / s or less is particularly preferable.
  • it is preferable that it is 4.0 mm ⁇ 2 > / s or more, and 4.5 mm ⁇ 2 > / s or more is more preferable.
  • the viscosity index of the lubricating oil composition of the present invention is not particularly limited, but is preferably 180 or more, more preferably 185 or more, still more preferably 190 or more, and particularly preferably 200 or more. As an upper limit, it is preferable that it is 500 or less, and 450 or less is more preferable.
  • the pitching prevention life F (50) by the unisteel fatigue life test of the lubricating oil composition of the present invention is preferably 4500 or more, more preferably 4550 or more, and further preferably 4600 or more.
  • the unisteel fatigue life test according to the test method defined in IP305 / 79 is performed under the conditions of a load of 1.8 GPa, a temperature of 120 ° C., a rotational speed of 1410 rpm, and a needle bearing.
  • Lubricating oil compositions having the compositions shown in Table 1 were prepared.
  • the added amount (volume%) of the base oil is based on the total amount of the base oil, and the added amount (mass%) of each additive is based on the total amount of the composition.
  • the properties of each lubricating oil composition were evaluated by the following test and listed in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

Provided is an automatic transmission lubricating oil composition whereby fuel economy through reduced viscosity in a normal temperature range (20-80°C) is ensured, and which has excellent pit corrosion prevention properties and excellent component durability, and furthermore has a high viscosity index and excellent shear stability, the lubricating oil composition for an automatic transmission characterized by containing, with respect to the entire quantity of the composition, 0.1% by mass to 12.0% by mass of (A) a lubricating oil base oil having a kinetic viscosity at 100°C of 3.0 mm2/s or less and (B) an ester compound having a kinetic viscosity at 100°C of 500 mm2/s to 5000 mm2/s.

Description

自動変速機用潤滑油組成物Lubricating oil composition for automatic transmission
 本発明は変速機用潤滑油組成物に関し、詳しくは低粘度であっても疲労寿命および極圧性に優れ、長期間の使用においても極圧性能が低下しない、自動車用の自動変速機、無段変速機、終減速機等に好適な変速機用潤滑油組成物に関する。 TECHNICAL FIELD The present invention relates to a lubricating oil composition for a transmission, and more particularly, an automatic transmission for an automobile, continuously variable, having excellent fatigue life and extreme pressure even with low viscosity, and does not deteriorate extreme pressure performance even after long-term use. The present invention relates to a lubricating oil composition for a transmission suitable for a transmission, a final reduction gear, and the like.
 近年、炭酸ガス排出量の削減など、環境問題への対応から自動車、建設機械、農業機械等の省エネルギー化、すなわち、省燃費化が急務となっており、エンジンや変速機、終減速機、圧縮機、油圧装置等の装置には省エネルギーへの寄与が強く求められている。そのため、これらに使用される潤滑油には、従来に比べより攪拌抵抗や摩擦抵抗を減少することが求められている。 In recent years, there has been an urgent need to save energy in automobiles, construction machinery, agricultural machinery, etc., that is, to save fuel, in response to environmental issues such as reducing carbon dioxide emissions. Engines, transmissions, final reduction gears, compression Devices such as machines and hydraulic devices are strongly required to contribute to energy saving. Therefore, the lubricating oil used for these is required to reduce the stirring resistance and frictional resistance as compared with the conventional one.
 変速機および終減速機の省燃費化手段のひとつとして、潤滑油の低粘度化が挙げられる。例えば変速機の中でも自動車用自動変速機や無段変速機はトルクコンバータ、湿式クラッチ、歯車軸受機構、オイルポンプ、油圧制御機構などを有し、また終減速機は歯車軸受機構を有しており、これらに使用される潤滑油をより低粘度化することにより、トルクコンバータ、湿式クラッチ、歯車軸受機構およびオイルポンプ等の攪拌抵抗および摩擦抵抗が低減され、動力の伝達効率が向上することで自動車の燃費の向上が可能となる。 One way to save fuel in transmissions and final reduction gears is to reduce the viscosity of lubricating oil. For example, among automatic transmissions, automotive automatic transmissions and continuously variable transmissions have torque converters, wet clutches, gear bearing mechanisms, oil pumps, hydraulic control mechanisms, etc., and final reduction gears have gear bearing mechanisms. By lowering the viscosity of the lubricating oil used in these, the agitation resistance and frictional resistance of torque converters, wet clutches, gear bearing mechanisms, oil pumps, etc. are reduced, and the power transmission efficiency is improved, thereby increasing the It is possible to improve the fuel efficiency of the vehicle.
 しかしながら、これらに使用される潤滑油を低粘度化すると疲労寿命あるいは極圧性が低下し、焼付きなどが生じて変速機等に不具合が生じることがある。特に低粘度油の極圧性を向上させるためにリン系極圧剤を配合した場合には、疲労寿命が著しく悪化してしまい、低粘度化することは一般に困難である。また、粘度指数向上剤は、低温あるいは実用温度での潤滑油の粘度特性を改善できるが、一般に疲労寿命や極圧性の向上効果は期待されていないだけでなく、変速機用等の潤滑油に使用した場合には、長時間の使用過程でせん断による粘度低下を引き起こすことが知られている。 However, when the lubricating oil used in these is made low in viscosity, the fatigue life or extreme pressure property is lowered, and seizure or the like may occur, resulting in problems with the transmission or the like. In particular, when a phosphorus-based extreme pressure agent is blended in order to improve the extreme pressure property of a low viscosity oil, the fatigue life is remarkably deteriorated, and it is generally difficult to reduce the viscosity. Viscosity index improvers can improve the viscosity characteristics of lubricating oils at low or practical temperatures, but are generally not expected to improve fatigue life and extreme pressure properties. When used, it is known to cause a decrease in viscosity due to shear over a long period of use.
 従来の自動車用変速機油としては、変速特性等の各種性能を長期間維持できるものとして、合成油及び/又は鉱油系の潤滑油基油、摩耗防止剤、極圧剤、金属系清浄剤、無灰分散剤、摩擦調整剤、粘度指数向上剤等を最適化して配合したものが開示されている(例えば、特許文献1~3参照。)。  As conventional transmission oils for automobiles, various performances such as transmission characteristics can be maintained for a long period of time. Synthetic oils and / or mineral oil base oils, antiwear agents, extreme pressure agents, metallic detergents, An ash dispersant, a friction modifier, a viscosity index improver, and the like that have been optimized are disclosed (for example, see Patent Documents 1 to 3). *
 しかしながら、これらの組成物はいずれも燃費向上を目的としたものではないためその動粘度は高く、潤滑油を低粘度化した場合の疲労寿命や初期及び長期間使用時の極圧性への影響については全く検討されておらず、従ってそのような課題を解決しうる組成物についてはこれまでに十分検討されていない。 However, none of these compositions are intended to improve fuel efficiency, so their kinematic viscosity is high, and the impact on fatigue life when reducing the viscosity of the lubricating oil and extreme pressure properties during initial and long-term use. Has not been studied at all, and thus compositions that can solve such problems have not been sufficiently studied so far.
特開平3-39399号公報JP-A-3-39399 特開平7-268375号公報JP 7-268375 A 特開2000-63869号公報JP 2000-63869 A
 本発明はこのような実情に鑑みなされたものであり、その目的は、低粘度であっても疲労寿命が長く、初期および長期間使用後も充分な極圧性を有する変速機(手動変速機を除く)用潤滑油組成物、特に自動車用の自動変速機、無段変速機、終減速機等に好適な、省燃費性能と歯車や軸受け等の十分な耐久性を兼ね備えた潤滑油組成物を提供することにある。 The present invention has been made in view of such circumstances, and the purpose of the present invention is to provide a transmission (manual transmission) having a long fatigue life even with a low viscosity and sufficient extreme pressure even after initial and long-term use. Excluding lubricating oil compositions suitable for automobile automatic transmissions, continuously variable transmissions, final reduction gears, etc., having both fuel saving performance and sufficient durability such as gears and bearings It is to provide.
 すなわち、本発明は、(A)100℃における動粘度が3.0mm/s以下の潤滑油基油、および(B)100℃における動粘度が500mm/s以上5000mm/s以下のエステル化合物を組成物全量基準で0.1質量%以上12.0%質量以下含有することを特徴とする自動変速機用潤滑油組成物である。 That is, the present invention comprises (A) a lubricating base oil having a kinematic viscosity at 100 ° C. of 3.0 mm 2 / s or less, and (B) an ester having a kinematic viscosity at 100 ° C. of 500 mm 2 / s or more and 5000 mm 2 / s or less. A lubricating oil composition for an automatic transmission comprising a compound in an amount of 0.1% by mass to 12.0% by mass based on the total amount of the composition.
 また本発明は、さらに(C)重量平均分子量10,000~50,000のポリ(メタ)アクリレートを含有することを特徴とする前記の自動変速機用潤滑油組成物である。 Further, the present invention is the above-mentioned lubricating oil composition for an automatic transmission, further comprising (C) a poly (meth) acrylate having a weight average molecular weight of 10,000 to 50,000.
 また本発明は、40℃における動粘度が30.0mm/s以下、100℃における動粘度が6.5mm/s以下、粘度指数が180以上であることを特徴とする前記の自動変速機用潤滑油組成物である。 The present invention is also the above automatic transmission characterized in that the kinematic viscosity at 40 ° C. is 30.0 mm 2 / s or less, the kinematic viscosity at 100 ° C. is 6.5 mm 2 / s or less, and the viscosity index is 180 or more. Lubricating oil composition.
 また本発明は、(B)エステル化合物が多価アルコールと多塩基酸のポリエステルであることを特徴とする前記の自動変速機用潤滑油組成物である。 Further, the present invention is the above-mentioned lubricating oil composition for an automatic transmission, wherein (B) the ester compound is a polyester of polyhydric alcohol and polybasic acid.
 また本発明は、(B)エステル化合物がネオペンチルグリコール型ポリエステルであることを特徴とする前記の自動変速機用潤滑油組成物である。 Further, the present invention provides the above-mentioned lubricating oil composition for an automatic transmission, wherein (B) the ester compound is a neopentyl glycol type polyester.
 また本発明は、ユニスチール疲労寿命試験(1.8GPa,120℃,1410rpm、ニードルベアリング)によるピッチング防止寿命F(50)が4500以上であることを特徴とする前記の自動変速機用潤滑油組成物である。 Further, according to the present invention, the pitching prevention life F (50) by the Unisteel fatigue life test (1.8 GPa, 120 ° C., 1410 rpm, needle bearing) is 4500 or more. It is a thing.
 さらに本発明は、清浄分散剤、酸化防止剤、摩耗防止剤、摩擦調整剤、防錆剤、金属不活性化剤、流動点降下剤、消泡剤のうち少なくともいずれか1つを含有することを特徴とする前記の自動変速機用潤滑油組成物である。 Furthermore, the present invention contains at least one of a cleaning dispersant, an antioxidant, an antiwear agent, a friction modifier, a rust inhibitor, a metal deactivator, a pour point depressant, and an antifoaming agent. The above-mentioned lubricating oil composition for an automatic transmission.
 本発明の自動変速機用潤滑油組成物は、常用温度域(20~80℃)での低粘度化による省燃費性を確保するとともに、優れたピッチング防止性を有しており部品耐久性に優れる。さらに高い粘度指数と優れたせん断安定性を有するために信頼性にも優れる。特に無段変速機において効果を発揮する。 The lubricating oil composition for an automatic transmission according to the present invention ensures fuel savings by lowering the viscosity in the normal temperature range (20 to 80 ° C.) and has excellent anti-pitching properties, resulting in improved component durability. Excellent. Furthermore, since it has a high viscosity index and excellent shear stability, it has excellent reliability. This is particularly effective for continuously variable transmissions.
 以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.
 本発明の潤滑油組成物は、(A)成分として、100℃における動粘度が3.0mm/s以下の潤滑油基油を含有する。潤滑油基油としては、鉱油系潤滑油基油、合成系潤滑油基油が挙げられる。 The lubricating oil composition of the present invention contains a lubricating base oil having a kinematic viscosity at 100 ° C. of 3.0 mm 2 / s or less as the component (A). Examples of the lubricating base oil include a mineral lubricating base oil and a synthetic lubricating base oil.
 鉱油系潤滑油基油としては、原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理等を適宜組み合わせて精製したパラフィン系、ナフテン系等の鉱油系潤滑油基油やノルマルパラフィン、イソパラフィン等が挙げられる。 As a mineral oil base oil, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining. In addition, paraffinic and naphthenic mineral oil base oils, normal paraffins, isoparaffins, and the like, which are refined by appropriately combining purification treatments such as sulfuric acid washing and clay treatment, and the like.
 鉱油系潤滑油基油の製法については特に制限はないが、例えば、原油を常圧蒸留および減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理を単独又は二つ以上組み合わせて精製したパラフィン系、ナフテン系などの油が使用できる。なお、これらの基油は単独でも、2種以上任意の割合で組み合わせて使用してもよい。 There are no particular restrictions on the method for producing the mineral base oil, but for example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and reduced pressure distillation can be subjected to solvent removal, solvent extraction, hydrocracking, solvent removal. Oils such as paraffinic and naphthenic oils that are refined by a single or a combination of two or more purification treatments such as wax, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment can be used. These base oils may be used alone or in combination of two or more at any ratio.
 好ましい鉱油系潤滑油基油としては以下の基油を挙げることができる。
 〔1〕パラフィン基系原油および/または混合基系原油の常圧蒸留による留出油;
 〔2〕パラフィン基系原油および/または混合基系原油の常圧蒸留残渣油の減圧蒸留留出油(WVGO);
 〔3〕潤滑油脱ろう工程により得られるワックスおよび/またはGTLプロセス等により製造されるフィッシャートロプシュワックス;
 〔4〕〔1〕~〔3〕の中から選ばれる1種または2種以上の混合油のマイルドハイドロクラッキング処理油(MHC);
 〔5〕〔1〕~〔4〕の中から選ばれる2種以上の油の混合油;
 〔6〕〔1〕、〔2〕、〔3〕、〔4〕または〔5〕の脱れき油(DAO);
 〔7〕〔6〕のマイルドハイドロクラッキング処理油(MHC);
 〔8〕〔1〕~〔7〕の中から選ばれる2種以上の油の混合油などを原料油とし、この原料油および/またはこの原料油から回収された潤滑油留分を、通常の精製方法によって精製し、潤滑油留分を回収することによって得られる潤滑油。
Preferred mineral oil base oils include the following base oils.
[1] Distilled oil obtained by atmospheric distillation of paraffin-based crude oil and / or mixed-base crude oil;
[2] Vacuum distillation distillate (WVGO) of paraffin base crude oil and / or mixed base crude oil at atmospheric distillation residue;
[3] A wax obtained by a lubricant dewaxing step and / or a Fischer-Tropsch wax produced by a GTL process or the like;
[4] Mild hydrocracking treatment oil (MHC) of one or more mixed oils selected from [1] to [3];
[5] Mixed oil of two or more oils selected from [1] to [4];
[6] Degassed oil (DAO) of [1], [2], [3], [4] or [5];
[7] Mild hydrocracking treatment oil (MHC) of [6];
[8] A mixed oil of two or more kinds of oils selected from [1] to [7] is used as a feedstock oil, and this feedstock oil and / or a lubricating oil fraction recovered from this feedstock oil is mixed with a normal oil fraction. A lubricating oil obtained by refining by a refining method and collecting a lubricating oil fraction.
 ここでいう通常の精製方法とは特に制限されるものではなく、潤滑油基油製造の際に用いられる精製方法を任意に採用することができる。通常の精製方法としては、例えば、(ア)水素化分解、水素化仕上げなどの水素化精製、(イ)フルフラール溶剤抽出などの溶剤精製、(ウ)溶剤脱ろうや接触脱ろうなどの脱ろう、(エ)酸性白土や活性白土などによる白土精製、(オ)硫酸洗浄、苛性ソーダ洗浄などの薬品(酸またはアルカリ)精製などが挙げられる。本発明ではこれらの1つまたは2つ以上を任意の組み合わせおよび任意の順序で採用することができる。 The normal refining method here is not particularly limited, and a refining method used in the production of the lubricating base oil can be arbitrarily employed. Examples of conventional purification methods include (a) hydrorefining such as hydrocracking and hydrofinishing, (b) solvent purification such as furfural solvent extraction, and (c) dewaxing such as solvent dewaxing and catalytic dewaxing. And (d) white clay refining with acid clay and activated clay, and (e) chemical (acid or alkali) purification such as sulfuric acid washing and caustic soda washing. In the present invention, one or more of these can be used in any combination and in any order.
 本発明で用いる鉱油系潤滑油基油としては、上記〔1〕~〔8〕から選ばれる基油をさらに以下の処理を行って得られる基油が特に好ましい。
 すなわち、上記〔1〕~〔8〕から選ばれる基油をそのまま、またはこの基油から回収された潤滑油留分を、水素化分解あるいはワックス異性化し、当該生成物をそのまま、もしくはこれから潤滑油留分を回収し、次に溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、その後、溶剤精製処理するか、または、溶剤精製処理した後、溶剤脱ろうや接触脱ろうなどの脱ろう処理を行って製造される水素化分解鉱油及び/又はワックス異性化イソパラフィン系基油が好ましく用いられる。この水素化分解鉱油及び/又はワックス異性化イソパラフィン系基油は、基油全量基準で好ましくは30質量%以上、より好ましくは50質量%以上、特に好ましくは70質量%以上、最も好ましくは90質量%以上使用することが望ましい。
The mineral oil base oil used in the present invention is particularly preferably a base oil obtained by subjecting a base oil selected from the above [1] to [8] to the following treatment.
That is, the base oil selected from the above [1] to [8] is used as it is, or the lubricating oil fraction recovered from this base oil is hydrocracked or wax-isomerized, and the product is used as it is or from now on. Collect the fraction, and then perform dewaxing treatment such as solvent dewaxing or contact dewaxing, and then solvent refining treatment, or after solvent refining treatment, dewaxing such as solvent dewaxing or contact dewaxing Hydrocracked mineral oil and / or wax isomerized isoparaffinic base oil produced by treatment is preferably used. The hydrocracked mineral oil and / or wax isomerized isoparaffin base oil is preferably 30% by mass or more, more preferably 50% by mass or more, particularly preferably 70% by mass or more, and most preferably 90% by mass based on the total amount of the base oil. % Or more is desirable.
 合成系潤滑油基油としては、例えば、ポリα-オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(例えば、ジトリデシルグルタレート、ジ-2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ-2-エチルヘキシルセバケート等)、ポリオールエステル(例えば、トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられる。 Synthetic lubricating base oils include, for example, poly α-olefins or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (eg, ditridecylglutarate, di-2-ethylhexyl adipate, Diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc.), polyol esters (eg, trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), Polyoxyalkylene glycol, dialkyl diphenyl ether, polyphenyl ether and the like can be mentioned.
 好ましい合成系潤滑油基油としてはポリα-オレフィンが挙げられる。ポリα-オレフィンとしては、典型的には、炭素数2~32、好ましくは6~16のα-オレフィンのオリゴマーまたはコオリゴマー(例えば、1-オクテンオリゴマー、1-デセンオリゴマー、エチレン-プロピレンコオリゴマー等)及びその水素化物が挙げられる。 A preferred synthetic lubricating base oil is poly α-olefin. The poly α-olefin is typically an α-olefin oligomer or co-oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms (eg, 1-octene oligomer, 1-decene oligomer, ethylene-propylene co-oligomer). And hydrides thereof.
 ポリα-オレフィンの製法については特に制限はないが、例えば、三塩化アルミニウム、三フッ化ホウ素または三フッ化ホウ素と水、アルコール(例えばエタノール、プロパノールまたはブタノール)、カルボン酸、またはエステル(例えば酢酸エチルまたはプロピオン酸エチル)との錯体を含むフリーデル・クラフツ触媒のような重合触媒の存在下でのα-オレフィンの重合等が挙げられる。 There is no particular limitation on the production method of poly α-olefin, but for example, aluminum trichloride, boron trifluoride or boron trifluoride and water, alcohol (eg ethanol, propanol or butanol), carboxylic acid, or ester (eg acetic acid) And polymerization of α-olefin in the presence of a polymerization catalyst such as a Friedel-Crafts catalyst containing a complex with ethyl or ethyl propionate).
 (A)潤滑油基油は、2種類以上の鉱油系基油同士、又は2種類以上の合成油系基油同士の混合物であっても差し支えなく、鉱油系基油と合成油系基油との混合物であっても差し支えない。そして、上記混合物における2種類以上の基油の混合比は、任意に選ぶことができる。 (A) The lubricating base oil may be a mixture of two or more mineral oil base oils or a mixture of two or more synthetic oil base oils. Even a mixture of these can be used. And the mixing ratio of 2 or more types of base oil in the said mixture can be chosen arbitrarily.
 (A)潤滑油基油の100℃における動粘度は、3.0mm/s以下であることが必要であり、2.8mm/s以下が好ましく、2.6mm/s以下がより好ましい。潤滑油基油の100℃における動粘度を3.0mm/s以下とすることによって、流体抵抗が小さくなるため潤滑個所での摩擦抵抗がより小さい潤滑油組成物を得ることが可能となり、また相対的に(B)成分の有効濃度を高めることができ、低粘度でありながら、疲労寿命、初期及び長期間使用後の極圧性をさらに高めることが可能となる。
 一方、(A)潤滑油基油の100℃における動粘度は、0.5mm/s以上であることが好ましく、1.0mm/s以上がより好ましく、1.2mm/s以上がさらに好ましい。潤滑油基油の100℃動粘度を0.5mm/s以上にすることで、油膜形成が十分となり、潤滑性により優れ、また、高温条件下での基油の蒸発損失がより小さい潤滑油組成物を得ることが可能となる。
(A) a kinematic viscosity at 100 ° C. of the lubricating base oil is required to be less 3.0 mm 2 / s, preferably not more than 2.8 mm 2 / s, more preferably at most 2.6 mm 2 / s . By setting the kinematic viscosity at 100 ° C. of the lubricating base oil to 3.0 mm 2 / s or less, it is possible to obtain a lubricating oil composition having a smaller frictional resistance at the lubricating point because the fluid resistance is reduced, and The effective concentration of the component (B) can be relatively increased, and the fatigue life and the extreme pressure after initial and long-term use can be further enhanced while the viscosity is low.
On the other hand, the kinematic viscosity at 100 ° C. of (A) the lubricating base oil is preferably 0.5 mm 2 / s or higher, more preferably at least 1.0mm 2 / s, 1.2mm 2 / s or more preferable. A lubricating base oil having a kinematic viscosity at 100 ° C. of 0.5 mm 2 / s or more is sufficient to form an oil film, to improve lubricity, and to reduce the base oil evaporation loss under high temperature conditions. It becomes possible to obtain a composition.
 (A)潤滑油基油の粘度指数に格別の限定はないが、80以上であることが好ましく、より好ましくは90以上、特に好ましくは95以上であることが望ましい。粘度指数を80以上とすることによって、疲労寿命、初期及び長期間使用後の極圧性により優れた組成物を得ることができる。上限については特に制限はないが、150以下が好ましく、140以下がより好ましく、130以下が特に好ましい。150を超えると、基油中にノルマルパラフィンが増加するため、低温流動性が悪化する傾向があり好ましくない。 (A) The viscosity index of the lubricating base oil is not particularly limited, but is preferably 80 or more, more preferably 90 or more, and particularly preferably 95 or more. By setting the viscosity index to 80 or more, it is possible to obtain a composition that is more excellent in fatigue life, extreme pressure after initial use and long-term use. The upper limit is not particularly limited, but is preferably 150 or less, more preferably 140 or less, and particularly preferably 130 or less. When it exceeds 150, normal paraffin increases in the base oil, and thus low temperature fluidity tends to deteriorate, which is not preferable.
 本発明の潤滑油組成物は、(B)成分として、100℃における動粘度が500~5000mm/sのエステル化合物を含有する。 The lubricating oil composition of the present invention contains an ester compound having a kinematic viscosity at 100 ° C. of 500 to 5000 mm 2 / s as the component (B).
 (B)成分のエステル化合物としては、多価アルコールと多塩基酸のポリエステルが挙げられる。エステル化合物は、1種類のみから構成されるものであってもよいし、また2種以上の混合物から構成されるものであってもよい。 (B) Component ester compounds include polyesters of polyhydric alcohols and polybasic acids. The ester compound may be composed of only one type, or may be composed of a mixture of two or more types.
 (B)エステル化合物としては、多価アルコール中の水酸基全てがエステル化された完全エステルでもよいし、水酸基の一部がエステル化されず水酸基のまま残存する部分エステルでもよい。また、多塩基酸中のカルボキシル基全てがエステル化された完全エステルでもよいし、あるいはカルボキシル基の一部がエステル化されずカルボキシル基のままで残っている部分エステルであってもよい。完全エステルにはポリエステル末端の水酸基を一塩基酸でエステル化したもの、およびカルボキシル基を一価アルコールによってエステル化したものも含まれる。 (B) The ester compound may be a complete ester in which all the hydroxyl groups in the polyhydric alcohol are esterified, or a partial ester in which some of the hydroxyl groups are not esterified and remain as hydroxyl groups. Moreover, the complete ester by which all the carboxyl groups in a polybasic acid were esterified may be sufficient, or the partial ester which a part of carboxyl group is not esterified and remains with the carboxyl group may be sufficient. Complete esters include those obtained by esterifying a hydroxyl group at the end of a polyester with a monobasic acid and those obtained by esterifying a carboxyl group with a monohydric alcohol.
 (B)エステル化合物を構成する多価アルコールとしては、通常2~10価、好ましくは2~6価のものが用いられ、直鎖のものでも分枝のものでもよく、また飽和のものでも不飽和のものでもよい。かかる多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビタン等が挙げられる。これらの中でも、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のネオペンチル構造を有する多価アルコールが好ましく、ネオペンチルグリコールが特に好ましい。 (B) As the polyhydric alcohol constituting the ester compound, those having 2 to 10 valences, preferably 2 to 6 valences are usually used, which may be linear or branched, and may be saturated. It may be saturated. Examples of such polyhydric alcohols include ethylene glycol, propylene glycol, neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane, pentaerythritol, sorbitan, and the like. Among these, polyhydric alcohols having a neopentyl structure such as neopentyl glycol, trimethylolpropane, and pentaerythritol are preferable, and neopentyl glycol is particularly preferable.
 (B)エステル化合物を構成する多塩基酸としては炭素数2~16の二塩基酸およびトリメリット酸等が用いられ、直鎖のものでも分枝のものでもよく、また飽和のものでも不飽和のものでもよい。かかる多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ドデカン-1,12-ジカルボン酸、プラシリン酸、ダイマー酸、フタル酸、イソフタル酸、テレフタル酸等の二塩基酸やプロピレン-1,2,3-トリカルボン酸、プロパン-1,2,3-トリカルボン酸、2-オキシプロパン-1,2,3-トリカルボン酸、4-オキシペンタン-1,3,4-トリカルボン酸、2-オキシヘプタデカン-1,2,3-トリカルボン酸、ヘミメリット酸、トリメリット酸、トリメシン酸等の三塩基酸やプレニン酸、メロファン酸、ピロメリット酸等及びこれらの混合物が挙げられる。特にアジピン酸、アゼライン酸、ドデカン-1,12-ジカルボン酸、ダイマー酸等の二塩基酸が好ましい。 (B) As the polybasic acid constituting the ester compound, dibasic acid and trimellitic acid having 2 to 16 carbon atoms are used, which may be linear or branched, and saturated or unsaturated. It may be. Examples of such polybasic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, dodecane-1,12-dicarboxylic acid, plasylic acid, dimer acid, phthalic acid Dibasic acids such as isophthalic acid and terephthalic acid, propylene-1,2,3-tricarboxylic acid, propane-1,2,3-tricarboxylic acid, 2-oxypropane-1,2,3-tricarboxylic acid, 4- Tribasic acids such as oxypentane-1,3,4-tricarboxylic acid, 2-oxyheptadecane-1,2,3-tricarboxylic acid, hemimellitic acid, trimellitic acid, trimesic acid, prenic acid, melophanoic acid, pyro A merit acid etc. and these mixtures are mentioned. Particularly preferred are dibasic acids such as adipic acid, azelaic acid, dodecane-1,12-dicarboxylic acid and dimer acid.
 (B)エステル化合物末端のカルボキシル基をエステル化する際に使用する一価アルコールとしては、炭素数1~24、好ましくは1~12のものが用いられ、直鎖のものでも分枝のものでもよく、また飽和のものであっても不飽和のものであってもよい。かかる一価アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール等が挙げられる。一価アルコールはモノアルキルアルコールが好ましい。 (B) As the monohydric alcohol used when esterifying the carboxyl group at the terminal of the ester compound, those having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms are used, which may be linear or branched. It may be saturated or unsaturated. Examples of such monohydric alcohols include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol and the like. The monohydric alcohol is preferably a monoalkyl alcohol.
 (B)エステル化合物末端の水酸基をエステル化する際に使用する一塩基酸としては、通常炭素数2~24の脂肪酸が用いられ、直鎖のものでも分枝のものでもよく、また飽和のものでも不飽和のものでもよい。かかる一塩基酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸等の飽和脂肪酸;アクリル酸、メタクリル酸、ブテン酸、ペンテン酸、ヘキセン酸等の不飽和脂肪酸等が挙げられる。 (B) The monobasic acid used for esterifying the hydroxyl group at the end of the ester compound is usually a fatty acid having 2 to 24 carbon atoms, which may be linear or branched, and saturated. However, it may be unsaturated. Examples of such monobasic acids include saturated fatty acids such as acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and decanoic acid; acrylic acid, methacrylic acid, butenoic acid and pentenoic acid. And unsaturated fatty acids such as hexenoic acid.
 (B)エステル化合物は、ネオペンチルグリコールと多塩基酸のポリエステル(ネオペンチルグリコール型ポリエステル)が最も好ましい。この際のエステル化合物は完全エステルでも部分エステルでもよいが、完全エステルが好ましい。部分エステルの末端カルボキシル基をエステル化して完全エステルにしてもよい。この際に使用する一価アルコールはモノアルキルアルコールが好ましい。 (B) The ester compound is most preferably a polyester of neopentyl glycol and a polybasic acid (neopentyl glycol type polyester). In this case, the ester compound may be a complete ester or a partial ester, but a complete ester is preferred. The terminal carboxyl group of the partial ester may be esterified to make a complete ester. The monohydric alcohol used at this time is preferably a monoalkyl alcohol.
 (B)エステル化合物の製造方法としては、例えば、1種または2種以上の多価アルコールと、一塩基酸および多塩基酸の混合物あるいは一塩基酸エステルおよび多塩基酸エステルの混合物をエステル化反応あるいはエステル交換反応させて、100℃における動粘度が500~5000mm/sとなるように重合度を調整してエステル化合物を得る方法が挙げられる。これらは、例えば、アルキレンオキサイドあるいはポリアルキレンオキサイドを分子中に含んでいてもよい。 (B) As an ester compound production method, for example, one or more polyhydric alcohols and a mixture of a monobasic acid and a polybasic acid or a mixture of a monobasic acid ester and a polybasic acid ester are esterified. Alternatively, a method of obtaining an ester compound by performing a transesterification and adjusting the degree of polymerization so that the kinematic viscosity at 100 ° C. is 500 to 5000 mm 2 / s can be mentioned. These may contain, for example, alkylene oxide or polyalkylene oxide in the molecule.
 前記製造方法としては、例えば、1段階あるいは2段階以上の工程で、100~250℃、好ましくは140~240℃で反応を行い、未反応物を留去して、触媒を除去し、水洗後、減圧下で加熱脱水して精製する方法等が挙げられる。ここで、共沸脱水溶媒としてトルエン、ベンゼン、あるいはキシレン等を使用してもよく、反応水の除去の目的で窒素等の不活性ガスを導入しても、減圧下で反応させてもよく、触媒として、例えば硫酸、パラトルエンスルホン酸等の酸性触媒、水酸化カリウム、水酸化リチウム、酢酸リチウム等のアルカリ性触媒や酸化亜鉛等の金属酸化物等を使用してもよい。 As the production method, for example, the reaction is performed at 100 to 250 ° C., preferably 140 to 240 ° C. in one step or two or more steps, the unreacted substances are distilled off, the catalyst is removed, And purification by dehydration by heating under reduced pressure. Here, toluene, benzene, xylene or the like may be used as an azeotropic dehydration solvent, or an inert gas such as nitrogen may be introduced for the purpose of removing reaction water, or the reaction may be performed under reduced pressure. As the catalyst, for example, an acidic catalyst such as sulfuric acid or paratoluenesulfonic acid, an alkaline catalyst such as potassium hydroxide, lithium hydroxide, or lithium acetate, or a metal oxide such as zinc oxide may be used.
 (B)エステル化合物の100℃における動粘度は、500~5000mm/sであることが必要であり、600~4500mm/sが好ましく、800~4000mm/sがより好ましく、1000~3500mm/sがさらに好ましい。100℃における動粘度が上記範囲のエステル化合物を添加することによって、優れた疲労寿命、初期及び長期間使用後の極圧性を付与することができる。500mm/s未満の場合は、疲労寿命および初期の極圧性向上効果が小さく、5000mm/sを超える場合は、疲労寿命向上効果がほとんど得られず、また、長期間使用後の極圧性を維持することができないため、それぞれ好ましくない。 Kinematic viscosity at 100 ° C. of (B) an ester compound is required to be 500 ~ 5000mm 2 / s, preferably 600 ~ 4500mm 2 / s, more preferably 800 ~ 4000mm 2 / s, 1000 ~ 3500mm 2 / S is more preferable. By adding an ester compound having a kinematic viscosity at 100 ° C. in the above range, excellent fatigue life, extreme pressure after initial use and long-term use can be imparted. When it is less than 500 mm 2 / s, the fatigue life and the initial extreme pressure improvement effect are small, and when it exceeds 5000 mm 2 / s, the fatigue life improvement effect is hardly obtained, and the extreme pressure after long-term use is reduced. Since it cannot maintain, it is unpreferable respectively.
 (B)エステル化合物の粘度指数は、特に制限はないが、好ましくは150以上、より好ましくは160以上であり、好ましくは400以下、より好ましくは300以下、特に好ましくは280以下である。 (B) The viscosity index of the ester compound is not particularly limited, but is preferably 150 or more, more preferably 160 or more, preferably 400 or less, more preferably 300 or less, and particularly preferably 280 or less.
 (B)エステル化合物の含有量は、優れた疲労寿命、初期及び長期間使用後の極圧性を付与するために、組成物全量基準で0.1質量%以上であることが必要であり、0.5質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上がさらに好ましい。
 一方、省燃費性能を確保するため高粘度潤滑油とならないようにする観点から、12.0質量%以下であることが必要であり、11.8質量%以下が好ましく、11.6質量%以下が好ましい。
The content of the (B) ester compound needs to be 0.1% by mass or more based on the total amount of the composition in order to impart excellent fatigue life, extreme pressure after initial and long-term use, and 0 0.5 mass% or more is preferable, 1.0 mass% or more is more preferable, and 2.0 mass% or more is more preferable.
On the other hand, in order to ensure fuel-saving performance, it is necessary to be 12.0% by mass or less from the viewpoint of avoiding a high-viscosity lubricating oil, preferably 11.8% by mass or less, and 11.6% by mass or less. Is preferred.
 本発明の潤滑油組成物は、(C)成分として、重量平均分子量10,000~60,000のポリ(メタ)アクリレート(PMA)を含有することが好ましい。重量平均分子量10,000~60,000のポリ(メタ)アクリレート(PMA)を含有することにより、疲労寿命、長期間使用後における極圧性、耐摩耗性あるいは低温流動性をより改善することができる。
 ここでいう(メタ)アクリレートとは、アクリレート及びメタクリレートの総称であり、ポリ(メタ)アクリレートは、好ましくは下記一般式(1)で表される(メタ)アクリレートモノマー(以下、「モノマーM-1」という。)を含む重合性モノマーの重合体である。
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、Rは水素またはメチル基を示し、Rは炭素数1~750の直鎖状または分枝状の炭化水素基を示す。]
The lubricating oil composition of the present invention preferably contains poly (meth) acrylate (PMA) having a weight average molecular weight of 10,000 to 60,000 as the component (C). By containing poly (meth) acrylate (PMA) having a weight average molecular weight of 10,000 to 60,000, fatigue life, extreme pressure after long-term use, wear resistance, or low temperature fluidity can be further improved. .
The (meth) acrylate here is a general term for acrylate and methacrylate, and the poly (meth) acrylate is preferably a (meth) acrylate monomer represented by the following general formula (1) (hereinafter referred to as “monomer M-1”). ").).
Figure JPOXMLDOC01-appb-C000001
[In the general formula (1), R 1 represents hydrogen or a methyl group, and R 2 represents a linear or branched hydrocarbon group having 1 to 750 carbon atoms. ]
 一般式(1)で表されるモノマーの1種の単独重合体または2種以上の共重合により得られるポリ(メタ)アクリレートはいわゆる非分散型ポリ(メタ)アクリレートであるが、本発明に係るポリ(メタ)アクリレートは、一般式(1)で表されるモノマーM-1と、下記一般式(2)および(3)から選ばれる1種以上のモノマー(以下、それぞれ「モノマーM-2」および「モノマーM-3」という。)を共重合させたいわゆる分散型ポリ(メタ)アクリレートであってもよい。
Figure JPOXMLDOC01-appb-C000002
[一般式(2)中、Rは水素原子またはメチル基を示し、Rは炭素数1~18のアルキレン基を示し、Eは窒素原子を1~2個、酸素原子を0~2個含有するアミン残基または複素環残基を示し、aは0または1を示す。]
Figure JPOXMLDOC01-appb-C000003
[一般式(3)中、Rは水素原子またはメチル基を示し、Eは窒素原子を1~2個、酸素原子を0~2個含有するアミン残基または複素環残基を示す。
The poly (meth) acrylate obtained by one kind of homopolymer of the monomer represented by the general formula (1) or copolymerization of two or more kinds is a so-called non-dispersed poly (meth) acrylate. The poly (meth) acrylate is composed of the monomer M-1 represented by the general formula (1) and one or more monomers selected from the following general formulas (2) and (3) (hereinafter referred to as “monomer M-2”, respectively). And a so-called dispersed poly (meth) acrylate obtained by copolymerization of “monomer M-3”).
Figure JPOXMLDOC01-appb-C000002
[In the general formula (2), R 3 represents a hydrogen atom or a methyl group, R 4 represents an alkylene group having 1 to 18 carbon atoms, E 1 represents 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. Each represents an amine residue or a heterocyclic residue, and a represents 0 or 1. ]
Figure JPOXMLDOC01-appb-C000003
[In general formula (3), R 5 represents a hydrogen atom or a methyl group, and E 2 represents an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms.
 一般式(1)中のRで表される炭素数1~750の炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、及びオクタデシル基(これらアルキル基は直鎖状でも分枝状でもよい。)等のアルキル基や、ブタジエンやイソプレンの重合物の水素化物等が例示できる。 Specific examples of the hydrocarbon group having 1 to 750 carbon atoms represented by R 2 in the general formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group. Octyl group, nonyl group, decyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, and octadecyl group (these alkyl groups may be linear or branched) And an alkyl group such as hydride of a polymer of butadiene or isoprene.
 一般式(2)中のRで表される炭素数1~18のアルキレン基としては、具体的には、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、及びオクタデシレン基(これらアルキレン基は直鎖状でも分枝状でもよい。)等が例示できる。 Specific examples of the alkylene group having 1 to 18 carbon atoms represented by R 4 in the general formula (2) include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. Nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, and octadecylene group (these alkylene groups may be linear or branched). it can.
 一般式(2)および(3)中のE、Eで表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基およびピラジノ基等が例示できる。 Specific examples of the groups represented by E 1 and E 2 in the general formulas (2) and (3) include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, and a toluidino group. Xylidino, acetylamino, benzoylamino, morpholino, pyrrolyl, pyrrolino, pyridyl, methylpyridyl, pyrrolidinyl, piperidinyl, quinonyl, pyrrolidonyl, pyrrolidono, imidazolino and pyrazino It can be illustrated.
 モノマーM-2、モノマーM-3の好ましい例としては、具体的には、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2-メチル-5-ビニルピリジン、モルホリノメチルメタクリレート、モルホリノエチルメタクリレート、N-ビニルピロリドン及びこれらの混合物等が例示できる。 Preferable examples of the monomer M-2 and the monomer M-3 are specifically dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, morpholinomethyl methacrylate. Morpholinoethyl methacrylate, N-vinylpyrrolidone, and mixtures thereof.
 モノマーM-1と、モノマーM-2および/またはモノマーM-3との共重合体の共重合モル比については特に制限はないが、M-1:M-2および/またはM-3=99:1~80:20程度が好ましく、より好ましくは98:2~85:15、さらに好ましくは95:5~90:10である。 There are no particular restrictions on the copolymerization molar ratio of the copolymer of monomer M-1 and monomer M-2 and / or monomer M-3, but M-1: M-2 and / or M-3 = 99 The ratio is preferably about 1 to 80:20, more preferably 98: 2 to 85:15, and still more preferably 95: 5 to 90:10.
 本発明において用いる(C)ポリ(メタ)アクリレートの重量平均分子量は10,000~60,000であることが必要であり、15,000~59,000が好ましく、20,000~58,000がより好ましい。重量平均分子量が10,000未満では粘度指数を高くすることが困難であり、60,000を超えるとせん断による粘度低下が著しくなり、いずれも潤滑油としての信頼性低下につながるため好ましくない。 The weight average molecular weight of the (C) poly (meth) acrylate used in the present invention is required to be 10,000 to 60,000, preferably 15,000 to 59,000, and preferably 20,000 to 58,000. More preferred. When the weight average molecular weight is less than 10,000, it is difficult to increase the viscosity index, and when it exceeds 60,000, the viscosity is significantly lowered due to shearing, and both lead to a decrease in reliability as a lubricating oil.
 本発明の潤滑油組成物が(C)ポリ(メタ)アクリレートを含有する場合、その含有量は、組成物全量基準で0.5~20質量%、好ましくは1~15質量%である。含有量が20質量%を超える場合、初期の極圧性を長期間維持しにくいため好ましくない。 When the lubricating oil composition of the present invention contains (C) poly (meth) acrylate, its content is 0.5 to 20% by mass, preferably 1 to 15% by mass, based on the total amount of the composition. When the content exceeds 20% by mass, it is not preferable because it is difficult to maintain the initial extreme pressure property for a long period of time.
 また、本発明の潤滑油組成物は、さらにその性能を高める目的で、その目的に応じて潤滑油に一般的に使用されている任意の添加剤を含有させることができる。このような添加剤として例えば、金属系清浄剤、無灰分散剤、極圧剤、酸化防止剤、腐食防止剤、摩擦調整剤、ゴム膨潤剤、錆止め剤、流動点降下剤、消泡剤、着色剤等の各種添加剤を単独で又は数種類組み合わせて配合しても良い。 Further, the lubricating oil composition of the present invention can contain any additive generally used in lubricating oils for the purpose of further improving the performance. Examples of such additives include metal detergents, ashless dispersants, extreme pressure agents, antioxidants, corrosion inhibitors, friction modifiers, rubber swelling agents, rust inhibitors, pour point depressants, antifoaming agents, and coloring. You may mix | blend various additives, such as an agent, individually or in combination.
 金属系清浄剤としては、潤滑油用の金属系清浄剤として通常用いられる任意の化合物が使用可能であるが、例えば、アルカリ金属又はアルカリ土類金属のスルフォネート、フェネート、サリシレート、ナフテネート等が本発明の組成物に、単独あるいは二種類以上組み合わせて使用できる。ここでアルカリ金属としてはナトリウムやカリウム、アルカリ土類金属としてはカルシウム、マグネシウム等が例示される。また、具体的な金属系清浄剤としてはカルシウム又はマグネシウムのスルフォネート、フェネート、サリシレートが好ましく用いられる。なお、これら金属系清浄剤の全塩基価及び添加量は要求される潤滑油の性能に応じて任意に選択することができる。 As the metal detergent, any compound usually used as a metal detergent for lubricating oil can be used. For example, alkali metal or alkaline earth metal sulfonate, phenate, salicylate, naphthenate, etc. These compositions can be used alone or in combination of two or more. Examples of the alkali metal include sodium and potassium, and examples of the alkaline earth metal include calcium and magnesium. In addition, calcium or magnesium sulfonates, phenates, and salicylates are preferably used as specific metal detergents. In addition, the total base number and addition amount of these metal detergents can be arbitrarily selected according to the required performance of the lubricating oil.
 無灰分散剤としては、具体的には、炭素数40~400、好ましくは60~350のアルキル基またはアルケニル基を分子中に少なくとも1個有する含窒素化合物またはその誘導体等が例示できる。このアルキル基またはアルケニル基としては、直鎖状でも分枝状でも良いが、好ましいものとしては、プロピレン、1-ブテン、イソブチレンなどのオレフィンのオリゴマーやエチレンとプロピレンのコオリゴマーから誘導される分枝状アルキル基や分枝状アルケニル基が挙げられる。
 これらは1種の化合物を単独で用いても良く、2種以上の化合物の任意混合割合での混合物等を用いても良い。
Specific examples of the ashless dispersant include nitrogen-containing compounds having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, or derivatives thereof. The alkyl group or alkenyl group may be linear or branched, but is preferably a branch derived from an olefin oligomer such as propylene, 1-butene and isobutylene or a co-oligomer of ethylene and propylene. An alkyl group and a branched alkenyl group.
One of these compounds may be used alone, or a mixture of two or more compounds in an arbitrary mixing ratio may be used.
 より具体的には、
(i)炭素数40~400のアルキル基若しくはアルケニル基を分子中に少なくとも1個有するコハク酸イミド、またはその誘導体
(ii)炭素数40~400のアルキル基若しくはアルケニル基を分子中に少なくとも1個有するベンジルアミン、またはその誘導体
(iii)炭素数40~400のアルキル基若しくはアルケニル基を分子中に少なくとも1個有するポリアミン、またはその誘導体
の中から選ばれる1種または2種以上の化合物等が例示できる。
More specifically,
(I) Succinimide having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof (ii) At least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule Examples include benzylamine having a derivative thereof, or (iii) a polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or one or more compounds selected from derivatives thereof. it can.
 (i)コハク酸イミドとしては、さらに具体的には、下記の一般式(4)または(5)で表される化合物が挙げられる。 (I) More specifically, examples of the succinimide include compounds represented by the following general formula (4) or (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(4)及び(5)中で、R~Rは、それぞれ個別に、炭素数40~400、好ましくは60~350のアルキル基またはアルケニル基を示し、bは1~5、好ましくは2~4の数を、cは0~4、好ましくは1~3の数をそれぞれ示している。 In the general formulas (4) and (5), R 6 to R 8 each independently represents an alkyl group or an alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and b is 1 to 5, Preferably, it represents a number from 2 to 4, and c represents a number from 0 to 4, preferably from 1 to 3.
 このコハク酸イミドの製造方法は何ら限定されるものではないが、例えば、プロピレンオリゴマー、ポリブテン、エチレン-プロピレン共重合等のポリオレフィンを無水マレイン酸と反応させて無水アルケニルコハク酸を得た後、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミンを用いてイミド化したもの等が挙げられる。 The method for producing this succinimide is not limited in any way. For example, after reacting a polyolefin such as propylene oligomer, polybutene, ethylene-propylene copolymer or the like with maleic anhydride to obtain alkenyl succinic anhydride, diethylenetriamine is obtained. , Imidized with polyamines such as triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and the like.
 なお、コハク酸イミドには、イミド化に際しては、ポリアミンの一端に無水コハク酸が付加した、一般式(4)のようないわゆるモノタイプのコハク酸イミドと、ポリアミンの両端に無水コハク酸が付加した、一般式(5)のようないわゆるビスタイプのコハク酸イミドがあるが、そのいずれでも、またこれらの混合物でも使用可能である。 The succinimide is added with a so-called monotype succinimide represented by the general formula (4) in which succinic anhydride is added to one end of the polyamine and succinic anhydride is added to both ends of the polyamine. In addition, there are so-called bis-type succinimides represented by the general formula (5), any of which can also be used as a mixture thereof.
 ベンジルアミンとしては、より具体的には、下記の一般式(6)で表される化合物等が例示できる。 More specifically, examples of benzylamine include compounds represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(6)中で、Rは、炭素数40~400、好ましくは60~350のアルキル基またはアルケニル基を示し、dは1~5、好ましくは2~4の数をそれぞれ示している。 In the general formula (6), R 9 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and d represents a number of 1 to 5, preferably 2 to 4, respectively. Yes.
 このベンジルアミンの製造方法は何ら限定されるものではないが、例えば、プロピレンオリゴマー、ポリブテン、エチレン-プロピレン共重合等のポリオレフィンをフェノールと反応させてアルキルフェノールとした後、これにホルムアルデヒドとジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミンをマンニッヒ反応により反応させることにより得ることができる。 The method for producing this benzylamine is not limited in any way. For example, a polyolefin such as a propylene oligomer, polybutene, or ethylene-propylene copolymer is reacted with phenol to form an alkylphenol, followed by formaldehyde, diethylenetriamine, or triethylene. It can be obtained by reacting polyamines such as tetramine, tetraethylenepentamine, pentaethylenehexamine and the like by Mannich reaction.
 ポリアミンとしては、より具体的には、下記の一般式(7)で表される化合物等が例示できる。 More specifically, examples of the polyamine include compounds represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(7)中で、R10は、炭素数40~400、好ましくは60~350のアルキル基またはアルケニル基を示し、eは1~5、好ましくは2~4の数をそれぞれ示している。 In the general formula (7), R 10 represents an alkyl group or alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and e represents a number of 1 to 5, preferably 2 to 4, respectively. Yes.
 このポリアミンの製造方法は何ら限定されるものではないが、例えば、プロピレンオリゴマー、ポリブテン、エチレン-プロピレン共重合等のポリオレフィンを塩素化した後、これにアンモニアやエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミンを反応させることにより得ることができる。 The production method of this polyamine is not limited in any way. For example, after chlorinating a polyolefin such as propylene oligomer, polybutene, or ethylene-propylene copolymer, ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylene are added thereto. It can be obtained by reacting a polyamine such as pentamine or pentaethylenehexamine.
 極圧添加剤としては、潤滑油用の極圧添加剤として通常用いられる任意の化合物が使用可能であるが、例えば、ジスルフィド類、硫化オレフィン類、硫化油脂類等の硫黄系化合物等が挙げられる。これらの中から任意に選ばれた1種類あるいは2種類以上の化合物は任意の量を含有させることができるが、通常、その含有量は、潤滑油組成物全量基準で0.01~5.0質量%であるのが望ましい。 As the extreme pressure additive, any compound usually used as an extreme pressure additive for lubricating oils can be used, and examples thereof include sulfur compounds such as disulfides, sulfurized olefins, and sulfurized fats and oils. . One or two or more compounds arbitrarily selected from these can be contained in any amount, but the content is usually 0.01 to 5.0 based on the total amount of the lubricating oil composition. It is desirable that it is mass%.
 酸化防止剤としては、フェノール系化合物やアミン系化合物等、潤滑油に一般的に使用されているものであれば使用可能である。
 具体的には、2,6-ジ-tert-ブチル-4-メチルフェノール等のアルキルフェノール類、メチレン-4,4-ビスフェノール(2,6-ジ-tert-ブチル-4-メチルフェノール)等のビスフェノール類、フェニル-α-ナフチルアミン等のナフチルアミン類、ジアルキルジフェニルアミン類、ジ-2-エチルヘキシルジチオリン酸亜鉛等のジアルキルジチオリン酸亜鉛類、(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)脂肪酸(プロピオン酸等)と1価又は多価アルコール、例えばメタノール、オクタデカノール、1,6ヘキサジオール、ネオペンチルグリコール、チオジエチレングリコール、トリエチレングリコール、ペンタエリスリトール等とのエステル等が挙げられる。
 これらの中から任意に選ばれた1種類あるいは2種類以上の化合物は任意の量を含有させることができるが、通常、その含有量は、潤滑油組成物全量基準で0.01~5.0質量%であるのが望ましい。
As the antioxidant, any phenolic compound or amine compound that is generally used in lubricating oils can be used.
Specifically, alkylphenols such as 2,6-di-tert-butyl-4-methylphenol and bisphenols such as methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol) Naphthylamines such as phenyl-α-naphthylamine, dialkyldiphenylamines, zinc dialkyldithiophosphates such as zinc di-2-ethylhexyldithiophosphate, (3,5-di-tert-butyl-4-hydroxyphenyl) fatty acid ( And an ester of monovalent or polyhydric alcohol such as methanol, octadecanol, 1,6 hexadiol, neopentyl glycol, thiodiethylene glycol, triethylene glycol, pentaerythritol and the like.
One or two or more compounds arbitrarily selected from these can be contained in any amount, but the content is usually 0.01 to 5.0 based on the total amount of the lubricating oil composition. It is desirable that it is mass%.
 腐食防止剤としては、潤滑油用の腐食防止剤として通常用いられる任意の化合物が使用可能であるが、例えば、ベンゾトリアゾール系、トリルトリアゾール系、イミダゾール系化合物等が挙げられる。 As the corrosion inhibitor, any compound usually used as a corrosion inhibitor for lubricating oils can be used, and examples thereof include benzotriazole, tolyltriazole, and imidazole compounds.
 摩擦調整剤としては、潤滑油用の摩擦調整剤として通常用いられる任意の化合物が使用可能であるが、炭素数6~30のアルキル基又はアルケニル基、特に炭素数6~30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩等が挙げられる。
 前述したアミン化合物の中には、ポリアミンとの反応物であるコハク酸イミド等も含まれる。これらのものはホウ素化合物やリン化合物で変性されたものも含む。
 アミン化合物としては、炭素数6~30の直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族モノアミン、直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族ポリアミン、又はこれら脂肪族アミンのアルキレンオキシド付加物等が例示できる。脂肪酸エステルとしては、炭素数7~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族1価アルコール又は脂肪族多価アルコールとのエステル等が例示できる。脂肪酸アミドとしては、炭素数7~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂肪族モノアミン又は脂肪族ポリアミンとのアミド等が例示できる。脂肪酸金属塩としては、炭素数7~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸の、アルカリ土類金属塩(マグネシウム塩、カルシウム塩等)や亜鉛塩等が挙げられる。
 本発明においては、これらの摩擦調整剤の中から任意に選ばれた1種類あるいは2種類以上の化合物を、任意の量で含有させることができるが、通常、その含有量は、潤滑油組成物基準で0.01~5.0質量%、好ましくは0.03~3.0質量%であるのが望ましい。
As the friction modifier, any compound usually used as a friction modifier for lubricating oils can be used, but an alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a linear alkyl group having 6 to 30 carbon atoms. Alternatively, amine compounds, fatty acid esters, fatty acid amides, fatty acid metal salts, and the like having at least one linear alkenyl group in the molecule are included.
Among the amine compounds described above, succinimide and the like which are a reaction product with polyamine are also included. These include those modified with boron compounds and phosphorus compounds.
Examples of the amine compound include linear or branched, preferably linear aliphatic monoamines having 6 to 30 carbon atoms, linear or branched, preferably linear aliphatic polyamines, or fatty acids thereof. An alkylene oxide adduct of a group amine can be exemplified. Examples of the fatty acid ester include esters of linear or branched, preferably linear, fatty acids having 7 to 31 carbon atoms with aliphatic monohydric alcohols or aliphatic polyhydric alcohols. Examples of the fatty acid amide include amides of linear or branched, preferably linear fatty acids having 7 to 31 carbon atoms, and aliphatic monoamines or aliphatic polyamines. Examples of the fatty acid metal salt include an alkaline earth metal salt (magnesium salt, calcium salt, etc.) or zinc salt of a linear or branched, preferably linear fatty acid having 7 to 31 carbon atoms.
In the present invention, one kind or two or more kinds of compounds arbitrarily selected from these friction modifiers can be contained in any amount, but usually the content thereof is a lubricating oil composition. It is desirable that the content is 0.01 to 5.0% by mass, preferably 0.03 to 3.0% by mass.
 ゴム膨潤剤としては、潤滑油用のシール膨潤剤として通常用いられる任意の化合物が使用可能であり、例えば、エステル系、硫黄系、芳香族系等のシール膨潤剤が挙げられる。 As the rubber swelling agent, any compound usually used as a seal swelling agent for lubricating oils can be used, and examples thereof include ester-based, sulfur-based, aromatic-based seal swelling agents.
 錆止め剤としては、例えば、アルケニルコハク酸エステル、多価アルコールエステル、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート等が挙げられる。 Examples of the rust inhibitor include alkenyl succinic acid ester, polyhydric alcohol ester, petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, and the like.
 本発明の潤滑油組成物に併用可能な流動点降下剤としては、潤滑油用の流動点降下剤として通常用いられる任意の化合物が使用可能であるが、ポリメタクリレート系流動点降下剤が特に好ましい。流動点降下剤の重量平均分子量は、1万~30万であることが好ましく、5万~20万が更に好ましい。流動点降下剤の含有割合は潤滑油組成物全量基準で、0.05~20質量%であることが好ましい。
 なお、潤滑油基油として合成油系基油を用いる場合には、流動点降下剤は必ずしも含有しなくてもよいが、潤滑油基油として鉱油系基油を用いる場合は、流動点降下剤を含有することが好ましい。
As the pour point depressant that can be used in combination with the lubricating oil composition of the present invention, any compound usually used as a pour point depressant for lubricating oils can be used, but polymethacrylate pour point depressants are particularly preferred. . The weight average molecular weight of the pour point depressant is preferably 10,000 to 300,000, more preferably 50,000 to 200,000. The content of the pour point depressant is preferably 0.05 to 20% by mass based on the total amount of the lubricating oil composition.
When a synthetic base oil is used as the lubricating base oil, the pour point depressant is not necessarily contained. However, when a mineral base oil is used as the lubricating base oil, the pour point depressant is used. It is preferable to contain.
 本発明の潤滑油組成物に併用可能な消泡剤としては、潤滑油用の消泡剤として通常用いられる任意の化合物が使用可能であるが、例えば、ジメチルシリコーン、フルオロシリコーン等のシリコーン類が挙げられる。これらの中から任意に選ばれた1種類あるいは2種類以上の化合物は、任意の量を含有させることができるが、通常、その含有量は、潤滑油組成物全量基準で0.001~0.05質量%であるのが望ましい。 As an antifoaming agent that can be used in combination with the lubricating oil composition of the present invention, any compound that is usually used as an antifoaming agent for lubricating oils can be used. For example, silicones such as dimethyl silicone and fluorosilicone can be used. Can be mentioned. One or two or more compounds arbitrarily selected from these can be contained in any amount, but the content is usually 0.001 to 0.00 on the basis of the total amount of the lubricating oil composition. It is desirable that it is 05 mass%.
 本発明の潤滑油組成物に併用可能な着色剤は任意であり、また任意の量を含有させることができるが、通常、その含有量は、潤滑油組成物全量基準で0.001~1.0質量%であるのが望ましい。 The colorant that can be used in combination with the lubricating oil composition of the present invention is arbitrary and can be contained in any amount, but the content is usually 0.001 to 1.% based on the total amount of the lubricating oil composition. It is preferably 0% by mass.
 本発明の潤滑油組成物の40℃における動粘度は特に制限はないが、30.0mm/s以下であることが好ましく、29.0mm/s以下がより好ましく、28.0mm/s以下がさらに好ましく、27.0mm/s以下が特に好ましい。また13.0mm/s以上であることが好ましく、15.0mm/s以上がより好ましい。 Kinematic viscosity at 40 ° C. of the lubricating oil composition of the present invention is not particularly limited, it is preferably 30.0 mm 2 / s or less, more preferably 29.0mm 2 / s, 28.0mm 2 / s The following is more preferable, and 27.0 mm 2 / s or less is particularly preferable. Further preferably 13.0mm at 2 / s or greater, more preferably at least 15.0 mm 2 / s.
 本発明の潤滑油組成物の100℃における動粘度は特に制限はないが、6.5mm/s以下であることが好ましく、6.4mm/s以下がより好ましく、6.3mm/s以下がさらに好ましく、6.2mm/s以下が特に好ましい。また4.0mm/s以上であることが好ましく、4.5mm/s以上がより好ましい。
 40℃における動粘度および100℃における動粘度を上記範囲にすることで、従来品に比べ高い省燃費性能を付与することができ、かつ疲労寿命、初期及び長期間使用後における極圧性に優れた性能を得ることができる。
Kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is not particularly limited, preferably not more than 6.5 mm 2 / s, more preferably not more than 6.4mm 2 / s, 6.3mm 2 / s The following is more preferable, and 6.2 mm 2 / s or less is particularly preferable. Moreover, it is preferable that it is 4.0 mm < 2 > / s or more, and 4.5 mm < 2 > / s or more is more preferable.
By setting the kinematic viscosity at 40 ° C. and the kinematic viscosity at 100 ° C. within the above ranges, high fuel-saving performance can be imparted compared to conventional products, and the fatigue life and excellent extreme pressure after initial and long-term use are excellent. Performance can be obtained.
 本発明の潤滑油組成物の粘度指数は特に制限はないが、180以上が好ましく、185以上がより好ましく、190以上がさらに好ましく、200以上が特に好ましい。上限としては、500以下であることが好ましく、450以下がより好ましい。 The viscosity index of the lubricating oil composition of the present invention is not particularly limited, but is preferably 180 or more, more preferably 185 or more, still more preferably 190 or more, and particularly preferably 200 or more. As an upper limit, it is preferable that it is 500 or less, and 450 or less is more preferable.
 本発明の潤滑油組成物のユニスチール疲労寿命試験によるピッチング防止寿命F(50)は、4500以上であることが好ましく、より好ましくは4550以上、さらに好ましくは4600以上である。
 なお、本発明においてIP305/79に規定される試験法に準じたユニスチール疲労寿命試験は、負荷荷重1.8GPa,温度120℃,回転速度1410rpm、ニードルベアリングの条件下で行うものとする。
The pitching prevention life F (50) by the unisteel fatigue life test of the lubricating oil composition of the present invention is preferably 4500 or more, more preferably 4550 or more, and further preferably 4600 or more.
In the present invention, the unisteel fatigue life test according to the test method defined in IP305 / 79 is performed under the conditions of a load of 1.8 GPa, a temperature of 120 ° C., a rotational speed of 1410 rpm, and a needle bearing.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。  Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. *
(実施例1~3、比較例1~5)
 表1に示す組成の潤滑油組成物を調製した。基油の添加量(容量%)は基油全量基準であり、各添加剤の添加量(質量%)は組成物全量基準である。各潤滑油組成物の性状について下記試験により評価し表1に併記した。
(Examples 1 to 3, Comparative Examples 1 to 5)
Lubricating oil compositions having the compositions shown in Table 1 were prepared. The added amount (volume%) of the base oil is based on the total amount of the base oil, and the added amount (mass%) of each additive is based on the total amount of the composition. The properties of each lubricating oil composition were evaluated by the following test and listed in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (7)

  1.  (A)100℃における動粘度が3.0mm/s以下の潤滑油基油、および(B)100℃における動粘度が500mm/s以上5000mm/s以下のエステル化合物を組成物全量基準で0.1質量%以上12.0%質量以下含有することを特徴とする自動変速機用潤滑油組成物。 (A) Lubricating base oil having a kinematic viscosity at 100 ° C. of 3.0 mm 2 / s or less, and (B) an ester compound having a kinematic viscosity at 100 ° C. of 500 mm 2 / s or more and 5000 mm 2 / s or less based on the total amount of the composition. A lubricating oil composition for an automatic transmission, characterized by containing 0.1 to 12.0% by mass.
  2.  さらに(C)重量平均分子量10,000~60,000のポリ(メタ)アクリレートを含有することを特徴とする請求項1に記載の自動変速機用潤滑油組成物。 The lubricating oil composition for an automatic transmission according to claim 1, further comprising (C) a poly (meth) acrylate having a weight average molecular weight of 10,000 to 60,000.
  3.  40℃における動粘度が30.0mm/s以下、100℃における動粘度が6.5mm/s以下、粘度指数が180以上であることを特徴とする請求項1または2に記載の自動変速機用潤滑油組成物。 The automatic transmission according to claim 1 or 2, wherein the kinematic viscosity at 40 ° C is 30.0 mm 2 / s or less, the kinematic viscosity at 100 ° C is 6.5 mm 2 / s or less, and the viscosity index is 180 or more. Lubricating oil composition for machinery.
  4.  (B)エステル化合物が多価アルコールと多塩基酸のポリエステルであることを特徴とする請求項1~3のいずれか1項に記載の自動変速機用潤滑油組成物。 The lubricating oil composition for an automatic transmission according to any one of claims 1 to 3, wherein (B) the ester compound is a polyester of a polyhydric alcohol and a polybasic acid.
  5.  (B)エステル化合物がネオペンチルグリコール型ポリエステルであることを特徴とする請求項1~3のいずれか1項に記載の自動変速機用潤滑油組成物。 The lubricating oil composition for an automatic transmission according to any one of claims 1 to 3, wherein the ester compound (B) is a neopentyl glycol type polyester.
  6.  ユニスチール疲労寿命試験(1.8GPa,120℃,1410rpm、ニードルベアリング)によるピッチング防止寿命F(50)が4500以上であることを特徴とする請求項1~5のいずれか1項に記載の自動変速機用潤滑油組成物。 6. The automatic according to any one of claims 1 to 5, characterized in that a pitching prevention life F (50) by a unisteel fatigue life test (1.8 GPa, 120 ° C., 1410 rpm, needle bearing) is 4500 or more. Lubricating oil composition for transmission.
  7.  さらに清浄分散剤、酸化防止剤、摩耗防止剤、摩擦調整剤、防錆剤、金属不活性化剤、流動点降下剤、消泡剤のうち少なくともいずれか1つを含有することを特徴とする請求項1~6のいずれか1項に記載の自動変速機用潤滑油組成物。 Further, it contains at least one of a cleaning dispersant, an antioxidant, an antiwear agent, a friction modifier, a rust inhibitor, a metal deactivator, a pour point depressant, and an antifoaming agent. The lubricating oil composition for an automatic transmission according to any one of claims 1 to 6.
PCT/JP2016/051861 2015-03-31 2016-01-22 Lubricating oil composition for automatic transmission WO2016157956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509323A JPWO2016157956A1 (en) 2015-03-31 2016-01-22 Lubricating oil composition for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071937 2015-03-31
JP2015-071937 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157956A1 true WO2016157956A1 (en) 2016-10-06

Family

ID=57004115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051861 WO2016157956A1 (en) 2015-03-31 2016-01-22 Lubricating oil composition for automatic transmission

Country Status (2)

Country Link
JP (1) JPWO2016157956A1 (en)
WO (1) WO2016157956A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069967A1 (en) * 2003-02-07 2004-08-19 Nippon Oil Corporation Lubricating oil composition for transmission
JP2008208212A (en) * 2007-02-26 2008-09-11 Nippon Oil Corp Lubrication oil composition
WO2009125551A1 (en) * 2008-04-07 2009-10-15 新日本石油株式会社 Lubricant composition
JP2010037421A (en) * 2008-08-04 2010-02-18 Nippon Oil Corp Lubricating oil composition
WO2014013975A1 (en) * 2012-07-20 2014-01-23 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for continuously variable transmission
JP2014058694A (en) * 2014-01-07 2014-04-03 Jx Nippon Oil & Energy Corp Lubrication oil composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0822256D0 (en) * 2008-12-05 2009-01-14 Croda Int Plc Gear oil additive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069967A1 (en) * 2003-02-07 2004-08-19 Nippon Oil Corporation Lubricating oil composition for transmission
JP2008208212A (en) * 2007-02-26 2008-09-11 Nippon Oil Corp Lubrication oil composition
WO2009125551A1 (en) * 2008-04-07 2009-10-15 新日本石油株式会社 Lubricant composition
JP2010037421A (en) * 2008-08-04 2010-02-18 Nippon Oil Corp Lubricating oil composition
WO2014013975A1 (en) * 2012-07-20 2014-01-23 Jx日鉱日石エネルギー株式会社 Lubricating oil composition for continuously variable transmission
JP2014058694A (en) * 2014-01-07 2014-04-03 Jx Nippon Oil & Energy Corp Lubrication oil composition

Also Published As

Publication number Publication date
JPWO2016157956A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5789111B2 (en) Lubricating oil composition
RU2678102C2 (en) Lubricant composition
JP5409690B2 (en) Lubricating oil composition for transmission
JP5213310B2 (en) Lubricating oil composition
JP4142060B2 (en) Lubricating oil composition for automatic transmission
JP5829374B2 (en) Lubricating oil composition
JP4800635B2 (en) Lubricating oil composition for automatic transmission
JP4583138B2 (en) Lubricating oil composition for transmission
JP6125503B2 (en) Lubricating oil composition
WO2007001000A1 (en) Base oil for hydraulic oil and hydraulic oil compositions
WO2010041383A1 (en) Lubricating oil composition
WO2004041977A1 (en) Lubricating oil
JP5248022B2 (en) Lubricating oil composition for automatic transmission
JP5756337B2 (en) Lubricating oil composition
JP5311748B2 (en) Lubricating oil composition
JP5756336B2 (en) Lubricating oil composition
JP5301305B2 (en) Lubricating oil composition for continuously variable transmission
JP2006117852A (en) Lubricating oil composition for transmission
JP2017066220A (en) Lubricating oil composition
JP5473344B2 (en) Lubricating oil composition for continuously variable transmission
WO2016157956A1 (en) Lubricating oil composition for automatic transmission
JP6373857B2 (en) Lubricating oil composition
JP2002060769A (en) Lubricant oil
EP3935143A1 (en) Improved hydrocarbon lubricant compositions and method to make them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771842

Country of ref document: EP

Kind code of ref document: A1