WO2016157419A1 - 光スキャナ - Google Patents

光スキャナ Download PDF

Info

Publication number
WO2016157419A1
WO2016157419A1 PCT/JP2015/060161 JP2015060161W WO2016157419A1 WO 2016157419 A1 WO2016157419 A1 WO 2016157419A1 JP 2015060161 W JP2015060161 W JP 2015060161W WO 2016157419 A1 WO2016157419 A1 WO 2016157419A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
mirror
optical scanner
diffraction grating
light
Prior art date
Application number
PCT/JP2015/060161
Other languages
English (en)
French (fr)
Inventor
良輔 下澤
満 小荒井
Original Assignee
パイオニア株式会社
パイオニア・マイクロ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニア・マイクロ・テクノロジー株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/060161 priority Critical patent/WO2016157419A1/ja
Publication of WO2016157419A1 publication Critical patent/WO2016157419A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an optical scanner for driving a mirror.
  • MEMS Micro Electro Mechanical System
  • Patent Document 1 in a MEMS optical scanner, a region other than a mirror formed on the surface of a silicon substrate is provided with a fine concavo-convex structure at a pitch equal to or less than the wavelength of laser light irradiated on the mirror.
  • a technique for suppressing laser light from being reflected in a region excluding a mirror and becoming stray light is disclosed.
  • Patent Document 1 by providing a fine concavo-convex structure having a bitch periodic structure below the wavelength of light on the surface of a smooth substrate or the like, the refractive index, which is a characteristic value of the material, is asymptotically changed to be small. The same effect is exhibited and the light reflectance of the surface is reduced.
  • a reactive ion etching technique In order to form such a fine concavo-convex structure on the surface of the substrate, it has been disclosed to use a reactive ion etching technique, but this complicates the manufacturing process of the MEMS optical scanner, and costs are reduced. There is a problem of inviting up.
  • the main object of the present invention is to provide an optical scanner capable of suitably reducing reflection into the scanning range.
  • the invention described in claim is an optical scanner that scans light reflected by the mirror unit in a predetermined angle range by swinging a mirror unit that reflects incident light, and is coupled to the mirror unit.
  • a drive unit that swings the mirror unit, a support unit that supports the drive unit so as to be displaceable, and a surface of the drive unit or the support unit on the incident light incident side.
  • a reflection type diffraction grating that reflects the incident light that is incident and generates first-order diffracted light by the reflection outside the predetermined angle range.
  • FIG. 2 shows a top view of a MEMS mirror illustrating magnetic field lines. It is the figure which showed a mode that a laser beam injects into a flame
  • the front view of the MEMS mirror provided with the position detection function of a mirror part is shown. It is sectional drawing which showed the manufacturing process of the flame
  • the perspective view of a MEMS mirror at the time of forming a dummy pattern according to the shape of a scanning region is shown.
  • the front view of the MEMS mirror which concerns on the modification 3, and the enlarged view of the sensor part vicinity are shown.
  • an optical scanner that scans light reflected by the mirror unit in a predetermined angle range by swinging a mirror unit that reflects incident light, the mirror unit And a drive unit that swings the mirror unit, a support unit that supports the drive unit in a displaceable manner, and is formed on the surface of the drive unit or the support unit on the side on which the incident light is incident, A reflective diffraction grating that reflects the incident light incident on the surface and generates first-order diffracted light by the reflection outside the predetermined angle range.
  • the optical scanner scans the light reflected by the mirror in a predetermined angle range by swinging the mirror that reflects incident light, and includes a drive unit, a support unit, and a reflection type diffraction. And a lattice.
  • the drive unit is connected to the mirror unit and swings the mirror unit.
  • a support part supports a drive part so that a displacement is possible.
  • the reflection type diffraction grating reflects incident light incident on the drive unit or the support unit on the incident light incident side, and generates first-order diffracted light due to the reflection outside the scanning angle range.
  • the optical scanner can cause a part of the reflected light from the drive unit and the support unit to be suitably generated outside the scanning angle range even when the drive unit and the support unit are irradiated with light. it can. Therefore, the influence resulting from the reflected light from the drive unit or the support unit can be suitably reduced.
  • a wiring pattern for supplying electric energy for swinging the mirror unit to the driving unit is provided, and the reflective diffraction grating is the wiring pattern or a manufacturing process of the wiring pattern.
  • the dummy pattern is formed at the same time as the wiring pattern and has no function of supplying the electric energy.
  • the reflection type diffraction grating can be suitably formed at low cost without complicating the manufacturing process of the optical scanner, and the reflected light from the drive unit and the support unit into the scanning range can be reduced.
  • At least a part of the reflective diffraction grating is constituted by a wiring pattern in which a coil is formed on the surface of the drive unit.
  • the reflection type diffraction grating is suitably formed by the wiring pattern, and the reflected light from the drive unit and the support unit within the scanning range can be reduced.
  • the optical scanner scans light reflected by the mirror unit on a two-dimensional projection surface, and the reflective diffraction grating extends in a longitudinal direction of a scanning range on the projection surface.
  • a plurality of the dummy patterns extending in the corresponding first direction are arranged side by side in a second direction perpendicular to the first direction.
  • the driving unit includes a sensor unit that detects a swing of the mirror unit, and the reflective diffraction grating is formed on a surface of the sensor unit. According to this aspect, even when the sensor unit is irradiated with light, a part of the reflected light from the sensor unit can be suitably generated outside the scanning angle range.
  • the optical scanner includes a metal thin film that shields the incident light on a surface of the reflective diffraction grating. According to this aspect, it is possible to suitably suppress the occurrence of an influence on the detection value of the sensor unit due to the irradiation of the sensor unit.
  • FIG. 1 is a perspective view of a MEMS mirror 100 which is an aspect of the “optical scanner” of the present invention.
  • the MEMS mirror 100 is an electromagnetic MEMS mirror, and a main part is manufactured on a silicon substrate by a semiconductor integrated circuit manufacturing technique.
  • the MEMS mirror 100 mainly includes a fixed frame 1, a frame portion 2, a mirror portion 3, magnets 4A to 4D, X-axis torsion bars 5A and 5B, and Y-axis torsion bars 6A and 6B.
  • the direction in which the X-axis torsion bars 5A and 5B extend is the “X-axis direction”
  • the direction perpendicular to the X-axis in which the Y-axis torsion bars 6A and 6B extend is the “Y-axis direction”
  • the X and Y axes are defined, and each positive direction is determined as illustrated.
  • the fixed frame 1 is a structure for supporting the frame portion 2 and is formed of a metal material or a semiconductor material such as silicon.
  • the fixed frame 1 has a frame shape with a gap inside.
  • a convex pattern 7 is formed on the surface of the fixed frame 1.
  • the convex pattern 7 is formed of a wiring pattern 7A for supplying a current supplied from an external current source (not shown) to the frame portion 2 and a dummy pattern 7B that does not pass a current. At least one end of the dummy pattern 7B is not connected to any electrode.
  • the fixed frame 1 is an example of the “supporting portion” in the present invention, and the uneven region formed by the convex pattern 7 is an example of the “reflective diffraction grating” in the present invention.
  • the frame part 2 has a frame shape with a gap inside.
  • the frame portion 2 is connected to the fixed frame 1 via two X-axis torsion bars 5A and 5B extending in the X-axis direction.
  • the frame portion 2 can swing (rotate) with respect to the fixed frame 1 with the X axis as a rotation axis.
  • a convex pattern 7 is formed on the surface of the frame portion 2.
  • the wiring pattern 7A extending from the fixed frame 1 via the X-axis torsion bars 5A and 5B forms a coil on the surface of the frame part 2 along the frame shape of the frame part 2.
  • the frame unit 2 is an example of the “drive unit” in the present invention.
  • the mirror unit 3 is a disk-shaped member on the surface of which a reflection film that reflects incident light is formed, and is attached to the frame unit 2 via two Y-axis torsion bars 6A and 6B extending in the Y-axis direction. It is connected.
  • the mirror unit 3 is swingable with respect to the frame unit 2 with the Y axis as a rotation axis.
  • the X-axis torsion bars 5A and 5B and the Y-axis torsion bars 6A and 6B are elastic members such as springs made of silicon, metal, resin, or the like.
  • the magnets 4A to 4D are arranged around the frame portion 2 and generate magnetic fields in the X-axis direction and the Y-axis direction in a region where coils formed in the frame portion 2 are present.
  • the magnet 4A and the magnet 4C are disposed at a position where the fixed frame 1 is sandwiched in the Y-axis direction
  • the magnet 4B and the magnet 4D are disposed at a position where the fixed frame 1 is sandwiched in the X-axis direction.
  • FIG. 2 and 3 are top views of the MEMS mirror 100.
  • the wiring pattern 7A is indicated by a solid line
  • the dummy pattern 7B is indicated by a broken line.
  • FIG. 3 shows only the wiring pattern 7A without showing the dummy pattern 7B, and illustrates the magnetic force lines Ax and Ay generated by the wiring pattern 7A.
  • the wiring pattern 7 ⁇ / b> A extending from the fixed frame 1 via the X-axis torsion bars 5 ⁇ / b> A and 5 ⁇ / b> B is formed so as to circulate around the outer edge of the frame portion 2.
  • a coil is formed on the surface.
  • the wiring pattern 7A generates a magnetic field in the X-axis direction indicated by the magnetic force line Ax and a magnetic field in the Y-axis direction indicated by the magnetic force line Ay, respectively.
  • the dummy pattern 7B has parallel projections and depressions formed by the convex patterns 7 (that is, the wiring patterns 7A and the dummy patterns 7B) on the surfaces of the fixed frame 1 and the frame portion 2 at a predetermined period. It is formed to line up.
  • the convex pattern 7 forms a reflection type diffraction grating on the surfaces of the fixed frame 1 and the frame portion 2. The function of this diffraction grating will be described in detail in the section “Reflection reduction processing”.
  • the driving current includes a current component (also referred to as “X-axis driving current component”) for rotating the frame unit 2 about the X axis as a rotation axis and a mirror unit 3 for rotating the mirror unit 3 about the Y axis as a rotation axis.
  • Current component also referred to as “Y-axis drive current component”.
  • the frame unit 2 rotates at an arbitrary frequency (for example, 60 Hz) with the X axis as a rotation axis.
  • the X-axis drive current component preferably includes an alternating current including the same frequency as the rotation frequency with the X axis as the rotation axis.
  • a magnetic field in the Y-axis direction is applied to the coil formed in the frame portion 2 from two magnets 4A and 4C arranged in the Y-axis direction with the fixed frame 1 interposed therebetween. Therefore, in a state where the driving current is supplied, Lorentz force is generated in the coil due to electromagnetic interaction between the X-axis driving current component and the magnetic field in the Y-axis direction. Thereby, the frame unit 2 rotates about the X axis as a rotation axis.
  • the current component for driving the X-axis is alternating current, the rotation direction is reversed every predetermined period, and the frame portion 2 swings.
  • the mirror unit 3 rotates about the Y axis as a rotation axis by a resonance frequency determined by the mirror unit 3 and the two Y axis torsion bars 6A and 6B.
  • the Y axis is rotated about the rotation axis by a resonance frequency (for example, 15 kHz) determined by the moment of inertia around the Y axis of the mirror unit 3 and the torsion spring constants of the Y axis torsion bars 6A and 6B.
  • the Y-axis drive current component includes an AC current having the same frequency as an AC current including a signal component having a frequency 1 / N times ("N" is an integer) the rotation frequency with the Y axis as the rotation axis. It is preferable.
  • a magnetic field in the X-axis direction is applied to the coils formed in the frame portion 2 from two magnets 4B and 4D arranged side by side in the X-axis direction with the fixed frame 1 interposed therebetween. Therefore, in a state where the driving current is supplied, a Lorentz force is generated in the coil due to electromagnetic interaction between the Y-axis driving current component and the magnetic field in the X-axis direction. Thereby, one side extending in the Y-axis direction of the frame portion 2 moves in the Z-axis positive direction with respect to the fixed frame 1, and one side facing it moves in the Z-axis negative direction.
  • the X-axis torsion bars 5A and 5B are elastic bodies, the movement of the side extending in the Y-axis direction of the frame portion 2 in the Z-axis direction is not completely restricted. That is, in this case, the X-axis torsion bars 5 ⁇ / b> A and 5 ⁇ / b> B are deformed, so that the frame portion 2 is inclined with respect to the fixed frame 1.
  • the current component for driving the X-axis is alternating current
  • the inclination direction of the frame portion 2 with respect to the fixed frame 1 is reversed every predetermined period.
  • the mirror portion 3 swings with respect to the frame portion 2 with the Y axis as the rotation axis at the resonance frequency described above.
  • the mirror part 3 swings about the X axis and the Y axis as rotation axes by flowing the current component for driving the X axis and the current component for driving the Y axis superimposed on the coil formed in the frame part 2. To do. Thereby, the mirror part 3 can scan the incident light on the projection surface which is a two-dimensional space.
  • the convex pattern 7 formed on the surfaces of the fixed frame 1 and the frame portion 2 functions as a reflective diffraction grating.
  • the image quality degradation of the drawn image caused by the reflected light from the fixed frame 1 and the frame unit 2 entering the scanning region of the mirror unit 3 is suitably reduced.
  • the MEMS mirror 100 reflects the condensed laser light by the mirror unit 3 and scans a predetermined range on a projection surface such as a screen as a scanning region.
  • a projection surface such as a screen
  • the fixed frame 1 and the frame unit 2 other than the mirror unit 3 may be irradiated with the laser beam.
  • high-intensity reflected light from the fixed frame 1 and / or the frame unit 2 enters the scanning region of the MEMS mirror 100, there arises a problem that the image quality of an image drawn in the scanning region is deteriorated.
  • a reflection type diffraction grating is formed by the wiring pattern 7A and the dummy pattern 7B on the surfaces of the fixed frame 1 and the frame portion 2 that can be irradiated with the laser beam.
  • This diffraction grating is configured by the unevenness of the wiring pattern 7A and the dummy pattern 7B being arranged in parallel at a predetermined period.
  • the wiring pattern 7A constituting the coil is arranged so as to circulate on the surface of the frame portion 2, it is suitable for constituting a diffraction grating.
  • a dummy pattern 7B in which at least one end is not connected to any electrode and current does not flow is disposed.
  • the light reflected by the adjacent convex portions of the diffraction grating strengthens the intensity in a predetermined angle range and weakens the intensity in another predetermined angle range due to light interference. That is, the reflected light reflected by the diffraction grating becomes diffracted light corresponding to each order such as 0th order diffracted light, ⁇ 1st order diffracted light, and ⁇ 2nd order diffracted light.
  • the diffracted light of each order after ⁇ 1st order excluding the 0th order is outside the range of the mirror unit 3 and the scanning angle (that is, the space specified by the region connecting the mirror unit 3 and the outer edge of the scanning region)
  • the convex patterns 7 are arranged at an appropriate pitch in accordance with the wavelength of the irradiated laser beam. This will be described with reference to FIG.
  • FIG. 4 is a diagram showing a state in which laser light is incident on the convex pattern 7 formed on the frame portion 2.
  • the solid light beams La to Lc indicating the laser light incident on the convex pattern 7
  • the one-dot chain light beams Laa, Lba and Lca indicating the ⁇ 1st order diffracted light and the primary light are respectively shown.
  • Two-dot chain rays Ray, Lbb, and Lcb are shown.
  • a region 70 indicates a range of scanning angles of the mirror unit 3.
  • the incident angle of the incident light is “ ⁇ ”
  • the pitch (grating constant) of the convex pattern 7 is “d”
  • the traveling angle of the first-order diffracted light with respect to the normal line of the diffraction grating is “ ⁇ 1”.
  • the traveling angle of the ⁇ 1st order diffracted light with respect to the normal line is “ ⁇ 2” and the wavelength of the incident light is “ ⁇ ”
  • the following equations (1) and (2) are established according to the grating equation.
  • d ⁇ (sin ⁇ 1 ⁇ sin ⁇ ) ⁇ Formula (1)
  • d ⁇ (sin ⁇ 2 ⁇ sin ⁇ ) ⁇ ⁇ Formula (2)
  • the pitch d is appropriately determined based on the equations (1) to (4), and the diffraction grating constituted by the convex pattern 7 is irradiated with the laser light other than the mirror unit 3 ( In this embodiment, they are arranged on the fixed frame 1 and the frame part 2). Accordingly, it is possible to prevent the diffracted light after the ⁇ first-order light into the scanning range from entering the scanning angle range, and to appropriately reduce the amount of unnecessary reflected light into the scanning angle range.
  • the dummy pattern 7B is formed in a process of forming a wiring pattern 7A for supplying a current for driving the mirror unit 3 required in the process of manufacturing the MEMS mirror 100.
  • the wiring pattern 7A can be formed at the same time. Therefore, it is possible to add a diffraction grating that reduces unnecessary reflection into the scanning region without complicating the manufacturing process of the conventional MEMS mirror 100.
  • a piezoresistive element or the like is preferably disposed in the vicinity of the Y-axis torsion bars 6A and 6B that support the mirror unit 3, and the mirror unit 3 that is generated according to the twist of the Y-axis torsion bars 6A and 6B.
  • the rotational position based on the amount of displacement is configured to be detectable.
  • FIG. 5 shows a front view of the MEMS mirror 100 having a function of detecting the position of the mirror unit 3 and an enlarged view of the vicinity of the Y-axis torsion bar 6B.
  • a sensor unit 20 including a piezoresistive element for detecting the rotational position of the mirror unit 3 is provided in the vicinity of the Y-axis torsion bar 6B of the frame unit 2 of the MEMS mirror 100 shown in FIG.
  • an aluminum layer 25 which is an example of a light-shielding metal thin film, is formed on the surface of the piezoresistive element in order to suppress the influence of the photoelectric effect when the piezoresistive element is irradiated with light.
  • corrugation of a predetermined pitch is formed so that the aluminum layer 25 may comprise a diffraction grating.
  • the pitch of the aluminum layer 25 is set to a width that satisfies the expressions (1) to (4) so that diffracted light after ⁇ 1st order light does not enter the scanning region. Is set.
  • the aluminum layer 25 has a light shielding function to the piezoresistive element and also functions as a diffraction grating. Thereby, it can suppress that the reflected light in the sensor part 20 injects into the scanning area
  • FIG. The specific configuration of the sensor unit 20 will be described in detail in the following [Manufacturing process] section.
  • FIGS. 6 and 7 are diagrams showing the state of each manufacturing process (first to seventh processes) of the frame part 2 in time series.
  • FIG. 6 shows a cross-sectional view of the frame portion 2 along the two-dot chain line A in FIG. 5
  • FIG. 7 shows a cross-sectional view of the frame portion 2 along the one-dot chain line B.
  • a molded silicon substrate 21 to be a substrate of the frame portion 2 is placed. Further, in the region where the sensor unit 20 is formed, the piezoresistive element 22 is formed on the silicon substrate 21 by a diffusion method, ion implantation, or the like, as shown in FIG.
  • a silicon oxide film 23 is formed on the entire surface of the silicon substrate 21 by a chemical vapor deposition (CVD) method or the like.
  • the silicon oxide film 23 is masked with a photoresist and subjected to dry etching or the like, so that a contact hole is formed on the piezoresistive element 22. 30 is opened.
  • the concave portions 31 having a predetermined pitch that constitute the diffraction grating are opened on the piezoresistive element 22.
  • an aluminum layer 24 is formed on the entire surface by sputtering or the like.
  • the convex pattern 7 is formed by masking the aluminum layer 24 with a photoresist and performing dry etching or the like.
  • the dummy pattern 7B that constitutes the diffraction grating can be constituted without adding a process.
  • a silicon oxide film 23 functioning as an insulating layer is formed on the entire surface by sputtering or the like by sputtering or the like.
  • the final seventh step as shown in FIGS. 6 (G) and 7 (G), after forming the aluminum layer 25 on the entire surface, it is masked with a photoresist and subjected to dry etching or the like, whereby a piezoresistive element is formed.
  • An aluminum layer 25 that functions as a light-shielding layer is formed on the surface.
  • the aluminum layer 25 functions as a diffraction grating having irregularities with a predetermined pitch, and does not generate diffracted light of orders of ⁇ 1st order or later within the scanning angle range.
  • the manufacturing process shown in FIG.6 and FIG.7 is an example, Comprising:
  • the process of manufacturing the MEMS mirror 100 which concerns on this invention is not limited to this. Even when the MEMS mirror 100 is manufactured by using another process, a concavo-convex structure (that is, a dummy pattern 7B) for forming a diffraction grating in a process necessary to form the contact hole 30 and the wiring pattern 7A. And recesses 31) are formed. Thereby, it is possible to add a diffraction grating that reduces unnecessary reflection into the scanning range without complicating the manufacturing process of the conventional MEMS mirror 100.
  • the MEMS mirror 100 scans the light reflected by the mirror unit 3 in a predetermined angle range by swinging the mirror unit 3 that reflects incident light.
  • the fixed frame 1, the frame portion 2, and the convex pattern 7 are provided.
  • the frame unit 2 is connected to the mirror unit 3 and swings the mirror unit 3.
  • the fixed frame 1 supports the frame part 2 so as to be displaceable.
  • the convex pattern 7 is provided on the surfaces of the fixed frame 1 and the frame portion 2 on the side where incident light is incident, reflects incident incident light, and generates first-order diffracted light due to the reflection outside the scanning angle range.
  • the MEMS mirror 100 can suppress suitably the deterioration of the image quality etc. resulting from the reflected light of the fixed frame 1 and the frame part 2 entering into a scanning area
  • the above-described MEMS mirror 100 of the present embodiment can be applied to various electronic devices including, for example, a head-up display, a head-mounted display, a laser scanner, and a laser printer.
  • the pitch d of the diffraction grating can be set to a larger value as the angle ⁇ is smaller. For this reason, when the scanning region is rectangular, the dummy pattern 7B may be formed so that the direction of the diffraction grating (that is, the direction in which the convex portion extends) matches the longitudinal direction of the scanning region.
  • FIG. 8 is a perspective view of the MEMS mirror 100A when the dummy pattern 7B is formed according to the shape of the scanning region.
  • the MEMS mirror 100A has a rectangular scanning region 71 whose longitudinal direction is the X-axis direction.
  • dummy patterns 7 ⁇ / b> B are formed on the surfaces of the fixed frame 1 and the frame portion 2 so as to extend in the X-axis direction that is the longitudinal direction of the scanning region 71. That is, the dummy patterns 7B are arranged side by side in the Y-axis direction.
  • the pitch d since the pitch d may be designed based on the equations (1) to (4) based on the angle ⁇ with respect to the short direction of the scanning region 71, the pitch d of the convex pattern 7 is set. Large design is possible. Therefore, according to this example, the restriction on the pitch d can be relaxed and a wide range of process rules for semiconductor manufacturing can be handled.
  • the X-axis direction is an example of the “first direction” in the present invention
  • the Y-axis direction is an example of the “second direction” in the present invention.
  • the scanning region is rectangular, it is preferable that the direction of the concave / convex pattern of the aluminum layer 25 of the sensor unit 20 forming the diffraction grating shown in FIG. 5 and the like is aligned with the longitudinal direction of the scanning range. Thereby, it becomes possible to design the pitch of the uneven pattern in the sensor unit 20 to be large, and it is possible to deal with a wide range of semiconductor manufacturing process rules.
  • the MEMS mirror 100 shown in FIG. 1 is an electromagnetic drive type MEMS mirror having magnets 4A to 4D, but the drive method of the MEMS mirror applicable to the present invention is not limited to this. Instead of this, even in a MEMS mirror that employs other driving methods such as an electrostatic driving method using an electrostatic force acting between electrode plates, a piezoelectric driving method using a deformation force of a piezoelectric material, the present invention is similar to the embodiment. Can be suitably applied.
  • the wiring pattern and the dummy pattern are simultaneously formed so as to constitute a diffraction grating.
  • region from parts other than a mirror part can be performed cheaply, without adding a new process to the manufacturing process of a MEMS mirror.
  • a MEMS mirror including a sensor unit for detecting displacement of the mirror unit such as an electrostatic driving method or a piezoelectric driving method using a piezoelectric material deformation force, and diffracting on the surface of the sensor unit. You may make it comprise a grating
  • the MEMS mirror 100A has the dummy pattern 7B formed so as to extend in the longitudinal direction of the rectangular scanning region 71. Instead, the MEMS mirror 100A is arranged at equal intervals in the X-axis direction and the Y-axis direction. Thus, the concavo-convex dots constituting the diffraction grating may be formed by a dummy pattern. Further, the aluminum layer 25 on the sensor unit 20 described with reference to FIG. 5 may form concave and convex dots constituting a diffraction grating.
  • FIG. 9 shows a front view of the MEMS mirror 100 ⁇ / b> Aa according to the third modification and an enlarged view of the vicinity of the sensor unit 20.
  • the surfaces of the fixed frame 1 and the frame part 2 in FIG. 9 are concave or convex dots formed at equal intervals in the X-axis direction and the Y-axis direction in regions other than the region where the wiring pattern 7A is formed.
  • a dummy pattern 7Ba is formed.
  • dots for forming irregularities are formed in the aluminum layer 25 on the sensor unit 20 at equal intervals in the X-axis direction and the Y-axis direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 本発明は、ミラーを除く領域からの走査範囲内への反射を好適に低減することが可能な光スキャナを提供することを目的とする。 本発明のMEMSミラー(100)は、入射光を反射するミラー部(3)を揺動させることにより、ミラー部(3)により反射された光を所定の角度範囲に走査するものであって、固定枠(1)と、フレーム部(2)と、凸パターン(7)とを備える。フレーム部(2)は、ミラー部(3)に連結され、ミラー部(3)を揺動させる。固定枠(1)は、フレーム部(2)を変位可能に支持する。凸パターン(7)は、入射光が入射する側の固定枠(1)及びフレーム部(2)の表面に設けられ、入射する入射光を反射し、当該反射による1次回折光を走査角度の範囲外に生じさせる。

Description

光スキャナ
 本発明は、ミラーを駆動させる光スキャナに関する。
 従来から、半導体工程技術によって製造されるMEMS(Micro Electro Mechanical System)デバイスが知られている。例えば、特許文献1には、MEMSの光スキャナにおいて、シリコン基板の表面上に形成されたミラーを除く領域に、ミラーに照射されるレーザ光の波長以下のピッチで微細凹凸構造を備えることにより、ミラーを除く領域でレーザ光が反射されて迷光となることを抑制する技術が開示されている。
特開2013-225075号公報
 特許文献1では、平滑な基板などの表面に光の波長以下のビッチの周期構造を有する微細凹凸構造を設けることにより、材料の特有値である屈折率を漸近的に変化させて小さくするのと同等の効果を発現させ、表面の光の反射率を小さくしている。このような微細凹凸構造を基板の表面に形成するために、リアクティブイオンエッチング技術を使用することが開示されていが、これは、MEMSの光スキャナの製造工程を複雑化させることになり、コストアップを招いてしまうという問題がある。
 本発明が解決しようとする課題は上記のようなものが例として挙げられる。本発明は、走査範囲内への反射を好適に低減することが可能な光スキャナを提供することを主な目的とする。
 請求項に記載の発明は、入射光を反射するミラー部を揺動させることにより、前記ミラー部により反射された光を所定の角度範囲に走査する光スキャナであって、前記ミラー部に連結され、前記ミラー部を揺動させる駆動部と、前記駆動部を変位可能に支持する支持部と、前記入射光が入射する側の、前記駆動部または前記支持部の表面に形成され、前記表面に入射する前記入射光を反射し、当該反射による1次回折光を前記所定の角度範囲の外に生じさせる反射型回折格子と、を備えることを特徴とする。
MEMSミラーの斜視図を示す。 ダミーパターンを図示したMEMSミラーの上面図を示す。 磁力線を図示したMEMSミラーの上面図を示す。 フレーム部にレーザ光が入射する様子を示した図である。 ミラー部の位置検出機能を備えたMEMSミラーの正面図を示す。 フレーム部の製造工程を時系列で示した断面図である。 フレーム部の製造工程を時系列で示した断面図である。 走査領域の形状に応じてダミーパターンを形成した場合のMEMSミラーの斜視図を示す。 変形例3に係るMEMSミラーの正面図及びセンサ部付近の拡大図を示す。
 本発明の1つの好適な実施形態では、入射光を反射するミラー部を揺動させることにより、前記ミラー部により反射された光を所定の角度範囲に走査する光スキャナであって、前記ミラー部に連結され、前記ミラー部を揺動させる駆動部と、前記駆動部を変位可能に支持する支持部と、前記入射光が入射する側の、前記駆動部または前記支持部の表面に形成され、前記表面に入射する前記入射光を反射し、当該反射による1次回折光を前記所定の角度範囲の外に生じさせる反射型回折格子と、を備える。
 上記光スキャナは、入射光を反射するミラー部を揺動させることにより、ミラー部により反射された光を所定の角度範囲に走査するものであって、駆動部と、支持部と、反射型回折格子とを備える。駆動部は、ミラー部に連結され、ミラー部を揺動させる。支持部は、駆動部を変位可能に支持する。反射型回折格子は、入射光が入射する側の、駆動部または支持部に入射する入射光を反射し、当該反射による1次回折光を走査角度の範囲外に生じさせる。この態様により、光スキャナは、駆動部や支持部に光が照射される場合であっても、駆動部や支持部からの反射光の一部を好適に走査角度の範囲外に生じさせることができる。よって、駆動部や支持部からの反射光に起因した影響を好適に低減することができる。
 上記光スキャナの一態様では、前記駆動部に前記ミラー部を揺動させる為の電気エネルギーを供給する配線パターンを備え、前記反射型回折格子は、前記配線パターン、または、前記配線パターンの製造プロセスにおいて前記配線パターンと同時に形成され、前記電気エネルギーを供給する機能を有しないダミーパターンにより構成される。この態様では、光スキャナの製造工程を複雑化させることなく安価に反射型回折格子を好適に形成し、走査範囲内への駆動部や支持部からの反射光を低減させることができる。
 上記光スキャナの他の一態様では、前記反射型回折格子の少なくとも一部は、前記駆動部の表面上にコイルを形成している配線パターンにより構成される。このように、光スキャナは、電磁駆動型の場合に、反射型回折格子を配線パターンにより好適に形成し、走査範囲内への駆動部や支持部からの反射光を低減させることができる。
 上記光スキャナの他の一態様では、前記光スキャナは、2次元の投射面に前記ミラー部により反射された光を走査し、前記反射型回折格子は、前記投射面における走査範囲の長手方向に対応する第1方向に延びる前記ダミーパターンが、前記第1方向と垂直な第2方向に複数並んで配置されることにより構成される。この態様により、反射型回折格子が1次回折光を走査角度の範囲外に生じさせるための凹凸のピッチに関する条件を好適に緩和することができ、幅広く半導体製造のプロセスルールに対応させることができる。
 上記光スキャナの他の一態様では、前記駆動部は、前記ミラー部の揺動を検出するセンサ部を含み、前記反射型回折格子は、前記センサ部の表面に形成される。この態様により、センサ部に光が照射される場合であっても、センサ部からの反射光の一部を好適に走査角度の範囲外に生じさせることができる。
 上記光スキャナの他の一態様では、光スキャナは、前記反射型回折格子の表面に、前記入射光を遮光する金属薄膜を備える。この態様により、センサ部が照射されることに起因してセンサ部の検出値に影響が生じるのを好適に抑制することができる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [MEMSミラーの構成]
 図1は、本発明の「光スキャナ」の一態様であるMEMSミラー100の斜視図を示す。MEMSミラー100は、電磁形MEMSミラーであって、シリコン基板上に、半導体集積回路作製技術により主要部分が作製される。MEMSミラー100は、主に、固定枠1と、フレーム部2と、ミラー部3と、磁石4A~4Dと、X軸トーションバー5A、5Bと、Y軸トーションバー6A、6Bと、を有する。以後では、X軸トーションバー5A、5Bが延在する方向を「X軸方向」、Y軸トーションバー6A、6Bが延在するX軸と垂直な方向を「Y軸方向」、X、Y軸に垂直な方向を「Z軸方向」とし、各正方向を図示のように定める。
 固定枠1は、フレーム部2を支持するための構造体であり、金属材料またはシリコンなどの半導体材料によって形成される。固定枠1は、内部に空隙を備える枠形状を有している。固定枠1の表面には、凸形状の凸パターン7が形成されている。凸パターン7は、後述するように、図示しない外部の電流源から供給される電流をフレーム部2に供給する為の配線パターン7Aと、電流を流さないダミーパターン7Bとから形成される。ダミーパターン7Bは、少なくとも一端がいずれの電極にも接続されていない。固定枠1は、本発明における「支持部」の一例であり、凸パターン7により形成される凹凸領域は、本発明における「反射型回折格子」の一例である。
 フレーム部2は、内部に空隙を備える枠形状を有している。フレーム部2は、X軸方向に延びる2本のX軸トーションバー5A、5Bを介し固定枠1に接続されている。そして、フレーム部2は、固定枠1に対してX軸を回転軸として揺動(回転)自在となっている。また、フレーム部2の表面には、凸パターン7が形成されている。固定枠1からX軸トーションバー5A、5Bを経由して延びる配線パターン7Aは、フレーム部2の枠形状に沿って、フレーム部2の表面上にコイルを形成する。フレーム部2は、本発明における「駆動部」の一例である。
 ミラー部3は、入射してくる光を反射する反射膜が表面に形成された円盤形状の部材であり、Y軸方向に延びる2本のY軸トーションバー6A、6Bを介してフレーム部2に接続されている。そして、ミラー部3は、フレーム部2に対してY軸を回転軸として揺動自在となっている。
 X軸トーションバー5A、5B及びY軸トーションバー6A、6Bは、例えばシリコン、金属、樹脂等を材料とするバネ等のような弾性を有する部材である。磁石4A~4Dは、フレーム部2の周辺に配置され、フレーム部2に形成されるコイルが存在する領域に、X軸方向及びY軸方向の磁界を発生させる。図1では、固定枠1をY軸方向で挟む位置に、磁石4A及び磁石4Cが配置され、固定枠1をX軸方向で挟む位置に、磁石4B及び磁石4Dが配置されている。
 図2及び図3は、MEMSミラー100の上面図を示す。図2は、配線パターン7Aを実線により表示し、ダミーパターン7Bを破線により表示している。また、図3は、ダミーパターン7Bを図示せずに配線パターン7Aのみを表示し、配線パターン7Aにより生じる磁力線Ax、Ayを図示している。
 図2及び図3に示すように、固定枠1からX軸トーションバー5A、5Bを経由して延びる配線パターン7Aは、フレーム部2の外縁で周回するように形成されており、フレーム部2の表面上にコイルを形成する。これにより、配線パターン7Aは、磁力線Axにより示されるX軸方向の磁界と、磁力線Ayにより示されるY軸方向の磁界とをそれぞれ発生させる。
 また、ダミーパターン7Bは、図2に示すように、固定枠1及びフレーム部2の表面上で、凸パターン7(即ち配線パターン7A及びダミーパターン7B)により形成される凹凸が所定の周期で平行に並ぶように形成されている。これにより、凸パターン7は、固定枠1及びフレーム部2の表面上で、反射型の回折格子を形成する。この回折格子の機能については、[反射低減処理]のセクションで詳しく説明する。
 [MEMSミラーの動作]
 次に、本実施例のMEMSミラー100の動作態様について説明する。
 MEMSミラー100の動作時には、フレーム部2に形成されたコイルには、外部の電流源から、配線パターン7Aを介して、所望のタイミングで所望の駆動用電流が供給される。駆動用電流は、X軸を回転軸としてフレーム部2を回転させるための電流成分(「X軸駆動用電流成分」とも呼ぶ。)と、Y軸を回転軸としてミラー部3を回転させるための電流成分(「Y軸駆動用電流成分」とも呼ぶ。)を含む。本実施例では、フレーム部2は、任意の周波数(例えば、60Hz)で、X軸を回転軸として回転する。この場合、X軸駆動用電流成分は、X軸を回転軸とする回転の周波数と同一の周波数を含む交流電流を含むことが好ましい。
 フレーム部2に形成されたコイルには、固定枠1を挟んでY軸方向に並べられた2つの磁石4A、4Cから、Y軸方向の磁界が印加されている。従って、駆動用電流が供給された状態では、コイルには、X軸駆動用電流成分とY軸方向の磁界との間の電磁相互作用に起因したローレンツ力が発生する。これにより、フレーム部2は、X軸を回転軸として回転する。ここで、X軸駆動用電流成分は交流であるから、所定周期ごとに回転方向が反転し、フレーム部2は揺動することになる。
 また、本実施例では、ミラー部3は、ミラー部3と2つのY軸トーションバー6A、6Bによって定まる共振周波数により、Y軸を回転軸として回転する。具体的には、ミラー部3のY軸周りの慣性モーメントと、Y軸トーションバー6A、6Bのねじりバネ定数とによって定まる共振周波数(例えば、15kHz)により、Y軸を回転軸として回転する。この場合、Y軸駆動用電流成分は、Y軸を回転軸とする回転周波数の1/N倍(「N」は整数)の周波数の信号成分を含む交流電流と同一周波数となる交流電流を含むことが好ましい。
 一方、フレーム部2に形成されたコイルには、固定枠1を挟んでX軸方向に並べて配置された2つの磁石4B、4Dから、X軸方向の磁界が印加されている。従って、駆動用電流が供給された状態では、コイルには、Y軸駆動用電流成分とX軸方向の磁界との間の電磁相互作用に起因したローレンツ力が発生する。これにより、フレーム部2のY軸方向に延びる一辺は固定枠1に対してZ軸正方向に移動し、それに対向する一辺はZ軸負方向に移動する。このとき、X軸トーションバー5A、5Bは弾性体である為、フレーム部2のY軸方向に延びる辺のZ軸方向への移動を完全には規制しない。つまり、この場合、X軸トーションバー5A、5Bが変形することにより、フレーム部2は固定枠1に対して傾く。ここで、X軸駆動用電流成分は交流であるから、所定周期ごとに固定枠1に対するフレーム部2の傾き方向が反転する。このように、フレーム部2が周期的に反転しながら傾くことで、ミラー部3は、フレーム部2に対して前述の共振周波数でY軸を回転軸として揺動することになる。
 このように、フレーム部2に形成されたコイルにX軸駆動用電流成分およびY軸駆動用電流成分を重畳して流すことにより、ミラー部3は、X軸およびY軸を回転軸として揺動する。これにより、ミラー部3は、入射した光を2次元空間である被投射面上で走査することができる。
 [反射低減処理]
 本実施例では、固定枠1及びフレーム部2の表面上に形成された凸パターン7が反射型の回折格子として機能する。これにより、固定枠1及びフレーム部2からの反射光がミラー部3の走査領域に入射することに起因した描画画像の画質劣化等を好適に低減する。
 MEMSミラー100は、集光されたレーザ光をミラー部3で反射し、スクリーンなどの被投射面上の所定範囲を走査領域として走査する。しかし、レーザ光の集光には理論的な限界があるため、ミラー部3が小型の場合は、ミラー部3以外の固定枠1及びフレーム部2にもレーザ光が照射されてしまう場合がある。そして、固定枠1又は/及びフレーム部2からの高い強度の反射光がMEMSミラー100の走査領域に入射すると、走査領域に描画される画像の画質を劣化させるなどの問題が生じる。
 以上を勘案し、本実施例では、レーザ光が照射され得る固定枠1及びフレーム部2の表面には、配線パターン7A及びダミーパターン7Bによる反射型の回折格子が形成されている。この回折格子は、配線パターン7A及びダミーパターン7Bの凹凸が所定の周期で平行に並ぶことにより構成される。ここで、コイルを構成する配線パターン7Aは、フレーム部2の表面上を周回するように配置されているため、回折格子を構成するのに好適である。また、コイルを構成する配線パターン7Aが存在しない領域には、少なくとも一端がいずれの電極にも接続されず、電流を流さないダミーパターン7Bが配置される。
 この場合、回折格子の隣り合う凸部により反射された光は、光の干渉により、所定角度の範囲では強度を強め合い、別の所定角度の範囲では強度を弱め合うことになる。即ち、回折格子により反射された反射光は、0次回折光、±1次回折光、±2次回折光といった各次数に対応した回折光となる。
 本実施例では、0次を除く±1次以降の各次数の回折光が、ミラー部3と走査角度の範囲(即ちミラー部3と走査領域の外縁とを結ぶ領域により特定される空間)外に生じるように、照射されるレーザ光の波長に応じて、凸パターン7を適切なピッチにより配置する。これについて図4を参照して説明する。
 図4は、フレーム部2に形成された凸パターン7にレーザ光が入射する様子を示した図である。図4の例では、凸パターン7に入射するレーザ光を示す実線の光線La~Lcに対して、それぞれ、-1次回折光を示す一点鎖線の光線Laa、Lba、Lcaと、1次光を示す二点鎖線の光線Lab、Lbb、Lcbとが示されている。また、領域70は、ミラー部3の走査角度の範囲を示す。
 ここで、図4に示すように、入射光の入射角度を「φ」、凸パターン7のピッチ(格子定数)を「d」、回折格子の法線に対する1次回折光の進行角度を「θ1」、上述の法線に対する-1次回折光の進行角度を「θ2」、入射光の波長を「λ」とすると、グレーティング方程式により、以下の式(1)、(2)が成立する。
       d×(sinθ1-sinφ)=λ  式(1)
       d×(sinθ2-sinφ)=-λ 式(2)
 ここで、図4に示すように、ミラー部3による走査角(全角)を「α」とすると、走査範囲内に1次回折光が発生しないためには、図4に基づき、以下の式(3)及び式(4)を満たすことが条件となる。
       θ1>φ+α/2   式(3)
       θ2<φ-α/2   式(4)
 よって、例えば、「λ=450nm」、「α=50°」、「φ=10°」とした場合、式(3)に基づき「θ1>35°」となり、この関係を式(1)に適用すると、「d<1.13um」が得られる。また、式(4)に基づき「θ2<-15°」となることから、この関係を式(2)に適用すると、「d<1.07um」となる。よって、この場合、「d<1.07nm」となるように、凸パターン7を配置すればよい。
 このように、本実施例では、式(1)~(4)に基づきピッチdを適切に定め、凸パターン7により構成される回折格子をミラー部3以外のレーザ光が照射されてしまう部材(本実施例では固定枠1及びフレーム部2)上に配置する。これにより、走査範囲内への±1次光以降の回折光が走査角度範囲内へ入射するのを防ぎ、走査角度範囲内への不要な反射光の光量を好適に低減することができる。
 また、[製造工程]のセクションで後述するように、ダミーパターン7Bは、MEMSミラー100を製造する過程において必要となるミラー部3を駆動するための電流を供給する配線パターン7Aを形成する工程において、配線パターン7Aと同時に形成することが可能である。このため、従来のMEMSミラー100の製造工程を複雑化させることなく、走査領域内への不要な反射を低減させる回折格子を追加することができる。
 [ミラー部の位置検出構造]
 MEMSミラー100は、好適には、ミラー部3を支持するY軸トーションバー6A、6Bの近傍にピエゾ抵抗素子などが配置され、Y軸トーションバー6A、6Bのねじれに応じて生じるミラー部3の変位量に基づく回転位置を検出可能に構成される。
 図5は、ミラー部3の位置検出機能を備えたMEMSミラー100の正面図及びY軸トーションバー6Bの近傍の拡大図を示す。図5に示すMEMSミラー100のフレーム部2のY軸トーションバー6Bの近傍部分には、ミラー部3の回転位置を検出するためのピエゾ抵抗素子を含むセンサ部20が設けられている。センサ部20では、ピエゾ抵抗素子に光が照射された際の光電効果による影響を抑制するため、ピエゾ抵抗素子の表面に遮光用の金属薄膜の一例であるアルミ層25が形成されている。ここで、金属薄膜であるアルミ層25は光の反射率が高いため、アルミ層25へ照射されたレーザ光の反射光がMEMSミラー100の走査領域に反射される可能性がある。よって、図5に示すセンサ部20では、アルミ層25が回折格子を構成するように、所定のピッチの凹凸が形成されている。ここで、アルミ層25のピッチは、凸パターン7のピッチと同様に、±1次光以降の回折光が走査領域に入射しないように、式(1)~(4)を満たすような幅に設定される。
 このように、アルミ層25は、ピエゾ抵抗素子への遮光機能を有すると共に、回折格子として機能する。これにより、センサ部20での反射光がMEMSミラー100の走査領域に入射するのを抑制することができる。なお、センサ部20の具体的構成については、以下の[製造工程]のセクションで詳しく説明する。
 [製造工程]
 次に、図5で説明したセンサ部20を含むフレーム部2の製造工程について、図6及び図7を参照して説明する。図6及び図7は、フレーム部2の各製造工程(第1~第7工程)における状態を時系列により表した図である。ここで、図6は、図5の二点鎖線Aに沿ったフレーム部2の断面図を示し、図7は、一点鎖線Bに沿ったフレーム部2の断面図を示す。
 まず、第1工程では、図6(A)及び図7(A)に示すように、フレーム部2の基板となる成形されたシリコン基板21が載置される。さらに、センサ部20を形成する領域では、図6(A)に示すように、ピエゾ抵抗素子22がシリコン基板21上に拡散法やイオン注入等により形成される。
 次に、第2工程では、図6(B)及び図7(B)に示すように、シリコン酸化膜23をシリコン基板21の全面に化学蒸着(CVD:Chemical Vapor Deposition)法などにより形成する。
 そして、第3工程では、図6(C)及び図7(C)に示すように、シリコン酸化膜23をフォトレジストでマスクし、ドライエッチング等を施すことで、ピエゾ抵抗素子22上にコンタクトホール30を開口する。この場合、コンタクトホール30の開口と同時に、ピエゾ抵抗素子22上に回折格子を構成する所定ピッチの凹部31を開口する。これにより、工程を追加することなく、センサ部20上に回折格子を構成するための凹凸構造を形成することができる。
 次に、第4工程では、図6(D)及び図7(D)に示すように、スパッタリング等によりアルミ層24を全面に形成する。そして、第5工程では、図6(E)及び図7(E)に示すように、アルミ層24をフォトレジストでマスクし、ドライエッチング等を施すことで、凸パターン7を形成する。この場合、配線パターン7Aと同時に回折格子を構成するダミーパターン7Bを形成することにより、工程を追加することなく、回折格子を構成できる。
 次に、第6工程では、図6(F)及び図7(F)に示すように、スパッタリング等により、絶縁層として機能するシリコン酸化膜23を、CVD法などにより全面に形成する。最後の第7工程では、図6(G)及び図7(G)に示すように、アルミ層25を全面に形成した後に、フォトレジストでマスクし、ドライエッチング等を施すことで、ピエゾ抵抗素子の表面に、遮光層として機能するアルミ層25を形成する。また、アルミ層25は、所定ピッチの凹凸を備える回折格子として機能し、±1次以降の次数の回折光を走査角度範囲内に生じさせない。
 なお、図6及び図7に示した製造工程は一例であって、本発明に係るMEMSミラー100を製造する工程は、これに限定されない。他のプロセスを利用してMEMSミラー100を製造する場合であっても、コンタクトホール30や配線パターン7Aを形成するのに必要なプロセスにおいて、回折格子を構成するための凹凸構造(即ちダミーパターン7Bや凹部31)を形成する。これにより、従来のMEMSミラー100の製造工程を複雑化させることなく、走査範囲内への不要な反射を低減させる回折格子を追加することができる。
 以上説明したように、本実施例に係るMEMSミラー100は、入射光を反射するミラー部3を揺動させることにより、ミラー部3により反射された光を所定の角度範囲に走査するものであって、固定枠1と、フレーム部2と、凸パターン7とを備える。フレーム部2は、ミラー部3に連結され、ミラー部3を揺動させる。固定枠1は、フレーム部2を変位可能に支持する。凸パターン7は、入射光が入射する側の固定枠1及びフレーム部2の表面に設けられ、入射する入射光を反射し、当該反射による1次回折光を走査角度の範囲外に生じさせる。これにより、MEMSミラー100は、固定枠1及びフレーム部2の反射光が走査領域に入射することに起因した画質の劣化等を好適に抑制することができる。
 そして、上述した本実施例のMEMSミラー100は、例えば、ヘッドアップディスプレイ、ヘッドマウントディスプレイ、レーザスキャナ、及びレーザプリンタ等を含む各種の電子機器に対して適用することができる。
 [変形例]
 次に、上述の実施例に好適な変形例について説明する。以下に示す変形例は、組み合わせて上述の実施例に適用されてもよい。
 (変形例1)
 [反射低減処理]のセクションで説明した式(1)~(4)の関係によれば、角度αが小さいほど、回折格子のピッチdを大きい値に設定することが可能である。このため、走査領域が長方形となる場合は、回折格子の方向(即ち凸部が延びる方向)を走査領域の長手方向に合わせるように、ダミーパターン7Bを形成するとよい。
 図8は、走査領域の形状に応じてダミーパターン7Bを形成した場合のMEMSミラー100Aの斜視図を示す。図8の例では、MEMSミラー100Aは、X軸方向を長手方向とする長方形の走査領域71を有する。この場合、固定枠1及びフレーム部2の表面には、走査領域71の長手方向であるX軸方向に延びるようにダミーパターン7Bが形成されている。即ち、ダミーパターン7Bは、Y軸方向に並んで配置されている。
 図8の例によれば、走査領域71の短手方向を基準とした角度αに基づき、ピッチdを式(1)~(4)に基づき設計すればよいため、凸パターン7のピッチdを大きく設計することが可能となる。よって、この例によれば、ピッチdに関する制限を緩やかにし、半導体製造のプロセスルールに幅広く対応することができる。なお、図8の例では、X軸方向は本発明における「第1方向」の一例であり、Y軸方向は本発明における「第2方向」の一例である。
 同様に、走査領域が長方形の場合、好適には、図5等に示す回折格子を形成するセンサ部20のアルミ層25の凹凸パターンの方向を、走査範囲の長手方向に合わせるとよい。これにより、センサ部20での凹凸パターンのピッチを大きく設計することが可能となり、幅広く半導体製造のプロセスルールに対応することができる。
 (変形例2)
 図1に示すMEMSミラー100は、磁石4A~4Dを有する電磁駆動方式のMEMSミラーであったが、本発明に適用可能なMEMSミラーの駆動方式は、これに限定されない。これに代えて、極板間に働く静電気力による静電駆動方式、圧電材料の変形力による圧電駆動方式など、他の駆動方式を採用したMEMSミラーであっても、実施例と同様に本発明を好適に適用することが可能である。
 この場合であっても、極板や圧電材料などに電圧を印加するための配線パターンを形成する際に、回折格子を構成するように配線パターンやダミーパターンを同時に形成する。これにより、MEMSミラーの製造プロセスに新たなプロセスを追加することなく、ミラー部以外の部分からの走査領域内への反射光を低減する処理を安価に行うことができる。同様に、静電駆動方式、圧電材料の変形力による圧電駆動方式など、他の駆動方式を採用し、ミラー部の変位を検出するためのセンサ部を備えるMEMSミラーにおいて、センサ部の表面に回折格子を構成するようにしてもよい。
(変形例3)
 図8の例では、MEMSミラー100Aは、長方形の走査領域71の長手方向に延びるようにダミーパターン7Bが形成されていたが、これに代えて、X軸方向およびY軸方向に等間隔に配置されたことにより回折格子を構成する凹凸ドットをダミーパターンにより形成してもよい。さらに、図5で説明したセンサ部20上のアルミ層25が回折格子を構成する凹凸ドットを形成するようにしてもよい。図9は、変形例3に係るMEMSミラー100Aaの正面図及びセンサ部20付近の拡大図を示す。図9の固定枠1及びフレーム部2の表面には、配線パターン7Aが形成される領域以外の領域に、X軸方向およびY軸方向に等間隔に形成された凹状又は凸状のドットであるダミーパターン7Baが形成されている。また、センサ部20上のアルミ層25にも同様に、X軸方向およびY軸方向に等間隔に、凹凸を形成するためのドットが形成されている。このような構成にすることにより、走査領域71の形状に関わらず、走査範囲内への反射を好適に低減することができる。
 1 固定枠
 2 フレーム部
 3 ミラー部
 4A~4D 磁石
 5A、5B X軸トーションバー
 6A、6B Y軸トーションバー
 7 凸パターン
 100 MEMSミラー

Claims (6)

  1.  入射光を反射するミラー部を揺動させることにより、前記ミラー部により反射された光を所定の角度範囲に走査する光スキャナであって、
     前記ミラー部に連結され、前記ミラー部を揺動させる駆動部と、
     前記駆動部を変位可能に支持する支持部と、
     前記入射光が入射する側の、前記駆動部または前記支持部の表面に形成され、前記表面に入射する前記入射光を反射し、当該反射による1次回折光を前記所定の角度範囲の外に生じさせる反射型回折格子と、
    を備えることを特徴とする光スキャナ。
  2.  前記駆動部に前記ミラー部を揺動させる為の電気エネルギーを供給する配線パターンを備え、
     前記反射型回折格子は、前記配線パターン、または、前記配線パターンの製造プロセスにおいて前記配線パターンと同時に形成され、前記電気エネルギーを供給する機能を有しないダミーパターンにより構成されることを特徴とする請求項1に記載の光スキャナ。
  3.  前記反射型回折格子の少なくとも一部は、前記駆動部の表面上にコイルを形成している配線パターンにより構成されることを特徴とする請求項1または2に記載の光スキャナ。
  4.  前記光スキャナは、2次元の投射面に前記ミラー部により反射された光を走査し、
     前記反射型回折格子は、前記投射面における走査範囲の長手方向に対応する第1方向に延びる前記ダミーパターンが、前記第1方向と垂直な第2方向に複数並んで配置されることにより構成されることを特徴とする請求項2に記載の光スキャナ。
  5.  前記駆動部は、前記ミラー部の揺動を検出するセンサ部を含み、
     前記反射型回折格子は、前記センサ部の表面に形成されることを特徴とする請求項1に記載の光スキャナ。
  6.  前記反射型回折格子の表面に、前記入射光を遮光する金属薄膜を備えることを特徴とする請求項5に記載の光スキャナ。
PCT/JP2015/060161 2015-03-31 2015-03-31 光スキャナ WO2016157419A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060161 WO2016157419A1 (ja) 2015-03-31 2015-03-31 光スキャナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060161 WO2016157419A1 (ja) 2015-03-31 2015-03-31 光スキャナ

Publications (1)

Publication Number Publication Date
WO2016157419A1 true WO2016157419A1 (ja) 2016-10-06

Family

ID=57005322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060161 WO2016157419A1 (ja) 2015-03-31 2015-03-31 光スキャナ

Country Status (1)

Country Link
WO (1) WO2016157419A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160122178A1 (en) * 2013-05-30 2016-05-05 Pioneer Micro Technology Corporation Driving apparatus
US20180062350A1 (en) * 2016-09-01 2018-03-01 Hamamatsu Photonics K.K. Movable diffraction grating, method of manufacturing the same, and external resonator type laser module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107069A (ja) * 2003-09-30 2005-04-21 Brother Ind Ltd 光スキャナおよびそれを備えた画像形成装置
JP2008165227A (ja) * 2006-12-27 2008-07-17 Samsung Electro-Mechanics Co Ltd 光変調器モジュールパッケージ
JP2013225075A (ja) * 2012-04-23 2013-10-31 Jvc Kenwood Corp Mems光スキャナ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107069A (ja) * 2003-09-30 2005-04-21 Brother Ind Ltd 光スキャナおよびそれを備えた画像形成装置
JP2008165227A (ja) * 2006-12-27 2008-07-17 Samsung Electro-Mechanics Co Ltd 光変調器モジュールパッケージ
JP2013225075A (ja) * 2012-04-23 2013-10-31 Jvc Kenwood Corp Mems光スキャナ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160122178A1 (en) * 2013-05-30 2016-05-05 Pioneer Micro Technology Corporation Driving apparatus
US20180062350A1 (en) * 2016-09-01 2018-03-01 Hamamatsu Photonics K.K. Movable diffraction grating, method of manufacturing the same, and external resonator type laser module
US10361538B2 (en) * 2016-09-01 2019-07-23 Hamamatsu Photonics K.K. Movable diffraction grating, method of manufacturing the same, and external resonator type laser module

Similar Documents

Publication Publication Date Title
JP5452197B2 (ja) Mems光スキャナ
CN102207634B (zh) 用来降低显示器***里散斑效应的装置
TWI582463B (zh) Euv反射鏡、包含euv反射鏡之光學系統以及操作包含euv反射鏡之光學系統的方法
NL2007554C2 (en) Mems scanning micromirror.
JP2016001325A (ja) 光学反射素子
JP5085101B2 (ja) 可変分光素子
JP2011061881A (ja) 圧電アクチュエータ及びこれを用いた光走査装置
JP5655365B2 (ja) 光偏向器、光偏向器の製造方法および画像表示装置
JP2009128463A (ja) 揺動体装置の製造方法、該製造方法により製造された揺動体装置によって構成される光偏向器及び光学機器
US20140268271A1 (en) Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween
WO2016157419A1 (ja) 光スキャナ
US9261669B2 (en) Vibrating element having meandering shape, and optical reflection element
WO2011121946A1 (ja) 光学反射素子
CN110275287B (zh) 光扫描装置
JPWO2015145943A1 (ja) 光走査デバイス
JP2014186236A (ja) 光スキャナーの製造方法、光スキャナー、画像表示装置およびヘッドマウントディスプレイ
JP2007286172A (ja) マイクロミラー、及び、電極形成方法
JP2016085442A (ja) 光偏向素子、光偏向器、2次元画像表示装置、光走査装置及び画像形成装置
JP2011112806A (ja) Mems光スキャナおよびその製造方法
JP5351729B2 (ja) Mems光スキャナ
WO2017141529A1 (ja) ミラー駆動装置、ミラー駆動装置の制御方法およびミラー駆動装置の製造方法
JP5171489B2 (ja) 異方性エッチングによる構造体の作製方法、及びエッチングマスク付きシリコン基板
WO2019167616A1 (ja) 光偏向器
WO2024116520A1 (ja) 光学反射素子
JP5452799B2 (ja) 単位シャッタ機構、単位シャッタ機構を含むシャッタ構造物、及びシャッタ構造物を含む露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15887572

Country of ref document: EP

Kind code of ref document: A1