WO2016155187A1 - 阵列基板及其制造方法、以及显示装置 - Google Patents

阵列基板及其制造方法、以及显示装置 Download PDF

Info

Publication number
WO2016155187A1
WO2016155187A1 PCT/CN2015/086627 CN2015086627W WO2016155187A1 WO 2016155187 A1 WO2016155187 A1 WO 2016155187A1 CN 2015086627 W CN2015086627 W CN 2015086627W WO 2016155187 A1 WO2016155187 A1 WO 2016155187A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
light leakage
forming
leakage preventing
Prior art date
Application number
PCT/CN2015/086627
Other languages
English (en)
French (fr)
Inventor
董职福
薛伟
宋萍
李红敏
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15834707.0A priority Critical patent/EP3279721B1/en
Priority to US14/906,867 priority patent/US9933671B2/en
Publication of WO2016155187A1 publication Critical patent/WO2016155187A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/66Normally white display, i.e. the off state being white

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an array substrate and a method of manufacturing the same, and a display device.
  • a commonly used liquid crystal display device is a normally white mode twisted nematic liquid crystal display device, and the display device includes an array substrate and a color filter substrate which are opposed to each other.
  • the array substrate includes a plurality of pixel electrodes arranged in an array, a data line 2' located between adjacent two columns of pixel electrodes 1', and two adjacent rows of pixel electrodes 1'. Between the gate lines 3', wherein there is a gap 4' between the pixel electrode 1' and the data line 2', and there is also a gap 4' between the pixel electrode 1' and the gate line 3'.
  • the color filter substrate includes a black matrix for blocking a region between adjacent two pixel electrodes 1', that is, a data line 2', a gate line 3', and a gap 4'.
  • the inventors of the present application found that when the array substrate and the color filter substrate have a large alignment deviation in a direction parallel to the direction in which the gate line 3' extends, as shown in FIG. 2, the black array 5' cannot completely block the phase.
  • the area between the adjacent two pixel electrodes 1' which in turn causes light to exit the display device from the gap 4', causes light leakage in the display device, thereby reducing the contrast of the display device and affecting the display effect of the display device.
  • the present invention provides a display substrate, which adopts the following technical solutions:
  • An array substrate comprising a plurality of pixel regions arranged in an array on a substrate
  • a signal line is disposed between adjacent ones of the pixel regions, and the pixel region has a gap between the signal lines
  • the array substrate further includes at least one light leakage preventing electrode, and the leakage preventing electrode
  • An insulating arrangement between the pixel region and the signal line is provided, and a vertical projection of the light leakage preventing electrode on the substrate substrate covers at least a portion of a vertical projection of the gap on the substrate.
  • the array substrate includes at least one light leakage preventing electrode
  • the light leakage preventing electrode is insulated from the pixel region and the signal line
  • the vertical projection of the light leakage preventing electrode on the substrate substrate Covering at least a portion of the vertical projection of the gap on the base substrate, so that the light leakage preventing electrode can block at least a portion of the light that is directed by the light source toward the gap, thereby preventing the portion of the light from being emitted from the display device, thereby improving the display device
  • the light leakage phenomenon improves the contrast of the display device and improves the display effect of the display device.
  • the at least one light leakage preventing electrode is made of an opaque conductive material.
  • the opaque conductive material is gold, silver or molybdenum.
  • the light leakage preventing electrode itself can act as a light shielding body, thereby preventing the passage of light, and further improving the light leakage phenomenon of the display device.
  • the at least one light leakage preventing electrode is made of a transparent conductive material and cooperates with a common electrode on the corresponding mating substrate such that at least a portion of the light cannot be emitted from the gap.
  • the transparent conductive material is indium tin oxide or indium zinc oxide.
  • the pixel region includes a pixel electrode, and a vertical projection of the light leakage preventing electrode on the substrate substrate covers vertical of two adjacent pixel electrodes on the substrate substrate The area between projections.
  • the light leakage preventing electrode not only blocks a gap between the pixel region and the signal line but also blocks the signal line itself, so that the light leakage phenomenon of the display device can be further improved.
  • the signal line is a data line
  • the array substrate further includes a thin film transistor electrically connecting the data line and the pixel electrode, and vertical projection of the light leakage preventing electrode on the substrate substrate
  • the vertical projection of the thin film transistor on the substrate substrate does not overlap. Thereby, it is ensured that the light leakage preventing electrode does not affect the normal function of the thin film transistor.
  • two adjacent ones of the anti-leakage electrodes are electrically connected by a connection electrode, thereby achieving conduction of different anti-leakage electrodes to obtain an integral anti-leakage electrode.
  • the array substrate further includes a common electrode line perpendicular to the data line, a vertical projection of the common electrode line on the base substrate, and the pixel electrode on the substrate Vertical projections on the substrate overlap each other, and a vertical projection of the connection electrodes on the substrate is located within a vertical projection of the common electrode lines on the substrate.
  • the layer of the anti-leakage electrode is located between the layer where the pixel electrode is located and the layer where the signal line is located, and the layer where the anti-leakage electrode is located and the layer where the pixel electrode is located is disposed.
  • a first insulating layer, and a second insulating layer is disposed between the layer where the light leakage preventing electrode is located and the layer where the signal line is located.
  • the layer where the light leakage preventing electrode is located is located on the layer where the pixel electrode is located, and the first insulating layer is disposed between the layer where the light leakage preventing electrode is located and the layer where the pixel electrode is located.
  • the layer positions of the leakage preventing electrode and the pixel electrode can be flexibly changed according to specific conditions.
  • an embodiment of the present invention further provides a display device, which includes the array substrate according to any of the above.
  • the invention also provides a method for manufacturing an array substrate, which adopts the following technical solutions:
  • a method of manufacturing an array substrate comprising:
  • the anti-leakage electrode is insulated from the pixel region and the signal line, and a vertical projection of the anti-leakage electrode on the substrate substrate At least a portion of the vertical projection of the gap on the substrate substrate is covered.
  • a method of manufacturing an array substrate provided by an embodiment of the present invention includes: forming a signal line on a base substrate; and forming a pixel region and at least one light leakage preventing electrode. Due to the gap between the formed pixel region and the signal line, the anti-leakage electrode is insulated from the pixel region and the signal line, and the vertical projection of the anti-leakage electrode on the substrate substrate covers at least the vertical projection of the gap on the substrate.
  • the light-shielding electrode capable of blocking at least a portion of the light that is directed by the light source toward the gap, thereby preventing the portion of the light from being emitted from the display Therefore, it is possible to improve the light leakage phenomenon of the display device, improve the contrast of the display device, and improve the display effect of the display device.
  • the at least one light leakage preventing electrode is made of an opaque conductive material.
  • the opaque conductive material is gold, silver or molybdenum.
  • the light leakage preventing electrode itself can act as a light shielding body, thereby preventing the passage of light, and further improving the light leakage phenomenon of the display device.
  • the at least one light leakage preventing electrode is made of a transparent conductive material and cooperates with a common electrode on the corresponding mating substrate such that at least a portion of the light cannot be emitted from the gap.
  • the transparent conductive material is indium tin oxide or indium zinc oxide.
  • the step of forming the pixel region and the at least one light leakage preventing electrode specifically comprises: first forming at least one light leakage preventing electrode, and then forming a pixel region.
  • the step of forming at least one light leakage preventing electrode specifically includes: forming a second insulating layer on the base substrate on which the signal line is formed; and the substrate on which the second insulating layer is formed Forming a layer of light-proof electrode material on the substrate, and forming a pattern including the light-proof electrode by one patterning process,
  • the step of forming the pixel region specifically includes: forming a first insulating layer on the base substrate on which the light leakage preventing electrode is formed; and forming a pixel electrode on the base substrate on which the first insulating layer is formed A material layer, and a pattern including the pixel electrode is formed by one patterning process.
  • the step of forming the pixel region and the at least one light leakage preventing electrode specifically comprises: first forming a pixel region, and then forming at least one light leakage preventing electrode.
  • the step of forming the pixel region specifically includes: forming a pixel electrode material layer on the base substrate on which the signal line is formed, and forming a pattern including the pixel electrode by one patterning process,
  • the step of forming the at least one light leakage preventing electrode specifically comprises: forming a first insulating layer on the base substrate on which the pixel electrode is formed; and forming on the base substrate on which the first insulating layer is formed
  • the layer of the electrode material is leak-proof, and a pattern including the leak-proof electrode is formed by one patterning process.
  • the order of forming the anti-leakage electrode and the pixel electrode can be determined according to specific The situation is flexible.
  • vertical projection of A on B refers to the projected area of A obtained on B after projection of A in a direction perpendicular to B.
  • FIG. 1 is a schematic plan view of an array substrate in the prior art
  • FIG. 2 is a schematic cross-sectional view of a display device in the prior art along a direction perpendicular to a data line extension;
  • FIG. 3 is a schematic plan view of a first array substrate according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the array substrate in the A-A' direction of FIG. 3 according to an embodiment of the present invention
  • Figure 5 is a partial cross-sectional view showing a display device in an embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view showing a second array substrate according to an embodiment of the present invention.
  • 111 pixel electrode
  • 12 signal line
  • 121 data line
  • 16 connecting electrode
  • 17 first insulating layer
  • 18 second insulating layer
  • the array substrate 1 includes a pixel area 11 arranged in an array, and signal lines 12 are disposed between two adjacent pixel areas 11. And having a gap 13 between the pixel region 11 and the signal line 12; wherein the array substrate 1 further includes at least one light leakage preventing electrode 14, the light leakage preventing electrode 14 is insulated from the pixel region 11 and the signal line 12, and the light leakage preventing electrode 14
  • the vertical projection on the base substrate 10 covers at least a portion of the vertical projection of the gap 13 on the base substrate 10.
  • the material of the leakage preventing electrode 14 may be a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO), or an opaque conductive material such as gold (Au), silver (Ag), or molybdenum (Mo).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Mo molybdenum
  • the material of the light leakage preventing electrode 14 is an opaque conductive material, the light leakage preventing electrode 14 itself can prevent the passage of light, so that the light leakage preventing electrode 14 can further improve the light leakage phenomenon of the display device.
  • the light leakage preventing electrode 14 can be disposed in the same layer as the pixel electrode 111 included in the pixel region 11, so that the manufacturing method and cost of the array substrate can be simplified.
  • the specific material of the leakage preventing electrode 14 is not limited in the embodiment of the present invention, and those skilled in the art can select according to actual needs.
  • An embodiment of the present invention provides an array substrate having the above structure, wherein the array substrate includes at least one anti-leakage electrode, the anti-leakage electrode is insulated from the pixel region and the signal line, and the anti-leakage electrode is on the substrate.
  • the upper vertical projection covers at least a portion of the vertical projection of the gap on the substrate, so that the light leakage preventing electrode can block at least a part of the light that is directed by the light source toward the gap, so that the portion of the light cannot be emitted from the display device, thereby It is possible to improve the light leakage phenomenon of the display device, thereby improving the contrast of the display device and improving the display effect of the display device.
  • the following is an example of a twisted nematic liquid crystal display device in which the display device including the array substrate in the embodiment of the present invention is a normally white mode, and how the leakage preventing electrode 4 improves the light leakage phenomenon of the display device. detailed analysis.
  • the display device includes a light source 2, a lower polarizer 3, an array substrate 1, a liquid crystal molecular layer 4, a color filter substrate 5, and an upper polarizer 6 which are sequentially stacked.
  • the direction of the transmission axis of the lower polarizer 3 and the direction of the transmission axis of the upper polarizer 6 are perpendicular to each other, and the plate-like common electrode 51 is provided on the color filter substrate 5.
  • the anti-leakage electrode 14 on the array substrate 1 and the common electrode on the color filter substrate 5 in the embodiment of the present invention An electric field is formed between 51, the liquid crystal molecules at the position where the light leakage preventing electrode 14 is located are aligned along the long axis perpendicular to the array substrate 1, so that the light passing through the lower polarizer 3 passes through the portion of the liquid crystal molecules.
  • the polarization state of the light does not change, and thus cannot be emitted from the upper polarizer 6.
  • the leakage preventing electrode 14 can be disposed such that at least a part of the light that is incident on the gap by the light source 2 cannot be emitted from the display device, thereby improving the light leakage phenomenon of the display device, improving the contrast of the display device, and improving the display effect of the display device.
  • the driving method for the structure other than the light leakage preventing electrode 14 is the same as or similar to the prior art, and for the light leakage preventing electrode 14, only the driving process of the display device is always required
  • the anti-leakage electrode 14 inputs a fixed signal, so that an electric field is formed between the anti-leakage electrode 14 and the common electrode 51 on the color filter substrate 5, so that the liquid crystal molecules at the position where the anti-leakage electrode 14 is located are perpendicular to the array substrate along the long axis.
  • the direction of 1 can be arranged.
  • the driving method of the display device will not be described in detail in the embodiment of the present invention.
  • the pixel region 11 includes the pixel electrode 111, and the vertical projection of the anti-leakage electrode 14 on the substrate substrate 10 covers the region between the vertical projections of the adjacent two pixel electrodes 111 on the substrate substrate 10, thereby preventing
  • the light leakage electrode 14 can completely block the light that is incident on the area between the adjacent two pixel electrodes 111, so that the light leakage phenomenon at the gap 13 is completely eliminated, thereby improving the light leakage phenomenon of the display device to the greatest extent, and improving The contrast of the display device improves the display effect of the display device.
  • the signal line 12 may be a data line and/or a gate line disposed on the array substrate 1, that is, the signal line 12 is a data line, or the signal line 12 is a gate line, or the signal line 12 includes a data line and a gate. Both lines.
  • the vertical projection of the anti-leakage electrode 14 on the substrate substrate 10 at least covers the vertical projection of the gap 13 between the data line and the pixel region 11 on the substrate substrate 10.
  • a registration error occurs in a direction parallel to the extending direction of the data line, and the arrangement of the leakage preventing electrode 14 can improve the light leakage phenomenon of the display device.
  • the inventors of the present application have found that when the array substrate 1 and the color filter substrate 5 are aligned, the alignment deviation generally occurs in a direction parallel to the direction in which the gate lines extend. Therefore, light leakage often occurs between the data lines and the pixel region 11.
  • the gap is 13 .
  • the signal line 12 is the data line 121, that is, the vertical projection of the anti-leakage electrode 14 on the substrate substrate 10 covers at least the data.
  • Line 121 A portion of the vertical projection of the gap 13 between the pixel region 11 on the substrate substrate 10.
  • the array substrate 1 further includes a thin film transistor 15 electrically connecting the data line 121 and the pixel electrode 111, and a vertical projection of the light leakage preventing electrode 14 on the base substrate 10 and the thin film transistor 15
  • the vertical projection on the base substrate 10 does not overlap, so that the mutual influence between the light leakage preventing electrode 14 and the thin film transistor 15 can be avoided, contributing to an improvement in the display effect of the display device.
  • the adjacent two light leakage preventing electrodes 14 are electrically connected through the connection electrode 16, so that all the light leakage preventing electrodes 14 can be connected into one conductive mesh to reduce the resistance of the light leakage preventing electrode 14. Thereby, the voltage drop (IR drop) phenomenon of the light leakage preventing electrode 14 can be reduced, and the uniformity of the signal on the light leakage preventing electrode 14 can be improved.
  • the array substrate 1 further includes a common electrode line (not shown) perpendicular to the data line 121, and a vertical projection of the common electrode line on the base substrate 10 and a vertical projection of the pixel electrode 111 on the base substrate 10 The projections overlap each other such that the common electrode line and the pixel electrode 111 form a storage capacitor to facilitate display through the pixel region 11. Further, the vertical projection of the connection electrode 16 on the base substrate 10 is located within the vertical projection of the common electrode line on the base substrate 10, so that the arrangement of the connection electrodes 16 does not lower the aperture ratio of the array substrate 1.
  • the layer of the anti-leakage electrode 14 is located between the layer where the pixel electrode 111 is located and the layer where the signal line 12 is located, and the first insulation is disposed between the layer where the anti-leakage electrode 14 is located and the layer where the pixel electrode 111 is located.
  • the layer 17 and the second insulating layer 18 are disposed between the layer where the light leakage preventing electrode 14 is located and the layer where the signal line 12 is located, so that the distance between the signal line 12 and the pixel electrode 111 is increased, and the light leakage preventing electrode 14 can shield the pixel.
  • the signal interference between the electrode 111 and the signal line 12 can effectively improve the crosstalk failure between the signal line 12 and the pixel electrode 111 on the array substrate 1.
  • the layer where the light leakage preventing electrode 14 is located is located on the layer where the pixel electrode 111 is located, and the first insulating layer 17 is disposed between the layer where the light leakage preventing electrode 14 is located and the layer where the pixel electrode 111 is located, thereby preventing
  • the distance between the light leakage electrode 14 and the liquid crystal molecular layer 4 and the common electrode 51 on the color filter substrate 5 is relatively close, so that the light leakage preventing electrode 14 is opposite to the liquid crystal molecule
  • the control ability is strong, the light leakage phenomenon of the display device can be better improved, the contrast of the display device is improved, and the display effect of the display device is improved.
  • an embodiment of the present invention further provides a display device, which includes the array substrate according to any of the above.
  • the display device further includes a light source 2, a lower polarizer 3, a liquid crystal molecular layer 4, a color filter substrate 5, and an upper polarizer 6.
  • the light source 2, the array substrate 1, the lower polarizer 3, the liquid crystal molecular layer 4, the color filter substrate 5, and the upper polarizer 6 are sequentially stacked; the transmission axis direction of the lower polarizer 3 and the transmission axis of the upper polarizer 6 The directions are perpendicular to each other; and the color filter substrate 5 is provided with a grid-like black matrix 52, a color filter layer 53 located in a region surrounded by the black matrix 52, and a common electrode 51 covering the black matrix and the color filter layer. .
  • the array substrate included in the display device has the above structure, the light leakage phenomenon of the display device is improved, the contrast of the display device is improved, and the display effect of the display device is improved.
  • the present invention provides a method of manufacturing the array substrate described in the first embodiment. Specifically, the manufacturing method includes:
  • Step S701 forming a signal line.
  • the step of forming the signal lines may differ depending on the specific structure of the signal lines.
  • the step of forming the signal line includes: forming a gate metal layer, and forming a pattern including the gate line through a patterning process.
  • the step of forming the signal line includes: forming a layer of source and drain metal layers, and forming a pattern including the data lines through a patterning process.
  • the step of forming the signal line includes: forming a gate metal layer, and performing a patterning process to form a pattern including the gate line, and forming a source/drain metal layer, and After the patterning process, a pattern including data lines is formed.
  • the patterning process in the embodiment of the present invention includes the steps of coating a photoresist, using a patterned mask mask, exposing, developing, etching, and stripping the photoresist.
  • Step S702 forming a pixel region and at least one anti-leakage electrode.
  • the step of forming the pixel region includes: forming a layer of the pixel electrode material, and forming a pattern including the pixel electrode through a patterning process.
  • the step of forming the at least one light leakage preventing electrode comprises: forming a layer of the light leakage preventing electrode material, and forming a pattern including the at least one light leakage preventing electrode through a patterning process.
  • the anti-leakage electrode is insulated from the pixel area and the signal line, and the vertical projection of the anti-leakage electrode on the substrate substrate covers at least the vertical projection of the gap on the substrate. a part of.
  • the method for manufacturing the array substrate provided by the embodiment of the present invention may further include the same or similar steps as the method for manufacturing the array substrate in the prior art, and the embodiments of the present invention will not be further described.
  • the first manufacturing method is used to manufacture the array substrate 1 as shown in FIG. 4, that is, the layer of the anti-leakage electrode 14 on the array substrate 1 is located between the layer where the pixel electrode 111 is located and the layer where the signal line 12 is located, and the anti-leakage electrode 14
  • a first insulating layer 17 is disposed between the layer where the layer is located and the pixel electrode 111
  • a second insulating layer 18 is disposed between the layer where the light leakage preventing electrode 14 is located and the layer where the signal line 12 is located.
  • the first manufacturing method includes first forming a light leakage preventing electrode, and then forming a pixel electrode, specifically:
  • Step S801 forming a second insulating layer on the base substrate on which the signal lines are formed.
  • Step S802 forming a light-proof electrode material layer on the base substrate on which the second insulating layer is formed, and forming a pattern including the light-proof electrode by one patterning process.
  • Step S803 forming a first insulating layer on the base substrate on which the light leakage preventing electrode is formed.
  • Step S804 forming a pixel electrode material layer on the base substrate on which the first insulating layer is formed, and forming a pattern including the pixel electrode by one patterning process.
  • the second manufacturing method is used to manufacture the array substrate 1 as shown in FIG. 6, that is, the layer of the anti-leakage electrode 14 on the array substrate 1 is located on the layer where the pixel electrode 111 is located, and the layer of the anti-leakage electrode 14 and the pixel electrode 111 are disposed.
  • a first insulating layer 17 is disposed between the layers.
  • the second method of fabrication includes first forming a pixel electrode and then forming a light leakage preventing electrode, specifically:
  • Step S901 forming a pixel electrode material layer on the base substrate, and forming a pattern including the pixel electrode by one patterning process.
  • Step S902 forming a first insulating layer on the base substrate on which the pixel electrode is formed.
  • Step S903 forming a light-proof electrode material on the base substrate on which the first insulating layer is formed The layer is formed, and a pattern including the anti-leakage electrode is formed by one patterning process.
  • Embodiments of the present invention provide a method of fabricating an array substrate, the method comprising: forming a signal line on a substrate; and forming a pixel region and at least one light leakage preventing electrode on the substrate. Due to the gap between the formed pixel region and the signal line, the anti-leakage electrode is insulated from the pixel region and the signal line, and the vertical projection of the anti-leakage electrode on the substrate substrate covers at least the vertical projection of the gap on the substrate.
  • a part of the light leakage preventing electrode can block at least a part of the light that is directed by the light source to the gap, so that the part of the light cannot be emitted from the display device, thereby improving the light leakage phenomenon of the display device, improving the contrast of the display device, and improving the display device.
  • the display effect can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板(1)及其制造方法、以及一种显示装置,以用于改善显示装置的漏光现象。该阵列基板(1)包括阵列排布在衬底基板(10)上的多个像素区(11),所述像素区(11)中的相邻两个之间设置有信号线(12),所述像素区(11)与所述信号线(12)之间具有间隙(13),其中所述阵列基板(1)还包括至少一个防漏光电极(14),所述防漏光电极(14)与所述像素区(11)和所述信号线(12)之间绝缘设置,并且所述防漏光电极(14)在衬底基板(10)上的垂直投影至少覆盖所述间隙(13)在所述衬底基板(10)上的垂直投影中的一部分。

Description

阵列基板及其制造方法、以及显示装置
相关申请
本申请要求2015年3月31日提交的中国专利申请号201510148163.9的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本发明涉及显示技术领域,尤其涉及一种阵列基板及其制造方法、以及一种显示装置。
背景技术
目前,常用的液晶显示装置为常白模式的扭曲向列型液晶显示装置,该显示装置包括相互对合的阵列基板和彩膜基板。
示例性地,如图1所示,阵列基板包括阵列排布的多个像素电极1、位于相邻两列像素电极1’之间的数据线2’、以及位于相邻两行像素电极1’之间的栅线3’,其中,像素电极1’与数据线2’之间存在间隙4’,并且像素电极1’与栅线3’之间也存在间隙4’。彩膜基板包括黑矩阵,该黑矩阵用于遮挡相邻两像素电极1’之间的区域,即数据线2’、栅线3’以及间隙4’。
然而,本申请的发明人发现,当阵列基板与彩膜基板沿平行于栅线3’延伸方向的方向存在较大对位偏差时,如图2所示,黑绝阵5’不能完全遮挡相邻两像素电极1’之间的区域,进而会导致光线从间隙4’射出显示装置,使得显示装置出现漏光现象,从而降低了显示装置的对比度,影响了显示装置的显示效果。
发明内容
本发明的目的在于提供一种显示基板及其制造方法、以及一种显示装置,以用于改善显示装置的漏光现象。
为达到上述目的,本发明提供了一种显示基板,采用如下技术方案:
一种阵列基板,其包括阵列排布在衬底基板上的多个像素区,所 述像素区中的相邻两个之间设置有信号线,所述像素区与所述信号线之间具有间隙,其中所述阵列基板还包括至少一个防漏光电极,所述防漏光电极与所述像素区和所述信号线之间绝缘设置,并且所述防漏光电极在衬底基板上的垂直投影至少覆盖所述间隙在所述衬底基板上的垂直投影中的一部分。
在本发明实施例所提供的上述阵列基板中,由于该阵列基板包括至少一个防漏光电极,防漏光电极与像素区和信号线之间绝缘设置,并且防漏光电极在衬底基板上的垂直投影至少覆盖间隙在所述衬底基板上的垂直投影中的一部分,从而使得防漏光电极能够至少遮挡由光源射向该间隙的一部分光线,进而使得该部分光线无法射出显示装置,从而能够改善显示装置的漏光现象,提高显示装置的对比度,改善显示装置的显示效果。
在本发明的实施例中,所述至少一个防漏光电极由不透明导电材料制成。具体地,所述不透明导电材料为金、银或钼。在这样的情况下,所述防漏光电极本身就能够充当光遮挡体,从而防止光线的通过,进一步改善显示装置的漏光现象。
在本发明的实施例中,所述至少一个防漏光电极由透明导电材料制成,并且与对应对合基板上的公共电极相互协作,使得至少一部分光线不能从所述间隙射出。具体地,所述透明导电材料为氧化铟锡或氧化铟锌。虽然这样的情况下的防漏光电极是透明的,但是其可以与对合基板上的公共电极协同作用,从而使得至少一部分光线不能从所述间隙射出,进一步改善显示装置的漏光现象。
在本发明的实施例中,所述像素区包括像素电极,并且所述防漏光电极在所述衬底基板上的垂直投影覆盖相邻两个所述像素电极在所述衬底基板上的垂直投影之间的区域。此时,所述防漏光电极不仅遮挡所述像素区与所述信号线之间具有间隙,而且还遮挡所述信号线本身,因此能够进一步改善显示装置的漏光现象。
示例性地,所述信号线为数据线,所述阵列基板还包括电连接所述数据线和所述像素电极的薄膜晶体管,并且所述防漏光电极在所述衬底基板上的垂直投影与所述薄膜晶体管在所述衬底基板上的垂直投影无交叠。由此,保证所述防漏光电极不会影响所述薄膜晶体管的正常功能。
在本发明的实施例中,所述防漏光电极中的相邻两个通过连接电极电连接,由此实现不同防漏光电极的导通以得到整体式防漏光电极。
在本发明的实施例中,所述阵列基板还包括与所述数据线垂直的公共电极线,所述公共电极线在所述衬底基板上的垂直投影与所述像素电极在所述衬底基板上的垂直投影之间相互交叠,并且所述连接电极在所述衬底基板上的垂直投影位于所述公共电极线在所述衬底基板上的垂直投影之内。
在本发明的实施例中,所述防漏光电极所在层位于所述像素电极所在层与所述信号线所在层之间,所述防漏光电极所在层与所述像素电极所在层之间设置有第一绝缘层,并且所述防漏光电极所在层与所述信号线所在层之间设置有第二绝缘层。
在本发明的实施例中,所述防漏光电极所在层位于所述像素电极所在层上,并且所述防漏光电极所在层与所述像素电极所在层之间设置有第一绝缘层。
由此可见,所述防漏光电极和像素电极的层位置可以根据具体情况而灵活变化。
此外,本发明实施例还提供了一种显示装置,该显示装置包括以上任一项所述的阵列基板。
本发明还提供了一种阵列基板的制造方法,采用如下技术方案:
一种阵列基板的制造方法,包括:
在衬底基板上形成信号线;以及
形成像素区和至少一个防漏光电极;
其中,所述像素区与所述信号线之间具有间隙,所述防漏光电极与所述像素区和所述信号线之间绝缘设置,并且所述防漏光电极在衬底基板上的垂直投影至少覆盖所述间隙在所述衬底基板上的垂直投影中的一部分。
本发明实施例所提供的阵列基板的制造方法包括:在衬底基板上形成信号线;以及形成像素区和至少一个防漏光电极。由于形成的像素区与信号线之间具有间隙,防漏光电极与像素区和信号线之间绝缘设置,并且防漏光电极在衬底基板上的垂直投影至少覆盖间隙在衬底基板上的垂直投影中的一部分,从而使得防漏光电极能够至少遮挡由光源射向该间隙的一部分光线,进而使得该部分光线无法射出显示装 置,从而能够改善显示装置的漏光现象,提高显示装置的对比度,改善显示装置的显示效果。
在本发明的实施例中,所述至少一个防漏光电极由不透明导电材料制成。具体地,所述不透明导电材料为金、银或钼。在这样的情况下,所述防漏光电极本身就能够充当光遮挡体,从而防止光线的通过,进一步改善显示装置的漏光现象。
在本发明的实施例中,所述至少一个防漏光电极由透明导电材料制成,并且与对应对合基板上的公共电极相互协作,使得至少一部分光线不能从所述间隙射出。具体地,所述透明导电材料为氧化铟锡或氧化铟锌。虽然这样的情况下的防漏光电极是透明的,但是其可以与对合基板上的公共电极协同作用,从而使得至少一部分光线不能从所述间隙射出,进一步改善显示装置的漏光现象。
在本发明的实施例中,形成像素区和至少一个防漏光电极的步骤具体包括:首先形成至少一个防漏光电极,并且然后形成像素区。
示例性地,形成至少一个防漏光电极的步骤具体包括:在形成有所述信号线的所述衬底基板上形成第二绝缘层;以及在形成有所述第二绝缘层的所述衬底基板上形成防漏光电极材料层,并且通过一次构图工艺形成包括所述防漏光电极的图形,
并且形成像素区的步骤具体包括:在形成有所述防漏光电极的所述衬底基板上形成第一绝缘层;以及在形成有所述第一绝缘层的所述衬底基板上形成像素电极材料层,并且通过一次构图工艺形成包括所述像素电极的图形。
在本发明的实施例中,形成像素区和至少一个防漏光电极的步骤具体包括:首先形成像素区,并且然后形成至少一个防漏光电极。
示例性地,形成像素区的步骤具体包括:在形成有所述信号线的所述衬底基板上形成像素电极材料层,并且通过一次构图工艺形成包括所述像素电极的图形,
并且形成至少一个防漏光电极的步骤具体包括:在形成有所述像素电极的所述衬底基板上形成第一绝缘层;以及在形成有所述第一绝缘层的所述衬底基板上形成防漏光电极材料层,并且通过一次构图工艺形成包括所述防漏光电极的图形。
由此可见,所述防漏光电极和像素电极的形成顺序可以根据具体 情况而灵活变化。
如本文中所使用的,术语“A在B上的垂直投影”是指沿着垂直于B的方向上对A进行投影之后在B上所得到的A的投影区域。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的阵列基板的平面示意图;
图2为现有技术中的显示装置沿垂直于数据线延伸方向的截面示意图;
图3为本发明实施例中的第一种阵列基板的平面示意图;
图4为本发明实施例中的阵列基板沿图3中的A-A’方向的截面示意图;
图5为本发明实施例中的显示装置的局部截面示意图;以及
图6为本发明实施例中的第二种阵列基板的局部截面示意图。
附图标记说明:
1—阵列基板;     10—衬底基板;       11—像素区;
111—像素电极;   12—信号线;         121—数据线;
13—间隙;        14—防漏光电极;     15—薄膜晶体管;
16—连接电极;    17—第一绝缘层;     18—第二绝缘层;
2—光源;         3—下偏光片;        4—液晶分子层;
5—彩膜基板;     51—公共电极;       52—黑矩阵;
53—彩色滤色层;  6—上偏光片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都 属于本发明保护的范围。
实施例一
本发明实施例提供了一种阵列基板,具体地,如图3和图4所示,该阵列基板1包括阵列排布的像素区11,相邻两个像素区11之间设置有信号线12,并且像素区11与信号线12之间具有间隙13;其中阵列基板1还包括至少一个防漏光电极14,防漏光电极14与像素区11和信号线12之间绝缘设置,并且防漏光电极14在衬底基板10上的垂直投影至少覆盖间隙13在衬底基板10上的垂直投影中的一部分。
示例性地,防漏光电极14的材料可以为氧化铟锡(ITO)、氧化铟锌(IZO)等透明导电材料,或者为金(Au)、银(Ag)、钼(Mo)等不透明导电材料。当防漏光电极14的材料为不透明导电材料时,防漏光电极14本身就能够防止光线的通过,从而使得防漏光电极14能够进一步改善显示装置的漏光现象。当防漏光电极14的材料为透明导电材料时,可以将防漏光电极14与像素区11所包括的像素电极111同层设置,从而能够简化阵列基板的制造方法和成本。本发明实施例不对防漏光电极14的具体材料进行限定,本领域技术人员可以根据实际需要进行选择。
本发明实施例提供了一种具有以上所述结构的阵列基板,由于该阵列基板包括至少一个防漏光电极,防漏光电极与像素区和信号线之间绝缘设置,并且防漏光电极在衬底基板上的垂直投影至少覆盖间隙在所述衬底基板上的垂直投影中的一部分,从而使得防漏光电极能够至少遮挡由光源射向该间隙的一部分光线,进而使得该部分光线无法射出显示装置,从而能够改善显示装置的漏光现象,进而提高显示装置的对比度,改善显示装置的显示效果。
为了便于本领域技术人员理解,下面以包括本发明实施例中的阵列基板的显示装置为常白模式的扭曲向列型液晶显示装置为例,对防漏光电极4如何改善显示装置的漏光现象进行详细的分析。
如图5所示,该显示装置包括依次层叠设置的光源2、下偏光片3、阵列基板1、液晶分子层4、彩膜基板5和上偏光片6。其中,下偏光片3的透光轴方向和上偏光片6的透光轴方向相互垂直,并且彩膜基板5上设置有板状公共电极51。在显示装置的使用过程中,在本发明实施例中的阵列基板1上的防漏光电极14与彩膜基板5上的公共电极 51之间形成电场,该电场使得防漏光电极14所在位置处的液晶分子均沿长轴垂直于阵列基板1的方向排列,从而使得穿过下偏光片3的光线穿过该部分液晶分子后,光线的偏振状态不发生改变,从而无法从上偏光片6射出。因此,防漏光电极14的设置能够使得至少由光源2射向该间隙的一部分光线无法射出显示装置,从而能够改善显示装置的漏光现象,提高显示装置的对比度,改善显示装置的显示效果。
在显示装置的驱动过程中,对于除防漏光电极14之外的其他结构的驱动方法与现有技术相同或类似,而对于防漏光电极14而言,也只需要在显示装置的驱动过程一直向防漏光电极14输入固定的信号,使得在防漏光电极14与彩膜基板5上的公共电极51之间形成电场,以使防漏光电极14所在位置处的液晶分子均沿长轴垂直于阵列基板1的方向排列即可。本发明实施例不再对显示装置的驱动方法进行赘述。
进一步地,像素区11包括像素电极111,并且防漏光电极14在衬底基板10上的垂直投影覆盖相邻两个像素电极111在衬底基板10上的垂直投影之间的区域,从而使得防漏光电极14能够将射向相邻两个像素电极111之间的区域的光线完全遮挡,从而使得间隙13处的漏光现象完全被消除,由此在最大程度上改善了显示装置的漏光现象,提高了显示装置的对比度,改善了显示装置的显示效果。
示例性地,信号线12可以为阵列基板1上设置的数据线和/或栅线,即信号线12为数据线,或者,信号线12为栅线,或者,信号线12包括数据线和栅线二者。其中,当信号线12包括数据线和栅线时,防漏光电极14在衬底基板10上的垂直投影至少覆盖数据线与像素区11之间的间隙13在衬底基板10上的垂直投影中的一部分,以及栅线与像素区11之间的间隙13在衬底基板10上的垂直投影中的一部分,从而使得无论阵列基板1和彩膜基板5在平行于栅线的延伸方向的方向上或者在平行于数据线的延伸方向的方向上出现对位误差,防漏光电极14的设置均可以改善显示装置的漏光现象。
本申请的发明人发现,当阵列基板1和彩膜基板5对合时,通常会沿平行于栅线延伸方向的方向出现对位偏差,因此,漏光常常出现在数据线与像素区11之间的间隙13处。为了简化阵列基板1的制造方法,在本发明实施例中,优选地,如图3所示,信号线12为数据线121,即防漏光电极14在衬底基板10上的垂直投影至少覆盖数据线121 与像素区11之间的间隙13在衬底基板10上的垂直投影中的一部分。
进一步地,当信号线12为数据线121时,阵列基板1还包括电连接数据线121和像素电极111的薄膜晶体管15,并且防漏光电极14在衬底基板10上的垂直投影与薄膜晶体管15在衬底基板10上的垂直投影无交叠,从而能够避免防漏光电极14与薄膜晶体管15之间的相互影响,有助于改善显示装置的显示效果。
进一步地,相邻两个防漏光电极14通过连接电极16电连接,从而能够将所有防漏光电极14连接成一个导电网格,以降低防漏光电极14的电阻。由此,能够降低防漏光电极14的电压降(IR drop)现象,提高防漏光电极14上信号的均一性。
进一步地,阵列基板1还包括与数据线121垂直的公共电极线(图中未示出),并且公共电极线在衬底基板10上的垂直投影与像素电极111在衬底基板10上的垂直投影之间相互交叠,从而使得公共电极线和像素电极111形成存储电容,以便于通过像素区11实现显示。进一步地,连接电极16在衬底基板10上的垂直投影位于公共电极线在衬底基板10上的垂直投影之内,从而使得连接电极16的设置不会降低阵列基板1的开口率。
需要说明的是,以上描述的均是防漏光电极14与像素区11的像素电极111、信号线12等结构的平面位置关系,下面还将对本发明实施例的防漏光电极14与像素电极111、信号线12等结构的层叠位置关系进行描述。
可选地,如图4所示,防漏光电极14所在层位于像素电极111所在层与信号线12所在层之间,防漏光电极14所在层与像素电极111所在层之间设置有第一绝缘层17,并且防漏光电极14所在层与信号线12所在层之间设置有第二绝缘层18,从而使得信号线12与像素电极111之间的距离增大,且防漏光电极14能够屏蔽像素电极111与信号线12之间的信号干扰,从而能够有效改善阵列基板1上的信号线12与像素电极111之间串扰不良。
可选地,如图6所示,防漏光电极14所在层位于像素电极111所在层上,并且防漏光电极14所在层与像素电极111所在层之间设置有第一绝缘层17,从而使得防漏光电极14与液晶分子层4和彩膜基板5上的公共电极51之间的距离均较近,使得防漏光电极14对液晶分子 的控制能力强,能够较好地改善显示装置的漏光现象,提高显示装置的对比度,改善显示装置的显示效果。
此外,本发明实施例还提供了一种显示装置,该显示装置包括以上任一项所述的阵列基板。具体地,如图5所示,该显示装置还包括光源2、下偏光片3、液晶分子层4、彩膜基板5和上偏光片6。其中,光源2、阵列基板1、下偏光片3、液晶分子层4、彩膜基板5和上偏光片6依次层叠设置;下偏光片3的透光轴方向和上偏光片6的透光轴方向相互垂直;并且彩膜基板5上设置有网格状的黑矩阵52、位于黑矩阵52围成的区域内的彩色滤色层53以及覆盖于黑矩阵和彩色滤色层上的公共电极51。
由于显示装置包括的阵列基板具有以上结构,从而使得该显示装置的漏光现象得到改善,提高了显示装置的对比度,改善了显示装置的显示效果。
实施例二
本发明提供了一种用于制造实施例一中所述的阵列基板的制造方法。具体地,该制造方法包括:
步骤S701、形成信号线。
形成信号线的步骤可以根据信号线为何种具体结构而不同。示例性地,当信号线为栅线时,形成信号线的步骤包括:形成一层栅极金属层,并且经过构图工艺,形成包括栅线的图形。当信号线为数据线时,形成信号线的步骤包括:形成一层源漏极金属层,并且经过构图工艺,形成包括数据线的图形。当信号线包括栅线和数据线时,形成信号线的步骤包括:形成一层栅极金属层,并且经过构图工艺,形成包括栅线的图形,以及,形成一层源漏极金属层,并且经过构图工艺,形成包括数据线的图形。
需要说明的是,如无特殊说明,本发明实施例中的构图工艺包括涂布光刻胶,使用具有图案的掩膜板掩膜,曝光,显影,刻蚀和剥离光刻胶的步骤。
步骤S702、形成像素区和至少一个防漏光电极。
示例性地,当像素区包括像素电极时,形成像素区的步骤包括:形成一层像素电极材料层,并且经过构图工艺,形成包括像素电极的图形。
示例性地,形成至少一个防漏光电极的步骤包括:形成一层防漏光电极材料层,并且经过构图工艺,形成包括至少一个防漏光电极的图形。其中,像素区与信号线之间具有间隙,防漏光电极与像素区和信号线之间绝缘设置,并且防漏光电极在衬底基板上的垂直投影至少覆盖间隙在衬底基板上的垂直投影中的一部分。
本发明实施例提供的阵列基板的制造方法还可以包括和现有技术中阵列基板的制造方法中相同或相似的步骤,本发明实施例不再一一赘述。
为了便于本领域技术人员理解,下面本发明实施例提供两种最为具体的阵列基板的制造方法:
第一种制造方法,用以制造如图4所示的阵列基板1,即阵列基板1上的防漏光电极14所在层位于像素电极111所在层与信号线12所在层之间,防漏光电极14所在层与像素电极111所在层之间设置有第一绝缘层17,并且防漏光电极14所在层与信号线12所在层之间设置有第二绝缘层18。
示例性地,第一种制造方法包括首先形成防漏光电极,并且然后形成像素电极,具体地:
步骤S801、在形成有信号线的衬底基板上形成第二绝缘层。
步骤S802、在形成有第二绝缘层的衬底基板上形成防漏光电极材料层,并且通过一次构图工艺形成包括防漏光电极的图形。
步骤S803、在形成有防漏光电极的衬底基板上形成第一绝缘层。
步骤S804、在形成有第一绝缘层的衬底基板上形成像素电极材料层,并且通过一次构图工艺形成包括像素电极的图形。
第二种制造方法,用以制造如图6所示的阵列基板1,即阵列基板1上的防漏光电极14所在层位于像素电极111所在层上,并且防漏光电极14所在层与像素电极111所在层之间设置有第一绝缘层17。
示例性地,第二种制造方法包括首先形成像素电极,并且然后形成防漏光电极,具体地:
步骤S901、在衬底基板上形成像素电极材料层,并且通过一次构图工艺形成包括像素电极的图形。
步骤S902、在形成有像素电极的衬底基板上形成第一绝缘层。
步骤S903、在形成有第一绝缘层的衬底基板上形成防漏光电极材 料层,并且通过一次构图工艺形成包括防漏光电极的图形。
本发明实施例提供了一种阵列基板的制造方法,该制造方法包括在衬底基板上形成信号线;以及在衬底基板上形成像素区和至少一个防漏光电极。由于形成的像素区与信号线之间具有间隙,防漏光电极与像素区和信号线之间绝缘设置,并且防漏光电极在衬底基板上的垂直投影至少覆盖间隙在衬底基板上的垂直投影中的一部分,从而使得防漏光电极能够至少遮挡由光源射向该间隙的一部分光线,进而使得该部分光线无法射出显示装置,从而能够改善显示装置的漏光现象,提高显示装置的对比度,改善显示装置的显示效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种阵列基板,包括阵列排布在衬底基板上的多个像素区,所述像素区中的相邻两个之间设置有信号线,所述像素区与所述信号线之间具有间隙,其中,
    所述阵列基板还包括至少一个防漏光电极,所述防漏光电极与所述像素区和所述信号线之间绝缘设置,并且所述防漏光电极在所述衬底基板上的垂直投影至少覆盖所述间隙在所述衬底基板上的垂直投影中的一部分。
  2. 根据权利要求1所述的阵列基板,其中,所述至少一个防漏光电极由不透明导电材料制成。
  3. 根据权利要求2所述的阵列基板,其中,所述不透明导电材料为金、银或钼。
  4. 根据权利要求1所述的阵列基板,其中,所述至少一个防漏光电极由透明导电材料制成,并且与对应对合基板上的公共电极相互协作,使得至少一部分光线不能从所述间隙射出。
  5. 根据权利要求4所述的阵列基板,其中,所述透明导电材料为氧化铟锡或氧化铟锌。
  6. 根据权利要求1所述的阵列基板,其中,所述像素区包括像素电极,并且所述防漏光电极在所述衬底基板上的垂直投影覆盖所述像素电极中的相邻两个在所述衬底基板上的垂直投影之间的区域。
  7. 根据权利要求6所述的阵列基板,其中,所述信号线为数据线,所述阵列基板还包括电连接所述数据线和所述像素电极的薄膜晶体管,并且所述防漏光电极在所述衬底基板上的垂直投影与所述薄膜晶体管在所述衬底基板上的垂直投影无交叠。
  8. 根据权利要求7所述的阵列基板,其中,所述防漏光电极中的相邻两个通过连接电极电连接。
  9. 根据权利要求8所述的阵列基板,还包括与所述数据线垂直的公共电极线,所述公共电极线在所述衬底基板上的垂直投影与所述像素电极在所述衬底基板上的垂直投影之间相互交叠,并且所述连接电极在所述衬底基板上的垂直投影位于所述公共电极线在所述衬底基板上的垂直投影之内。
  10. 根据权利要求6-9中任一项所述的阵列基板,其中,所述防漏光电极所在层位于所述像素电极所在层与所述信号线所在层之间,所述防漏光电极所在层与所述像素电极所在层之间设置有第一绝缘层,并且所述防漏光电极所在层与所述信号线所在层之间设置有第二绝缘层。
  11. 根据权利要求6-9中任一项所述的阵列基板,其中,所述防漏光电极所在层位于所述像素电极所在层上,并且所述防漏光电极所在层与所述像素电极所在层之间设置有第一绝缘层。
  12. 一种显示装置,包括权利要求1-11中任一项所述的阵列基板。
  13. 一种阵列基板的制造方法,包括:
    在衬底基板上形成信号线;以及
    形成像素区和至少一个防漏光电极;
    其中,所述像素区与所述信号线之间具有间隙,所述防漏光电极与所述像素区和所述信号线之间绝缘设置,并且所述防漏光电极在衬底基板上的垂直投影至少覆盖所述间隙在所述衬底基板上的垂直投影中的一部分。
  14. 根据权利要求13所述的阵列基板的制造方法,其中,所述至少一个防漏光电极由不透明导电材料制成。
  15. 根据权利要求13所述的阵列基板的制造方法,其中,所述至少一个防漏光电极由透明导电材料制成。
  16. 根据权利要求13所述的阵列基板的制造方法,其中,形成像素区和至少一个防漏光电极的步骤包括:首先形成至少一个防漏光电极,并且然后形成像素区。
  17. 根据权利要求16所述的阵列基板的制造方法,其中,形成至少一个防漏光电极的步骤包括:
    在形成有所述信号线的所述衬底基板上形成第二绝缘层;以及
    在形成有所述第二绝缘层的所述衬底基板上形成防漏光电极材料层,并且通过一次构图工艺形成包括所述防漏光电极的图形,
    并且其中,形成像素区的步骤包括:
    在形成有所述防漏光电极的所述衬底基板上形成第一绝缘层;以及
    在形成有所述第一绝缘层的所述衬底基板上形成像素电极材料 层,并且通过一次构图工艺形成包括所述像素电极的图形。
  18. 根据权利要求13所述的阵列基板的制造方法,其中,形成像素区和至少一个防漏光电极的步骤包括:首先形成像素区,并且然后形成至少一个防漏光电极。
  19. 根据权利要求18所述的阵列基板的制造方法,其中,形成像素区的步骤包括:
    在形成有所述信号线的所述衬底基板上形成像素电极材料层,并且通过一次构图工艺形成包括所述像素电极的图形,
    并且其中,形成至少一个防漏光电极的步骤包括:
    在形成有所述像素电极的所述衬底基板上形成第一绝缘层;以及
    在形成有所述第一绝缘层的所述衬底基板上形成防漏光电极材料层,并且通过一次构图工艺形成包括所述防漏光电极的图形。
PCT/CN2015/086627 2015-03-31 2015-08-11 阵列基板及其制造方法、以及显示装置 WO2016155187A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15834707.0A EP3279721B1 (en) 2015-03-31 2015-08-11 Array substrate and manufacturing method therefor, and display device
US14/906,867 US9933671B2 (en) 2015-03-31 2015-08-11 Array substrate, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510148163.9 2015-03-31
CN201510148163.9A CN104698706B (zh) 2015-03-31 2015-03-31 一种阵列基板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016155187A1 true WO2016155187A1 (zh) 2016-10-06

Family

ID=53345992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086627 WO2016155187A1 (zh) 2015-03-31 2015-08-11 阵列基板及其制造方法、以及显示装置

Country Status (4)

Country Link
US (1) US9933671B2 (zh)
EP (1) EP3279721B1 (zh)
CN (1) CN104698706B (zh)
WO (1) WO2016155187A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698706B (zh) 2015-03-31 2018-05-29 合肥京东方光电科技有限公司 一种阵列基板及其制造方法、显示装置
CN107068719B (zh) * 2017-04-19 2019-07-30 京东方科技集团股份有限公司 一种显示基板、其制作方法及显示装置
CN207265054U (zh) * 2017-10-24 2018-04-20 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
WO2020220201A1 (zh) * 2019-04-29 2020-11-05 京东方科技集团股份有限公司 显示基板及其制作方法、显示面板、显示装置
CN110888274B (zh) * 2019-11-27 2022-05-31 深圳市华星光电半导体显示技术有限公司 显示面板
CN111258143A (zh) * 2020-03-18 2020-06-09 Tcl华星光电技术有限公司 显示面板和显示装置
CN114585964B (zh) * 2020-09-30 2023-10-20 京东方科技集团股份有限公司 一种阵列基板及其制造方法、显示装置
CN113376909A (zh) * 2021-05-27 2021-09-10 惠科股份有限公司 一种液晶显示面板及液晶显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203172A1 (en) * 2005-03-09 2006-09-14 Seung-Soo Baek Liquid crystal display apparatus and method
CN101251696A (zh) * 2008-04-08 2008-08-27 友达光电股份有限公司 主动元件阵列基板及液晶显示面板
JP2009103925A (ja) * 2007-10-23 2009-05-14 Nec Lcd Technologies Ltd 横電界方式のアクティブマトリックス型液晶表示装置
CN103018982A (zh) * 2011-09-22 2013-04-03 上海中航光电子有限公司 横向排列的像素结构
CN103293797A (zh) * 2012-06-08 2013-09-11 上海中航光电子有限公司 一种薄膜晶体管液晶显示装置及其制作方法
CN104698706A (zh) * 2015-03-31 2015-06-10 合肥京东方光电科技有限公司 一种阵列基板及其制造方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433841B1 (en) * 1997-12-19 2002-08-13 Seiko Epson Corporation Electro-optical apparatus having faces holding electro-optical material in between flattened by using concave recess, manufacturing method thereof, and electronic device using same
TWI301915B (zh) * 2000-03-17 2008-10-11 Seiko Epson Corp
KR100857132B1 (ko) * 2001-12-06 2008-09-05 엘지디스플레이 주식회사 액정 표시 장치 및 그의 제조 방법
JP2006153904A (ja) * 2004-11-25 2006-06-15 Sony Corp 液晶表示装置
TW201033708A (en) * 2009-03-04 2010-09-16 Hannstar Display Corp Thin film transistor substrate and twisted nematic liquid crystal display panel
CN102736325B (zh) * 2011-03-31 2015-08-12 京东方科技集团股份有限公司 一种像素结构及其制造方法、显示装置
US20140176891A1 (en) * 2011-08-10 2014-06-26 Sharp Kabushiki Kaisha Liquid crystal display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060203172A1 (en) * 2005-03-09 2006-09-14 Seung-Soo Baek Liquid crystal display apparatus and method
JP2009103925A (ja) * 2007-10-23 2009-05-14 Nec Lcd Technologies Ltd 横電界方式のアクティブマトリックス型液晶表示装置
CN101251696A (zh) * 2008-04-08 2008-08-27 友达光电股份有限公司 主动元件阵列基板及液晶显示面板
CN103018982A (zh) * 2011-09-22 2013-04-03 上海中航光电子有限公司 横向排列的像素结构
CN103293797A (zh) * 2012-06-08 2013-09-11 上海中航光电子有限公司 一种薄膜晶体管液晶显示装置及其制作方法
CN104698706A (zh) * 2015-03-31 2015-06-10 合肥京东方光电科技有限公司 一种阵列基板及其制造方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279721A4 *

Also Published As

Publication number Publication date
CN104698706B (zh) 2018-05-29
EP3279721A4 (en) 2018-11-21
CN104698706A (zh) 2015-06-10
EP3279721A1 (en) 2018-02-07
US9933671B2 (en) 2018-04-03
EP3279721B1 (en) 2023-04-19
US20170108731A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2016155187A1 (zh) 阵列基板及其制造方法、以及显示装置
US10466552B2 (en) Array substrate, display device and manufacturing method for the array substrate
US8852975B2 (en) Array substrate for fringe field switching mode liquid crystal display device and method for fabricating the same
US8455870B2 (en) Thin film transistor array panel and method of manufacturing the same
US8754415B2 (en) High light transmittance in-plane switching liquid crystal display device and method for manufacturing the same
CN108983518B (zh) 阵列基板及其制备方法
KR102420398B1 (ko) 액정 표시 장치 및 그 제조방법
US9466617B2 (en) Display panel and method of manufacturing the same
JP5285280B2 (ja) 液晶表示装置及び液晶表示装置の製造方法
US20120105778A1 (en) Liquid crystal display device
US9881974B2 (en) Display substrate and method of manufacturing the same
JP5627774B2 (ja) 液晶表示装置およびその製造方法
CN109343284B (zh) 像素结构、阵列基板及显示装置
TWI578502B (zh) 薄膜電晶體陣列基板及液晶顯示面板
TWI490615B (zh) 用於邊緣電場切換模式液晶顯示裝置的陣列基板及其製造方法
WO2017133144A1 (zh) 阵列基板及其制作方法
JP2009151285A (ja) 液晶表示装置及びその製造方法
US9780127B2 (en) Liquid crystral display and manufacturing method thereof
US20150021611A1 (en) Array substrate and manufacturing method thereof
KR102188068B1 (ko) 박막 트랜지스터 어레이 기판 및 이의 제조 방법
US20190081076A1 (en) Thin film transistor substrate and display panel
KR20150092112A (ko) 마스크 세트, 픽셀 유닛 및 그 제조 방법, 어레이 기판 및 디스플레이 디바이스
KR20190071789A (ko) Coa형 액정 패널의 제조방법 및 coa형 액정 패널
US9645429B2 (en) Display device and manufacturing method thereof
US20160195789A1 (en) Liquid crystal display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14906867

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015834707

Country of ref document: EP