WO2016154767A1 - Electrolytic production of copper from diluted solutions using reactive electrodialysis - Google Patents

Electrolytic production of copper from diluted solutions using reactive electrodialysis Download PDF

Info

Publication number
WO2016154767A1
WO2016154767A1 PCT/CL2016/050012 CL2016050012W WO2016154767A1 WO 2016154767 A1 WO2016154767 A1 WO 2016154767A1 CL 2016050012 W CL2016050012 W CL 2016050012W WO 2016154767 A1 WO2016154767 A1 WO 2016154767A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
anolyte
catholyte
obtaining
cell
Prior art date
Application number
PCT/CL2016/050012
Other languages
Spanish (es)
French (fr)
Inventor
Gerardo Alexis CIFUENTES MOLINA
Original Assignee
Universidad De Santiago De Chile
Ecovalue S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile, Ecovalue S.A. filed Critical Universidad De Santiago De Chile
Publication of WO2016154767A1 publication Critical patent/WO2016154767A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is developed in the field of electro obtaining metals.
  • the invention specifically relates to a cell with reactive electrodialysis (EDR) in conjunction with the use of bipolar electrodes and which avoids the solvent extraction stage in electro-obtaining processes.
  • EDR reactive electrodialysis
  • hydrometallurgical leaching processes for oxidized minerals generally produce two types of solutions: - Strong solutions: with copper contents in solutions between the ranges of 30 to 50 g / l. - Weak solutions: with copper contents ⁇ 10 g / l.
  • the strong solutions are suitable to directly enter the subsequent electro-obtaining process as long as the impurity contents are low.
  • weak solutions must pass through a concentration stage via solvent extraction-electro-obtaining or simply be treated by cementation.
  • Leaching involves the dissolution of copper oxides using sulfuric acid.
  • the solution obtained in this process is called PLS.
  • the copper in solution must be concentrated through the use of organic ion exchange resins. These resins selectively retain the cupric ion and subsequently discharge it to a lower solution. volume, by changing the acidity conditions of the work cell, in order to obtain a copper concentrated solution called advance.
  • the copper-poor solution known as refining, is returned to the leaching process to continue dissolving copper oxides.
  • the advance solution is sent to the electro obtaining process for the production of copper cathodes of 99.99% purity, by means of the copper ion reduction reaction and the oxidation of water.
  • the process of obtaining copper cathodes despite being much cheaper than obtaining cathodes of the same metal from sulphides of the same mineral, has an input that is considered of high value for the global process: organic resins .
  • the solvent extraction stage is intended to improve the electrochemical conditions of the electro-copper process, since the concentration of the ion of interest has an impact on the composition of the cathode obtained, its surface quality, the kinetics of the electrode and consumption energy of the complete electrochemical system.
  • cupric ion concentration can be obtained in the same way through the hydrodynamics of the work cell. This can be explained by the equation (1) of Nernst-Planck:
  • the Nernst-Planck equation shows that the flow of ions in any type of system can be due to any of the 3 driving forces: diffusion, convection or migration.
  • solvent extraction seeks to facilitate the flow of ions in electro-obtaining by increasing the concentration of cupric ions, that is, improving migration transport.
  • the previous equation also indicates that it is possible to improve the flow of ions through the flow of electrolytes in the cell.
  • the system proposed in this patent raises the process of electro obtaining using a flow of PLS or a solution of higher concentration in the ion of the metal of interest and an electrolyte recirculation pond, becoming a different alternative for the treatment of oxidized copper ores.
  • the present invention discloses the use of reactive electrodialysis (EDR) in conjunction with the use of bipolar electrodes and a pump system ( Figure 1), to recover copper from dilute PLS-type solutions.
  • EDR reactive electrodialysis
  • Figure 1 a pump system
  • the method implemented avoids the solvent extraction stage, which greatly contributes to the costs of the traditional electro-obtaining process, but it is also possible to incorporate it as a stage within the current hydrometallurgical process of Lix-SX-EW as a unit process independent but complementary.
  • PLS catholyte
  • a synthetic solution such as anolyte
  • Figure 1 shows the detail of a basic four-compartment cell and its parts
  • Figure 2 shows a scheme of the system and its parts, including a basic four-compartment cell
  • Figure 3 shows a graph of cathodic voltammetries with temperature variation, speed 30mV / min;
  • Figure 4 shows a graph of anodic voltammetry at 40 ° C
  • Figure 5 shows a graph of the variation of the current efficiency of the process
  • Figure 6 shows a graph of the variation of the energy consumption of the process
  • Figure 7 shows a representation of the Evans diagram for electro obtaining copper, its effect with temperature variation, and different anodic material: a) stainless steel and b) lead alloys.
  • Figure 8 shows an enlarged cell circuit with cells between the first compartment and the fourth compartment.
  • FIG. 1 The system for the recovery of copper from PLS solutions through the use of reactive electrodialysis (EDR) is schematized in Figures 1 and 2.
  • EDR reactive electrodialysis
  • a cell (1) with four compartments A, B, C and D, from left to right: a first compartment A of the anolyte, which is a synthetic solution prepared of sulfuric acid with a variable concentration of 5 to 200 g / L. for example, in that compartment A the anode (4) is housed, which is positively polarized by the action of the electric power source (12), there the anodic reaction is performed.
  • a cationic membrane (2) separates compartment A containing the anolyte, from a second compartment B containing the catholyte.
  • This catholyte contains the metal ion to be recovered, this solution can have a very vain concentration of the metal, it can be a PLS of very low concentration in copper, as it can also be of a high concentration in the metal.
  • a bipolar electrode (3) is observed, which is an electrically insulated solid metal electrode, which is not connected to any external cable, and also separates compartment B from a third compartment.
  • This electrode can be made of stainless steel, or another alloy that presents good Corrosion behavior on its anodic side, such as DSA (Dimensionally Stable Anode) type material, such as Titanium and its alloys, coated with oxides of noble metals such as Ruthenium and Iridium, Platinum, Carbon either Graphite or compacted.
  • DSA Dissionally Stable Anode
  • This bipolar electrode (3) being electrically isolated acquires electrical polarity, because it is in the path of the electric field that is induced by the existence of a positively polarized anode (4) in compartment A, and a negatively polarized cathode (5) in a fourth compartment D. This is how, then, this bipolar electrode (3) acquires bipolarity, that is, it behaves as a cathode (16) by one of its faces by negatively polarizing in compartment B, and as an anode (15) on the opposite side when positively polarized in compartment C.
  • compartment B containing the bipolar electrode on the face that acts as a cathode forming a cathodic wall (16)
  • the electrodeposition of the metal will occur due to the electric field which crosses the entire system, then the recovered metal plate would be obtained.
  • compartment C is a compartment that contains an anolyte and bipolar electrode (3), behaving on that side as if it were an anode forming an anodic wall (15). Therefore, the electrolyte can be the same as that used in compartment A.
  • Another cationic membrane (2) separates compartment C from compartment D.
  • compartment D by housing inside the cathode (5) that is negatively polarized by the action of the electric power source (12), there is a catholyte, which can be the same used in the compartment (B), where the cathodic reaction of electrodeposition of the metal also occurs.
  • This configuration can be repeated as many times as desired, that is, based on the elementary configuration:
  • Two electrolyte pumps (1 0, 1 1) are used, which will propel the solutions, anolyte and catholyte through the pipes or pipes (6.7), into their respective compartments in cells A, B, C and D with the In order to increase the flow.
  • These electrolytes by means of the pipes or pipes (1 8, 19), return to the ponds (8.9) in which they are initially before leaving the pumps (10, 1 1).
  • the circulation of the system works in such a way that inside the first compartment A and inside the third compartment C anolyte circulates moved by the anolyte pump (10), which is propelled from the anolyte tank (8). After circulating inside the compartments A and C, the anolyte is returned to the anolyte pond (8).
  • catholyte circulated by the catholyte pump (1 1) is circulated which is propelled from the catholyte pond (9).
  • the catholyte is returned to the catholyte pond (9).
  • a weak copper solution ( ⁇ 10 g / L) circulates through the cell with a flow of 2 L / min, which is the maximum flow delivered by the pump in this study.
  • the configuration of the system allows to study the effect produced by the increase in flux in the copper deposit for the case of the catholyte, and for the anolyte, if it causes some type of deterioration of the anodic side of the bipolar electrode.
  • the influence of variables affecting the deposit of copper in the stainless steel sheet which are the process temperature and its behavior for the values of 30, 35 and 40 ° C, the flow of the solutions (complete flow and fractions) of PLS and H 2 SO 4 , and the current density worked at 80, 60 and 50% of the system's limit current density.
  • the cathodic limit current density reaches a value of 160 A / m 2 with a workflow of 2 L / min. Under these conditions, tests were carried out at 3 different temperatures 30 ° C, 35 ° C and 40 ° C and 3 different current densities, corresponding to a fraction of the limit current density: 128.96 A / m 2 and 80 A / m 2 that is, 80, 60% and
  • the cathodes used like the anodes, have an effective working area of 4 or 6 cm 2 , as shown in table 2. To ensure this constant parameter at the time of the test, the electrodes were isolated with an insulating huincha in the rest. of your area.
  • the cell compartments were separated by two cation exchange membranes and a 316L stainless steel plate, used as a bipolar electrode.
  • the catholyte used was a solution of PLS with the composition shown in Table 1, while the anolyte corresponded to a solution of sulfuric acid diluted to 10% by volume.
  • Table 2 shows the variables considered, such as current density, temperature and cathodic area.
  • Table 3 shows the current calculated and applied in each test, in addition to the time taken and the theoretical copper mass expected for the maximum flow delivered by the pumps. No. Test Current Current Time Theoretical theoretical Cu mass, (A) applied, (A) (hours) (g)
  • Figure 7 represents the Evans diagram for electro obtaining at the temperatures worked in the system, from which it is rescued that the effect of temperature and current density are synergistic, that is, they complement each other.
  • the kinetics of the main reactions of the process greatly improve, which also implies an increase in the selectivity of the reactions, because by needing a lower potential of terminals to work, the possibility of their occurrence also decreases.
  • Other parasitic reactions This, in turn, makes it possible to increase the current density of the system without further damaging the current efficiency and the specific consumption of the system, as long as the limit current density is taken into account.
  • the first is the replacement of the lead anode that is normally used ( Figure 7, b).
  • Figure 7, b When used in normal electro-obtaining, it is necessary to apply a high potential over it to prevent it from being coated with lead sulfate. This value can represent 25% of the total energy cost of the process.
  • a sulfuric acid anolyte and a stainless steel anode By using a sulfuric acid anolyte and a stainless steel anode (figure 7, a), this energy consumption does not become necessary, since stainless steel has good corrosion resistance in this medium.
  • Table 8 shows the potential of the bipolar electrode used in the system.
  • the potential of the bipolar electrode used in the system is caused by the difference in concentration of Cu 2+ ions in the boundary layer near the cathode. Its effect can be reduced by agitation of the electrolyte near the cathode.
  • the potential of the bipolar electrode in the anodic reaction is caused by the oxygen release reaction associated with the difficulty of nucleation of the oxygen bubbles produced and the low presence of sulfuric acid in the anode boundary layer.

Abstract

The invention relates to a system for the electrolytic production of metals which uses reactive electrodialysis and avoids the step of solvent extraction in the electro-production processes, and which comprises: a reactive electrodialysis cell (EDR) formed by a number of compartments; storage means, such as an anolyte tank, where the anolyte is stored for the operation of the system; pumping means, such as an anolyte pump, which pumps anolyte via pipes or tubes from the anolyte tank to the inside of the cell, and again via another pipe to the anolyte tank (8); storage means, such as a catholyte tank, where the anolyte is stored for the operation of the system; pumping means, such as a catholyte pump, which pumps catholyte via pipes or tubes from the catholyte tank to the inside of the cell, and again via other pipes or tubes to the catholyte tank; and a power source connected to the anode of a first compartment on the positive side and to the cathode of a fourth compartment on the negative side.

Description

OBTENCIÓN ELECTROLÍTICA DE COBRE DESDE SOLUCIONES DILUIDAS UTILIZANDO ELECTRODIÁLISIS REACTIVA.  COPPER ELECTROLYTIC OBTAINING FROM SOLVED SOLUTIONS USING REACTIVE ELECTRODIALYSIS.
CAMPO TECNICO TECHNICAL FIELD
La presente invención se desarrolla en el campo de la electro obtención de metales. La invención se refiere específicamente a una celda con electrodiálisis reactiva (EDR) en unión con la utilización de electrodos bipolares y que evita la etapa de extracción por solvente en los procesos de electro obtención.  The present invention is developed in the field of electro obtaining metals. The invention specifically relates to a cell with reactive electrodialysis (EDR) in conjunction with the use of bipolar electrodes and which avoids the solvent extraction stage in electro-obtaining processes.
DESCRIPCION DEL ARTE PREVIO DESCRIPTION OF PRIOR ART
En la actualidad, los procesos hidrometalúrgicos de lixiviación para minerales oxidados, producen en general dos tipos de soluciones: - Soluciones fuertes: con contenidos de cobre en soluciones entre los rangos de 30 a 50 g/l. - Soluciones débiles: con contenidos de cobre < 10 g/l.  At present, hydrometallurgical leaching processes for oxidized minerals generally produce two types of solutions: - Strong solutions: with copper contents in solutions between the ranges of 30 to 50 g / l. - Weak solutions: with copper contents <10 g / l.
Las soluciones fuertes son aptas para entrar directamente al proceso posterior de electro obtención siempre y cuando los contenidos de impurezas sean bajos. En cambio las soluciones débiles, deben pasar por una etapa de concentración vía extracción por solventes-electro obtención o simplemente ser tratadas mediante cementación. The strong solutions are suitable to directly enter the subsequent electro-obtaining process as long as the impurity contents are low. On the other hand, weak solutions must pass through a concentration stage via solvent extraction-electro-obtaining or simply be treated by cementation.
La lixiviación consiste en la disolución de los óxidos de cobre utilizando ácido sulfúrico. A la solución obtenida en este proceso se le llama PLS. Posteriormente, el cobre en solución se debe concentrar mediante el uso de resinas orgánicas de intercambio iónico. Estas resinas retienen de manera selectiva el ion cúprico y posteriormente, lo descargan a una solución de menor volumen, mediante el cambio de las condiciones de acidez de la celda trabajo, con el fin de obtener una solución concentrada en cobre llamada avance. La solución pobre en cobre, conocida como refino, es devuelta al proceso de lixiviación para continuar la disolución de óxidos de cobre. La solución de avance es enviada al proceso de electro obtención para la producción de cátodos de cobre de 99,99% de pureza, mediante la reacción de reducción de iones cúpricos y la oxidación del agua. Leaching involves the dissolution of copper oxides using sulfuric acid. The solution obtained in this process is called PLS. Subsequently, the copper in solution must be concentrated through the use of organic ion exchange resins. These resins selectively retain the cupric ion and subsequently discharge it to a lower solution. volume, by changing the acidity conditions of the work cell, in order to obtain a copper concentrated solution called advance. The copper-poor solution, known as refining, is returned to the leaching process to continue dissolving copper oxides. The advance solution is sent to the electro obtaining process for the production of copper cathodes of 99.99% purity, by means of the copper ion reduction reaction and the oxidation of water.
El proceso de obtención de cátodos de cobre, a pesar de ser mucho más económico que la obtención de cátodos del mismo metal a partir de los sulfuras del mismo mineral, posee un insumo que se considera de alto valor para el proceso global: las resinas orgánicas. La etapa de extracción por solvente, tiene como finalidad mejorar las condiciones electroquímicas del proceso de electro obtención de cobre, ya que la concentración del ion de interés tiene incidencia en la composición del cátodo obtenido, su calidad superficial, la cinética del electrodo y el consumo energético del sistema electroquímico completo. Sin embargo, el efecto de la concentración de iones cúpricos se puede obtener de igual manera a través de la hidrodinámica de la celda de trabajo. Esto se puede explicar gracias a la ecuación (1 ) de Nernst- Planck : The process of obtaining copper cathodes, despite being much cheaper than obtaining cathodes of the same metal from sulphides of the same mineral, has an input that is considered of high value for the global process: organic resins . The solvent extraction stage is intended to improve the electrochemical conditions of the electro-copper process, since the concentration of the ion of interest has an impact on the composition of the cathode obtained, its surface quality, the kinetics of the electrode and consumption energy of the complete electrochemical system. However, the effect of cupric ion concentration can be obtained in the same way through the hydrodynamics of the work cell. This can be explained by the equation (1) of Nernst-Planck:
Figure imgf000005_0001
Figure imgf000005_0001
dond :  dond:
; Ffciio total de iones se sisa sotoctÓR por unidad de área y de tiempo  ; Total ion ffio sisa sotoctÓR per unit area and time
; Disíaísela de asa sa erUcie del electrodo  ; Dissect it from asa sa erUcie electrode
3 CoeScieísíe de dífesiés ia»½egj  3 CoeSciecie de dífesiés ia »½egj
Gradiente de coRcesjíraeiíBí a {a distaseis x  Gradient of coRcesjíraeiíBí a {a distaseis x
«fe  "faith
; ¾s¾s de la «paste  ; ¾s¾s of the «paste
: Concentración de ta especie i  : Concentration of the species i
» Gradiente de poíes eiat  »Gradient of eiat poíes
» »
Figure imgf000005_0002
3 Velocidad cea ta q¾e un eíemeísío de votameñ de fe
Figure imgf000005_0002
3 Speed cea ta q¾e an ememelisio of votmeñ de fe
dlsotoet ñ se maeve a to íargo del eje x  dlsotoet ñ is moved to the x axis axis
La ecuación de Nernst-Planck muestra que el flujo de iones en cualquier tipo de sistema se puede deber a cualquiera de las 3 fuerzas motrices: difusión, convección o migración. Por su parte, la extracción por solvente busca facilitar el flujo de iones en electro obtención mediante el aumento de la concentración de iones cúpricos, es decir, mejorando el transporte por migración. La ecuación anterior, también señala que es posible mejorar el flujo de iones a través del flujo de electrolitos en la celda. The Nernst-Planck equation shows that the flow of ions in any type of system can be due to any of the 3 driving forces: diffusion, convection or migration. For its part, solvent extraction seeks to facilitate the flow of ions in electro-obtaining by increasing the concentration of cupric ions, that is, improving migration transport. The previous equation also indicates that it is possible to improve the flow of ions through the flow of electrolytes in the cell.
El sistema propuesto en este patentamiento, plantea el proceso de electro obtención utilizando un flujo de PLS o de una solución de más alta concentración en el ion del metal de interés y un estanque de recirculación de electrolito, constituyéndose en una alternativa diferente para el tratamiento de minerales oxidados de cobre.  The system proposed in this patent, raises the process of electro obtaining using a flow of PLS or a solution of higher concentration in the ion of the metal of interest and an electrolyte recirculation pond, becoming a different alternative for the treatment of oxidized copper ores.
RESUMEN DE LA INVENCION SUMMARY OF THE INVENTION
La presente invención divulga el uso de la electrodiálisis reactiva (EDR) en unión con la utilización de electrodos bipolares y un sistema de bombas (figura 1 ), para recuperar cobre desde soluciones diluidas tipo PLS. El método implementado, evita la etapa de extracción por solvente, la cual contribuye en gran medida a los costos del proceso de electro obtención tradicional, pero también es posible incorporarlo como una etapa dentro del proceso hidrometalúrgico actual de Lix-SX-EW como proceso unitario independiente pero complementario. El hecho de interponer una membrana catiónica de separación entre el catolito (PLS) y una solución sintética como anolito, evita la acción de impurezas aniónicas, como por ejemplo el cloruro presente en el PLS, sobre la zona anódica del electrodo bipolar, evitando así el picado (Pitting). The present invention discloses the use of reactive electrodialysis (EDR) in conjunction with the use of bipolar electrodes and a pump system (Figure 1), to recover copper from dilute PLS-type solutions. The method implemented avoids the solvent extraction stage, which greatly contributes to the costs of the traditional electro-obtaining process, but it is also possible to incorporate it as a stage within the current hydrometallurgical process of Lix-SX-EW as a unit process independent but complementary. The fact of interposing a cationic separation membrane between the catholyte (PLS) and a synthetic solution such as anolyte, prevents the action of anionic impurities, such as the chloride present in the PLS, on the anode area of the bipolar electrode, thus avoiding chopped
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 , muestra el detalle de una celda básica de cuatro compartimientos y sus partes;  Figure 1 shows the detail of a basic four-compartment cell and its parts;
La figura 2, muestra un esquema del sistema y sus partes, incluyendo una celda básica de cuatro compartimientos; Figure 2 shows a scheme of the system and its parts, including a basic four-compartment cell;
La figura 3, muestra un gráfico de voltametrías catódicas con variación de temperatura, velocidad 30mV/min; Figure 3 shows a graph of cathodic voltammetries with temperature variation, speed 30mV / min;
La figura 4, muestra un gráfico de voltametría anódica a 40°C; Figure 4 shows a graph of anodic voltammetry at 40 ° C;
La figura 5, muestra un gráfico de la variación de la eficiencia de corriente del proceso; Figure 5 shows a graph of the variation of the current efficiency of the process;
La figura 6, muestra un gráfico de la variación del consumo de energía del proceso, La figura 7, muestra una representación del diagrama de Evans para electro obtención de cobre, su efecto con la variación de la temperatura, y diferente material anódico: a) acero inoxidable y b) aleaciones de plomo. Figure 6 shows a graph of the variation of the energy consumption of the process, Figure 7 shows a representation of the Evans diagram for electro obtaining copper, its effect with temperature variation, and different anodic material: a) stainless steel and b) lead alloys.
La figura 8, muestra un circuito de celdas ampliado con celdas entre el primer compartimiento y el cuarto compartimiento. Figure 8 shows an enlarged cell circuit with cells between the first compartment and the fourth compartment.
DESCRIPCION DETALLADA DE LA INVENCION DETAILED DESCRIPTION OF THE INVENTION
El sistema para la recuperación de cobre de soluciones PLS mediante el uso de electrodiálisis reactiva (EDR), se esquematiza en las figuras 1 y 2. Como se aprecia, se dispone de una celda (1 ) con cuatro compartimentos A,B,C y D , de izquierda a derecha: un primer compartimento A del anolito, que es una solución sintética preparada de ácido sulfúrico de concentración variable de 5 a 200 g/L. por ejemplo, en ese compartimento A se aloja el ánodo (4), el cual está polarizado positivamente por acción de la fuente de poder eléctrica (12), ahí se realiza la reacción anódica. Una membrana (2) catiónica, separa el compartimento A que contiene el anolito, de un segundo compartimento B que contiene el catolito. Este catolito, contiene el ion del metal que se quiere recuperar, esta solución puede tener una muy vanada concentración del metal, puede ser un PLS de muy baja concentración en cobre, como también puede ser de una concentración elevada en el metal. Se observa un electrodo bipolar (3), que es un electrodo metálico macizo aislado eléctricamente, el cual no está conectado a ningún cable externo, y que además separa el compartimento B de un tercer compartimento. Este electrodo puede ser de acero inoxidable, u otra aleación que presente buen comportamiento frente a la corrosión en su lado anódico, como por ejemplo material tipo DSA (Dimensionally Stable Anode), como Titanio y sus aleaciones, recubierto con óxidos de metales nobles como Rutenio e Iridio, Platino, Carbón ya sea como Grafito o compactado. Éste electrodo bipolar (3) al estar aislado eléctricamente adquiere polaridad eléctrica, debido a que se encuentra en el camino del campo eléctrico que se induce por existir un ánodo (4) polarizado positivamente en el compartimento A, y un cátodo (5) polarizado negativamente en un cuarto compartimento D. Es así, como entonces este electrodo bipolar (3) adquiere la bipolaridad, es decir, se comporta como cátodo (16) por una de sus caras al polarizarse negativamente en el compartimento B, y como ánodo (15) por la cara opuesta al polarizarse positivamente en el compartimento C. Entonces, en el compartimento B que contiene el electrodo bipolar en la cara que se comporta como cátodo conformando una pared catódica (16), ocurrirá la electro deposición del metal por acción del campo eléctrico que atraviesa todo el sistema, ahí entonces se obtendría la placa de metal recuperado. Por otro lado, el compartimento C es un compartimento que contiene un anolito y el electrodo bipolar (3), comportándose en ese lado como si fuera un ánodo conformando una pared anódica (15). Por lo tanto, el electrolito puede ser el mismo que es utilizado en el compartimento A. Otra membrana catiónica (2), separa el compartimento C del compartimiento D. En el compartimento D, por alojar en su interior al cátodo (5) que está polarizado negativamente por acción de la fuente de poder eléctrica (12), existe un catolito, que puede ser el mismo utilizado en el compartimento (B), donde también ocurre la reacción catódica de electro deposición del metal. Esta configuración se puede repetir tantas veces como se quiera, es decir, en base a la configuración elemental: The system for the recovery of copper from PLS solutions through the use of reactive electrodialysis (EDR) is schematized in Figures 1 and 2. As can be seen, there is a cell (1) with four compartments A, B, C and D, from left to right: a first compartment A of the anolyte, which is a synthetic solution prepared of sulfuric acid with a variable concentration of 5 to 200 g / L. for example, in that compartment A the anode (4) is housed, which is positively polarized by the action of the electric power source (12), there the anodic reaction is performed. A cationic membrane (2) separates compartment A containing the anolyte, from a second compartment B containing the catholyte. This catholyte, contains the metal ion to be recovered, this solution can have a very vain concentration of the metal, it can be a PLS of very low concentration in copper, as it can also be of a high concentration in the metal. A bipolar electrode (3) is observed, which is an electrically insulated solid metal electrode, which is not connected to any external cable, and also separates compartment B from a third compartment. This electrode can be made of stainless steel, or another alloy that presents good Corrosion behavior on its anodic side, such as DSA (Dimensionally Stable Anode) type material, such as Titanium and its alloys, coated with oxides of noble metals such as Ruthenium and Iridium, Platinum, Carbon either Graphite or compacted. This bipolar electrode (3) being electrically isolated acquires electrical polarity, because it is in the path of the electric field that is induced by the existence of a positively polarized anode (4) in compartment A, and a negatively polarized cathode (5) in a fourth compartment D. This is how, then, this bipolar electrode (3) acquires bipolarity, that is, it behaves as a cathode (16) by one of its faces by negatively polarizing in compartment B, and as an anode (15) on the opposite side when positively polarized in compartment C. Then, in compartment B containing the bipolar electrode on the face that acts as a cathode forming a cathodic wall (16), the electrodeposition of the metal will occur due to the electric field which crosses the entire system, then the recovered metal plate would be obtained. On the other hand, compartment C is a compartment that contains an anolyte and bipolar electrode (3), behaving on that side as if it were an anode forming an anodic wall (15). Therefore, the electrolyte can be the same as that used in compartment A. Another cationic membrane (2) separates compartment C from compartment D. In compartment D, by housing inside the cathode (5) that is negatively polarized by the action of the electric power source (12), there is a catholyte, which can be the same used in the compartment (B), where the cathodic reaction of electrodeposition of the metal also occurs. This configuration can be repeated as many times as desired, that is, based on the elementary configuration:
Ánodo (4) -Membrana (2) -Electrodo Bipolar (3) -Membrana (2) -Cátodo (5) Anode (4) - Membrane (2) - Bipolar Electrode (3) - Membrane (2) - Cathode (5)
Como se muestra en la figura 8, se puede entonces obtener un sistema compuesto de varios compartimientos en serie que tendría una configuración: As shown in Figure 8, you can then obtain a system composed of several serial compartments that would have a configuration:
Ánodo (4) -Membrana (2) -Electrodo Bipolar (3) -Membrana (2) - Electrodo bipolar (3)-Membrana (2) Cátodo(5) . Anode (4) -Membrane (2) -Bipolar Electrode (3) -Membrane (2) - Bipolar Electrode (3) -Membrane (2) Cathode (5).
De acuerdo a esto, se observa entonces que pueden insertarse varias celdas B y C separadas por un electrodo bipolar (3) entre un compartimiento A que contiene el ánodo (4) de la celda, y un compartimiento D que contiene el cátodo (5) de la celda. Accordingly, it is then observed that several cells B and C separated by a bipolar electrode (3) can be inserted between a compartment A containing the anode (4) of the cell, and a compartment D containing the cathode (5) of the cell.
Es una característica muy importante de la invención que sólo el ánodo (4) y el cátodo (5) están conectados a la fuente de poder (12), a sus polaridades positiva y negativa, respectivamente y el o los electrodos bipolares no van conectados eléctricamente a fuente alguna, sólo se polariza por acción del campo eléctrico que se induce en el sistema. It is a very important feature of the invention that only the anode (4) and the cathode (5) are connected to the power source (12), to its positive and negative polarities, respectively and the bipolar electrode (s) are not electrically connected. at any source, it is only polarized by the action of the electric field that is induced in the system.
Se utilizan dos bombas de electrolito (1 0, 1 1 ), las cuales impulsaran por las tuberías o cañerías (6,7) las soluciones, anolito y catolito, hacia sus respectivos compartimentos en las celdas A, B, C y D con el fin de aumentar el flujo. Estos electrolitos, por medio de los tubos o cañerías (1 8, 19), vuelven a los estanques (8,9) en los cuales se encuentran inicialmente antes de salir de las bombas (10, 1 1 ). La circulación del sistema funciona de tal manera, que por dentro del primer compartimiento A y por dentro del tercer compartimiento C circula anolito movido por la bomba de anolito (10), que es propulsado desde el estanque de anolito (8). Después de circular por el interior de los compartimientos A y C, el anolito se devuelve al estanque de anolito (8). De la misma manera, por dentro del segundo compartimiento B y por dentro del cuarto compartimiento D, circula catolito movido por la bomba de catolito (1 1 ) que es propulsado desde el estanque de catolito (9). Después de circular por el interior de los compartimientos B y D , el catolito se devuelve al estanque de catolito (9). Two electrolyte pumps (1 0, 1 1) are used, which will propel the solutions, anolyte and catholyte through the pipes or pipes (6.7), into their respective compartments in cells A, B, C and D with the In order to increase the flow. These electrolytes, by means of the pipes or pipes (1 8, 19), return to the ponds (8.9) in which they are initially before leaving the pumps (10, 1 1). The circulation of the system works in such a way that inside the first compartment A and inside the third compartment C anolyte circulates moved by the anolyte pump (10), which is propelled from the anolyte tank (8). After circulating inside the compartments A and C, the anolyte is returned to the anolyte pond (8). In the same way, inside the second compartment B and inside the fourth compartment D, catholyte circulated by the catholyte pump (1 1) is circulated which is propelled from the catholyte pond (9). After circulating inside compartments B and D, the catholyte is returned to the catholyte pond (9).
EJEMPLOS EXAMPLES
Estudio del sistema System Study
El estudio del sistema de la invención se enfocó en tres variables de proceso, temperatura, flujo, y densidad de corriente. Por la celda circula una solución débil de cobre (<10 g/L) con un flujo de 2 L/min, que es el máximo flujo entregado por la bomba en este estudio.  The study of the system of the invention focused on three process variables, temperature, flow, and current density. A weak copper solution (<10 g / L) circulates through the cell with a flow of 2 L / min, which is the maximum flow delivered by the pump in this study.
La configuración del sistema permite estudiar el efecto que produce el aumento de flujo en el depósito de cobre para el caso del catolito, y para el anolito, si éste produce algún tipo de deterioro del lado anódico del electrodo bipolar. Se incluyó la influencia de variables que afectan el depósito de cobre en la lámina de acero inoxidable, las cuales son la temperatura del proceso y su comportamiento para los valores de 30, 35 y 40°C, el flujo de las soluciones (flujo completo y fracciones) de PLS y H2SO4, y la densidad de corriente trabajada al 80, 60 y 50% de la densidad de corriente límite del sistema. A partir de los ensayos realizados, en el lado catódico del electrodo bipolar, para un flujo máximo de 2 L/min, una intensidad de corriente de 80 A/m2, una temperatura de 40°C y un PLS con 2,59 g/L de Cu, se obtuvo una eficiencia de corriente catódica máxima del orden del 99% con un consumo específico de energía de 950 Wh/kg Cu, alcanzándose una pureza promedio de 99,8% en los cátodos obtenidos. The configuration of the system allows to study the effect produced by the increase in flux in the copper deposit for the case of the catholyte, and for the anolyte, if it causes some type of deterioration of the anodic side of the bipolar electrode. The influence of variables affecting the deposit of copper in the stainless steel sheet, which are the process temperature and its behavior for the values of 30, 35 and 40 ° C, the flow of the solutions (complete flow and fractions) of PLS and H 2 SO 4 , and the current density worked at 80, 60 and 50% of the system's limit current density. From the tests carried out, on the cathode side of the bipolar electrode, for a maximum flow of 2 L / min, a current intensity of 80 A / m 2 , a temperature of 40 ° C and a PLS with 2.59 g / L of Cu, a maximum cathodic current efficiency of the order of 99% was obtained with a specific energy consumption of 950 Wh / kg Cu, reaching an average purity of 99.8% in the cathodes obtained.
RESULTADOS RESULTS
Curva de polarización catódica Cathodic polarization curve
Lo primero que se debe realizar en el estudio de sistemas electroquímicos nuevos es determinar la densidad de corriente límite a la cual se puede trabajar. En la figura 3, se pueden ver las voltametrías catódicas para el sistema de trabajo y se puede ver el efecto de la temperatura sobre la corriente límite del sistema. Para el caso de los 30°C, se puede ver que el valor de este parámetro corresponde a -160 A/m2, aproximadamente. Por esta razón, y para evaluar el efecto de la temperatura y la densidad de corriente sobre el sistema, se tomó como criterio inicial este parámetro. Se observa en esta figura 3 que el efecto de la temperatura sobre el sistema: al subir desde los 30 a los 40°C, la cinética y la corriente límite del sistema se ven favorecidas, llegando hasta un valor de -220 A/m2 aproximadamente. Esto se debe, a que los sistemas electroquímicos en general se caracterizan por tener una alta energía de activación, lo cual significa que un aumento de la temperatura mejorará significativamente el desempeño de estos procesos. Curva de polarización anódica The first thing to do in the study of new electrochemical systems is to determine the limit current density at which one can work. In figure 3, the cathodic voltammetries for the work system can be seen and the effect of the temperature on the system limit current can be seen. In the case of 30 ° C, it can be seen that the value of this parameter corresponds to -160 A / m 2 , approximately. For this reason, and to evaluate the effect of temperature and current density on the system, this parameter was taken as the initial criterion. It is observed in this figure 3 that the effect of temperature on the system: when rising from 30 to 40 ° C, the kinetics and the limit current of the system are favored, reaching a value of -220 A / m 2 approximately. This is due to the fact that electrochemical systems in general are characterized by having a high activation energy, which means that an increase in temperature will significantly improve the performance of these processes. Anodic polarization curve
En la figura 4, se observa la cinética de la reacción anódica en el proceso de electro obtención de cobre a una temperatura de 40°C y velocidad de 30mV/min. Se observa en la figura 4, el cambio de pendiente en 0,9 V/Cu-CuSO4 debido a que la reacción anódica principal de oxidación del agua ocurre a E°= 1 ,23VENH, por lo que la cinética de la descomposición del agua a menores voltajes es baja. In figure 4, the kinetics of the anodic reaction in the process of electro obtaining copper at a temperature of 40 ° C and speed of 30mV / min is observed. The change of slope in 0.9 V / Cu-CuSO4 is observed in Figure 4 because the main anodic reaction of water oxidation occurs at E ° = 1.23 V ENH, so the decomposition kinetics Water at lower voltages is low.
También es posible tener otras reacciones anódica como: la oxidación de Fe(ll) a Fe(lll), Ce(lll) a Ce(IV) o la oxidación de algún metal; el hecho de trabajar con la oxidación del agua implica el estar en condiciones más desfavorables desde el punto de vista de consumo de energía, por lo que cualquiera otra de las reacciones anódicas anteriormente mencionadas hace más atractivo el sistema desde el punto de vista energético del que ya es. Figura 7. Parámetros operacionales It is also possible to have other anodic reactions such as: the oxidation of Fe (ll) to Fe (lll), Ce (lll) to Ce (IV) or the oxidation of some metal; the fact of working with the oxidation of water implies being in more unfavorable conditions from the point of view of energy consumption, so that any other of the above-mentioned anodic reactions makes the system more attractive from the point of view of energy It is already. Figure 7. Operational parameters
Para determinar las condiciones de trabajo adecuadas en este tipo de sistemas, lo importante es determinar u obtener en primer lugar la densidad de corriente límite. El resultado obtenido, como lo muestra la figura 3, es que la densidad de corriente límite catódica alcanza un valor de 160 A/m2 con un flujo de trabajo de 2 L/min. En estas condiciones, se realizaron ensayos a 3 distintas temperaturas 30°C, 35°C y 40°C y 3 distintas densidades de corriente, correspondientes a una fracción de la densidad de corriente límite: 128,96 A/m2 y 80 A/m2 es decir, 80, 60% y In order to determine the appropriate working conditions in this type of systems, the important thing is to determine or first obtain the limit current density. The result obtained, as shown in Figure 3, is that the cathodic limit current density reaches a value of 160 A / m 2 with a workflow of 2 L / min. Under these conditions, tests were carried out at 3 different temperatures 30 ° C, 35 ° C and 40 ° C and 3 different current densities, corresponding to a fraction of the limit current density: 128.96 A / m 2 and 80 A / m 2 that is, 80, 60% and
50% de la densidad de corriente límite. Los cátodos utilizados al igual que los ánodos, poseen un área efectiva de trabajo de 4 o 6 cm2, según muestra la tabla 2. Para asegurar este parámetro constante al momento de realizar el ensayo, los electrodos fueron aislados con huincha aisladora en el resto de su área. 50% of the limit current density. The cathodes used, like the anodes, have an effective working area of 4 or 6 cm 2 , as shown in table 2. To ensure this constant parameter at the time of the test, the electrodes were isolated with an insulating huincha in the rest. of your area.
Los compartimentos de la celda, fueron separados por dos membranas de intercambio catiónico y una placa de acero inoxidable 316L, utilizada como electrodo bipolar.  The cell compartments were separated by two cation exchange membranes and a 316L stainless steel plate, used as a bipolar electrode.
El catolito utilizado fue una solución de PLS con la composición mostrada en la tabla 1 , mientras que el anolito correspondía a una solución de ácido sulfúrico diluido al 10% en volumen.
Figure imgf000013_0001
The catholyte used was a solution of PLS with the composition shown in Table 1, while the anolyte corresponded to a solution of sulfuric acid diluted to 10% by volume.
Figure imgf000013_0001
Tabla 1. Análisis químico de PLS utilizado en el sistema  Table 1. Chemical analysis of PLS used in the system
La tabla 2, muestra las variables consideradas, tales como la densidad de corriente, la temperatura y el área catódica  Table 2 shows the variables considered, such as current density, temperature and cathodic area.
Figure imgf000013_0002
Figure imgf000013_0002
Tabla 2. Variables consideradas en el sistema  Table 2. Variables considered in the system
La tabla 3, muestra la corriente calculada y aplicada en cada ensayo, además del tiempo empleado y la masa de cobre teórica esperada para el flujo máximo entregado por las bombas. N° ensayo Corriente Corriente Tiempo Masa Cu teórica teórica, (A) aplicada, (A) (horas) (g) Table 3 shows the current calculated and applied in each test, in addition to the time taken and the theoretical copper mass expected for the maximum flow delivered by the pumps. No. Test Current Current Time Theoretical theoretical Cu mass, (A) applied, (A) (hours) (g)
1 0,0512 0,055 5,000 0,652  1 0.0512 0.055 5,000 0.652
2 0,0512 0,058 5,000 0,687 2 0.0512 0.058 5,000 0.687
3 0,0512 0,058 5,000 0,6873 0.0512 0.058 5,000 0.687
4 0,0384 0,046 6,333 0,691 4 0.0384 0.046 6.333 0.691
5 0,0384 0,046 6,000 0,647 5 0.0384 0.046 6,000 0.647
6 0,0384 0,047 5,333 0,5946 0.0384 0.047 5,333 0.594
7 0,048 0,055 5,417 0,7067 0.048 0.055 5.417 0.706
8 0,048 0,055 5,000 0,6528 0.048 0.055 5,000 0.652
9 0,048 0,048 5,000 0,5699 0.048 0.048 5,000 0.569
Tabla 3. Parámetros utilizados y esperados en cada ensayo del sistema, flujo máximo. Table 3. Parameters used and expected in each test of the system, maximum flow.
Los resultados obtenidos en cada ensayo del sistema con el flujo máximo entregado por las bombas, se muestran a continuación en la tabla 4. The results obtained in each test of the system with the maximum flow delivered by the pumps are shown in Table 4 below.
Figure imgf000014_0001
Figure imgf000014_0001
Tabla 4.Resultados obtenidos durante los ensayos con flujo máximo.  Table 4. Results obtained during tests with maximum flow.
Para el caso del flujo con fracción ½ del total máximo como variable, los parámetros utilizados en cada ensayo, fueron los mismos que los obtenidos en la tabla 3. Los resultados de estos ensayos, se muestran a continuación en la tabla 5. Masa Masa Cu Consumo Cuelectrodo compartimiento Masa Cu Rendimiento específico,In the case of the flow with fraction ½ of the maximum total as a variable, the parameters used in each test were the same as those obtained in Table 3. The results of these tests are shown in Table 5 below. Mass Mass Cu Consumption Cuelectrode compartment Mass Cu Specific performance,
N° ensayo bipolar (g) abierto (g) Total farádico (kWh/Ton. Cu)No. bipolar test (g) open (g) Total faradic (kWh / Ton. Cu)
1 0,22 0,204 0,652 65,02% 1470,491 0.22 0.204 0.652 65.02% 1470.49
2 0,243 0,101 0,687 50,00% 1850,862 0.243 0.101 0.687 50.00% 1850.86
3 0,264 0,286 0,687 80, 1 1 % 1312,493 0.264 0.286 0.687 80, 1 1% 1312.49
4 0,284 0,296 0,691 83,90% 1 150,34 0.284 0.296 0.691 83.90% 1 150.3
5 0,242 0,205 0,647 69,09% 1320,495 0.242 0.205 0.647 69.09% 1320.49
6 0, 169 0,187 0,594 59,97% 1550,866 0, 169 0.187 0.594 59.97% 1550.86
7 0,241 0,213 0,706 64,25% 1400,867 0.241 0.213 0.706 64.25% 1400.86
8 0,226 0,254 0,652 73,63% 1 194,678 0.226 0.254 0.652 73.63% 1 194.67
9 0,251 0,245 0,569 87,24% 1090,799 0.251 0.245 0.569 87.24% 1090.79
Tabla 5. Resultados obtenidos durante los ensayos con fracción 1Λ del total flujo. Table 5. Results obtained during the tests with fraction 1 Λ of the total flow.
Para analizar el efecto de la densidad de corriente, la temperatura y el flujo de electrolito sobre los resultados obtenidos, ver las figuras 5 y 6, que los representan gráficamente. To analyze the effect of current density, temperature and electrolyte flow on the results obtained, see Figures 5 and 6, which represent them graphically.
El efecto de trabajar con fracciones de flujo, se observa claramente en las gráficas de las figuras 5 y 6, donde existe disminución de la eficiencia de corriente y aumento del consumo especifico de energía, al momento de trabajar con fracciones menores al flujo máximo. Esto se ratifica gracias a la ecuación (1 ) de Nernst-Planck, donde el aumento de flujo afecta el mecanismo de transporte de convección. The effect of working with flow fractions is clearly seen in the graphs of Figures 5 and 6, where there is a decrease in current efficiency and an increase in specific energy consumption, when working with fractions smaller than the maximum flow. This is ratified thanks to Nernst-Planck equation (1), where the increase in flow affects the convection transport mechanism.
Por otra parte, de las tablas 4 y 5, así como en las figuras 5 y 6, se observa la mejora de eficiencia de corriente y la disminución del consumo específico, a medida que aumenta la temperatura del sistema. La relación de estos efectos se observa en la figura 7. On the other hand, from tables 4 and 5, as well as in figures 5 and 6, the improvement of current efficiency and the decrease in specific consumption are observed, as the system temperature increases. The relationship of these effects is seen in Figure 7.
El aumento de la temperatura, mejora la eficiencia de corriente del proceso y consigo ayuda con la disminución del consumo especifico de energía. Para entender estos efectos, la figura 7 representa el diagrama de Evans para la electro obtención a las temperaturas trabajadas en el sistema, del cual se rescata que el efecto de la temperatura y la densidad de corriente son de tipo sinérgico, es decir, se complementan entre sí. A medida que aumenta la temperatura mejora mucho la cinética de las reacciones principales del proceso, lo que implica también un aumento de la selectividad de las reacciones, debido a que al necesitar un menor potencial de bornes para trabajar, también disminuye la posibilidad de que ocurran otras reacciones parásitas. Esto a su vez, hace posible aumentar la densidad de corriente del sistema sin perjudicar en mayor medida la eficiencia de corriente y el consumo especifico del sistema, siempre y cuando se tenga presente la densidad de corriente límite. Por otra parte, en relación al aumento de temperatura este tiene efecto en los mecanismos de transporte: por migración (efecto de gradientes de potencial eléctrico), difusión (efecto de gradientes de concentración) y convección (efecto de gradientes de densidad del electrolito). Para el caso de transporte por migración, la temperatura aumenta la movilidad de los iones, mientras la conductividad eléctrica de la solución, incrementa las velocidades de migración. Respecto al transporte por difusión, el aumento de la temperatura lleva al aumento de la solubilidad del cobre, permitiendo mayores gradientes de concentración, y mayores velocidades de difusión. Finalmente, el transporte por convección se ve afectado por la disminución de la viscosidad del electrolito, generando mayores velocidades de convección. The increase in temperature improves the efficiency of the process current and I get help with the decrease in specific energy consumption. To understand these effects, Figure 7 represents the Evans diagram for electro obtaining at the temperatures worked in the system, from which it is rescued that the effect of temperature and current density are synergistic, that is, they complement each other. As the temperature rises, the kinetics of the main reactions of the process greatly improve, which also implies an increase in the selectivity of the reactions, because by needing a lower potential of terminals to work, the possibility of their occurrence also decreases. Other parasitic reactions This, in turn, makes it possible to increase the current density of the system without further damaging the current efficiency and the specific consumption of the system, as long as the limit current density is taken into account. On the other hand, in relation to the increase in temperature, this has an effect on transport mechanisms: by migration (effect of electric potential gradients), diffusion (effect of concentration gradients) and convection (effect of electrolyte density gradients). In the case of migration transport, the temperature increases the mobility of the ions, while the electrical conductivity of the solution increases the migration rates. Regarding diffusion transport, the increase in temperature leads to an increase in the solubility of copper, allowing greater concentration gradients and higher diffusion rates. Finally, convection transport is affected by the decrease in electrolyte viscosity, generating higher convection speeds.
En lo relacionado con la densidad de corriente, se ha determinado que a una mayor densidad de corriente disminuye la eficiencia de corriente, principalmente porque favorece el crecimiento dendrítico y la probabilidad de cortocircuitos. Por otro lado, altas densidades permiten también incrementar la sobretensión catódica y se puede reducir el ión hidrógeno generando hidrógeno gaseoso, lo que provoca un depósito polvoriento de baja adherencia y calidad. Altas densidades de corriente, provocan incrementos de voltaje de celda, mayores costos de energía y más mano de obra para la detección de cortocircuitos. Pero, acelera la cinética del proceso con la consiguiente disminución de equipos, inventario de cobre y mayor producción. With regard to current density, it has been determined that at a higher current density the efficiency of current, mainly because it favors dendritic growth and the probability of short circuits. On the other hand, high densities also allow to increase the cathodic overvoltage and the hydrogen ion can be reduced by generating gaseous hydrogen, which causes a dusty deposit of low adhesion and quality. High current densities cause cell voltage increases, higher energy costs and more labor to detect short circuits. But, it accelerates the kinetics of the process with the consequent decrease in equipment, copper inventory and increased production.
De acuerdo a la figura 7, se observa bajo consumo específico del proceso, reflejado como potencial de celda en comparación a la de electro obtención industrial. Esto se puede explicar por 2 factores:  According to Figure 7, it is observed low specific consumption of the process, reflected as cell potential compared to that of industrial electro procurement. This can be explained by 2 factors:
- El primero, es el reemplazo del ánodo de plomo que se utiliza normalmente (figura 7, b). Al utilizarlo en la electro obtención normal, es necesario aplicarle un elevado sobre potencial para evitar que se recubra con sulfato de plomo. Este valor puede llegar a representar el 25% del costo energético total del proceso. Al utilizar un anolito de ácido sulfúrico y un ánodo de acero inoxidable (figura 7, a), este consumo energético no se vuelve necesario, ya que el acero inoxidable posee buena resistencia a la corrosión en este medio. - The first is the replacement of the lead anode that is normally used (Figure 7, b). When used in normal electro-obtaining, it is necessary to apply a high potential over it to prevent it from being coated with lead sulfate. This value can represent 25% of the total energy cost of the process. By using a sulfuric acid anolyte and a stainless steel anode (figure 7, a), this energy consumption does not become necessary, since stainless steel has good corrosion resistance in this medium.
- El segundo, es que a medida que se seguían realizando ensayos, la conductividad de ambos electrolitos, anolito y catolito, siempre fue en aumento. Esto es debido, a que en el ánodo siempre se están creando protones. Como su función dentro del sistema es facilitar el transporte de los electrones a través de la solución, traspasaban fácilmente la membrana catiónica y de esta forma se acidifican ambos electrolitos. Esto significa, también, que el catolito final del electro obtención será ideal para ser devuelto a la lixiviación de minerales oxidados, una vez se agote el cobre en solución, ya que ésta será capaz de seguir lixiviando óxidos de cobre. Esto se puede verificar en la tabla 6, donde se observa las conductividades obtenidas de las soluciones al iniciar y finalizar un ensayo. - The second is that as the tests continued, the conductivity of both electrolytes, anolyte and catholyte, was always increasing. This is because protons are always being created at the anode. As its function within the system is to facilitate the transport of electrons through the solution, they easily pierced the cationic membrane and in this way both electrolytes are acidified. This means, also, that the final catholyte of the electro obtaining will be ideal to be returned to the leaching of oxidized minerals, once the copper is depleted in solution, since this will be able to continue leaching copper oxides. This can be verified in Table 6, where the conductivities obtained from the solutions are observed when starting and finishing an assay.
Figure imgf000018_0001
Figure imgf000018_0001
Tabla 6. Conductividades de las soluciones al inicio y al final de los ensayos.  Table 6. Conductivities of the solutions at the beginning and at the end of the tests.
En la tabla 7, se puede observar la caída de potencial de las membranas utilizadas en el sistema.
Figure imgf000018_0002
In table 7, the potential drop of the membranes used in the system can be observed.
Figure imgf000018_0002
Tabla 7 Caídade potencial de las membranas utilizadas en el sistema Table 7 Potential fall of the membranes used in the system
En la tabla 8, se observa el potencial del electrodo bipolar utilizado en el sistema.
Figure imgf000018_0003
Table 8 shows the potential of the bipolar electrode used in the system.
Figure imgf000018_0003
Tabla 8. Potencial del electrodo bipolar utilizado en el sistema El potencial del electrodo bipolar en la reacción catódica, es causado por la diferencia de concentración de iones Cu2+ en la capa límite cercano al cátodo. Su efecto puede ser reducido por agitación del electrolito cerca del cátodo. El potencial del electrodo bipolar en la reacción anódica, es causado por la reacción de liberación de oxígeno asociada con la dificultad de nucleación de las burbujas de oxígeno , producidas y de la baja presencia de ácido sulfúrico en la capa límite del ánodo. Table 8. Potential of the bipolar electrode used in the system The potential of the bipolar electrode in the cathodic reaction is caused by the difference in concentration of Cu 2+ ions in the boundary layer near the cathode. Its effect can be reduced by agitation of the electrolyte near the cathode. The potential of the bipolar electrode in the anodic reaction is caused by the oxygen release reaction associated with the difficulty of nucleation of the oxygen bubbles produced and the low presence of sulfuric acid in the anode boundary layer.

Claims

REIVINDICACIONES
Sistema para la obtención electrolítica de metales que utiliza electrodiálisis reactiva y que evita en los procesos de electro obtención la etapa de extracción por solvente, CARACTERIZADO porque se compone de: System for obtaining electrolytic metals that uses reactive electrodialysis and that avoids the solvent extraction stage, CHARACTERIZED in electro-obtaining processes because it is composed of:
una celda de electrodiálisis reactiva (EDR) (1 ) compuesta por varios compartimientos,  a reactive electrodialysis cell (EDR) (1) composed of several compartments,
medios para almacenar, como ser un estanque de anolito (8) donde se almacena el anolito para la operación del sistema;  means for storage, such as an anolyte pond (8) where the anolyte is stored for system operation;
medios para bombear, como ser una bomba de anolito (10) que bombea anolito por medio de cañerías o tubos (6) desde el estanque de anolito (8) al interior de la celda (1 ) y nuevamente por medio de otra cañería (13) al estanque de anolito (8) ;  means for pumping, such as an anolyte pump (10) that pumps anolyte by means of pipes or tubes (6) from the anolyte tank (8) into the cell (1) and again by another pipe (13 ) to the anolyte pond (8);
medios para almacenar, como ser un estanque de catolito (9) donde se almacena el anolito para la operación del sistema;  means for storage, such as a catholyte pond (9) where the anolyte is stored for system operation;
medios para bombear, como ser una bomba de catolito (1 1 ) que bombea catolito por medio de cañerías o tubos (7) desde el estanque de catolito (9) al interior de la celda (1 ) y nuevamente por medio de otras cañerías o tubos (13) al estanque de catolito (9);  means for pumping, such as a catholyte pump (1 1) that pumps catholyte through pipes or tubes (7) from the catholyte tank (9) into the cell (1) and again through other pipes or tubes (13) to the catholyte pond (9);
una fuente de poder (12) conectada al ánodo (4) del primer compartimiento (A) por el lado positivo y al cátodo (5) del cuarto compartimiento (D) por su lado negativo; Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque la celda de electrodiálisis reactiva (EDR) (1 ) comprende: a power source (12) connected to the anode (4) of the first compartment (A) on the positive side and to the cathode (5) of the fourth compartment (D) on its negative side; System for obtaining electrolytic according to claim 1, CHARACTERIZED in that the reactive electrodialysis cell (EDR) (1) comprises:
Un primer compartimento (A) que contiene anolito y en su interior se encuentra en una pared un ánodo (4) y en la pared opuesta una membrana catiónica (2);  A first compartment (A) containing anolyte and inside it is an anode (4) on a wall and a cationic membrane (2) on the opposite wall;
Un segundo compartimiento (B) que contiene catolito en que en su interior se encuentra el lado catódico (16) de un electrodo bipolar (3) y en la pared opuesta una membrana catiónica (2) que es la misma que la del primer compartimiento (A) y separa el primer compartimiento (A) del segundo compartimiento (B);  A second compartment (B) containing catholyte in which the cathodic side (16) of a bipolar electrode (3) is located inside and on the opposite wall a cationic membrane (2) that is the same as that of the first compartment ( A) and separate the first compartment (A) from the second compartment (B);
Un tercer compartimiento (C) que contiene anolito en que en su interior tiene una membrana bipolar (2) y en la pared opuesta se encuentra el lado anionico (15) de un electrodo bipolar (3) que es el mismo que el del segundo compartimiento (B) y que separa el segundo compartimiento del tercer compartimiento (C);  A third compartment (C) containing anolyte in which inside it has a bipolar membrane (2) and on the opposite wall is the anionic side (15) of a bipolar electrode (3) that is the same as that of the second compartment (B) and separating the second compartment from the third compartment (C);
Un cuarto compartimiento (D) que contiene catolito en que en su interior se encuentra en una pared un cátodo (5) y en la pared opuesta una membrana catiónica (2) que es la misma que la del tercer compartimiento (C) y separa el tercer compartimiento (C) del cuarto compartimiento (D).  A fourth compartment (D) containing catholyte in which a cathode (5) is located inside a wall and a cationic membrane (2) on the opposite wall is the same as that of the third compartment (C) and separates the third compartment (C) of the fourth compartment (D).
Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el proceso electrolítico es parte de un circuito convencional de lixiviación, extracción por solvente y electro obtención. System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the electrolytic process is part of a conventional leaching, solvent extraction and electro obtaining circuit.
4. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el electrodo bipolar (3) es metálico y macizo. 4. System for obtaining electrolyte according to claim 1, CHARACTERIZED because the bipolar electrode (3) is metallic and solid.
5. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el electrodo bipolar (3) es de acero inoxidable u otra aleación resistente a la corrosión. 5. System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the bipolar electrode (3) is made of stainless steel or another corrosion resistant alloy.
6. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el electrodo bipolar (3) es de material tipo DSA (Dimensionally Stable Anodes) como Titanio y sus aleaciones, Titanio y sus aleaciones recubierto con óxidos de metales nobles como Rutenio e Iridio, Platino, Carbón ya sea como Grafito o compactado o de Plomo y sus aleaciones. 6. System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the bipolar electrode (3) is of DSA (Dimensionally Stable Anodes) type material such as Titanium and its alloys, Titanium and its alloys coated with noble metal oxides such as Ruthenium and Iridium, Platinum, Carbon either as Graphite or compacted or Lead and its alloys.
7. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el electrodo bipolar (3) está aislado eléctricamente y no se conecta a ninguna fuente de energía. 7. System for obtaining electrolyte according to claim 1, CHARACTERIZED because the bipolar electrode (3) is electrically isolated and is not connected to any energy source.
8. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el anolito es una solución de acido sulfúrico de entre 5 a 200 g/L. 8. System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the anolyte is a solution of sulfuric acid between 5 to 200 g / L.
9. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque las reacciones de oxidación en las zonas anódicas pueden corresponder a la oxidación del agua, la oxidación de Fe(ll) a Fe(lll), Ce(lll) a Ce(IV) o la oxidación de algún metal. 9. System for obtaining electrolyte according to claim 1, CHARACTERIZED because the oxidation reactions in the anodic zones can correspond to the oxidation of water, the oxidation of Fe (ll) to Fe (lll), Ce (lll) a Ce (IV) or the oxidation of some metal.
10. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el catolito es una solución de PLS de baja concentración. 1 1 . Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el catolito es una solución de cobre de alta concentración. 10. System for obtaining electrolyte according to claim 1, CHARACTERIZED because the catholyte is a low concentration PLS solution. eleven . System for obtaining electrolyte according to claim 1, CHARACTERIZED because the catholyte is a high concentration copper solution.
Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el ánodo y el cátodo del lado anionico (15) y del lado catódico (16) del electrodo bipolar (12) respectivamente se forman por inducción debido a la corriente eléctrica que circula entre ellos a través del anolito y el catolito desde el ánodo (4) de la celda al cátodo de la celda a través de los cuatro compartimientos (A,B,C,D). System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the anode and cathode of the anionic side (15) and the cathodic side (16) of the bipolar electrode (12) respectively are formed by induction due to the circulating electric current between them through the anolyte and the catholyte from the anode (4) of the cell to the cathode of the cell through the four compartments (A, B, C, D).
Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque el metal recuperado se deposita en el cátodo (5) de la celda y en el cátodo que conforma el lado catódico (16) del electrodo bipolar (12) . System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the recovered metal is deposited in the cathode (5) of the cell and in the cathode that forms the cathodic side (16) of the bipolar electrode (12).
Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque la disposición de los compartimientos (A,B,C,D) que conforman la celda se puede replicar intercalando varias veces grupos de terceros (C) y cuartos compartimientos (D) con su respectivo electrodo bipolar (3) y sus membranas catiónicas entre el primer compartimiento y el cuarto compartimiento. System for obtaining electrolyte according to claim 1, CHARACTERIZED in that the arrangement of the compartments (A, B, C, D) that make up the cell can be replicated by interspersing groups of third parties (C) and fourth compartments (D) several times. with its respective bipolar electrode (3) and its cationic membranes between the first compartment and the fourth compartment.
15. Sistema para la obtención electrolítica de acuerdo a la reivindicación 1 , CARACTERIZADO porque los metales son cobre, zinc, oro, plata, cadmio, níquel y fierro entre otros. 16. Un proceso electrolítico para un sistema para la obtención electrolítica de metales, que utiliza electrodiálisis reactiva y que evita en los procesos de electro obtención la etapa de extracción por solvente, CARACTERIZADO porque consiste en: 15. System for obtaining electrolytic according to claim 1, CHARACTERIZED because the metals are copper, zinc, gold, silver, cadmium, nickel and iron among others. 16. An electrolytic process for a system for obtaining electrolytic metals, which uses reactive electrodialysis and which avoids the solvent extraction stage, CHARACTERIZED in the electro-obtaining processes because it consists of:
activar la fuente de poder (12);  activate the power source (12);
hacer que la corriente de la fuente de poder circule entre el ánodo make the power source current circulate between the anode
(4) y el cátodo (5) de la celda; (4) and the cathode (5) of the cell;
activar las bombas de anolito (10) y catolito (1 1 );  activate the anolyte (10) and catholyte (1 1) pumps;
hacer circular el anolito desde el estanque de anolito (8) al interior del primer (A) y tercer compartimiento (C);  circulate the anolyte from the anolyte pond (8) into the first (A) and third compartment (C);
hacer circular el catolito desde el estanque de catolito (9) al interior del segundo (B) y cuarto compartimiento (D);  circulate the catholyte from the catholyte pond (9) into the second (B) and fourth compartment (D);
hacer que el anolito salga de primer (A) y tercer compartimiento (C) nuevamente hacia el estanque de anolito (8);  make the anolyte out of first (A) and third compartment (C) back to the anolyte pond (8);
hacer que el catolito salga de segundo (B) y cuarto compartimiento (D) nuevamente hacia el estanque de catolito (9);  make the catholyte exit from second (B) and fourth compartment (D) back to the catholyte pond (9);
mantener la circulación por los cuatro compartimientos (A.B,C,D) hasta que se desee extraer el metal recuperado;  maintain the circulation through the four compartments (A.B, C, D) until it is desired to extract the recovered metal;
apagar la fuente de poder (12);  turn off the power source (12);
apagar las bombas (10, 1 1 ); y retirar mecánicamente el metal recuperado desde el cátodo (5) de la celda y desde el cátodo que conforma el lado catódico (16) del electrodo bipolar. turn off the pumps (10, 1 1); Y mechanically remove the recovered metal from the cathode (5) of the cell and from the cathode that forms the cathode side (16) of the bipolar electrode.
PCT/CL2016/050012 2015-04-02 2016-04-01 Electrolytic production of copper from diluted solutions using reactive electrodialysis WO2016154767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2015000835A CL2015000835A1 (en) 2015-04-02 2015-04-02 Obtaining copper electrolyte from dilute solutions using reactive electrodialysis
CL835-2015 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016154767A1 true WO2016154767A1 (en) 2016-10-06

Family

ID=56080951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/050012 WO2016154767A1 (en) 2015-04-02 2016-04-01 Electrolytic production of copper from diluted solutions using reactive electrodialysis

Country Status (2)

Country Link
CL (1) CL2015000835A1 (en)
WO (1) WO2016154767A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236283A1 (en) * 2021-05-05 2022-11-10 Battelle Energy Alliance, Llc Electrochemical membrane apparatus including an electrochemical membrane reactor, and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043891A (en) * 1976-01-14 1977-08-23 Bell Telephone Laboratories, Incorporated Electrolytic cell with bipolar electrodes
US4207153A (en) * 1979-02-16 1980-06-10 Kennecott Copper Corporation Electrorefining cell with bipolar electrode and electrorefining method
US4465579A (en) * 1981-04-20 1984-08-14 Tokuyama Soda Kabushiki Kaisha Bipolar electrolytic cell
US6589404B1 (en) * 1998-09-11 2003-07-08 Mg Technologies Ag Electrolytic cell for electrochemically depositing one of the following metals, copper, zinc, lead, nickel or cobalt
DE102007010408A1 (en) * 2007-03-01 2008-09-04 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Electrolytic recovery of pure copper sulfate solution from impure process solution, deposits copper on cathode, replaces process solution with pure sulfuric acid, then reverses current
WO2012127438A2 (en) * 2011-03-23 2012-09-27 Propipe Maquinarias Limitada Electrolytic cell for the winning of metals by reactive electrodialysis and electrolytic process for the winning of metals that uses said cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043891A (en) * 1976-01-14 1977-08-23 Bell Telephone Laboratories, Incorporated Electrolytic cell with bipolar electrodes
US4207153A (en) * 1979-02-16 1980-06-10 Kennecott Copper Corporation Electrorefining cell with bipolar electrode and electrorefining method
US4465579A (en) * 1981-04-20 1984-08-14 Tokuyama Soda Kabushiki Kaisha Bipolar electrolytic cell
US6589404B1 (en) * 1998-09-11 2003-07-08 Mg Technologies Ag Electrolytic cell for electrochemically depositing one of the following metals, copper, zinc, lead, nickel or cobalt
DE102007010408A1 (en) * 2007-03-01 2008-09-04 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Electrolytic recovery of pure copper sulfate solution from impure process solution, deposits copper on cathode, replaces process solution with pure sulfuric acid, then reverses current
WO2012127438A2 (en) * 2011-03-23 2012-09-27 Propipe Maquinarias Limitada Electrolytic cell for the winning of metals by reactive electrodialysis and electrolytic process for the winning of metals that uses said cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CIFUENTES, L. ET AL.: "Electrowinning of copper in two- and three-compartment reactive electrodialysis cells.", CHEMICAL ENGINEERING SCIENCE, vol. 61, no. 11, 2006, pages 3623 - 3631, XP025012376 *
CIFUENTES, L. ET AL.: "Modelling a copper electrowinning cell based on reactive electrodialysis.", APPLIED MATHEMATICAL MODELLING, vol. 31, no. 7, 2007, pages 1308 - 1320, XP005869795 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236283A1 (en) * 2021-05-05 2022-11-10 Battelle Energy Alliance, Llc Electrochemical membrane apparatus including an electrochemical membrane reactor, and related methods

Also Published As

Publication number Publication date
CL2015000835A1 (en) 2015-12-04

Similar Documents

Publication Publication Date Title
KR102274666B1 (en) Electrolytic enrichment method for heavy water
ES2712722T3 (en) Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulphate waste, mining waste and stripping liquors
WO2012078019A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
TW201609563A (en) Apparatus for producing electrolyzed water and method using the same
US20200188852A1 (en) Process for the removal of magnesium and calcium cations from natural brines using membrane electrolysis with recovery of cation hydroxides
WO2017063097A1 (en) Filter press device for electroplating metal from solutions, which is formed by separating elements formed by ion-exchange membranes, forming a plurality of anolyte and catholyte chambers, the electrodes being connected in series with automatic detachment of the metallic product
WO2012162851A1 (en) Obtaining a ferric nitrate reagent in situ from a copper raffinate solution in a hydrometallurgical copper process
WO2016154767A1 (en) Electrolytic production of copper from diluted solutions using reactive electrodialysis
CN106030894A (en) Method for simultaneously recovering cobalt and manganese from lithium based battery
JP2016186115A (en) Method for electrolytic extraction of metal
KR101147491B1 (en) Electrolysis apparatus
CN102828205A (en) Novel metal electro-deposition refining technology
JP2013076109A (en) Method for producing metal manganese by electrowinning
FI60245C (en) RENANDE AV NICKELELEKTROLYTER
WO2015164990A1 (en) Insertable electrode device that does not generate acid mist or other gases, and method
CN111492094B (en) Method for producing sulfuric acid solution and electrolytic cell used in the production method
JP5908583B2 (en) Electrolysis method and electrochemical cell for producing copper from cuprous chloride
JP7211143B2 (en) Method for producing sulfuric acid solution
WO2012127438A2 (en) Electrolytic cell for the winning of metals by reactive electrodialysis and electrolytic process for the winning of metals that uses said cell
WO2010002235A2 (en) Filter-press-type electrochemical reactor for recovering gold (au) and silver (ag) values in powder form
WO2016063207A1 (en) Voltage-controlled method for electrowinning high-quality copper for low-temperature solutions with a low copper concentration, with application of alternating current
RU2623542C1 (en) Method of electrochemical oxidation of cerium
US2579551A (en) Electrolytic process and apparatus for making copper dust
JPS5985879A (en) Electric refinement
JP7211144B2 (en) Method for producing sulfuric acid solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771154

Country of ref document: EP

Kind code of ref document: A1