WO2016152938A1 - Method for producing plated article - Google Patents

Method for producing plated article Download PDF

Info

Publication number
WO2016152938A1
WO2016152938A1 PCT/JP2016/059264 JP2016059264W WO2016152938A1 WO 2016152938 A1 WO2016152938 A1 WO 2016152938A1 JP 2016059264 W JP2016059264 W JP 2016059264W WO 2016152938 A1 WO2016152938 A1 WO 2016152938A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
glass substrate
compound
plating
glass
Prior art date
Application number
PCT/JP2016/059264
Other languages
French (fr)
Japanese (ja)
Inventor
宜幸 西村
莉枝 三宅
千紗 福田
政男 高見沢
豊 水戸岡
Original Assignee
オーエム産業株式会社
岡山県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエム産業株式会社, 岡山県 filed Critical オーエム産業株式会社
Priority to EP16768841.5A priority Critical patent/EP3276042B1/en
Priority to JP2017508399A priority patent/JP6264596B2/en
Priority to US15/314,761 priority patent/US20170191165A1/en
Priority to CN201680001511.2A priority patent/CN106460177A/en
Publication of WO2016152938A1 publication Critical patent/WO2016152938A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1667Radiant energy, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating

Definitions

  • the present invention relates to a method for producing a plated product in which a plating film pattern is formed on the surface of a glass substrate.
  • a glass substrate has the advantage that it has excellent thermal stability and is inexpensive as compared with a conventionally used substrate.
  • Patent Document 1 an energy beam is irradiated on the surface of an insulating substrate, which is an object to be plated, and this energy beam is irradiated on a predetermined portion of the substrate surface.
  • a liquid containing a substance in a compound state is brought into contact with the surface of the insulating substrate, the substrate is cleaned to remove the remaining fluid, and then the irradiation surface of the energy beam is changed to a predetermined chemical plating solution.
  • a selective plating method is described in which a metal is deposited by chemical plating on the adherend portion by contact. Thereby, it is said that a complicated and fine metal deposition pattern can be manufactured.
  • Patent Document 2 in a metal wiring forming method for forming a metal wiring on the surface of an insulator, a picosecond laser beam having a pulse width on the order of picoseconds or a femtosecond laser beam on the order of femtoseconds is used as the laser light.
  • a metal film is deposited on the insulator by immersing the insulator in which silver atoms are generated in the irradiated region in an electroless plating solution maintained at a predetermined temperature for a predetermined time, and depositing a metal using the silver atoms as catalyst nuclei.
  • a metal wiring forming method for forming a metal wiring is described. In the examples, examples using photosensitive glass as an insulator are described. Thereby, it is said that a metal wiring can be formed by a simple process and a small number of steps.
  • the present invention has been made to solve the above problems, and provides a method for easily producing a plated product in which a plating film pattern having good adhesion is formed on the surface of a glass substrate. It is intended.
  • the object is a method for manufacturing a plated product in which a plating film pattern is formed on the surface of a glass substrate, the first step of irradiating a part of the surface of the glass substrate with a pulsed laser, and the glass
  • a second step of attaching an electroless plating catalyst to the surface of the base material, and in the glass base material, the catalyst attached to a portion not irradiated with the pulse laser is selectively deactivated, or the catalyst is
  • a plating process comprising: a third step of selectively removing; and a fourth step of performing electroless plating after the third step and selectively forming a plating film only in the region irradiated with the pulse laser.
  • the pulse width of the pulse laser is preferably 1 ⁇ 10 ⁇ 18 to 1 ⁇ 10 ⁇ 4 seconds.
  • the plating film is preferably at least one selected from the group consisting of nickel, copper, silver, gold, palladium, platinum, rhodium, ruthenium, tin, iron, cobalt, and alloys thereof.
  • the glass substrate is preferably brought into contact with a liquid containing a compound that deactivates the catalyst or a compound that removes the catalyst.
  • the compound that deactivates the catalyst is preferably a sulfur compound.
  • the sulfur compound is preferably a compound having at least one functional group selected from the group consisting of a thiocarbonyl group, a thiol group, and a sulfide group.
  • the compound for removing the catalyst is a chelate compound or a cyanide.
  • the compound for removing the catalyst is preferably at least one chelate compound selected from the group consisting of amino acids, amino alcohols, polyamines, polycarboxylic acids, and polyketones.
  • a plated product in which a plating film pattern with good adhesion is formed on the surface of a glass substrate can be easily produced.
  • the present invention relates to a method for producing a plated product in which a plating film pattern is formed on the surface of a glass substrate.
  • the production method of the present invention includes the following first to fourth steps. Hereinafter, each step will be described.
  • a part of the surface of the glass substrate is irradiated with a pulse laser.
  • the kind of glass base material used at a 1st process is not specifically limited, Soda lime glass, borosilicate glass, quartz glass etc. are mentioned. These glass base materials can be suitably selected according to the use of the plated product. When cost is important, soda lime glass is preferable. When importance is attached to thermal stability, quartz glass or borosilicate glass is preferred, and quartz glass is more preferred. When importance is attached to the small amount of impurities contained in the glass substrate, quartz glass or borosilicate glass is preferred, and quartz glass is more preferred.
  • the thickness of the glass substrate is not particularly limited, but is usually 0.02 to 5 mm.
  • the shape is not particularly limited.
  • the glass base material which improved the mechanical strength by heat processing can also be used.
  • a glass substrate after glass is heated, it is cooled to a glass surface layer by physical exchange glass obtained by generating a compressive stress in the vicinity of the surface layer by rapid cooling or by ion exchange treatment while heating the glass.
  • physical exchange glass obtained by generating a compressive stress in the vicinity of the surface layer by rapid cooling or by ion exchange treatment while heating the glass.
  • Examples thereof include chemically strengthened glass obtained by introducing alkali ions having a large ion radius and generating compressive stress in the vicinity of the glass surface layer.
  • the pulse width (second) of the pulse laser is preferably 1 ⁇ 10 ⁇ 4 seconds or less, more preferably 1 ⁇ 10 ⁇ 7 seconds or less, and 1 ⁇ 10 ⁇ 9 seconds or less. More preferably, it is 1 ⁇ 10 ⁇ 10 seconds or less.
  • the lower limit value of the pulse width of the pulse laser is not particularly limited, but is usually 1 ⁇ 10 ⁇ 18 seconds or more, and preferably 1 ⁇ 10 ⁇ 15 seconds or more. And if it sets so that the processing point (focus) of a laser may become the surface of a glass base material, it will become possible to process the surface of a glass base material.
  • the average output at the processing point is 0.01 to 1000 W.
  • the average output at the processing point is less than 0.01 W, a plating film with good adhesion may not be obtained.
  • the average output at the processing point exceeds 1000 W, the damage to the glass substrate increases.
  • the repetition frequency of the pulse laser is not particularly limited, but is usually 1 kHz to 1000 MHz.
  • the type of laser is not particularly limited, and solid lasers such as YAG lasers, fiber lasers, and semiconductor lasers; gas lasers such as carbon dioxide lasers and excimer lasers can be used.
  • the wavelength of the pulse laser is not particularly limited, and can be set as appropriate depending on the type of the glass substrate used, and is usually 100 to 12000 nm. From the viewpoint of easy pulse oscillation, a YAG laser is preferable, and a neodymium YAG laser is more preferable. In the neodymium YAG laser, a 1064 nm laser beam called a fundamental wave (first harmonic) is generated.
  • laser light having a wavelength of 532 nm called second harmonic, laser light having a wavelength of 355 nm called third harmonic, and laser light having a wavelength of 266 nm called fourth harmonic can be obtained.
  • the first to fourth harmonics can be appropriately selected according to the purpose.
  • FIG. 1 is a diagram showing an example of a pulse laser irradiation method. As shown in FIG. 1, an irradiation area is set on the surface of the glass substrate. In a later step, a plating film is selectively formed only in the region irradiated with the pulse laser, that is, in this irradiation area. Then, after irradiating the laser at a predetermined scanning speed in the x direction (right direction in FIG.
  • the laser is moved at a predetermined interval in the y direction (upward direction in FIG. 1), ⁇ After irradiating the laser in the x direction (left direction in FIG. 1) at a predetermined scanning speed, the laser is moved again in the y direction at a predetermined interval.
  • the irradiation spot diameter corresponds to the beam diameter of the laser, but the irradiation spots do not have to overlap each other, and there may be an interval between the irradiation spots.
  • the laser irradiation amount per unit area can be adjusted by appropriately adjusting the scanning speed and interval (pitch interval).
  • the arithmetic average roughness (Ra) of the glass surface irradiated with the pulse laser is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • Ra is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • Ra in this specification is a value obtained by a method based on JISJB 0601 (2001).
  • an electroless plating catalyst is adhered to the surface of the glass substrate.
  • the electroless plating catalyst is not particularly limited as long as it contains a metal element having a catalytic action with respect to the electroless plating solution.
  • the metal element palladium (Pd), silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), iron (Fe), cobalt (Co), zinc (Zn), gold (Au) , Platinum (Pt), tin (Sn), and the like. These metal elements can be appropriately selected depending on the type of electroless plating solution used in the fourth step. And after processing a glass base material with the aqueous solution containing the said metal element, it can process with the aqueous solution containing a reducing agent, and can activate an electroless-plating catalyst.
  • the catalyst adhering to a portion not irradiated with the pulse laser is selectively deactivated or the catalyst is selectively removed.
  • the method for removing the catalyst in the third step is not particularly limited, and examples thereof include a method for subjecting the glass substrate to ultrasonic treatment and a method for washing the surface of the glass substrate with running water.
  • a method of bringing the glass substrate into contact with a liquid containing a compound that deactivates the catalyst or the above A method of bringing the glass substrate into contact with a liquid containing a compound for removing the catalyst is preferable.
  • the glass substrate can be brought into contact with the solution by immersing the glass substrate in a solution containing a compound that deactivates the catalyst, by immersing the glass substrate in a solution containing a compound that removes the catalyst, or by losing the catalyst.
  • coating the liquid containing the compound which removes a catalyst to a glass base material are mentioned.
  • the compound is preferably a sulfur compound.
  • the present inventors prepared a glass base material to which a palladium catalyst is attached, the chemical composition of the surface of the glass base material before immersion in a liquid containing a sulfur compound, and the glass after immersion in a liquid containing a sulfur compound.
  • the chemical composition of the substrate surface was analyzed using a photoelectron spectrometer (XPS). As a result, it was found that palladium was present on the surface of the substrate even after immersion in a liquid containing a sulfur compound. It was also found that the position of the peak derived from palladium changes when immersed in a liquid containing a sulfur compound. The present inventors consider that this result indicates that the sulfur atom is coordinated to palladium, and this presumes that the palladium catalyst is deactivated.
  • the sulfur compound is preferably a compound having at least one functional group selected from the group consisting of a thiocarbonyl group, a thiol group, and a sulfide group.
  • a thiocarbonyl group examples include thiourea.
  • the sulfur compound having a thiol group examples include triazine thiol, mercaptobenzothiazole, mercaptoacetic acid, and thiocyanic acid.
  • Examples of the sulfur compound having a sulfide group include dimethyl sulfide and methionine.
  • the concentration of the sulfur compound is preferably 0.001 ppm or more.
  • the concentration of the sulfur compound is preferably 100 ppm or less.
  • the solvent used in the liquid containing the compound that deactivates the catalyst is not particularly limited, and is usually water or alcohol.
  • the temperature at which the glass substrate is immersed is not particularly limited, and is usually 5 to 90 ° C.
  • the compound is preferably a chelate compound or a cyanide.
  • the compound that removes the catalyst is preferably at least one chelate compound selected from the group consisting of amino acids, amino alcohols, polyamines, polycarboxylic acids, and polyketones.
  • amino acids examples include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine and the like.
  • amino alcohols include triethanolamine.
  • the polyamine examples include ethylenediamine.
  • polycarboxylic acid examples include citric acid, succinic acid, maleic acid, fumaric acid, tartaric acid, and potassium tartrate.
  • polyketone examples include acetylacetone.
  • the present inventors have prepared a glass substrate to which a palladium catalyst is attached, the chemical composition of the surface of the glass substrate before being immersed in the liquid containing the chelate compound, and the glass after being immersed in the liquid containing the chelate compound
  • the chemical composition of the substrate surface was analyzed using a photoelectron spectrometer (XPS).
  • XPS photoelectron spectrometer
  • Examples of the cyanide include potassium cyanide and sodium cyanide.
  • the concentration of the chelate compound or cyanide is preferably 0.001M or more.
  • the concentration of the chelate compound or cyanide is preferably 3M or less.
  • the solvent used in the liquid containing the compound for removing the catalyst is not particularly limited, and is usually water or alcohol.
  • the temperature at which the glass substrate is immersed is not particularly limited, and is usually 5 to 90 ° C.
  • the plating film is preferably at least one selected from the group consisting of nickel, copper, silver, gold, palladium, platinum, rhodium, ruthenium, tin, iron, cobalt, and alloys thereof.
  • the said alloy means the alloy containing 50 mass% or more of these at least 1 sort (s) of metal elements.
  • electroless plating used in the fourth step electroless nickel plating, electroless copper plating, electroless silver plating, electroless gold plating, electroless palladium, electroless platinum plating, electroless rhodium plating, electroless ruthenium plating , Electroless tin plating, electroless iron plating, electroless cobalt plating, or electroless alloy plating thereof.
  • the electroless alloy plating refers to electroless plating containing 50% by mass or more of these at least one metal element. You may perform this process in multiple times, changing the kind of electroless plating.
  • a desired plating film pattern can be accurately formed on the surface of a glass substrate without using a special glass substrate.
  • a pattern was formed by a pulse laser and then electroless plating was performed, a plating film could be formed in the region irradiated with the laser.
  • the third step was not performed, a plating film was formed not only in the region irradiated with the laser but also in the region not irradiated with the laser (Comparative Example 1).
  • the catalyst adhering to the portion not irradiated with the laser can be selectively deactivated or selectively removed, so that only the region irradiated with the laser is selectively plated.
  • a film can be formed.
  • the plating film formed by the production method of the present invention has excellent adhesion.
  • the performance required for plated products has become strict, and plated products with a finer film pattern are required.
  • the pitch of the pattern becomes finer, higher adhesion of the plating film is required. Therefore, when obtaining a plated product having a fine film pattern, the merit of using the manufacturing method of the present invention is great.
  • Electrolytic plating includes electrolytic nickel plating, electrolytic copper plating, electrolytic silver plating, electrolytic gold plating, electrolytic palladium plating, electrolytic tin plating, electrolytic iron plating, electrolytic bismuth plating, electrolytic platinum plating, electrolytic rhodium, electrolytic ruthenium, and electrolytic zinc plating. Or these electrolytic alloy plating is mentioned.
  • the electroless alloy plating refers to electrolytic plating containing at least 50% by mass of these at least one metal element.
  • Examples of the various surface treatment steps include a step of spraying metal by a cold spray method and a step of applying a metal paste.
  • the metal used at this time is copper, tin, gold, silver, nickel, iron, palladium, ruthenium, rhodium, iridium, indium, zinc, aluminum, tungsten, chromium, magnesium, titanium, silicon, or an alloy thereof.
  • These other steps may be performed a plurality of times, and the steps may be the same or different.
  • the mechanical strength of a glass base material can also be improved by heat processing after a 4th process.
  • Example 1 [Laser irradiation] (Glass substrate) Soda lime glass (“Matsunami slide glass S7213") having a length of 76 mm, a width of 26 mm, and a thickness of 1.1 mm was prepared as a glass substrate.
  • the glass substrate was irradiated with a pulse laser by the method shown in FIG. Specifically, an irradiation area of 20 mm ⁇ 10 mm was set on the surface of the glass substrate.
  • a pulse laser was irradiated from the point indicated by St to the right end of the irradiation area in the x direction at a scanning speed of 100 mm / second.
  • the pulse laser was moved 15 ⁇ m in the y direction, and the pulse laser was irradiated to the left end of the irradiation area at a scanning speed of 100 mm / second in the ⁇ x direction. By repeating this, the entire irradiation area was irradiated with a pulse laser.
  • the spot diameter was about 15 ⁇ m.
  • the pretreated glass substrate was immersed in a palladium catalyst solution (concentration: 50 mL / L, “Activator A-10X” manufactured by Uemura Kogyo Co., Ltd.) for 1 minute. Thereafter, the glass substrate was washed three times with ion exchange water.
  • a palladium catalyst solution concentration: 50 mL / L, “Activator A-10X” manufactured by Uemura Kogyo Co., Ltd.
  • the activated glass substrate is immersed in a thiourea aqueous solution (concentration: 0.1 ppm) kept at 50 ° C. for 1 minute to selectively deactivate the palladium catalyst adhering to the portion not irradiated with the pulse laser. I let you. Thereafter, the glass substrate was washed three times with ion exchange water.
  • Electroless Ni plating treatment The glass substrate is immersed in an electroless Ni plating solution having a pH of 4.4 kept at 75 ° C. for 35 minutes, subjected to electroless Ni plating treatment, and an electroless Ni plating layer having a thickness of 5 ⁇ m is formed on the surface of the glass substrate. Formed. Thereafter, the substrate was washed three times with ion exchange water.
  • the composition of the electroless Ni plating solution is as follows. ⁇ "ELN240 M2" manufactured by Nippon Electroplating Engineers Co., Ltd. (EEJA): 150mL / L ⁇ "ELN240 M1" manufactured by Nippon Electroplating Engineers Co., Ltd. (EEJA): 50mL / L ⁇ "ELN240 R3" manufactured by Nippon Electroplating Engineers Co., Ltd. (EEJA): 6mL / L
  • substitution Au plating treatment The glass substrate on which the Ni plating layer is formed is immersed in a gold plating solution (“PRECIOUSFAB IGS8000SPF” manufactured by EEJA) kept at 55 ° C. for 10 minutes, and a substituted Au having a thickness of 0.05 ⁇ m is formed on the Ni plating layer. A plating layer was formed to obtain a plated product.
  • a gold plating solution (“PRECIOUSFAB IGS8000SPF” manufactured by EEJA) kept at 55 ° C. for 10 minutes, and a substituted Au having a thickness of 0.05 ⁇ m is formed on the Ni plating layer.
  • a plating layer was formed to obtain a plated product.
  • the adhesion test was performed according to the soldering test method described in JIS H8504.
  • the L-shaped metal fitting at this time was an oxygen-free copper plate having a plate thickness of 0.5 mm.
  • nickel plating with a film thickness of 3 micrometers was given as a foundation
  • solder ⁇ 8 mm ⁇ t0.2 mm
  • FIG. 3 shows an image after the tensile test. As shown in FIG. 3, the plating film peeled off with the glass.
  • Example 2 In “electroless plating catalyst adhesion treatment”, the time of immersion in the palladium catalyst solution was changed to 2 minutes, and “catalyst removal treatment” was performed instead of “catalyst deactivation treatment”.
  • Catalyst removal treatment a plated product was obtained in the same manner as in Example 1 except that a glass substrate that had been activated in a glycine aqueous solution (concentration: 0.05 M) at room temperature was immersed for 30 seconds. Was observed with a microscope. The obtained image is shown in FIG. 4 in FIG. 4 is a glass substrate, and 2 is a substituted Au plating film.
  • FIG. 4 by performing the “catalyst removal treatment”, a plating film was selectively formed only in the region irradiated with the pulse laser. And the adhesiveness test was done like Example 1. As a result, the plating film peeled off with the glass.
  • Example 3 A plated product was obtained in the same manner as in Example 1 except that the glass substrate was changed to 76 mm ⁇ 26 mm ⁇ 1.1 mm borosilicate glass (“Matsunami slide glass S1127”). And the adhesiveness test was done like Example 1. As a result, the plating film peeled off with the glass.
  • Example 4 The glass substrate is changed to tempered glass of 70 mm length ⁇ 30 mm width ⁇ 0.55 mm thickness (“Dragontrail” manufactured by AGC Asahi Glass), and the average output at the processing point is 1.1 W when irradiated with pulsed laser.
  • the glass substrate was irradiated with a pulse laser in the same manner as in Example 1 except that the moving distance in the y direction was changed to 6 ⁇ m and the scanning speed was changed to 300 mm / second.
  • “Dragontrail” is a chemically strengthened glass, in which Na + on the glass surface is replaced with K + .
  • Ra arithmetic average roughness
  • a plating film was formed on the surface of the glass substrate in the same manner as in Example 2. As a result, a plating film was selectively formed only in the region irradiated with the pulse laser. And when the adhesiveness test was done like Example 1, the plating film peeled off with glass.
  • Example 5 In the pulse laser irradiation, a pulse laser was applied to the glass substrate in the same manner as in Example 4 except that the average output at the processing point was 1.1 W, the moving distance in the y direction was 10 ⁇ m, and the scanning speed was changed to 50 mm / sec. Was irradiated. And the arithmetic mean roughness (Ra) of the location irradiated with the pulse laser was measured like Example 4. As a result, Ra was 2.81 ⁇ m.
  • a plating film was formed on the surface of the glass substrate in the same manner as in Example 2. As a result, a plating film was selectively formed only in the region irradiated with the pulse laser. And when the adhesiveness test was done like Example 1, the plating film peeled off with glass.
  • Comparative Example 1 A plated product was obtained in the same manner as in Example 1 except that “catalyst deactivation treatment” and “substitution Au plating treatment” were not performed, and the surface thereof was observed with a microscope.
  • the obtained image is shown in FIG.
  • Reference numeral 31 in FIG. 5 denotes a Ni plating film formed at a location irradiated with a pulse laser
  • reference numeral 32 denotes a Ni plating film formed at a location not irradiated with a pulse laser on the surface of the glass substrate.
  • a plating film was formed on the entire surface of the glass substrate unless either “catalyst deactivation treatment” or “catalyst removal treatment” was performed.
  • the Ni plating film formed in the location which was not irradiated with the pulse laser was easily peeled off with the cellophane tape.
  • Comparative Example 2 In the pulse laser irradiation, the glass substrate was irradiated with the pulse laser in the same manner as in Example 4 except that the average output at the processing point was 1 W, the moving distance in the y direction was 10 ⁇ m, and the scanning speed was changed to 300 mm / second. did. And the arithmetic mean roughness (Ra) of the location irradiated with the laser was measured like Example 4. FIG. As a result, Ra was 0.03 ⁇ m.
  • a plating film was formed on the surface of the glass in the same manner as in Example 2. As a result, a plating film was selectively formed only in the region irradiated with the pulse laser, but the plating film could be easily peeled off with a cellophane tape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A method for producing a plated article wherein a plating film pattern is formed on the surface of a glass base. This method comprises: a first step for irradiating some regions of the surface of the glass base with a pulsed laser; a second step for having an electroless plating catalyst adhere to the surface of the glass base; a third step for selectively deactivating or selectively removing the catalyst adhering to regions of the glass base, said regions having not been irradiated with a pulsed laser; and a fourth step for selectively forming a plating film only on the regions that have been irradiated with a pulsed laser by performing electroless plating after the third step. Consequently, a plated article wherein a plating film pattern exhibiting excellent adhesion is formed on the surface of a glass base is able to be easily produced.

Description

めっき品の製造方法Manufacturing method of plated products
 本発明は、ガラス基材の表面にめっき皮膜パターンが形成されためっき品の製造方法に関する。 The present invention relates to a method for producing a plated product in which a plating film pattern is formed on the surface of a glass substrate.
 家電や輸送機器などの製品に用いられる回路の基材として、従来、紙フェノール基材、紙エポキシ基材、ガラスエポキシ基材、セラミック基材などが用いられている。これらの基材は、電気的特性、機械的特性、価格がそれぞれ異なるため、製品に求められる性能やコストに応じて使い分けられている。現在、回路の基板としてガラス基材が注目されていて、ガラス基板の表面に金属皮膜パターンを形成する試みがなされている。ガラス基材は、従来用いられている基材に比べて、優れた熱安定性を有し、しかも安価であるという利点がある。 Conventionally, paper phenol base materials, paper epoxy base materials, glass epoxy base materials, ceramic base materials, and the like are used as circuit base materials used in products such as home appliances and transportation equipment. Since these base materials have different electrical characteristics, mechanical characteristics, and prices, they are properly used according to the performance and cost required for the product. At present, glass substrates are attracting attention as circuit boards, and attempts have been made to form metal film patterns on the surface of glass substrates. A glass substrate has the advantage that it has excellent thermal stability and is inexpensive as compared with a conventionally used substrate.
 特許文献1には、被メッキ対象物である絶縁性基板の表面にエネルギ・ビームを照射し、このエネルギ・ビームの照射を基板表面の所定部分に行った後、化学メッキの際に析出核となる物質を化合物の状態で含有する液体を上記絶縁性基板の表面に接触させ、前記基板を洗浄して残存する前記流体を除去し、次いで前記エネルギ・ビームの照射面を所定の化学メッキ液と接触させて前記被着物質部分に化学メッキにより金属を析出させる選択的メッキ方法が記載されている。これにより、複雑かつ微細な金属析出パターンを製作することができるとされている。 In Patent Document 1, an energy beam is irradiated on the surface of an insulating substrate, which is an object to be plated, and this energy beam is irradiated on a predetermined portion of the substrate surface. A liquid containing a substance in a compound state is brought into contact with the surface of the insulating substrate, the substrate is cleaned to remove the remaining fluid, and then the irradiation surface of the energy beam is changed to a predetermined chemical plating solution. A selective plating method is described in which a metal is deposited by chemical plating on the adherend portion by contact. Thereby, it is said that a complicated and fine metal deposition pattern can be manufactured.
 しかしながら、特許文献1に記載のめっき方法においては、ガラス基材の表面に金属皮膜パターンを形成することについての記載も示唆もなかった。 However, in the plating method described in Patent Document 1, there was no description or suggestion of forming a metal film pattern on the surface of the glass substrate.
 特許文献2には、絶縁体の表面に金属配線を形成する金属配線形成方法において、レーザー光としてパルス幅がピコ秒オーダーのピコ秒レーザー光またはフェムト秒オーダーのフェムト秒レーザー光を、前記レーザー光の波長に対して透明かつ銀イオンを含有する絶縁体の表面に照射し、該照射領域において銀イオンを銀原子に還元して該照射領域に銀原子を生成し、前記レーザー光を照射されて該照射領域に銀原子が生成された前記絶縁体を所定の温度に維持した無電解めっき液に所定時間浸し、該銀原子を触媒核として金属を析出させることにより前記絶縁体に金属膜を堆積して金属配線を形成する金属配線形成方法が記載されている。実施例には、絶縁体として感光性ガラスを用いた例が記載されている。これにより、簡単な処理で、かつ少ない工程数により金属配線を形成することができるとされている。 In Patent Document 2, in a metal wiring forming method for forming a metal wiring on the surface of an insulator, a picosecond laser beam having a pulse width on the order of picoseconds or a femtosecond laser beam on the order of femtoseconds is used as the laser light. Irradiating the surface of an insulator containing silver ions that is transparent with respect to the wavelength of the light, reducing silver ions to silver atoms in the irradiated region to generate silver atoms in the irradiated region, irradiated with the laser beam A metal film is deposited on the insulator by immersing the insulator in which silver atoms are generated in the irradiated region in an electroless plating solution maintained at a predetermined temperature for a predetermined time, and depositing a metal using the silver atoms as catalyst nuclei. A metal wiring forming method for forming a metal wiring is described. In the examples, examples using photosensitive glass as an insulator are described. Thereby, it is said that a metal wiring can be formed by a simple process and a small number of steps.
 しかしながら、特許文献2に記載のめっき方法では、特殊なガラス基材を使用しなければならず、当該ガラス基材は従来用いられている基材に比べて高価なので、この基材を用いた回路を広く普及させるには限界がある。 However, in the plating method described in Patent Document 2, a special glass substrate must be used, and the glass substrate is more expensive than a conventionally used substrate. There is a limit to disseminating widely.
特開昭60-149783号公報JP-A-60-149783 特開2008-41938号公報JP 2008-41938 A
 本発明は上記課題を解決するためになされたものであり、ガラス基材の表面に密着性の良好なめっき皮膜パターンが形成されためっき品を、簡易に製造することができる方法を提供することを目的とするものである。 The present invention has been made to solve the above problems, and provides a method for easily producing a plated product in which a plating film pattern having good adhesion is formed on the surface of a glass substrate. It is intended.
 上記課題は、ガラス基材の表面にめっき皮膜パターンが形成されためっき品の製造方法であって、前記ガラス基材の表面の一部の領域にパルスレーザーを照射する第1工程と、前記ガラス基材の表面に無電解めっき触媒を付着させる第2工程と、前記ガラス基材において、前記パルスレーザーが照射されていない箇所に付着した前記触媒を選択的に失活させるか、又は前記触媒を選択的に除去する第3工程と、第3工程の後に無電解めっきを行い、前記パルスレーザーを照射した領域にのみ選択的にめっき皮膜を形成する第4工程とを備えることを特徴とするめっき品の製造方法を提供することによって解決される。 The object is a method for manufacturing a plated product in which a plating film pattern is formed on the surface of a glass substrate, the first step of irradiating a part of the surface of the glass substrate with a pulsed laser, and the glass A second step of attaching an electroless plating catalyst to the surface of the base material, and in the glass base material, the catalyst attached to a portion not irradiated with the pulse laser is selectively deactivated, or the catalyst is A plating process comprising: a third step of selectively removing; and a fourth step of performing electroless plating after the third step and selectively forming a plating film only in the region irradiated with the pulse laser. This is solved by providing a method for manufacturing a product.
 このとき、前記パルスレーザーのパルス幅が1×10-18~1×10-4秒であることが好ましい。また前記めっき皮膜が、ニッケル、銅、銀、金、パラジウム、白金、ロジウム、ルテニウム、スズ、鉄、コバルト及びこれらの合金からなる群から選択される少なくとも1種であることが好ましい。 At this time, the pulse width of the pulse laser is preferably 1 × 10 −18 to 1 × 10 −4 seconds. The plating film is preferably at least one selected from the group consisting of nickel, copper, silver, gold, palladium, platinum, rhodium, ruthenium, tin, iron, cobalt, and alloys thereof.
 第3工程において、前記触媒を失活させる化合物又は前記触媒を除去する化合物を含有する液にガラス基材を接触させることが好ましい。 In the third step, the glass substrate is preferably brought into contact with a liquid containing a compound that deactivates the catalyst or a compound that removes the catalyst.
 第3工程において、前記触媒を失活させる化合物が硫黄化合物であることが好ましい。このとき、前記硫黄化合物が、チオカルボニル基、チオール基、スルフィド基からなる群から選択される少なくとも1種の官能基を有する化合物であることが好ましい。 In the third step, the compound that deactivates the catalyst is preferably a sulfur compound. At this time, the sulfur compound is preferably a compound having at least one functional group selected from the group consisting of a thiocarbonyl group, a thiol group, and a sulfide group.
 また第3工程において、前記触媒を除去する化合物がキレート化合物又はシアン化物であることも好ましい。このとき、前記触媒を除去する化合物が、アミノ酸、アミノアルコール、ポリアミン、ポリカルボン酸、ポリケトンからなる群から選択される少なくとも1種のキレート化合物であることが好ましい。 In the third step, it is also preferable that the compound for removing the catalyst is a chelate compound or a cyanide. At this time, the compound for removing the catalyst is preferably at least one chelate compound selected from the group consisting of amino acids, amino alcohols, polyamines, polycarboxylic acids, and polyketones.
 本発明によれば、ガラス基材の表面に密着性の良好なめっき皮膜パターンが形成されためっき品を簡易に製造することができる。 According to the present invention, a plated product in which a plating film pattern with good adhesion is formed on the surface of a glass substrate can be easily produced.
パルスレーザーの照射方法の一例を示した図である。It is the figure which showed an example of the irradiation method of a pulse laser. 実施例1におけるめっき品を、マイクロスコープを用いて撮影した画像である。It is the image which image | photographed the metal-plating goods in Example 1 using the microscope. 実施例1における引張試験後の外観を、マイクロスコープを用いて撮影した画像である。It is the image which image | photographed the external appearance after the tension test in Example 1 using the microscope. 実施例2におけるめっき品を、マイクロスコープを用いて撮影した画像である。It is the image which image | photographed the metal-plating goods in Example 2 using the microscope. 比較例1におけるめっき品を、マイクロスコープを用いて撮影した画像である。It is the image which image | photographed the metal-plating goods in the comparative example 1 using the microscope.
 本発明は、ガラス基材の表面にめっき皮膜パターンが形成されためっき品の製造方法に関する。本発明の製造方法は、以下の第1~第4工程を備える。以下、各工程について説明する。 The present invention relates to a method for producing a plated product in which a plating film pattern is formed on the surface of a glass substrate. The production method of the present invention includes the following first to fourth steps. Hereinafter, each step will be described.
 第1工程において、パルスレーザーをガラス基材の表面の一部に照射する。第1工程で用いられるガラス基材の種類は特に限定されず、ソーダライムガラス、ホウケイ酸ガラス、石英ガラスなどが挙げられる。これらのガラス基材は、めっき品の用途に応じて適宜選択できる。コストを重視する場合には、ソーダライムガラスが好適である。熱安定性を重視する場合には、石英ガラスやホウケイ酸ガラスが好適であり、石英ガラスがより好適である。ガラス基材に含まれる不純物の量が少ないことを重視する場合には、石英ガラスやホウケイ酸ガラスが好適であり、石英ガラスがより好適である。ガラス基材の厚さは特に限定されないが通常0.02~5mmである。形状も特に限定されない。また、熱処理により機械的強度を向上させたガラス基材を用いることもできる。このようなガラス基材としては、ガラスを加熱した後、急激に冷却することにより表層付近に圧縮応力を発生させることで得られる物理強化ガラスや、ガラスを加熱しつつイオン交換処理によりガラス表層にイオン半径が大きいアルカリイオンを導入し、ガラス表層付近に圧縮応力を発生させることで得られる化学強化ガラスが挙げられる。 In the first step, a part of the surface of the glass substrate is irradiated with a pulse laser. The kind of glass base material used at a 1st process is not specifically limited, Soda lime glass, borosilicate glass, quartz glass etc. are mentioned. These glass base materials can be suitably selected according to the use of the plated product. When cost is important, soda lime glass is preferable. When importance is attached to thermal stability, quartz glass or borosilicate glass is preferred, and quartz glass is more preferred. When importance is attached to the small amount of impurities contained in the glass substrate, quartz glass or borosilicate glass is preferred, and quartz glass is more preferred. The thickness of the glass substrate is not particularly limited, but is usually 0.02 to 5 mm. The shape is not particularly limited. Moreover, the glass base material which improved the mechanical strength by heat processing can also be used. As such a glass substrate, after glass is heated, it is cooled to a glass surface layer by physical exchange glass obtained by generating a compressive stress in the vicinity of the surface layer by rapid cooling or by ion exchange treatment while heating the glass. Examples thereof include chemically strengthened glass obtained by introducing alkali ions having a large ion radius and generating compressive stress in the vicinity of the glass surface layer.
 本発明では、パルスレーザーを用いることが重要である。パルスレーザーを用いると、ガラスのような透明基材であっても多光子吸収を起こさせることが可能になる。多光子吸収は、レーザーのピークパワー(W)が大きいほど起こりやすくなる。同じエネルギーであればピークパワー(W)はパルス幅が短くなるほど大きくなるため、パルス幅は短い方が好ましい。かかる観点から、パルスレーザーのパルス幅(秒)は、1×10-4秒以下であることが好ましく、1×10-7秒以下であることがより好ましく、1×10-9秒以下であることがさらに好ましく、1×10-10秒以下であることが特に好ましい。このように、パルス幅を極めて短くすることでレーザーのピークパワーを非常に高くすることができ、多光子吸収を起こさせることができる。パルスレーザーのパルス幅の下限値は特に限定されないが通常1×10-18秒以上であり、好適には、1×10-15秒以上である。そして、レーザーの加工点(焦点)がガラス基材の表面になるように設定すれば、ガラス基材の表面を加工することが可能になる。 In the present invention, it is important to use a pulse laser. When a pulse laser is used, multiphoton absorption can be caused even with a transparent substrate such as glass. Multiphoton absorption is more likely to occur as the laser peak power (W) increases. If the energy is the same, the peak power (W) becomes larger as the pulse width becomes shorter. Therefore, the shorter pulse width is preferable. From such a viewpoint, the pulse width (second) of the pulse laser is preferably 1 × 10 −4 seconds or less, more preferably 1 × 10 −7 seconds or less, and 1 × 10 −9 seconds or less. More preferably, it is 1 × 10 −10 seconds or less. Thus, by making the pulse width extremely short, the peak power of the laser can be made very high, and multiphoton absorption can be caused. The lower limit value of the pulse width of the pulse laser is not particularly limited, but is usually 1 × 10 −18 seconds or more, and preferably 1 × 10 −15 seconds or more. And if it sets so that the processing point (focus) of a laser may become the surface of a glass base material, it will become possible to process the surface of a glass base material.
 加工点での平均出力が0.01~1000Wであることが好ましい。加工点での平均出力が0.01W未満の場合、密着性の良好なめっき皮膜を得ることができないおそれがある。一方、加工点での平均出力が1000Wを超える場合、ガラス基材へのダメージが大きくなる。パルスレーザーの繰り返し周波数は特に限定されないが通常、1kHz~1000MHzである。 It is preferable that the average output at the processing point is 0.01 to 1000 W. When the average output at the processing point is less than 0.01 W, a plating film with good adhesion may not be obtained. On the other hand, when the average output at the processing point exceeds 1000 W, the damage to the glass substrate increases. The repetition frequency of the pulse laser is not particularly limited, but is usually 1 kHz to 1000 MHz.
 レーザーの種類も特に限定されず、YAGレーザー、ファイバーレーザー、半導体レーザーなどの固体レーザー;炭酸ガスレーザー、エキシマレーザーなどの気体レーザーを用いることができる。パルスレーザーの波長は特に限定されず、用いるガラス基材の種類などにより適宜設定することができ、通常は100~12000nmである。パルス発振が容易である観点から、YAGレーザーが好ましく、ネオジムYAGレーザーがより好ましい。ネオジムYAGレーザーでは、基本波(第1高調波)と呼ばれる1064nmのレーザー光が発生する。波長変換装置を用いることにより、第2高調波と呼ばれる波長532nmのレーザー光、第3高調波と呼ばれる波長355nmのレーザー光、第4高調波と呼ばれる266nmのレーザー光を得ることができる。本発明の製造方法では上記第1~4高調波を目的に応じて適宜選択できる。 The type of laser is not particularly limited, and solid lasers such as YAG lasers, fiber lasers, and semiconductor lasers; gas lasers such as carbon dioxide lasers and excimer lasers can be used. The wavelength of the pulse laser is not particularly limited, and can be set as appropriate depending on the type of the glass substrate used, and is usually 100 to 12000 nm. From the viewpoint of easy pulse oscillation, a YAG laser is preferable, and a neodymium YAG laser is more preferable. In the neodymium YAG laser, a 1064 nm laser beam called a fundamental wave (first harmonic) is generated. By using the wavelength converter, laser light having a wavelength of 532 nm called second harmonic, laser light having a wavelength of 355 nm called third harmonic, and laser light having a wavelength of 266 nm called fourth harmonic can be obtained. In the production method of the present invention, the first to fourth harmonics can be appropriately selected according to the purpose.
 そして、パルスレーザーをガラス基材の表面の一部に照射する。ガラス基材へのパルスレーザーの照射方法は特に限定されないが、例えば図1に示す方法が挙げられる。図1はパルスレーザーの照射方法の一例を示した図である。図1に示すように、ガラス基材の表面に照射エリアを設定する。後の工程において、パルスレーザーを照射した領域、すなわち、この照射エリアにのみ選択的にめっき皮膜が形成されることになる。そして、Stで示されているポイントからx方向(図1において右方向)に所定の走査速度でレーザーを照射した後、y方向(図1において上方向)に所定間隔レーザーを移動させて、-x方向(図1において左方向)に所定の走査速度でレーザーを照射した後、再びy方向に所定間隔レーザーを移動させる。照射スポット径はレーザーのビーム径に対応するが、照射スポットは相互に重なる必要はなく、照射スポットの間に間隔があってもかまわない。この方法において、走査速度及び間隔(ピッチ間隔)を適宜調節することにより、単位面積当たりのレーザー照射量を調節することができる。 Then, a part of the surface of the glass substrate is irradiated with a pulse laser. Although the irradiation method of the pulse laser to a glass base material is not specifically limited, For example, the method shown in FIG. 1 is mentioned. FIG. 1 is a diagram showing an example of a pulse laser irradiation method. As shown in FIG. 1, an irradiation area is set on the surface of the glass substrate. In a later step, a plating film is selectively formed only in the region irradiated with the pulse laser, that is, in this irradiation area. Then, after irradiating the laser at a predetermined scanning speed in the x direction (right direction in FIG. 1) from the point indicated by St, the laser is moved at a predetermined interval in the y direction (upward direction in FIG. 1), − After irradiating the laser in the x direction (left direction in FIG. 1) at a predetermined scanning speed, the laser is moved again in the y direction at a predetermined interval. The irradiation spot diameter corresponds to the beam diameter of the laser, but the irradiation spots do not have to overlap each other, and there may be an interval between the irradiation spots. In this method, the laser irradiation amount per unit area can be adjusted by appropriately adjusting the scanning speed and interval (pitch interval).
 めっき皮膜の密着性の観点から、パルスレーザーが照射されたガラス表面の算術平均粗さ(Ra)は、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。一方、Raの値が大きすぎるとめっき品の強度が低下するおそれがあるので、Raは、10μm以下であることが好ましく、5μm以下であることがより好ましい。本明細書におけるRaは、JIS B 0601(2001)に準拠した方法で得られる値である。 From the viewpoint of adhesion of the plating film, the arithmetic average roughness (Ra) of the glass surface irradiated with the pulse laser is preferably 0.1 μm or more, and more preferably 0.2 μm or more. On the other hand, if the value of Ra is too large, the strength of the plated product may be lowered. Therefore, Ra is preferably 10 μm or less, and more preferably 5 μm or less. Ra in this specification is a value obtained by a method based on JISJB 0601 (2001).
 次に、第2工程において、ガラス基材の表面に無電解めっき触媒を付着させる。無電解めっき触媒としては特に限定されず、無電解めっき液に対して触媒作用を有する金属元素を含有するものであればよい。当該金属元素としては、パラジウム(Pd)、銀(Ag)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、鉄(Fe)、コバルト(Co)、亜鉛(Zn)、金(Au)、白金(Pt)、スズ(Sn)などが挙げられる。これらの金属元素は、第4工程で用いる無電解めっき液の種類により適宜選択できる。そして、ガラス基材を上記金属元素を含む水溶液で処理した後に還元剤を含む水溶液で処理して、無電解めっき触媒を活性化させることができる。 Next, in the second step, an electroless plating catalyst is adhered to the surface of the glass substrate. The electroless plating catalyst is not particularly limited as long as it contains a metal element having a catalytic action with respect to the electroless plating solution. As the metal element, palladium (Pd), silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), iron (Fe), cobalt (Co), zinc (Zn), gold (Au) , Platinum (Pt), tin (Sn), and the like. These metal elements can be appropriately selected depending on the type of electroless plating solution used in the fourth step. And after processing a glass base material with the aqueous solution containing the said metal element, it can process with the aqueous solution containing a reducing agent, and can activate an electroless-plating catalyst.
 次に、第3工程において、前記ガラス基材において、前記パルスレーザーが照射されていない箇所に付着した前記触媒を選択的に失活させるか又は前記触媒を選択的に除去する。 Next, in the third step, in the glass substrate, the catalyst adhering to a portion not irradiated with the pulse laser is selectively deactivated or the catalyst is selectively removed.
 第3工程において前記触媒を除去する方法は特に限定されず、ガラス基材に対して超音波処理を施す方法やガラス基材の表面を流水で洗浄する方法を挙げることもできる。しかしながら、パルスレーザーが照射されていない箇所に付着した触媒を、より選択的に失活させる又は除去する観点から、前記触媒を失活させる化合物を含有する液にガラス基材を接触させる方法又は前記触媒を除去する化合物を含有する液にガラス基材を接触させる方法が好ましい。液にガラス基材を接触させる方法としては、触媒を失活させる化合物を含有する液にガラス基材を浸す方法、触媒を除去する化合物を含有する液にガラス基材を浸す方法、触媒を失活させる化合物を含有する液をガラス基材に塗布する方法、触媒を除去する化合物を含有する液をガラス基材に塗布する方法が挙げられる。 The method for removing the catalyst in the third step is not particularly limited, and examples thereof include a method for subjecting the glass substrate to ultrasonic treatment and a method for washing the surface of the glass substrate with running water. However, from the viewpoint of more selectively deactivating or removing the catalyst adhering to the portion not irradiated with the pulse laser, a method of bringing the glass substrate into contact with a liquid containing a compound that deactivates the catalyst or the above A method of bringing the glass substrate into contact with a liquid containing a compound for removing the catalyst is preferable. The glass substrate can be brought into contact with the solution by immersing the glass substrate in a solution containing a compound that deactivates the catalyst, by immersing the glass substrate in a solution containing a compound that removes the catalyst, or by losing the catalyst. The method of apply | coating the liquid containing the compound to be activated to a glass base material and the method of apply | coating the liquid containing the compound which removes a catalyst to a glass base material are mentioned.
 第3工程において、触媒を失活させる化合物を含有する液にガラス基材を接触させる場合には、当該化合物が硫黄化合物であることが好ましい。本発明者らは、パラジウム触媒を付着させたガラス基材を用意し、硫黄化合物を含有する液に浸す前のガラス基材表面の化学組成と、硫黄化合物を含有する液に浸した後のガラス基材表面の化学組成とを、光電子分光装置(XPS)を用いて分析した。その結果、硫黄化合物を含有する液に浸した後も基材表面にはパラジウムが存在していることがわかった。また、硫黄化合物を含有する液に浸すことで、パラジウムに由来するピークの位置が変化することもわかった。本発明者らは、この結果は硫黄原子がパラジウムに配位したことを示すものであると考えていて、これによりパラジウム触媒が失活すると推定している。 In the third step, when the glass substrate is brought into contact with a liquid containing a compound that deactivates the catalyst, the compound is preferably a sulfur compound. The present inventors prepared a glass base material to which a palladium catalyst is attached, the chemical composition of the surface of the glass base material before immersion in a liquid containing a sulfur compound, and the glass after immersion in a liquid containing a sulfur compound. The chemical composition of the substrate surface was analyzed using a photoelectron spectrometer (XPS). As a result, it was found that palladium was present on the surface of the substrate even after immersion in a liquid containing a sulfur compound. It was also found that the position of the peak derived from palladium changes when immersed in a liquid containing a sulfur compound. The present inventors consider that this result indicates that the sulfur atom is coordinated to palladium, and this presumes that the palladium catalyst is deactivated.
 前記硫黄化合物が、チオカルボニル基、チオール基、スルフィド基からなる群から選択される少なくとも1種の官能基を有する化合物であることが好ましい。チオカルボニル基を有する硫黄化合物としては、チオ尿素などが挙げられる。チオール基を有する硫黄化合物としては、トリアジンチオール、メルカプトベンゾチアゾール、メルカプト酢酸、チオシアン酸などが挙げられる。スルフィド基を有する硫黄化合物としては、ジメチルスルフィド、メチオニンなどが挙げられる。 The sulfur compound is preferably a compound having at least one functional group selected from the group consisting of a thiocarbonyl group, a thiol group, and a sulfide group. Examples of the sulfur compound having a thiocarbonyl group include thiourea. Examples of the sulfur compound having a thiol group include triazine thiol, mercaptobenzothiazole, mercaptoacetic acid, and thiocyanic acid. Examples of the sulfur compound having a sulfide group include dimethyl sulfide and methionine.
 硫黄化合物を含有する液の濃度が低すぎると、触媒を選択的に失活させることができなくなるおそれがある。かかる観点から、硫黄化合物の濃度は、0.001ppm以上であることが好ましい。一方、硫黄化合物の濃度が高すぎると、パルスレーザーを照射した箇所に付着した触媒も失活するおそれがある。かかる観点から、硫黄化合物の濃度は、100ppm以下であることが好ましい。 If the concentration of the liquid containing the sulfur compound is too low, the catalyst may not be selectively deactivated. From this viewpoint, the concentration of the sulfur compound is preferably 0.001 ppm or more. On the other hand, if the concentration of the sulfur compound is too high, the catalyst attached to the portion irradiated with the pulse laser may be deactivated. From this viewpoint, the concentration of the sulfur compound is preferably 100 ppm or less.
 前記触媒を失活させる化合物を含有する液に用いられる溶媒は特に限定されず通常、水やアルコールである。触媒を失活させる化合物を含有する液にガラス基材を浸す場合、ガラス基材を浸す際の温度は特に限定されず通常、5~90℃である。ガラス基材を浸す時間も特に限定されず通常、1秒~30分である。触媒を失活させる化合物を含有する液をガラス基材に塗布する方法としては、ガラス基材に当該液をスプレー法により塗布する方法が挙げられる。 The solvent used in the liquid containing the compound that deactivates the catalyst is not particularly limited, and is usually water or alcohol. When the glass substrate is immersed in a liquid containing a compound that deactivates the catalyst, the temperature at which the glass substrate is immersed is not particularly limited, and is usually 5 to 90 ° C. The time for dipping the glass substrate is not particularly limited, and is usually 1 second to 30 minutes. Examples of the method of applying a liquid containing a compound that deactivates the catalyst to a glass substrate include a method of applying the liquid to a glass substrate by a spray method.
 第3工程において、触媒を除去する化合物を含有する液にガラス基材を接触させる場合には、当該化合物がキレート化合物又はシアン化物であることが好ましい。取り扱い性の観点から、前記触媒を除去する化合物が、アミノ酸、アミノアルコール、ポリアミン、ポリカルボン酸、ポリケトンからなる群から選択される少なくとも1種のキレート化合物であることが好ましい。アミノ酸としては、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリンなどが挙げられる。アミノアルコールとしては、トリエタノールアミンなどが挙げられる。ポリアミンとしては、エチレンジアミンなどが挙げられる。ポリカルボン酸としては、クエン酸、コハク酸、マレイン酸、フマル酸、酒石酸、酒石酸カリウムなどが挙げられる。ポリケトンとしては、アセチルアセトンなどが挙げられる。 In the third step, when the glass substrate is brought into contact with a liquid containing a compound that removes the catalyst, the compound is preferably a chelate compound or a cyanide. From the viewpoint of handleability, the compound that removes the catalyst is preferably at least one chelate compound selected from the group consisting of amino acids, amino alcohols, polyamines, polycarboxylic acids, and polyketones. Examples of amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine and the like. Examples of amino alcohols include triethanolamine. Examples of the polyamine include ethylenediamine. Examples of the polycarboxylic acid include citric acid, succinic acid, maleic acid, fumaric acid, tartaric acid, and potassium tartrate. Examples of the polyketone include acetylacetone.
 本発明者らは、パラジウム触媒を付着させたガラス基材を用意し、キレート化合物を含有する液に浸す前のガラス基材表面の化学組成と、キレート化合物を含有する液に浸した後のガラス基材表面の化学組成とを、光電子分光装置(XPS)を用いて分析した。その結果、キレート化合物を含有する液に浸すことにより、基材表面のパラジウム触媒が除去されていることがわかった。また、ガラス基材を浸した後の液を、ICP発光分析装置を用いて調べたところ、当該液にはパラジウムが含まれていることが分かった。 The present inventors have prepared a glass substrate to which a palladium catalyst is attached, the chemical composition of the surface of the glass substrate before being immersed in the liquid containing the chelate compound, and the glass after being immersed in the liquid containing the chelate compound The chemical composition of the substrate surface was analyzed using a photoelectron spectrometer (XPS). As a result, it was found that the palladium catalyst on the surface of the base material was removed by immersing in a liquid containing a chelate compound. Moreover, when the liquid after immersing a glass base material was investigated using the ICP emission spectrometer, it turned out that the said liquid contains palladium.
 上記シアン化物としては、シアン化カリウムやシアン化ナトリウムなどが挙げられる。 Examples of the cyanide include potassium cyanide and sodium cyanide.
 キレート化合物又はシアン化物の濃度が低すぎると、触媒を選択的に除去することができなくなるおそれがある。かかる観点から、キレート化合物又はシアン化物の濃度は、0.001M以上であることが好ましい。一方、キレート化合物又はシアン化物の濃度が高すぎると、パルスレーザーを照射した箇所に付着した触媒も除去されるおそれがある。かかる観点から、キレート化合物又はシアン化物の濃度は、3M以下であることが好ましい。 If the concentration of the chelate compound or cyanide is too low, the catalyst may not be selectively removed. From this viewpoint, the concentration of the chelate compound or cyanide is preferably 0.001M or more. On the other hand, if the concentration of the chelate compound or cyanide is too high, the catalyst attached to the portion irradiated with the pulse laser may be removed. From this viewpoint, the concentration of the chelate compound or cyanide is preferably 3M or less.
 前記触媒を除去する化合物を含有する液に用いられる溶媒は特に限定されず通常、水やアルコールである。ガラス基材を浸す際の温度は特に限定されず通常、5~90℃である。ガラス基材を浸す時間も特に限定されず通常、1秒~30分である。触媒を除去する化合物を含有する液をガラス基材に塗布する方法としては、ガラス基材に当該液をスプレー法により塗布する方法が挙げられる。 The solvent used in the liquid containing the compound for removing the catalyst is not particularly limited, and is usually water or alcohol. The temperature at which the glass substrate is immersed is not particularly limited, and is usually 5 to 90 ° C. The time for dipping the glass substrate is not particularly limited, and is usually 1 second to 30 minutes. Examples of the method of applying a liquid containing a compound for removing the catalyst to a glass substrate include a method of applying the liquid to a glass substrate by a spray method.
 第4工程において、第3工程の後に無電解めっきを行い、前記パルスレーザーを照射した領域にのみ選択的にめっき皮膜を形成する。このとき、前記めっき皮膜が、ニッケル、銅、銀、金、パラジウム、白金、ロジウム、ルテニウム、スズ、鉄、コバルト及びこれらの合金からなる群から選択される少なくとも1種であることが好ましい。ここで、上記合金は、これらの少なくとも1種の金属元素を50質量%以上含有する合金のことをいう。 In the fourth step, electroless plating is performed after the third step, and a plating film is selectively formed only in the region irradiated with the pulse laser. At this time, the plating film is preferably at least one selected from the group consisting of nickel, copper, silver, gold, palladium, platinum, rhodium, ruthenium, tin, iron, cobalt, and alloys thereof. Here, the said alloy means the alloy containing 50 mass% or more of these at least 1 sort (s) of metal elements.
 第4工程で用いられる無電解めっきとしては、無電解ニッケルめっき、無電解銅めっき、無電解銀めっき、無電解金めっき、無電解パラジウム、無電解白金めっき、無電解ロジウムめっき、無電解ルテニウムめっき、無電解スズめっき、無電解鉄めっき、無電解コバルトめっき又はこれらの無電解合金めっきが挙げられる。ここで、上記無電解合金めっきは、これらの少なくとも1種の金属元素を50質量%以上含有する無電解めっきのことをいう。無電解めっきの種類を変えてこの工程を複数回行ってもよい。 As the electroless plating used in the fourth step, electroless nickel plating, electroless copper plating, electroless silver plating, electroless gold plating, electroless palladium, electroless platinum plating, electroless rhodium plating, electroless ruthenium plating , Electroless tin plating, electroless iron plating, electroless cobalt plating, or electroless alloy plating thereof. Here, the electroless alloy plating refers to electroless plating containing 50% by mass or more of these at least one metal element. You may perform this process in multiple times, changing the kind of electroless plating.
 以上説明したように、本発明の製造方法によれば、特殊なガラス基材を用いることなくガラス基材の表面に所望のめっき皮膜パターンを正確に形成することができる。後述する実施例でも実証されているように、パルスレーザーによりパターンを形成してその後に無電解めっき処理をすると、レーザーを照射した領域にめっき皮膜を形成することができた。しかしながら、第3工程を行わなかった場合、レーザーを照射した領域だけでなく、レーザーを照射しなかった領域にもめっき皮膜が形成された(比較例1)。本発明の製造方法を用いれば、レーザーが照射されていない箇所に付着した触媒を選択的に失活させるか又は選択的に除去することができるので、レーザーを照射した領域にのみ選択的にめっき皮膜を形成することができる。 As described above, according to the manufacturing method of the present invention, a desired plating film pattern can be accurately formed on the surface of a glass substrate without using a special glass substrate. As demonstrated in the examples described later, when a pattern was formed by a pulse laser and then electroless plating was performed, a plating film could be formed in the region irradiated with the laser. However, when the third step was not performed, a plating film was formed not only in the region irradiated with the laser but also in the region not irradiated with the laser (Comparative Example 1). If the production method of the present invention is used, the catalyst adhering to the portion not irradiated with the laser can be selectively deactivated or selectively removed, so that only the region irradiated with the laser is selectively plated. A film can be formed.
 また、本発明の製造方法で形成されためっき皮膜は優れた密着性を有する。近年、製品の軽量化や高性能化にともなって、めっき品に要求される性能も厳しくなっていて、皮膜パターンがより微細なめっき品が求められている。しかしながら、パターンのピッチが微細になるとめっき皮膜のより高度な密着性が要求されるようになる。したがって、微細な皮膜パターンを有するめっき品を得る場合、本発明の製造方法を用いることのメリットは大きい。 Also, the plating film formed by the production method of the present invention has excellent adhesion. In recent years, with the reduction in weight and performance of products, the performance required for plated products has become strict, and plated products with a finer film pattern are required. However, when the pitch of the pattern becomes finer, higher adhesion of the plating film is required. Therefore, when obtaining a plated product having a fine film pattern, the merit of using the manufacturing method of the present invention is great.
 本発明の製造方法における第4工程の後に、さらに他の工程を備えてもよい。当該他の工程としては、電解めっき工程や各種表面処理工程が挙げられる。電解めっきとしては、電解ニッケルめっき、電解銅めっき、電解銀めっき、電解金めっき、電解パラジウムめっき、電解スズめっき、電解鉄めっき、電解ビスマスめっき、電解白金めっき、電解ロジウム、電解ルテニウム、電解亜鉛めっき又はこれらの電解合金めっきが挙げられる。ここで、上記無電解合金めっきは、これらの少なくとも1種の金属元素を50質量%以上含有する電解めっきのことをいう。各種表面処理工程としては、コールドスプレー法により金属を吹き付ける工程や金属ペーストを塗布する工程が挙げられる。このとき用いられる金属は、銅、スズ、金、銀、ニッケル、鉄、パラジウム、ルテニウム、ロジウム、イリジウム、インジウム、亜鉛、アルミニウム、タングステン、クロム、マグネシウム、チタン、シリコン又はこれらの合金などである。これらの他の工程は複数回行ってもよく、工程は同じであっても異なっていてもかまわない。また第4工程の後に、熱処理によりガラス基材の機械的強度を向上させることもできる。 Further steps may be provided after the fourth step in the manufacturing method of the present invention. Examples of the other processes include an electrolytic plating process and various surface treatment processes. Electrolytic plating includes electrolytic nickel plating, electrolytic copper plating, electrolytic silver plating, electrolytic gold plating, electrolytic palladium plating, electrolytic tin plating, electrolytic iron plating, electrolytic bismuth plating, electrolytic platinum plating, electrolytic rhodium, electrolytic ruthenium, and electrolytic zinc plating. Or these electrolytic alloy plating is mentioned. Here, the electroless alloy plating refers to electrolytic plating containing at least 50% by mass of these at least one metal element. Examples of the various surface treatment steps include a step of spraying metal by a cold spray method and a step of applying a metal paste. The metal used at this time is copper, tin, gold, silver, nickel, iron, palladium, ruthenium, rhodium, iridium, indium, zinc, aluminum, tungsten, chromium, magnesium, titanium, silicon, or an alloy thereof. These other steps may be performed a plurality of times, and the steps may be the same or different. Moreover, the mechanical strength of a glass base material can also be improved by heat processing after a 4th process.
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
実施例1
[レーザー照射]
(ガラス基材)
 ガラス基材として縦76mm×横26mm×厚さ1.1mmのソーダライムガラス(「松波スライドグラス S7213」)を準備した。
Example 1
[Laser irradiation]
(Glass substrate)
Soda lime glass ("Matsunami slide glass S7213") having a length of 76 mm, a width of 26 mm, and a thickness of 1.1 mm was prepared as a glass substrate.
(加工方法)
 コヒレント・ジャパン株式会社製のパルス発振全固体レーザー「Talisker HE」を用いた。
  波長:355nm
  平均出力:2W
  加工点での平均出力:0.8W
  パルス幅:20ピコ秒
  周波数:50kHz
(Processing method)
A pulse oscillation all solid-state laser “Talisker HE” manufactured by Coherent Japan Co., Ltd. was used.
Wavelength: 355nm
Average output: 2W
Average output at the processing point: 0.8W
Pulse width: 20 picoseconds Frequency: 50 kHz
 そして、図1に示す方法により、ガラス基材にパルスレーザーを照射した。具体的には、ガラス基材の表面に20mm×10mmの照射エリアを設定した。この照射エリアにおいて、Stで示されているポイントからx方向に走査速度100mm/秒で照射エリアの右端までパルスレーザーを照射した。そして、パルスレーザーをy方向に15μm移動させて、-x方向に走査速度100mm/秒で照射エリアの左端までパルスレーザーを照射した。これを繰り返すことにより、上記照射エリア全体にパルスレーザーを照射した。 Then, the glass substrate was irradiated with a pulse laser by the method shown in FIG. Specifically, an irradiation area of 20 mm × 10 mm was set on the surface of the glass substrate. In this irradiation area, a pulse laser was irradiated from the point indicated by St to the right end of the irradiation area in the x direction at a scanning speed of 100 mm / second. Then, the pulse laser was moved 15 μm in the y direction, and the pulse laser was irradiated to the left end of the irradiation area at a scanning speed of 100 mm / second in the −x direction. By repeating this, the entire irradiation area was irradiated with a pulse laser.
 パルスレーザー照射後、ガラス基材の表面を観察したところ、図1に示されるように、スポット(凹部)が連なったように加工されていることがわかった。1つのスポット径を測定したところ、スポット径は約15μmであった。 When the surface of the glass substrate was observed after the pulse laser irradiation, it was found that it was processed as a series of spots (concave portions) as shown in FIG. When one spot diameter was measured, the spot diameter was about 15 μm.
[無電解めっき]
(前処理)
 レーザー加工されたガラス基材を、50℃に保温した水酸化カリウム水溶液(濃度:50g/L)に5分間浸した。その後、ガラス基材をイオン交換水で洗浄した。次いで、ガラス基材を、50℃に保温したコンディショニング液(濃度:50mL/L、上村工業株式会社製「スルカップ THRU-CUP MTE-1-A」)に5分間浸した。その後、ガラス基材をイオン交換水で洗浄した。
[Electroless plating]
(Preprocessing)
The laser-processed glass substrate was immersed in an aqueous potassium hydroxide solution (concentration: 50 g / L) kept at 50 ° C. for 5 minutes. Thereafter, the glass substrate was washed with ion exchange water. Next, the glass substrate was immersed in a conditioning solution (concentration: 50 mL / L, “Sulcup THRU-CUP MTE-1-A” manufactured by Uemura Kogyo Co., Ltd.) kept at 50 ° C. for 5 minutes. Thereafter, the glass substrate was washed with ion exchange water.
(無電解めっき触媒付着処理)
 前処理されたガラス基材を、室温のパラジウム触媒液(濃度:50mL/L、上村工業株式会社製「アクチベーター A-10X」)に1分間浸した。その後、ガラス基材をイオン交換水で3回洗浄した。
(Electroless plating catalyst adhesion treatment)
The pretreated glass substrate was immersed in a palladium catalyst solution (concentration: 50 mL / L, “Activator A-10X” manufactured by Uemura Kogyo Co., Ltd.) for 1 minute. Thereafter, the glass substrate was washed three times with ion exchange water.
(活性化処理)
 パラジウム触媒を付着させたガラス基材を、50℃に保温した次亜リン酸ナトリウム水溶液(濃度:0.27M)に30秒間浸漬し、パラジウム触媒を活性化させた。その後、ガラス基材をイオン交換水で洗浄した。
(Activation process)
The glass substrate to which the palladium catalyst was adhered was immersed in an aqueous sodium hypophosphite solution (concentration: 0.27 M) kept at 50 ° C. for 30 seconds to activate the palladium catalyst. Thereafter, the glass substrate was washed with ion exchange water.
(触媒失活処理)
 活性化処理されたガラス基材を、50℃に保温したチオ尿素水溶液(濃度:0.1ppm)に1分間浸して、パルスレーザーが照射されていない箇所に付着したパラジウム触媒を選択的に失活させた。その後、ガラス基材をイオン交換水で3回洗浄した。
(Catalyst deactivation treatment)
The activated glass substrate is immersed in a thiourea aqueous solution (concentration: 0.1 ppm) kept at 50 ° C. for 1 minute to selectively deactivate the palladium catalyst adhering to the portion not irradiated with the pulse laser. I let you. Thereafter, the glass substrate was washed three times with ion exchange water.
(無電解Niめっき処理)
 ガラス基材を、75℃に保温したpH4.4の無電解Niめっき液に35分間浸漬して、無電解Niめっき処理をして、ガラス基材の表面に膜厚5μmの無電解Niめっき層を形成した。その後、基材をイオン交換水で3回洗浄した。無電解Niめっき液の組成は下記の通りである。
  ・日本エレクトロプレイティング・エンジニヤース株式会社(EEJA)製「ELN240 M2」:150mL/L
  ・日本エレクトロプレイティング・エンジニヤース株式会社(EEJA)製「ELN240 M1」:50mL/L
  ・日本エレクトロプレイティング・エンジニヤース株式会社(EEJA)製「ELN240 R3」:6mL/L
(Electroless Ni plating treatment)
The glass substrate is immersed in an electroless Ni plating solution having a pH of 4.4 kept at 75 ° C. for 35 minutes, subjected to electroless Ni plating treatment, and an electroless Ni plating layer having a thickness of 5 μm is formed on the surface of the glass substrate. Formed. Thereafter, the substrate was washed three times with ion exchange water. The composition of the electroless Ni plating solution is as follows.
・ "ELN240 M2" manufactured by Nippon Electroplating Engineers Co., Ltd. (EEJA): 150mL / L
・ "ELN240 M1" manufactured by Nippon Electroplating Engineers Co., Ltd. (EEJA): 50mL / L
・ "ELN240 R3" manufactured by Nippon Electroplating Engineers Co., Ltd. (EEJA): 6mL / L
(置換Auめっき処理)
 Niめっき層が形成されたガラス基材を、55℃に保温した金めっき液(EEJA製「PRECIOUSFAB IGS8000SPF」)に10分間浸漬して、Niめっき層の上に、厚さ0.05μmの置換Auめっき層を形成してめっき品を得た。
(Substitution Au plating treatment)
The glass substrate on which the Ni plating layer is formed is immersed in a gold plating solution (“PRECIOUSFAB IGS8000SPF” manufactured by EEJA) kept at 55 ° C. for 10 minutes, and a substituted Au having a thickness of 0.05 μm is formed on the Ni plating layer. A plating layer was formed to obtain a plated product.
[評価]
(表面観察)
 得られためっき品の表面をマイクロスコープで観察した。得られた画像を図2に示す。図2の1はガラス基材であり、2は置換金めっき皮膜である。図2に示されるように、「触媒失活処理」を行うことにより、パルスレーザーを照射した領域にのみ選択的にめっき皮膜が形成された。
[Evaluation]
(Surface observation)
The surface of the obtained plated product was observed with a microscope. The obtained image is shown in FIG. 2 in FIG. 2 is a glass substrate, and 2 is a displacement gold plating film. As shown in FIG. 2, by performing the “catalyst deactivation treatment”, a plating film was selectively formed only in the region irradiated with the pulse laser.
(密着性試験)
 密着性試験はJIS H8504に記載されているはんだ付け試験方法に従い行った。このときのL形金具は板厚0.5mmの無酸素銅板であった。そして、はんだ付け部の面積が5mm×5mになるように、指定された形状にプレス成型した後、下地として膜厚3μmのニッケルめっきを施し、膜厚0.05μm金めっきを施した。一方、めっき品の表面にはんだを塗布(φ8mm×t0.2mm)した後、300℃で1分間加熱した。そして、L形金具とめっき品とをはんだ付けをして試験片を得た。得られた試験片をインストロン社製引張試験機「3382床置き型試験システム」に取り付けて、密着性試験を行った。はんだは、Tarutin Kester社製の鉛フリーはんだペースト「TSC-254-5042SF 12-1」を用いた。図3に引張試験後の画像を示す。図3に示すように、めっき皮膜はガラスとともに剥がれた。
(Adhesion test)
The adhesion test was performed according to the soldering test method described in JIS H8504. The L-shaped metal fitting at this time was an oxygen-free copper plate having a plate thickness of 0.5 mm. And after press-molding to the designated shape so that the area of a soldering part might be set to 5 mm x 5 m, nickel plating with a film thickness of 3 micrometers was given as a foundation | substrate, and 0.05 micrometers film thickness gold plating was given. On the other hand, after applying solder (φ8 mm × t0.2 mm) to the surface of the plated product, it was heated at 300 ° C. for 1 minute. Then, the L-shaped bracket and the plated product were soldered to obtain a test piece. The obtained test piece was attached to an Instron tensile tester “3382 floor-standing type test system”, and an adhesion test was performed. As the solder, a lead-free solder paste “TSC-254-5042SF 12-1” manufactured by Tarutin Kester was used. FIG. 3 shows an image after the tensile test. As shown in FIG. 3, the plating film peeled off with the glass.
実施例2
 「無電解めっき触媒付着処理」において、パラジウム触媒液に浸漬させる時間を2分に変更し、「触媒失活処理」の代わりに「触媒除去処理」を行った。「触媒除去処理」では、室温のグリシン水溶液(濃度:0.05M)に活性化処理されたガラス基材を30秒間浸漬させた以外は実施例1と同様にしてめっき品を得て、その表面をマイクロスコープで観察した。得られた画像を図4に示す。図4の1はガラス基材であり、2は置換Auめっき皮膜である。図4に示されるように、「触媒除去処理」を行うことにより、パルスレーザーを照射した領域にのみ選択的にめっき皮膜が形成された。そして、実施例1と同様にして密着性試験を行った。その結果、めっき皮膜はガラスとともに剥がれた。
Example 2
In “electroless plating catalyst adhesion treatment”, the time of immersion in the palladium catalyst solution was changed to 2 minutes, and “catalyst removal treatment” was performed instead of “catalyst deactivation treatment”. In “catalyst removal treatment”, a plated product was obtained in the same manner as in Example 1 except that a glass substrate that had been activated in a glycine aqueous solution (concentration: 0.05 M) at room temperature was immersed for 30 seconds. Was observed with a microscope. The obtained image is shown in FIG. 4 in FIG. 4 is a glass substrate, and 2 is a substituted Au plating film. As shown in FIG. 4, by performing the “catalyst removal treatment”, a plating film was selectively formed only in the region irradiated with the pulse laser. And the adhesiveness test was done like Example 1. As a result, the plating film peeled off with the glass.
実施例3
 ガラス基材を、76mm×26mm×1.1mmのホウケイ酸ガラス(「松波スライドグラス S1127」)に変えた以外は実施例1と同様にしてめっき品を得た。そして、実施例1と同様にして密着性試験を行った。その結果、めっき皮膜はガラスとともに剥がれた。
Example 3
A plated product was obtained in the same manner as in Example 1 except that the glass substrate was changed to 76 mm × 26 mm × 1.1 mm borosilicate glass (“Matsunami slide glass S1127”). And the adhesiveness test was done like Example 1. As a result, the plating film peeled off with the glass.
実施例4
 ガラス基材を縦70mm×横30mm×厚さ0.55mmの強化ガラス(AGC旭硝子製「Dragontrail(ドラゴントレイル)」)に変え、パルスレーザーの照射において、加工点での平均出力を1.1W、y方向への移動距離を6μm、走査速度を300mm/秒に変えた以外は実施例1と同様にガラス基材にパルスレーザーを照射した。「Dragontrail」は化学強化されたガラスであり、ガラス表面のNaをKに交換したものである。
Example 4
The glass substrate is changed to tempered glass of 70 mm length × 30 mm width × 0.55 mm thickness (“Dragontrail” manufactured by AGC Asahi Glass), and the average output at the processing point is 1.1 W when irradiated with pulsed laser. The glass substrate was irradiated with a pulse laser in the same manner as in Example 1 except that the moving distance in the y direction was changed to 6 μm and the scanning speed was changed to 300 mm / second. “Dragontrail” is a chemically strengthened glass, in which Na + on the glass surface is replaced with K + .
 株式会社キーエンス製のカラー3Dレーザー顕微鏡「VK-9700」(観察倍率50倍)を用いて、JIS B 0601(2001)に準拠した方法により、パルスレーザーが照射された箇所の算術平均粗さ(Ra)を測定した。その結果、Raは0.41μmであった。 Using a color 3D laser microscope “VK-9700” (50 × observation magnification) manufactured by Keyence Corporation, the arithmetic average roughness (Ra) of the portion irradiated with the pulse laser by a method in accordance with JIS B0601 (2001) ) Was measured. As a result, Ra was 0.41 μm.
 表面粗さを測定した後、実施例2と同様にしてガラス基材の表面にめっき皮膜を形成させた。その結果、パルスレーザーを照射した領域にのみ選択的にめっき皮膜が形成された。そして、実施例1と同様にして密着性試験を行ったところ、めっき皮膜はガラスとともに剥がれた。 After measuring the surface roughness, a plating film was formed on the surface of the glass substrate in the same manner as in Example 2. As a result, a plating film was selectively formed only in the region irradiated with the pulse laser. And when the adhesiveness test was done like Example 1, the plating film peeled off with glass.
実施例5
 パルスレーザーの照射において、加工点での平均出力を1.1W、y方向への移動距離を10μm、走査速度を50mm/秒に変えた以外は実施例4と同様にしてガラス基材にパルスレーザーを照射した。そして、実施例4と同様にしてパルスレーザーが照射された箇所の算術平均粗さ(Ra)を測定した。その結果、Raは2.81μmであった。
Example 5
In the pulse laser irradiation, a pulse laser was applied to the glass substrate in the same manner as in Example 4 except that the average output at the processing point was 1.1 W, the moving distance in the y direction was 10 μm, and the scanning speed was changed to 50 mm / sec. Was irradiated. And the arithmetic mean roughness (Ra) of the location irradiated with the pulse laser was measured like Example 4. As a result, Ra was 2.81 μm.
 表面粗さを測定した後、実施例2と同様にしてガラス基材の表面にめっき皮膜を形成させた。その結果、パルスレーザーを照射した領域にのみ選択的にめっき皮膜が形成された。そして、実施例1と同様にして密着性試験を行ったところ、めっき皮膜はガラスとともに剥がれた。 After measuring the surface roughness, a plating film was formed on the surface of the glass substrate in the same manner as in Example 2. As a result, a plating film was selectively formed only in the region irradiated with the pulse laser. And when the adhesiveness test was done like Example 1, the plating film peeled off with glass.
比較例1
 「触媒失活処理」及び「置換Auめっき処理」を行わなかった以外は実施例1と同様にしてめっき品を得て、その表面をマイクロスコープで観察した。得られた画像を図5に示す。図5の31はパルスレーザーを照射した箇所に形成されたNiめっき皮膜であり、32はガラス基材表面のパルスレーザーを照射していない箇所に形成されたNiめっき皮膜である。図5に示されるように、「触媒失活処理」又は「触媒除去処理」のいずれかを行わなければガラス基材の全面にめっき皮膜が形成された。また、パルスレーザーを照射していない箇所に形成されたNiめっき皮膜は、セロハンテープで容易に剥がれた。
Comparative Example 1
A plated product was obtained in the same manner as in Example 1 except that “catalyst deactivation treatment” and “substitution Au plating treatment” were not performed, and the surface thereof was observed with a microscope. The obtained image is shown in FIG. Reference numeral 31 in FIG. 5 denotes a Ni plating film formed at a location irradiated with a pulse laser, and reference numeral 32 denotes a Ni plating film formed at a location not irradiated with a pulse laser on the surface of the glass substrate. As shown in FIG. 5, a plating film was formed on the entire surface of the glass substrate unless either “catalyst deactivation treatment” or “catalyst removal treatment” was performed. Moreover, the Ni plating film formed in the location which was not irradiated with the pulse laser was easily peeled off with the cellophane tape.
比較例2
 パルスレーザーの照射において、加工点での平均出力を1W、y方向への移動距離を10μm、走査速度を300mm/秒に変えた以外は実施例4と同様にしてガラス基材にパルスレーザーを照射した。そして、実施例4と同様にしてレーザーが照射された箇所の算術平均粗さ(Ra)を測定した。その結果、Raは0.03μmであった。
Comparative Example 2
In the pulse laser irradiation, the glass substrate was irradiated with the pulse laser in the same manner as in Example 4 except that the average output at the processing point was 1 W, the moving distance in the y direction was 10 μm, and the scanning speed was changed to 300 mm / second. did. And the arithmetic mean roughness (Ra) of the location irradiated with the laser was measured like Example 4. FIG. As a result, Ra was 0.03 μm.
 表面粗さを測定した後、実施例2と同様にしてガラスの表面にめっき皮膜を形成させた。その結果、パルスレーザーを照射した領域にのみ選択的にめっき皮膜が形成されていたが、そのめっき皮膜はセロハンテープで容易に剥がすことができるものであった。 After measuring the surface roughness, a plating film was formed on the surface of the glass in the same manner as in Example 2. As a result, a plating film was selectively formed only in the region irradiated with the pulse laser, but the plating film could be easily peeled off with a cellophane tape.
  1  ガラス基材
  2  置換Auめっき皮膜
  31 パルスレーザーを照射した箇所に形成されたNiめっき皮膜
  32 ガラス基材表面のパルスレーザーを照射していない箇所に形成されたNiめっき皮膜
DESCRIPTION OF SYMBOLS 1 Glass base material 2 Substitution Au plating film 31 Ni plating film formed in the place irradiated with the pulse laser 32 Ni plating film formed in the place which does not irradiate the pulse laser of the glass substrate surface

Claims (8)

  1.  ガラス基材の表面にめっき皮膜パターンが形成されためっき品の製造方法であって;
     前記ガラス基材の表面の一部の領域にパルスレーザーを照射する第1工程と、
     前記ガラス基材の表面に無電解めっき触媒を付着させる第2工程と、
     前記ガラス基材において、前記パルスレーザーが照射されていない箇所に付着した前記触媒を選択的に失活させるか、又は前記触媒を選択的に除去する第3工程と、
     第3工程の後に無電解めっきを行い、前記パルスレーザーを照射した領域にのみ選択的にめっき皮膜を形成する第4工程とを備えることを特徴とするめっき品の製造方法。
    A method for producing a plated product in which a plating film pattern is formed on the surface of a glass substrate;
    A first step of irradiating a part of the surface of the glass substrate with a pulsed laser;
    A second step of attaching an electroless plating catalyst to the surface of the glass substrate;
    In the glass substrate, a third step of selectively deactivating the catalyst adhering to a portion not irradiated with the pulse laser, or selectively removing the catalyst;
    A method for producing a plated product, comprising: a fourth step of performing electroless plating after the third step and selectively forming a plating film only in the region irradiated with the pulse laser.
  2.  前記パルスレーザーのパルス幅が1×10-18~1×10-4秒である請求項1に記載の製造方法。 2. The manufacturing method according to claim 1, wherein the pulse width of the pulse laser is 1 × 10 −18 to 1 × 10 −4 seconds.
  3.  前記めっき皮膜が、ニッケル、銅、銀、金、パラジウム、白金、ロジウム、ルテニウム、スズ、鉄、コバルト及びこれらの合金からなる群から選択される少なくとも1種である請求項1又は2に記載の製造方法。 The said plating film is at least 1 sort (s) selected from the group which consists of nickel, copper, silver, gold | metal | money, palladium, platinum, rhodium, ruthenium, tin, iron, cobalt, and these alloys. Production method.
  4.  第3工程において、前記触媒を失活させる化合物又は前記触媒を除去する化合物を含有する液にガラス基材を接触させる請求項1~3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein in the third step, the glass substrate is brought into contact with a liquid containing a compound that deactivates the catalyst or a compound that removes the catalyst.
  5.  第3工程において、前記触媒を失活させる化合物が硫黄化合物である請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the compound that deactivates the catalyst in the third step is a sulfur compound.
  6.  前記硫黄化合物が、チオカルボニル基、チオール基、スルフィド基からなる群から選択される少なくとも1種の官能基を有する化合物である請求項5に記載の製造方法。 The method according to claim 5, wherein the sulfur compound is a compound having at least one functional group selected from the group consisting of a thiocarbonyl group, a thiol group, and a sulfide group.
  7.  第3工程において、前記触媒を除去する化合物がキレート化合物又はシアン化物である請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the compound for removing the catalyst in the third step is a chelate compound or a cyanide.
  8.  前記触媒を除去する化合物が、アミノ酸、アミノアルコール、ポリアミン、ポリカルボン酸、ポリケトンからなる群から選択される少なくとも1種のキレート化合物である請求項7に記載の製造方法。 The production method according to claim 7, wherein the compound for removing the catalyst is at least one chelate compound selected from the group consisting of amino acids, amino alcohols, polyamines, polycarboxylic acids, and polyketones.
PCT/JP2016/059264 2015-03-24 2016-03-23 Method for producing plated article WO2016152938A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16768841.5A EP3276042B1 (en) 2015-03-24 2016-03-23 Method for producing plated article
JP2017508399A JP6264596B2 (en) 2015-03-24 2016-03-23 Manufacturing method of plated products
US15/314,761 US20170191165A1 (en) 2015-03-24 2016-03-23 Method for producing plated article
CN201680001511.2A CN106460177A (en) 2015-03-24 2016-03-23 Method for producing plated article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061779 2015-03-24
JP2015-061779 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152938A1 true WO2016152938A1 (en) 2016-09-29

Family

ID=56978210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059264 WO2016152938A1 (en) 2015-03-24 2016-03-23 Method for producing plated article

Country Status (5)

Country Link
US (1) US20170191165A1 (en)
EP (1) EP3276042B1 (en)
JP (1) JP6264596B2 (en)
CN (1) CN106460177A (en)
WO (1) WO2016152938A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180160A (en) * 2015-03-24 2016-10-13 オーエム産業株式会社 Production method of device
JP2019026879A (en) * 2017-07-27 2019-02-21 株式会社クオルテック Production method of electronic component, and electronic component
WO2019102701A1 (en) * 2017-11-21 2019-05-31 株式会社クオルテック Electronic component manufacturing method and electronic component
WO2021193679A1 (en) * 2020-03-25 2021-09-30 株式会社イオックス Plated object having pattern-shaped electroless plating layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306213B (en) * 2019-07-08 2020-08-04 广州三孚新材料科技股份有限公司 Tin plating solution for solar cell and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149782A (en) * 1984-01-17 1985-08-07 Inoue Japax Res Inc Selective plating method
JPH0681153A (en) * 1992-03-10 1994-03-22 Internatl Business Mach Corp <Ibm> Method for deposition of metal by laser
JPH06235169A (en) * 1993-02-05 1994-08-23 Teijin Ltd Method of metallizing surface of polyester fiber
JP2003013242A (en) * 2001-07-05 2003-01-15 Japan Science & Technology Corp Electroless plating method using fine particles fixed by light as catalyst
JP2008041938A (en) * 2006-08-07 2008-02-21 Institute Of Physical & Chemical Research Method for forming metal interconnection
JP2011017069A (en) * 2009-07-10 2011-01-27 Sankyo Kasei Co Ltd Method for manufacturing formed-circuit parts

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50112231A (en) * 1974-02-15 1975-09-03
US4637862A (en) * 1985-12-16 1987-01-20 General Motors Corporation Wire-glass composite and method of making same
EP0501095A1 (en) * 1991-03-01 1992-09-02 Lucien Diégo Laude Process for metallising metal containing dielectric surfaces
BE1007610A3 (en) * 1993-10-11 1995-08-22 Philips Electronics Nv METHOD FOR ENERGIZE APPLYING A PATTERN ON METAL an electrically insulating substrate.
TW300879B (en) * 1993-11-10 1997-03-21 Ibm
JP4332736B2 (en) * 2005-02-18 2009-09-16 セイコーエプソン株式会社 Wiring board manufacturing method
JP2007243034A (en) * 2006-03-10 2007-09-20 Seiko Epson Corp Manufacturing method of wiring board
JP2007243037A (en) * 2006-03-10 2007-09-20 Seiko Epson Corp Manufacturing method of wiring board
JP4706690B2 (en) * 2007-11-05 2011-06-22 パナソニック電工株式会社 Circuit board and manufacturing method thereof
US7816220B2 (en) * 2008-02-27 2010-10-19 President & Fellows Of Harvard College Laser-induced structuring of substrate surfaces
EP2233608B1 (en) * 2009-03-23 2016-03-23 ATOTECH Deutschland GmbH Pre-treatment process for electroless nickel plating
US8676545B2 (en) * 2010-07-07 2014-03-18 Rite-Hite Holding Corporation Methods and apparatus to determine air duct system configurations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149782A (en) * 1984-01-17 1985-08-07 Inoue Japax Res Inc Selective plating method
JPH0681153A (en) * 1992-03-10 1994-03-22 Internatl Business Mach Corp <Ibm> Method for deposition of metal by laser
JPH06235169A (en) * 1993-02-05 1994-08-23 Teijin Ltd Method of metallizing surface of polyester fiber
JP2003013242A (en) * 2001-07-05 2003-01-15 Japan Science & Technology Corp Electroless plating method using fine particles fixed by light as catalyst
JP2008041938A (en) * 2006-08-07 2008-02-21 Institute Of Physical & Chemical Research Method for forming metal interconnection
JP2011017069A (en) * 2009-07-10 2011-01-27 Sankyo Kasei Co Ltd Method for manufacturing formed-circuit parts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276042A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180160A (en) * 2015-03-24 2016-10-13 オーエム産業株式会社 Production method of device
JP2019026879A (en) * 2017-07-27 2019-02-21 株式会社クオルテック Production method of electronic component, and electronic component
WO2019102701A1 (en) * 2017-11-21 2019-05-31 株式会社クオルテック Electronic component manufacturing method and electronic component
JPWO2019102701A1 (en) * 2017-11-21 2020-12-03 株式会社クオルテック Manufacturing method of electronic parts and electronic parts
US11266025B2 (en) 2017-11-21 2022-03-01 Qualtec Co., Ltd. Electronic-component manufacturing method and electronic components
JP7171059B2 (en) 2017-11-21 2022-11-15 株式会社クオルテック Electronic component manufacturing method
WO2021193679A1 (en) * 2020-03-25 2021-09-30 株式会社イオックス Plated object having pattern-shaped electroless plating layer
JP2021155839A (en) * 2020-03-25 2021-10-07 株式会社イオックス Plated object having pattern-shaped electroless plating layer
JP7062312B2 (en) 2020-03-25 2022-05-06 株式会社イオックス Plated product with pattern-shaped electroless plating layer

Also Published As

Publication number Publication date
EP3276042B1 (en) 2024-01-31
JP6264596B2 (en) 2018-01-24
CN106460177A (en) 2017-02-22
EP3276042A4 (en) 2018-11-07
EP3276042A1 (en) 2018-01-31
JPWO2016152938A1 (en) 2017-10-12
US20170191165A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6264596B2 (en) Manufacturing method of plated products
JP6478982B2 (en) Novel adhesion promoting method for metallizing substrate surface
Kordás et al. Laser-assisted metal deposition from liquid-phase precursors on polymers
US20110042201A1 (en) In situ Plating And Soldering Of Materials Covered With A Surface Film
ES2703240T3 (en) Polyimide substrate and method of manufacturing the printed circuit board using the same
JP7171059B2 (en) Electronic component manufacturing method
CN104105353B (en) A kind of manufacture method of high-precision ceramic circuit board
JP2005022956A (en) Metallization of ceramic
US5059449A (en) Method of selectively providing a metal from the liquid phase on a substrate by means of a laser
ES2587104T3 (en) Process to metallize non-conductive plastic surfaces
RU2494492C1 (en) Method to create conducting paths
US20200208270A1 (en) Laser surface structuring treatment for plating
JP2007126743A (en) Pretreatment method for electroless plating and method for forming electroless plating film
JP6458285B2 (en) Device manufacturing method
JP6717487B2 (en) Method of manufacturing plated products
Pimenov et al. Laser activation of diamond surface for electroless metal plating
JP3619016B2 (en) Substrate and manufacturing method thereof
JPH06280031A (en) Electroless palladium plating method and electroless plating bath for the same
US3370973A (en) Activation of glass for electroless metal deposition of uniform thick metal films
JP2011225927A (en) Activation liquid for pretreatment of electroless palladium plating or electroless palladium alloy plating
CA2326049A1 (en) Method for coating surfaces of copper or of a copper alloy with a tin or tin alloy layer
JPH02190474A (en) Treatment of base for metalization
JP5956553B2 (en) Resin product with plating film and manufacturing method thereof
TW202202464A (en) Laminated film structure and method for manufacturing laminated film structure
Plat et al. Laser processing of thin glass printed circuit boards with a picosecond laser at 515 nm wavelength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768841

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016768841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15314761

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017508399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016768841

Country of ref document: EP