WO2016152065A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2016152065A1
WO2016152065A1 PCT/JP2016/001379 JP2016001379W WO2016152065A1 WO 2016152065 A1 WO2016152065 A1 WO 2016152065A1 JP 2016001379 W JP2016001379 W JP 2016001379W WO 2016152065 A1 WO2016152065 A1 WO 2016152065A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
pressure
internal combustion
fuel pressure
Prior art date
Application number
PCT/JP2016/001379
Other languages
French (fr)
Japanese (ja)
Inventor
喜幸 後藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016152065A1 publication Critical patent/WO2016152065A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Definitions

  • the present disclosure relates to an internal combustion engine control device including a fuel injection valve that injects fuel supplied from a high-pressure pump into a cylinder.
  • An in-cylinder internal combustion engine that directly injects fuel into a cylinder has a shorter time from injection to combustion than an intake port injection internal combustion engine that injects fuel into an intake port, and atomizes the injected fuel. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. Therefore, in a cylinder injection internal combustion engine, the fuel pumped up from the fuel tank by the electric low pressure pump is supplied to the high pressure pump driven by the power of the internal combustion engine, and the high pressure fuel discharged from the high pressure pump is supplied. Pressure is sent to the fuel injection valve.
  • in-cylinder internal combustion engines have a fuel pressure sensor that detects the pressure (fuel pressure) of the fuel supplied to the fuel injection valve, sets the target fuel pressure according to the operating state of the internal combustion engine, and detects it with the fuel pressure sensor.
  • the discharge amount of the high-pressure pump is feedback controlled so that the actual fuel pressure matches the target fuel pressure.
  • the fuel injection valve for in-cylinder injection that injects high-pressure fuel into the cylinder has a short injection time (injection pulse width), and the injection amount linearity (linearity) with respect to the injection time and the injection amount for each injection
  • injection pulse width injection pulse width
  • linearity linearity
  • a follow-up delay may occur in the actual fuel pressure with respect to the target fuel pressure, and the difference between the actual fuel pressure and the target fuel pressure may increase. .
  • the actual fuel pressure that is, the fuel pressure supplied to the fuel injection valve
  • the injection time may be shorter than the minimum injection time that can ensure the control accuracy of the injection amount. If the injection time is shorter than the minimum injection time, the control accuracy of the injection amount cannot be ensured, the injection amount variation becomes large, and there is a possibility of causing emission deterioration and misfire.
  • an object of the present disclosure is to provide a control device for an internal combustion engine that can satisfy a demand for cost reduction while preventing a problem caused by a delay in following the actual fuel pressure with respect to a target fuel pressure during deceleration.
  • the present disclosure includes a fuel injection valve that injects fuel supplied by a high-pressure pump into a cylinder, and a fuel pressure sensor that detects a fuel pressure that is a pressure of fuel supplied to the fuel injection valve, and the fuel pressure sensor detects the fuel pressure.
  • a control device for an internal combustion engine that controls a high-pressure pump so that the actual fuel pressure becomes a target fuel pressure set according to the operating state of the internal combustion engine, a delay in following the actual fuel pressure occurs with respect to the target fuel pressure when the internal combustion engine decelerates
  • the control unit includes a deceleration control unit that executes load increase control for increasing the load per cylinder of the internal combustion engine so that the injection time of the fuel injection valve does not fall below a predetermined value.
  • the load increase control is executed to increase the load per cylinder, thereby increasing the required injection amount and extending the injection time.
  • a predetermined value for example, the minimum injection time that can ensure the control accuracy of the injection amount or a value slightly larger than that.
  • a fuel injection valve for in-cylinder injection that injects fuel supplied by a high-pressure pump into the cylinder
  • a fuel injection valve for intake port injection that injects fuel supplied by a low-pressure pump to the intake port
  • a fuel pressure sensor that detects a fuel pressure that is a pressure of fuel supplied to the fuel injection valve for in-cylinder injection, and the actual fuel pressure detected by the fuel pressure sensor is set according to the operating state of the internal combustion engine
  • the control unit includes a deceleration control unit that performs fuel injection with the fuel injection valve for intake port injection.
  • FIG. 1 is a diagram illustrating a schematic configuration of a fuel supply system according to a first embodiment of the present disclosure.
  • FIG. 2 is a characteristic diagram showing the relationship between the injection time and the injection amount of the fuel injection valve for in-cylinder injection.
  • FIG. 3 is a time chart showing an execution example of the deceleration control of the comparative example.
  • FIG. 4 is a time chart illustrating an execution example of the deceleration control according to the first embodiment.
  • FIG. 5 is a flowchart showing the flow of processing of the deceleration control routine of the first embodiment.
  • FIG. 6 is a flowchart showing the flow of processing of the deceleration control routine of the second embodiment.
  • FIG. 7 is a diagram illustrating a schematic configuration of the fuel supply system according to the third embodiment.
  • FIG. 8 is a flowchart showing the flow of processing of the deceleration control routine of the third embodiment.
  • Example 1 A first embodiment of the present disclosure will be described with reference to FIGS.
  • a low pressure pump 12 for pumping up fuel is installed in the fuel tank 11 for storing fuel.
  • the low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source.
  • the fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13.
  • a pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by the fuel return pipe 16.
  • the high-pressure pump 14 is a plunger pump that sucks / discharges fuel by reciprocating the plunger in a cylindrical pump chamber, and the plunger is driven by the rotational movement of a cam fitted to the camshaft of the engine.
  • An electromagnetically driven fuel pressure control valve 23 is provided on the suction port side of the high-pressure pump 14. During the suction stroke of the high-pressure pump 14 (when the plunger is lowered), the valve body of the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber, and during the discharge stroke of the high-pressure pump 14 (when the plunger is raised), the fuel pressure control valve 23 The energization of the fuel pressure control valve 23 is controlled so that the valve body is closed and the fuel in the pump chamber is discharged.
  • the discharge amount of the high-pressure pump 14 is controlled to control the fuel pressure (fuel pressure).
  • the energization start timing of the fuel pressure control valve 23 is advanced to advance the valve closing start timing of the fuel pressure control valve 23, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the pressure.
  • the discharge amount of the pump 14 is increased.
  • the closing period of the fuel pressure control valve 23 is shortened by delaying the energization start timing of the fuel pressure control valve 23 and delaying the closing start timing of the fuel pressure control valve 23.
  • the discharge amount of the high-pressure pump 14 is reduced.
  • a check valve 28 is provided on the discharge port side of the high-pressure pump 14 to prevent backflow of discharged fuel.
  • the high-pressure fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 33 through the high-pressure fuel pipe 32, and the high-pressure fuel is distributed from the delivery pipe 33 to the fuel injection valve 34 attached to each cylinder of the engine.
  • the fuel injection valve 34 is a fuel injection valve for in-cylinder injection that directly injects fuel into the cylinder.
  • the delivery pipe 33 (or the high-pressure fuel pipe 32) is provided with a fuel pressure sensor 35 that detects the fuel pressure in the high-pressure fuel passage such as the high-pressure fuel pipe 32 and the delivery pipe 33.
  • the delivery pipe 33 is provided with a relief valve (not shown) that opens when the fuel pressure in the high-pressure fuel passage exceeds a predetermined upper limit, and the discharge port of this relief valve is connected to the fuel tank via the relief pipe. 11 (or the fuel pipe 13 on the low pressure side).
  • the engine is provided with an air flow meter 36 for detecting the intake air amount (intake amount) and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). It has been. Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.
  • the alternator 38 (generator) is rotated by the power of the engine to generate power.
  • the power generation control current field current
  • the power generation amount of the alternator 38 can be controlled to control the load torque of the alternator 38.
  • the outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 39.
  • the ECU 39 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), thereby depending on the engine operating state, the fuel injection amount, the ignition timing.
  • the throttle opening (intake air amount) and the like are controlled.
  • the ECU 39 calculates a target fuel pressure from a map or the like according to the engine operating state (for example, engine speed, engine load, etc.), and matches the actual fuel pressure in the high-pressure fuel passage detected by the fuel pressure sensor 35 with the target fuel pressure.
  • the fuel pressure feedback control is executed to feedback control the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23).
  • the ECU 39 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), and the fuel injection valve 34 according to the required injection amount and the actual fuel pressure detected by the fuel pressure sensor 35.
  • the injection time is calculated, and the fuel injection valve 34 is driven to open during this injection time to inject fuel for the required injection amount.
  • the fuel injection valve 34 for in-cylinder injection that injects high-pressure fuel into the cylinder is a region where the injection time (injection pulse width) is short, and the linearity (straight line) of the injection amount with respect to the injection time. Tend to deteriorate. For this reason, in the region where the injection time is short, it becomes difficult to ensure the control accuracy of the injection amount, and the variation in the injection amount tends to increase.
  • a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure, and the difference between the actual fuel pressure and the target fuel pressure. May increase.
  • the actual fuel pressure that is, the fuel pressure supplied to the fuel injection valve 34
  • the injection time is the same even if the required injection amount is the same. Therefore, the injection time may be shorter than the minimum injection time that can ensure the control accuracy of the injection amount. If the injection time is shorter than the minimum injection time, the control accuracy of the injection amount cannot be ensured, the injection amount variation becomes large, and there is a possibility of causing emission deterioration and misfire.
  • the ECU 39 executes a later-described deceleration control routine of FIG. 5 so that when the engine is decelerated, the fuel injection valve has a delay in following the actual fuel pressure with respect to the target fuel pressure.
  • the load increase control for increasing the load per cylinder of the engine is executed so that the injection time of 34 does not fall below a predetermined value.
  • the predetermined value is set to, for example, a minimum injection time during which the control accuracy of the injection amount can be ensured or a value slightly larger than that.
  • the intake air decrease suppression control that suppresses the decrease in the intake air amount of the engine is performed. That is, the intake air reduction suppression control is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration.
  • the intake air reduction suppression control is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration.
  • the increase in the engine torque due to the intake reduction control is absorbed (cancelled) by the decrease in the engine torque due to the ignition retard control and the increase in the load torque due to the power generation increase control.
  • the deceleration time control routine shown in FIG. 5 is repeatedly executed at a predetermined cycle during the power on period of the ECU 39 (for example, during the ignition switch on period), and serves as a deceleration time control unit.
  • step 101 it is determined whether or not the vehicle is decelerating, for example, depending on whether or not the required torque reduction amount calculated based on the accelerator opening is equal to or greater than a predetermined value. judge. If it is determined in step 101 that the vehicle is not decelerating, this routine is terminated without executing the processing from step 102 onward.
  • step 101 determines whether the vehicle is decelerating. If it is determined in step 101 that the vehicle is decelerating, the process proceeds to step 102, where it is determined whether the fuel pressure is excessive (the state in which the actual fuel pressure is delayed following the target fuel pressure). The determination is made based on whether or not the difference between the actual fuel pressure and the target fuel pressure is greater than or equal to a predetermined value. If it is determined in step 102 that the fuel pressure is not excessive, this routine is terminated without executing the processing after step 103.
  • step 102 determines whether the fuel pressure is excessive (a state in which the actual fuel pressure is delayed following the target fuel pressure). If it is determined in step 102 that the fuel pressure is excessive (a state in which the actual fuel pressure is delayed following the target fuel pressure), the routine proceeds to step 103, where the intake air reduction that suppresses the reduction in the intake air amount of the engine is performed. Perform suppression control.
  • the intake air amount is increased (the amount of decrease in the intake air amount is reduced) so that the required injection amount becomes equal to or greater than a predetermined value (a minimum injection time or a value slightly larger than that).
  • a control for correcting the throttle opening in the direction of increasing the intake amount is performed.
  • control is performed to correct the valve opening / closing characteristics in the direction of increasing the intake air amount. May be.
  • control may be performed to correct the opening degree of the waste gate valve that opens and closes the bypass passage of the exhaust turbine in the direction of increasing the intake air amount.
  • step 104 the power generation increase control for increasing the power generation amount of the alternator 38 is executed, and the increase in the engine torque due to the intake reduction control is absorbed by the increase in the load torque due to the power generation increase control ( Counteract).
  • ignition delay control is performed to retard the ignition timing of the engine, and the increase in engine torque due to the intake reduction control is absorbed by the decrease in engine torque due to ignition delay control.
  • both the power generation increase control and the ignition delay control are executed, and the increase in engine torque due to the intake decrease suppression control is divided into the load torque increase due to power generation increase control and the engine torque decrease due to ignition delay control. You may make it absorb in both.
  • the intake air reduction suppression control that suppresses the decrease in the intake air amount of the engine is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during engine deceleration.
  • the ignition delay control for retarding the ignition timing of the engine, or the power generation increase control for increasing the power generation amount of the alternator 38 driven by the engine power Like to do.
  • the increase in the engine torque due to the intake reduction control is absorbed (cancelled) by the decrease in the engine torque due to the ignition delay control or the increase in the load torque due to the power generation increase control.
  • the ECU 39 executes a deceleration control routine shown in FIG. 6 to be described later, thereby performing reduced-cylinder operation control for stopping combustion of some cylinders of the engine as load increase control. That is, the reduced-cylinder operation control is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration.
  • step 201 it is determined whether or not the vehicle is decelerating. If it is determined that the vehicle is decelerating, the routine proceeds to step 202, where the fuel pressure is excessive (actual with respect to the target fuel pressure). It is determined whether or not there is a follow-up delay in the fuel pressure.
  • step 202 If it is determined in step 202 that the fuel pressure is excessive (a state in which a follow-up delay has occurred in the actual fuel pressure with respect to the target fuel pressure), the process proceeds to step 203 and some of the engine cylinders (for example, four cylinders) (2 cylinders, or 3 cylinders out of 6 cylinders) is stopped to stop the fuel injection and stop the combustion.
  • the required injection amount is increased by increasing the intake amount of the combustion cylinder so that the required torque is realized in the remaining cylinders (combustion cylinders) other than the cylinders (combustion cylinders) that stop combustion.
  • the reduced-cylinder operation control for stopping the combustion of some cylinders of the engine is performed. Yes.
  • the reduced-cylinder operation control in order to increase the required injection amount by increasing the intake amount of the combustion cylinder so as to realize the required torque in the remaining cylinders (combustion cylinders) other than the cylinder (combustion cylinder) that stops combustion, The injection time of the combustion cylinder can be increased so that the injection time does not fall below a predetermined value. Thereby, substantially the same effect as the first embodiment can be obtained.
  • Example 3 When performing the reduced cylinder operation control, the output torque of the entire engine can be maintained at the required torque, and a deceleration corresponding to the driver's deceleration request can be ensured.
  • Example 3 of the present disclosure will be described with reference to FIGS. 7 and 8. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
  • a fuel injection valve 34 for in-cylinder injection that injects high-pressure fuel supplied by the high-pressure pump 14 into the cylinder, and a low-pressure fuel supplied by the low-pressure pump 12.
  • an intake port injection fuel injection valve 42 for injecting fuel into the intake port The low-pressure fuel discharged from the low-pressure pump 12 is sent to the delivery pipe 41 through the low-pressure fuel pipe 40 connected to the fuel pipe 13, and is attached to the intake port of each cylinder of the engine or the vicinity thereof from the delivery pipe 41. Low pressure fuel is distributed to the fuel injection valve 42.
  • the fuel injection valve 42 is a fuel injection valve for intake port injection that injects fuel into the intake port.
  • the ECU 39 executes a later-described deceleration control routine shown in FIG. 8, so that when the engine fuel decelerates, a delay in following the actual fuel pressure with respect to the target fuel pressure occurs. Fuel injection by the fuel injection valve 34 is prohibited, and fuel injection is performed by the fuel injection valve 42 for intake port injection.
  • step 301 it is determined whether or not the vehicle is decelerating. If it is determined that the vehicle is decelerating, the routine proceeds to step 302, where the fuel pressure is excessive (actual with respect to the target fuel pressure). It is determined whether or not there is a follow-up delay in the fuel pressure.
  • step 302 If it is determined in step 302 that the fuel pressure is excessive (a state in which the actual fuel pressure is delayed with respect to the target fuel pressure), the routine proceeds to step 303 where the fuel injection of the in-cylinder fuel injection valve 34 is performed. Forbidden, fuel injection is performed by the fuel injection valve 42 for intake port injection. When a fuel cut that stops fuel injection at the time of deceleration is executed, fuel injection is performed by the fuel injection valve 42 for intake port injection when returning from the fuel cut (when fuel injection is resumed).
  • the fuel injection of the fuel injection valve 34 for in-cylinder injection is prohibited, and the intake port injection The fuel injection valve 42 performs fuel injection.
  • the intake port injection fuel injection valve 42 low-pressure fuel system fuel injection valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

In the present invention, air-intake reduction suppression control, which is for suppressing a reduction in the amount of air taken in by an engine, is executed if a tracking delay occurs for an actual fuel pressure with respect to a target fuel pressure when an engine decelerates. As a result of increasing the air intake amount using this air-intake reduction suppression control (reducing the amount by which air-intake is reduced), a required injection amount is increased and an injection time is consequently made longer so that the injection time will not fall below a prescribed value (a minimum injection time or a value slightly larger than such time). Further, ignition retarding control for retarding the ignition timing of the engine is carried out, and carried out is power generation increase control for increasing the amount of power generated by an alternator driven by the motive power of the engine. Due to this configuration, the increased amount of engine torque due to the air-intake reduction suppression control is absorbed by the decreased amount of engine torque due to the ignition retarding control and the increased amount of load torque due to the power generation increase control.

Description

内燃機関の制御装置Control device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年3月26日に出願された日本特許出願2015-65212を基にしている。 This application is based on Japanese Patent Application No. 2015-65212 filed on Mar. 26, 2015, the disclosure of which is incorporated herein by reference.
 本開示は、高圧ポンプにより供給される燃料を筒内に噴射する燃料噴射弁を備えた内燃機関の制御装置に関する。 The present disclosure relates to an internal combustion engine control device including a fuel injection valve that injects fuel supplied from a high-pressure pump into a cylinder.
 気筒内に燃料を直接噴射する筒内噴射式の内燃機関は、吸気ポートに燃料を噴射する吸気ポート噴射式の内燃機関と比較して、噴射から燃焼までの時間が短く、噴射燃料を霧化させる時間を十分に稼ぐことができないため、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射式の内燃機関では、電動式の低圧ポンプで燃料タンクから汲み上げた燃料を、内燃機関の動力で駆動される高圧ポンプに供給し、この高圧ポンプから吐出される高圧の燃料を燃料噴射弁へ圧送するようにしている。 An in-cylinder internal combustion engine that directly injects fuel into a cylinder has a shorter time from injection to combustion than an intake port injection internal combustion engine that injects fuel into an intake port, and atomizes the injected fuel. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. Therefore, in a cylinder injection internal combustion engine, the fuel pumped up from the fuel tank by the electric low pressure pump is supplied to the high pressure pump driven by the power of the internal combustion engine, and the high pressure fuel discharged from the high pressure pump is supplied. Pressure is sent to the fuel injection valve.
 一般に、筒内噴射式の内燃機関では、燃料噴射弁に供給される燃料の圧力(燃圧)を検出する燃圧センサを設け、内燃機関の運転状態に応じて目標燃圧を設定し、燃圧センサで検出した実燃圧を目標燃圧に一致させるように高圧ポンプの吐出量をフィードバック制御するようにしている。 In general, in-cylinder internal combustion engines have a fuel pressure sensor that detects the pressure (fuel pressure) of the fuel supplied to the fuel injection valve, sets the target fuel pressure according to the operating state of the internal combustion engine, and detects it with the fuel pressure sensor. The discharge amount of the high-pressure pump is feedback controlled so that the actual fuel pressure matches the target fuel pressure.
 このような筒内噴射式の内燃機関においては、例えば、特許文献1(特開2004-251193号公報)に記載されているように、高圧ポンプから吐出される燃料を燃料蓄圧室を通して燃料噴射弁に供給するシステムおいて、電磁弁で燃料蓄圧室の一部を遮断して燃料蓄圧室の容量を低減できるようにしたものがある。 In such an in-cylinder injection type internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-251193), fuel discharged from a high-pressure pump is passed through a fuel accumulator chamber as a fuel injection valve. In some systems, a part of the fuel pressure accumulation chamber is blocked by an electromagnetic valve so that the capacity of the fuel pressure accumulation chamber can be reduced.
特開2004-251193号公報JP 2004-251193 A
 ところで、高圧の燃料を筒内に噴射する筒内噴射用の燃料噴射弁は、噴射時間(噴射パルス幅)が短い領域で、噴射時間に対する噴射量のリニアリティ(直線性)や噴射毎の噴射量の変動が悪化する傾向にある。このため、噴射時間が短い領域では、噴射量の制御精度を確保することが困難になり、噴射量ばらつきが大きくなる傾向がある。 By the way, the fuel injection valve for in-cylinder injection that injects high-pressure fuel into the cylinder has a short injection time (injection pulse width), and the injection amount linearity (linearity) with respect to the injection time and the injection amount for each injection There is a tendency for the fluctuations of For this reason, in the region where the injection time is short, it becomes difficult to ensure the control accuracy of the injection amount, and the variation in the injection amount tends to increase.
 また、筒内噴射式の内燃機関においては、減速時に目標燃圧が低下したときに、目標燃圧に対して実燃圧に追従遅れが生じて、実燃圧と目標燃圧との差が大きくなることがある。このような場合、実燃圧(つまり燃料噴射弁に供給される燃圧)が目標燃圧よりも高い状態で燃料噴射する必要があるが、実燃圧が高いと、要求噴射量が同じでも噴射時間が短くなるため、噴射時間が噴射量の制御精度を確保できる最小噴射時間よりも短くなる可能性ある。噴射時間が最小噴射時間よりも短くなると、噴射量の制御精度を確保できなくなって、噴射量ばらつきが大きくなり、エミッション悪化や失火を招く可能性がある。 In addition, in a cylinder injection internal combustion engine, when the target fuel pressure decreases during deceleration, a follow-up delay may occur in the actual fuel pressure with respect to the target fuel pressure, and the difference between the actual fuel pressure and the target fuel pressure may increase. . In such a case, it is necessary to inject fuel while the actual fuel pressure (that is, the fuel pressure supplied to the fuel injection valve) is higher than the target fuel pressure. However, if the actual fuel pressure is high, the injection time is short even if the required injection amount is the same. Therefore, the injection time may be shorter than the minimum injection time that can ensure the control accuracy of the injection amount. If the injection time is shorter than the minimum injection time, the control accuracy of the injection amount cannot be ensured, the injection amount variation becomes large, and there is a possibility of causing emission deterioration and misfire.
 この対策して、上記特許文献1の技術を利用して、減速時に、電磁弁で燃料蓄圧室の一部を遮断して燃料蓄圧室の容量を低減することで、目標燃圧に対する実燃圧の追従遅れを抑制することも考えられる。しかし、この場合、目標燃圧に対する実燃圧の追従遅れを抑制するためのハード構成(電磁弁等)を新たに設ける必要があり、近年の重要な技術的課題である低コスト化の要求を満たすことができない。 As a countermeasure against this, by utilizing the technique of Patent Document 1 described above, at the time of deceleration, a part of the fuel accumulator chamber is cut off by a solenoid valve to reduce the capacity of the fuel accumulator chamber so that the actual fuel pressure follows the target fuel pressure. It is possible to suppress the delay. However, in this case, it is necessary to newly provide a hardware configuration (solenoid valve, etc.) for suppressing the follow-up delay of the actual fuel pressure with respect to the target fuel pressure, and satisfy the demand for cost reduction, which is an important technical issue in recent years. I can't.
 そこで、本開示の目的は、減速時の目標燃圧に対する実燃圧の追従遅れに起因する不具合を防止しながら、低コスト化の要求を満たすことができる内燃機関の制御装置を提供することにある。 Therefore, an object of the present disclosure is to provide a control device for an internal combustion engine that can satisfy a demand for cost reduction while preventing a problem caused by a delay in following the actual fuel pressure with respect to a target fuel pressure during deceleration.
 本開示では、高圧ポンプにより供給される燃料を筒内に噴射する燃料噴射弁と、該燃料噴射弁に供給される燃料の圧力である燃圧を検出する燃圧センサとを備え、燃圧センサで検出した実燃圧が内燃機関の運転状態に応じて設定された目標燃圧になるように高圧ポンプを制御する内燃機関の制御装置において、内燃機関の減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、燃料噴射弁の噴射時間が所定値を下回らないように内燃機関の気筒当りの負荷を増加させる負荷増加制御を実行する減速時制御部を備えた構成としたものである。 The present disclosure includes a fuel injection valve that injects fuel supplied by a high-pressure pump into a cylinder, and a fuel pressure sensor that detects a fuel pressure that is a pressure of fuel supplied to the fuel injection valve, and the fuel pressure sensor detects the fuel pressure. In a control device for an internal combustion engine that controls a high-pressure pump so that the actual fuel pressure becomes a target fuel pressure set according to the operating state of the internal combustion engine, a delay in following the actual fuel pressure occurs with respect to the target fuel pressure when the internal combustion engine decelerates In some cases, the control unit includes a deceleration control unit that executes load increase control for increasing the load per cylinder of the internal combustion engine so that the injection time of the fuel injection valve does not fall below a predetermined value.
 この構成では、減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、負荷増加制御を実行して気筒当りの負荷を増加させることで、要求噴射量を増加させて噴射時間を長くして、噴射時間が所定値(例えば噴射量の制御精度を確保できる最小噴射時間又はそれよりも少し大きい値)を下回らないようにすることができる。これにより、減速時に目標燃圧に対して実燃圧に追従遅れが生じた場合でも、噴射時間が最小噴射時間よりも短くなることを防止して(つまり噴射時間を最小噴射時間よりも長くして)、噴射量の制御精度を確保することが可能となり、エミッション悪化や失火を防止することができる。しかも、この場合、目標燃圧に対する実燃圧の追従遅れを抑制するためのハード構成(電磁弁等)を新たに設ける必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。 In this configuration, when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration, the load increase control is executed to increase the load per cylinder, thereby increasing the required injection amount and extending the injection time. Thus, it is possible to prevent the injection time from falling below a predetermined value (for example, the minimum injection time that can ensure the control accuracy of the injection amount or a value slightly larger than that). This prevents the injection time from becoming shorter than the minimum injection time even if a delay in following the actual fuel pressure with respect to the target fuel pressure during deceleration (that is, making the injection time longer than the minimum injection time) Therefore, it becomes possible to ensure the control accuracy of the injection amount, and it is possible to prevent emission deterioration and misfire. Moreover, in this case, it is not necessary to newly provide a hardware configuration (solenoid valve or the like) for suppressing the follow-up delay of the actual fuel pressure with respect to the target fuel pressure, and satisfy the demand for cost reduction, which is an important technical issue in recent years. Can do.
 また、本開示では、高圧ポンプにより供給される燃料を筒内に噴射する筒内噴射用の燃料噴射弁と、低圧ポンプにより供給される燃料を吸気ポートに噴射する吸気ポート噴射用の燃料噴射弁と、筒内噴射用の燃料噴射弁に供給される燃料の圧力である燃圧を検出する燃圧センサとを備え、燃圧センサで検出した実燃圧が内燃機関の運転状態に応じて設定された目標燃圧になるように高圧ポンプを制御する内燃機関の制御装置において、内燃機関の減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、筒内噴射用の燃料噴射弁の燃料噴射を禁止して吸気ポート噴射用の燃料噴射弁で燃料噴射を行う減速時制御部を備えた構成としたものである。 Further, in the present disclosure, a fuel injection valve for in-cylinder injection that injects fuel supplied by a high-pressure pump into the cylinder, and a fuel injection valve for intake port injection that injects fuel supplied by a low-pressure pump to the intake port And a fuel pressure sensor that detects a fuel pressure that is a pressure of fuel supplied to the fuel injection valve for in-cylinder injection, and the actual fuel pressure detected by the fuel pressure sensor is set according to the operating state of the internal combustion engine In a control device for an internal combustion engine that controls a high-pressure pump so that the following fuel injection delay occurs when the internal combustion engine decelerates, the fuel injection valve for in-cylinder injection prohibits fuel injection. Thus, the control unit includes a deceleration control unit that performs fuel injection with the fuel injection valve for intake port injection.
 この構成では、高圧燃料系で目標燃圧に対して実燃圧に追従遅れが生じたときに、その影響を受けない吸気ポート噴射用の燃料噴射弁(低圧燃料系の燃料噴射弁)で燃料噴射を行って、噴射量の制御精度を確保することが可能となり、エミッション悪化や失火を防止することができる。この場合も、目標燃圧に対する実燃圧の追従遅れを抑制するためのハード構成(電磁弁等)を新たに設ける必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。 In this configuration, when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure in the high-pressure fuel system, fuel injection is performed by the intake port injection fuel injection valve (low-pressure fuel system fuel injection valve) that is not affected by this. This makes it possible to ensure the control accuracy of the injection amount and prevent emission deterioration and misfire. In this case as well, it is not necessary to newly provide a hardware configuration (solenoid valve, etc.) for suppressing the follow-up delay of the actual fuel pressure with respect to the target fuel pressure, and satisfy the demand for cost reduction, which is an important technical issue in recent years. it can.
図1は本開示の実施例1における燃料供給システムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a fuel supply system according to a first embodiment of the present disclosure. 図2は筒内噴射用の燃料噴射弁の噴射時間と噴射量との関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the injection time and the injection amount of the fuel injection valve for in-cylinder injection. 図3は比較例の減速時制御の実行例を示すタイムチャートである。FIG. 3 is a time chart showing an execution example of the deceleration control of the comparative example. 図4は実施例1の減速時制御の実行例を示すタイムチャートである。FIG. 4 is a time chart illustrating an execution example of the deceleration control according to the first embodiment. 図5は実施例1の減速時制御ルーチンの処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of processing of the deceleration control routine of the first embodiment. 図6は実施例2の減速時制御ルーチンの処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of processing of the deceleration control routine of the second embodiment. 図7は実施例3の燃料供給システムの概略構成を示す図である。FIG. 7 is a diagram illustrating a schematic configuration of the fuel supply system according to the third embodiment. 図8は実施例3の減速時制御ルーチンの処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of processing of the deceleration control routine of the third embodiment.
 以下、本開示を実施するための形態を具体化した幾つかの実施例を説明する。
(実施例1)
 本開示の実施例1を図1乃至図5に基づいて説明する。
Hereinafter, some examples embodying the mode for carrying out the present disclosure will be described.
(Example 1)
A first embodiment of the present disclosure will be described with reference to FIGS.
 まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の燃料供給システムの概略構成を説明する。 First, a schematic configuration of a fuel supply system of a cylinder injection type engine (internal combustion engine) will be described with reference to FIG.
 燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧力(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し配管16により燃料タンク11内に戻されるようになっている。 In the fuel tank 11 for storing fuel, a low pressure pump 12 for pumping up fuel is installed. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by the fuel return pipe 16.
 高圧ポンプ14は、円筒状のポンプ室内でプランジャを往復運動させて燃料を吸入/吐出するプランジャポンプであり、プランジャは、エンジンのカム軸に嵌着されたカムの回転運動によって駆動される。 The high-pressure pump 14 is a plunger pump that sucks / discharges fuel by reciprocating the plunger in a cylindrical pump chamber, and the plunger is driven by the rotational movement of a cam fitted to the camshaft of the engine.
 この高圧ポンプ14の吸入口側には、電磁駆動式の燃圧制御弁23が設けられている。高圧ポンプ14の吸入行程(プランジャの下降時)において燃圧制御弁23の弁体が開弁してポンプ室内に燃料が吸入され、高圧ポンプ14の吐出行程(プランジャの上昇時)において燃圧制御弁23の弁体が閉弁してポンプ室内の燃料が吐出されるように燃圧制御弁23の通電を制御する。 An electromagnetically driven fuel pressure control valve 23 is provided on the suction port side of the high-pressure pump 14. During the suction stroke of the high-pressure pump 14 (when the plunger is lowered), the valve body of the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber, and during the discharge stroke of the high-pressure pump 14 (when the plunger is raised), the fuel pressure control valve 23 The energization of the fuel pressure control valve 23 is controlled so that the valve body is closed and the fuel in the pump chamber is discharged.
 その際、燃圧制御弁23の通電開始時期を制御して燃圧制御弁23の閉弁期間を制御することで、高圧ポンプ14の吐出量を制御して燃圧(燃料圧力)を制御する。例えば、燃圧を上昇させるときには、燃圧制御弁23の通電開始時期を進角させて燃圧制御弁23の閉弁開始時期を進角させることで、燃圧制御弁23の閉弁期間を長くして高圧ポンプ14の吐出量を増加させる。逆に、燃圧を低下させるときには、燃圧制御弁23の通電開始時期を遅角させて燃圧制御弁23の閉弁開始時期を遅角させることで、燃圧制御弁23の閉弁期間を短くして高圧ポンプ14の吐出量を減少させる。 At that time, by controlling the energization start timing of the fuel pressure control valve 23 and controlling the valve closing period of the fuel pressure control valve 23, the discharge amount of the high-pressure pump 14 is controlled to control the fuel pressure (fuel pressure). For example, when the fuel pressure is increased, the energization start timing of the fuel pressure control valve 23 is advanced to advance the valve closing start timing of the fuel pressure control valve 23, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the pressure. The discharge amount of the pump 14 is increased. Conversely, when the fuel pressure is decreased, the closing period of the fuel pressure control valve 23 is shortened by delaying the energization start timing of the fuel pressure control valve 23 and delaying the closing start timing of the fuel pressure control valve 23. The discharge amount of the high-pressure pump 14 is reduced.
 一方、高圧ポンプ14の吐出口側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。高圧ポンプ14から吐出された高圧の燃料は、高圧燃料配管32を通してデリバリパイプ33に送られ、このデリバリパイプ33からエンジンの各気筒に取り付けられた燃料噴射弁34に高圧の燃料が分配される。この燃料噴射弁34は、燃料を筒内に直接噴射する筒内噴射用の燃料噴射弁である。 On the other hand, a check valve 28 is provided on the discharge port side of the high-pressure pump 14 to prevent backflow of discharged fuel. The high-pressure fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 33 through the high-pressure fuel pipe 32, and the high-pressure fuel is distributed from the delivery pipe 33 to the fuel injection valve 34 attached to each cylinder of the engine. The fuel injection valve 34 is a fuel injection valve for in-cylinder injection that directly injects fuel into the cylinder.
 デリバリパイプ33(又は高圧燃料配管32)には、高圧燃料配管32やデリバリパイプ33等の高圧燃料通路内の燃圧を検出する燃圧センサ35が設けられている。尚、デリバリパイプ33に、高圧燃料通路内の燃圧が所定の上限値を越えたときに開弁するリリーフ弁(図示せず)を設け、このリリーフ弁の排出ポートをリリーフ配管を介して燃料タンク11(又は低圧側の燃料配管13)に接続するようにしても良い。 The delivery pipe 33 (or the high-pressure fuel pipe 32) is provided with a fuel pressure sensor 35 that detects the fuel pressure in the high-pressure fuel passage such as the high-pressure fuel pipe 32 and the delivery pipe 33. The delivery pipe 33 is provided with a relief valve (not shown) that opens when the fuel pressure in the high-pressure fuel passage exceeds a predetermined upper limit, and the discharge port of this relief valve is connected to the fuel tank via the relief pipe. 11 (or the fuel pipe 13 on the low pressure side).
 また、エンジンには、吸入空気量(吸気量)を検出するエアフローメータ36や、クランク軸(図示せず)の回転に同期して所定クランク角毎にパルス信号を出力するクランク角センサ37が設けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。 Further, the engine is provided with an air flow meter 36 for detecting the intake air amount (intake amount) and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). It has been. Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.
 オルタネータ38(発電機)は、エンジンの動力で回転駆動されて発電するようになっている。このオルタネータ38の発電制御電流(フィールド電流)を制御することで、オルタネータ38の発電量を制御してオルタネータ38の負荷トルクを制御することができる。 The alternator 38 (generator) is rotated by the power of the engine to generate power. By controlling the power generation control current (field current) of the alternator 38, the power generation amount of the alternator 38 can be controlled to control the load torque of the alternator 38.
 上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)39に入力される。このECU39は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。 The outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 39. The ECU 39 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), thereby depending on the engine operating state, the fuel injection amount, the ignition timing. The throttle opening (intake air amount) and the like are controlled.
 その際、ECU39は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて目標燃圧をマップ等により算出し、燃圧センサ35で検出した高圧燃料通路内の実燃圧を目標燃圧に一致させるように高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御する燃圧フィードバック制御を実行する。 At that time, the ECU 39 calculates a target fuel pressure from a map or the like according to the engine operating state (for example, engine speed, engine load, etc.), and matches the actual fuel pressure in the high-pressure fuel passage detected by the fuel pressure sensor 35 with the target fuel pressure. As described above, the fuel pressure feedback control is executed to feedback control the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23).
 また、ECU39は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出して、この要求噴射量と燃圧センサ35で検出した実燃圧とに応じて燃料噴射弁34の噴射時間(噴射パルス幅)を算出し、この噴射時間で燃料噴射弁34を開弁駆動して要求噴射量分の燃料を噴射する。 Further, the ECU 39 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), and the fuel injection valve 34 according to the required injection amount and the actual fuel pressure detected by the fuel pressure sensor 35. The injection time (injection pulse width) is calculated, and the fuel injection valve 34 is driven to open during this injection time to inject fuel for the required injection amount.
 ところで、高圧の燃料を筒内に噴射する筒内噴射用の燃料噴射弁34は、図2に示すように、噴射時間(噴射パルス幅)が短い領域で、噴射時間に対する噴射量のリニアリティ(直線性)が悪化する傾向ある。このため、噴射時間が短い領域では、噴射量の制御精度を確保することが困難になり、噴射量ばらつきが大きくなる傾向がある。 By the way, as shown in FIG. 2, the fuel injection valve 34 for in-cylinder injection that injects high-pressure fuel into the cylinder is a region where the injection time (injection pulse width) is short, and the linearity (straight line) of the injection amount with respect to the injection time. Tend to deteriorate. For this reason, in the region where the injection time is short, it becomes difficult to ensure the control accuracy of the injection amount, and the variation in the injection amount tends to increase.
 また、筒内噴射式のエンジンにおいては、図3に示すように、減速時に目標燃圧が低下したときに、目標燃圧に対して実燃圧に追従遅れが生じて、実燃圧と目標燃圧との差が大きくなることがある。このような場合、実燃圧(つまり燃料噴射弁34に供給される燃圧)が目標燃圧よりも高い状態で燃料噴射する必要があるが、実燃圧が高いと、要求噴射量が同じでも噴射時間が短くなるため、噴射時間が噴射量の制御精度を確保できる最小噴射時間よりも短くなる可能性ある。噴射時間が最小噴射時間よりも短くなると、噴射量の制御精度を確保できなくなって、噴射量ばらつきが大きくなり、エミッション悪化や失火を招く可能性がある。 Further, in a cylinder injection engine, as shown in FIG. 3, when the target fuel pressure decreases during deceleration, a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure, and the difference between the actual fuel pressure and the target fuel pressure. May increase. In such a case, it is necessary to inject fuel while the actual fuel pressure (that is, the fuel pressure supplied to the fuel injection valve 34) is higher than the target fuel pressure. However, if the actual fuel pressure is high, the injection time is the same even if the required injection amount is the same. Therefore, the injection time may be shorter than the minimum injection time that can ensure the control accuracy of the injection amount. If the injection time is shorter than the minimum injection time, the control accuracy of the injection amount cannot be ensured, the injection amount variation becomes large, and there is a possibility of causing emission deterioration and misfire.
 この対策として、本実施例1では、ECU39により後述する図5の減速時制御ルーチンを実行することで、エンジンの減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、燃料噴射弁34の噴射時間が所定値を下回らないようにエンジンの気筒当りの負荷を増加させる負荷増加制御を実行する。ここで、所定値は、例えば、噴射量の制御精度を確保できる最小噴射時間又はそれよりも少し大きい値に設定される。 As a countermeasure, in the first embodiment, the ECU 39 executes a later-described deceleration control routine of FIG. 5 so that when the engine is decelerated, the fuel injection valve has a delay in following the actual fuel pressure with respect to the target fuel pressure. The load increase control for increasing the load per cylinder of the engine is executed so that the injection time of 34 does not fall below a predetermined value. Here, the predetermined value is set to, for example, a minimum injection time during which the control accuracy of the injection amount can be ensured or a value slightly larger than that.
 本実施例1では、図4に示すように、負荷増加制御として、エンジンの吸気量の減少を抑制する吸気減少抑制制御を行うようにしている。つまり、減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、吸気減少抑制制御を実行する。この吸気減少抑制制御により吸気量を増加させる(吸気量の減少量を小さくする)ことで、要求噴射量を増加させて噴射時間を長くして、噴射時間が所定値(最小噴射時間又はそれよりも少し大きい値)を下回らないようにすることができる。 In the first embodiment, as shown in FIG. 4, as the load increase control, the intake air decrease suppression control that suppresses the decrease in the intake air amount of the engine is performed. That is, the intake air reduction suppression control is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration. By increasing the intake amount (decreasing the decrease amount of the intake amount) by this intake decrease suppression control, the required injection amount is increased and the injection time is lengthened, and the injection time is set to a predetermined value (minimum injection time or more than that). Can be kept below a slightly larger value).
 しかし、吸気減少抑制制御を行うと、エンジントルクが増加するため、何もしないと、吸気減少抑制制御によるエンジントルクの増加分だけ車軸トルクが増加して、運転者の減速要求に対応した減速度を確保できない可能性がある。 However, if the intake reduction control is performed, the engine torque increases. If nothing is done, the axle torque increases by the increase in the engine torque due to the intake reduction control, and the deceleration corresponding to the driver's deceleration request. May not be secured.
 そこで、本実施例1では、吸気減少抑制制御を行う場合には、エンジンの点火時期を遅角させる点火遅角制御や、エンジンの動力で駆動されるオルタネータ38の発電量を増加させる発電増加制御を行う。これにより、吸気減少抑制制御によるエンジントルクの増加分を、点火遅角制御によるエンジントルクの減少分や、発電量増加制御による負荷トルクの増加分で吸収する(打ち消す)。 Therefore, in the first embodiment, when the intake reduction control is performed, the ignition delay control for retarding the ignition timing of the engine, or the power generation increase control for increasing the power generation amount of the alternator 38 driven by the engine power. I do. As a result, the increase in the engine torque due to the intake reduction control is absorbed (cancelled) by the decrease in the engine torque due to the ignition retard control and the increase in the load torque due to the power generation increase control.
 以下、本実施例1でECU39が実行する図5の減速時制御ルーチンの処理内容を説明する。 Hereinafter, the processing content of the deceleration time control routine of FIG. 5 executed by the ECU 39 in the first embodiment will be described.
 図5に示す減速時制御ルーチンは、ECU39の電源オン期間中(例えばイグニッションスイッチのオン期間中)に所定周期で繰り返し実行され、減速時制御部としての役割を果たす。 The deceleration time control routine shown in FIG. 5 is repeatedly executed at a predetermined cycle during the power on period of the ECU 39 (for example, during the ignition switch on period), and serves as a deceleration time control unit.
 本ルーチンが起動されると、まず、ステップ101で、減速時であるか否かを、例えば、アクセル開度等に基づいて算出される要求トルクの低下量が所定値以上であるか否かによって判定する。このステップ101で、減速時ではないと判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。 When this routine is started, first, in step 101, it is determined whether or not the vehicle is decelerating, for example, depending on whether or not the required torque reduction amount calculated based on the accelerator opening is equal to or greater than a predetermined value. judge. If it is determined in step 101 that the vehicle is not decelerating, this routine is terminated without executing the processing from step 102 onward.
 一方、上記ステップ101で、減速時と判定された場合には、ステップ102に進み、燃圧過大状態(目標燃圧に対して実燃圧に追従遅れが生じた状態)であるか否かを、例えば、実燃圧と目標燃圧との差が所定値以上であるか否かによって判定する。このステップ102で、燃圧過大状態ではないと判定された場合には、ステップ103以降の処理を実行することなく、本ルーチンを終了する。 On the other hand, if it is determined in step 101 that the vehicle is decelerating, the process proceeds to step 102, where it is determined whether the fuel pressure is excessive (the state in which the actual fuel pressure is delayed following the target fuel pressure). The determination is made based on whether or not the difference between the actual fuel pressure and the target fuel pressure is greater than or equal to a predetermined value. If it is determined in step 102 that the fuel pressure is not excessive, this routine is terminated without executing the processing after step 103.
 一方、上記ステップ102で、燃圧過大状態(目標燃圧に対して実燃圧に追従遅れが生じた状態)と判定された場合には、ステップ103に進み、エンジンの吸気量の減少を抑制する吸気減少抑制制御を行う。この吸気減少抑制制御では、噴射時間が所定値(最小噴射時間又はそれよりも少し大きい値)以上になる要求噴射量となるように吸気量を増加させる(吸気量の減少量を小さくする)。 On the other hand, if it is determined in step 102 that the fuel pressure is excessive (a state in which the actual fuel pressure is delayed following the target fuel pressure), the routine proceeds to step 103, where the intake air reduction that suppresses the reduction in the intake air amount of the engine is performed. Perform suppression control. In this intake air decrease suppression control, the intake air amount is increased (the amount of decrease in the intake air amount is reduced) so that the required injection amount becomes equal to or greater than a predetermined value (a minimum injection time or a value slightly larger than that).
 吸気減少抑制制御としては、例えば、スロットル開度を吸気量の増量方向に補正する制御を行う。或は、エンジンのバルブ開閉特性(例えばバルブリフト量やバルブタイミング等)を変化させる可変バルブ機構を備えたシステムの場合には、バルブ開閉特性を吸気量の増量方向に補正する制御を行うようにしても良い。また、排気タービン駆動式の過給機を備えたシステムの場合には、排気タービンのバイパス通路を開閉するウェイストゲートバルブの開度を吸気量の増量方向に補正する制御を行うようにしても良い。 As the intake reduction control, for example, a control for correcting the throttle opening in the direction of increasing the intake amount is performed. Alternatively, in the case of a system having a variable valve mechanism that changes the valve opening / closing characteristics of the engine (for example, valve lift amount, valve timing, etc.), control is performed to correct the valve opening / closing characteristics in the direction of increasing the intake air amount. May be. In the case of a system including an exhaust turbine-driven supercharger, control may be performed to correct the opening degree of the waste gate valve that opens and closes the bypass passage of the exhaust turbine in the direction of increasing the intake air amount. .
 この後、ステップ104に進み、オルタネータ38の発電量を増加させる発電増加制御を実行して、吸気減少抑制制御によるエンジントルクの増加分を、発電量増加制御による負荷トルクの増加分で吸収する(打ち消す)。或は、エンジンの点火時期を遅角させる点火遅角制御を実行して、吸気減少抑制制御によるエンジントルクの増加分を、点火遅角制御によるエンジントルクの減少分で吸収する。また、発電増加制御と点火遅角制御を両方とも実行して、吸気減少抑制制御によるエンジントルクの増加分を、発電量増加制御による負荷トルクの増加分と点火遅角制御によるエンジントルクの減少分の両方で吸収するようにしても良い。 Thereafter, the routine proceeds to step 104, where the power generation increase control for increasing the power generation amount of the alternator 38 is executed, and the increase in the engine torque due to the intake reduction control is absorbed by the increase in the load torque due to the power generation increase control ( Counteract). Alternatively, ignition delay control is performed to retard the ignition timing of the engine, and the increase in engine torque due to the intake reduction control is absorbed by the decrease in engine torque due to ignition delay control. In addition, both the power generation increase control and the ignition delay control are executed, and the increase in engine torque due to the intake decrease suppression control is divided into the load torque increase due to power generation increase control and the engine torque decrease due to ignition delay control. You may make it absorb in both.
 以上説明した本実施例1では、エンジンの減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、エンジンの吸気量の減少を抑制する吸気減少抑制制御を実行するようにしている。この吸気減少抑制制御により吸気量を増加させる(吸気量の減少量を小さくする)ことで、要求噴射量を増加させて噴射時間を長くして、噴射時間が所定値(最小噴射時間又はそれよりも少し大きい値)を下回らないようにすることができる。これにより、減速時に目標燃圧に対して実燃圧に追従遅れが生じた場合でも、噴射時間が最小噴射時間よりも短くなることを防止して(つまり噴射時間を最小噴射時間よりも長くして)、噴射量の制御精度を確保することが可能となり、エミッション悪化や失火を防止することができる。しかも、この場合、目標燃圧に対する実燃圧の追従遅れを抑制するためのハード構成(電磁弁等)を新たに設ける必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。 In the first embodiment described above, the intake air reduction suppression control that suppresses the decrease in the intake air amount of the engine is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during engine deceleration. By increasing the intake amount (decreasing the decrease amount of the intake amount) by this intake decrease suppression control, the required injection amount is increased and the injection time is lengthened, and the injection time is set to a predetermined value (minimum injection time or more than that). Can be kept below a slightly larger value). This prevents the injection time from becoming shorter than the minimum injection time even if a delay in following the actual fuel pressure with respect to the target fuel pressure during deceleration (that is, making the injection time longer than the minimum injection time) Therefore, it becomes possible to ensure the control accuracy of the injection amount, and it is possible to prevent emission deterioration and misfire. Moreover, in this case, it is not necessary to newly provide a hardware configuration (solenoid valve or the like) for suppressing the follow-up delay of the actual fuel pressure with respect to the target fuel pressure, and satisfy the demand for cost reduction, which is an important technical issue in recent years. Can do.
 更に、本実施例1では、吸気減少抑制制御を行う場合には、エンジンの点火時期を遅角させる点火遅角制御や、エンジンの動力で駆動されるオルタネータ38の発電量を増加させる発電増加制御を行うようにしている。これにより、吸気減少抑制制御によるエンジントルクの増加分を、点火遅角制御によるエンジントルクの減少分や、発電量増加制御による負荷トルクの増加分で吸収して(打ち消して)、吸気減少抑制制御による車軸トルクの増加を防止又は抑制することができ、運転者の減速要求に対応した減速度を確保することができる。
(実施例2)
 次に、図6を用いて本開示の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
Further, in the first embodiment, when the intake reduction control is performed, the ignition delay control for retarding the ignition timing of the engine, or the power generation increase control for increasing the power generation amount of the alternator 38 driven by the engine power. Like to do. As a result, the increase in the engine torque due to the intake reduction control is absorbed (cancelled) by the decrease in the engine torque due to the ignition delay control or the increase in the load torque due to the power generation increase control. Can prevent or suppress an increase in the axle torque, and can ensure a deceleration corresponding to the driver's deceleration request.
(Example 2)
Next, a second embodiment of the present disclosure will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
 本実施例2では、ECU39により後述する図6の減速時制御ルーチンを実行することで、負荷増加制御として、エンジンの一部の気筒の燃焼を休止させる減筒運転制御を行うようにしている。つまり、減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、減筒運転制御を実行する。 In the second embodiment, the ECU 39 executes a deceleration control routine shown in FIG. 6 to be described later, thereby performing reduced-cylinder operation control for stopping combustion of some cylinders of the engine as load increase control. That is, the reduced-cylinder operation control is executed when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration.
 以下、本実施例2でECU39が実行する図6の減速時制御ルーチンの処理内容を説明する。 Hereinafter, processing contents of the deceleration time control routine of FIG. 6 executed by the ECU 39 in the second embodiment will be described.
 本ルーチンが起動されると、まず、ステップ201で、減速時であるか否かを判定し、減速時と判定された場合には、ステップ202に進み、燃圧過大状態(目標燃圧に対して実燃圧に追従遅れが生じた状態)であるか否かを判定する。 When this routine is started, first, at step 201, it is determined whether or not the vehicle is decelerating. If it is determined that the vehicle is decelerating, the routine proceeds to step 202, where the fuel pressure is excessive (actual with respect to the target fuel pressure). It is determined whether or not there is a follow-up delay in the fuel pressure.
 このステップ202で、燃圧過大状態(目標燃圧に対して実燃圧に追従遅れが生じた状態)と判定された場合には、ステップ203に進み、エンジンの一部の気筒(例えば、4気筒のうちの2気筒、或は、6気筒のうちの3気筒)の燃料噴射を停止して燃焼を休止させる減筒運転制御を行う。この減筒運転制御では、燃焼を休止する気筒(休止気筒)以外の残り気筒(燃焼気筒)で要求トルクを実現するように、燃焼気筒の吸気量を増加させて要求噴射量を増加させる。 If it is determined in step 202 that the fuel pressure is excessive (a state in which a follow-up delay has occurred in the actual fuel pressure with respect to the target fuel pressure), the process proceeds to step 203 and some of the engine cylinders (for example, four cylinders) (2 cylinders, or 3 cylinders out of 6 cylinders) is stopped to stop the fuel injection and stop the combustion. In this reduced-cylinder operation control, the required injection amount is increased by increasing the intake amount of the combustion cylinder so that the required torque is realized in the remaining cylinders (combustion cylinders) other than the cylinders (combustion cylinders) that stop combustion.
 以上説明した本実施例2では、エンジンの減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、エンジンの一部の気筒の燃焼を休止させる減筒運転制御を実行するようにしている。この減筒運転制御では、燃焼を休止する気筒(休止気筒)以外の残り気筒(燃焼気筒)で要求トルクを実現するように、燃焼気筒の吸気量を増加させて要求噴射量を増加させるため、燃焼気筒の噴射時間を長くして、噴射時間が所定値を下回らないようにすることができる。これにより、前記実施例1とほぼ同様の効果を得ることができる。また、減筒運転制御を行う場合には、エンジン全体としての出力トルクを要求トルクに維持することができ、運転者の減速要求に対応した減速度を確保することができる。
(実施例3)
 次に、図7及び図8を用いて本開示の実施例3を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
In the above-described second embodiment, when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure when the engine is decelerated, the reduced-cylinder operation control for stopping the combustion of some cylinders of the engine is performed. Yes. In this reduced-cylinder operation control, in order to increase the required injection amount by increasing the intake amount of the combustion cylinder so as to realize the required torque in the remaining cylinders (combustion cylinders) other than the cylinder (combustion cylinder) that stops combustion, The injection time of the combustion cylinder can be increased so that the injection time does not fall below a predetermined value. Thereby, substantially the same effect as the first embodiment can be obtained. Further, when performing the reduced cylinder operation control, the output torque of the entire engine can be maintained at the required torque, and a deceleration corresponding to the driver's deceleration request can be ensured.
Example 3
Next, Example 3 of the present disclosure will be described with reference to FIGS. 7 and 8. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
 本実施例3では、図7に示すように、高圧ポンプ14により供給される高圧の燃料を筒内に噴射する筒内噴射用の燃料噴射弁34と、低圧ポンプ12により供給される低圧の燃料を吸気ポートに噴射する吸気ポート噴射用の燃料噴射弁42とを備えている。低圧ポンプ12から吐出された低圧の燃料は、燃料配管13に接続された低圧燃料配管40を通してデリバリパイプ41に送られ、このデリバリパイプ41からエンジンの各気筒の吸気ポート又はその近傍に取り付けられた燃料噴射弁42に低圧の燃料が分配される。この燃料噴射弁42は、燃料を吸気ポートに噴射する吸気ポート噴射用の燃料噴射弁である。 In the third embodiment, as shown in FIG. 7, a fuel injection valve 34 for in-cylinder injection that injects high-pressure fuel supplied by the high-pressure pump 14 into the cylinder, and a low-pressure fuel supplied by the low-pressure pump 12. And an intake port injection fuel injection valve 42 for injecting fuel into the intake port. The low-pressure fuel discharged from the low-pressure pump 12 is sent to the delivery pipe 41 through the low-pressure fuel pipe 40 connected to the fuel pipe 13, and is attached to the intake port of each cylinder of the engine or the vicinity thereof from the delivery pipe 41. Low pressure fuel is distributed to the fuel injection valve 42. The fuel injection valve 42 is a fuel injection valve for intake port injection that injects fuel into the intake port.
 また、本実施例3では、ECU39により後述する図8の減速時制御ルーチンを実行することで、エンジンの減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、筒内噴射用の燃料噴射弁34の燃料噴射を禁止して、吸気ポート噴射用の燃料噴射弁42で燃料噴射を行うようにしている。 In the third embodiment, the ECU 39 executes a later-described deceleration control routine shown in FIG. 8, so that when the engine fuel decelerates, a delay in following the actual fuel pressure with respect to the target fuel pressure occurs. Fuel injection by the fuel injection valve 34 is prohibited, and fuel injection is performed by the fuel injection valve 42 for intake port injection.
 以下、本実施例3でECU39が実行する図8の減速時制御ルーチンの処理内容を説明する。 Hereinafter, the processing content of the deceleration time control routine of FIG. 8 executed by the ECU 39 in the third embodiment will be described.
 本ルーチンが起動されると、まず、ステップ301で、減速時であるか否かを判定し、減速時と判定された場合には、ステップ302に進み、燃圧過大状態(目標燃圧に対して実燃圧に追従遅れが生じた状態)であるか否かを判定する。 When this routine is started, first, at step 301, it is determined whether or not the vehicle is decelerating. If it is determined that the vehicle is decelerating, the routine proceeds to step 302, where the fuel pressure is excessive (actual with respect to the target fuel pressure). It is determined whether or not there is a follow-up delay in the fuel pressure.
 このステップ302で、燃圧過大状態(目標燃圧に対して実燃圧に追従遅れが生じた状態)と判定された場合には、ステップ303に進み、筒内噴射用の燃料噴射弁34の燃料噴射を禁止して、吸気ポート噴射用の燃料噴射弁42で燃料噴射を行う。尚、減速時に燃料噴射を停止する燃料カットが実行された場合には、燃料カットからの復帰時(燃料噴射再開時)に吸気ポート噴射用の燃料噴射弁42で燃料噴射を行う。 If it is determined in step 302 that the fuel pressure is excessive (a state in which the actual fuel pressure is delayed with respect to the target fuel pressure), the routine proceeds to step 303 where the fuel injection of the in-cylinder fuel injection valve 34 is performed. Forbidden, fuel injection is performed by the fuel injection valve 42 for intake port injection. When a fuel cut that stops fuel injection at the time of deceleration is executed, fuel injection is performed by the fuel injection valve 42 for intake port injection when returning from the fuel cut (when fuel injection is resumed).
 以上説明した本実施例3では、エンジンの減速時に目標燃圧に対して実燃圧に追従遅れが生じたときに、筒内噴射用の燃料噴射弁34の燃料噴射を禁止して、吸気ポート噴射用の燃料噴射弁42で燃料噴射を行うようにしている。このようにすれば、高圧燃料系で目標燃圧に対して実燃圧に追従遅れが生じたときに、その影響を受けない吸気ポート噴射用の燃料噴射弁42(低圧燃料系の燃料噴射弁)で燃料噴射を行って、噴射量の制御精度を確保することが可能となり、エミッション悪化や失火を防止することができる。この場合も、目標燃圧に対する実燃圧の追従遅れを抑制するためのハード構成(電磁弁等)を新たに設ける必要がなく、近年の重要な技術的課題である低コスト化の要求を満たすことができる。 In the third embodiment described above, when a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure when the engine is decelerated, the fuel injection of the fuel injection valve 34 for in-cylinder injection is prohibited, and the intake port injection The fuel injection valve 42 performs fuel injection. In this way, when the follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure in the high-pressure fuel system, the intake port injection fuel injection valve 42 (low-pressure fuel system fuel injection valve) is not affected by this. By performing fuel injection, it becomes possible to ensure the control accuracy of the injection amount, and it is possible to prevent emission deterioration and misfire. In this case as well, it is not necessary to newly provide a hardware configuration (solenoid valve, etc.) for suppressing the follow-up delay of the actual fuel pressure with respect to the target fuel pressure, and satisfy the demand for cost reduction, which is an important technical issue in recent years. it can.
 尚、本開示は、高圧ポンプの構成や燃料供給システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。

 
It should be noted that the present disclosure can be implemented with various modifications within a range that does not depart from the gist, such as appropriately changing the configuration of the high-pressure pump and the configuration of the fuel supply system.

Claims (5)

  1.  高圧ポンプ(14)により供給される燃料を筒内に噴射する燃料噴射弁(34)と、該燃料噴射弁(34)に供給される燃料の圧力である燃圧を検出する燃圧センサ(35)とを備え、前記燃圧センサ(35)で検出した実燃圧が内燃機関の運転状態に応じて設定された目標燃圧になるように前記高圧ポンプ(14)を制御する内燃機関の制御装置において、
     前記内燃機関の減速時に前記目標燃圧に対して前記実燃圧に追従遅れが生じたときに、前記燃料噴射弁(34)の噴射時間が所定値を下回らないように前記内燃機関の気筒当りの負荷を増加させる負荷増加制御を実行する減速時制御部(39)を備えている内燃機関の制御装置。
    A fuel injection valve (34) for injecting fuel supplied by the high-pressure pump (14) into the cylinder, and a fuel pressure sensor (35) for detecting a fuel pressure which is the pressure of the fuel supplied to the fuel injection valve (34) An internal combustion engine control device for controlling the high-pressure pump (14) so that the actual fuel pressure detected by the fuel pressure sensor (35) becomes a target fuel pressure set according to the operating state of the internal combustion engine,
    When a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration of the internal combustion engine, the load per cylinder of the internal combustion engine is set so that the injection time of the fuel injection valve (34) does not fall below a predetermined value. A control device for an internal combustion engine comprising a deceleration time control unit (39) for executing load increase control for increasing the engine speed.
  2.  前記減速時制御部(39)は、前記負荷増加制御として、前記内燃機関の吸気量の減少を抑制する吸気減少抑制制御を行う請求項1に記載の内燃機関の制御装置。 2. The control device for an internal combustion engine according to claim 1, wherein the deceleration control unit (39) performs intake air reduction suppression control for suppressing a decrease in the intake air amount of the internal combustion engine as the load increase control.
  3.  前記減速時制御部(39)は、前記吸気減少抑制制御を行う場合には、前記内燃機関の点火時期を遅角させる点火遅角制御と、前記内燃機関の動力で駆動される発電機(38)の発電量を増加させる発電増加制御のうちの少なくとも一方を行う請求項2に記載の内燃機関の制御装置。 The deceleration time control unit (39), when performing the intake air reduction suppression control, retards the ignition timing of the internal combustion engine and a generator (38) driven by the power of the internal combustion engine. The control device for an internal combustion engine according to claim 2, wherein at least one of the power generation increase control for increasing the power generation amount) is performed.
  4.  前記減速時制御部(39)は、前記負荷増加制御として、前記内燃機関の一部の気筒の燃焼を休止させる減筒運転制御を行う請求項1に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, wherein the deceleration control unit (39) performs reduced-cylinder operation control for stopping combustion of some cylinders of the internal combustion engine as the load increase control.
  5.  高圧ポンプ(14)により供給される燃料を筒内に噴射する筒内噴射用の燃料噴射弁(34)と、低圧ポンプ(12)により供給される燃料を吸気ポートに噴射する吸気ポート噴射用の燃料噴射弁(42)と、前記筒内噴射用の燃料噴射弁(34)に供給される燃料の圧力(である燃圧を検出する燃圧センサ(35)とを備え、前記燃圧センサ(35)で検出した実燃圧が内燃機関の運転状態に応じて設定された目標燃圧になるように前記高圧ポンプ(14)を制御する内燃機関の制御装置において、
     前記内燃機関の減速時に前記目標燃圧に対して前記実燃圧に追従遅れが生じたときに、前記筒内噴射用の燃料噴射弁(34)の燃料噴射を禁止して前記吸気ポート噴射用の燃料噴射弁(42)で燃料噴射を行う減速時制御部(39)を備えている内燃機関の制御装置。
    A fuel injection valve (34) for in-cylinder injection that injects fuel supplied from the high-pressure pump (14) into the cylinder, and an intake-port injection that injects fuel supplied from the low-pressure pump (12) to the intake port. A fuel pressure sensor (35) for detecting a fuel pressure (which is a pressure of fuel supplied to the fuel injection valve (34) for in-cylinder injection, and a fuel pressure sensor (35); In the control device for an internal combustion engine that controls the high-pressure pump (14) so that the detected actual fuel pressure becomes a target fuel pressure set according to the operating state of the internal combustion engine,
    When a follow-up delay occurs in the actual fuel pressure with respect to the target fuel pressure during deceleration of the internal combustion engine, fuel injection by the fuel injection valve (34) for in-cylinder injection is prohibited and fuel for the intake port injection A control device for an internal combustion engine, comprising a deceleration time control unit (39) for performing fuel injection with an injection valve (42).
PCT/JP2016/001379 2015-03-26 2016-03-11 Internal combustion engine control device WO2016152065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065212 2015-03-26
JP2015065212A JP2016183649A (en) 2015-03-26 2015-03-26 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2016152065A1 true WO2016152065A1 (en) 2016-09-29

Family

ID=56977231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001379 WO2016152065A1 (en) 2015-03-26 2016-03-11 Internal combustion engine control device

Country Status (2)

Country Link
JP (1) JP2016183649A (en)
WO (1) WO2016152065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723561A (en) * 2017-10-31 2019-05-07 本田技研工业株式会社 The fuel injection control system of internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6679456B2 (en) * 2016-09-21 2020-04-15 株式会社三共 Amusement machine
JP6288611B1 (en) * 2016-10-26 2018-03-07 マツダ株式会社 Engine control device
JP6960370B2 (en) 2018-04-19 2021-11-05 日立Astemo株式会社 Internal combustion engine fuel injection control device
JP7131479B2 (en) * 2019-05-21 2022-09-06 トヨタ自動車株式会社 Hybrid vehicle and its control method
JP7243500B2 (en) * 2019-07-11 2023-03-22 マツダ株式会社 engine system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252142A (en) * 1984-05-29 1985-12-12 Toyota Motor Corp Controlling method of partial operation control type internal-combustion engine
JPH07103029A (en) * 1993-10-12 1995-04-18 Toyota Motor Corp Internal combustion engine
JP2004232574A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd Device and method of controlling combustion for direct injection type spark ignition device
JP2005090457A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Control device for internal combustion engine
JP2005337102A (en) * 2004-05-26 2005-12-08 Nippon Soken Inc Fuel injection control system of internal combustion engine
JP2007278169A (en) * 2006-04-06 2007-10-25 Denso Corp Fuel injection control device
JP2011047314A (en) * 2009-08-26 2011-03-10 Toyota Motor Corp Internal combustion engine control device
JP2011196255A (en) * 2010-03-19 2011-10-06 Hitachi Automotive Systems Ltd Fuel pump control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252142A (en) * 1984-05-29 1985-12-12 Toyota Motor Corp Controlling method of partial operation control type internal-combustion engine
JPH07103029A (en) * 1993-10-12 1995-04-18 Toyota Motor Corp Internal combustion engine
JP2004232574A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd Device and method of controlling combustion for direct injection type spark ignition device
JP2005090457A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Control device for internal combustion engine
JP2005337102A (en) * 2004-05-26 2005-12-08 Nippon Soken Inc Fuel injection control system of internal combustion engine
JP2007278169A (en) * 2006-04-06 2007-10-25 Denso Corp Fuel injection control device
JP2011047314A (en) * 2009-08-26 2011-03-10 Toyota Motor Corp Internal combustion engine control device
JP2011196255A (en) * 2010-03-19 2011-10-06 Hitachi Automotive Systems Ltd Fuel pump control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723561A (en) * 2017-10-31 2019-05-07 本田技研工业株式会社 The fuel injection control system of internal combustion engine
CN109723561B (en) * 2017-10-31 2021-05-18 本田技研工业株式会社 Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP2016183649A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
WO2016152065A1 (en) Internal combustion engine control device
EP1647695B1 (en) Fuel injection control device for internal combustion engine
JP5387538B2 (en) Fail safe control device for in-cylinder internal combustion engine
JP5809796B2 (en) Fuel injection control device for internal combustion engine
JP4161690B2 (en) Accumulated fuel injection system
US20080025849A1 (en) High-Pressure Fuel Pump Control Apparatus for an Internal Combustion Engine
JP4023020B2 (en) Fuel pressure control device for high pressure fuel injection system
WO2012056534A1 (en) Fuel injection control system of internal combustion engine
JP6146274B2 (en) Control device for internal combustion engine
JP6167830B2 (en) Control device for internal combustion engine
JP5850140B2 (en) Control device for internal combustion engine
JP6036531B2 (en) Fuel pressure control device
WO2016189803A1 (en) Internal-combustion engine high-pressure pump control device
JP2009221906A (en) Low pressure pump control device of direct injection type internal combustion engine
JP2015124716A (en) Fuel supply device of internal combustion engine
JP2013253508A (en) Fuel supply device of direct injection type internal combustion engine
JP2010048192A (en) Fuel injection control device
JP4281825B2 (en) Fuel pressure control device for high pressure fuel injection system
JP2007315309A (en) Fuel injection control device for internal combustion engine
US9995226B2 (en) Control device for vehicle
JP5336347B2 (en) Rail pressure control method at the time of engine stop and common rail fuel injection control device
JP2004144024A (en) Fuel supplying device for internal combustion engine
JP6350237B2 (en) Fuel injection control device
WO2013153663A1 (en) Fuel injection control system for internal combustion engine
JP2010255432A (en) Fuel injection control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767975

Country of ref document: EP

Kind code of ref document: A1