WO2016148268A1 - 自動変速機 - Google Patents

自動変速機 Download PDF

Info

Publication number
WO2016148268A1
WO2016148268A1 PCT/JP2016/058633 JP2016058633W WO2016148268A1 WO 2016148268 A1 WO2016148268 A1 WO 2016148268A1 JP 2016058633 W JP2016058633 W JP 2016058633W WO 2016148268 A1 WO2016148268 A1 WO 2016148268A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
speed
clutch
gear
automatic transmission
Prior art date
Application number
PCT/JP2016/058633
Other languages
English (en)
French (fr)
Inventor
潤 吉野
幹 八木
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to KR1020177021878A priority Critical patent/KR20170103879A/ko
Priority to US15/559,229 priority patent/US20180073609A1/en
Priority to CN201680007232.7A priority patent/CN107208751A/zh
Priority to EP16765097.7A priority patent/EP3273094A4/en
Publication of WO2016148268A1 publication Critical patent/WO2016148268A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0073Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising eleven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means

Definitions

  • the present invention includes a first planetary gear, a second planetary gear, a third planetary gear, and a fourth planetary gear as planetary gears.
  • a first brake, a second brake, a third brake, a first clutch, a second clutch, and a third clutch are provided.
  • a forward ninth speed is achieved by a combination of three simultaneous engagements.
  • a fourth brake that can fix a connecting member that connects the first ring gear of the first planetary gear and the second carrier of the second planetary gear to the transmission case is added.
  • at least one shift stage is added by a combination of three simultaneous engagements including the engagement of the fourth brake to achieve a shift stage of 10 or more forward speeds.
  • FIG. 1 is a skeleton diagram illustrating an automatic transmission according to a first embodiment. It is a figure which shows the fastening table which achieves 11 forward speeds and 1 reverse speed by the combination of three simultaneous fastening among seven friction elements in the automatic transmission of Example 1.
  • FIG. It is a fragmentary sectional view of the transmission which shows the attachment state of the 4th brake newly added in the automatic transmission of Example 1. It is a half sectional view showing the 1st connecting member in which the spline fitting slot in which the drive plate of the 4th brake newly added in the automatic transmission of Example 1 is spline fitted was formed.
  • FIG. 6 is a skeleton diagram showing a state of engagement of friction elements at a first speed newly added in the automatic transmission according to the first embodiment.
  • FIG. 6 is a rotational speed diagram (collinear diagram) showing a rotational speed relationship with respect to six rotating members at a first speed newly added in the automatic transmission according to the first embodiment. It is a skeleton figure which shows the fastening state of the friction element in the 9th speed stage newly added in the automatic transmission of Example 1.
  • FIG. 10 is a rotational speed diagram (collinear diagram) showing a rotational speed relationship with respect to six rotating members at a ninth speed newly added in the automatic transmission according to the first embodiment. It is a figure which shows an example of the gear ratio table in each gear stage in the automatic transmission of a comparative example, and a gear ratio table.
  • the automatic transmission according to the first embodiment is mounted on an engine vehicle, a hybrid vehicle, or the like as a vehicle transmission.
  • the configuration of the automatic transmission according to the first embodiment will be described by dividing it into “the overall configuration of the automatic transmission” and “the fourth brake configuration”.
  • FIG. 1 is a skeleton diagram illustrating an automatic transmission according to a first embodiment.
  • the overall configuration of the automatic transmission according to the first embodiment will be described with reference to FIG.
  • the automatic transmission according to the first embodiment has a planetary gear as a first planetary gear PG1, a second planetary gear PG2, and a third planetary gear in order from the input shaft IN to the output shaft OUT.
  • PG3 and a fourth planetary gear PG4 are provided.
  • the first planetary gear PG1 is a single pinion type planetary gear, and includes a first sun gear S1, a first carrier C1 that supports a pinion that meshes with the first sun gear S1, and a first ring gear R1 that meshes with the pinion.
  • the second planetary gear PG2 is a single pinion type planetary gear, and includes a second sun gear S2, a second carrier C2 that supports a pinion that meshes with the second sun gear S2, and a second ring gear R2 that meshes with the pinion.
  • the fourth planetary gear PG4 is a single pinion type planetary gear, and includes a fourth sun gear S4, a fourth carrier C4 that supports a pinion that meshes with the fourth sun gear S4, and a fourth ring gear R4 that meshes with the pinion.
  • the automatic transmission according to the first embodiment includes an input shaft IN, an output shaft OUT, a first connecting member M1 (connecting member), a second connecting member M2, and a transmission case TC.
  • I have.
  • a first brake B1, a second brake B2, a third brake B3, a first clutch K1, a second clutch K2, a third clutch K3, and a fourth brake B4 are provided. ing.
  • the input shaft IN is a shaft to which rotational drive torque from a drive source is input, and is always connected to the first sun gear S1 and the fourth carrier C4.
  • the input shaft IN is connected to the first carrier C1 through the second clutch K2 so as to be connected and disconnected.
  • the output shaft OUT is a shaft that outputs the drive torque after shifting to the drive wheels via a propeller shaft, final gear, etc., and is always connected to the third carrier C3.
  • the output shaft OUT is connected to the fourth ring gear R4 via the first clutch K1 so as to be connected and disconnected.
  • the first connecting member M1 is a member that always connects the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 without interposing a friction element.
  • the second connecting member M2 always connects the second ring gear R2 of the second planetary gear PG2, the third sun gear S3 of the third planetary gear PG3, and the fourth sun gear S4 of the fourth planetary gear PG4 without interposing a friction element.
  • the first brake B1 is a friction element that can lock the rotation of the first carrier C1 with respect to the transmission case TC.
  • the second brake B2 is a friction element that can lock the rotation of the third ring gear R3 with respect to the transmission case TC.
  • the first clutch K1 is a friction element that selectively connects the fourth ring gear R4 and the output shaft OUT.
  • the fourth brake B4 is a friction element that can lock the rotation of the first connecting member M1 with respect to the transmission case TC.
  • the first speed (1st) is achieved by simultaneous engagement of the second brake B2, the third clutch K3, and the fourth brake B4, as shown in FIG.
  • the second speed (2nd) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the third clutch K3.
  • the third speed (3rd) is achieved by simultaneously engaging the second brake B2, the second clutch K2, and the third clutch K3.
  • the fourth speed (4th) is achieved by simultaneous engagement of the second brake B2, the third brake B3, and the second clutch K2.
  • the fifth speed (5th) is achieved by simultaneously engaging the second brake B2, the third brake B3, and the first clutch K1.
  • the sixth speed (6th) is achieved by simultaneous engagement of the third brake B3, the first clutch K1, and the second clutch K2.
  • the first to sixth speeds described above are underdrive speeds with a reduction gear ratio with a gear ratio exceeding 1.
  • the seventh speed (7th) is achieved by simultaneous engagement of the first clutch K1, the second clutch K2, and the third clutch K3.
  • the eighth speed (8th) is achieved by simultaneous engagement of the third brake B3, the first clutch K1, and the third clutch K3.
  • the ninth speed (9th) is achieved by simultaneously engaging the first clutch K1, the third clutch K3, and the fourth brake B4.
  • the tenth speed (10th) is achieved by simultaneous engagement of the first brake B1, the first clutch K1, and the third clutch K3, as shown in FIG.
  • the eleventh speed (11th) is achieved by simultaneously engaging the first brake B1, the third brake B3, and the first clutch K1.
  • the reverse speed (Rev) is achieved by simultaneously engaging the first brake B1, the second brake B2, and the third brake B3.
  • the eighth to eleventh speed is an increased gear ratio with a gear ratio of less than 1. Is the overdrive shift speed.
  • the automatic transmission according to the first embodiment is such that the two shift patterns (a) and (c) described above are used as new shift stages to achieve a forward 11-speed shift stage.
  • the first speed stage is added by the shift pattern (c)
  • the first speed stage is an ultra-low gear ratio speed stage on the lower side than the first speed stage in the ninth forward speed.
  • the 9th speed is added by the shift pattern of (a), and this 9th speed is between the gear ratio of the 7th speed and the 8th speed in the forward 9th speed.
  • This is a high gear ratio shift stage with a gear ratio.
  • the shifting action at the first speed and the shifting action at the ninth speed will be described.
  • FIG. 5 shows the engagement state of the friction element at the first added speed in the automatic transmission according to the first embodiment
  • FIG. 6 shows six rotating members at the newly added first speed. The rotational speed relationship with respect to is shown.
  • action in 1st speed stage is demonstrated.
  • the second brake B2 At the first speed (1st), as shown by hatching in FIG. 5, the second brake B2, the third clutch K3, and the fourth brake B4 are simultaneously engaged. The other friction elements are in a released state.
  • the first ring gear R1 and the second carrier C2 are fixed to the transmission case TC as shown in FIG.
  • the third clutch K3 as shown in FIG. 6
  • the first carrier C1, the second ring gear R2, the third sun gear S3, and the fourth sun gear S4 are rotated by reducing the input rotation of the input shaft IN.
  • the second brake B2 By engaging the second brake B2, the third ring gear R3 is fixed to the transmission case TC as shown in FIG.
  • the first clutch K1, the third clutch K3, and the fourth brake B4 are simultaneously engaged.
  • the other friction elements are in a released state.
  • the first ring gear R1 and the second carrier C2 are fixed to the transmission case TC as shown in FIG.
  • the third clutch K3 as shown in FIG. 8
  • the first carrier C1, the second ring gear R2, the third sun gear S3, and the fourth sun gear S4 are rotated by reducing the input rotation of the input shaft IN.
  • the first clutch K1 as shown in FIG. 8, the third carrier C3 and the fourth ring gear R4 rotate the output shaft OUT.
  • the fourth planetary gear PG4 when the rotation obtained by reducing the input rotation of the input shaft IN is input to the fourth sun gear S4 and the rotation of the input shaft IN is input to the fourth carrier C4, the remaining fourth ring gear R4 is Then, the rotation speed is increased from the input shaft IN, and this increased rotation speed is transmitted to the output shaft OUT as it is to achieve the ninth speed gear stage.
  • the transmission is a comparative example.
  • the first gear ratio 5.425
  • the second gear ratio 2.263
  • the third gear ratio 2.250
  • the fourth gear ratio 1.649
  • the fifth gear ratio 1.221
  • the sixth gear The ratio is 1.000
  • the seventh gear ratio is 0.862
  • the eighth gear ratio is 0.713
  • the ninth gear ratio is 0.597.
  • the automatic transmission according to the first embodiment adds both a setting function for an ultra-low gear stage and an optimization function for engine efficiency during high-speed cruising to the automatic transmission of the comparative example.
  • the first speed added by engagement of the fourth brake B4 is an ultra-low gear ratio gear position that is further on the lower side than the first speed in the ninth forward speed ( ⁇ 1 in FIG. 12).
  • the ninth speed added by the engagement of the fourth brake B4 is a high gear ratio shift speed based on the gear ratio between the gear ratio of the seventh speed and the gear ratio of the eighth speed in the ninth forward speed ( (* 2 in FIG. 12).
  • the 8-9 step ratio which is the step ratio across the newly added 9th speed step, is 1.098
  • the 9-10 step ratio is 1.101.
  • the inter-step ratio from the eighth speed to the tenth speed is kept small. For this reason, engine efficiency can be optimized during high-speed cruising using the overdrive shift speed (eight speed to eleventh speed).
  • the reason why the engine efficiency can be optimized during high-speed cruising by keeping the inter-step ratio small at the overdrive shift stage will be described with reference to FIG.
  • the isofuel line characteristic is drawn by a plurality of circular characteristics, and the fuel efficiency increases toward the center of the iso fuel line characteristic. Therefore, the center area (eyeball area) is the optimum fuel efficiency area.
  • the interstage ratio is a little large, as shown by the dotted line characteristic in FIG.
  • the interstage ratio is kept small, and therefore, as shown by the solid line characteristics in FIG. 15, the engine rotation fluctuation accompanying the shift change becomes small in the overdrive shift stage used for high-speed cruise. Therefore, the degree of approximation to the ideal characteristic is increased by reducing the engine rotation fluctuation at the overdrive shift stage, and the engine efficiency can be optimized.
  • a forward 11-speed gear stage is achieved by a combination of three simultaneous engagements.
  • the first speed added by engaging the fourth brake B4 is the ultra-low gear ratio speed stage on the lower side of the 9th forward speed.
  • the ninth gear added by engagement of the fourth brake B4 is a high gear ratio gear that is based on the gear ratio between the seventh gear and the eighth gear in the ninth forward speed.
  • the first connecting member M1 is a cylindrical drum member disposed so as to cover the outer peripheral sides of the first planetary gear PG1 and the second planetary gear PG2.
  • the fourth brake B4 is configured to be interposed between the outer peripheral surface of the first connecting member M1 and the inner peripheral surface of the transmission case TC facing the fourth brake B4. That is, the newly added fourth brake B4 is arranged at a position facing the inner peripheral surface of the transmission case TC on the outer peripheral side of the first planetary gear PG1 and the second planetary gear PG2. For this reason, the fourth brake B4 can be easily added and set without changing the layout position of other components without changing the existing component layout. Therefore, among the six friction elements, the fourth brake B4 can be easily added to the automatic transmission that achieves the ninth forward speed by combining three simultaneous engagements.
  • the fourth brake B4 is a multi-plate brake in which a plurality of drive plates 40 and driven plates 41 are combined.
  • the spline fitting groove 12 for attaching the drive plate 40 is formed on the outer peripheral side of the first connecting member M1
  • the spline fitting groove 50 for attaching the driven plate 41 is formed on the inner peripheral side of the transmission case TC.
  • the spline fitting groove 12 is formed on the outer peripheral side of the first connecting member M1
  • the spline fitting groove 50 is formed on the inner peripheral side of the transmission case TC.
  • a fourth brake B4 having a multi-plate brake structure in which a plurality of drive plates 40 and driven plates 41 are combined is additionally provided. Therefore, the fourth brake B4 having a multi-plate brake structure can be additionally provided by simply forming the spline fitting grooves 12 and 50 on the opposing surfaces of the first connecting member M1 and the transmission case TC.
  • the first planetary gear PG1, the second planetary gear PG2, the third planetary gear PG3, and the fourth planetary gear PG4 are provided as planetary gears.
  • the first brake B1, the second brake B2, the third brake B3, the first clutch K1, the second clutch K2, and the third clutch K3 are provided.
  • a fourth brake B4 capable of fixing a connecting member (first connecting member M1) for connecting the first ring gear R1 of the first planetary gear PG1 and the second carrier C2 of the second planetary gear PG2 to the transmission case TC.
  • At least one shift stage is added by a combination of three simultaneous engagements including the engagement of the fourth brake B4, and a shift stage of 10 or more forward speeds is achieved. For this reason, by increasing the degree of freedom in selecting the gear ratio with a simple configuration change, it is possible to improve the responsiveness to performance requirements for realizing the desired function.
  • a forward 11-speed shift stage is achieved by a combination of three simultaneous engagements
  • the first speed added by the engagement of the fourth brake B4 is an ultra-low gear ratio gear position on the lower side than the first speed in the ninth forward speed
  • the ninth speed added by engagement of the fourth brake B4 is a high gear ratio shift speed based on a gear ratio between the gear ratio of the seventh speed and the gear ratio of the eighth speed in the ninth forward speed.
  • two gear stages are newly added only by adding 4th brake B4, and it can respond to a rough road driving
  • the shift to the adjacent stage can be achieved by a replacement shift by fastening one friction element and releasing one friction element.
  • the fourth brake B is a multi-plate brake in which a plurality of drive plates 40 and driven plates 41 are combined, A spline fitting groove 12 for attaching the drive plate 40 is formed on the outer peripheral side of the connecting member (first connecting member M1). A spline fitting groove 50 for attaching the driven plate 41 is formed on the inner peripheral side of the transmission case TC.
  • the fourth brake B4 having a multi-plate brake structure can be added only by forming the spline fitting grooves 12 and 50 on the opposing surfaces of the first connecting member M1 and the transmission case TC. Can be provided.
  • Example 1 Although the automatic transmission of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, The summary of the invention which concerns on each claim of a claim As long as they do not deviate, design changes and additions are permitted.
  • an example of an automatic transmission in which a shift of 11 forward speeds and 1 reverse speed is performed according to a shift map during traveling is shown.
  • a selection switch or the like for switching between the normal driving mode and the rough road driving mode is provided, and when the normal driving mode is selected, an automatic transmission that performs a forward 10-speed reverse 1-speed shift excluding the first speed stage is provided.
  • an automatic transmission that performs a shift by an underdrive-side shift stage including the first speed stage may be used.
  • Example 1 although the example of the automatic transmission applied to an engine vehicle or a hybrid vehicle was shown, as an automatic transmission aiming at the improvement of electricity consumption performances, such as not only these vehicles but an electric vehicle and a fuel cell vehicle, etc. It is possible to apply.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

4遊星・6摩擦要素の構成であり、6つの摩擦要素のうち、三つの同時締結の組み合わせにより前進9速の変速段を達成する。この自動変速機において、第1遊星歯車(PG1)の第1リングギヤ(R1)と第2遊星歯車(PG2)の第2キャリア(C2)とを連結する第1連結メンバ(M1)を、トランスミッションケース(TC)に対して固定可能な第4ブレーキ(B4)を追加する。そして、7つの摩擦要素のうち、第4ブレーキ(B4)の締結を含む三つの同時締結の組み合わせによって少なくとも一つの変速段を追加し、前進10速以上の変速段を達成する。

Description

自動変速機
 本発明は、変速段の多段化要求やギヤ比幅のワイド化要求がある車両の変速装置として適用される自動変速機に関する。
 従来、4つのシングルピニオン遊星歯車に対して摩擦要素として三つのブレーキと三つのクラッチを用い、6つの摩擦要素のうち、三つの同時締結の組み合わせにより前進9速の変速段を達成する自動変速機が知られている(例えば、特許文献1参照)。
特許第5492217号公報
 しかしながら、従来の自動変速機にあっては、4遊星・6摩擦要素により前進9速の変速段を達成するものの、目指す機能を実現する性能要求があったとき、ギヤ比の選択自由度が低い、という課題を残している。
ここで、目指す機能を実現する性能要求とは、例えば、オフロード走行を実現するために超ローギヤ比を設定したい要求、高速巡航時の燃費性能を向上させるために全ての段間比をバランス良く小さくしたい要求、等である。
 本発明は、上記課題に着目してなされたもので、簡単な構成変更でギヤ比の選択自由度を高めることで、目指す機能を実現する性能要求への対応性を向上する自動変速機を提供することを目的とする。
 上記目的を達成するため、本発明では、遊星歯車として、第1遊星歯車と第2遊星歯車と第3遊星歯車と第4遊星歯車を備える。摩擦要素として、第1ブレーキと第2ブレーキと第3ブレーキと第1クラッチと第2クラッチと第3クラッチを備える。そして、6つの摩擦要素のうち、三つの同時締結の組み合わせにより前進9速の変速段を達成する。
この自動変速機において、第1遊星歯車の第1リングギヤと第2遊星歯車の第2キャリアとを連結する連結メンバを、トランスミッションケースに対して固定可能な第4ブレーキを追加する。
7つの摩擦要素のうち、第4ブレーキの締結を含む三つの同時締結の組み合わせによって少なくとも一つの変速段を追加し、前進10速以上の変速段を達成する。
 よって、第1ブレーキと第2ブレーキと第3ブレーキと第1クラッチと第2クラッチと第3クラッチに、第4ブレーキを追加した7つの摩擦要素のうち、第4ブレーキの締結を含む三つの同時締結の組み合わせによって少なくとも一つの変速段が追加され、前進10速以上の変速段が達成される。
即ち、4遊星・6摩擦要素により前進9速の変速段を達成する自動変速機に、一つの第4ブレーキ(摩擦要素)を追加するだけの簡単な構成変更でありながら、前進9速の変速段に少なくとも一つの新たな変速段が追加される。この前進10速以上の変速段によって、ギヤ比の選択自由度が高められ、性能要求への対応性が向上し、目指す機能を実現することが可能になる。この結果、簡単な構成変更でギヤ比の選択自由度を高めることで、目指す機能を実現する性能要求への対応性を向上することができる。
実施例1の自動変速機を示すスケルトン図である。 実施例1の自動変速機において7つの摩擦要素のうち三つの同時締結の組み合わせにより前進11速及び後退1速を達成する締結表を示す図である。 実施例1の自動変速機において新たに追加される第4ブレーキの取り付け状態を示す変速機の部分断面図である。 実施例1の自動変速機において新たに追加される第4ブレーキのドライブプレートがスプライン嵌合されるスプライン嵌合溝を形成した第1連結メンバを示す半断面図である。 実施例1の自動変速機において新たに追加された第1速段での摩擦要素の締結状態を示すスケルトン図である。 実施例1の自動変速機において新たに追加された第1速段での6つの回転メンバに対する回転速度関係を示す回転速度線図(共線図)である。 実施例1の自動変速機において新たに追加された第9速段での摩擦要素の締結状態を示すスケルトン図である。 実施例1の自動変速機において新たに追加された第9速段での6つの回転メンバに対する回転速度関係を示す回転速度線図(共線図)である。 比較例の自動変速機における各変速段でのギヤ比表と段間比表の一例を示す図である。 比較例の自動変速機における変速段に対する減速比の関係を示す減速比特性図である。 比較例の自動変速機における変速段に対する段間比の関係を示す段間比特性図である。 実施例1の自動変速機における各変速段でのギヤ比表と段間比表の一例を示す図である。 実施例1の自動変速機における変速段に対する減速比の関係を示す減速比特性図である。 実施例1の自動変速機における変速段に対する段間比の関係を示す段間比特性図である。 変速段が高変速段に移行するときにエンジン回転数とエンジン出力トルクによる動作点軌跡の比較特性を示す燃費率マップ図である。
 以下、本発明の自動変速機を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1における自動変速機は、車両の変速装置として、エンジン車やハイブリッド車等に搭載されるものである。以下、実施例1の自動変速機の構成を、「自動変速機の全体構成」、「第4ブレーキ構成」に分けて説明する。
 [自動変速機の全体構成]
図1は、実施例1の自動変速機を示すスケルトン図である。以下、図1に基づいて、実施例1の自動変速機の全体構成を説明する。
 実施例1の自動変速機は、図1に示すように、遊星歯車として、入力軸INから出力軸OUTに向けて順に、第1遊星歯車PG1と、第2遊星歯車PG2と、第3遊星歯車PG3と、第4遊星歯車PG4と、を備えている。
 前記第1遊星歯車PG1は、シングルピニオン型遊星歯車であり、第1サンギヤS1と、第1サンギヤS1に噛み合うピニオンを支持する第1キャリアC1と、ピニオンに噛み合う第1リングギヤR1と、を有する。
 前記第2遊星歯車PG2は、シングルピニオン型遊星歯車であり、第2サンギヤS2と、第2サンギヤS2に噛み合うピニオンを支持する第2キャリアC2と、ピニオンに噛み合う第2リングギヤR2と、を有する。
 前記第3遊星歯車PG3は、シングルピニオン型遊星歯車であり、第3サンギヤS3と、第3サンギヤS3に噛み合うピニオンを支持する第3キャリアC3と、ピニオンに噛み合う第3リングギヤR3と、を有する。
 前記第4遊星歯車PG4は、シングルピニオン型遊星歯車であり、第4サンギヤS4と、第4サンギヤS4に噛み合うピニオンを支持する第4キャリアC4と、ピニオンに噛み合う第4リングギヤR4と、を有する。
 実施例1の自動変速機は、図1に示すように、入力軸INと、出力軸OUTと、第1連結メンバM1(連結メンバ)と、第2連結メンバM2と、トランスミッションケースTCと、を備えている。そして、摩擦要素として、第1ブレーキB1と、第2ブレーキB2と、第3ブレーキB3と、第1クラッチK1と、第2クラッチK2と、第3クラッチK3と、第4ブレーキB4と、を備えている。
 前記入力軸INは、駆動源からの回転駆動トルクが入力される軸で、第1サンギヤS1と第4キャリアC4に常時連結している。そして、入力軸INは、第2クラッチK2を介して第1キャリアC1に断接可能に連結している。
 前記出力軸OUTは、プロペラシャフトやファイナルギヤ等を介して駆動輪へ変速後の駆動トルクを出力する軸で、第3キャリアC3に常時連結している。そして、出力軸OUTは、第1クラッチK1を介して第4リングギヤR4に断接可能に連結している。
 前記第1連結メンバM1は、第1遊星歯車PG1の第1リングギヤR1と第2遊星歯車PG2の第2キャリアC2を、摩擦要素を介在させることなく常時連結するメンバである。
 前記第2連結メンバM2は、第2遊星歯車PG2の第2リングギヤR2と第3遊星歯車PG3の第3サンギヤS3と第4遊星歯車PG4の第4サンギヤS4を、摩擦要素を介在させることなく常時連結するメンバである。
 前記第1ブレーキB1は、第1キャリアC1の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。
 前記第2ブレーキB2は、第3リングギヤR3の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。
 前記第3ブレーキB3は、第2サンギヤS2の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。
 前記第1クラッチK1は、第4リングギヤR4と出力軸OUTの間を選択的に連結する摩擦要素である。
 前記第2クラッチK2は、入力軸INと第1キャリアC1の間を選択的に連結する摩擦要素である。
 前記第3クラッチK3は、第1キャリアC1と第2連結メンバM2の間を選択的に連結する摩擦要素である。
 前記第4ブレーキB4は、第1連結メンバM1の回転を、トランスミッションケースTCに対し係止可能な摩擦要素である。
 図2は、実施例1の自動変速機において6つの摩擦要素のうち三つの同時締結の組み合わせにより前進11速及び後退1速を達成する締結表を示す図である。以下、図2に基づいて、実施例1の自動変速機の各変速段を成立させる変速構成を説明する。
 第1速段(1st)は、図2に示すように、第2ブレーキB2と第3クラッチK3と第4ブレーキB4の同時締結により達成する。第2速段(2nd)は、図2に示すように、第2ブレーキB2と第3ブレーキB3と第3クラッチK3の同時締結により達成する。第3速段(3rd)は、図2に示すように、第2ブレーキB2と第2クラッチK2と第3クラッチK3の同時締結により達成する。第4速段(4th)は、図2に示すように、第2ブレーキB2と第3ブレーキB3と第2クラッチK2の同時締結により達成する。第5速段(5th)は、図2に示すように、第2ブレーキB2と第3ブレーキB3と第1クラッチK1の同時締結により達成する。第6速段(6th)は、図2に示すように、第3ブレーキB3と第1クラッチK1と第2クラッチK2の同時締結により達成する。以上の第1速段~第6速段が、ギヤ比が1を超えている減速ギヤ比によるアンダードライブ変速段である。
 第7速段(7th)は、図2に示すように、第1クラッチK1と第2クラッチK2と第3クラッチK3の同時締結により達成する。第8速段(8th)は、図2に示すように、第3ブレーキB3と第1クラッチK1と第3クラッチK3の同時締結により達成する。第9速段(9th)は、図2に示すように、第1クラッチK1と第3クラッチK3と第4ブレーキB4の同時締結により達成する。第10速段(10th)は、図2に示すように、第1ブレーキB1と第1クラッチK1と第3クラッチK3の同時締結により達成する。第11速段(11th)は、図2に示すように、第1ブレーキB1と第3ブレーキB3と第1クラッチK1の同時締結により達成する。後退速段(Rev)は、図2に示すように、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3の同時締結により達成する。以上の第7速段~第11速段のうち、第7速段がギヤ比=1の直結段であり、第8速段~第11速段が、ギヤ比が1未満の増速ギヤ比によるオーバードライブ変速段である。
 さらに、第1速段から第11速段までの変速段のうち、隣接する変速段へのアップ変速を行う際、或いは、ダウン変速を行う際、図2に示すように、架け替え変速により行う構成としている。即ち、隣接する変速段への変速の際、三つの摩擦要素のうち、二つの摩擦要素の締結は維持したままで、一つの摩擦要素の解放と一つの摩擦要素の締結を行う。
 [第4ブレーキ構成]
 図3は、実施例1の自動変速機において新たに追加される第4ブレーキB4の取り付け状態を示し、図4は、第4ブレーキB4のドライブプレートがスプライン嵌合されるスプライン嵌合溝を形成した第1連結メンバM1を示す。以下、図3及び図4に基づき、第4ブレーキ構成を説明する。
 前記第1連結メンバM1は、図3に示すように、第1遊星歯車PG1と第3クラッチK3と第2遊星歯車PG2の外周側を覆うように配置される円筒ドラム部材であり、図4に示すように、大径外周面10と小径外周面11による段差を持つ円筒ドラム形状とされる。この第1連結メンバM1の大径外周面10には、後述する第4ブレーキB4のドライブプレート40をスプライン嵌合により取り付けるスプライン嵌合溝12を形成している。さらに、大径外周面10の開口端部の内面には、第1リングギヤR1へ延長する第1連結プレート13をスプライン嵌合により取り付けるスプライン嵌合溝14を形成している。また、小径外周面11の開口端部の内面には、第2キャリアC2へ延長する第1連結部材15をスプライン嵌合により取り付けるスプライン嵌合溝16を形成している。そして、第1連結メンバM1には、大径外周面10のスプライン溝部に貫通する第4ブレーキ冷却油穴17が開口され、小径外周面11のスプライン溝部に貫通する第4ブレーキ冷却油穴18が開口される。なお、第1連結メンバM1の小径外周面11と対向するトランスミッションケースTCの内周面との間には、図3に示すように、第3ブレーキB3が配置される。
 前記第4ブレーキB4は、図3に示すように、ドライブプレート40とドリブンプレート41を複数枚組み合わせ、油圧作動の第4ブレーキピストン42により締結/解放される多板ブレーキである。この第4ブレーキB4は、第1連結メンバM1の大径外周面10と対向するトランスミッションケースTCの内周面との間に介装される。トランスミッションケースTCの内周面には、第4ブレーキB4のドリブンプレート41をスプライン嵌合により取り付けるスプライン嵌合溝50を形成している。つまり、第4ブレーキB4のドライブプレート40は、第1連結メンバM1の外周側に形成されたスプライン嵌合溝12に取り付けられ、ドリブンプレート41は、トランスミッションケースTCの内周側に形成されたスプライン嵌合溝50に取り付けられる。
 次に、作用を説明する。
実施例1の自動変速機における作用を、「新たに追加された変速段での変速作用」、「比較例と実施例1のギヤ比と段間比の対比作用」、「実施例1の自動変速機における特徴作用」に分けて説明する。
 [新たに追加された変速段での変速作用]
 まず、本発明者等は、特許第5492217号公報に記載の4遊星・6摩擦要素の構成で、三つの同時締結の組み合わせにより前進9速の変速段を達成する自動変速機に対し、一つの摩擦要素を追加することで、新しいギヤ比を作ることが可能である点に着目した。
 そして、構造をなるべく簡単にし、設計変更が少ないようにするため、ブレーキを一つ追加することを検討したとき、第1連結メンバM1に第4ブレーキB4を追加することが好適であるという結論に到達した。なぜなら、他のメンバにブレーキを追加する他のパターンについても検討したが、既存ギヤ比となるかインターロックとなるため、メリットがないことが分かった。
 そして、第4ブレーキB4を追加し、これを締結する変速段を想定したとき、ギヤ比が形成可能なパターンとして、下記の4つのパターンを導き出し、4つのパターンのそれぞれについてギヤ比を確認した。
(a)第1クラッチK1と第3クラッチK3と第4ブレーキB4を締結する変速パターン
(b)第3ブレーキB3と第1クラッチK1と第4ブレーキB4を締結する変速パターン
(c)第2ブレーキB2と第3クラッチK3と第4ブレーキB4を締結する変速パターン
(d)第2ブレーキB2と第1クラッチK1と第4ブレーキB4を締結する変速パターン
上記(a)~(d)のうち、(b)の変速パターンは、前進9速の変速段を達成する自動変速機の第8速段と同じギヤ比になる。(d)の変速パターンは、前進9速の変速段を達成する自動変速機の第4速段と同じギヤ比になる。つまり、(a),(c)の二つの変速パターンが、新たなギヤ比による変速段となり得ることが判明した。
 上記(a),(c)の二つの変速パターンを共に新たな変速段とし、前進11速の変速段を達成するようにしたのが、実施例1の自動変速機である。このうち、(c)の変速パターンにより追加されたのが第1速段であり、この第1速段は、前進9速における第1速段よりさらにロー側の超ローギヤ比変速段である。また、(a)の変速パターンにより追加されたのが第9速段であり、この第9速段は、前進9速における第7速段のギヤ比と第8速段のギヤ比の間のギヤ比によるハイギヤ比変速段である。以下、第1速段での変速作用と第9速段での変速作用を説明する。
 (第1速段での変速作用)
 図5は、実施例1の自動変速機において新たに追加された第1速段での摩擦要素の締結状態を示し、図6は、新たに追加された第1速段での6つの回転メンバに対する回転速度関係を示す。以下、図5及び図6に基づき、第1速段での変速作用を説明する。
 第1速段(1st)では、図5のハッチングに示すように、第2ブレーキB2と第3クラッチK3と第4ブレーキB4が同時締結される。他の摩擦要素は解放状態である。
 第4ブレーキB4の締結により、図6に示すように、第1リングギヤR1と第2キャリアC2がトランスミッションケースTCに固定される。第3クラッチK3の締結により、図6に示すように、第1キャリアC1と第2リングギヤR2と第3サンギヤS3と第4サンギヤS4が入力軸INの入力回転を減速した回転になる。第2ブレーキB2の締結により、図6に示すように、第3リングギヤR3がトランスミッションケースTCに固定される。
 したがって、第3リングギヤR3が固定された第3遊星歯車PG3において、第3サンギヤS3に入力軸INの入力回転を減速した回転が入力されると、残る第3キャリアC3が、第3サンギヤS3の回転をさらに減速した回転となり、この減速回転がそのまま出力軸OUTに伝達され、第1速の変速段が達成される。
 (第9速段での変速作用)
 図7は、実施例1の自動変速機において新たに追加された第9速段での摩擦要素の締結状態を示し、図8は、新たに追加された第9速段での6つの回転メンバに対する回転速度関係を示す。以下、図7及び図8に基づき、第9速段での変速作用を説明する。
 第9速段(9th)では、図7のハッチングに示すように、第1クラッチK1と第3クラッチK3と第4ブレーキB4が同時締結される。他の摩擦要素は解放状態である。
 第4ブレーキB4の締結により、図8に示すように、第1リングギヤR1と第2キャリアC2がトランスミッションケースTCに固定される。第3クラッチK3の締結により、図8に示すように、第1キャリアC1と第2リングギヤR2と第3サンギヤS3と第4サンギヤS4が入力軸INの入力回転を減速した回転になる。第1クラッチK1の締結により、図8に示すように、第3キャリアC3と第4リングギヤR4が出力軸OUTの回転になる。
 したがって、第4遊星歯車PG4において、第4サンギヤS4に入力軸INの入力回転を減速した回転が入力され、第4キャリアC4に入力軸INの回転が入力されると、残る第4リングギヤR4は、入力軸INからの回転数を増速した回転となり、この増速回転がそのまま出力軸OUTに伝達され、第9速の変速段が達成される。
 [比較例と実施例1のギヤ比と段間比の対比作用]
 図9は、比較例の自動変速機における各変速段でのギヤ比表と段間比表の一例を示し、図10は、比較例での減速比特性を示し、図11は、比較例での段間比特性を示す。以下、図9~図11に基づき、比較例でのギヤ比と段間比について説明する。なお、第1遊星歯車PG1~第4遊星歯車PG4のサンギヤ歯数とリングギヤ歯数の歯数比をそれぞれα1、α2、α3、α4としたとき、α1=0.4688、α2=0.4505、α3=0.4419、α4=0.4022とした場合を一例とする。
 ここで、特許第5492217号公報に記載されているように、4遊星・6摩擦要素の構成であり、6摩擦要素のうち、三つの同時締結の組み合わせにより前進9速の変速段を達成する自動変速機を比較例とする。比較例の場合、図9に示すように、1速ギヤ比=5.425、2速ギヤ比=3.263、3速ギヤ比=2.250、4速ギヤ比=1.649、5速ギヤ比=1.221、6速ギヤ比=1.000、7速ギヤ比=0.862、8速ギヤ比=0.713、9速ギヤ比=0.597である。これをグラフに表したのが図10であり、最ロー変速比である1速ギヤ比(=5.425)については、通常走行に自動変速機を使いたい場合は問題ない。しかし、悪路走行に変速機を使いたい場合、図10の点線Aで示す領域の超ロー変速段がとれない。
 比較例の場合、図9に示すように、1-2段間比=1.663、2-3段間比=1.451、3-4段間比=1.364、4-5段間比=1.350、5-6段間比=1.221、6-7段間比=1.160、7-8段間比=1.208、8-9段間比=1.195である。これをグラフに表したのが図11であり、6-7段間比=1.160であり、8-9段間比=1.195であるのに対し、図11の矢印Bで示すように、7-8段間比=1.208が少し大きい。このため、オーバードライブ変速段(第7速段~第9速段)を用いる高速巡航時にエンジン効率を最適化できない。
 上記比較例の自動変速機に対し、超ロー変速段の設定機能と、高速巡航時におけるエンジン効率の最適化機能と、を共に付加したのが実施例1の自動変速機である。実施例1において、第4ブレーキB4の締結により追加される第1速段は、前進9速における第1速段よりさらにロー側の超ローギヤ比変速段である(図12の☆1)。そして、第4ブレーキB4の締結により追加される第9速段は、前進9速における第7速段のギヤ比と第8速段のギヤ比の間のギヤ比によるハイギヤ比変速段である(図12の☆2)。
 図12は、実施例1の自動変速機における各変速段でのギヤ比表と段間比表の一例を示し、図13は、減速比特性を示し、図14は、段間比特性を示す。以下、図12~図14に基づき、実施例1でのギヤ比と段間比について説明する。なお、比較例と同様に、第1遊星歯車PG1~第4遊星歯車PG4のサンギヤ歯数とリングギヤ歯数の歯数比をそれぞれα1、α2、α3、α4としたとき、α1=0.4688、α2=0.4505、α3=0.4419、α4=0.4022とした場合を一例とする。
 実施例1の自動変速機は、4遊星・7摩擦要素の構成であり、7摩擦要素のうち、三つの同時締結の組み合わせにより前進11速の変速段を達成する。実施例1の場合、図12に示すように、1速ギヤ比=10.225、2速ギヤ比=5.425、3速ギヤ比=3.263、4速ギヤ比=2.250、5速ギヤ比=1.649、6速ギヤ比=1.221、7速ギヤ比=1.000、8速ギヤ比=0.862、9速ギヤ比=0.785、10速ギヤ比=0.713、11速ギヤ比=0.597である。これをグラフに表したのが図13であり、図13の点線A’で示すように、1速ギヤ比(=10.225)がオフロード用の超ローギヤ比になるため、悪路走行に変速機を使いたいという要求に応えることができる。
 実施例1の場合、図12に示すように、1-2段間比=1.885、2-3段間比=1.663、3-4段間比=1.451、4-5段間比=1.364、5-6段間比=1.350、6-7段間比=1.221、7-8段間比=1.160、8-9段間比=1.098、9-10段間比=1.101、10-11段間比=1.195である。これをグラフに表したのが図14であり、新たに追加した第9速段を挟んだ段間比である8-9段間比が1.098であり、9-10段間比が1.101であり、図14の矢印B’で示すように、第8速段から第10速段までの段間比が小さく抑えられた。このため、オーバードライブ変速段(第8速段~第11速段)を用いる高速巡航時にエンジン効率を最適化できる。
 ここで、オーバードライブ変速段で段間比が小さく抑えることで、高速巡航時にエンジン効率を最適化できる理由を、図15に基づき説明する。
まず、エンジン回転数とエンジン出力トルクの関係特性において、図15の細実線特性に示すように、複数の円形状特性により等燃費線特性が描かれ、この等燃費線特性の中心に向かうほど燃費が良く、中心領域(目玉領域)が最適燃費領域となる。これに対し、エンジン回転数とエンジン出力トルクによる動作点が、図15の太実線に示すように移動するのがエンジン効率を最適化する意味では理想である。
 これに対し、比較例の場合、段間比が少し大きいため、図15の点線特性に示すように、シフトチェンジに伴うエンジン回転変動も大きくなる。しかし、実施例1の場合、段間比が小さく抑えられるため、図15の実線特性に示すように、高速巡航に用いるオーバードライブ変速段において、シフトチェンジに伴うエンジン回転変動が小さくなる。よって、オーバードライブ変速段でエンジン回転変動を小さく抑えた分、理想の特性への近似性が高まり、エンジン効率を最適化できる。
 [実施例1の自動変速機における特徴作用]
 実施例1では、摩擦要素として、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3と第1クラッチK1と第2クラッチK2と第3クラッチK3による6摩擦要素に、第4ブレーキB4を追加した。そして、7つの摩擦要素のうち、第4ブレーキB4の締結を含む三つの同時締結の組み合わせによって少なくとも一つの変速段を追加し、前進10速以上の変速段を達成する構成とした。
即ち、4遊星・6摩擦要素により前進9速の変速段を達成する自動変速機に、一つの第4ブレーキB4を追加するだけの簡単な構成変更でありながら、前進9速の変速段に新たな変速段(例えば、第1速段と第9速段の少なくとも一つの変速段)が追加される。
従って、前進10速以上の変速段によって、ギヤ比の選択自由度が高められ、性能要求への対応性が向上し、目指す機能を実現することが可能になる。
 実施例1では、7つの摩擦要素のうち、三つの同時締結の組み合わせによって前進11速の変速段が達成される。前進11速の変速段のうち、第4ブレーキB4の締結により追加される第1速段を、前進9速における第1速段よりさらにロー側の超ローギヤ比変速段とする構成とした。加えて、第4ブレーキB4の締結により追加される第9速段を、前進9速における第7速段のギヤ比と第8速段のギヤ比の間のギヤ比によるハイギヤ比変速段とする構成とした。
即ち、オフロード走行を実現するために超ローギヤ比を設定したい要求に対しては、前進9速における第1速段よりさらにロー側の超ローギヤ比変速段である第1速段により、悪路走破要求に応えることができる。また、高速巡航時の燃費性能を向上させるために全ての段間比をバランス良く小さくしたい要求に対しては、前進9速における第7速段のギヤ比と第8速段のギヤ比の間のギヤ比によるハイギヤ比変速段である第9変速段により、燃費性能向上要求に応えることができる。
従って、第4ブレーキB4を追加するだけで新たに二つの変速段が追加され、悪路走破要求と燃費性能向上要求に応えることができる。
 実施例1では、第1連結メンバM1を、第1遊星歯車PG1と第2遊星歯車PG2の外周側を覆うように配置される円筒ドラム部材とした。そして、第4ブレーキB4は、第1連結メンバM1の外周面と対向するトランスミッションケースTCの内周面との間に介装する構成とした。
即ち、新たに追加設定する第4ブレーキB4が、第1遊星歯車PG1と第2遊星歯車PG2の外周側であって、トランスミッションケースTCの内周面に臨む位置への配置となる。このため、他の部品のレイアウト位置変更等を要することなく、既存の部品レイアウトのままで第4ブレーキB4が容易に追加設定される。
従って、6つの摩擦要素のうち、三つの同時締結の組み合わせによって前進9速の変速段を達成する自動変速機に対し、容易に第4ブレーキB4を追加設定することができる。
 実施例1では、第4ブレーキB4を、ドライブプレート40とドリブンプレート41を複数枚組み合わせた多板ブレーキとした。そして、第1連結メンバM1の外周側に、ドライブプレート40を取り付けるスプライン嵌合溝12を形成し、トランスミッションケースTCの内周側に、ドリブンプレート41を取り付けるスプライン嵌合溝50を形成する構成とした。
即ち、第1連結メンバM1の外周側にスプライン嵌合溝12を形成し、トランスミッションケースTCの内周側にスプライン嵌合溝50を形成する。これだけで、ドライブプレート40とドリブンプレート41を複数枚組み合わせた多板ブレーキ構造の第4ブレーキB4が追加して設けられる。
従って、第1連結メンバM1とトランスミッションケースTCの対向面にスプライン嵌合溝12,50を形成するだけで、多板ブレーキ構造の第4ブレーキB4を追加して設けることができる。
 次に、効果を説明する。
実施例1の自動変速機にあっては、下記に列挙する効果を得られる。
 (1) 遊星歯車として、第1遊星歯車PG1と第2遊星歯車PG2と第3遊星歯車PG3と第4遊星歯車PG4を備え、
 摩擦要素として、第1ブレーキB1と第2ブレーキB2と第3ブレーキB3と第1クラッチK1と第2クラッチK2と第3クラッチK3を備え、
 6つの摩擦要素のうち、三つの同時締結の組み合わせにより前進9速の変速段を達成する自動変速機において、
 第1遊星歯車PG1の第1リングギヤR1と第2遊星歯車PG2の第2キャリアC2とを連結する連結メンバ(第1連結メンバM1)を、トランスミッションケースTCに対して固定可能な第4ブレーキB4を追加し、
 7つの摩擦要素のうち、第4ブレーキB4の締結を含む三つの同時締結の組み合わせによって少なくとも一つの変速段を追加し、前進10速以上の変速段を達成する。
このため、簡単な構成変更でギヤ比の選択自由度を高めることで、目指す機能を実現する性能要求への対応性を向上することができる。
 (2) 6つの摩擦要素のうち、図2に示すように、三つの同時締結の組み合わせによって前進11速の変速段が達成され、
 第4ブレーキB4の締結により追加される第1速段を、前進9速における第1速段よりさらにロー側の超ローギヤ比変速段とし、
 第4ブレーキB4の締結により追加される第9速段を、前記前進9速における第7速段のギヤ比と第8速段のギヤ比の間のギヤ比によるハイギヤ比変速段とする。
このため、(1)の効果に加え、第4ブレーキB4を追加するだけで新たに二つの変速段が追加され、悪路走破要求と燃費性能向上要求に応えることができる。加えて、隣接段への変速を、一つの摩擦要素の締結と一つの摩擦要素の解放による架け替え変速により達成することができる。
 (3) 連結メンバ(第1連結メンバM1)を、第1遊星歯車PG1と第2遊星歯車PG2の外周側を覆うように配置される円筒ドラム部材とし、
 第4ブレーキB4は、連結メンバ(第1連結メンバM1)の外周面と対向するトランスミッションケースTCの内周面との間に介装する。このため、(1)又は(2)の効果に加え、6つの摩擦要素のうち、三つの同時締結の組み合わせによって前進9速の変速段を達成する自動変速機に対し、容易に第4ブレーキB4を追加設定することができる。
 (4) 第4ブレーキBを、ドライブプレート40とドリブンプレート41を複数枚組み合わせた多板ブレーキとし、
 連結メンバ(第1連結メンバM1)の外周側に、ドライブプレート40を取り付けるスプライン嵌合溝12を形成し、
 トランスミッションケースTCの内周側に、ドリブンプレート41を取り付けるスプライン嵌合溝50を形成する。
このため、(3)の効果に加え、第1連結メンバM1とトランスミッションケースTCの対向面にスプライン嵌合溝12,50を形成するだけで、多板ブレーキ構造の第4ブレーキB4を追加して設けることができる。
 以上、本発明の自動変速機を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、第4ブレーキB4の追加によって新たなギヤ比による二つの変速段を追加し、前進11速後退1速とする例を示した。しかし、第4ブレーキB4の追加によって新たなギヤ比による二つの変速段のうち、何れか一つの変速段のみを追加する例としても良い。
 実施例1では、走行中において、例えば、変速マップにしたがって前進11速後退1速の変速が行われる自動変速機の例を示した。しかし、通常走行モードと悪路走行モードを切り替える選択スイッチ等を設け、通常走行モードの選択時は、第1速段を除いた前進10速後退1速の変速が行われる自動変速機とし、悪路走行モードの選択時には、第1速段を含むアンダードライブ側の変速段による変速を行う自動変速機としても良い。
 実施例1では、エンジン車やハイブリッド車に適用される自動変速機の例を示したが、これらの車両に限らず、電気自動車や燃料電池車等の電費性能の向上を目指す自動変速機としても適用することが可能である。

Claims (4)

  1.  遊星歯車として、第1遊星歯車と第2遊星歯車と第3遊星歯車と第4遊星歯車を備え、
     摩擦要素として、第1ブレーキと第2ブレーキと第3ブレーキと第1クラッチと第2クラッチと第3クラッチを備え、
     前記6つの摩擦要素のうち、三つの同時締結の組み合わせにより前進9速の変速段を達成する自動変速機において、
     前記第1遊星歯車の第1リングギヤと第2遊星歯車の第2キャリアとを連結する連結メンバを、トランスミッションケースに対して固定可能な第4ブレーキを追加し、
     前記7つの摩擦要素のうち、前記第4ブレーキの締結を含む三つの同時締結の組み合わせによって少なくとも一つの変速段を追加し、前進10速以上の変速段を達成する
    自動変速機。
  2.  請求項1に記載された自動変速機において、
     前記第2ブレーキと前記第3クラッチと前記第4ブレーキの同時締結により達成する第1速段と、
     前記第2ブレーキと前記第3ブレーキと前記第3クラッチの同時締結により達成する第2速段と、
     前記第2ブレーキと前記第2クラッチと前記第3クラッチの同時締結により達成する第3速段と、
     前記第2ブレーキと前記第3ブレーキと前記第2クラッチの同時締結により達成する第4速段と、
     前記第2ブレーキと前記第3ブレーキと前記第1クラッチの同時締結により達成する第5速段と、
     前記第3ブレーキと前記第1クラッチと前記第2クラッチの同時締結により達成する第6速段と、
     前記第1クラッチと前記第2クラッチと前記第3クラッチの同時締結により達成する第7速段と、
     前記第3ブレーキと前記第1クラッチと前記第3クラッチの同時締結により達成する第8速段と、
     前記第1クラッチと前記第3クラッチと前記第4ブレーキの同時締結により達成する第9速段と、
     前記第1ブレーキと前記第1クラッチと前記第3クラッチの同時締結により達成する第10速段と、
     前記第1ブレーキと前記第3ブレーキと前記第1クラッチの同時締結により達成する第11速段と、によって前進11速の変速段が達成され、
     前記第4ブレーキの締結により追加される前記第1速段を、前進9速における第1速段よりさらにロー側の超ローギヤ比変速段とし、
     前記第4ブレーキの締結により追加される前記第9速段を、前記前進9速における第7速段のギヤ比と第8速段のギヤ比の間のギヤ比によるハイギヤ比変速段とする
    自動変速機。
  3.  請求項1又は請求項2に記載された自動変速機において、
     前記連結メンバを、前記第1遊星歯車と前記第2遊星歯車の外周側を覆うように配置される円筒ドラム部材とし、
     前記第4ブレーキを、前記連結メンバの外周面と対向する前記トランスミッションケースの内周面との間に介装する
    自動変速機。
  4.  請求項3に記載された自動変速機において、
     前記第4ブレーキを、ドライブプレートとドリブンプレートを複数枚組み合わせた多板ブレーキとし、
     前記連結メンバの外周側に、前記ドライブプレートを取り付けるスプライン嵌合溝を形成し、
     前記トランスミッションケースの内周側に、前記ドリブンプレートを取り付けるスプライン嵌合溝を形成する
    自動変速機。
PCT/JP2016/058633 2015-03-19 2016-03-18 自動変速機 WO2016148268A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021878A KR20170103879A (ko) 2015-03-19 2016-03-18 자동 변속기
US15/559,229 US20180073609A1 (en) 2015-03-19 2016-03-18 Automatic transmission
CN201680007232.7A CN107208751A (zh) 2015-03-19 2016-03-18 自动变速器
EP16765097.7A EP3273094A4 (en) 2015-03-19 2016-03-18 Automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015056936A JP6395648B2 (ja) 2015-03-19 2015-03-19 自動変速機
JP2015-056936 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148268A1 true WO2016148268A1 (ja) 2016-09-22

Family

ID=56919720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058633 WO2016148268A1 (ja) 2015-03-19 2016-03-18 自動変速機

Country Status (6)

Country Link
US (1) US20180073609A1 (ja)
EP (1) EP3273094A4 (ja)
JP (1) JP6395648B2 (ja)
KR (1) KR20170103879A (ja)
CN (1) CN107208751A (ja)
WO (1) WO2016148268A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017003192A1 (de) * 2017-04-01 2018-10-04 Daimler Ag Mehrstufengetriebe
CN108626325A (zh) * 2017-03-15 2018-10-09 现代派沃泰有限公司 车辆的自动变速器
CN108730434A (zh) * 2017-04-24 2018-11-02 现代自动车株式会社 用于车辆的自动变速器的行星齿轮系

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859357B1 (en) 2016-07-14 2018-01-02 International Business Machines Corporation Magnetic inductor stacks with multilayer isolation layers
KR101924371B1 (ko) 2017-04-26 2018-12-03 현대 파워텍 주식회사 차량용 자동변속기
KR102386868B1 (ko) * 2017-06-19 2022-04-18 현대자동차주식회사 차량용 다단 변속기
CN108105346A (zh) * 2017-12-22 2018-06-01 贵州凯星液力传动机械有限公司 一种重型车辆或油田用八挡行星自动变速器
WO2021173414A1 (en) 2020-02-25 2021-09-02 Allison Transmission, Inc. Multi-speed planetary transmission
WO2021173415A1 (en) 2020-02-25 2021-09-02 Allison Transmission, Inc. Multi-speed planetary transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207775A (ja) * 2011-03-30 2012-10-25 Aisin Aw Co Ltd 多板式摩擦係合装置および自動変速機
JP2013068318A (ja) * 2011-09-21 2013-04-18 Hyundai Motor Co Ltd 車両用変速機
US20140221149A1 (en) * 2013-02-05 2014-08-07 GM Global Technology Operations LLC Transmission with dog clutch brake

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996817A (en) * 1974-08-27 1976-12-14 Caterpillar Tractor Co. Transmission including dual input clutch assembly
DE102008055626A1 (de) * 2008-11-03 2010-05-06 Daimler Ag Getriebeeinheit
US8403802B2 (en) * 2011-01-05 2013-03-26 GM Global Technology Operations LLC Multi-speed transmission
DE102013011569A1 (de) * 2013-06-22 2014-12-24 Daimler Ag Mehrstufengetriebe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207775A (ja) * 2011-03-30 2012-10-25 Aisin Aw Co Ltd 多板式摩擦係合装置および自動変速機
JP2013068318A (ja) * 2011-09-21 2013-04-18 Hyundai Motor Co Ltd 車両用変速機
US20140221149A1 (en) * 2013-02-05 2014-08-07 GM Global Technology Operations LLC Transmission with dog clutch brake

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273094A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626325A (zh) * 2017-03-15 2018-10-09 现代派沃泰有限公司 车辆的自动变速器
CN108626325B (zh) * 2017-03-15 2021-04-16 现代派沃泰有限公司 车辆的自动变速器
DE102017003192A1 (de) * 2017-04-01 2018-10-04 Daimler Ag Mehrstufengetriebe
CN108730434A (zh) * 2017-04-24 2018-11-02 现代自动车株式会社 用于车辆的自动变速器的行星齿轮系

Also Published As

Publication number Publication date
CN107208751A (zh) 2017-09-26
JP2016176524A (ja) 2016-10-06
EP3273094A1 (en) 2018-01-24
KR20170103879A (ko) 2017-09-13
JP6395648B2 (ja) 2018-09-26
US20180073609A1 (en) 2018-03-15
EP3273094A4 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6395648B2 (ja) 自動変速機
JP5964035B2 (ja) 車両用変速機
JP5087746B2 (ja) 自動変速機
JP6177607B2 (ja) 車両用自動変速機の遊星ギヤトレイン
JP4773551B2 (ja) 自動変速機
JP5087747B2 (ja) 自動変速機
JP2012013209A (ja) 自動変速機
JP4965620B2 (ja) 自動変速機
WO2015045257A1 (ja) 自動変速機
JP5039107B2 (ja) 自動変速機
JP5044622B2 (ja) 自動変速機
JP6064851B2 (ja) 自動変速機
KR101382313B1 (ko) 차량용 자동변속기의 유성기어트레인
JP5021009B2 (ja) 自動変速機
JP4965621B2 (ja) 自動変速機
JP4944170B2 (ja) 自動変速機
JP2011033137A (ja) 自動変速機
JP5221598B2 (ja) 自動変速機
JP2019002501A (ja) 車両用自動変速装置
JP5214669B2 (ja) 自動変速機
JP4965622B2 (ja) 自動変速機
JP5214668B2 (ja) 自動変速機
WO2018030029A1 (ja) 自動変速機
JP4944174B2 (ja) 自動変速機
JP4944175B2 (ja) 自動変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177021878

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016765097

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15559229

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE