WO2016147378A1 - 光学系及び光学素子 - Google Patents

光学系及び光学素子 Download PDF

Info

Publication number
WO2016147378A1
WO2016147378A1 PCT/JP2015/058242 JP2015058242W WO2016147378A1 WO 2016147378 A1 WO2016147378 A1 WO 2016147378A1 JP 2015058242 W JP2015058242 W JP 2015058242W WO 2016147378 A1 WO2016147378 A1 WO 2016147378A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
distance
light
optical element
optical axis
Prior art date
Application number
PCT/JP2015/058242
Other languages
English (en)
French (fr)
Inventor
賢元 池田
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to PCT/JP2015/058242 priority Critical patent/WO2016147378A1/ja
Publication of WO2016147378A1 publication Critical patent/WO2016147378A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical system and an optical element for condensing light from a light source on an optical transmission path.
  • An optical element is used to guide light from a light source to an optical transmission line such as an optical fiber.
  • the optical coupling ratio which is the ratio of the quantity of light guided to the optical transmission path to the quantity of light emitted from the light source, is improved. Is required.
  • an optical coupling lens for example, Patent Document 1 in which spherical aberration is reduced by using an optically symmetric aspheric surface, or for the purpose of improving the optical coupling rate.
  • An optical system for example, Patent Document 2 in which a focal length is determined in consideration of spherical aberration of an optical lens has been developed.
  • an optical system including a light source, an optical element, and an optical transmission path that focuses light from the light source on the optical transmission path
  • the optical coupling rate is lower than the design reference value. Therefore, an optical system and an optical element that improve the shape accuracy of the optical elements and the alignment / assembly accuracy of the elements and that have little influence on the optical coupling rate even if these precisions are lowered are desirable.
  • an optical system for condensing the light from the light source on the optical transmission line which can sufficiently reduce the influence on the optical coupling rate even if the shape accuracy of the optical elements and the alignment / assembly accuracy of the elements are lowered. And there is a need for optical elements.
  • the optical system includes a light source, an optical transmission path, and an optical element that condenses light from the light source on the optical transmission path.
  • the optical element emits light from the center of the light source and enters the entrance pupil, with an optical axis that is the center of the light source, the center of curvature of all optical surfaces of the optical element, and the center of the optical transmission path.
  • the light beam imaging point is configured to move away from the light source as the distance between the light beam and the optical axis in the optical element increases, and the optical element and the optical transmission path along the optical axis.
  • the imaging points of the light beams having the longest distance from the optical axis in the optical element are arranged in the above order.
  • the incident angle of the light beam having the longest distance from the optical axis in the optical element to the end face of the optical transmission path among the light beams of the light flux is relatively small, It becomes easier to combine.
  • the image forming point of the light beam that passes in the vicinity of the optical axis in the optical element is arranged at a position closer to the optical element, the spot diameter at the end face of the light beam condensed on the optical fiber is increased. This is not too much, and is advantageous in terms of coupling to an optical transmission line. For this reason, in the optical system of this aspect, even if the shape accuracy of the optical elements and the alignment / assembly accuracy of the elements decrease, the influence on the optical coupling rate is small.
  • the optical system according to the first embodiment of the first aspect of the present invention includes, along the optical axis, a light beam passing through the vicinity of the optical axis in the optical element among the light beams of the optical element and the light flux.
  • the image forming point of the light beam having the longest distance from the optical axis in the optical element among the image forming point, the end face of the light transmission path, and the light beam of the light flux is arranged in the above order. It is configured.
  • the image forming point of the light beam having the longest distance from the optical axis in the optical element, and the light beam passing through the vicinity of the optical axis in the optical element are arranged near the end face of the optical transmission line. Since both image points can be arranged near the end face of the optical transmission line, coupling to the optical transmission line is further facilitated. For this reason, the influence on the optical coupling rate when the shape accuracy of the optical elements and the alignment / assembly accuracy of the elements are lowered is further reduced.
  • the optical transmission line is an optical fiber.
  • An optical system according to a third embodiment of the first aspect of the present invention is the optical system according to the second embodiment described above, and the diameter of a circular region where the light flux passes through the exit surface of the optical element. 2h, the sag amount of the exit surface is
  • the distance between the point and the point at which the exit side of the optical element intersects the optical axis is S 0, and an image of a light beam that is emitted from the center of the light source and passes near the optical axis in the optical element
  • all the light beams that have passed through the optical element reach the end face of the core portion of the optical fiber.
  • An optical element is an optical element that condenses light from a light source onto an optical transmission path, the center of the light source, the center of curvature of all optical surfaces of the optical element, and the optical transmission.
  • the image forming point of the light beam emitted from the center of the light source and incident on the entrance pupil increases as the distance between the light ray and the optical axis in the optical element increases. It is configured to move away from the light source.
  • the optical element of this aspect even when the shape accuracy of the optical element and the alignment / assembly accuracy of the elements are reduced, the optical element that collects light from the light source on the optical transmission path has little influence on the optical coupling rate.
  • a system can be constructed.
  • FIG. 3 is a diagram illustrating a configuration of an optical system of Example 1-4 and Comparative Example 1-2.
  • FIG. 6 is a diagram illustrating a configuration of an optical system of Example 5 and Comparative Example 3-4.
  • FIG. 1 is a diagram illustrating a first example of an optical system including an optical fiber and a lens that collects a parallel light flux on the optical fiber.
  • the main axis of the lens 101A coincides with the central axis of the optical fiber 201, and the axis forms the optical axis OP.
  • FIG. 1 is a cross section including the optical axis OP.
  • the exit surface of the lens 101 ⁇ / b> A, that is, the surface on the optical fiber 201 side is configured to condense the light beam parallel to the optical axis OP incident on the exit surface onto the optical fiber 201.
  • FIG. 1 is a diagram illustrating a first example of an optical system including an optical fiber and a lens that collects a parallel light flux on the optical fiber.
  • the main axis of the lens 101A coincides with the central axis of the optical fiber 201, and the axis forms the optical axis OP.
  • FIG. 1 is a cross section including the optical axis
  • the distance from the exit surface of the lens 101A to the imaging point of the light beam passing through the vicinity of the optical axis OP in the lens 101A is denoted by S0.
  • S 0 is the focal length of the light beam passing near the optical axis OP.
  • the image forming point of the light beam passing through the vicinity of the optical axis OP is configured to be located on the end face of the optical fiber 201.
  • h be the radius of the circle formed by the intersection of the parallel light flux and the exit surface
  • Sh denote the distance from the exit surface of the lens 101A to the imaging point of the light beam passing through the circle.
  • a light beam collected from a position at a distance h from the optical axis OP on the exit surface of the lens 101A is referred to as a peripheral light beam.
  • the clockwise angle between the peripheral ray and the optical axis with respect to the optical axis is indicated by Uh.
  • a core portion of the optical fiber 201 is indicated by 2011, and a cladding portion of the optical fiber 201 is indicated by 2013.
  • the radius of the core part 2011 is indicated by d / 2.
  • FIG. 2 is a diagram illustrating a second example of an optical system including an optical fiber and a lens that collects a parallel light beam on the optical fiber.
  • the main axis of the lens 101B coincides with the central axis of the optical fiber 201, and the axis forms the optical axis OP.
  • FIG. 2 is a cross section including the optical axis OP.
  • the exit surface of the lens 101B that is, the surface on the side of the optical fiber 201 is configured to condense the light beam parallel to the optical axis OP incident on the exit surface onto the optical fiber 201.
  • the distance from the exit surface of the lens 101B of the imaging point of the light beam passing through the vicinity of the optical axis OP in the lens 101B is denoted by S0.
  • S 0 is the focal length of the light beam passing near the optical axis OP.
  • the image forming point of the light beam passing through the vicinity of the optical axis OP is configured to be located on the end face of the optical fiber 201.
  • FIG. 3 is a diagram illustrating a third example of an optical system including an optical fiber and a lens that collects a parallel light flux on the optical fiber.
  • the main axis of the lens 101C coincides with the central axis of the optical fiber 201, and the axis forms the optical axis OP.
  • FIG. 3 is a cross section including the optical axis OP.
  • the exit surface of the lens 101 ⁇ / b> C, that is, the surface on the optical fiber 201 side is configured to condense the light beam parallel to the optical axis OP incident on the exit surface onto the optical fiber 201.
  • the distance from the exit surface of the lens 101C of the imaging point of the light beam passing through the vicinity of the optical axis OP in the lens 101C is denoted by S0.
  • S 0 is the focal length of the light beam passing near the optical axis OP.
  • the image forming point of the light beam passing through the vicinity of the optical axis OP is configured to be located on the end face of the optical fiber 201.
  • Sh the distance from the exit surface of the lens 101C of the image point of the peripheral ray.
  • FIG. 4 is a diagram for explaining the incident angle to the core portion of the optical fiber.
  • An incident angle to the boundary surface when light traveling from the core portion toward the cladding portion travels along the boundary between the core portion and the cladding portion is represented by ⁇ c.
  • ⁇ c is a critical angle for transmitting the light incident on the optical fiber through the core while being totally reflected at the boundary between the core and the clad.
  • the incident angle ⁇ m to the end face of the core portion is the maximum value of the incident angle to the core end portion for transmitting light into the optical fiber.
  • the single mode fiber is about 6 degrees
  • the multimode fiber is Generally, it is 12 to 15 degrees.
  • a light beam having an angle of incidence on the end face of the core portion larger than the above value cannot travel along the optical fiber.
  • the light beam having the largest incident angle to the end face of the core portion is a peripheral light beam.
  • the clockwise angle Uh between the peripheral ray and the optical axis with respect to the optical axis is an incident angle of the peripheral ray to the end surface of the core. Therefore, the third example having the smallest angle Uh is most advantageous for realizing an incident angle below the critical angle at the boundary between the core portion and the cladding portion of the optical fiber.
  • the material of the optical element of Example and Comparative Example is amorphous thermoplastic polyetherimide (PEI) resin, the refractive index is 1.663 (d line, 587.56 nm), and the Abbe number is 20.09 (d line). 587.56 nm).
  • the material of the optical element is not limited to the above, but may be polyetherimide (PEI), polymethyl methacrylate resin (PMMA), polycarbonate (PC), epoxy, ultraviolet curable plastic, glass lens, or the like. .
  • FIG. 5 is a diagram showing the configuration of the optical system of Example 1-4 and Comparative Example 1-2.
  • the optical system includes a light source, an optical element, and an optical fiber.
  • the center position of the light source is indicated by P1.
  • the entrance surface, the prism total reflection surface, and the exit surface of the optical element are denoted by S1, S2, and S3, respectively.
  • the center position of the end face of the optical fiber is indicated by P2.
  • the light from the light source is converted into a parallel light beam at the incident surface S1, reflected by the prism total reflection surface S2, reaches the output surface S3, is condensed at the output surface S3, and is guided to the optical fiber.
  • the light source is a VCSEL (Vertical Cavity Surface Emitting Laser) light source having a wavelength of 850 nm.
  • the core diameter of the optical fiber is 50 ⁇ m, and the numerical aperture of the optical fiber is 0.2.
  • the optical path of the optical system is defined as the path of the light beam that leaves the center position of the light source from P1 and passes through the center of curvature of the entrance surface S1 and the center of curvature of the exit surface S3.
  • the shape of the incident surface S1 of Example 1-4 and Comparative Example 1-2 is expressed by the following mathematical formula.
  • r is the distance from the optical axis
  • z is the distance in the optical axis direction from the vertex of the incident surface S1
  • c is the curvature
  • R is the radius of curvature
  • k is the conic coefficient
  • i is non- The order of the sphere
  • a i is the aspheric coefficient.
  • the x axis and the y axis are determined so as to be orthogonal to each other in a plane orthogonal to the optical axis.
  • the shape of the exit surface S3 of Example 1-4 and Comparative Example 1-2 is represented by the following mathematical formula.
  • r is the distance from the optical axis
  • z is the distance in the optical axis direction from the vertex of the incident surface S1
  • c is the curvature
  • R is the radius of curvature
  • k is the conic coefficient
  • i is non- The order of the sphere
  • a i is the aspheric coefficient.
  • the x axis and the y axis are determined so as to be orthogonal to each other in a plane orthogonal to the optical axis.
  • Example 1 is a table showing the numerical values of the coefficients of the formula (1) representing the shape of the incident surface S1 of Example 1. In Example 1, A i of the incident surface S1 is all zero.
  • Table 2 is a table showing the numerical values of the coefficients of the expression (2) representing the shape of the exit surface S3 of the first embodiment.
  • a i of the exit surface S3 is all zero.
  • the numerical aperture on the incident side is 0.19.
  • the distance between the light source and the incident surface is 0.3158 mm
  • the distance between the incident surface and the total reflection surface that rotates the optical axis by 90 degrees is 0.9842 mm
  • the distance between the total reflection surface and the output surface is 0.9848 mm.
  • the distance D 1 of the the end face of the optical fiber is 0.3152Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1259 mm. In this embodiment, the entrance pupil diameter is the diameter of the entrance surface S1.
  • the distance from the intersection of the exit surface S3 and the optical axis of the image forming point of the light beam parallel to the optical axis passing through the exit surface S3 is the optical axis passing through the exit surface S3.
  • the incident angle Uh of the peripheral ray to the end surface of the core is 10.1 degrees, and the distance S 0 from the exit surface S3 at the point where the paraxial ray intersects the optical axis is 0.2885 mm.
  • the distance Sh from the exit surface S3 at the point where the peripheral ray intersects the optical axis is 0.3425 mm, and the spherical aberration SA is -0.0540 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 9.6 ⁇ m, and the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Example 1 is 77.8%.
  • the optical coupling ratio is a ratio of the amount of light transmitted through the optical fiber to the amount of light incident on the incident surface S1.
  • Table 3 is a table showing a decrease in optical coupling rate due to an error value of each error item in Example 1.
  • error item indicates an item in which an error from the design standard value occurs
  • error value indicates the magnitude of the error from the design standard value
  • decrease in optical coupling ratio The decrease in optical coupling rate due to the “error value” of “error item” is shown. A minus sign of “decrease in optical coupling ratio” indicates a decrease.
  • Example 1 According to Table 3, in Example 1, a decrease in the optical coupling rate cannot be confirmed by any error value of the error item.
  • Example 2 Table 4 is a table showing the numerical values of the coefficients of the formula (1) representing the shape of the incident surface S1 of Example 2. In Example 2, A i of the incident surface S1 is all zero.
  • Table 5 is a table showing the numerical values of the coefficients of the formula (2) representing the shape of the exit surface S3 of the second embodiment.
  • a i of the exit surface S3 is all zero.
  • the numerical aperture on the incident side is 0.19.
  • the distance between the light source and the incident surface is 0.3158 mm
  • the distance between the incident surface and the total reflection surface that rotates the optical axis by 90 degrees is 0.9842 mm
  • the distance between the total reflection surface and the output surface is 0.9811 mm.
  • the distance D 1 of the the end face of the optical fiber is 0.3189Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1259 mm. In this embodiment, the entrance pupil diameter is the diameter of the entrance surface S1.
  • the exit surface S3 of Example 2 is such that the distance from the intersection of the exit surface S3 and the optical axis of the image forming point of the light beam parallel to the optical axis passing through the exit surface S3 is the optical axis passing through the exit surface S3.
  • the incident angle Uh of the peripheral ray to the end surface of the core part is 10.4 degrees
  • the distance S 0 from the exit surface S3 at the point where the paraxial ray intersects the optical axis is 0.2991 mm.
  • the distance Sh from the exit surface S3 of the point where the peripheral ray intersects the optical axis is 0.3314 mm
  • the spherical aberration SA is -0.0323 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 5.7 ⁇ m
  • the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Example 2 is 77.8%.
  • the optical coupling ratio is a ratio of the amount of light transmitted through the optical fiber to the amount of light incident on the incident surface S1.
  • Table 6 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Example 2.
  • Example 3 is a table showing the numerical values of the coefficients of the formula (1) representing the shape of the incident surface S1 of Example 3. In Example 3, A i of the incident surface S1 is all zero.
  • Table 8 is a table showing the numerical values of the coefficients of the formula (2) representing the shape of the exit surface S3 of the third embodiment.
  • a i of the exit surface S3 is all zero.
  • the numerical aperture on the incident side is 0.19.
  • the distance between the light source and the incident surface is 0.3158 mm
  • the distance between the incident surface and the total reflection surface that rotates the optical axis by 90 degrees is 0.9842 mm
  • the distance between the total reflection surface and the output surface is 0.9822 mm.
  • the distance D 1 of the the end face of the optical fiber is 0.3178Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1259 mm. In this embodiment, the entrance pupil diameter is the diameter of the entrance surface S1.
  • the distance from the intersection of the exit surface S3 and the optical axis of the image forming point of the light beam parallel to the optical axis passing through the exit surface S3 is the optical axis passing through the exit surface S3.
  • the incident angle Uh of the peripheral ray to the end surface of the core part is 10.6 degrees
  • the distance S 0 from the exit surface S3 at the point where the paraxial ray intersects the optical axis is 0.3058 mm.
  • the distance Sh from the exit surface S3 at the point where the peripheral ray intersects the optical axis is 0.3242 mm
  • the spherical aberration SA is -0.0184 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 9.6 ⁇ m
  • the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Example 3 is 77.8%.
  • the optical coupling ratio is a ratio of the amount of light transmitted through the optical fiber to the amount of light incident on the incident surface S1.
  • Table 9 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Example 3.
  • Example 3 According to Table 9, in Example 3, a decrease in the optical coupling rate cannot be confirmed by any error value of any error item.
  • Example 4 Table 10 is a table
  • Table 11 is a table showing the numerical values of the coefficients of the expression (2) representing the shape of the exit surface S3 of the fourth embodiment.
  • a i of the exit surface S3 in Example 4 is 0 except for A 4.
  • the numerical aperture on the incident side is 0.19.
  • the distance between the light source and the incident surface is 0.3158 mm
  • the distance between the incident surface and the total reflection surface that rotates the optical axis by 90 degrees is 0.9842 mm
  • the distance between the total reflection surface and the output surface is 0.9718 mm.
  • the distance D 1 of the the end face of the optical fiber is 0.3282Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1259 mm. In this embodiment, the entrance pupil diameter is the diameter of the entrance surface S1.
  • the exit surface S3 of Example 4 is such that the distance from the intersection of the exit surface S3 and the optical axis of the imaging point of the light beam parallel to the optical axis passing through the exit surface S3 is the optical axis passing through the exit surface S3.
  • the incident angle Uh to the core end face of the marginal rays is 8.9 degrees
  • the distance S 0 from the exit surface S3 is an 0.2585mm
  • the distance Sh from the exit surface S3 at the point where the peripheral ray intersects the optical axis is 0.4028 mm
  • the spherical aberration SA is -0.1443 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 13.6 ⁇ m
  • the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Example 4 is 77.5%.
  • the optical coupling ratio is a ratio of the amount of light transmitted through the optical fiber to the amount of light incident on the incident surface S1.
  • Table 12 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Example 4.
  • the maximum amount of decrease in the optical coupling rate due to the error value of the error item is 2.0%.
  • Comparative Example 1 Table 13 is a table showing the numerical values of the coefficients of the formula (1) representing the shape of the incident surface S1 of Comparative Example 1. In Comparative Example 1, A i of the incident surface S1 is all zero.
  • Table 14 is a table showing the numerical values of the coefficients of the expression (2) representing the shape of the emission surface S3 of Comparative Example 1. In Comparative Example 1, all of A i of the exit surface S3 are 0.
  • the numerical aperture on the incident side is 0.19.
  • the distance between the light source and the incident surface is 0.3158 mm
  • the distance between the incident surface and the total reflection surface that rotates the optical axis by 90 degrees is 0.9842 mm
  • the distance between the total reflection surface and the output surface is 0.9848 mm.
  • the distance D 1 of the the end face of the optical fiber is 0.3152Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1259 mm. In this comparative example, the entrance pupil diameter is the diameter of the entrance surface S1.
  • the incident angle Uh of the peripheral ray to the end surface of the core part is 11.1 degrees
  • the distance S 0 from the exit surface S3 at the point where the paraxial ray intersects the optical axis is 0.3176 mm
  • the distance Sh from the exit surface S3 at the point where the peripheral ray intersects the optical axis is 0.3126 mm
  • the spherical aberration SA is 0.0050 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 0.5 ⁇ m
  • the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Comparative Example 1 is 77.8%.
  • the optical coupling ratio is a ratio of the amount of light transmitted through the optical fiber to the amount of light incident on the incident surface S1.
  • Table 15 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Comparative Example 1.
  • Comparative Example 2 Table 16 is a table showing the numerical values of the coefficients of the formula (1) representing the shape of the incident surface S1 of Comparative Example 2. In Comparative Example 2, A i of the incident surface S1 is all zero.
  • Table 17 is a table showing the numerical values of the coefficients of the formula (2) representing the shape of the emission surface S3 of the comparative example 2.
  • a i of the exit surface S3 in Comparative Example 2 is 0 except for A 4.
  • the numerical aperture on the incident side is 0.19.
  • the distance between the light source and the incident surface is 0.3158 mm
  • the distance between the incident surface and the total reflection surface that rotates the optical axis by 90 degrees is 0.9842 mm
  • the distance between the total reflection surface and the output surface is 0.9848 mm.
  • the distance D 1 of the the end face of the optical fiber is 0.3152Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1259 mm. In this comparative example, the entrance pupil diameter is the diameter of the entrance surface S1.
  • the incident angle Uh of the peripheral ray to the end surface of the core is 7.4 degrees
  • the distance S 0 from the exit surface S3 at the point where the paraxial ray intersects the optical axis is 0.4760 mm.
  • the distance Sh from the exit surface S3 at the point where the peripheral ray intersects the optical axis is 0.4760 mm
  • the spherical aberration SA is 0.0000 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 19.7 ⁇ m
  • the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Comparative Example 2 is 77.3%.
  • the optical coupling ratio is a ratio of the amount of light transmitted through the optical fiber to the amount of light incident on the incident surface S1.
  • Table 18 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Comparative Example 2.
  • Comparative Table 19A of Example 1-4 and Comparative Example 1-2 is a table for comparing the configurations and performances of Example 1-4 and Comparative Example 1-2.
  • Example 1-4 the distance S 0 of the imaging point of the light beam passing near the optical axis in the lens from the exit surface S3, the distance Sh of the imaging point of the peripheral ray from the exit surface S3, and the light of the end face of the fiber, the following relationship is established between the distance D 1 of the from the exit surface S3.
  • Example 1-4 the imaging point of the light beam passing through the vicinity of the optical axis in the lens along the optical axis, the end surface of the optical fiber, and the imaging point of the peripheral light beam are separated from the output surface S3. It is characterized by a configuration in which the light travels in the above order.
  • “Reduction in coupling rate” in Table 19A indicates the maximum value among the absolute values of the reduction in optical coupling rate caused by the error value of each error item from the design reference value for each example and comparative example.
  • the decrease in the optical coupling rate caused by an error from the design reference value in Example 1-4 is significantly smaller than that in the comparative example.
  • Table 19B is a table for confirming the relationship (A) for Example 1-4 and Comparative Example 1-2. 2H in the table represents the entrance pupil diameter. According to Table 19B, Examples 1-4 satisfy the relationship (A).
  • FIG. 6 is a diagram showing the configuration of the optical system of Example 5 and Comparative Example 3-4.
  • the optical system includes a light source, an optical element, and an optical fiber.
  • the center position of the light source is indicated by P1.
  • the entrance surface and the exit surface of the optical element are denoted by S4 and S5, respectively.
  • the center position of the end face of the optical fiber is indicated by P2.
  • the light from the light source is collected on the incident surface S4, passes through the output surface S5, and is guided to the optical fiber.
  • the light source is a semiconductor laser such as a VCSEL (Vertical Cavity Surface Emitting Laser) light source and has a wavelength of 850 nm.
  • the core diameter of the optical fiber is 50 ⁇ m, and the numerical aperture of the optical fiber is 0.2.
  • the path of the light beam that leaves the center position of the light source from P1 and passes through the center of curvature of the incident surface S4 is defined as the optical axis of the optical system.
  • the shape of the incident surface S4 of Example 5 and Comparative Example 3-4 is expressed by the following mathematical formula.
  • r is the distance from the optical axis
  • z is the distance in the optical axis direction from the vertex of the incident surface S1
  • c is the curvature
  • R is the radius of curvature
  • k is the conic coefficient
  • i is non- The order of the sphere
  • a i is the aspheric coefficient.
  • the x axis and the y axis are determined so as to be orthogonal to each other in a plane orthogonal to the optical axis.
  • the exit surface S5 of Example 5 and Comparative Example 3-4 is a flat surface.
  • Example 5 Table 20 is a table
  • the numerical aperture on the incident side is 0.19.
  • Distance between the light source and the incident surface is 0.4000Mm
  • the center thickness of the lens is 0.4449Mm
  • distance D 2 between the emission surface and the end face of the optical fiber is 0.1477Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1645 mm. In this embodiment, the entrance pupil diameter is the diameter of the entrance surface S4.
  • the distance from the intersection of the exit surface S5 and the optical axis of the imaging point of the light beam that passes through the incident surface S4 is the distance from the optical axis of the light beam that passes through the incident surface S4. It is comprised so that it may become so large that it is large.
  • the incident angle Uh of the peripheral ray to the end surface of the core portion is 10.1 degrees, and the distance S 0 from the exit surface S5 of the imaging point of the ray passing near the optical axis in the lens. Is 0.0869 mm, the distance Sh of the imaging point of the peripheral ray from the exit surface S5 is 0.1740 mm, and the spherical aberration SA is -0.0871 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 7.4 ⁇ m, and the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Example 5 is 85.1%.
  • the optical coupling ratio is a ratio of the amount of light transmitted by the optical fiber to the amount of light incident on the incident surface S4.
  • Table 21 is a table showing a decrease in the optical coupling rate due to the error value of each error interval in Example 5.
  • Example 4 the maximum value of the reduction amount of the optical coupling rate due to the error value of each error item is 0.2%.
  • Table 22 is a table showing the numerical values of the coefficients of Expression (3) representing the shape of the incident surface S4 of Comparative Example 3. In Comparative Example 3, all of A i of the incident surface S4 are zero.
  • the numerical aperture on the incident side is 0.19.
  • Distance between the light source and the incident surface is 0.4000Mm
  • the center thickness of the lens is 0.4429Mm
  • distance D 2 between the emission surface and the end face of the optical fiber is 0.1477Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1643 mm. In this comparative example, the entrance pupil diameter is the diameter of the entrance surface S4.
  • the incident angle Uh of the peripheral ray to the end surface of the core is 10.7 degrees
  • the distance S 0 of the imaging point of the ray passing through the vicinity of the optical axis in the lens from the exit surface S5. Is 0.1479 mm
  • the distance Sh of the imaging point of the peripheral ray from the exit surface S5 is 0.1475 mm
  • the spherical aberration SA is +0.0004 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects with the end face of the optical fiber is 0.2 ⁇ m
  • the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Comparative Example 3 is 85.1%.
  • the optical coupling ratio is a ratio of the amount of light transmitted by the optical fiber to the amount of light incident on the incident surface S4.
  • Table 23 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Comparative Example 3.
  • Comparative Example 4 Table 24 is a table showing the numerical values of the coefficients of Expression (3) representing the shape of the incident surface S4 of Comparative Example 4. A i of the entrance surface S4 in Comparative Example 4 is 0 except for A 4.
  • the numerical aperture on the incident side is 0.19.
  • Distance between the light source and the incident surface is 0.4000Mm
  • the center thickness of the lens is 0.4492Mm
  • distance D 2 between the emission surface and the end face of the optical fiber is 0.1477Mm.
  • the distance between the light source and the surface means a distance along the optical axis.
  • the entrance pupil diameter is 0.1630 mm. In this comparative example, the entrance pupil diameter is the diameter of the entrance surface S4.
  • the incident angle Uh of the peripheral ray to the end surface of the core portion is 7.9 degrees, and the distance S 0 from the exit surface S5 of the imaging point of the ray passing through the vicinity of the optical axis in the lens. Is 0.2988 mm, the distance Sh of the imaging point of the peripheral ray from the exit surface S5 is 0.2979 mm, and the spherical aberration SA is +0.0009 mm.
  • the distance Ds from the central axis of the optical fiber at the position where the peripheral ray intersects the end face of the optical fiber is 20.6 ⁇ m, and the radius d / 2 of the optical fiber is 25 ⁇ m or less.
  • the optical coupling rate of Comparative Example 4 is 85.1%.
  • the optical coupling ratio is a ratio of the amount of light transmitted by the optical fiber to the amount of light incident on the incident surface S4.
  • Table 25 is a table showing a decrease in the optical coupling rate due to the error value of each error item in Comparative Example 4.
  • the comparative table 26A of Example 5 and Comparative Example 3-4 is a table for comparing the configurations and performances of Example 5 and Comparative Example 3-4.
  • the distance S 0 from the exit surface S5 of the image forming point of the light beam passing near the optical axis in the lens, the distance Sh from the output surface S5 of the image forming point of the peripheral light beam, and the optical fiber. of the end face of the, between the distance D 2 from the exit surface S5 following relation is established.
  • Example 5 the image forming point of the light beam passing through the vicinity of the optical axis in the lens along the optical axis, the end surface of the optical fiber, and the image forming point of the peripheral light beam are emitted from the output surface S5.
  • the arrangement is arranged in the above-described order in the traveling direction.
  • “Reduction in coupling rate” in Table 26A indicates the maximum value among the absolute values of the reduction in optical coupling rate caused by the error value of each error item from the design reference value for each example and comparative example.
  • the decrease in the optical coupling rate caused by an error from the design reference value in the case of Example 5 is significantly smaller than that in the case of the comparative example.
  • Table 26B is a table for confirming the relationship (A) for Example 5 and Comparative Example 3-4. 2H in the table represents the entrance pupil diameter.
  • Example 5 satisfies the relationship (A).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度が低下しても光結合率に対する影響を十分に小さくすることのできる光学系を提供する。本発明による光学系は、光源と、光伝送路(201)と、該光源からの光を該光伝送路に集光する光学素子(101C)と、を含む。該光学素子は、該光源の中心と該光学素子のすべての光学面の曲率中心と該光伝送路の中心を通る仮想光線を光軸として、該光学素子は、該光源の中心から発して入射瞳に入射する光束の光線の結像点が、該光学素子内における該光線と該光軸との距離が大きいほど光源から遠ざかるように構成されており、該光軸に沿って、該光学素子、該光伝送路の端面、及び該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点が、上記の順で配置されるように構成されている。

Description

光学系及び光学素子
 本発明は、光源からの光を光伝送路に集光する光学系及び光学素子に関する。
 光源からの光を光ファイバなどの光伝送路に導くために光学素子が使用される。このような、光源、光学素子、及び光伝送路を含む光学系においては、光源から放射される光量に対する、光伝送路に導かれて伝送される光量の比である光結合率を向上させることが求められる。
 従来技術において、光結合率を向上させる目的で、光軸対称の非球面を使用して球面収差を小さくした光結合レンズ(たとえば、特許文献1)や、光結合率を向上させる目的で、集光レンズの球面収差を考慮して焦点距離を定めた光学系(たとえば、特許文献2)などが開発されている。
 他方、光源からの光を光伝送路に集光する、光源、光学素子、及び光伝送路を含む光学系を製造する際には、光学素子の形状精度の他に、光源、光学素子、及び光伝送路の相互の位置合わせ・組み立て精度が低下すると、光結合率が設計基準値よりも低下する。したがって、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度を向上させるとともに、仮にこれらの精度が低下しても光結合率に対する影響が少ないような光学系及び光学素子が望ましい。
 しかし、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度が低下しても光結合率に対する影響を十分に小さくすることのできる、光源からの光を光伝送路に集光する光学系及び光学素子は、従来開発されていない。
特開平7-294778号公報 特開2003-255236号公報
したがって、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度が低下しても光結合率に対する影響を十分に小さくすることのできる、光源からの光を光伝送路に集光する光学系及び光学素子に対するニーズがある。
 本発明の第1の態様による光学系は、光源と、光伝送路と、該光源からの光を該光伝送路に集光する光学素子と、を含む。該光源の中心と該光学素子のすべての光学面の曲率中心と該光伝送路の中心を通る仮想光線を光軸として、該光学素子は、該光源の中心から発して入射瞳に入射する光束の光線の結像点が、該光学素子内における該光線と該光軸との距離が大きいほど光源から遠ざかるように構成されており、該光軸に沿って、該光学素子、該光伝送路の端面、及び該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点が、上記の順で配置されるように構成されている。
 本態様においては、該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の該光伝送路の端面への入射角は相対的に小さくなり、光伝送路への結合が行いやすくなる。また、該光学素子内において光軸の近傍を通過する光線の結像点は、より光学素子に近い位置に配置されるので、光ファイバに集光される光束の、端面におけるスポット径が大きくなりすぎることはなく、光伝送路への結合の点から有利である。このため、本態様の光学系においては、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度が低下しても光結合率に対する影響は小さい。
 本発明の第1の態様の第1の実施形態の光学系は、該光軸に沿って、該光学素子、該光束の光線のうち、該光学素子内において該光軸の近傍を通過する光線の結像点、該光伝送路の端面、及び該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点が、上記の順で配置されるように構成されている。
 本実施形態によれば、該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点、及び該光学素子内において光軸の近傍を通過する光線の結像点を、ともに光伝送路の端面の近くに配置することができるので、光伝送路への結合がさらに行いやすくなる。このため、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度が低下した場合の光結合率に対する影響はさらに小さくなる。
 本発明の第1の態様の第2の実施形態の光学系においては、該光伝送路が光ファイバである。
 本発明の第1の態様の第3の実施形態の光学系は、上記の第2の実施形態の光学系であって、該光束が該光学素子の出射面を通過する円形の領域の径を2hとし、該出射面のサグ量を|z|とし、該光ファイバのコア径をdとし、該光束の光線のうち、該光学素子内において該光軸の近傍を通過する光線の結像点と、該光学素子の該出射側と該光軸とが交わる点と、の距離をSとし、該光源の中心から発して該光学素子において該光軸の近傍を通過する光線の結像点と、該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点と、の距離を|SA|として、
Figure JPOXMLDOC01-appb-M000002
が満たされる。
 本実施形態によれば、該光学素子を通過したすべての光線が、該光ファイバのコア部の端面に到達する。
 本発明の第2の態様による光学素子は、光源からの光を光伝送路に集光する光学素子であって、該光源の中心と該光学素子のすべての光学面の曲率中心と該光伝送路の中心を通る仮想光線を光軸として、該光源の中心から発して入射瞳に入射する光束の光線の結像点が、該光学素子内における該光線と該光軸との距離が大きいほど光源から遠ざかるように構成されている。
 本態様の光学素子によれば、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度が低下しても光結合率に対する影響の小さい、光源からの光を光伝送路に集光する光学系を構成することができる。
光ファイバと、平行光束を該光ファイバに集光させるレンズとを含む光学系の第1の例を示す図である。 光ファイバと、平行光束を該光ファイバに集光させるレンズとを含む光学系の第1の例を示す図である。 光ファイバと、平行光束を該光ファイバに集光させるレンズとを含む光学系の第3の例を示す図である。 光ファイバのコア部への入射角を説明するための図である。 実施例1-4及び比較例1-2の光学系の構成を示す図である。 実施例5及び比較例3-4の光学系の構成を示す図である。
 図1は、光ファイバと、平行光束を該光ファイバに集光させるレンズとを含む光学系の第1の例を示す図である。レンズ101Aの主軸と光ファイバ201の中心軸は一致しており、その軸は光軸OPをなす。図1は光軸OPを含む断面である。レンズ101Aの出射面、すなわち光ファイバ201側の面は、該出射面に入射した光軸OPに平行な光束を光ファイバ201に集光させるように構成されている。図1において、レンズ101A内において光軸OPの近傍を通過する光線の結像点の、レンズ101Aの出射面からの距離をSで示す。Sは、光軸OPの近傍を通過する光線の焦点距離である。ここで、光軸OPの近傍を通過する光線の結像点は光ファイバ201の端面に位置するように構成されている。上記の平行光束と出射面との交点によって形成される円の半径をhとして、上記の円を通過する光線の結像点の、レンズ101Aの出射面からの距離をShで示す。図1の場合に、ShはSよりも小さい。すなわち、球面収差SA=S-Shは正である。ここで、レンズ101Aの出射面において光軸OPからhの距離の位置から集光する光線を周縁光線と呼称する。周縁光線と光軸との間の、光軸を基準として時計回りの角度をUhで示す。また、光ファイバ201のコア部を2011で示し、光ファイバ201のクラッド部を2013で示す。コア部2011の半径をd/2で示す。
 図2は、光ファイバと、平行光束を該光ファイバに集光させるレンズとを含む光学系の第2の例を示す図である。レンズ101Bの主軸と光ファイバ201の中心軸は一致しており、その軸は光軸OPをなす。図2は光軸OPを含む断面である。レンズ101Bの出射面、すなわち光ファイバ201側の面は、該出射面に入射した光軸OPに平行な光束を光ファイバ201に集光させるように構成されている。図2において、レンズ101B内において光軸OPの近傍を通過する光線の結像点の、レンズ101Bの出射面からの距離をSで示す。Sは、光軸OPの近傍を通過する光線の焦点距離である。ここで、光軸OPの近傍を通過する光線の結像点は光ファイバ201の端面に位置するように構成されている。図2において、周縁光線の結像点の、レンズ101Bの出射面からの距離をShで示す。図2の場合に、ShはSと同じである。すなわち、球面収差SA=S-Shは0である。
 図3は、光ファイバと、平行光束を該光ファイバに集光させるレンズとを含む光学系の第3の例を示す図である。レンズ101Cの主軸と光ファイバ201の中心軸は一致しており、その軸は光軸OPをなす。図3は光軸OPを含む断面である。レンズ101Cの出射面、すなわち光ファイバ201側の面は、該出射面に入射した光軸OPに平行な光束を光ファイバ201に集光させるように構成されている。図3において、レンズ101C内において光軸OPの近傍を通過する光線の結像点の、レンズ101Cの出射面からの距離をSで示す。Sは、光軸OPの近傍を通過する光線の焦点距離である。ここで、光軸OPの近傍を通過する光線の結像点は光ファイバ201の端面に位置するように構成されている。図3において、周縁光線の結像点の、レンズ101Cの出射面からの距離をShで示す。図3の場合に、ShはSより大きい。すなわち、球面収差SA=S-Shは負である。
 図3において、レンズ101Cの光束に対応するサグ量を|z|とすると、周縁光線を含む、レンズ101Cを通過したすべての光線がコア部2011の端面に到達するためには以下の関係が成立する必要がある。
Figure JPOXMLDOC01-appb-M000003
|SA|について整理すると以下のようになる。
Figure JPOXMLDOC01-appb-M000004
 図1乃至図3において、レンズ内において光軸OPの近傍を通過する光線の結像点のレンズの出射面からの距離Sが同じであるとすると、周縁光線と光軸との間の、光軸を基準として時計回りの角度をUhは、図1に示す第1の例において最も大きく、図3に示す第3の例において最も小さい。
 図4は、光ファイバのコア部への入射角を説明するための図である。コア部からクラッド部に向かった光がコア部とクラッド部との境界に沿って進むときの境界面への入射角をθcで表す。θcは、光ファイバに入射した光線がコア部とクラッド部との境界で全反射されながらコア部内を伝達するための臨界角である。コア部の屈折率をnとし、クラッド部の屈折率をnとすると、スネルの法則から、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000005
 臨界角を実現する光線の、コア部の端面への入射角をθmとすると、スネルの法則から、以下の式が成立する。
Figure JPOXMLDOC01-appb-M000006
上記の値を光ファイバの開口数と呼称する。
 コア部の端面への入射角θmは、光ファイバ内へ光を伝送させるためのコア端部への入射角の最大値であり、シングルモードファイバでは、一般に約6度であり、マルチモードファイバでは、一般に12度から15度である。コア部の端面への入射角が上記の値よりも大きな角度の光線は光ファイバに沿って進むことができない。
 ここで、図1乃至図3において、レンズによって集光される光線のうち、コア部の端面への入射角が最も大きくなる光線は周縁光線である。また、周縁光線と光軸との間の、光軸を基準として時計回りの角度Uhは、周縁光線のコア部端面への入射角である。したがって、角度Uhが最も小さい第3の例が、光ファイバのコア部とクラッド部との境界で臨界角以下の入射角を実現するには最も有利である。
 周縁光線のコア部端面への入射角を小さくするために、近軸の光線が光軸と交わる点を光ファイバの端面から光ファイバの内側へ移動させることも考えられる。この場合にUhは小さくなるが、端面に集光される光束のスポット径は大きくなるので、光学素子の形状精度、及び素子相互の位置合わせ・組み立て精度の低下の、光結合率に対する影響を小さくする観点からは好ましくない。この点については後で実施例及び比較例によって説明する。
 以下において、実施例及び比較例を説明する。実施例及び比較例の光学素子の材料は、非晶性熱可塑性ポリエーテルイミド(PEI)樹脂であり、屈折率は、1.663(d線、587.56nm)であり、アッベ数は、20.09(d線、587.56nm)である。光学素子の材料は、上記に限定されるものではなく、ポリエーテルイミド(PEI)、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネイト(PC)、エポキシ、紫外線硬化プラスチック、ガラスレン
ズなどであってもよい。
実施例1-4及び比較例1-2の光学系の構成
 図5は、実施例1-4及び比較例1-2の光学系の構成を示す図である。光学系は、光源と光学素子と光ファイバとを含む。光源の中心位置をP1で示す。光学素子の入射面、プリズム全反射面、及び出射面を、それぞれS1、S2、及びS3で示す。光ファイバの端面の中心位置をP2で示す。光源からの光は入射面S1で平行光束とされ、プリズム全反射面S2で反射され、出射面S3に至り、出射面S3で集光されて光ファイバに導かれる。光源はVCSEL(Vertical Cavity Surface Emitting LASER、垂直共振器面発光レーザ)光源であり、波長は850nmである。光ファイバのコア径は50μmであり、光ファイバの開口数は0.2である。
 ここで、光源の中心位置をP1から出て入射面S1の曲率中心及び出射面S3の曲率中心をとおる光線の経路を光学系の光軸とする。
 実施例1-4及び比較例1-2の入射面S1の形状は以下の数式で表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
ここで、rは光軸からの距離であり、zは入射面S1の頂点から光軸方向の距離であり、c は曲率、Rは曲率半径であり、kはコーニック係数であり、iは非球面の次数であり、Aiは非球面係数である。x軸及びy軸は、光軸と直交する面内において互いに直交するように定める。
 実施例1-4及び比較例1-2の出射面S3の形状は以下の数式で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
ここで、rは光軸からの距離であり、zは入射面S1の頂点から光軸方向の距離であり、c は曲率、Rは曲率半径であり、kはコーニック係数であり、iは非球面の次数であり、Aiは非球面係数である。x軸及びy軸は、光軸と直交する面内において互いに直交するように定める。
実施例1
 表1は、実施例1の入射面S1の形状を表す式(1)の係数の数値を示す表である。実施例1において入射面S1のAiはすべて0である。
 以下の表において、別途記載がない場合の長さの単位はミリメータである。
Figure JPOXMLDOC01-appb-T000013
 表2は、実施例1の出射面S3の形状を表す式(2)の係数の数値を示す表である。実施例1において出射面S3のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000014
 実施例1の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.3158mmであり、入射面と光軸を90度回転させる全反射面の距離は0.9842mmであり、該全反射面と出射面の距離は0.9848mmであり、出射面と光ファイバの端面との距離Dは0.3152mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1259mmである。本実施例において、入射瞳径は入射面S1の径である。
 実施例1の出射面S3は、出射面S3を通過する光軸に平行な光線の結像点の、出射面S3と光軸との交点からの距離が、出射面S3を通過する光軸に平行な光線の光軸からの距離が大きいほど大きくなるように構成されている。
 実施例1の光学系において、周縁光線のコア部端面への入射角Uhは10.1度であり、近軸の光線が光軸と交わる点の、出射面S3からの距離Sは0.2885mmであり、周縁光線が光軸と交わる点の、出射面S3からの距離Shは0.3425 mmであり、球面収差SAは-0.0540mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは9.6μmであり、光ファイバの半径d/2=25μm以下である。実施例1の光結合率は77.8%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S1に入射される光の量に対する比である。
 一般に、光学素子の製造及び設置の際に設計基準値からの誤差が生じることは避けられない。このような設計基準値からの誤差によって、光結合率は低下する。
 表3は、実施例1における各誤差項目の誤差値による光結合率の低下を示す表である。
 以下の表において「誤差項目」とは設計基準値からの誤差が生じる項目を示し、「誤差値」とは設計基準値からの誤差の大きさを示し、「光結合率の低下」とは、「誤差項目」の「誤差値」による光結合率の低下分を示す。「光結合率の低下」のマイナスの符号は低下を示す。
Figure JPOXMLDOC01-appb-T000015
 表3によれば、実施例1において、いずれの誤差項目の誤差値によっても光結合率の低下は確認できない。
実施例2
 表4は、実施例2の入射面S1の形状を表す式(1)の係数の数値を示す表である。実施例2において入射面S1のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000016
 表5は、実施例2の出射面S3の形状を表す式(2)の係数の数値を示す表である。実施例2において出射面S3のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000017
 実施例2の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.3158mmであり、入射面と光軸を90度回転させる全反射面の距離は0.9842mmであり、該全反射面と出射面の距離は0.9811mmであり、出射面と光ファイバの端面との距離Dは0.3189mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1259mmである。本実施例において、入射瞳径は入射面S1の径である。
 実施例2の出射面S3は、出射面S3を通過する光軸に平行な光線の結像点の、出射面S3と光軸との交点からの距離が、出射面S3を通過する光軸に平行な光線の光軸からの距離が大きいほど大きくなるように構成されている。
 実施例2の光学系において、周縁光線のコア部端面への入射角Uhは10.4度であり、近軸の光線が光軸と交わる点の、出射面S3からの距離Sは0.2991mmであり、周縁光線が光軸と交わる点の、出射面S3からの距離Shは0.3314 mmであり、球面収差SAは-0.0323mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは5.7μmであり、光ファイバの半径d/2=25μm以下である。実施例2の光結合率は77.8%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S1に入射される光の量に対する比である。
 表6は、実施例2における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000018
 表6によれば、実施例2において、いずれの誤差項目の誤差値によっても光結合率の低下は確認できない。
実施例3
 表7は、実施例3の入射面S1の形状を表す式(1)の係数の数値を示す表である。実施例3において入射面S1のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000019
 表8は、実施例3の出射面S3の形状を表す式(2)の係数の数値を示す表である。実施例3において出射面S3のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000020
 実施例3の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.3158mmであり、入射面と光軸を90度回転させる全反射面の距離は0.9842mmであり、該全反射面と出射面の距離は0.9822mmであり、出射面と光ファイバの端面との距離Dは0.3178mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1259mmである。本実施例において、入射瞳径は入射面S1の径である。
 実施例3の出射面S3は、出射面S3を通過する光軸に平行な光線の結像点の、出射面S3と光軸との交点からの距離が、出射面S3を通過する光軸に平行な光線の光軸からの距離が大きいほど大きくなるように構成されている。
 実施例3の光学系において、周縁光線のコア部端面への入射角Uhは10.6度であり、近軸の光線が光軸と交わる点の、出射面S3からの距離Sは0.3058mmであり、周縁光線が光軸と交わる点の、出射面S3からの距離Shは0.3242 mmであり、球面収差SAは-0.0184mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは9.6μmであり、光ファイバの半径d/2=25μm以下である。実施例3の光結合率は77.8%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S1に入射される光の量に対する比である。
 表9は、実施例3における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000021
 表9によれば、実施例3において、いずれの誤差項目の誤差値によっても光結合率の低下は確認できない。
実施例4
 表10は、実施例4の入射面S1の形状を表す式(1)の係数の数値を示す表である。実施例4において入射面S1のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000022
 表11は、実施例4の出射面S3の形状を表す式(2)の係数の数値を示す表である。実施例4において出射面S3のAiは、Aを除いて0である。
Figure JPOXMLDOC01-appb-T000023
 実施例4の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.3158mmであり、入射面と光軸を90度回転させる全反射面の距離は0.9842mmであり、該全反射面と出射面の距離は0.9718mmであり、出射面と光ファイバの端面との距離Dは0.3282mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1259mmである。本実施例において、入射瞳径は入射面S1の径である。
 実施例4の出射面S3は、出射面S3を通過する光軸に平行な光線の結像点の、出射面S3と光軸との交点からの距離が、出射面S3を通過する光軸に平行な光線の光軸からの距離が大きいほど大きくなるように構成されている。
 実施例4の光学系において、周縁光線のコア部端面への入射角Uhは8.9度であり、近軸の光線が光軸と交わる点の、出射面S3からの距離Sは0.2585mmであり、周縁光線が光軸と交わる点の、出射面S3からの距離Shは0.4028 mmであり、球面収差SAは-0.1443mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは13.6μmであり、光ファイバの半径d/2=25μm以下である。実施例4の光結合率は77.5%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S1に入射される光の量に対する比である。
 表12は、実施例4における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000024
 表12によれば、実施例4において、誤差項目の誤差値による光結合率の低下量の最大値は2.0%である。
比較例1
 表13は、比較例1の入射面S1の形状を表す式(1)の係数の数値を示す表である。比較例1において入射面S1のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000025
 表14は、比較例1の出射面S3の形状を表す式(2)の係数の数値を示す表である。比較例1において出射面S3のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000026
 比較例1の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.3158mmであり、入射面と光軸を90度回転させる全反射面の距離は0.9842mmであり、該全反射面と出射面の距離は0.9848mmであり、出射面と光ファイバの端面との距離Dは0.3152mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1259mmである。本比較例において、入射瞳径は入射面S1の径である。
 比較例1の光学系において、周縁光線のコア部端面への入射角Uhは11.1度であり、近軸の光線が光軸と交わる点の、出射面S3からの距離Sは0.3176mmであり、周縁光線が光軸と交わる点の、出射面S3からの距離Shは0.3126 mmであり、球面収差SAは0.0050mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは0.5μmであり、光ファイバの半径d/2=25μm以下である。比較例1の光結合率は77.8%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S1に入射される光の量に対する比である。
 表15は、比較例1における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000027
 表15によれば、比較例1において、誤差項目の誤差値による光結合率の低下量の最大値は8.0%である。
比較例2
 表16は、比較例2の入射面S1の形状を表す式(1)の係数の数値を示す表である。比較例2において入射面S1のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000028
 表17は、比較例2の出射面S3の形状を表す式(2)の係数の数値を示す表である。比較例2において出射面S3のAiは、Aを除いて0である。
Figure JPOXMLDOC01-appb-T000029
 比較例2の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.3158mmであり、入射面と光軸を90度回転させる全反射面の距離は0.9842mmであり、該全反射面と出射面の距離は0.9848mmであり、出射面と光ファイバの端面との距離Dは0.3152mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1259mmである。本比較例において、入射瞳径は入射面S1の径である。
 比較例2の光学系において、周縁光線のコア部端面への入射角Uhは7.4度であり、近軸の光線が光軸と交わる点の、出射面S3からの距離Sは0.4760mmであり、周縁光線が光軸と交わる点の、出射面S3からの距離Shは0.4760 mmであり、球面収差SAは0.0000mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは19.7μmであり、光ファイバの半径d/2=25μm以下である。比較例2の光結合率は77.3%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S1に入射される光の量に対する比である。
 表18は、比較例2における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000030
 表18によれば、比較例2において、各誤差項目の誤差値による光結合率の低下量の最大値は12.7%である。
実施例1-4及び比較例1-2の比較
 表19Aは、実施例1-4及び比較例1-2の構成及び性能を比較するための表である。
Figure JPOXMLDOC01-appb-T000031
 実施例1-4において、レンズにおいて光軸の近傍を通過する光線の結像点の、出射面S3からの距離S、周縁光線の結像点の、出射面S3からの距離Sh、及び光ファイバの端面の、出射面S3からの距離Dの間には以下の関係が成立する。
 S<D<Sh
 比較例1においてS、Sh、及びDの間には以下の関係が成立する。
 Sh<D<S
 比較例2においてS、Sh、及びDの間には以下の関係が成立する。
 D<Sh=S
 このように、実施例1-4は、光軸に沿って、レンズにおいて光軸の近傍を通過する光線の結像点、光ファイバの端面、及び周縁光線の結像点が、出射面S3から光の進行する方向に上記の順で配置される構成を特徴とする。
 比較例1においては、ShがSよりも小さい。このため、周縁光線の光軸となす角度Uhがレンズにおいて光軸の近傍を通過する光線が光軸となす角度よりも大きくなり、光ファイバ内へ光を伝送させるためのコア端部への入射角の最大値を超えやすくなる。
 比較例2においては、ShがSと等しくDよりも大きい。周縁光線の光軸となす角度Uh、及びレンズにおいて光軸の近傍を通過する光線が光軸となす角度は、互いに等しく、レンズにおいて光軸の近傍を通過する光線が端面の位置で結像する場合に光軸となす角度よりも小さくなる。しかし、この場合に、本来、光ファイバの端面の位置とするべき結像点を光ファイバの内側に位置させている。このため、端面の位置に集光される光束のスポット径は大きくなる。この結果、設計基準値からの誤差によって、集光される光が、光ファイバの端面からそれやすくなる。
 表19Aの「結合率低下」は、各実施例及び比較例について、設計基準値からの各誤差項目の誤差値によって生じる、光結合率の低下の絶対値のうちの最大値を示す。
 実施例1-4の場合の設計基準値からの誤差によって生じる、光結合率の低下は、比較例の場合と比較して顕著に小さい。
 表19Bは、実施例1-4及び比較例1-2について、関係(A)を確認するための表である。表中の2Hは入射瞳径を表す。
Figure JPOXMLDOC01-appb-T000032
表19Bによれば、実施例1-4は関係(A)を満たす。
実施例5及び比較例3-4の光学系の構成
 図6は、実施例5及び比較例3-4の光学系の構成を示す図である。光学系は、光源と光学素子と光ファイバとを含む。光源の中心位置をP1で示す。光学素子の入射面、及び出射面を、それぞれS4、及びS5で示す。光ファイバの端面の中心位置をP2で示す。光源からの光は入射面S4で集光され、出射面S5を通過して光ファイバに導かれる。光源はVCSEL(Vertical Cavity Surface Emitting LASER、垂直共振器面発光レーザ)光源等の半導体レーザであり、波長は850nmである。光ファイバのコア径は50μmであり、光ファイバの開口数は0.2である。
 ここで、光源の中心位置をP1から出て入射面S4の曲率中心をとおる光線の経路を光学系の光軸とする。
 実施例5及び比較例3-4の入射面S4の形状は以下の数式で表される。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
ここで、rは光軸からの距離であり、zは入射面S1の頂点から光軸方向の距離であり、c は曲率、Rは曲率半径であり、kはコーニック係数であり、iは非球面の次数であり、Aiは非球面係数である。x軸及びy軸は、光軸と直交する面内において互いに直交するように定める。
 実施例5及び比較例3-4の出射面S5は平面である。
実施例5
 表20は、実施例5の入射面S4の形状を表す式(3)の係数の数値を示す表である。実施例5において入射面S4のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000036
 実施例5の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.4000mmであり、レンズの中心厚みが0.4449mmであり、出射面と光ファイバの端面との距離Dは0.1477mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1645mmである。本実施例において、入射瞳径は入射面S4の径である。
 実施例5の入射面S4は、入射面S4を通過する光線の結像点の、出射面S5と光軸との交点からの距離が、入射面S4を通過する光線の光軸からの距離が大きいほど大きくなるように構成されている。
 実施例5の光学系において、周縁光線のコア部端面への入射角Uhは10.1度であり、レンズ内において光軸の近傍を通過する光線の結像点の、出射面S5からの距離Sは0.0869mmであり、周縁光線の結像点の、出射面S5からの距離Shは0.1740 mmであり、球面収差SAは-0.0871mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは7.4μmであり、光ファイバの半径d/2=25μm以下である。実施例5の光結合率は85.1%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S4に入射される光の量に対する比である。
 表21は、実施例5における各誤差刻目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000037
 表21によれば、実施例4において、各誤差項目の誤差値による光結合率の低下量の最大値は0.2%である。
比較例3
 表22は、比較例3の入射面S4の形状を表す式(3)の係数の数値を示す表である。比較例3において入射面S4のAiはすべて0である。
Figure JPOXMLDOC01-appb-T000038
 比較例3の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.4000mmであり、レンズの中心厚みが0.4429mmであり、出射面と光ファイバの端面との距離Dは0.1477mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1643mmである。本比較例において、入射瞳径は入射面S4の径である。
 比較例3の光学系において、周縁光線のコア部端面への入射角Uhは10.7度であり、レンズ内において光軸の近傍を通過する光線の結像点の、出射面S5からの距離Sは0.1479mmであり、周縁光線の結像点の、出射面S5からの距離Shは0.1475 mmであり、球面収差SAは+0.0004mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは0.2μmであり、光ファイバの半径d/2=25μm以下である。比較例3の光結合率は85.1%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S4に入射される光の量に対する比である。
 表23は、比較例3における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000039
 表23によれば、比較例3において、各誤差項目の誤差値による光結合率の低下量の最大値は6.8%である。
比較例4
 表24は、比較例4の入射面S4の形状を表す式(3)の係数の数値を示す表である。比較例4において入射面S4のAiは、Aを除いて0である。
Figure JPOXMLDOC01-appb-T000040
 比較例4の光学系において、入射側の開口数は0.19である。光源と入射面の距離は0.4000mmであり、レンズの中心厚みが0.4492mmであり、出射面と光ファイバの端面との距離Dは0.1477mmである。ここで、光源及び面間の距離とは光軸に沿った距離を意味する。入射瞳径は、0.1630mmである。本比較例において、入射瞳径は入射面S4の径である。
 比較例4の光学系において、周縁光線のコア部端面への入射角Uhは7.9度であり、レンズ内において光軸の近傍を通過する光線の結像点の、出射面S5からの距離Sは0.2988mmであり、周縁光線の結像点の、出射面S5からの距離Shは0.2979 mmであり、球面収差SAは+0.0009mmである。周縁光線が光ファイバの端面と交わる位置の、光ファイバの中心軸からの距離Dsは20.6μmであり、光ファイバの半径d/2=25μm以下である。比較例4の光結合率は85.1%である。ここで、光結合率とは、光ファイバによって伝送される光の量の、入射面S4に入射される光の量に対する比である。
 表25は、比較例4における各誤差項目の誤差値による光結合率の低下を示す表である。
Figure JPOXMLDOC01-appb-T000041
 表25によれば、比較例4において、各誤差項目の誤差値による光結合率の低下量の最大値は18.6%である。
実施例5及び比較例3-4の比較
 表26Aは、実施例5及び比較例3-4の構成及び性能を比較するための表である。
Figure JPOXMLDOC01-appb-T000042
 実施例5において、レンズ内において光軸の近傍を通過する光線の結像点の、出射面S5からの距離S、周縁光線の結像点の、出射面S5からの距離Sh、及び光ファイバの端面の、出射面S5からの距離Dの間には以下の関係が成立する。
 S<D<Sh
 比較例3においてS、Sh、及びDの間には以下の関係が成立する。
 Sh<D<S
 比較例4においてS、Sh、及びDの間には以下の関係が成立する。
 D<Sh<S
 このように、実施例5は、光軸に沿って、レンズ内において光軸の近傍を通過する光線の結像点、光ファイバの端面、及び周縁光線の結像点が、出射面S5から光の進行する方向に上記の順で配置される構成を特徴とする。
 比較例3においては、ShがSよりも小さい。このため、周縁光線の光軸となす角度Uhが相対的に大きくなり、光ファイバ内へ光を伝送させるためのコア端部への入射角の最大値を超えやすくなる。
 比較例4においては、ShがSよりも小さく、両者はDよりも大きい。この場合に、本来、光ファイバの端面の位置とするべき結像点を光ファイバの内側に位置させている。このため、端面の位置に集光される光束のスポット径は大きくなる。この結果、設計基準値からの誤差によって、集光される光が、光ファイバの端面からそれやすくなる。
 表26Aの「結合率低下」は、各実施例及び比較例について、設計基準値からの各誤差項目の誤差値によって生じる、光結合率の低下の絶対値のうちの最大値を示す。
 実施例5の場合の設計基準値からの誤差によって生じる、光結合率の低下は、比較例の場合と比較して顕著に小さい。
 表26Bは、実施例5及び比較例3-4について、関係(A)を確認するための表である。表中の2Hは入射瞳径を表す。
Figure JPOXMLDOC01-appb-T000043
 表26Bによれば、実施例5は関係(A)を満たす。

Claims (5)

  1.  光源と、
     光伝送路と、
     該光源からの光を該光伝送路に集光する光学素子と、を含む光学系であって、
     該光源の中心と該光学素子のすべての光学面の曲率中心と該光伝送路の中心を通る仮想光線を光軸として、
     該光学素子は、該光源の中心から発して入射瞳に入射する光束の光線の結像点が、該光学素子内における該光線と該光軸との距離が大きいほど光源から遠ざかるように構成されており、
     該光軸に沿って、該光学素子、該光伝送路の端面、及び該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点が、上記の順で配置されるように構成された光学系。
  2.  該光軸に沿って、該光学素子、該光束の光線のうち、該光学素子内において該光軸の近傍を通過する光線の結像点、該光伝送路の端面、及び該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点が、上記の順で配置されるように構成された請求項1に記載の光学系。
  3.  該光伝送路が光ファイバである請求項1または2に記載の光学系。
  4.  該光束が該光学素子の出射面を通過する円形の領域の径を2hとし、該出射面のサグ量を|z|とし、該光ファイバのコア径をdとし、該光束の光線のうち、該光学素子内において該光軸の近傍を通過する光線の結像点と、該光学素子の該出射側と該光軸とが交わる点と、の距離をSとし、該光源の中心から発して該光学素子において該光軸の近傍を通過する光線の結像点と、該光束の光線のうち、該光学素子内における該光軸からの距離が最も大きい光線の結像点と、の距離を|SA|として、
    Figure JPOXMLDOC01-appb-M000001
    が満たされる請求項3に記載の光学系。
  5.  光源からの光を光伝送路に集光する光学素子であって、
     該光源の中心と該光学素子のすべての光学面の曲率中心と該光伝送路の中心を通る仮想光線を光軸として、該光源の中心から発して入射瞳に入射する光束の光線の結像点が、該光学素子内における該光線と該光軸との距離が大きいほど光源から遠ざかるように構成された光学素子。
PCT/JP2015/058242 2015-03-19 2015-03-19 光学系及び光学素子 WO2016147378A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058242 WO2016147378A1 (ja) 2015-03-19 2015-03-19 光学系及び光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058242 WO2016147378A1 (ja) 2015-03-19 2015-03-19 光学系及び光学素子

Publications (1)

Publication Number Publication Date
WO2016147378A1 true WO2016147378A1 (ja) 2016-09-22

Family

ID=56918441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058242 WO2016147378A1 (ja) 2015-03-19 2015-03-19 光学系及び光学素子

Country Status (1)

Country Link
WO (1) WO2016147378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10120145B2 (en) * 2015-10-22 2018-11-06 Nalux Co., Ltd. Optical element with annular light-collecting area forming an annular image outside itself

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794009A (ja) * 1993-09-22 1995-04-07 Fuji Photo Optical Co Ltd 照明用集光レンズ
JPH07294778A (ja) * 1994-04-27 1995-11-10 Ricoh Opt Ind Co Ltd 光結合レンズ
JP2002543467A (ja) * 1999-04-30 2002-12-17 コジェント・ライト・テクノロジーズ・インコーポレイテッド 改善された、小さなアークランプからより大きな目標への光の結合
JP2003315637A (ja) * 2002-04-26 2003-11-06 Yamaha Corp 発光部構造
JP2004533004A (ja) * 2000-11-01 2004-10-28 インテル・コーポレーション ビームの平行化及び転送の装置及びその方法
JP2005326603A (ja) * 2004-05-14 2005-11-24 Pentax Corp 光通信装置
JP2011197018A (ja) * 2010-03-17 2011-10-06 Alps Electric Co Ltd 光学素子モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794009A (ja) * 1993-09-22 1995-04-07 Fuji Photo Optical Co Ltd 照明用集光レンズ
JPH07294778A (ja) * 1994-04-27 1995-11-10 Ricoh Opt Ind Co Ltd 光結合レンズ
JP2002543467A (ja) * 1999-04-30 2002-12-17 コジェント・ライト・テクノロジーズ・インコーポレイテッド 改善された、小さなアークランプからより大きな目標への光の結合
JP2004533004A (ja) * 2000-11-01 2004-10-28 インテル・コーポレーション ビームの平行化及び転送の装置及びその方法
JP2003315637A (ja) * 2002-04-26 2003-11-06 Yamaha Corp 発光部構造
JP2005326603A (ja) * 2004-05-14 2005-11-24 Pentax Corp 光通信装置
JP2011197018A (ja) * 2010-03-17 2011-10-06 Alps Electric Co Ltd 光学素子モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10120145B2 (en) * 2015-10-22 2018-11-06 Nalux Co., Ltd. Optical element with annular light-collecting area forming an annular image outside itself

Similar Documents

Publication Publication Date Title
US20210247591A1 (en) Optical lens assembly
CN108885349A (zh) 用于提高封装亮度的无源对准的单组件望远镜
JP2009216941A (ja) 屈曲変倍光学系
CN110174746B (zh) 光学成像镜头
JP2019066645A (ja) 広角レンズ
KR102290303B1 (ko) 광각 이미징 렌즈
WO2011135877A1 (ja) 光学素子及びそれを備える光学装置
US8681424B2 (en) Diffractive optical element containing grating surface and grating wall surface, and optical system having the same
JP2010271533A (ja) 光学素子及びそれを有する光学系
CN110716286A (zh) 光学成像***
CN109073822B (zh) 带透镜的光纤及光耦合器
WO2016147378A1 (ja) 光学系及び光学素子
JP2006065141A (ja) テレセントリックレンズ
JP2021063955A (ja) 撮像光学系
JP3536940B2 (ja) コリメータレンズ
US20230273401A1 (en) Optical imaging lens
JP4083419B2 (ja) 正立観察光学系
JP2023112225A (ja) 光学系および撮像装置
JP2005024617A (ja) 光送信器
US10120145B2 (en) Optical element with annular light-collecting area forming an annular image outside itself
WO2019038997A1 (ja) プリズム及び光モジュール
JP5257904B2 (ja) 投影光学系および投影装置
TWI839976B (zh) 光學透鏡組
JP2008268459A (ja) コリメータレンズ及び光通信用モジュール
JPWO2019111705A1 (ja) ビーム変換光学系および光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15885474

Country of ref document: EP

Kind code of ref document: A1