WO2016145887A1 - 一种obu定位细分推算方法和*** - Google Patents

一种obu定位细分推算方法和*** Download PDF

Info

Publication number
WO2016145887A1
WO2016145887A1 PCT/CN2015/094477 CN2015094477W WO2016145887A1 WO 2016145887 A1 WO2016145887 A1 WO 2016145887A1 CN 2015094477 W CN2015094477 W CN 2015094477W WO 2016145887 A1 WO2016145887 A1 WO 2016145887A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning information
vehicle
positioning
information
accelerometer
Prior art date
Application number
PCT/CN2015/094477
Other languages
English (en)
French (fr)
Inventor
李成
贾安州
徐海平
高兴
蒲强
冯勇平
Original Assignee
北京握奇智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京握奇智能科技有限公司 filed Critical 北京握奇智能科技有限公司
Publication of WO2016145887A1 publication Critical patent/WO2016145887A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Definitions

  • the invention belongs to the field of traffic inspection, and particularly relates to an OBU positioning subdivision calculation method and system.
  • the current charging model based on satellite positioning navigation systems is becoming more and more popular, and countries are beginning to emphasize a wide range of applications, not just for a few roads or regions.
  • the global satellite positioning navigation system can not only be limited to important inter-city and some rural roads, but also can be applied to urban roads, helping to alleviate traffic congestion and reduce carbon dioxide emissions.
  • Russia has approved the use of the GLONASS Global Positioning Navigation System to charge trucks on important roads; France uses both 5.8 GHz short-range dedicated communication technology and global satellite positioning technology.
  • Singapore is exploring hybrid GPS and The 5.9 GHz short-range dedicated communication solution was used to improve the urban congestion charge; in Oregon, the United States also began to use satellite positioning technology to charge the electric vehicle by mileage.
  • the need to use satellite positioning and navigation technology for regional tolls is also involved, especially for vehicles that are driven into congested areas where charges are required.
  • the charging of the satellite positioning navigation system requires the cooperation of the onboard unit OBU (ie, the abbreviation of On Board Unit).
  • OBU On Board Unit
  • the OBU can identify the location information of the vehicle carrying it, identify the road segment and the area where it is located, automatically count the payment amount to complete the payment operation, and report the relevant data to the background service system.
  • the frequency at which the OBU obtains and outputs the positioning information is correspondingly reduced, generally 1 Hz- At 5 Hz, it is often the case that the vehicle has not entered the charge judgment area (A position in Fig. 4) in the last second, but the charge judgment area (C position in Fig. 4) is crossed in the next second, and within this second, If the OBU fails to output the positioning information in time, the OBU cannot judge whether the vehicle has passed the charging point in the charging judgment area (the B position in FIG. 4), which causes the background service system to have a leaking charge condition, that is, the vehicle has passed. There is no charge for the charging point, and there is an urgent need to solve this technical problem.
  • an object of the present invention is to provide an OBU positioning subdivision estimation method and system.
  • the method and system can solve the leakage charge situation caused by the unsatisfactory output of the positioning information caused by the vehicle speed being too fast.
  • an OBU positioning subdivision estimation method comprising the following steps:
  • the first positioning information includes: longitude, latitude, speed, and heading;
  • the sensing data includes: triaxial acceleration, triaxial angular velocity.
  • the fixed time interval is 50-200 milliseconds, and the time for buffering the sensing data in the accelerometer and the gyroscope is the same as the fixed time interval.
  • the fixed time interval is 100 milliseconds.
  • the first positioning information at the current time or the second positioning information after the correction is output at the time of the whole second, and the corrected second positioning information is output at the non-secondary time.
  • the present invention also discloses an OBU positioning and subdivision calculation system, including: The main processing unit and the GNSS positioning solution module, the accelerometer and the gyroscope connected thereto are characterized in that the system further comprises an inertial navigation position estimation module connected with the main processing unit, the GNSS positioning solution module, the accelerometer and the gyroscope. And for estimating the absolute positioning information of the current time of the vehicle after every fixed time interval according to the absolute positioning information of the vehicle outputted by the GNSS positioning solution module every second, the accelerometer and the sensing data buffered in the gyroscope.
  • the inertial navigation position estimation module includes:
  • a first receiving unit configured to receive first positioning information output by the GNSS positioning and solving module every second, wherein the first positioning information is absolute positioning information of the vehicle every second time;
  • a second receiving unit configured to receive the sensing data buffered in the accelerometer and the gyroscope every other fixed time interval
  • An estimating unit configured to estimate relative position information of the vehicle according to the received first positioning information, the accelerometer, and the sensing data buffered in the gyroscope;
  • a correcting unit configured to correct, according to the first positioning information and the relative position information, the second positioning information, where the second positioning information is absolute positioning information of a current moment of the vehicle;
  • an output unit configured to output absolute positioning information of the current moment of the vehicle.
  • the second receiving unit receives the data at a fixed time interval of 50-200 milliseconds, and the time for buffering the sensing data in the accelerometer and the gyroscope is the same as the fixed time interval.
  • the second receiving unit receives the data at a fixed time interval of 100 milliseconds.
  • the absolute positioning information of the current time of the vehicle outputted at the time of the second is the first positioning information of the current time or the corrected second positioning information, and the absolute positioning information of the current time of the vehicle output at the non-secondary time is corrected. After the second positioning information.
  • the present invention includes an inertial navigation position estimation module in addition to the GNSS positioning solution module and the map matching algorithm.
  • Making the OBU available in the decision area (for example, in Figure 3)
  • the fee judgment area continuously outputs the vehicle absolute positioning information at a very small time interval, so that the charging system can accurately judge and perform the cost calculation and deduction when the vehicle passes the charging point (for example, the B position in FIG. 3), thereby avoiding Leakage charges.
  • FIG. 1 is a flowchart of a method for calculating an OBU positioning subdivision in an embodiment of the present invention
  • FIG. 2 is a structural diagram of an OBU positioning and subdivision calculation system according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of an inertial navigation position estimation module according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a process of an OBU positioning subdivision estimation method according to an embodiment of the present invention.
  • the OBU automatically calculates the payment amount according to the rate table obtained from the background service system in advance, and reports the related data to the background service system, where the rate table includes the charging point, the toll road, and the charging.
  • Information such as area, charging time, basic fee for charging, rate of vehicle charging, type of discount, discount rate, etc.
  • an OBU positioning subdivision calculation method includes the following steps:
  • the GNSS positioning solution module outputs the first positioning information every second, the first positioning information is GNSS absolute positioning information, and the absolute positioning information includes longitude, latitude, speed, and heading;
  • the inertial navigation position estimating module receives the first positioning information (the above-mentioned GNSS absolute positioning information), and is used for correcting the internal data of the absolute position of the vehicle and the inertial navigation position estimation algorithm saved in the module, and the internal data of the algorithm includes displacement, velocity and acceleration, etc. State data and parameters such as correction and estimation; using Kalman filter to calculate correction compensation, estimating and converting the output vehicle by relative position Bit information.
  • first positioning information the above-mentioned GNSS absolute positioning information
  • the internal data of the algorithm includes displacement, velocity and acceleration, etc.
  • State data and parameters such as correction and estimation; using Kalman filter to calculate correction compensation, estimating and converting the output vehicle by relative position Bit information.
  • the Kalman filter is a recursive filter proposed by Kalman for time-varying linear systems. This system can be described by a differential equation model containing orthogonal state variables that incorporate past measurement estimation errors into new measurement errors to estimate future errors.
  • the inertial navigation position estimation module performs the following steps every other fixed time interval, for example, 50-200 milliseconds, and preferably 100 milliseconds in the specific embodiment of the present invention:
  • the sensing data includes: X, Y, Z triaxial acceleration, Triaxial angular velocity;
  • the driving speed of the vehicle can be estimated, and then the displacement of the vehicle is calculated according to the driving time, and then the driving direction (heading direction) of the vehicle can be estimated according to the data of the angular velocity, thereby determining the final position of the vehicle;
  • the vehicle Combined with the vehicle absolute positioning data and the current time relative position saved in the last full second time saved in the inertial navigation position estimation module, the vehicle obtains the absolute positioning information of the vehicle at the current time, that is, the longitude, latitude, speed and heading of the vehicle;
  • the subdivided positioning information output at the time of the second is the GNSS absolute positioning information or the corrected absolute positioning information stored in the inertial navigation position estimation module, and the subdivision positioning information outputted at the non-secondary time is saved in the inertial navigation position estimation module. Corrected absolute positioning information.
  • an OBU positioning subdivision calculation system includes a main processing unit 100 and a GNSS positioning and solving module 104 connected thereto, a GNSS positioning antenna 105, an accelerometer 102, and a gyroscope 101, wherein the system is:
  • the method further includes an inertial navigation position estimation module 103 connected to the main processing unit, the GNSS positioning solution module, the accelerometer, and the gyroscope, for estimating the vehicle according to the received first positioning information, the accelerometer, and the sensor data buffered in the gyroscope. Relative location information.
  • the MEMS accelerometer and the MEMS gyroscope are used in the embodiment of the invention, and the MEMS is a microcomputer Abbreviation for Micro-Electro-Mechanical Systems, the sensing device using this technology has the advantages of small size, light weight, low power consumption, good durability, low price, and stable performance.
  • Inertial navigation is an autonomous navigation method that uses a gyroscope and an accelerometer to measure the acceleration and angular velocity of a moving object to accurately position the object.
  • the inertial navigation position estimation module in this embodiment includes a first receiving unit 106, a second receiving unit 107, an estimating unit 108, a correcting unit 109, and an output unit 110.
  • the first receiving unit 106 is configured to receive the first positioning information output by the GNSS positioning and solving module every second, that is, the absolute positioning information of the vehicle every second time;
  • the second receiving unit 107 is configured to receive the sensing data buffered in the accelerometer and the gyroscope every other fixed time interval;
  • the estimating unit 108 is configured to estimate relative position information of the vehicle according to the received first positioning information, the accelerometer, and the sensing data buffered in the gyroscope;
  • the correcting unit 109 is configured to correct, according to the first positioning information and the relative position information, the second positioning information, where the second positioning information is absolute positioning information of the current time;
  • the output unit 110 is configured to output absolute positioning information of the current time of the vehicle.
  • the process of the OBU positioning subdivision estimation method disclosed in the present invention is as follows: First, the GNSS positioning solution module is responsible for absolute positioning information, that is, the first positioning information, and outputs GNSS absolute positioning information every second time. ;
  • the inertial navigation position estimation module is responsible for the relative position information, and calculates and outputs the vehicle absolute positioning information through the relative position every other fixed time interval (for example, 100 milliseconds).
  • the charging judgment area is first passed, and the division of the charging judgment area is determined by latitude and longitude information, and is determined by a plurality of specific The points of the latitude and longitude information form the boundary of the area.
  • the width standard of the charge judgment area is ⁇ 15 meters along the road direction at the toll point (ie, point B in Figure 4)
  • the distance to point A and point C is 15 meters each.
  • this parameter can be changed by OTA (Over The Air) through the background service system.
  • the positioning subdivision estimation system in the OBU converts the GNSS positioning information (including longitude, latitude, speed, and heading) received by the OBU, and records according to its own accelerometer and gyroscope.
  • the triaxial acceleration and the triaxial angular velocity use the Kalman filter to calculate the absolute positioning information of the vehicle at the current time (including the longitude, latitude, speed and heading obtained after calculation), and output the calculated positioning information to the outside.
  • the frequency of this calculation and output is once every 100 milliseconds, so that the output frequency of the positioning information and the positioning accuracy of the vehicle can be greatly improved.
  • the system can accurately judge and calculate the cost and withholding, avoiding the leakage phenomenon caused by the positioning information output by the OBU.
  • the GNSS positioning information in the OBU is received and output at every second time, when the vehicle passes the charging point (point B in FIG. 4), if it is at the whole second time, the GNSS positioning information can be directly output. It may also be the subdivided positioning information calculated by the positioning subdivision estimation system, and the non-secondary time output the subdivided positioning information calculated by the positioning subdivision estimation system.
  • a preferred solution is to add time compensation based on the solution.
  • the OBU acquires the information data and calculates the absolute position of the acquired vehicle, the vehicle continues to move forward because of the time required for data transmission and processing. As a result, there is a certain deviation between the vehicle output position and the actual position, and the deviation can be corrected and compensated according to the measured time delay combined with the speed of the subdivision calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

一种OBU定位细分推算方法和***。基于卫星定位的城市拥堵收费***中,现有的方法和设备在车辆速度过快的情况下会因为输出定位信息不及时造成经过预先设定收费点时收费发生遗漏错误。所述的方法/***包括:(1)每整秒时刻接收GNSS定位解算模块(104)输出的第一定位信息;(2)每隔一个固定时间间隔接收加速度计(102)和陀螺仪(101)中缓存的传感数据;(3)根据接收的第一定位信息、加速度计(102)和陀螺仪(101)中缓存的传感数据推算车辆的相对位置信息;(4)根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息;(5)输出车辆的绝对定位信息。解决定位信息输出不及时的问题,防止经过预先设定收费点时收费遗漏的发生。

Description

一种OBU定位细分推算方法和*** 技术领域
本发明属于交通稽查领域,具体涉及一种OBU定位细分推算方法和***。
背景技术
当下基于卫星定位导航***的收费模式越来越受欢迎,各国开始强调大范围的运用,而不只是运用于少数道路或区域。全球卫星定位导航***不能仅仅局限于重要的城际之间和一些乡村道路,还可以运用于城市内道路,有助于缓解交通拥堵,降低二氧化碳排放。例如俄罗斯已经批准运用格洛纳斯全球卫星定位导航***对重要道路上的卡车进行收费;而法国则既运用5.8GHz的短程专用通信技术又运用全球卫星定位技术,另外,新加坡正在探索混合GPS和5.9GHz短程专用通信方案用于改善征收城市拥堵费这一方案;在美国俄勒冈州也开始试着采用卫星定位技术对电动车进行按里程收费。在我国的交通稽查领域也涉及到利用卫星定位导航技术进行区域收费的需求,特别是针对驶入需要收费的拥堵区域的车辆进行费用扣缴。
卫星定位导航***的收费需要车载单元OBU的配合(即On Board Unit的缩写)。借助于卫星信号和其他定位传感器,OBU可以识别出搭载其的车辆的位置信息,识别道路路段和所在区域,自动统计缴费额完成缴费操作,并把相关数据上报后台服务***。
现有技术中,如图4所示,在车辆通行速度很快的情况下,因为卫星定位***的定位信息的发射频率较低,导致OBU获得并输出定位信息的频率相应降低,一般为1Hz-5Hz,常常会出现车辆在上一秒中还没有进入收费判断区域(图4中A位置),下一秒中却跨越了收费判断区域(图4中C位置),而这一秒钟内,如果OBU没有能够及时输出定位信息,OBU就无法判断该车辆是否通过了收费判断区域中的收费点(图4中B位置),就会使得后台服务***出现漏收费情况,也就是车辆已经通过了收费点却没有收费,目前急需解决这一技术问题。
发明内容
针对现有技术中存在的缺陷,本发明的目的是提供一种OBU定位细分推算方法和***。该方法和***能够解决因为车辆的车速过快所造成的定位信息输出不及时而引发的漏收费情况。
为达到以上目的,本发明采用的技术方案是:一种OBU定位细分推算方法,包括以下步骤:
(1)每整秒时刻接收GNSS定位解算模块输出的第一定位信息,所述第一定位信息为每整秒时刻车辆的绝对定位信息;
(2)每隔一个固定时间间隔接收加速度计和陀螺仪中缓存的传感数据;
(3)根据接收的第一定位信息、加速度计和陀螺仪中缓存的传感数据推算车辆的相对位置信息;
(4)根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息,所述第二定位信息为当前时刻车辆的绝对定位信息;
(5)输出车辆的绝对定位信息。
进一步,所述第一定位信息包括:经度、纬度、速度、航向;
所述传感数据包括:三轴加速度,三轴角速度。
进一步,步骤(2)中,所述固定时间间隔为50-200毫秒,加速度计和陀螺仪中缓存传感数据的时间与固定时间间隔相同。
更进一步,步骤(2)中,所述固定时间间隔为100毫秒。
进一步,步骤(5)中,在整秒时刻输出的是当前时刻的第一定位信息或者经过校正后的第二定位信息,在非整秒时刻输出的是经过校正后的第二定位信息。
为达到上述目的,本发明还公开了一种OBU定位细分推算***,包括: 主处理单元及与其连接的GNSS定位解算模块、加速度计、陀螺仪,其特征是:该***还包括与主处理单元、GNSS定位解算模块、加速度计、陀螺仪连接的惯性导航位置推算模块,用于根据GNSS定位解算模块每整秒时刻输出的车辆的绝对定位信息、加速度计和陀螺仪中缓存的传感数据推算每隔一个固定时间间隔后车辆当前时刻的绝对定位信息。
进一步,所述惯性导航位置推算模块包括:
第一接收单元,用于接受每整秒时刻GNSS定位解算模块输出的第一定位信息,所述第一定位信息为每整秒时刻车辆的绝对定位信息;
第二接收单元,用于每隔一个固定时间间隔接收加速度计和陀螺仪中缓存的传感数据;
推算单元,用于根据接收的第一定位信息、加速度计和陀螺仪中缓存的传感数据推算车辆的相对位置信息;
校正单元,用于根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息,所述第二定位信息为车辆当前时刻的绝对定位信息;
输出单元,用于输出所述车辆当前时刻的绝对定位信息。
进一步,所述第二接收单元接收数据的固定时间间隔为50-200毫秒,加速度计和陀螺仪中缓存传感数据的时间与固定时间间隔相同。
更进一步,所述第二接收单元接收数据的固定时间间隔为100毫秒。
进一步,在整秒时刻输出的车辆当前时刻的绝对定位信息是当前时刻的第一定位信息或者经过校正后的第二定位信息,在非整秒时刻输出的车辆当前时刻的绝对定位信息是经过校正后的第二定位信息。
本发明的效果在于:采用本发明实施例所公开的方法和***,可以解决因为车辆的车速过快所造成的定位信息输出不及时而引发的漏收费情况。具体来说,本发明除GNSS定位解算模块、地图匹配算法等之外,还加入了惯性导航位置推算模块。使得OBU可以在判断区域中(例如在图3中的收 费判断区域)以极小的时间间隔不断输出车辆绝对定位信息,从而能够在车辆经过收费点时(例如在图3中B位置)使得收费***可以准确判断并进行费用计算和扣费,避免了漏收费现象。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明具体实施方式中OBU定位细分推算方法的流程图;
图2是本发明具体实施方式中OBU定位细分推算***的结构图;
图3是本发明具体实施方式中惯性导航位置推算模块的结构图;
图4是本发明具体实施方式中OBU定位细分推算方法过程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本实施例中,OBU根据预先从后台服务***获取的费率表自动统计缴费额完成缴费操作,并把相关数据上报后台服务***,其中所述费率表中包括收费点、收费道路、收费区域、收费时间、收费基础费、收费车型倍率、折扣类型、折扣率等信息。
如图1所示,一种OBU定位细分推算方法,包括以下步骤:
S1.每整秒时GNSS定位解算模块输出第一定位信息,第一定位信息为GNSS绝对定位信息,所述的绝对定位信息包括经度、纬度、速度、航向;
惯性导航位置推算模块接收第一定位信息(上述的GNSS绝对定位信息),用于校正模块中保存的车辆绝对位置和惯性导航位置推算算法的内部数据,此算法内部数据包括位移、速度和加速度等状态数据和校正、推算等参数;利用卡尔曼滤波器计算校正补偿,通过相对位置推算并转换输出车辆绝对定 位信息。
卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性***的递归滤波器。这个***可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。
惯性导航位置推算模块每隔一个固定时间间隔,例如50-200毫秒,本发明具体实施方式中优选100毫秒,执行以下步骤:
S2.每隔一个固定时间间隔,接收加速度计和陀螺仪中缓存的一段时间(50-200毫秒,优选100毫秒)内的传感数据,传感数据包括:X、Y、Z三轴加速度,三轴角速度;
S3.惯性导航位置推算算法进行相对位置推算:
首先根据加速度的数据可以推算车辆的行驶速度,然后根据行驶的时间进而推算车辆的位移,再根据角速度的数据可以推算车辆的行驶方向(航向),从而确定车辆的最终位置;
S4.根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息,亦为车辆的绝对定位信息:
结合惯性导航位置推算模块中保存的上次整秒时刻车辆绝对定位数据和当前时刻相对位置推算,转换获得当前时刻车辆绝对定位信息,即车辆的经度、纬度、速度和航向;
S5.输出车辆绝对定位信息,也就是细分定位信息;
整秒时刻输出的细分定位信息是GNSS绝对定位信息或者是惯性导航位置推算模块中保存的经过校正后的绝对定位信息,非整秒时刻输出的细分定位信息是惯性导航位置推算模块中保存的校正后的绝对定位信息。
如图2所示,一种OBU定位细分推算***,包括主处理单元100及与其连接的GNSS定位解算模块104、GNSS定位天线105、加速度计102、陀螺仪101,其特征是:该***还包括与主处理单元、GNSS定位解算模块、加速度计、陀螺仪连接的惯性导航位置推算模块103,用于根据接收的第一定位信息、加速度计和陀螺仪中缓存的传感数据推算车辆的相对位置信息。
本发明实施例所采用的是MEMS加速度计和MEMS陀螺仪,MEMS是微机 电***技术(Micro-Electro-Mechanical Systems)的简称,采用这种技术的传感设备具有体积小、重量轻、功耗低、耐用性好、价格低廉、性能稳定等优点。
惯性导航,是利用陀螺仪和加速度计这两种惯性敏感器,通过测量运动物体的加速度和角速度而实现的自主式导航方法,可以对物体进行精确定位。
如图3所示,本实施例中的惯性导航位置推算模块包含第一接收单元106,第二接收单元107,推算单元108,校正单元109,输出单元110。
第一接收单元106用来用于接受每整秒时刻GNSS定位解算模块输出的第一定位信息,也就是每整秒时刻车辆的绝对定位信息;
第二接收单元107,用于每隔一个固定时间间隔接收加速度计和陀螺仪中缓存的传感数据;
推算单元108,用于根据接收的第一定位信息、加速度计和陀螺仪中缓存的传感数据推算车辆的相对位置信息;
校正单元109,用于根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息,所述第二定位信息为当前时刻的绝对定位信息;
输出单元110,用于输出车辆当前时刻的绝对定位信息。
如图4所示,本发明公开的OBU定位细分推算方法的过程如下:首先,GNSS定位解算模块负责绝对定位信息,也就是第一定位信息,在每个整秒时刻输出GNSS绝对定位信息;
惯性导航位置推算模块负责相对位置信息,每隔一个固定时间间隔(例如100毫秒)通过相对位置推算并转换输出车辆绝对定位信息。
举一个例子来说明本发明的实际应用。
一辆加装了配备有定位细分推算***的OBU的车辆,进入需要收费的区域时,首先通过一个收费判断区域,收费判断区域的划分,是依靠经纬度信息来确定的,通过多个具有具体经纬度信息的点,构成区域的边界。收费判断区域的宽度标准为以收费点沿道路方向的±15米(即图4中B点 到A点和C点的距离各为15米),此外还可以通过后台服务***以OTA(Over The Air)方式对这一参数进行更改。在车辆进入收费判断区域的时候,OBU中的定位细分推算***将OBU接收到的GNSS定位信息(包括经度、纬度、速度、航向)进行转换计算,根据自身的加速度计和陀螺仪所记录的三轴加速度,三轴角速度,利用卡尔曼滤波器计算出当前时刻车辆的绝对定位信息(包括经过计算后得到的经度、纬度、速度和航向),并且向外输出这个计算后的定位信息。这个计算和输出的频率为每100毫秒一次,这样就可以大大提高定位信息的输出频率以及车辆的定位精度,在通过收费判断区域中的具体收费点(图4中的B点)时,后台服务***可以准确判断并进行费用计算和扣缴,避免了因为OBU所输出的定位信息不及时造成的漏收费现象。此外,因为OBU中的GNSS定位信息是在每个整秒时刻接收并输出的,所以在车辆通过收费点时(图4中的B点)如果是在整秒时刻,可以直接输出GNSS定位信息,也可以是经过定位细分推算***计算后的细分定位信息,非整秒时刻则输出经过定位细分推算***计算后的细分定位信息。
另外,还有优选的方案是在本方案基础上加入时间补偿,时间补偿是指:在OBU获取信息数据并计算获取车辆的绝对位置时,因为数据传输和处理需要的时间内车辆继续向前,从而导致车辆输出位置和实际位置存在一定的偏差,这种偏差可以根据测定的时间延迟结合细分推算的速度进行校正补偿。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称得的存储介质,如:ROM/RAM、磁碟、光盘等。本领域技术人员应该明白,本发明所述的方法和***并不限于具体实施方式中所述的实施例,上面的具体描述只是为了解释本发明的目的,并非用于限制本发明。本领域技术人员根据本发明的技术方案得出其他的实施方式,同样属于本发明的技术创新范围,本发明的保护范围由权利要求及其等同物限定。

Claims (10)

  1. 一种OBU定位细分推算方法,包括以下步骤:
    (1)每整秒时刻接收GNSS定位解算模块输出的第一定位信息,所述第一定位信息为每整秒时刻车辆的绝对定位信息;
    (2)每隔一个固定时间间隔接收加速度计和陀螺仪中缓存的传感数据;
    (3)根据接收的第一定位信息、加速度计和陀螺仪中缓存的传感数据推算车辆的相对位置信息;
    (4)根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息,所述第二定位信息为当前时刻车辆的绝对定位信息;
    (5)输出车辆的绝对定位信息。
  2. 如权利要求1所述的方法,其特征是:
    所述第一定位信息包括:经度、纬度、速度、航向;
    所述传感数据包括:三轴加速度,三轴角速度。
  3. 如权利要求1所述的方法,其特征是:步骤(2)中,所述固定时间间隔为50-200毫秒,加速度计和陀螺仪中缓存传感数据的时间与固定时间间隔相同。
  4. 如权利要求3所述的方法,其特征是:步骤(2)中,所述固定时间间隔为100毫秒。
  5. 如权利要求1-3任一项所述的方法,其特征是:步骤(5)中,在整秒时刻输出的车辆的绝对定位信息是当前时刻的第一定位信息或者经过校正后的第二定位信息,在非整秒时刻输出的车辆的绝对定位信息是经过校正后的第二定位信息。
  6. 一种OBU定位细分推算***,包括主处理单元及与其连接的GNSS定位解算模块、加速度计、陀螺仪,其特征是:该***还包括与主处理单 元、GNSS定位解算模块、加速度计、陀螺仪连接的惯性导航位置推算模块,用于根据GNSS定位解算模块每整秒时刻输出的车辆的绝对定位信息、加速度计和陀螺仪中缓存的传感数据推算每隔一个固定时间间隔后车辆当前时刻的绝对定位信息。
  7. 如权利要求6所述的***,其特征是:所述惯性导航位置推算模块包括:
    第一接收单元,用于接受每整秒时刻GNSS定位解算模块输出的第一定位信息,所述第一定位信息为每整秒时刻车辆的绝对定位信息;
    第二接收单元,用于每隔一个固定时间间隔接收加速度计和陀螺仪中缓存的传感数据;
    推算单元,用于根据接收的第一定位信息、加速度计和陀螺仪中缓存的传感数据推算车辆的相对位置信息;
    校正单元,用于根据所述第一定位信息和所述相对位置信息,校正获得第二定位信息,所述第二定位信息为车辆当前时刻的绝对定位信息;
    输出单元,用于输出所述车辆当前时刻的绝对定位信息。
  8. 如权利要求7所述的***,其特征是:所述第二接收单元接收数据的固定时间间隔为50-200毫秒,加速度计和陀螺仪中缓存传感数据的时间与固定时间间隔相同。
  9. 如权利要求8所述的***,其特征是:所述第二接收单元接收数据的固定时间间隔为100毫秒。
  10. 如权利要求7-9任一项所述的***,其特征是:在整秒时刻输出的车辆当前时刻的绝对定位信息是当前时刻的第一定位信息或者经过校正后的第二定位信息,在非整秒时刻输出的车辆当前时刻的绝对定位信息是经过校正后的第二定位信息。
PCT/CN2015/094477 2015-03-13 2015-11-12 一种obu定位细分推算方法和*** WO2016145887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510111554.3A CN106033122A (zh) 2015-03-13 2015-03-13 一种obu定位细分推算方法和***
CN201510111554.3 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016145887A1 true WO2016145887A1 (zh) 2016-09-22

Family

ID=56918223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094477 WO2016145887A1 (zh) 2015-03-13 2015-11-12 一种obu定位细分推算方法和***

Country Status (2)

Country Link
CN (1) CN106033122A (zh)
WO (1) WO2016145887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428123A (zh) * 2016-12-06 2017-02-22 北京天高科科技有限公司 基于无源信标技术的轨道交通车辆精确定位***
CN111212401A (zh) * 2019-12-26 2020-05-29 天地融科技股份有限公司 一种obu定位方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106813663B (zh) * 2017-02-24 2020-02-14 北京航天自动控制研究所 一种惯性导航数据与卫星导航数据同步方法
CN110244124B (zh) * 2019-06-27 2022-09-30 广东华甍科技有限公司 卫星时间同步校对标准相位检测方法及***
CN112229413B (zh) * 2020-10-22 2022-11-08 广州极飞科技股份有限公司 一种位置突变确定方法、装置、设备及存储介质
CN112533142A (zh) * 2020-10-29 2021-03-19 瑞驰博方(北京)科技有限公司 车辆定位方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345229B1 (en) * 1999-04-03 2002-02-05 Robert Bosch Gmbh Method of and device for determining a position of a vehicle
EP1243939A1 (en) * 2001-03-22 2002-09-25 Matsushita Electric Industrial Co., Ltd. Method and apparatus for reducing vehicle position data based upon data accuracy estimation
CN101149272A (zh) * 2007-10-22 2008-03-26 倚天资讯股份有限公司 导航***及导航方法
CN101688910A (zh) * 2007-05-24 2010-03-31 电子地图有限公司 使用绝对定位***及相对定位***来确定位置的定位装置及方法、计算机程序及数据载体
WO2014153501A1 (en) * 2013-03-22 2014-09-25 Qualcomm Incorporated Heading, velocity, and position estimation with vehicle sensors, mobile device, and gnss inputs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907714B (zh) * 2010-06-25 2013-04-03 陶洋 基于多传感器数据融合的gps辅助定位方法
JP2014048075A (ja) * 2012-08-30 2014-03-17 Hitachi Zosen Corp Gnssによる位置計測装置
US9488736B2 (en) * 2012-12-28 2016-11-08 Trimble Navigation Limited Locally measured movement smoothing of GNSS position fixes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345229B1 (en) * 1999-04-03 2002-02-05 Robert Bosch Gmbh Method of and device for determining a position of a vehicle
EP1243939A1 (en) * 2001-03-22 2002-09-25 Matsushita Electric Industrial Co., Ltd. Method and apparatus for reducing vehicle position data based upon data accuracy estimation
CN101688910A (zh) * 2007-05-24 2010-03-31 电子地图有限公司 使用绝对定位***及相对定位***来确定位置的定位装置及方法、计算机程序及数据载体
CN101149272A (zh) * 2007-10-22 2008-03-26 倚天资讯股份有限公司 导航***及导航方法
WO2014153501A1 (en) * 2013-03-22 2014-09-25 Qualcomm Incorporated Heading, velocity, and position estimation with vehicle sensors, mobile device, and gnss inputs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106428123A (zh) * 2016-12-06 2017-02-22 北京天高科科技有限公司 基于无源信标技术的轨道交通车辆精确定位***
CN111212401A (zh) * 2019-12-26 2020-05-29 天地融科技股份有限公司 一种obu定位方法及装置
CN111212401B (zh) * 2019-12-26 2023-06-13 天地融科技股份有限公司 一种obu定位方法及装置

Also Published As

Publication number Publication date
CN106033122A (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
WO2016145887A1 (zh) 一种obu定位细分推算方法和***
US8326521B2 (en) Traffic situation determination systems, methods, and programs
CN103454660B (zh) 一种车辆定位方法及装置
JP6260114B2 (ja) 走行路情報生成装置
KR101241171B1 (ko) 영상센서를 이용한 gps 위치정보 보정방법
CN101334294B (zh) 基于gps的车辆中传感器校准算法
CN105866812B (zh) 一种车辆组合定位算法
CN103162689B (zh) 辅助车载定位***及车辆的辅助定位方法
CN104990554B (zh) Gnss盲区中基于vanet车辆间协作的惯性导航定位方法
CN105675006B (zh) 一种道路偏离检测方法
CN104422448A (zh) 一种车辆定位方法及装置
CN106710281A (zh) 车辆定位数据获取方法及装置
CN102980589A (zh) 一种通过gps速度自动计算车辆脉冲系数的方法及装置
WO2024041156A1 (zh) 车辆定位校准方法、装置、计算机设备及存储介质
CN105091909A (zh) 一种基于gps速度的机车轮径自动校正方法
CN112629530B (zh) 一种车辆定位方法、装置、设备及存储介质
CN102680002A (zh) 汽车用微机械陀螺零点电压的在线标定方法
CN112378410A (zh) 车辆行驶盲区校准方法、装置、设备及存储介质
US8401787B2 (en) Method of determining drive lane using steering wheel model
CN102538826A (zh) 基于地图匹配数据与gps的自适应陀螺误差校正方法
CN102706364B (zh) 一种汽车用微机械陀螺标度因子在线标定方法
CN102980592A (zh) 一种通过gps经纬度自动计算车辆脉冲系数的方法及装置
CN103017874B (zh) 基于gps和惯性传感器的车重测量方法
CN202649469U (zh) 有效全球卫星定位***所在位置判断的定位装置
CN106403999A (zh) 基于gnss的惯性导航加速度计漂移实时补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885256

Country of ref document: EP

Kind code of ref document: A1