WO2016143177A1 - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2016143177A1
WO2016143177A1 PCT/JP2015/077508 JP2015077508W WO2016143177A1 WO 2016143177 A1 WO2016143177 A1 WO 2016143177A1 JP 2015077508 W JP2015077508 W JP 2015077508W WO 2016143177 A1 WO2016143177 A1 WO 2016143177A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
oil supply
cylinder
supply groove
rotary compressor
Prior art date
Application number
PCT/JP2015/077508
Other languages
French (fr)
Japanese (ja)
Inventor
平山 卓也
哲永 渡辺
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2017504556A priority Critical patent/JPWO2016143177A1/en
Priority to CN201580057254.XA priority patent/CN107076148B/en
Publication of WO2016143177A1 publication Critical patent/WO2016143177A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus.
  • a configuration including the above is known.
  • a blade that divides the cylinder chamber into a compression chamber and a suction chamber is disposed in the blade groove formed in the cylinder. The blade abuts on the roller and moves forward and backward in the cylinder chamber as the roller rotates eccentrically.
  • the above-described blade slides with respect to the closing plate in a state where lubricating oil is interposed between the blade and the closing plate.
  • the rotary compressor described above still has room for improvement in that a desired amount of lubricating oil is interposed between the blade and the closing plate. Specifically, a load is applied to the side surface of the blade (the surface facing the rotation direction of the roller) due to the differential pressure between the compression chamber and the suction chamber.
  • the operation range hereinafter referred to as the second half of the compression stroke
  • the pressure increase in the compression chamber Is big. Therefore, in the latter half of the compression stroke, the load on the side surface of the blade is large.
  • the pressure rise in the compression chamber is smaller than that in the second half of the compression stroke. Therefore, in the first half of the compression stroke, the load on the side surface of the blade is relatively small. Therefore, less lubricating oil is required between the blade and the closing plate.
  • the problem to be solved by the present invention is to provide a rotary compressor and a refrigeration cycle apparatus capable of improving operational reliability and compression performance.
  • the rotary compressor of the embodiment has a container, a cylinder, a closing plate, a roller, a blade, and an oil supply groove.
  • the container stores lubricating oil.
  • the cylinder has a cylindrical shape stored in the container.
  • the closing plate closes the opening of the cylinder and forms a cylinder chamber together with the cylinder.
  • the roller rotates eccentrically in the cylinder chamber.
  • the blade divides the cylinder chamber in the rotation direction of the roller, and can advance and retreat into the cylinder chamber with the eccentric rotation of the roller.
  • the oil supply groove is formed on an opposing surface of the blade that faces the closing plate, extends along the moving direction of the blade, communicates with the first end in the container, and ends with the second end in the blade. .
  • the oil supply groove has a second end located in the cylinder chamber when the blade protrudes most into the cylinder chamber, and a groove depth becomes shallower as a portion located closer to the second end moves toward the second end surface. ing.
  • the schematic block diagram of the refrigerating-cycle apparatus containing sectional drawing of the rotary compressor in 1st Embodiment. Sectional drawing of the compression mechanism part in alignment with the II-II line of FIG. The schematic block diagram which shows the groove
  • the refrigeration cycle apparatus 1 of the present embodiment includes a rotary compressor 2, a condenser 3 connected to the rotary compressor 2, an expansion device 4 connected to the condenser 3, An evaporator 5 connected between the expansion device 4 and the rotary compressor 2.
  • the rotary compressor 2 is a so-called rotary compressor.
  • the rotary compressor 2 compresses a low-pressure gas refrigerant taken into the inside into a high-temperature and high-pressure gas refrigerant.
  • the specific configuration of the rotary compressor 2 will be described later.
  • the condenser 3 dissipates heat from the high-temperature and high-pressure gas refrigerant sent from the rotary compressor 2, and turns the high-temperature and high-pressure gas refrigerant into a high-pressure liquid refrigerant.
  • the expansion device 4 lowers the pressure of the high-pressure liquid refrigerant sent from the condenser 3 so that the high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant.
  • the evaporator 5 vaporizes the low-temperature and low-pressure liquid refrigerant sent from the expansion device 4, and converts the low-temperature and low-pressure liquid refrigerant into a low-pressure gas refrigerant.
  • the evaporator 5 when the low-pressure liquid refrigerant is vaporized, the vaporization heat is taken from the surroundings, and the surroundings are cooled.
  • the low-pressure gaseous refrigerant that has passed through the evaporator 5 is taken into the rotary compressor 2 described above.
  • the refrigerant that is the working fluid circulates while changing phase between the gas refrigerant and the liquid refrigerant.
  • the rotary compressor 2 includes a compressor body 11 and an accumulator 12.
  • the accumulator 12 is a so-called gas-liquid separator.
  • the accumulator 12 is provided between the evaporator 5 and the compressor body 11 described above.
  • the accumulator 12 is connected to a later-described cylinder 41 of the compressor body 11 through the suction pipe 21.
  • the accumulator 12 supplies only the gas refrigerant to the compressor main body 11 among the gas refrigerant vaporized by the evaporator 5 and the liquid refrigerant not vaporized by the evaporator 5.
  • the compressor body 11 includes a rotating shaft 31, an electric motor part 32, a compression mechanism part 33, and a sealed container (container) 34.
  • the electric motor unit 32 rotates the rotary shaft 31.
  • the compression mechanism unit 33 compresses the gaseous refrigerant by the rotation of the rotating shaft 31.
  • the sealed container 34 houses the rotating shaft 31, the electric motor unit 32, and the compression mechanism unit 33.
  • the sealed container 34 has a cylindrical shape. Lubricating oil J is accommodated inside the sealed container 34. A part of the compression mechanism 33 is immersed in the lubricating oil J.
  • the sealed container 34 and the rotating shaft 31 are arranged coaxially along the axis O.
  • the direction along the axis O is simply referred to as the axial direction
  • the portion closer to the motor portion 32 in the axial direction is referred to as the upper side
  • the portion closer to the compression mechanism portion 33 is referred to as the lower side.
  • a direction orthogonal to the axial direction is referred to as a radial direction
  • a direction around the axis O is referred to as a circumferential direction.
  • the electric motor unit 32 is a so-called inner rotor type DC brushless motor.
  • the electric motor unit 32 includes a cylindrical stator 35 and a columnar rotor 36 disposed inside the stator 35.
  • the stator 35 is fixed to the inner wall surface of the sealed container 34 by shrink fitting or the like.
  • the rotor 36 is fixed to the upper part of the rotating shaft 31.
  • the rotor 36 is arranged inside the stator 35 with a space in the radial direction.
  • the compression mechanism section 33 includes a cylindrical cylinder 41, and a main bearing (blocking plate) 42 and a sub-bearing (blocking plate) 43 that respectively block the opening portions at both ends of the cylinder 41.
  • a rotating shaft 31 passes through the cylinder 41.
  • the main bearing 42 and the sub bearing 43 support the rotating shaft 31 in a rotatable manner.
  • a space formed by the cylinder 41, the main bearing 42, and the auxiliary bearing 43 constitutes a cylinder chamber 46 (see FIG. 2).
  • the gas refrigerant separated from the gas and liquid by the accumulator 12 is taken in through the suction pipe 21 described above.
  • An eccentric portion 51 that is eccentric in the radial direction with respect to the axis O is formed in a portion of the rotating shaft 31 that is located in the cylinder chamber 46.
  • a roller 53 is fitted on the eccentric part 51.
  • the roller 53 is configured to be able to rotate eccentrically with respect to the axis O while the outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder 41 as the rotary shaft 31 rotates.
  • the cylinder 41 is formed with a blade groove 54 that is recessed outward in the radial direction.
  • the blade groove 54 is formed over the entire axial direction of the cylinder 41.
  • the blade groove 54 communicates with the inside of the sealed container 34 at the radially outer end (rear end).
  • a blade 55 that is slidable along the radial direction.
  • the blade 55 is biased inward in the radial direction by a biasing means 57 (biasing device).
  • a radially inner end surface of the blade 55 (hereinafter referred to as a front end surface (second end surface)) is in contact with the outer peripheral surface of the roller 53 in the cylinder chamber 46.
  • the blade 55 is configured to be able to advance and retract in the cylinder chamber 46 in accordance with the rotation operation of the roller 53.
  • the tip surface of the blade 55 has a circular arc shape that protrudes inward in the radial direction. The specific configuration of the blade 55 will be described later.
  • the cylinder chamber 46 is partitioned (divided) into a suction chamber and a compression chamber by a roller 53 and a blade 55.
  • the compression operation is performed in the cylinder chamber 46 by the rotation operation of the roller 53 and the advance / retreat operation of the blade 55.
  • a suction hole 56 is formed in a portion located on the back side (left side of the blade groove 54 in FIG. 2) of the blade groove 54 along the rotation direction of the roller 53 (see the arrow in FIG. 2). Yes.
  • the suction hole 56 penetrates the cylinder 41 in the radial direction.
  • the suction pipe 21 (see FIG. 1) described above is connected to the radially outer end of the suction hole 56.
  • the radially inner end of the suction hole 56 opens into the cylinder chamber 46.
  • a discharge groove 58 is formed in a portion located on the front side of the blade groove 54 along the rotation direction of the roller 53 (on the right side of the blade groove 54 in FIG. 2).
  • the discharge groove 58 communicates with a discharge hole 64 described later.
  • the ejection groove 58 is formed in a semicircular shape in a plan view as viewed from the axial direction.
  • the main bearing 42 closes the upper end opening of the cylinder 41 and rotatably supports a portion of the rotating shaft 31 positioned above the cylinder 41.
  • the main bearing 42 includes a cylindrical portion 61 through which the rotary shaft 31 is inserted, and a flange portion 62 that protrudes from the lower end portion of the cylindrical portion 61 toward the outside in the radial direction.
  • the flange portion 62 closes the cylinder chamber 46 from above.
  • a discharge hole 64 (see FIG. 2) that communicates the inside and outside of the cylinder chamber 46 through the discharge groove 58 described above is formed in a part of the flange portion 62 in the circumferential direction.
  • the discharge hole 64 penetrates the flange portion 62 in the axial direction.
  • the flange portion 62 is provided with a discharge valve mechanism (not shown) that opens and closes the discharge hole 64 as the pressure in the cylinder chamber 46 (compression chamber) increases and discharges the refrigerant to the outside of the cylinder chamber 46.
  • the main bearing 42 is provided with a muffler 65 that covers the main bearing 42 from above.
  • the muffler 65 is formed with a communication hole 66 that communicates the inside and outside of the muffler 65.
  • the high-temperature and high-pressure gaseous refrigerant discharged through the discharge hole 64 described above is discharged into the sealed container 34 through the communication hole 66.
  • the auxiliary bearing 43 closes the lower end opening of the cylinder 41 and rotatably supports a portion of the rotating shaft 31 located below the cylinder 41.
  • the auxiliary bearing 43 includes a cylindrical portion 71 through which the rotary shaft 31 is inserted, and a flange portion 72 that protrudes outward from the upper end portion of the cylindrical portion 71 in the radial direction.
  • the flange portion 72 closes the cylinder chamber 46 from below.
  • the above-described blade 55 is formed in a rectangular parallelepiped shape extending along the radial direction.
  • Lubricating oil J is interposed between the blade 55 and the inner wall surface of the blade groove 54 and the flange portions 62 and 72 of the bearings 42 and 43. Therefore, the side surface of the blade 55 that faces both sides in the circumferential direction can slide on the inner wall surface of the blade groove 54 via the oil film.
  • the upper end surface of the blade 55 is slidable with respect to the lower surface of the flange portion 62 via an oil film.
  • the lower end surface of the blade 55 is slidable with respect to the upper surface of the flange portion 72 via an oil film.
  • an oil supply groove 81 that is recessed inward in the axial direction is extended in the radial direction at the center portion in the width direction of the blade 55.
  • the oil supply groove 81 is formed in a linear shape extending along the radial direction (movement direction of the blade 55) in a plan view as viewed from the axial direction.
  • the width of the oil supply groove 81 is uniform throughout.
  • the oil supply groove 81 includes a linearly extending portion 82 located on the radially outer end (first end) side, and a radially inner end (second end) of the linearly extending portion 82.
  • an inclined portion 83 connected to the head.
  • the linear extending portion 82 has a uniform groove depth throughout. The slope of the inclined portion 83 gradually becomes shallower toward the tip surface of the blade 55.
  • the first end portion of the linearly extending portion 82 opens on the rear end surface of the blade 55.
  • the first end portion of the linear extending portion 82 communicates with the inside of the sealed container 34 through the blade groove 54.
  • Lubricating oil J stored in the sealed container 34 is supplied into the oil supply groove 81 through the blade groove 54.
  • the bottom of the inclined portion 83 has a circular arc shape that protrudes inward in the axial direction when viewed from the circumferential direction.
  • the radius of curvature of the inclined portion 83 is R.
  • the second end of the inclined portion 83 terminates in the blade 55 in a state of being close to the tip surface of the blade 55. That is, the oil supply groove 81 does not reach the tip surface of the blade 55 and does not communicate with the cylinder chamber 46.
  • the oil supply groove 81 is formed so as to be positioned in the cylinder chamber 46 when the blade 55 protrudes most into the cylinder chamber 46.
  • the portions other than the oil supply groove 81 on the upper and lower end surfaces of the blade 55 function as a seal surface that surrounds the oil supply groove 81 in three directions except for the outside in the radial direction.
  • the sealing surface of the blade 55 is opposed to the flange portions 62 and 72 via the oil film. In this case, the communication between the compression chamber and the suction chamber passing between the sealing surface of the blade 55 and the flange portions 62 and 72 is blocked by the oil film.
  • the widths S3 along the lines are the same.
  • the volume of the oil supply groove 81 is set according to the capacity of the lubricating oil J required in the latter half of the compression stroke. Moreover, the maximum groove depth E of the oil supply groove 81 (the depth of the linearly extending portion 82 in this embodiment) is deeper than H. Further, the width H of the oil supply groove 81 is narrower than the minimum width of the seal surface.
  • the oil supply groove 81 is formed by cutting using disk-shaped cutters 91 and 92.
  • the groove forming device 90 shown in FIG. 3 has a pair of cutters 91 and 92 that can rotate around rotation axes parallel to each other, and a transport mechanism (not shown) that transports the blade 55.
  • the cutters 91 and 92 have the same configuration.
  • the cutters 91 and 92 are disposed with a gap narrower than the height of the blade 55 between them.
  • the gap between the cutters 91 and 92 is set to the difference between the height of the blade 55 and the maximum groove depth E of each oil supply groove 81.
  • the transport mechanism moves the blade 55 forward and backward with respect to the gap between the cutters 91 and 92. Specifically, the transport mechanism moves between a processing position where the blade 55 enters between the cutters 91 and 92 and a retreat position where the blade 55 retracts from between the cutters 91 and 92.
  • the blade 55 is first held by the transport mechanism in the retracted position, and the cutters 91 and 92 and the blade 55 are aligned. Then, the cutters 91 and 92 are rotated in the opposite directions, and the blade 55 is conveyed from the first end toward the processing position by the conveying mechanism. Then, as the blade 55 enters the gap between the cutters 91 and 92, the upper and lower end surfaces of the blade 55 are cut.
  • the transport mechanism is moved again to the retracted position, and the blade 55 is retracted from the cutters 91 and 92.
  • the amount of entry of the blade 55 is set such that the cutters 91 and 92 do not reach the tip surface of the blade 55.
  • an arcuate inclined portion 83 that follows the curvature radius of the cutters 91 and 92 is formed at the tip of the blade 55.
  • the oil supply groove 81 can be formed on the upper and lower end surfaces of the blade 55 simply by moving the blade 55 forward and backward relative to the pair of cutters 91 and 92.
  • lead time for forming the oil supply groove 81 can be shortened as compared with milling using an end mill. As a result, it is possible to improve manufacturing efficiency and reduce costs.
  • the gas refrigerant is sucked into the suction chamber through the suction hole 56, and the gas refrigerant previously sucked from the suction hole 56 is compressed in the compression chamber.
  • the compressed gaseous refrigerant is discharged to the outside of the cylinder chamber 46 (inside the muffler 65) through the discharge hole 64 of the main bearing 42, and then discharged into the sealed container 34 through the communication hole 66 of the muffler 65. Note that the gaseous refrigerant discharged into the sealed container 34 is fed into the condenser 3 as described above.
  • the oil supply groove 81 of the blade 55 is filled with the lubricating oil J because it communicates with the inside of the sealed container 34 through the blade groove 54.
  • the lubricating oil J in the oil supply groove 81 flows between the seal surface and the flange portions 62 and 72, and forms an oil film therebetween. Therefore, the blade 55 moves back and forth in the radial direction with respect to the cylinder chamber 46 with the eccentric rotation of the roller 53 in a state in which direct contact with the flange portions 62 and 72 is suppressed.
  • the lubricating oil J interposed between the blade 55 and the flange portions 62 and 72 has a speed difference between a portion located near the blade 55 and a portion located near the flange portions 62 and 72.
  • a shearing force due to viscosity acts on the lubricating oil J.
  • the inclined portion 83 is formed at the second end portion of the oil supply groove 81, the gap between the blade 55 and the flange portions 62 and 72 becomes narrower toward the rear in the moving direction of the blade 55 in the latter half of the compression stroke.
  • the lubricating oil J in the oil supply groove 81 is dragged inward in the radial direction by the viscous action of the lubricating oil J and the inclination of the inclined portion 83 (so-called wedge effect occurs).
  • the lubricating oil J enters between the upper and lower end surfaces of the blade 55 and the flange portions 62 and 72 to the tip surface side of the blade 55. Thereby, the lubricating oil J can be effectively supplied between the blade 55 and the flange portions 62 and 72.
  • the wedge effect described above is unlikely to occur in the first half of the compression stroke. Therefore, in the first half of the compression stroke, the lubricating oil J is less likely to flow inward in the radial direction than in the second half of the compression stroke. Thereby, in the first half of the compression stroke, it is possible to suppress a large amount of the lubricating oil J in the oil supply groove 81 from flowing into the tip surface side of the blade 55.
  • the inclined part 83 is formed in the other end part of the oil supply groove 81, the wedge effect is likely to occur in the latter half of the compression stroke. Therefore, the lubricating oil J is effectively supplied closer to the tip surface between the blade 55 (seal surface) and the flange portions 62 and 72. Therefore, it can suppress that the oil film between the braid
  • the oil supply groove 81 is formed so as to be positioned in the cylinder chamber 46 when the blade 55 protrudes most into the cylinder chamber 46, the oil supply groove 81 and the compression chamber passing between the blade 55 and the flange portions 62 and 72 and Communication in the suction chamber is blocked by the oil film. Therefore, the sealing performance between the blade 55 and the flange portions 62 and 72 can be secured. Therefore, the leakage of the refrigerant between the compression chamber and the suction chamber passing between the blade 55 and the flange portions 62 and 72 can be suppressed, and the compression performance can be improved.
  • the first end portion of the oil supply groove 81 is opened through the linearly extending portion 82, it is possible to suppress a large amount of the lubricating oil J from flowing toward the tip surface of the blade 55 in the first half of the compression stroke. Therefore, in the first half of the compression stroke, it is possible to suppress the lubricant J from being excessively interposed between the blade 55 and the flange portions 62 and 72, and to maintain the sealing performance between the blade 55 and the flange portions 62 and 72.
  • the maximum groove depth E of the oil supply groove 81 is deeper than the width H, so that the width of the seal surface can be ensured while ensuring the volume in the oil supply groove 81. Therefore, it is possible to ensure the sealing performance between the blade 55 and the flange portions 62 and 72 while ensuring the capacity of the lubricating oil J in the oil supply groove 81. Thereby, the operational reliability and compression performance can be further improved.
  • the width H of the oil supply groove 81 is narrower than the minimum width of the seal surface, the width of the seal surface can be ensured.
  • the sealing performance between the blade 55 and the flange portions 62 and 72 can be ensured regardless of the variation in the clearance between the blade 55 and the flange portions 62 and 72 due to tolerances (so-called robustness can be improved). .
  • the operational reliability and the compression performance can be further improved.
  • the refrigerating cycle apparatus 1 of this embodiment is provided with the rotary compressor 2 mentioned above, the refrigerating cycle apparatus 1 excellent in performance and reliability can be provided.
  • the bottom portion of the oil supply groove 181 is formed in a circular arc shape that protrudes inward in the axial direction throughout. Therefore, the groove depth of the oil supply groove 181 gradually becomes smaller toward both the first end portion and the second end portion.
  • the first end portion of the oil supply groove 181 opens on the rear end surface of the blade 155.
  • the second end of the oil supply groove 181 terminates in the blade 155.
  • a pair of cutters 191 and 192 are configured to be close to and away from each other.
  • the cutters 191 and 192 have a gap between a machining position where the blade 155 located between the cutters 191 and 192 is machined and a retracted position separated from the blade 155 located between the cutters 191 and 192.
  • the transport mechanism sequentially passes the blade 155 from the upstream toward the downstream through the gap between the pair of cutters 191 and 192.
  • the blade 155 is first transported between the cutters 191 and 192 by the transport mechanism in a state where the cutters 191 and 192 are in the retracted position.
  • the cutters 191 and 192 are rotated in the opposite directions, and the cutters 191 and 192 are moved toward the processing position.
  • the cutters 191 and 192 enter the upper and lower end surfaces of the blade 155, and the upper and lower end surfaces of the blade 155 are cut.
  • the amount of the cutters 191 and 192 entering the blade 155 is set to the maximum groove depth E of each oil supply groove 181.
  • the oil supply groove 181 is formed in an arc shape that follows the curvature radius of the cutters 191 and 192.
  • the cutters 191 and 192 are moved again to the retracted position, and the cutters 191 and 192 are separated from the blade 155. Then, the conveying mechanism is driven to convey the processed blade 155 toward the downstream with respect to the cutters 191 and 192, and the blade 155 to be processed next is sequentially conveyed between the cutters 191 and 192. Thereafter, the blade 155 conveyed between the cutters 191 and 192 is cut by the same method as described above. As a result, oil supply grooves 181 are sequentially formed for the blades 155 conveyed between the cutters 191 and 192.
  • the entire oil supply groove 181 is formed in a convex arc shape toward the inner side in the axial direction, the cutters 191 and 192 are reciprocated relative to the blade 155 conveyed in one direction.
  • the oil supply groove 181 can be formed. Thereby, further improvement in manufacturing efficiency and cost reduction can be achieved.
  • the bottom portion of the oil supply groove 281 extends linearly toward the outer side in the axial direction from the first end portion toward the second end portion.
  • the first end of the oil supply groove 281 is open on one end surface of the blade 255.
  • the second end of the oil supply groove 281 terminates in the blade 255.
  • a cutter 291 is rotatably supported.
  • the transport mechanism 292 transports the blade 255 from the upstream to the downstream with respect to the cutter 291.
  • the transport mechanism 292 holds the blade 255 in a state inclined with respect to the transport direction.
  • the transport mechanism 292 holds the blade 255 in a state in which the first end surface of the blade 255 is directed downstream and one end surface is inclined upward (in the direction toward the cutter 291).
  • the blade 255 is conveyed downstream by the conveying mechanism 292 while the cutter 291 is rotated. Then, the cutter 291 enters the one end surface of the blade 255 from the first end portion of the blade 255. And the oil supply groove
  • FIG. When the processed blade 255 passes through the cutter 291, the blade 255 to be processed next is sequentially conveyed to the cutter 291. Then, cutting is performed on the blade 255 to be processed next by the same method as described above. As a result, an oil supply groove 281 is sequentially formed on one end face of the blade 255 conveyed toward the cutter 291.
  • the blade 255 having the oil supply groove 281 formed on one end face is turned upside down, and the oil supply groove 281 is formed on the other end face by the same method as described above. Thereby, the blade 255 of this embodiment described above is completed.
  • the oil supply groove 281 can be formed only by passing the blade 255 through one cutter 291. Therefore, the groove forming device 290 can be simplified and reduced in cost. Further, since the processing by the cutter 291 is performed while the blade 255 is being conveyed, the conveyance of the blade 255 is not stopped. Therefore, the lead time can be further shortened.
  • the present invention is not limited thereto.
  • the upper end opening portion of the cylinder 41 is closed, the bearing portion through which the rotary shaft 31 is inserted, and the lower end opening portion of the cylinder 41 are closed so that the lower end surface in the axial direction of the rotary shaft 31 is slidably supported.
  • the cylinder plate to be used may be used as a closing plate.
  • the configuration of one cylinder chamber 46 has been described.
  • the present invention is not limited to this, and a plurality of cylinder chambers 46 may be provided.
  • the case where the axial direction is matched with the vertical direction has been described.
  • the present invention is not limited to this, and the axial direction may be matched with the horizontal direction.
  • the case where the roller 53 and the blade are formed separately has been described.
  • the present invention is not limited thereto, and the roller 53 and the blade may be formed integrally.
  • the present invention is not limited thereto.
  • a step shape may be used as long as it gradually becomes shallower toward the tip surface of the blade.
  • the oil supply groove was made into the linear form extended along the moving direction (radial direction) of a blade by planar view seen from the axial direction, it is not restricted to this.
  • the oil supply groove may be, for example, corrugated or inclined with respect to the moving direction.
  • the width of the oil supply groove is uniform throughout has been described.
  • the width of the oil supply groove can be appropriately changed in design. In this case, it is preferable that the minimum width of the seal surface is narrower than the maximum width of the oil supply groove.
  • the oil supply groove becomes shallower from the first end toward the second end, so that the wedge effect is likely to occur in the latter half of the compression stroke. Therefore, the lubricating oil is effectively supplied closer to the second end surface between the blade and the closing plate. Therefore, it can suppress that the oil film between a braid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The rotary compressor of an embodiment has a container, a cylinder, closure plates, a roller, a blade, and oil feed grooves. The container stores lubricating oil. The cylinder is accommodated in the container and is cylindrical. The closure plates close the openings of the cylinder and form a cylinder chamber together with the cylinder. The roller rotates eccentrically within the cylinder chamber. The blade divides the inside of the cylinder chamber in the direction of rotation of the roller and is capable of moving into and out of the cylinder chamber as the roller rotates eccentrically. The oil feed grooves are formed in the surfaces of the blade, which face the closure plates. Each of the oil feed grooves extends in the direction of movement of the blade, has a first end in communication with the inside of the container, and has a second end terminating in the blade. The oil feed grooves are each configured so that the second end is located within the second chamber when the blade has protruded farthest into the cylinder chamber and so that the depth of the portion of the oil feed groove, which is located close to the second end, decreases toward a second end surface.

Description

回転式圧縮機及び冷凍サイクル装置Rotary compressor and refrigeration cycle apparatus
 本発明の実施形態は、回転式圧縮機及び冷凍サイクル装置に関する。 Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus.
 空気調和装置等の冷凍サイクル装置に使用される回転式圧縮機として、筒状のシリンダと、シリンダの開口部を閉塞する閉塞板と、シリンダ及び閉塞板で形成されたシリンダ室内で偏心回転するローラと、を備えた構成が知られている。また、シリンダに形成されたブレード溝内には、シリンダ室内を圧縮室と吸込室とに分割するブレードが配設されている。ブレードは、ローラに当接するとともに、ローラの偏心回転に伴いシリンダ室内を進退移動する。 As a rotary compressor used in a refrigeration cycle apparatus such as an air conditioner, a cylindrical cylinder, a closing plate that closes an opening of the cylinder, and a roller that rotates eccentrically in a cylinder chamber formed by the cylinder and the closing plate A configuration including the above is known. A blade that divides the cylinder chamber into a compression chamber and a suction chamber is disposed in the blade groove formed in the cylinder. The blade abuts on the roller and moves forward and backward in the cylinder chamber as the roller rotates eccentrically.
 ところで、上述したブレードは、ブレードと閉塞板との間に潤滑油を介在させた状態で、閉塞板に対して摺動することが好ましい。これにより、ブレードと閉塞板との間の摩耗を低減した上で、ブレードと閉塞板との間でのシール性を確保できると考えられる。 By the way, it is preferable that the above-described blade slides with respect to the closing plate in a state where lubricating oil is interposed between the blade and the closing plate. Thereby, it is considered that the sealability between the blade and the closing plate can be secured while reducing the wear between the blade and the closing plate.
 しかしながら、上述した回転式圧縮機では、ブレード及び閉塞板間に所望量の潤滑油を介在させる点で未だ改善の余地があった。具体的に、ブレードの側面(ローラの回転方向を向く面)には、圧縮室内と吸込室内との差圧に起因して負荷が掛かる。特に、ブレードが下死点(シリンダ室内に最も突出した状態)から上死点(シリンダ室から最も後退した状態)に移行する運転領域(以下、圧縮行程後半という。)では、圧縮室内の圧力上昇が大きい。したがって、圧縮行程後半では、ブレードの側面に掛かる負荷が大きい。そのため、ブレード及び閉塞板間に多くの潤滑油が必要となる。この場合、仮にブレードと閉塞板との間の潤滑油が不足して油膜が破断されると、ブレードと閉塞板との間の摩耗が増大する。その結果、動作信頼性が低下する可能性がある。また、ブレードと閉塞板との間のシール性が低下し、圧縮室及び吸込室間で冷媒がリーク等すると、圧縮性能が低下する可能性がある。 However, the rotary compressor described above still has room for improvement in that a desired amount of lubricating oil is interposed between the blade and the closing plate. Specifically, a load is applied to the side surface of the blade (the surface facing the rotation direction of the roller) due to the differential pressure between the compression chamber and the suction chamber. In particular, in the operation range (hereinafter referred to as the second half of the compression stroke) in which the blade moves from the bottom dead center (the state that protrudes most into the cylinder chamber) to the top dead center (the state that retracts most from the cylinder chamber), the pressure increase in the compression chamber Is big. Therefore, in the latter half of the compression stroke, the load on the side surface of the blade is large. Therefore, a lot of lubricating oil is required between the blade and the closing plate. In this case, if the lubricating oil between the blade and the closing plate is insufficient and the oil film is broken, the wear between the blade and the closing plate increases. As a result, the operation reliability may be reduced. Moreover, if the sealing performance between the blade and the closing plate is reduced and the refrigerant leaks between the compression chamber and the suction chamber, the compression performance may be reduced.
 一方、ブレードが上死点から下死点に移行する運転領域(以下、圧縮行程前半という。)では、圧縮行程後半に比べて圧縮室内の圧力上昇が小さい。したがって、圧縮行程前半では、ブレードの側面に掛かる負荷が比較的小さい。そのため、ブレード及び閉塞板間で必要となる潤滑油は少ない。 On the other hand, in the operation region where the blade moves from the top dead center to the bottom dead center (hereinafter referred to as the first half of the compression stroke), the pressure rise in the compression chamber is smaller than that in the second half of the compression stroke. Therefore, in the first half of the compression stroke, the load on the side surface of the blade is relatively small. Therefore, less lubricating oil is required between the blade and the closing plate.
日本国特開平4-191491号公報Japanese Laid-Open Patent Publication No. 4-191491
 本発明が解決しようとする課題は、動作信頼性及び圧縮性能の向上を図ることができる回転式圧縮機及び冷凍サイクル装置を提供することである。 The problem to be solved by the present invention is to provide a rotary compressor and a refrigeration cycle apparatus capable of improving operational reliability and compression performance.
 実施形態の回転式圧縮機は、容器と、シリンダと、閉塞板と、ローラと、ブレードと、給油溝と、を持つ。容器は、潤滑油が貯留される。シリンダは、容器内に収納された筒状である。閉塞板は、シリンダの開口部を閉塞して、シリンダとともにシリンダ室を形成する。ローラは、シリンダ室内で偏心回転する。ブレードは、ローラの回転方向でシリンダ室内を分割するとともに、ローラの偏心回転に伴いシリンダ室内に進退可能とされる。給油溝は、ブレードのうち、閉塞板と対向する対向面に形成され、ブレードの移動方向に沿って延びるとともに、第1端部が容器内に連通し、第2端部がブレード内で終端する。そして、給油溝は、ブレードがシリンダ室内に最も突出したときに第2端部がシリンダ室内に位置するとともに、第2端部寄りに位置する部分が第2端面に向かうに従い溝深さが浅くなっている。 The rotary compressor of the embodiment has a container, a cylinder, a closing plate, a roller, a blade, and an oil supply groove. The container stores lubricating oil. The cylinder has a cylindrical shape stored in the container. The closing plate closes the opening of the cylinder and forms a cylinder chamber together with the cylinder. The roller rotates eccentrically in the cylinder chamber. The blade divides the cylinder chamber in the rotation direction of the roller, and can advance and retreat into the cylinder chamber with the eccentric rotation of the roller. The oil supply groove is formed on an opposing surface of the blade that faces the closing plate, extends along the moving direction of the blade, communicates with the first end in the container, and ends with the second end in the blade. . The oil supply groove has a second end located in the cylinder chamber when the blade protrudes most into the cylinder chamber, and a groove depth becomes shallower as a portion located closer to the second end moves toward the second end surface. ing.
第1の実施形態における回転式圧縮機の断面図を含む、冷凍サイクル装置の概略構成図。The schematic block diagram of the refrigerating-cycle apparatus containing sectional drawing of the rotary compressor in 1st Embodiment. 図1のII-II線に沿う圧縮機構部の断面図。Sectional drawing of the compression mechanism part in alignment with the II-II line of FIG. 第1の実施形態におけるブレードの溝形成装置を示す概略構成図。The schematic block diagram which shows the groove | channel formation apparatus of the blade in 1st Embodiment. 第2の実施形態におけるブレードの側面図。The side view of the braid | blade in 2nd Embodiment. 第2の実施形態におけるブレードの溝形成装置を示す概略構成図。The schematic block diagram which shows the groove | channel formation apparatus of the braid | blade in 2nd Embodiment. 第3の実施形態におけるブレードの側面図。The side view of the braid | blade in 3rd Embodiment. 第3の実施形態におけるブレードの溝形成装置を示す概略構成図。The schematic block diagram which shows the groove | channel formation apparatus of the braid | blade in 3rd Embodiment.
 以下、実施形態の回転式圧縮機及び冷凍サイクル装置を、図面を参照して説明する。
 (第1の実施形態)
 始めに、冷凍サイクル装置について簡単に説明する。
 図1に示すように、本実施形態の冷凍サイクル装置1は、回転式圧縮機2と、回転式圧縮機2に接続された凝縮器3と、凝縮器3に接続された膨張装置4と、膨張装置4と回転式圧縮機2との間に接続された蒸発器5と、を備えている。
Hereinafter, a rotary compressor and a refrigeration cycle apparatus according to an embodiment will be described with reference to the drawings.
(First embodiment)
First, the refrigeration cycle apparatus will be briefly described.
As shown in FIG. 1, the refrigeration cycle apparatus 1 of the present embodiment includes a rotary compressor 2, a condenser 3 connected to the rotary compressor 2, an expansion device 4 connected to the condenser 3, An evaporator 5 connected between the expansion device 4 and the rotary compressor 2.
 回転式圧縮機2は、いわゆるロータリ式の圧縮機である。回転式圧縮機2は、内部に取り込まれる低圧の気体冷媒を圧縮して高温、かつ高圧の気体冷媒とする。なお、回転式圧縮機2の具体的な構成については後述する。
 凝縮器3は、回転式圧縮機2から送り込まれる高温、かつ高圧の気体冷媒から熱を放熱させ、高温、かつ高圧の気体冷媒を高圧の液体冷媒にする。
The rotary compressor 2 is a so-called rotary compressor. The rotary compressor 2 compresses a low-pressure gas refrigerant taken into the inside into a high-temperature and high-pressure gas refrigerant. The specific configuration of the rotary compressor 2 will be described later.
The condenser 3 dissipates heat from the high-temperature and high-pressure gas refrigerant sent from the rotary compressor 2, and turns the high-temperature and high-pressure gas refrigerant into a high-pressure liquid refrigerant.
 膨張装置4は、凝縮器3から送り込まれる高圧の液体冷媒の圧力を下げ、高圧の液体冷媒を低温、かつ低圧の液体冷媒にする。
 蒸発器5は、膨張装置4から送り込まれる低温、かつ低圧の液体冷媒を気化させ、低温、かつ低圧の液体冷媒を低圧の気体冷媒にする。そして、蒸発器5において、低圧の液体冷媒が気化する際に周囲から気化熱を奪い、周囲が冷却される。なお、蒸発器5を通過した低圧の気体冷媒は、上述した回転式圧縮機2内に取り込まれる。
The expansion device 4 lowers the pressure of the high-pressure liquid refrigerant sent from the condenser 3 so that the high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant.
The evaporator 5 vaporizes the low-temperature and low-pressure liquid refrigerant sent from the expansion device 4, and converts the low-temperature and low-pressure liquid refrigerant into a low-pressure gas refrigerant. In the evaporator 5, when the low-pressure liquid refrigerant is vaporized, the vaporization heat is taken from the surroundings, and the surroundings are cooled. The low-pressure gaseous refrigerant that has passed through the evaporator 5 is taken into the rotary compressor 2 described above.
 このように、本実施形態の冷凍サイクル装置1では、作動流体である冷媒が気体冷媒と液体冷媒とに相変化しながら循環する。 Thus, in the refrigeration cycle apparatus 1 of the present embodiment, the refrigerant that is the working fluid circulates while changing phase between the gas refrigerant and the liquid refrigerant.
 次に、上述した回転式圧縮機2について説明する。
 本実施形態の回転式圧縮機2は、圧縮機本体11とアキュムレータ12とを備えている。
 アキュムレータ12は、いわゆる気液分離器である。アキュムレータ12は、上述した蒸発器5と圧縮機本体11との間に設けられている。アキュムレータ12は、吸い込みパイプ21を通して圧縮機本体11の後述するシリンダ41に接続されている。アキュムレータ12は、蒸発器5で気化された気体冷媒、及び蒸発器5で気化されなかった液体冷媒のうち、気体冷媒のみを圧縮機本体11に供給する。
Next, the rotary compressor 2 described above will be described.
The rotary compressor 2 according to this embodiment includes a compressor body 11 and an accumulator 12.
The accumulator 12 is a so-called gas-liquid separator. The accumulator 12 is provided between the evaporator 5 and the compressor body 11 described above. The accumulator 12 is connected to a later-described cylinder 41 of the compressor body 11 through the suction pipe 21. The accumulator 12 supplies only the gas refrigerant to the compressor main body 11 among the gas refrigerant vaporized by the evaporator 5 and the liquid refrigerant not vaporized by the evaporator 5.
 圧縮機本体11は、回転軸31と、電動機部32と、圧縮機構部33と、密閉容器(容器)34と、を備えている。
 電動機部32は、回転軸31を回転させる。圧縮機構部33は、回転軸31の回転により気体冷媒を圧縮する。密閉容器34は、回転軸31、電動機部32及び圧縮機構部33を収納する。なお、密閉容器34は筒状とされている。密閉容器34の内部には、潤滑油Jが収容されている。潤滑油J内には、圧縮機構部33の一部が浸漬されている。
The compressor body 11 includes a rotating shaft 31, an electric motor part 32, a compression mechanism part 33, and a sealed container (container) 34.
The electric motor unit 32 rotates the rotary shaft 31. The compression mechanism unit 33 compresses the gaseous refrigerant by the rotation of the rotating shaft 31. The sealed container 34 houses the rotating shaft 31, the electric motor unit 32, and the compression mechanism unit 33. The sealed container 34 has a cylindrical shape. Lubricating oil J is accommodated inside the sealed container 34. A part of the compression mechanism 33 is immersed in the lubricating oil J.
 密閉容器34及び回転軸31は、軸線Oに沿って同軸上に配置されている。なお、以下の説明では、軸線Oに沿う方向を単に軸方向といい、軸方向のうち電動機部32寄りを上側といい、圧縮機構部33寄りを下側という。また、軸方向に直交する方向を径方向、軸線O周りの方向を周方向という。 The sealed container 34 and the rotating shaft 31 are arranged coaxially along the axis O. In the following description, the direction along the axis O is simply referred to as the axial direction, the portion closer to the motor portion 32 in the axial direction is referred to as the upper side, and the portion closer to the compression mechanism portion 33 is referred to as the lower side. A direction orthogonal to the axial direction is referred to as a radial direction, and a direction around the axis O is referred to as a circumferential direction.
 電動機部32は、いわゆるインナーロータ型のDCブラシレスモータである。具体的に、電動機部32は、筒状の固定子35と、固定子35の内側に配置された円柱状の回転子36と、を備えている。
 固定子35は、密閉容器34の内壁面に焼嵌め等により固定されている。回転子36は、回転軸31の上部に固定されている。回転子36は、固定子35の内側に径方向に間隔をあけて配置されている。
The electric motor unit 32 is a so-called inner rotor type DC brushless motor. Specifically, the electric motor unit 32 includes a cylindrical stator 35 and a columnar rotor 36 disposed inside the stator 35.
The stator 35 is fixed to the inner wall surface of the sealed container 34 by shrink fitting or the like. The rotor 36 is fixed to the upper part of the rotating shaft 31. The rotor 36 is arranged inside the stator 35 with a space in the radial direction.
 圧縮機構部33は、筒状のシリンダ41と、シリンダ41の両端開口部を各別に閉塞する主軸受(閉塞板)42及び副軸受(閉塞板)43と、を備えている。
 シリンダ41内には、回転軸31が貫通している。主軸受42及び副軸受43は回転軸31を回転可能に支持している。シリンダ41、主軸受42、及び副軸受43により形成された空間は、シリンダ室46(図2参照)を構成している。シリンダ室46内には、アキュムレータ12で気液分離された気体冷媒が上述した吸い込みパイプ21を通して取り込まれる。
The compression mechanism section 33 includes a cylindrical cylinder 41, and a main bearing (blocking plate) 42 and a sub-bearing (blocking plate) 43 that respectively block the opening portions at both ends of the cylinder 41.
A rotating shaft 31 passes through the cylinder 41. The main bearing 42 and the sub bearing 43 support the rotating shaft 31 in a rotatable manner. A space formed by the cylinder 41, the main bearing 42, and the auxiliary bearing 43 constitutes a cylinder chamber 46 (see FIG. 2). In the cylinder chamber 46, the gas refrigerant separated from the gas and liquid by the accumulator 12 is taken in through the suction pipe 21 described above.
 上述した回転軸31のうち、シリンダ室46内に位置する部分には、軸線Oに対して径方向に偏心する偏心部51が形成されている。
 偏心部51にはローラ53が外嵌されている。ローラ53は、回転軸31の回転に伴い、外周面がシリンダ41の内周面に摺接しながら、軸線Oに対して偏心回転可能に構成されている。
An eccentric portion 51 that is eccentric in the radial direction with respect to the axis O is formed in a portion of the rotating shaft 31 that is located in the cylinder chamber 46.
A roller 53 is fitted on the eccentric part 51. The roller 53 is configured to be able to rotate eccentrically with respect to the axis O while the outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder 41 as the rotary shaft 31 rotates.
 図1、図2に示すように、シリンダ41には、径方向の外側に向けて窪むブレード溝54が形成されている。ブレード溝54は、シリンダ41の軸方向の全体に亘って形成されている。ブレード溝54は、径方向の外側端部(後端部)において、密閉容器34内に連通している。 As shown in FIGS. 1 and 2, the cylinder 41 is formed with a blade groove 54 that is recessed outward in the radial direction. The blade groove 54 is formed over the entire axial direction of the cylinder 41. The blade groove 54 communicates with the inside of the sealed container 34 at the radially outer end (rear end).
 ブレード溝54内には、径方向に沿ってスライド移動可能なブレード55が設けられている。ブレード55は、付勢手段57(付勢装置)により径方向の内側に向けて付勢されている。ブレード55における径方向の内側端面(以下、先端面(第2端面)という)は、シリンダ室46内においてローラ53の外周面に当接している。これにより、ブレード55は、ローラ53の回転動作に応じてシリンダ室46内に進退可能に構成されている。なお、軸方向から見た平面視において、ブレード55の先端面は、径方向の内側に向けて凸の円弧状とされている。また、ブレード55の具体的な構成については後述する。 In the blade groove 54, there is provided a blade 55 that is slidable along the radial direction. The blade 55 is biased inward in the radial direction by a biasing means 57 (biasing device). A radially inner end surface of the blade 55 (hereinafter referred to as a front end surface (second end surface)) is in contact with the outer peripheral surface of the roller 53 in the cylinder chamber 46. Thereby, the blade 55 is configured to be able to advance and retract in the cylinder chamber 46 in accordance with the rotation operation of the roller 53. In the plan view as viewed from the axial direction, the tip surface of the blade 55 has a circular arc shape that protrudes inward in the radial direction. The specific configuration of the blade 55 will be described later.
 シリンダ室46は、ローラ53及びブレード55によって吸込室と圧縮室とに区画(分割)されている。そして、圧縮機構部33では、ローラ53の回転動作及びブレード55の進退動作により、シリンダ室46内で圧縮動作が行われる。 The cylinder chamber 46 is partitioned (divided) into a suction chamber and a compression chamber by a roller 53 and a blade 55. In the compression mechanism unit 33, the compression operation is performed in the cylinder chamber 46 by the rotation operation of the roller 53 and the advance / retreat operation of the blade 55.
 シリンダ41において、ローラ53の回転方向(図2中の矢印参照)に沿うブレード溝54の奥側(図2中、ブレード溝54の左側)に位置する部分には、吸込孔56が形成されている。吸込孔56は、シリンダ41を径方向に貫通している。吸込孔56における径方向の外側端部には、上述した吸い込みパイプ21(図1参照)が接続される。一方、吸込孔56における径方向の内側端部は、シリンダ室46内に開口している。
 シリンダ41の内周面において、ローラ53の回転方向に沿うブレード溝54の手前側(図2中、ブレード溝54の右側)に位置する部分には、吐出溝58が形成されている。吐出溝58は、後述する吐出孔64に連通している。吐出溝58は、軸方向から見た平面視で半円形状に形成されている。
In the cylinder 41, a suction hole 56 is formed in a portion located on the back side (left side of the blade groove 54 in FIG. 2) of the blade groove 54 along the rotation direction of the roller 53 (see the arrow in FIG. 2). Yes. The suction hole 56 penetrates the cylinder 41 in the radial direction. The suction pipe 21 (see FIG. 1) described above is connected to the radially outer end of the suction hole 56. On the other hand, the radially inner end of the suction hole 56 opens into the cylinder chamber 46.
On the inner peripheral surface of the cylinder 41, a discharge groove 58 is formed in a portion located on the front side of the blade groove 54 along the rotation direction of the roller 53 (on the right side of the blade groove 54 in FIG. 2). The discharge groove 58 communicates with a discharge hole 64 described later. The ejection groove 58 is formed in a semicircular shape in a plan view as viewed from the axial direction.
 図1に示すように、主軸受42は、シリンダ41の上端開口部を閉塞するとともに、回転軸31のうち、シリンダ41よりも上方に位置する部分を回転可能に支持している。具体的に、主軸受42は、回転軸31が挿通された筒部61と、筒部61の下端部から径方向の外側に向けて突設されたフランジ部62と、を備えている。フランジ部62は、シリンダ室46を上方から閉塞している。 As shown in FIG. 1, the main bearing 42 closes the upper end opening of the cylinder 41 and rotatably supports a portion of the rotating shaft 31 positioned above the cylinder 41. Specifically, the main bearing 42 includes a cylindrical portion 61 through which the rotary shaft 31 is inserted, and a flange portion 62 that protrudes from the lower end portion of the cylindrical portion 61 toward the outside in the radial direction. The flange portion 62 closes the cylinder chamber 46 from above.
 フランジ部62の周方向の一部には、上述した吐出溝58を通してシリンダ室46内外を連通する吐出孔64(図2参照)が形成されている。吐出孔64は、フランジ部62を軸方向に貫通している。なお、フランジ部62には、シリンダ室46(圧縮室)内の圧力上昇に伴い吐出孔64を開閉し、シリンダ室46外に冷媒を吐出する図示しない吐出弁機構が配設されている。 A discharge hole 64 (see FIG. 2) that communicates the inside and outside of the cylinder chamber 46 through the discharge groove 58 described above is formed in a part of the flange portion 62 in the circumferential direction. The discharge hole 64 penetrates the flange portion 62 in the axial direction. The flange portion 62 is provided with a discharge valve mechanism (not shown) that opens and closes the discharge hole 64 as the pressure in the cylinder chamber 46 (compression chamber) increases and discharges the refrigerant to the outside of the cylinder chamber 46.
 主軸受42には、主軸受42を上方から覆うマフラ65が設けられている。マフラ65には、マフラ65の内外を連通する連通孔66が形成されている。上述した吐出孔64を通して吐出される高温、かつ高圧の気体冷媒は、連通孔66を通して密閉容器34内に吐出される。 The main bearing 42 is provided with a muffler 65 that covers the main bearing 42 from above. The muffler 65 is formed with a communication hole 66 that communicates the inside and outside of the muffler 65. The high-temperature and high-pressure gaseous refrigerant discharged through the discharge hole 64 described above is discharged into the sealed container 34 through the communication hole 66.
 副軸受43は、シリンダ41の下端開口部を閉塞するとともに、回転軸31のうち、シリンダ41よりも下方に位置する部分を回転可能に支持している。具体的に、副軸受43は、回転軸31が挿通される筒部71と、筒部71の上端部から径方向の外側に向けて突設されたフランジ部72と、を備えている。フランジ部72は、シリンダ室46を下方から閉塞している。 The auxiliary bearing 43 closes the lower end opening of the cylinder 41 and rotatably supports a portion of the rotating shaft 31 located below the cylinder 41. Specifically, the auxiliary bearing 43 includes a cylindrical portion 71 through which the rotary shaft 31 is inserted, and a flange portion 72 that protrudes outward from the upper end portion of the cylindrical portion 71 in the radial direction. The flange portion 72 closes the cylinder chamber 46 from below.
 上述したブレード55は、径方向に沿って延びる直方体形状に形成されている。ブレード55と、ブレード溝54の内壁面や各軸受42,43のフランジ部62,72と、の間には、潤滑油Jが介在している。そのため、ブレード55のうち、周方向の両側を向く側面は、ブレード溝54の内壁面に対して油膜を介して摺動可能とされている。また、ブレード55の上端面は、フランジ部62の下面に対して油膜を介して摺動可能とされている。ブレード55の下端面は、フランジ部72の上面に対して油膜を介して摺動可能とされている。 The above-described blade 55 is formed in a rectangular parallelepiped shape extending along the radial direction. Lubricating oil J is interposed between the blade 55 and the inner wall surface of the blade groove 54 and the flange portions 62 and 72 of the bearings 42 and 43. Therefore, the side surface of the blade 55 that faces both sides in the circumferential direction can slide on the inner wall surface of the blade groove 54 via the oil film. The upper end surface of the blade 55 is slidable with respect to the lower surface of the flange portion 62 via an oil film. The lower end surface of the blade 55 is slidable with respect to the upper surface of the flange portion 72 via an oil film.
 ブレード55の上下端面(フランジ部62,72との対向面)において、ブレード55の幅方向の中央部には、軸方向の内側に窪む給油溝81が径方向に延設されている。給油溝81は、軸方向から見た平面視で径方向(ブレード55の移動方向)に沿って延びる直線状に形成されている。給油溝81の幅は、全体に亘って一様とされている。具体的に、給油溝81は、径方向の外側端部(第1端部)側に位置する直線延在部82と、直線延在部82における径方向の内側端部(第2端部)に連なる傾斜部83と、を有している。直線延在部82は、全体に亘って溝深さが一様に形成されている。傾斜部83は、ブレード55の先端面に向かうに従い溝深さが漸次浅くなっている。 In the upper and lower end surfaces of the blade 55 (surfaces facing the flange portions 62 and 72), an oil supply groove 81 that is recessed inward in the axial direction is extended in the radial direction at the center portion in the width direction of the blade 55. The oil supply groove 81 is formed in a linear shape extending along the radial direction (movement direction of the blade 55) in a plan view as viewed from the axial direction. The width of the oil supply groove 81 is uniform throughout. Specifically, the oil supply groove 81 includes a linearly extending portion 82 located on the radially outer end (first end) side, and a radially inner end (second end) of the linearly extending portion 82. And an inclined portion 83 connected to the head. The linear extending portion 82 has a uniform groove depth throughout. The slope of the inclined portion 83 gradually becomes shallower toward the tip surface of the blade 55.
 直線延在部82の第1端部は、ブレード55の後端面上で開口している。直線延在部82の第1端部は、ブレード溝54を通して密閉容器34内に連通している。給油溝81内には、密閉容器34内に貯留された潤滑油Jがブレード溝54を通して供給される。
 傾斜部83の底部は、周方向から見た側面視で軸方向の内側に向けて凸の円弧状とされている。傾斜部83の曲率半径は、Rとなっている。傾斜部83の第2端部は、ブレード55の先端面に近接した状態で、ブレード55内で終端している。すなわち、給油溝81は、ブレード55の先端面には到達しておらず、シリンダ室46内とは連通していない。
 また、給油溝81は、ブレード55がシリンダ室46内に最も突出したときにシリンダ室46内に位置するように形成されている。
The first end portion of the linearly extending portion 82 opens on the rear end surface of the blade 55. The first end portion of the linear extending portion 82 communicates with the inside of the sealed container 34 through the blade groove 54. Lubricating oil J stored in the sealed container 34 is supplied into the oil supply groove 81 through the blade groove 54.
The bottom of the inclined portion 83 has a circular arc shape that protrudes inward in the axial direction when viewed from the circumferential direction. The radius of curvature of the inclined portion 83 is R. The second end of the inclined portion 83 terminates in the blade 55 in a state of being close to the tip surface of the blade 55. That is, the oil supply groove 81 does not reach the tip surface of the blade 55 and does not communicate with the cylinder chamber 46.
The oil supply groove 81 is formed so as to be positioned in the cylinder chamber 46 when the blade 55 protrudes most into the cylinder chamber 46.
 ブレード55の上下端面において、給油溝81以外の部分は、給油溝81を径方向の外側を除く三方で取り囲むシール面として機能する。ブレード55のシール面は、油膜を介してフランジ部62,72それぞれと対向している。この場合、ブレード55のシール面とフランジ部62,72との間を通した圧縮室内及び吸込室内間の連通が、油膜によって遮断されている。本実施形態では、シール面のうち、給油溝81に対して周方向の両側に位置する部分の幅S1,S2、及び給油溝81における他端縁とブレード55の先端面との間の径方向に沿う幅S3はそれぞれ同等とされている。 The portions other than the oil supply groove 81 on the upper and lower end surfaces of the blade 55 function as a seal surface that surrounds the oil supply groove 81 in three directions except for the outside in the radial direction. The sealing surface of the blade 55 is opposed to the flange portions 62 and 72 via the oil film. In this case, the communication between the compression chamber and the suction chamber passing between the sealing surface of the blade 55 and the flange portions 62 and 72 is blocked by the oil film. In the present embodiment, of the seal surface, the widths S1 and S2 of portions located on both sides in the circumferential direction with respect to the oil supply groove 81, and the radial direction between the other end edge of the oil supply groove 81 and the tip surface of the blade 55. The widths S3 along the lines are the same.
 ここで、給油溝81の容積は、圧縮行程後半に必要な潤滑油Jの容量に合わせて設定されている。しかも、給油溝81の最大溝深さE(本実施形態では直線延在部82の深さ)は、Hよりも深くなっている。また、給油溝81の幅Hは、シール面の最小幅よりも狭くなっている。 Here, the volume of the oil supply groove 81 is set according to the capacity of the lubricating oil J required in the latter half of the compression stroke. Moreover, the maximum groove depth E of the oil supply groove 81 (the depth of the linearly extending portion 82 in this embodiment) is deeper than H. Further, the width H of the oil supply groove 81 is narrower than the minimum width of the seal surface.
 次に、上述したブレード55に給油溝81を形成する方法について説明する。本実施形態では、円板状のカッター91,92用いた切削加工により給油溝81を形成する。
 図3に示す溝形成装置90は、互いに平行な回転軸周りに回転可能とされた一対のカッター91,92と、ブレード55を搬送する図示しない搬送機構と、を有している。
Next, a method for forming the oil supply groove 81 in the blade 55 described above will be described. In this embodiment, the oil supply groove 81 is formed by cutting using disk-shaped cutters 91 and 92.
The groove forming device 90 shown in FIG. 3 has a pair of cutters 91 and 92 that can rotate around rotation axes parallel to each other, and a transport mechanism (not shown) that transports the blade 55.
 カッター91,92は、それぞれ同等の構成とされている。カッター91,92は、両者の間にブレード55の高さよりも狭い隙間をあけて配設されている。なお、本実施形態において、カッター91,92間の隙間は、ブレード55の高さと、各給油溝81の最大溝深さEと、の差分に設定されている。
 搬送機構は、各カッター91,92間の隙間に対してブレード55を進退移動させる。具体的に、搬送機構は、ブレード55がカッター91,92間に進入した加工位置と、ブレード55がカッター91,92間から退避する退避位置と、の間を移動する。
The cutters 91 and 92 have the same configuration. The cutters 91 and 92 are disposed with a gap narrower than the height of the blade 55 between them. In the present embodiment, the gap between the cutters 91 and 92 is set to the difference between the height of the blade 55 and the maximum groove depth E of each oil supply groove 81.
The transport mechanism moves the blade 55 forward and backward with respect to the gap between the cutters 91 and 92. Specifically, the transport mechanism moves between a processing position where the blade 55 enters between the cutters 91 and 92 and a retreat position where the blade 55 retracts from between the cutters 91 and 92.
 上述した溝形成装置90を用いて給油溝81を形成する場合には、まず退避位置にある搬送機構によってブレード55を保持し、カッター91,92とブレード55とを位置合わせする。そして、カッター91,92を互いに逆回転させ、搬送機構によってブレード55を第1端部から加工位置に向けて搬送する。すると、ブレード55がカッター91,92間の隙間に進入するのに伴い、ブレード55の上下端面が切削される。 When the oil supply groove 81 is formed using the groove forming device 90 described above, the blade 55 is first held by the transport mechanism in the retracted position, and the cutters 91 and 92 and the blade 55 are aligned. Then, the cutters 91 and 92 are rotated in the opposite directions, and the blade 55 is conveyed from the first end toward the processing position by the conveying mechanism. Then, as the blade 55 enters the gap between the cutters 91 and 92, the upper and lower end surfaces of the blade 55 are cut.
 そして、ブレード55を所定量進入させた後、再び搬送機構を退避位置に移動させ、カッター91,92からブレード55を退避させる。このとき、ブレード55の進入量は、カッター91,92がブレード55の先端面に到達しない程度に設定されている。これにより、ブレード55の先端部には、カッター91,92の曲率半径に倣った円弧状の傾斜部83が形成される。
 以上により、本実施形態のブレード55が完成する。
Then, after the blade 55 has entered a predetermined amount, the transport mechanism is moved again to the retracted position, and the blade 55 is retracted from the cutters 91 and 92. At this time, the amount of entry of the blade 55 is set such that the cutters 91 and 92 do not reach the tip surface of the blade 55. Thereby, an arcuate inclined portion 83 that follows the curvature radius of the cutters 91 and 92 is formed at the tip of the blade 55.
Thus, the blade 55 of the present embodiment is completed.
 この構成によれば、一対のカッター91,92に対してブレード55を進退移動させるだけで、ブレード55の上下端面に給油溝81を形成できる。この場合、例えばエンドミルを用いたフライス加工に比べ、給油溝81を形成するためのリードタイムを短縮できる。その結果、製造効率の向上や低コスト化を図ることができる。 According to this configuration, the oil supply groove 81 can be formed on the upper and lower end surfaces of the blade 55 simply by moving the blade 55 forward and backward relative to the pair of cutters 91 and 92. In this case, for example, lead time for forming the oil supply groove 81 can be shortened as compared with milling using an end mill. As a result, it is possible to improve manufacturing efficiency and reduce costs.
 次に、上述した回転式圧縮機2の作用について説明する。
 図1に示すように電動機部32の固定子35に電力が供給されると、回転軸31が回転子36とともに軸線O周りに回転する。そして、回転軸31の回転に伴い、偏心部51及びローラ53がシリンダ室46内で偏心回転する。このとき、ローラ53がシリンダ41の内周面にそれぞれ摺接することで、吸込みパイプ21を通してシリンダ室46内に気体冷媒が取り込まれるとともに、シリンダ室46内に取り込まれた気体冷媒が圧縮される。
Next, the operation of the rotary compressor 2 described above will be described.
As shown in FIG. 1, when electric power is supplied to the stator 35 of the electric motor unit 32, the rotating shaft 31 rotates around the axis O together with the rotor 36. As the rotary shaft 31 rotates, the eccentric portion 51 and the roller 53 rotate eccentrically in the cylinder chamber 46. At this time, when the rollers 53 are in sliding contact with the inner peripheral surface of the cylinder 41, the gas refrigerant is taken into the cylinder chamber 46 through the suction pipe 21, and the gas refrigerant taken into the cylinder chamber 46 is compressed.
 具体的には、シリンダ室46のうち、吸込室内に吸込孔56を通して気体冷媒が吸い込まれるとともに、圧縮室にて先に吸込孔56から吸い込まれた気体冷媒が圧縮される。圧縮された気体冷媒は、主軸受42の吐出孔64を通してシリンダ室46の外側(マフラ65内)に吐出され、その後マフラ65の連通孔66を通して密閉容器34内に吐出される。なお、密閉容器34内に吐出された気体冷媒は、上述したように凝縮器3に送り込まれる。 Specifically, in the cylinder chamber 46, the gas refrigerant is sucked into the suction chamber through the suction hole 56, and the gas refrigerant previously sucked from the suction hole 56 is compressed in the compression chamber. The compressed gaseous refrigerant is discharged to the outside of the cylinder chamber 46 (inside the muffler 65) through the discharge hole 64 of the main bearing 42, and then discharged into the sealed container 34 through the communication hole 66 of the muffler 65. Note that the gaseous refrigerant discharged into the sealed container 34 is fed into the condenser 3 as described above.
 ここで、ブレード55の給油溝81内は、ブレード溝54を通して密閉容器34内に連通しているため、潤滑油Jで満たされている。給油溝81内の潤滑油Jは、シール面と各フランジ部62,72との間に流れ込み、両者間に油膜を形成する。したがって、ブレード55は、フランジ部62,72との直接の接触を抑制した状態で、ローラ53の偏心回転に伴いシリンダ室46に対して径方向に進退移動する。 Here, the oil supply groove 81 of the blade 55 is filled with the lubricating oil J because it communicates with the inside of the sealed container 34 through the blade groove 54. The lubricating oil J in the oil supply groove 81 flows between the seal surface and the flange portions 62 and 72, and forms an oil film therebetween. Therefore, the blade 55 moves back and forth in the radial direction with respect to the cylinder chamber 46 with the eccentric rotation of the roller 53 in a state in which direct contact with the flange portions 62 and 72 is suppressed.
 ブレード55が進退移動する過程において、ブレード55及びフランジ部62,72間に介在する潤滑油Jにはブレード55寄りに位置する部分とフランジ部62,72寄りに位置する部分とで速度差が生じる。速度差が生じると、潤滑油Jには粘性に伴うせん断力が作用する。特に、給油溝81の第2端部に傾斜部83が形成されているので、圧縮行程後半ではブレード55の移動方向の後方に向かうに従いブレード55とフランジ部62,72間の隙間が狭くなる。そのため、潤滑油Jの粘性作用と傾斜部83の傾きとによって、給油溝81内の潤滑油Jが径方向の内側に引きずり込まれる(いわゆる、くさび効果が発生する)。これにより、潤滑油Jがブレード55の上下端面とフランジ部62,72との間を、ブレード55の先端面側まで入り込んでいく。これにより、ブレード55とフランジ部62,72との間に潤滑油Jを効果的に供給できる。 In the process in which the blade 55 moves forward and backward, the lubricating oil J interposed between the blade 55 and the flange portions 62 and 72 has a speed difference between a portion located near the blade 55 and a portion located near the flange portions 62 and 72. . When the speed difference occurs, a shearing force due to viscosity acts on the lubricating oil J. In particular, since the inclined portion 83 is formed at the second end portion of the oil supply groove 81, the gap between the blade 55 and the flange portions 62 and 72 becomes narrower toward the rear in the moving direction of the blade 55 in the latter half of the compression stroke. Therefore, the lubricating oil J in the oil supply groove 81 is dragged inward in the radial direction by the viscous action of the lubricating oil J and the inclination of the inclined portion 83 (so-called wedge effect occurs). As a result, the lubricating oil J enters between the upper and lower end surfaces of the blade 55 and the flange portions 62 and 72 to the tip surface side of the blade 55. Thereby, the lubricating oil J can be effectively supplied between the blade 55 and the flange portions 62 and 72.
 一方、給油溝81の第1端部は、直線延在部82を通して開放されているため、圧縮行程前半では、上述したくさび効果は発生し難い。そのため、圧縮行程前半では、圧縮行程後半に比べて径方向の内側に潤滑油Jが流れ難い。これにより、圧縮行程前半において、給油溝81内の潤滑油Jがブレード55の先端面側に大量に流れ込むのを抑制できる。 On the other hand, since the first end portion of the oil supply groove 81 is opened through the linear extending portion 82, the wedge effect described above is unlikely to occur in the first half of the compression stroke. Therefore, in the first half of the compression stroke, the lubricating oil J is less likely to flow inward in the radial direction than in the second half of the compression stroke. Thereby, in the first half of the compression stroke, it is possible to suppress a large amount of the lubricating oil J in the oil supply groove 81 from flowing into the tip surface side of the blade 55.
 このように、本実施形態では、給油溝81の他端部に傾斜部83が形成されているので、圧縮行程後半でくさび効果が発生し易くなる。そのため、ブレード55(シール面)とフランジ部62,72との間において、潤滑油Jが先端面寄りに効果的に供給されることになる。そのため、ブレード55及びフランジ部62,72間の油膜が破断されるのを抑制し、ブレード55とフランジ部62,72とが直接接触するのを抑制できる。これにより、ブレード55とフランジ部62,72との摩耗を低減でき、動作信頼性を向上させることができる。
 また、給油溝81は、ブレード55がシリンダ室46内に最も突出したときにシリンダ室46内に位置するように形成されているので、ブレード55及びフランジ部62,72間を通した圧縮室内及び吸込室内の連通が油膜によって遮断される。そのため、ブレード55及びフランジ部62,72間でのシール性を確保できる。そのため、ブレード55及びフランジ部62,72間を通した圧縮室及び吸込室間での冷媒のリークを抑制し、圧縮性能の向上を図ることができる。
 さらに、上述したように給油溝81の第1端部が直線延在部82を通して開放されているため、圧縮行程前半において潤滑油Jがブレード55の先端面寄りに大量に流れ込むのを抑制できる。そのため、圧縮行程前半において、ブレード55とフランジ部62,72との間に潤滑油Jが過剰に介在するのを抑制し、ブレード55とフランジ部62,72との間のシール性を維持できる。これにより、ブレード55及びフランジ部62,72間に介在する余剰の潤滑油Jがシリンダ室46内に流入したり、潤滑油Jとともに冷媒がシリンダ室46内に流入したりするのを抑制し、圧縮性能の低下を抑制できる。
Thus, in this embodiment, since the inclined part 83 is formed in the other end part of the oil supply groove 81, the wedge effect is likely to occur in the latter half of the compression stroke. Therefore, the lubricating oil J is effectively supplied closer to the tip surface between the blade 55 (seal surface) and the flange portions 62 and 72. Therefore, it can suppress that the oil film between the braid | blade 55 and the flange parts 62 and 72 is fractured, and can suppress that the braid | blade 55 and the flange parts 62 and 72 contact directly. Thereby, abrasion with the blade 55 and the flange parts 62 and 72 can be reduced, and operation | movement reliability can be improved.
Further, since the oil supply groove 81 is formed so as to be positioned in the cylinder chamber 46 when the blade 55 protrudes most into the cylinder chamber 46, the oil supply groove 81 and the compression chamber passing between the blade 55 and the flange portions 62 and 72 and Communication in the suction chamber is blocked by the oil film. Therefore, the sealing performance between the blade 55 and the flange portions 62 and 72 can be secured. Therefore, the leakage of the refrigerant between the compression chamber and the suction chamber passing between the blade 55 and the flange portions 62 and 72 can be suppressed, and the compression performance can be improved.
Furthermore, as described above, since the first end portion of the oil supply groove 81 is opened through the linearly extending portion 82, it is possible to suppress a large amount of the lubricating oil J from flowing toward the tip surface of the blade 55 in the first half of the compression stroke. Therefore, in the first half of the compression stroke, it is possible to suppress the lubricant J from being excessively interposed between the blade 55 and the flange portions 62 and 72, and to maintain the sealing performance between the blade 55 and the flange portions 62 and 72. Thereby, it is possible to suppress surplus lubricating oil J interposed between the blade 55 and the flange portions 62 and 72 from flowing into the cylinder chamber 46 and refrigerant from flowing into the cylinder chamber 46 together with the lubricating oil J, A decrease in compression performance can be suppressed.
 しかも、本実施形態では、給油溝81の最大溝深さEが幅Hよりも深くなっているので、給油溝81内の容積を確保した上で、シール面の幅を確保できる。そのため、給油溝81内での潤滑油Jの容量を確保した上で、ブレード55及びフランジ部62,72間でのシール性を確保できる。これにより、動作信頼性及び圧縮性能の更なる向上を図ることができる。 Moreover, in the present embodiment, the maximum groove depth E of the oil supply groove 81 is deeper than the width H, so that the width of the seal surface can be ensured while ensuring the volume in the oil supply groove 81. Therefore, it is possible to ensure the sealing performance between the blade 55 and the flange portions 62 and 72 while ensuring the capacity of the lubricating oil J in the oil supply groove 81. Thereby, the operational reliability and compression performance can be further improved.
 また、本実施形態では、給油溝81の幅Hがシール面の最小幅よりも狭くなっているので、シール面の幅を確保できる。この場合、公差によるブレード55及びフランジ部62,72間のクリアランスのばらつきに関わらず、ブレード55及びフランジ部62,72間でのシール性を確保できる(いわゆる、ロバスト性を向上させることができる)。その結果、動作信頼性及び圧縮性能の更なる向上を図ることができる。 Further, in this embodiment, since the width H of the oil supply groove 81 is narrower than the minimum width of the seal surface, the width of the seal surface can be ensured. In this case, the sealing performance between the blade 55 and the flange portions 62 and 72 can be ensured regardless of the variation in the clearance between the blade 55 and the flange portions 62 and 72 due to tolerances (so-called robustness can be improved). . As a result, the operational reliability and the compression performance can be further improved.
 そして、本実施形態の冷凍サイクル装置1においては、上述した回転式圧縮機2を備えているため、高性能で信頼性に優れた冷凍サイクル装置1を提供できる。 And since the refrigerating cycle apparatus 1 of this embodiment is provided with the rotary compressor 2 mentioned above, the refrigerating cycle apparatus 1 excellent in performance and reliability can be provided.
 (第2の実施形態)
 図4に示すブレード155において、給油溝181の底部は、全体に亘って軸方向の内側に向けて凸の円弧状に形成されている。したがって、給油溝181は、第1端部及び第2端部の双方に向かうに従い溝深さが漸次浅くなっている。給油溝181の第1端部は、ブレード155の後端面上で開口している。給油溝181の第2端部は、ブレード155内で終端している。
(Second Embodiment)
In the blade 155 shown in FIG. 4, the bottom portion of the oil supply groove 181 is formed in a circular arc shape that protrudes inward in the axial direction throughout. Therefore, the groove depth of the oil supply groove 181 gradually becomes smaller toward both the first end portion and the second end portion. The first end portion of the oil supply groove 181 opens on the rear end surface of the blade 155. The second end of the oil supply groove 181 terminates in the blade 155.
 図5に示すように、本実施形態の溝形成装置190では、一対のカッター191,192が互いに接近離間可能に構成されている。具体的に、カッター191,192は、カッター191,192間に位置するブレード155に対して加工を行う加工位置と、カッター191,192間に位置するブレード155から離間する退避位置と、の間を移動する。
 搬送機構は、一対のカッター191,192間の隙間を通してブレード155を上流から下流に向けて順次通過させる。
As shown in FIG. 5, in the groove forming apparatus 190 of this embodiment, a pair of cutters 191 and 192 are configured to be close to and away from each other. Specifically, the cutters 191 and 192 have a gap between a machining position where the blade 155 located between the cutters 191 and 192 is machined and a retracted position separated from the blade 155 located between the cutters 191 and 192. Moving.
The transport mechanism sequentially passes the blade 155 from the upstream toward the downstream through the gap between the pair of cutters 191 and 192.
 上述した溝形成装置190を用いて給油溝81を形成するには、まずカッター191,192を退避位置とした状態で、搬送機構によってブレード155をカッター191,192間まで搬送する。次に、カッター191,192を互いに逆回転させるとともに、カッター191,192を加工位置に向けて移動させる。すると、ブレード155の上下端面に対してカッター191,192が進入し、ブレード155の上下端面が切削される。このとき、ブレード155へのカッター191,192の進入量は、各給油溝181の最大溝深さEに設定されている。これにより、給油溝181がカッター191,192の曲率半径に倣った円弧状に形成される。 In order to form the oil supply groove 81 using the groove forming device 190 described above, the blade 155 is first transported between the cutters 191 and 192 by the transport mechanism in a state where the cutters 191 and 192 are in the retracted position. Next, the cutters 191 and 192 are rotated in the opposite directions, and the cutters 191 and 192 are moved toward the processing position. Then, the cutters 191 and 192 enter the upper and lower end surfaces of the blade 155, and the upper and lower end surfaces of the blade 155 are cut. At this time, the amount of the cutters 191 and 192 entering the blade 155 is set to the maximum groove depth E of each oil supply groove 181. Thereby, the oil supply groove 181 is formed in an arc shape that follows the curvature radius of the cutters 191 and 192.
 その後、カッター191,192を再び退避位置に移動させ、ブレード155からカッター191,192を離間させる。そして、搬送機構を駆動させ、加工されたブレード155をカッター191,192に対して下流に向けて搬送するとともに、次の加工対象となるブレード155をカッター191,192間に順次搬送する。その後、カッター191,192間に搬送されたブレード155に対して、上述した方法と同様の方法により切削加工を行う。これにより、カッター191,192間に搬送されるブレード155に対して順次給油溝181が形成される。 Thereafter, the cutters 191 and 192 are moved again to the retracted position, and the cutters 191 and 192 are separated from the blade 155. Then, the conveying mechanism is driven to convey the processed blade 155 toward the downstream with respect to the cutters 191 and 192, and the blade 155 to be processed next is sequentially conveyed between the cutters 191 and 192. Thereafter, the blade 155 conveyed between the cutters 191 and 192 is cut by the same method as described above. As a result, oil supply grooves 181 are sequentially formed for the blades 155 conveyed between the cutters 191 and 192.
 この構成によれば、給油溝181の全体が軸方向の内側に向けて凸の円弧状に形成されているため、一方向に搬送されるブレード155に対してカッター191,192を往復移動させることで、給油溝181を形成することができる。これにより、更なる製造効率の向上や低コスト化を図ることができる。 According to this configuration, since the entire oil supply groove 181 is formed in a convex arc shape toward the inner side in the axial direction, the cutters 191 and 192 are reciprocated relative to the blade 155 conveyed in one direction. Thus, the oil supply groove 181 can be formed. Thereby, further improvement in manufacturing efficiency and cost reduction can be achieved.
 (第3の実施形態)
 図6に示すブレード255において、給油溝281の底部は、第1端部から第2端部に向かうに従い軸方向の外側に向けて直線状に延設されている。給油溝281の第1端部は、ブレード255の一端面上で開口している。給油溝281の第2端部は、ブレード255内で終端している。
(Third embodiment)
In the blade 255 shown in FIG. 6, the bottom portion of the oil supply groove 281 extends linearly toward the outer side in the axial direction from the first end portion toward the second end portion. The first end of the oil supply groove 281 is open on one end surface of the blade 255. The second end of the oil supply groove 281 terminates in the blade 255.
 図7に示すように、本実施形態の溝形成装置290では、カッター291が回転可能に支持されている。
 搬送機構292は、カッター291に対して上流から下流にブレード255を搬送する。搬送機構292は、搬送方向に対して傾けた状態でブレード255を保持する。具体的に、搬送機構292は、ブレード255の第1端面を下流に向けるとともに、一方の端面を上方(カッター291を向く方向)に向けて傾けた状態で、ブレード255を保持する。
As shown in FIG. 7, in the groove forming apparatus 290 of the present embodiment, a cutter 291 is rotatably supported.
The transport mechanism 292 transports the blade 255 from the upstream to the downstream with respect to the cutter 291. The transport mechanism 292 holds the blade 255 in a state inclined with respect to the transport direction. Specifically, the transport mechanism 292 holds the blade 255 in a state in which the first end surface of the blade 255 is directed downstream and one end surface is inclined upward (in the direction toward the cutter 291).
 上述した溝形成装置290を用いて給油溝281を形成するには、カッター291を回転させた状態で、搬送機構292によってブレード255を下流に向けて搬送する。すると、ブレード255の一方の端面に対してブレード255の第1端部からカッター291が進入する。そして、カッター291に対して下流にブレード255を通過させることで、ブレード255の一方の端面に対して給油溝281が形成される。なお、加工されたブレード255がカッター291を通過すると、次の加工対象となるブレード255がカッター291に順次搬送される。そして、次の加工対象となるブレード255に対して、上述した方法と同様の方法により切削加工が行われる。これにより、カッター291に向けて搬送されるブレード255の一方の端面に対して順次給油溝281が形成される。 In order to form the oil supply groove 281 using the groove forming device 290 described above, the blade 255 is conveyed downstream by the conveying mechanism 292 while the cutter 291 is rotated. Then, the cutter 291 enters the one end surface of the blade 255 from the first end portion of the blade 255. And the oil supply groove | channel 281 is formed with respect to one end surface of the braid | blade 255 by letting the braid | blade 255 pass downstream with respect to the cutter 291. FIG. When the processed blade 255 passes through the cutter 291, the blade 255 to be processed next is sequentially conveyed to the cutter 291. Then, cutting is performed on the blade 255 to be processed next by the same method as described above. As a result, an oil supply groove 281 is sequentially formed on one end face of the blade 255 conveyed toward the cutter 291.
 次に、一方の端面に給油溝281が形成されたブレード255を上下反転させ、上述した方法と同様の方法により他方の端面に対して給油溝281を形成する。これにより、上述した本実施形態のブレード255が完成する。 Next, the blade 255 having the oil supply groove 281 formed on one end face is turned upside down, and the oil supply groove 281 is formed on the other end face by the same method as described above. Thereby, the blade 255 of this embodiment described above is completed.
 この構成によれば、1つのカッター291に対してブレード255を通過させるだけで給油溝281を形成できるので、溝形成装置290の簡素化及び低コスト化を図ることができる。また、ブレード255が搬送されながらカッター291による加工が行われるので、ブレード255の搬送を停止することがない。そのため、リードタイムの更なる短縮を図ることができる。 According to this configuration, the oil supply groove 281 can be formed only by passing the blade 255 through one cutter 291. Therefore, the groove forming device 290 can be simplified and reduced in cost. Further, since the processing by the cutter 291 is performed while the blade 255 is being conveyed, the conveyance of the blade 255 is not stopped. Therefore, the lead time can be further shortened.
 なお、上述した実施形態では、閉塞板として主軸受42及び副軸受43を用いた場合について説明したが、これに限られない。例えば、シリンダ41の上端開口部を閉塞するとともに、回転軸31が挿通された軸受部と、シリンダ41の下端開口部を閉塞して、回転軸31の軸方向の下端面を摺動可能に支持するシリンダプレートと、を閉塞板として用いても構わない。 In the above-described embodiment, the case where the main bearing 42 and the auxiliary bearing 43 are used as the blocking plate has been described, but the present invention is not limited thereto. For example, the upper end opening portion of the cylinder 41 is closed, the bearing portion through which the rotary shaft 31 is inserted, and the lower end opening portion of the cylinder 41 are closed so that the lower end surface in the axial direction of the rotary shaft 31 is slidably supported. The cylinder plate to be used may be used as a closing plate.
 また、上述した実施形態では、シリンダ室46が1つの構成について説明したが、これに限らず、シリンダ室46を複数設けても構わない。
 また、上述した実施形態では、軸方向を上下方向に一致させた場合について説明したが、これに限らず、軸方向を水平方向に一致させても構わない。
 さらに、上述した実施形態では、ローラ53とブレードとを別体で形成した場合について説明したが、これに限らず、ローラ53とブレードとを一体で形成しても構わない。
In the above-described embodiment, the configuration of one cylinder chamber 46 has been described. However, the present invention is not limited to this, and a plurality of cylinder chambers 46 may be provided.
In the above-described embodiment, the case where the axial direction is matched with the vertical direction has been described. However, the present invention is not limited to this, and the axial direction may be matched with the horizontal direction.
Furthermore, in the above-described embodiment, the case where the roller 53 and the blade are formed separately has been described. However, the present invention is not limited thereto, and the roller 53 and the blade may be formed integrally.
 また、上述した実施形態では、ブレードの上下端面に給油溝を各別に形成した場合について説明したが、これに限らず、少なくとも一方の端面に給油溝が形成された構成でも構わない。
 さらに、上述した実施形態では、ブレードの端面に対して給油溝を1列形成した場合について説明したが、これに限らず、複数列の給油溝を形成しても構わない。
In the above-described embodiment, the case where the oil supply grooves are separately formed on the upper and lower end surfaces of the blade has been described. However, the present invention is not limited to this, and a configuration in which the oil supply grooves are formed on at least one end surface may be used.
Furthermore, although embodiment mentioned above demonstrated the case where 1 row of oil supply grooves were formed with respect to the end surface of a braid | blade, you may form not only this but multiple rows of oil supply grooves.
 また、上述した実施形態では、給油溝における第2端部が円弧状または直線状に形成した場合について説明したが、これに限られない。ブレードの先端面に向かうに従い漸次浅くなる構成であれば、例えば階段状であっても構わない。また、給油溝は少なくとも第2端部(給油溝における延在方向の中間部分よりも第2端部寄りに位置する部分)が第2端に向けて浅くなっていれば構わない。 In the above-described embodiment, the case where the second end portion of the oil supply groove is formed in an arc shape or a linear shape has been described, but the present invention is not limited thereto. For example, a step shape may be used as long as it gradually becomes shallower toward the tip surface of the blade. Further, it is only necessary that at least the second end portion of the oil supply groove (a portion located closer to the second end portion than the intermediate portion in the extending direction of the oil supply groove) becomes shallower toward the second end.
 また、上述した実施形態では、軸方向から見た平面視で給油溝がブレードの移動方向(径方向)に沿って延びる直線状とした場合について説明したが、これに限られない。例えば、ブレードの移動方向に沿って延びていれば、給油溝は例えば波形にしたり、移動方向に対して傾斜したりしていても構わない。
 また、上述した実施形態では、給油溝の幅が全体に亘って一様とされた構成について説明したが、給油溝の幅は適宜設計変更が可能である。この場合において、シール面の最小幅は給油溝の最大幅よりも狭くなっていることが好ましい。
Moreover, although embodiment mentioned above demonstrated the case where the oil supply groove was made into the linear form extended along the moving direction (radial direction) of a blade by planar view seen from the axial direction, it is not restricted to this. For example, as long as it extends along the moving direction of the blade, the oil supply groove may be, for example, corrugated or inclined with respect to the moving direction.
In the above-described embodiment, the configuration in which the width of the oil supply groove is uniform throughout has been described. However, the width of the oil supply groove can be appropriately changed in design. In this case, it is preferable that the minimum width of the seal surface is narrower than the maximum width of the oil supply groove.
 以上説明した少なくともひとつの実施形態によれば、給油溝が第1端部から第2端部に向かうに従い浅くなっているので、圧縮行程後半でくさび効果が発生し易くなる。そのため、ブレードと閉塞板との間において、潤滑油が第2端面寄りに効果的に供給されることになる。
そのため、ブレード及び閉塞板間の油膜が破断されるのを抑制し、ブレードと閉塞板とが直接接触するのを抑制できる。これにより、ブレードと閉塞板との摩耗を低減できる。その結果、動作信頼性を向上させることができる。
 また、ブレード及び閉塞板間を通した圧縮室内及び吸込室内の連通が油膜によって遮断されるので、ブレード及び閉塞板間でのシール性を確保できる。そのため、ブレード及び閉塞板間を通した圧縮室及び吸込室間での冷媒のリークを抑制し、圧縮性能の向上を図ることができる。
 さらに、給油溝の他端部が密閉容器内に連通しているため、圧縮行程前半において潤滑油がローラの第2端面寄りに大量に流れ込むのを抑制できる。そのため、圧縮行程前半において、ブレードと閉塞板との間に潤滑油が過剰に介在するのを抑制し、ブレードと閉塞板との間のシール性を維持できる。これにより、ブレード及び閉塞板間に介在する余剰の潤滑油がシリンダ室内に流入したり、潤滑油とともに冷媒がシリンダ室内に流入したりするのを抑制し、圧縮性能の低下を抑制できる。
According to at least one embodiment described above, the oil supply groove becomes shallower from the first end toward the second end, so that the wedge effect is likely to occur in the latter half of the compression stroke. Therefore, the lubricating oil is effectively supplied closer to the second end surface between the blade and the closing plate.
Therefore, it can suppress that the oil film between a braid | blade and a closure board is fractured | ruptured, and can suppress that a braid | blade and a closure board contact directly. Thereby, abrasion with a braid | blade and a closure board can be reduced. As a result, operational reliability can be improved.
In addition, since the communication between the compression chamber and the suction chamber through the blade and the closing plate is blocked by the oil film, the sealing performance between the blade and the closing plate can be ensured. Therefore, it is possible to suppress the leakage of the refrigerant between the compression chamber and the suction chamber that passes between the blade and the closing plate, and to improve the compression performance.
Furthermore, since the other end portion of the oil supply groove communicates with the hermetic container, it is possible to suppress a large amount of lubricating oil from flowing toward the second end surface of the roller in the first half of the compression stroke. Therefore, in the first half of the compression stroke, it is possible to suppress the lubricant oil from being excessively interposed between the blade and the closing plate and maintain the sealing performance between the blade and the closing plate. As a result, it is possible to suppress excessive lubricating oil interposed between the blade and the closing plate from flowing into the cylinder chamber, and to prevent the refrigerant from flowing into the cylinder chamber together with the lubricating oil, thereby suppressing a decrease in compression performance.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (6)

  1.  潤滑油が貯留される容器と、
     前記容器内に収納された筒状のシリンダと、
     前記シリンダの開口部を閉塞して、前記シリンダとともにシリンダ室を形成する閉塞板と、
     前記シリンダ室内で偏心回転するローラと、
     前記ローラの回転方向で前記シリンダ室内を分割するとともに、前記ローラの偏心回転に伴い前記シリンダ室内に進退可能とされたブレードと、
     前記ブレードのうち、前記閉塞板と対向する対向面に形成され、前記ブレードの移動方向に沿って延びるとともに、第1端部が前記容器内に連通し、第2端部が前記ブレード内で終端する給油溝と、を備え、
     前記給油溝は、前記ブレードが前記シリンダ室内に最も突出したときに前記第2端部が前記シリンダ室内に位置するとともに、前記第2端部寄りに位置する部分が第2端面に向かうに従い溝深さが浅くなっている、
     回転式圧縮機。
    A container for storing lubricating oil;
    A cylindrical cylinder housed in the container;
    A closing plate that closes the opening of the cylinder and forms a cylinder chamber together with the cylinder;
    A roller that rotates eccentrically in the cylinder chamber;
    A blade that divides the cylinder chamber in the rotation direction of the roller, and that is capable of moving back and forth in the cylinder chamber with the eccentric rotation of the roller;
    The blade is formed on a facing surface facing the closing plate, extends along the moving direction of the blade, has a first end communicating with the container, and a second end terminating in the blade. An oiling groove for
    The oil supply groove has a groove depth as the second end portion is located in the cylinder chamber when the blade protrudes most into the cylinder chamber, and a portion located closer to the second end portion moves toward the second end surface. Is shallow,
    Rotary compressor.
  2.  前記給油溝は、前記第2端面に向かうに従い溝深さが漸次浅くなる円弧状を呈している、
     請求項1記載の回転式圧縮機。
    The oil supply groove has an arc shape in which the groove depth gradually decreases toward the second end surface.
    The rotary compressor according to claim 1.
  3.  前記給油溝は、前記第1端部から前記第2端部に向かうに従い溝深さが漸次浅くなる直線状を呈している、
     請求項1記載の回転式圧縮機。
    The oil supply groove has a linear shape in which the groove depth gradually becomes shallower from the first end toward the second end.
    The rotary compressor according to claim 1.
  4.  前記給油溝の最大溝深さが、前記給油溝の幅よりも深くなっている、
     請求項1から請求項3の何れか1項に記載の回転式圧縮機。
    The maximum groove depth of the oil supply groove is deeper than the width of the oil supply groove,
    The rotary compressor according to any one of claims 1 to 3.
  5.  前記ブレードの前記対向面上において、前記給油溝以外の部分の最小幅は、前記給油溝の幅よりも広くなっている、
     請求項1から請求項4の何れか1項に記載の回転式圧縮機。
    On the facing surface of the blade, the minimum width of the portion other than the oil supply groove is wider than the width of the oil supply groove.
    The rotary compressor according to any one of claims 1 to 4.
  6.  請求項1から請求項5の何れか1項に記載の回転式圧縮機と、
     前記回転式圧縮機に接続された凝縮器と、
     前記凝縮器に接続された膨張装置と、
     前記膨張装置と前記回転式圧縮機との間に接続された蒸発器と、を備えている、
     冷凍サイクル装置。
    The rotary compressor according to any one of claims 1 to 5,
    A condenser connected to the rotary compressor;
    An expansion device connected to the condenser;
    An evaporator connected between the expansion device and the rotary compressor,
    Refrigeration cycle equipment.
PCT/JP2015/077508 2015-03-06 2015-09-29 Rotary compressor and refrigeration cycle device WO2016143177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017504556A JPWO2016143177A1 (en) 2015-03-06 2015-09-29 Rotary compressor and refrigeration cycle apparatus
CN201580057254.XA CN107076148B (en) 2015-03-06 2015-09-29 Rotary compressor and refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-044695 2015-03-06
JP2015044695 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143177A1 true WO2016143177A1 (en) 2016-09-15

Family

ID=56880064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077508 WO2016143177A1 (en) 2015-03-06 2015-09-29 Rotary compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (2) JPWO2016143177A1 (en)
CN (1) CN107076148B (en)
WO (1) WO2016143177A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227890A (en) * 1988-03-04 1989-09-12 Matsushita Refrig Co Ltd Rotary compressor
JPH04191491A (en) * 1990-11-22 1992-07-09 Matsushita Refrig Co Ltd Closed type compressor
JPH08159071A (en) * 1994-12-02 1996-06-18 Matsushita Refrig Co Ltd Rotary compressor
JP2006258001A (en) * 2005-03-17 2006-09-28 Toshiba Kyaria Kk Hermetic compressor and refrigeration cycle device using the same
JP2015028330A (en) * 2013-07-31 2015-02-12 日立アプライアンス株式会社 Rotary compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948209B2 (en) * 2012-10-11 2016-07-06 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN203374488U (en) * 2013-07-12 2014-01-01 广东美芝制冷设备有限公司 Sliding vane of compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227890A (en) * 1988-03-04 1989-09-12 Matsushita Refrig Co Ltd Rotary compressor
JPH04191491A (en) * 1990-11-22 1992-07-09 Matsushita Refrig Co Ltd Closed type compressor
JPH08159071A (en) * 1994-12-02 1996-06-18 Matsushita Refrig Co Ltd Rotary compressor
JP2006258001A (en) * 2005-03-17 2006-09-28 Toshiba Kyaria Kk Hermetic compressor and refrigeration cycle device using the same
JP2015028330A (en) * 2013-07-31 2015-02-12 日立アプライアンス株式会社 Rotary compressor

Also Published As

Publication number Publication date
CN107076148A (en) 2017-08-18
CN107076148B (en) 2020-06-16
JPWO2016143177A1 (en) 2017-08-03
JP2019049267A (en) 2019-03-28
JP6652623B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP2011027076A (en) Scroll compressor
US7581936B2 (en) Hermetically sealed compressor having oil supply mechanism based on refrigerant pressure
JP6567352B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2014034940A (en) Rotary compressor and refrigeration cycle device
JP2016017473A (en) Rotary compressor
JP5304285B2 (en) Scroll compressor
CN108457858B (en) Rotary compressor and refrigeration cycle device
JP5932608B2 (en) Vane type compressor
JP6652623B2 (en) Rotary compressor, refrigeration cycle device, and method of manufacturing rotary compressor
JP2011157974A (en) Scroll compressor and refrigerating cycle equipped with the same
JP6700691B2 (en) Electric compressor
JP6374732B2 (en) Rotary compressor and refrigeration cycle apparatus
JP6395939B2 (en) Rotary compressor and refrigeration cycle apparatus
KR102250823B1 (en) Rotary compressor
JP2018105136A (en) Rotation type compressor and refrigeration cycle device
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
JP2012052494A (en) Hermetically sealed compressor
WO2018138840A1 (en) Rotary compressor
JP6405119B2 (en) Rotary compressor and refrigeration cycle apparatus
JP5278228B2 (en) Scroll compressor
JP7175657B2 (en) Rolling cylinder positive displacement compressor
JP2006214335A (en) Scroll compressor
JP2008138534A (en) Closed rotary compressor
JP2012154263A (en) Compressor and refrigerating cycle system
JP2013076325A (en) Hermetic compressor, and refrigerating cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884661

Country of ref document: EP

Kind code of ref document: A1