WO2016136457A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2016136457A1
WO2016136457A1 PCT/JP2016/053779 JP2016053779W WO2016136457A1 WO 2016136457 A1 WO2016136457 A1 WO 2016136457A1 JP 2016053779 W JP2016053779 W JP 2016053779W WO 2016136457 A1 WO2016136457 A1 WO 2016136457A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring member
main electrode
power module
power semiconductor
signal
Prior art date
Application number
PCT/JP2016/053779
Other languages
English (en)
French (fr)
Inventor
藤野 純司
翔平 小川
創一 坂元
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680006146.4A priority Critical patent/CN107210238B/zh
Priority to DE112016000904.6T priority patent/DE112016000904T5/de
Priority to US15/533,870 priority patent/US10559538B2/en
Priority to JP2017502045A priority patent/JP6234630B2/ja
Publication of WO2016136457A1 publication Critical patent/WO2016136457A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/38Structure, shape, material or disposition of the strap connectors prior to the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40496Connecting portions connected to auxiliary connecting means on the bonding areas not being interposed between the connector and the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a power module used in every scene from power generation and transmission to efficient use and regeneration of energy.
  • Power modules are spreading in all kinds of products from industrial equipment to home appliances and information terminals. Modules installed in home appliances are required to have high productivity and high reliability that can be used in various types as well as being smaller and lighter. Moreover, as a power semiconductor element mounted on the power module, a SiC (silicon carbide) power semiconductor element having a high operating temperature and excellent efficiency is likely to become a mainstream in the future. For this reason, the power module is also required to be in the form of a package that can be applied to high-temperature operation of SiC semiconductor elements.
  • SiC silicon carbide
  • Patent Document 1 describes a semiconductor device in which a vertical power MISFET (Metal Insulator Semiconductor Field-Effect-Transistor) is sealed with a resin.
  • the package of the semiconductor device of Patent Document 1 is a surface-mount CSP (Chip Scale Package) in which package terminals are arranged at the bottom.
  • the semiconductor device of Patent Document 1 is packaged by resin molding a power semiconductor element (power MISFET) sandwiched between wiring members.
  • the upper surface of the connecting member 3DL connected to the drain electrode of the power semiconductor element is exposed at the upper part of the packaged sealing body 1, and the source electrode of the power semiconductor element is exposed at the lower part of the sealing body 1.
  • the connection member 3SL connected to the gate electrode and the connection member 3GL connected to the gate electrode are exposed.
  • Patent Document 2 discloses an upper electrode (surface electrode) of a power semiconductor element mounted on a circuit board for the purpose of reducing stress applied to the power semiconductor element (power semiconductor element) caused by an external wiring member.
  • a power semiconductor device including an electrode structure in which an electrode member for connecting to an external wiring member is connected to a circuit board in the middle is described.
  • JP 2006-179735 A steps 0023 to 0048, FIG. 5
  • JP 2013-65836 A 0008 stages, 0013 stages to 0021 stages, FIG. 2
  • Power modules generate large amounts of heat to handle high voltages and large currents, but demands for high-temperature operation are high. Furthermore, application of new power semiconductor elements such as SiC that can be improved in characteristics is urgently required, and they can operate at a high temperature exceeding 250 ° C. As a result, high heat resistance is also required for the structure and joints of power modules and packages.
  • the die bonding method on the back side (for example, collector side) of power semiconductor elements silver sinter bonding using low-temperature sintering phenomenon of nanopowder is being put into practical use instead of conventional solder, to improve heat resistance I have an idea.
  • a copper wire or the like has been studied as a high heat-resistant material replacing aluminum wire.
  • copper having a hardness higher than that of aluminum causes great damage to the power semiconductor element, and there are concerns about cracks in the surface electrode (emitter electrode and the like) of the power semiconductor element and a decrease in reliability.
  • a dedicated device for suppressing oxidation is necessary, and complexity in terms of equipment such as supply of a reducing gas is inevitable.
  • the semiconductor device disclosed in Patent Document 1 can be surface-mounted on a printed circuit board or the like as it is.
  • a power module used for an automotive device or an inverter device for driving an AC motor that is, a power module that handles a large current
  • the connection between the surface electrode of the power semiconductor element and the external electrode component is performed by temporarily connecting the conductor layer of the ceramic substrate (circuit board) to the wire connection from the conductor layer to the external electrode component, or the bus bar.
  • connection is necessary, the mounting area is increased, and the power module including the power semiconductor element cannot be reduced in size.
  • the semiconductor device of Patent Document 1 it is possible to connect the exposed portion of the connection member 3DL exposed on the upper surface portion to an external screw electrode or the like with a wire, but the temperature of the wire used for the connection is just above the power semiconductor element. Almost no decrease can be expected, and the wire itself is required to have high heat resistance during high temperature operation.
  • the present invention has been made to solve the above-described problems, and can connect the external terminal component and the surface electrode of the power semiconductor element without relaying the conductor layer of the circuit board. It is an object of the present invention to obtain a power module that can operate at high temperature and has improved reliability even if the connecting material such as a wire to be connected is made of solder or aluminum.
  • the power module of the present invention includes a power semiconductor element mounted on a circuit board and an adapter connected to the surface main electrode of the power semiconductor element, and the adapter is connected to the main electrode wiring connected to the surface main electrode of the power semiconductor element.
  • a main electrode wiring member including an element connection portion connected to the surface main electrode of the power semiconductor element, a substrate connection portion disposed outside the element connection portion and connected to the circuit board, and an element connection portion And a connecting material connecting portion that is connected to the external electrode via a connecting material.
  • the power module of the present invention is a connection material connection in which the main electrode wiring member of the adapter connected to the surface main electrode of the power semiconductor element is connected to the external electrode via the connection material outside the element connection portion and the substrate connection portion. Since the external electrode that is the external terminal component and the surface electrode of the power semiconductor element can be connected without relaying the conductor layer of the circuit board, the connecting material to be connected to the external terminal component is made of solder or aluminum. Can be operated at a high temperature, and reliability can be improved.
  • FIG. 1 It is a cross-sectional schematic diagram of the power module by Embodiment 1 of this invention. It is a figure which shows the adapter of FIG. It is a bird's-eye view of the power module by Embodiment 1 of this invention. It is a top view which shows the adapter internal structure of FIG. It is a bird's-eye view which shows the wiring member of FIG. It is a reverse side bird's-eye view of the adapter of FIG. It is a figure which shows the manufacture process of the power module of FIG. It is a figure which shows the manufacture process of the power module of FIG. It is a cross-sectional schematic diagram of the power module by Embodiment 2 of this invention.
  • Embodiment 3 of this invention It is a bird's-eye view of the power module by Embodiment 3 of this invention. It is a bird's-eye view which shows the wiring member of the adapter of FIG. 10, and the conductor layer of a ceramic substrate.
  • Embodiment 4 of this invention It is a figure which shows the adapter and power semiconductor element of FIG.
  • FIG. 5 It is a figure which shows the measurement result of the sample of FIG.
  • Embodiment 5 of this invention It is a bird's-eye view of the power module by Embodiment 3 of this invention. It is a bird's-eye view which shows the wiring member of the adapter of FIG. 10, and the conductor layer of a ceramic substrate.
  • Embodiment 4 of this invention It is a figure which shows the adapter and power semiconductor element of FIG.
  • FIG. 5 It is a figure which shows the measurement result of the sample of FIG.
  • Embodiment 5 It is a cross-sectional schematic diagram of this invention.
  • FIG. FIG. 1 is a schematic cross-sectional view of a power module according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram showing the adapter of FIG.
  • FIG. 3 is a bird's-eye view of the power module according to Embodiment 1 of the present invention
  • FIG. 4 is a top view showing the internal structure of the adapter in FIG. 5 is a bird's-eye view showing the wiring member of FIG. 4
  • FIG. 6 is a bird's-eye view of the back surface of the adapter of FIG. 7 and 8 are diagrams showing a manufacturing process of the power module of FIG.
  • the power module 100 includes a power semiconductor element 1, a ceramic substrate 2 that is a circuit board on which the power semiconductor element 1 is mounted, an adapter 10 having a wiring member connected to the surface electrode 14 of the power semiconductor element 1, and a heat radiation fin. 6.
  • the ceramic substrate 2 is mounted on the heat radiation fins 6 using heat radiation grease 5.
  • the radiating fin 6 is formed by forging aluminum, for example, and has a size of 100 mm in length, 150 mm in width, and 12 mm in thickness.
  • the ceramic substrate 2 includes a ceramic base 21, a conductor layer 22 formed on the front side of the ceramic base 21, and a conductor layer 23 formed on the back side of the ceramic base 21.
  • the ceramic substrate 21 is made of, for example, AlN (aluminum nitride), and has a size of 95 mm in length, 145 mm in width, and 0.635 mm in thickness.
  • the conductor layers 22 and 23 are made of, for example, copper and have a thickness of 0.4 mm.
  • the conductor layer 22 is formed with a plurality of patterns, and FIG. 1 shows an example having three conductor layers 22c, 22s, and 22e.
  • a silver sinter joint 42 is formed on the surface of the conductor layer 22.
  • the silver sinter joint 42 has silver sinter joints 42c, 42s, and 42e corresponding to the conductor layers 22c, 22s, and 22e.
  • the power semiconductor element 1 is die-bonded to the conductor layer 22 with a silver sinter bonding material.
  • the power semiconductor element 1 is, for example, an IGBT (Insulated Gate Bipolar Transistor) made of Si (silicon), and has a size of 15 mm in length, 15 mm in width, and 0.3 mm in thickness.
  • the collector electrode 13 formed on the back surface side of the power semiconductor element 1 is connected to the conductor layer 22c through the silver sinter bonding part 42c in which the silver sinter bonding material is solidified.
  • the surface electrodes 14 formed on the surface side of the power semiconductor element 1 which is an IGBT are an emitter electrode 14e and a signal electrode (surface signal electrode) 14s.
  • the adapter 10 having a plurality of wiring members is disposed above the power semiconductor element 1.
  • the adapter 10 includes a main electrode wiring member 31, a signal wiring member 32, and a sealing resin 8.
  • the main electrode wiring member 31 and the signal wiring member 32 are formed by punching a copper frame having a thickness of 0.6 mm.
  • the main electrode wiring member 31 and the signal wiring member 32 are connected to each other, that is, arranged close to each other and sealed with the sealing resin 8.
  • the sealing resin 8 is made of, for example, PPS (Polyphenylene sulfide).
  • the main electrode wiring member 31 is connected to the element connecting portion 311 connected to the emitter electrode 14e of the power semiconductor element 1, the substrate connecting portion 312 connected to the conductor layer 22e of the ceramic substrate 2, and the wire 7 which is a connecting material.
  • the wire connection part (connection material connection part) 313 is provided.
  • the signal wiring member 32 includes an element connecting portion (element signal connecting portion) 321 connected to the signal electrode 14 s of the power semiconductor element 1 and a substrate connecting portion (substrate signal connecting portion) connected to the conductor layer 22 s of the ceramic substrate 2. 322 and a wire connection part (connection material signal connection part) 323 connected to the wire 71 which is a connection material.
  • the element connection portion 311 of the main electrode wiring member 31 is exposed from the sealing resin 8 and is joined to the emitter electrode 14e (surface main electrode) of the power semiconductor element 1 by the silver sintering joint portion 41.
  • the silver sinter bonding portion 41 is a bonding layer obtained by solidifying a silver sinter bonding material mounted on the surface electrode 14 of the power semiconductor element 1.
  • the silver sintering junction 41 has a silver sintering junction 41e formed on the emitter electrode 14e and a silver sintering junction 41s formed on the signal electrode 14s.
  • the board connecting portion 312 and the wire connecting portion 313 are formed by step processing. As shown in FIGS. 4 and 5, the substrate connecting portion 312 is formed to extend in the direction of the outer edge 3 of the power semiconductor element 1.
  • the extending tip portion is lifted by step processing to form a wire connection portion 313.
  • the substrate connecting portion 312 is connected to the conductor layer 22e of the ceramic substrate 2 via the silver sintering joint portion 42e.
  • the wire connection part 313 is exposed from the upper surface of the sealing resin 8 and is connected to the wire 7.
  • the element connection portion 321 of the signal wiring member 32 is exposed from the sealing resin 8, and is connected to the signal electrode 14s of the power semiconductor element 1 by the silver sintering joint portion 41s. It is joined.
  • the substrate connection part 322 and the wire connection part 323 are formed by step processing.
  • the board connection part 322 and the wire connection part 323 extend in the opposite direction to the wire connection part 313 of the main electrode wiring member 31.
  • the substrate connection part 322 is connected to the conductor layer 22s of the ceramic substrate 2 via the silver sintering joint part 42s.
  • the wire connection portion 323 located on the upper surface of the substrate connection portion 322 is exposed to the upper surface side from the sealing resin 8 and is connected to the wire 71.
  • the conductor layer 22 of the ceramic substrate 2 has three conductor layers 22c, 22s, and 22e.
  • the conductor layer 22s is connected to the signal electrode 14s of the power semiconductor element 1, and the conductor layer 22e is the emitter of the power semiconductor element 1.
  • the conductor layer 22 c is connected to the collector electrode (back surface main electrode) 13 of the power semiconductor element 1.
  • the three conductor layers 22c, 22s, and 22e are electrically insulated with a necessary distance as appropriate, and the gaps are sealed with resin.
  • the three conductor layers 22c, 22s, and 22e also have a portion that is at the same potential in terms of circuit.
  • the wire connection portions 313 and 323 are exposed on the upper surface side at positions lower than the upper surfaces of the main electrode wiring member 31 and the signal wiring member 32 that are opposite to the element connection portions 311 and 321 and the upper surface of the sealing resin 8. Therefore, it is designed so as not to become a protruding part that becomes an obstacle in the heating and pressurizing process when forming the silver sinter joints 41 and 42. Further, the wire connecting portions 313 and 323 are substantially flat and exposed horizontally, and are designed to facilitate quality assurance when forming a circuit by wire bonding or the like.
  • the board connection portion 312 in the main electrode wiring member 31 is developed in three directions, and the wire connection portion 313 is formed in one direction thereof. .
  • the sealing resin 8 of the adapter 10 is indicated by a broken line.
  • the number of wires 7 is determined from the current capacity necessary for the power module 100, and here, wire bonding is performed with the six wires 7.
  • three signal wiring members 32 are formed and connected to the three signal electrodes 14s.
  • the three signal electrodes 14 s are a gate electrode, a temperature sense electrode, and an anode electrode of the power semiconductor element 1, and a current that flows from the emitter electrode 14 e that is the main surface electrode is a small current. Since the signal electrode 14s has a small current and a small temperature rise compared to the emitter electrode 14e, the wire connection portion 323 is directly above the substrate connection portion 322.
  • the power module 100 of the first embodiment has a structure in which the wire connection portions 313 and 323 are one step lower than the upper surface of the sealing resin 8.
  • Such a structure is possible when the sealing resin 8 is formed by the insert mold method. Further, when the sealing resin 8 is formed by the insert molding method, there is almost no step between the upper surfaces of the wire connecting portions 313 and 323 and the upper surface of the sealing resin 8, that is, even in a substantially identical (substantially identical) state. It is possible to expose the wire connecting portions 313 and 323.
  • the adapter 10 when the adapter 10 is viewed from the back surface, the element connecting portions 311 and 321 are exposed at a portion one step lower than the substrate connecting portions 312 and 322, and this step is between the power semiconductor element 1 and the silver sinter.
  • the height is substantially the same (substantially the same).
  • the back surface of the power semiconductor element 1 and the substrate connecting portions 312 and 322 can be arranged.
  • the adapter 10 is created.
  • the adapter 10 is created by, for example, an insert mold method.
  • the adapter 10 is formed by placing the main electrode wiring member 31 and the signal wiring member 32 in a mold for insert molding, and then injecting the sealing resin 8 into the mold.
  • the adapter 10 in which the main electrode wiring member 31 and the signal wiring member 32 are fixed with the sealing resin 8 is completed.
  • the silver sinter bonding materials 43 and 44 are used, and the power semiconductor element 1 is heated to 300 ° C. with respect to the element connecting portions 311 and 321 of the adapter 10 and applied for 10 minutes while applying a load of 10 MPa. And join. As shown in FIG. 8, by this joining process, the emitter electrode 14e and the signal electrode 14s of the power semiconductor element 1 are connected to the adapter 10 via the silver sintering joints 41e and 41s in which the silver sintering joining materials 43 and 44 are cured, respectively. Bonded to the element connecting portions 311 and 321.
  • a structure in which the adapter 10 and the power semiconductor element 1 are joined is referred to as a semiconductor element joined body.
  • the semiconductor element assembly is positioned with respect to the ceramic substrate 2, and the back surface of the power semiconductor element 1 and the substrate connection portion 312 of the adapter 10, using the silver sinter bonding materials 45, 46, 47. 322 is heated to 300 ° C. and bonded for 10 minutes while applying a load of 10 MPa.
  • FIG. 8 shows that the semiconductor element assembly is positioned with respect to the ceramic substrate 2, and the back surface of the power semiconductor element 1 and the substrate connection portion 312 of the adapter 10, using the silver sinter bonding materials 45, 46, 47. 322 is heated to 300 ° C. and bonded for 10 minutes while applying a load of 10 MPa.
  • the collector electrode 13 that is the back electrode (back surface main electrode) of the power semiconductor element 1 and the substrate connecting portions 312 and 322 of the adapter 10 are respectively joined to the silver sintering materials 45, 46, 47 is bonded to the conductor layers 22c, 22e, and 22s of the ceramic substrate 2 through the silver sinter bonding portions 42c, 42e, and 42s that are cured.
  • the wire 71 is connected to the wire connecting portion 323 of the adapter 10 using a wire bonder, and the wire 7 is connected to the wire connecting portion 313 of the adapter 10 using a wire bonder.
  • the wire 71 is made of, for example, aluminum and has a diameter of 0.15 mm.
  • the wire 7 is made of, for example, aluminum and has a diameter of 0.4 mm.
  • the radiation fin 6 is made of, for example, aluminum.
  • the power module 100 includes the substrate connecting portions 312 and 322 in which the main electrode wiring member 31 and the signal wiring member 32 connected to the surface electrode 14 of the power semiconductor element 1 are connected to the ceramic substrate 2.
  • the connection portions 312 and 322 can radiate heat to the ceramic substrate 2 which is a circuit board, and the surface temperature of the wire connection portions 313 and 323 can be made sufficiently lower than the element temperature of the power semiconductor element 1.
  • the power module 100 according to the first embodiment operates at a high temperature even if the wires 7 and 71 that are connecting members are made of aluminum because the wire connecting portions 313 and 323 are sufficiently lower than the operating temperature of the power semiconductor element 1. It is possible to improve reliability.
  • the power module 100 according to the first embodiment has the wire connecting portions 313 and 323 formed in the adapter 10, the wire bonding process to the power module 100 can be completed on the adapter 10. Since it is not necessary to connect the wires 7 and 71 to the ceramic substrate 2 in the wire bonding process to the power module 100, there is no need to provide a wire connection portion on the ceramic substrate 2, and the power module 100 can be downsized. is there. Moreover, since the power module 100 of Embodiment 1 does not have a wire connection part in the ceramic substrate 2, the semiconductor element joined body and the ceramic substrate 2 were silver-sinter joined using the silver sintering joining materials 45, 46, and 47. Later, cleaning and inspection of the wire connection portion of the ceramic substrate 2 are not necessary, and the manufacturing process of the power module 100 can be shortened.
  • the power module 100 according to the first embodiment is formed so that the wire connecting portions 313 and 323 of the adapter 10 are substantially parallel (substantially parallel) surfaces to the ceramic base 21 of the ceramic substrate 2. Yes. As a result, the power module 100 according to the first embodiment facilitates wire bonding that does not apply ultrasonic waves and wire bonding that applies ultrasonic waves to the wire connection portions 313 and 323 of the adapter 10.
  • the power module 100 of the first embodiment the upper surfaces of the main electrode wiring member 31 and the signal wiring member 32 in which the wire connection portions 313 and 323 of the adapter 10 are opposite to the element connection portions 311 and 321 of the adapter 10, and the sealing It is exposed on the upper surface side at a position lower than the upper surface of the stop resin 8.
  • the power module 100 according to the first embodiment is configured so that the element connection portions 311 and 321 and the emitter electrode 14e and the signal electrode 14s of the power semiconductor element 1 are subjected to pressure heating bonding (such as silver sintering bonding).
  • the power module 100 includes the upper surfaces of the main electrode wiring member 31 and the signal wiring member 32 in which the wire connection portions 313 and 323 of the adapter 10 are opposite to the element connection portions 311 and 321 of the adapter 10. You may arrange
  • the upper surfaces of the main electrode wiring member 31 and the signal wiring member 32 that are opposite to the element connecting portions 311 and 321 of the adapter 10 are covered with the sealing resin 8.
  • the parts 311 and 321 and the emitter electrode 14e and the signal electrode 14s of the power semiconductor element 1 are subjected to pressure heating bonding (silver sintering bonding or the like), a load is uniformly applied to the upper surface portion of the sealing resin 8 of the adapter 10.
  • pressure heating bonding silver sintering bonding or the like
  • the ceramic substrate 21 of the ceramic substrate 2 is made of AlN has been described, but it may be made of SN (silicon nitride) or alumina. Even in this case, the same effect as the ceramic base material 21 made of AlN can be obtained.
  • the conductor layers 22 and 23 of the ceramic substrate 2 need not be limited to copper, and may be aluminum.
  • a metal substrate in which a resin insulating layer is laminated on a metal plate can be used in place of the ceramic substrate 2.
  • the material of the main electrode wiring member 31 and the signal wiring member 32 need not be limited to copper, and may be Kovar or 42 alloy close to the thermal expansion coefficient of the power semiconductor element 1 or the ceramic substrate 2, and CIC.
  • a clad material may be used.
  • Kovar is an alloy containing iron and nickel.
  • 42 alloy is an alloy in which nickel is mixed with iron.
  • the CIC clad material is a clad material obtained by bonding copper / invar / copper.
  • the power module 100 is configured to form the main electrode wiring member 31 and the signal wiring by forming slits and openings in the main electrode wiring member 31 and the signal wiring member 32. By reducing the rigidity of the member 32, it is possible to reduce stress applied to joints such as the silver sintered joints 41 and 42.
  • the wire connection part 313 was demonstrated in the example formed in the reverse side surface opposite to the surface where the element connection part 311 and the board
  • the end portion may be folded back and formed in a portion whose upper surface is the surface on which the element connection portion 311 and the substrate connection portion 312 are formed.
  • a silver sintering bonding material is used for bonding a wiring member such as the main electrode wiring member 31 and the signal wiring member 32 and the power semiconductor element 1 or the ceramic substrate 2 .
  • tin-based solder may be used for bonding.
  • bonding may be performed using bismuth-based solder (melting point 270 ° C.) or gold-tin solder (melting point 280 ° C.).
  • high heat resistance can also be obtained by using a tin paste containing copper powder (such as A-FAP manufactured by Hiroki), which exhibits higher heat resistance than the bonding temperature by isothermal solidification, as a bonding material.
  • the sealing resin 8 in the insert mold method is an insert mold resin.
  • the example using PPS (thermal softening temperature 280 ° C.) as the insert mold resin has been described.
  • the present invention is not limited to PPS, and the liquid crystal polymer (thermal softening temperature 340) of LCP8 (Liquid Crystal Polymer 8) is used as the insert mold resin. (° C. or higher) can also be used.
  • LCP8 other than PPS can be selected as the insert mold resin, the degree of freedom in selecting the above-mentioned bonding material (silver sinter bonding material, tin-based solder, bismuth-based solder, gold-tin solder, tin paste containing copper powder) is increased.
  • the sealing resin 8 is a thermoplastic insert mold resin
  • the insert mold resin melts and spreads on the metal wiring member such as the main electrode wiring member 31 and the signal wiring member 32 and the power semiconductor element 1 and serves as a sealing material. It is also possible to function. That is, after the adapter 10 and the power semiconductor element 1 are joined to the ceramic substrate 2, the insert mold resin is heated and softened by heating to a temperature at which the insert mold resin is softened, and the main electrode wiring member 31 and the signal wiring member 32. It can be melted and spread on the metal wiring member such as the power semiconductor element 1 and function as a sealing material.
  • the sealing resin 8 that seals the metal wiring member such as the main electrode wiring member 31 and the signal wiring member 32 is a thermoplastic insert mold resin
  • the adapter 10 and the power semiconductor element 1 are joined to the ceramic substrate 2.
  • the silver sintering process and the sealing process for sealing the gap between the adapter 10 and the ceramic substrate 2 can be performed simultaneously.
  • connection materials aluminum alloy wires or copper wires, or aluminum ribbons or copper ribbons may be used.
  • the copper plate busbar may be soldered or brazed, or ultrasonically bonded, or the copper plate busbar may be spot welded. Good joining can be performed also by friction stir welding or the like.
  • the adapter 10 connected to the plurality of surface electrodes 14 (three signal electrodes 14s and one emitter electrode 14e) in the power semiconductor element 1 a main electrode wiring member 31, a plurality of signal wiring members 32, and a sealing resin
  • a sealing resin 8 of insert mold resin is used in order to maintain an insulating state between a plurality of wiring members (three signal wiring members 32, one main electrode wiring member 31) arranged in close proximity. It is necessary to use it. However, when there is no adjacent surface electrode or when there is one surface electrode, the sealing resin 8 of insert mold resin may not be used. When there is no adjacent surface electrode, or when there is one surface electrode, the adapter 10 may not be provided with the sealing resin 8, that is, only the main electrode wiring member 31 and the signal wiring member 32.
  • a sealing resin such as potting sealing resin or gel is used to fill a space such as the periphery of the main electrode wiring member 31 or the signal wiring member 32. Cover with.
  • the power module including the main electrode wiring member 31, the plurality of signal wiring members 32, and the adapter 10 including the sealing resin 8 of insert mold resin if there is a gap between the adapter 10 and the ceramic substrate 2, potting is performed. It is necessary to cover with a sealing resin such as a sealing resin or gel.
  • the adapter 10 not provided with the sealing resin 8 corresponds to a conventional metal frame (wiring lead frame).
  • the adapter 10 provided with the sealing resin 8 can be said to be a wiring member assembly in which the relative positions of the main electrode wiring member 31 and the signal wiring member 32 are fixed.
  • the adapter 10 provided with the sealing resin 8 can also seal the main electrode wiring member 31 and the signal wiring member 32 separated in advance with the sealing resin 8 when the adapter 10 is formed by the insert molding method.
  • the adapter 10 provided with the sealing resin 8 has the main electrode wiring member 31 and the signal wiring member 32 integrated with a frame (peripheral frame) sealed with the sealing resin 8, and then the main electrode wiring member 31.
  • the signal wiring member 32 can be separated from the frame.
  • the power module 100 includes the power semiconductor element 1 mounted on the circuit board (ceramic substrate 2) and the adapter connected to the surface main electrode (emitter electrode 14e) of the power semiconductor element 1.
  • the adapter 10 includes a main electrode wiring member 31 connected to the surface main electrode (emitter electrode 14 e) of the power semiconductor element 1, and the main electrode wiring member 31 is a surface main electrode (emitter) of the power semiconductor element 1.
  • a connecting material connecting portion (wire connecting portion 313) connected to the external electrode via a connecting material (wire 7).
  • the main electrode wiring member 31 of the adapter 10 connected to the surface main electrode (emitter electrode 14 e) of the power semiconductor element 1 includes the element connection portion 311 and the substrate connection portion 312. Since the connecting material connecting portion (wire connecting portion 313) connected to the external electrode via the connecting material (wire 7) is provided outside the external electrode, the external electrode which is an external terminal component and the surface electrode (emitter electrode) of the power semiconductor element 1 are provided. 14e) can be connected without relaying the conductor layer of the circuit board (ceramic substrate 2), and even if the connecting material (wire 7) connected to the external terminal component is made of aluminum, it can be operated at high temperature, and reliability can be improved. Can be increased.
  • FIG. FIG. 9 is a schematic cross-sectional view of a power module according to Embodiment 2 of the present invention.
  • the power module 100 according to the second embodiment is an example in which an opening 39 is formed around the signal electrode 14 s of the power semiconductor element 1 and the signal electrode 14 s and an external electrode (not shown) are connected by a wire 71.
  • the signal wiring member 32 is connected to a signal electrode of another power semiconductor element (not shown) or a signal electrode 14 s which is not a fine pitch of the power semiconductor element 1.
  • FIG. 9 is a schematic cross-sectional view of a power module according to Embodiment 2 of the present invention.
  • the power module 100 according to the second embodiment is an example in which an opening 39 is formed around the signal electrode 14 s of the power semiconductor element 1 and the signal electrode 14 s and an external electrode (not shown) are connected by a wire 71.
  • the signal wiring member 32 is connected to a signal electrode of another power semiconductor element (not shown) or a signal electrode 14 s which
  • the portion of the ceramic substrate 2 where the conductor layer 22 is connected to the signal wiring member 32 is referred to as a conductor layer 22x
  • the portion of the silver sintered joint portion 42 where the conductor layer 22x and the signal wiring member 32 are joined is the silver sintered joint portion. It was described as 42x.
  • the adapter 10 does not include the sealing resin 8 that is the insert mold resin in the insert mold method, and at least the main electrode wiring member 31 connected to the emitter electrode 14e (surface main electrode) of the power semiconductor element 1. It has.
  • the adapter 10 connects the main electrode wiring member 31 connected to the emitter electrode 14 e (surface main electrode) of the power semiconductor element 1, the signal electrodes of other power semiconductor elements (not shown), and the power semiconductor element 1 not having a fine pitch.
  • the example provided with the signal wiring member 32 connected to the signal electrode 14s was shown.
  • the signal electrode 14s of the power semiconductor element 1 is not subjected to metallization capable of metal bonding. Even if the metallization capable of metal bonding is not applied to the signal electrode 14s, the power module 100 according to the second embodiment has the opening 39 around the signal electrode 14s of the power semiconductor element 1, and therefore metallization capable of metal bonding. It is possible to perform wire connection to the signal electrode 14s not subjected to.
  • Embodiment 3 a power module 100 including a main electrode wiring member 33 connected to a collector electrode (back main electrode) 13 formed on the back surface of the power semiconductor element 1 via a conductor layer 22 of the ceramic substrate 2 will be described.
  • FIG. 10 is a bird's-eye view of the power module according to the third embodiment of the present invention
  • FIG. 11 is a bird's-eye view showing the wiring member of the adapter of FIG. 10 and the conductor layer of the ceramic substrate. 10 and 11, the ceramic substrate 21, the conductor layer 23, and the heat radiation fin 6 of the ceramic substrate 2 are omitted.
  • the main electrode wiring member 33 is a back surface main electrode wiring member because it is connected to the collector electrode 13 that is the back surface main electrode.
  • the adapter 10 according to the third embodiment includes a main electrode wiring member 31, a plurality of signal wiring members 32, a plurality of main electrode wiring members 33, and a sealing resin 8.
  • the sealing resin 8 is an insert mold resin in the insert mold method.
  • the adapter 10 according to the third embodiment is different from the adapter 10 according to the first embodiment in that it includes a plurality of main electrode wiring members 33. A different part from Embodiment 1 is demonstrated. As shown in FIG. 11, the main electrode wiring member 33 includes a substrate connecting portion 332 and a wire connecting portion (connecting material connecting portion) 333.
  • the conductor layer 22 of the ceramic substrate 2 includes a conductor layer 22e to which the emitter electrode 14e is connected via the main electrode wiring member 31, a conductor layer 22s to which the signal electrode 14s is connected via the signal wiring member 32, and the power semiconductor element 1.
  • the back surface of the semiconductor device is die-bonded and has a conductor layer 22c extending to the outer periphery of the power semiconductor element 1.
  • the main electrode wiring member 31 and the signal wiring member 32 are the same as those in the first embodiment.
  • the three substrate connecting portions 312 in the main electrode wiring member 31 are connected via the silver sintering joint portion 42e in the three connecting regions 221e in the conductor layer 22e.
  • the board connection part 322 of the signal wiring member 32 is connected to the connection region 221s in the conductor layer 22s via the silver sintering joint part 42s.
  • the substrate connection portion 332 in the main electrode wiring member 33 is silver-sintered in the same manner as the main electrode wiring member 31 and the signal wiring member 32 in the connection region 221c in the conductor layer 22c. Specifically, the substrate connection part 332 in the main electrode wiring member 33 is connected via the silver sintering joint part 42 in the connection region 221c in the conductor layer 22c.
  • the wire connection portions 333 of the main electrode wiring member 33 are exposed on both sides of the wire connection portions 323 of the three signal wiring members 32, and three, that is, the power module 100 is provided on each main electrode wiring member 33.
  • a total of six wires 72 are connected to each other.
  • the wire 72 that is a connecting material is made of, for example, aluminum and has a diameter of 0.4 mm.
  • the wire 72 connects an external electrode (not shown) and the main electrode wiring member 33.
  • the power module 100 of the third embodiment is the same as the power module 100 of the first embodiment except for the above, the same effects as those of the first embodiment are obtained.
  • the power module 100 according to the third embodiment adds all the main electrode wiring members 33 so that all the external wirings are connected to the main electrode wiring members 31, the signal wiring members 32, and the wiring members of the main electrode wiring members 33. It can be carried out.
  • the conductor layer 22 of the ceramic substrate 2 it is not necessary to metalize the conductor layer 22 in consideration of the wire bond bonding strength (wire bondability) connected by the wire.
  • Metallization to the conductor layer 22 specialized for wiring member bonding such as sinter bonding becomes possible.
  • the power module 100 of Embodiment 3 does not connect a wire to the conductor layer 22 of the ceramic substrate 2, it is not necessary to ensure the cleanliness of the wire connection portion.
  • the power module 100 according to the third embodiment is formed so that the wire connection portions 313, 323, and 333 of the adapter 10 are substantially parallel (substantially parallel) surfaces to the ceramic base 21 of the ceramic substrate 2. Has been. As a result, the power module 100 according to the third embodiment facilitates wire bonding that does not apply ultrasonic waves and wire bonding that applies ultrasonic waves to the wire connection portions 313, 323, and 333 of the adapter 10.
  • FIG. FIG. 12 is a schematic cross-sectional view of a power module according to Embodiment 4 of the present invention
  • FIG. 13 is a diagram showing the adapter and power semiconductor element of FIG.
  • the power module 100 according to the fourth embodiment is different from the power module 100 according to the first embodiment in that two power semiconductor elements 1 are mounted and one main electrode wiring member 31 is used as a surface main electrode of two power semiconductor elements 1. Different in connection.
  • an example of the switching element 1 i and the diode 1 d will be described as the two power semiconductor elements 1.
  • the switching element 1i is, for example, an IGBT.
  • the ceramic substrate 2 is mounted on the heat radiation fins 6 using heat radiation grease 5.
  • the radiating fin 6 is formed by forging aluminum, for example, and has a size of 100 mm in length, 150 mm in width, and 12 mm in thickness.
  • the ceramic substrate 2 includes a ceramic base 21, a conductor layer 22 formed on the front side of the ceramic base 21, and a conductor layer 23 formed on the back side of the ceramic base 21.
  • the ceramic substrate 21 is made of, for example, AlN, and has a size of 95 mm in length, 145 mm in width, and 0.635 mm in thickness.
  • the conductor layers 22 and 23 are made of, for example, copper and have a thickness of 0.4 mm.
  • the conductor layer 22 is formed with a plurality of patterns, and FIG.
  • a silver sinter joint 42 is formed on the surface of the conductor layer 22.
  • the silver sinter junction 42 includes silver sinter junctions 42s and 42e corresponding to the conductor layers 22s and 22e, the collector electrode (back main electrode) 13 of the switching element 1i connected to the conductor layer 22c, and the anode electrode (back surface) of the diode 1d.
  • silver sinter joints 42c and 42a corresponding to the main electrode 15.
  • a switching element 1 i and a diode 1 d are die-bonded to the conductor layer 22 by a silver sintering material.
  • the switching element 1i is an IGBT made of Si, and has a size of 15 mm in length, 15 mm in width, and 0.3 mm in thickness.
  • the diode 1d is made of Si and has a size of 15 mm in length, 10 mm in width, and 0.3 mm in thickness.
  • the collector electrode 13 formed on the back surface side of the switching element 1i is connected to the conductor layer 22c through a silver sinter bonding portion 42c in which a silver sinter bonding material is solidified.
  • the anode electrode 15 formed on the back surface side of the diode 1d is connected to the conductor layer 22c through a silver sintering junction 42a in which the silver sintering agent is solidified.
  • the surface electrode 14 formed on the surface side of the switching element 1i which is an IGBT is an emitter electrode 14e and a signal electrode 14s.
  • the adapter 10 having a plurality of wiring members is disposed above the switching element 1i and the diode 1d.
  • the adapter 10 includes a main electrode wiring member 31, a signal wiring member 32, and a sealing resin 8.
  • the main electrode wiring member 31 and the signal wiring member 32 are formed by punching a copper frame having a thickness of 0.6 mm.
  • the main electrode wiring member 31 and the signal wiring member 32 are connected to each other, that is, arranged close to each other and sealed with the sealing resin 8.
  • the sealing resin 8 is made of, for example, PPS.
  • the main electrode wiring member 31 is connected to the element connection portion 311 connected to the surface main electrode of the switching element 1i and the diode 1d, the substrate connection portion 312 connected to the conductor layer 22e of the ceramic substrate 2, and the wire 7.
  • a wire connection portion 313 is provided.
  • the element connecting portion 311 includes an element connecting portion 311i connected to the emitter electrode 14e of the switching element 1i and an element connecting portion 311d connected to the cathode electrode 14k of the diode 1d.
  • the signal wiring member 32 includes an element connection portion 321 connected to the signal electrode 14 s of the switching element 1 i, a substrate connection portion 322 connected to the conductor layer 22 s of the ceramic substrate 2, and a wire connection portion 323 connected to the wire 71. Is provided.
  • the element connection portion 311 of the main electrode wiring member 31 is exposed from the sealing resin 8, and the silver sinter joint portion 41 causes the emitter electrode 14e (surface main electrode) of the switching element 1i and the cathode electrode 14k (surface main electrode) of the diode 1d. Electrode).
  • the silver sintering joint 41 is a joining layer in which a silver sintering joining material mounted on the surface electrode 14 of the switching element 1i and the cathode electrode 14k that is the surface main electrode of the diode 1d is solidified.
  • the silver sintering junction 41 includes a silver sintering junction 41e formed on the emitter electrode 14e of the switching element 1i, a silver sintering junction 41s formed on the signal electrode 14s of the switching element 1i, and a cathode electrode of the diode 1d. It has a silver sinter joint 41k formed on 14k.
  • the board connecting portion 312 and the wire connecting portion 313 are formed by step processing. Similar to FIGS. 4 and 5, the substrate connecting portion 312 is formed to extend in the direction of the outer edge 3 of the semiconductor element arrangement region where the switching element 1 i and the diode 1 d are arranged. In one of the substrate connection portions 312 in one direction, the extending tip portion is lifted by step processing to form a wire connection portion 313.
  • the substrate connecting portion 312 is connected to the conductor layer 22e of the ceramic substrate 2 via the silver sintering joint portion 42e.
  • the wire connection part 313 is exposed from the upper surface of the sealing resin 8 and is connected to the wire 7.
  • the element connection portion 321 of the signal wiring member 32 is exposed from the sealing resin 8 similarly to the element connection portion 311 of the main electrode wiring member 31, and is joined to the signal electrode 14s of the switching element 1i by the silver sintering joint portion 41s.
  • the substrate connection part 322 and the wire connection part 323 are formed by step processing.
  • the board connection part 322 and the wire connection part 323 extend in the opposite direction to the wire connection part 313 of the main electrode wiring member 31.
  • the substrate connection part 322 is connected to the conductor layer 22s of the ceramic substrate 2 via the silver sintering joint part 42s.
  • the wire connection portion 323 located on the upper surface of the substrate connection portion 322 is exposed to the upper surface side from the sealing resin 8 and is connected to the wire 71.
  • the manufacturing process of the power module 100 is basically the same as that described in the first embodiment.
  • the adapter 10 is created.
  • the adapter 10 is created by, for example, an insert mold method.
  • the adapter 10 is formed by placing the main electrode wiring member 31 and the signal wiring member 32 in a mold for insert molding, and then injecting the sealing resin 8 into the mold.
  • the adapter 10 is completed in which the main electrode wiring member 31 and the signal wiring member 32 arranged in a connected manner are fixed with the sealing resin 8.
  • the silver sinter bonding material (see silver sinter bonding materials 43 and 44 in FIG. 7) is used to heat the switching element 1 i and the diode 1 d to 300 ° C. with respect to the element connection portions 311 and 321 of the adapter 10. Joining is performed for 10 minutes while applying a load of 10 MPa. Through this joining process, the emitter electrode 14e and the signal electrode 14s of the switching element 1i and the cathode electrode 14k of the diode 1d are respectively connected to the corresponding adapters via the silver sintering joints 41e, 41s and 41k in which the silver sintering joining material is cured. 10 element connecting portions 311 and 321 are joined.
  • a structure in which the adapter 10 and the power semiconductor element 1 are joined is referred to as a semiconductor element joined body.
  • the semiconductor element assembly is positioned with respect to the ceramic substrate 2, and using the silver sintering material (see silver sintering materials 45, 46, and 47 in FIG. 8), the switching element 1 i and the diode
  • the back surface of 1d and the board connecting portions 312 and 322 of the adapter 10 are heated to 300 ° C. and bonded for 10 minutes while applying a 10 MPa load.
  • the back electrode (collector electrode 13) of the switching element 1i, the back electrode (anode electrode 15) of the diode 1d, and the substrate connecting parts 312 and 322 of the adapter 10 are respectively silver sintered.
  • the bonding material is bonded to the conductor layers 22c, 22e, and 22s of the ceramic substrate 2 through the silver sinter bonding portions 42c, 42a, 42e, and 42s that are cured.
  • the wire 71 is connected to the wire connection portion 323 of the adapter 10 using a wire bonder, and the wire 7 is connected to the wire connection portion 313 of the adapter 10 using a wire bonder.
  • the wire 71 is made of, for example, aluminum and has a diameter of 0.15 mm.
  • the wire 7 is made of, for example, aluminum and has a diameter of 0.4 mm.
  • FIG. 14 is a schematic cross-sectional view of a sample for evaluating the power module of FIG. 12, and FIG. 15 is a diagram showing a measurement result of the sample of FIG.
  • a temperature measurement sample 101 in which the signal electrode 14 s of the switching element 1 i was connected by a wire 71 was produced.
  • the observation result with the thermo viewer shown in FIG. 15 is an observation result in a state where a current is applied so that the temperature of the switching element 1 i is about 130 ° C. Note that the observation results in FIG. 15 show typical temperature boundaries for easy viewing.
  • the arrangement positions of the main electrode wiring member 31, the wire connection portion 313, the substrate connection portion 312 connected to the wire connection portion 313, the element connection portion 311d of the diode 1d, and the element connection portion 311i of the switching element 1i are added.
  • the arrangement position of the main electrode wiring member 31 is indicated by a one-dot chain line.
  • representative temperature boundaries are indicated by broken lines 102, 103, 104 and dotted lines 105, 108. Dashed lines 102, 103, and 104 are 95 ° C. boundaries, dotted line 105 is a 120 ° C. boundary, and dotted line 108 is a 75 ° C. boundary.
  • the temperature region S1 is 75 ° C. or less, and the temperature region S2 is 75 degrees or more and 80 or less.
  • the temperature region S3 is 80 degrees or more and 95 or less, and the temperature region S4 is 95 degrees or more and 120 degrees or less.
  • the temperature region S5 is 120 degrees or more.
  • the lower part (the hatched pattern part) of the element connection part 311i is about 130 ° C.
  • the wiring member temperature decreases as the distance from the element connection portion 311 i of the switching element 1 i approaches the substrate connection portion 312, and the temperature decreases to 80 ° C. near the wire connection portion 313. I found out.
  • the switching element 1i which is a power semiconductor element
  • the main electrode wiring member 31 and the signal wiring member 32 connected to the surface main electrodes of the diode 1d are connected to the ceramic substrate 2.
  • heat can be radiated to the ceramic substrate 2 which is the circuit board by the board connecting portions 312 and 322, and the surface temperature of the wire connecting portions 313 and 323 is determined from the element temperatures of the switching element 1i and the diode 1d. Can also be made sufficiently low.
  • the wire connecting portions 313 and 323 are sufficiently cooler than the operating temperature of the power semiconductor element 1, so that even if the wires 7 and 71 that are connecting materials are made of aluminum, the power module 100 operates at a high temperature. It is possible to improve reliability.
  • the power module 100 according to the fourth embodiment is different from the power module 100 according to the first embodiment in that two power semiconductor elements 1 are mounted and one main electrode wiring member 31 is used as a surface main electrode of two power semiconductor elements 1. It differs in that it is connected. Therefore, the power module 100 of the fourth embodiment has the same effects as the power module 100 of the first embodiment.
  • the switching element 1i and the surface main electrode of the diode 1d are connected by one main electrode wiring member 31, and therefore the main electrode wiring member 31 is individually connected to the switching element 1i and the diode 1d. It can be made smaller than a module.
  • the switching element 1i and the surface main electrode of the diode 1d are connected by the single main electrode wiring member 31, so that the switching element 1i and the diode 1d are connected with the shortest and low resistance. Can improve the characteristics of the power module.
  • the ceramic substrate 21 of the ceramic substrate 2 is made of AlN has been described, but it may be made of SN (silicon nitride) or alumina. Even in this case, the same effect as the ceramic base material 21 made of AlN can be obtained.
  • the conductor layers 22 and 23 of the ceramic substrate 2 need not be limited to copper, and may be aluminum.
  • a metal substrate in which a resin insulating layer is laminated on a metal plate can be used in place of the ceramic substrate 2.
  • the main electrode wiring member 31 and the signal wiring member 32 are formed by punching a copper lead frame.
  • the material of the main electrode wiring member 31 and the signal wiring member 32 need not be limited to copper, and may be Kovar or 42 Alloy which is close to the thermal expansion coefficient of the switching element 1i, the diode 1d and the ceramic substrate 2.
  • a CIC clad material may also be used.
  • the power module 100 is configured to form the main electrode wiring member 31 and the signal wiring by forming slits and openings in the main electrode wiring member 31 and the signal wiring member 32.
  • the rigidity of the member 32 it is possible to reduce stress applied to joints such as the silver sintered joints 41 and 42.
  • the wire connection part 313 was demonstrated in the example formed in the reverse side surface opposite to the surface where the element connection part 311 and the board
  • the end portion may be folded back and formed in a portion whose upper surface is the surface on which the element connection portion 311 and the substrate connection portion 312 are formed.
  • a silver sintering material is used to join the wiring member such as the main electrode wiring member 31 and the signal wiring member 32 to the switching element 1i, the diode 1d, and the ceramic substrate 2 .
  • tin-based solder may be used for bonding.
  • bonding may be performed using bismuth-based solder (melting point 270 ° C.) or gold-tin solder (melting point 280 ° C.).
  • high heat resistance can also be obtained by using a tin paste containing copper powder (such as A-FAP manufactured by Hiroki), which exhibits higher heat resistance than the bonding temperature by isothermal solidification, as a bonding material.
  • the sealing resin 8 in the insert mold method is an insert mold resin.
  • PPS thermo softening temperature 280 degreeC
  • liquid crystal polymer thermo softening temperature 340 degreeC or more
  • the sealing resin 8 is a thermoplastic insert mold resin
  • the insert mold resin is melted and spread on the metal wiring member such as the main electrode wiring member 31 and the signal wiring member 32, the switching element 1i, and the diode 1d. It is also possible to function as a material. That is, after the adapter 10 and the power semiconductor element 1 are joined to the ceramic substrate 2, the insert mold resin is heated and softened by heating to a temperature at which the insert mold resin is softened, and the main electrode wiring member 31 and the signal wiring member 32. It melts and spreads on the metal wiring member such as the switching element 1i and the diode 1d, and can function as a sealing material.
  • the sealing resin 8 sealing the metal wiring member such as the main electrode wiring member 31 and the signal wiring member 32 is a thermoplastic insert mold resin
  • the adapter 10, the switching element 1 i and the diode 1 d are attached to the ceramic substrate 2.
  • the silver sintering joining process to join and the sealing process to seal the gap between the adapter 10 and the ceramic substrate 2 can be performed simultaneously.
  • connection materials aluminum alloy wires or copper wires, or aluminum ribbons or copper ribbons may be used, and a copper plate bus bar may be ultrasonically joined, or a copper plate bus bar may be joined by spot welding or friction stir welding. Can be performed.
  • FIG. FIG. 16 is a schematic cross-sectional view of a power module according to Embodiment 5 of the present invention.
  • the power module 100 according to the fifth embodiment is different from the power module 100 according to the first embodiment in that the silver sintering joints 41 and 42 are covered with the gap sealing material 81.
  • the ceramic substrate 2 is attached to the radiating fins 6 using the radiating grease 5. Mount and bond.
  • the gap sealing material 81 is a sealing material having higher heat resistance (thermal softening temperature) than gel or potting sealing resin, such as polyimide resin or It is desirable to use a low temperature fired glass paste.
  • the silver sinter joints 41 and 42 are covered with a gap sealing material 81 having higher heat resistance (thermal softening temperature) than gel or potting sealing resin.
  • the power semiconductor element 1 operating at a high temperature can be prevented from directly contacting the gel or potting sealing resin, and further heat resistance can be secured. It becomes possible. Note that the method of covering the silver sintering joints 41 and 42 with the gap sealing material 81 can also be applied to the power modules 100 of the second to fourth embodiments.
  • the power semiconductor element 1 may be a general element (Si element) based on a silicon wafer, but in the present invention, silicon carbide (SiC) or gallium nitride ( A so-called wide band gap semiconductor material having a wider band gap than silicon such as GaN) material or diamond can be applied.
  • the power semiconductor element 1 can be mounted with a switching element such as a MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor) as well as a diode or IGBT.
  • MOSFET Metal Oxide Semiconductor Field-Effect-Transistor
  • the power semiconductor element 1 that functions as a switching element or the power semiconductor element 1 that functions as a rectifying element
  • SiC silicon carbide
  • GaN gallium nitride
  • diamond diamond
  • the power semiconductor element 1 that functions as a switching element or the power semiconductor element 1 that functions as a rectifying element
  • the power module 100 can be highly efficient.
  • the withstand voltage is high and the allowable current density is high
  • the power module 100 can be downsized.
  • the wide band gap semiconductor element has high heat resistance, it can operate at a high temperature, and the radiating fin 6 can be downsized and the water cooling portion can be air cooled. Further downsizing becomes possible.
  • SYMBOLS 1 Power semiconductor element, 1d ... Diode, 1i ... Switching element, 2 ... Ceramic substrate (circuit board), 7 ... Wire (connection material), 8 ... Sealing resin, 10 ... Adapter, 13 ... Collector electrode (back surface main electrode) ), 14e: Emitter electrode (surface main electrode), 14s: Signal electrode (surface signal electrode), 14k: Cathode electrode (surface main electrode), 22: Conductor layer, 22c: Conductor layer, 31: Main electrode wiring member, 32 ... signal wiring member, 33 ... main electrode wiring member (back surface main electrode wiring member), 39 ... opening, 81 ... gap sealing material, 100 ... power module, 311 ... element connecting portion, 312 ...
  • connection material connection part 321 ... Element connection part (element signal connection part), 322 ... Board connection part (board signal connection part), 323 ... Wire connection part (connection material signal connection part), 333
  • the wire connecting portion (connecting member connecting portion)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Led Device Packages (AREA)
  • Wire Bonding (AREA)

Abstract

 外部端子部品と接続する接続材がアルミ製であっても高温動作が可能で、信頼性が向上するパワーモジュールを得ることを目的とする。 本発明のパワーモジュール(100)は、回路基板(基板(2))に搭載されたパワー半導体素子(1)と、素子1の表面主電極(電極(14e))に接続されたアダプタ(10)を備え、アダプタ(10)は、素子(1)の表面主電極(電極(14e))に接続された主電極配線部材(31)を備え、主電極配線部材(31)は、素子(1)の表面主電極(電極(14e))に接続された素子接続部(311)と、素子接続部(311)の外側に配置されると共に回路基板(基板(2))に接続された基板接続部(312)と、素子接続部(311)の外側に配置されると共に外部電極に接続材(ワイヤ(7))を介して接続する接続材接続部(ワイヤ接続部(313))を備える。

Description

パワーモジュール
 本発明は、発電及び送電から効率的なエネルギーの利用及び再生まであらゆる場面で利用されるパワーモジュールに関する。
 産業機器から家電や情報端末まであらゆる製品にパワーモジュールが普及しつつあり、家電に搭載されるモジュールについては、小型軽量化とともに多品種に対応できる高い生産性と高い信頼性が求められる。また、パワーモジュールに搭載されるパワー半導体素子として、動作温度が高く、効率に優れているSiC(炭化ケイ素)パワー半導体素子が、今後の主流となる可能性が高い。このため、パワーモジュールは、SiC半導体素子の高温動作に適用できるパッケージ形態であることも同時に求められている。
 特許文献1には、縦型構造のパワーMISFET(Metal Insulator Semiconductor Field-Effect-Transistor)を樹脂封止した半導体装置が記載されている。特許文献1の半導体装置のパッケージは、パッケージ端子が下部に配置された表面実装用CSP(Chip Scale Package)である。特許文献1の半導体装置は、配線部材ではさんだパワー半導体素子(パワーMISFET)を樹脂モールドすることでパッケージ化している。パッケージ化された封止体1の上部には、パワー半導体素子のドレイン電極に接続された接続部材3DLの上面部が露出しており、封止体1の下部には、パワー半導体素子のソース電極に接続された接続部材3SL、ゲート電極に接続された接続部材3GLが露出している。
 特許文献2には、外部の配線部材に起因するパワー半導体素子(電力用半導体素子)にかかる応力を低減することを目的として、回路基板に搭載されたパワー半導体素子の上部電極(表面電極)と外部の配線部材とを接続する電極部材が、途中で回路基板に接続する電極構造を備えた電力用半導体装置が記載されている。
特開2006-179735号公報(0023段~0048段、図5) 特開2013-65836号公報(0008段、0013段~0021段、図2)
 パワーモジュールは高電圧かつ大電流を扱うために発熱が大きいが、高温動作に対する要求が大きい。さらに、特性の改善が見込めるSiCをはじめとした新しいパワー半導体素子の適用が急務となっており、それらは250℃を超えるような高温動作が可能となっている。その結果、パワーモジュールやパッケージの構造や接合部にも高耐熱性が求められている。パワー半導体素子の裏面側(例えば、コレクタ側)のダイボンド方法に関しては、従来のはんだに替わって、ナノ粉末の低温焼結現象を応用した銀シンター接合が実用化されつつあり、耐熱性の改善に目途がついている。パワー半導体素子の表面側(エミッタ側)と回路基板や外部端子との接続に関しては、アルミワイヤに替わる高耐熱材料として銅ワイヤ等が検討されている。しかし、アルミより硬度の高い銅はパワー半導体素子に対するダメージが大きく、パワー半導体素子の表面電極(エミッタ電極等)へのクラックや信頼性の低下などが懸念されている。また、銅ワイヤをボンディングする際には、酸化を抑制するための専用装置が必要であり、還元ガスの供給など設備面での複雑さが不可避であった。
 特許文献1の半導体装置のパッケージは表面実装用CSPなので、特許文献1の半導体装置は、このままプリント基板などに表面実装することが可能である。自動車用機器や交流モータを駆動するインバータ装置等に用いるパワーモジュール、すなわち大電流を扱うパワーモジュールにおいては、外部ねじ止め電極等の外部電極部品へワイヤやバスバーを用いた接続が必要となる。特許文献1のパッケージを用いる場合、パワー半導体素子の表面電極と外部電極部品との接続は、一旦セラミック基板(回路基板)の導体層を中継して導体層から外部電極部品へのワイヤ接続やバスバー接続が必要であり、実装面積が大きくなり、パワー半導体素子を搭載したパワーモジュールを小型化することができない問題があった。特許文献1の半導体装置は、上面部において露出した接続部材3DLの露出部と外部ねじ止め電極等にワイヤで接続することも可能であるがパワー半導体素子の直上では、接続に用いたワイヤの温度低下はほとんど望めず、高温動作時にはワイヤ自体に高耐熱性が求められる。
 特許文献2の電力用半導体装置においては、パワー半導体素子の上部電極(表面電極)と外部の配線部材とを接続する電極部材が途中で回路基板に途接続する電極構造が記載されているが、電極部材の端部と外部電極部品をねじ止めする端子とを長い電線で接続しており、電極部材の端部と外部電極部品とをワイヤで接続したり、電極部材の端部と電線をワイヤで接続することは記載されていない。
 本発明は、上記のような問題点を解決するためになされたものであり、外部端子部品とパワー半導体素子の表面電極とを回路基板の導体層を中継することなく接続でき、外部端子部品と接続するワイヤ等の接続材がはんだやアルミ製であっても高温動作が可能で、信頼性が向上するパワーモジュールを得ることを目的とする。
 本発明のパワーモジュールは、回路基板に搭載されたパワー半導体素子と、パワー半導体素子の表面主電極に接続されたアダプタを備え、アダプタは、パワー半導体素子の表面主電極に接続された主電極配線部材を備え、主電極配線部材は、パワー半導体素子の表面主電極に接続された素子接続部と、素子接続部の外側に配置されると共に回路基板に接続された基板接続部と、素子接続部の外側に配置されると共に外部電極に接続材を介して接続する接続材接続部を備えることを特徴とする。
 本発明のパワーモジュールは、パワー半導体素子の表面主電極に接続されたアダプタの主電極配線部材が、素子接続部及び基板接続部の外側に、外部電極に接続材を介して接続する接続材接続部を備えるので、外部端子部品である外部電極とパワー半導体素子の表面電極とを回路基板の導体層を中継することなく接続でき、外部端子部品と接続する接続材がはんだやアルミ製であっても高温動作が可能で、信頼性を高めることができる。
本発明の実施の形態1によるパワーモジュールの断面模式図である。 図1のアダプタを示す図である。 本発明の実施の形態1によるパワーモジュールの鳥瞰図である。 図3のアダプタ内部構造を示す上面図である。 図4の配線部材を示す鳥瞰図である。 図4のアダプタの裏面鳥瞰図である。 図1のパワーモジュールの製造過程を示す図である。 図1のパワーモジュールの製造過程を示す図である。 本発明の実施の形態2によるパワーモジュールの断面模式図である。 本発明の実施の形態3によるパワーモジュールの鳥瞰図である。 図10のアダプタの配線部材及びセラミック基板の導体層を示す鳥瞰図である。 本発明の実施の形態4によるパワーモジュールの断面模式図である。 図12のアダプタ及びパワー半導体素子を示す図である。 図12のパワーモジュールを評価するサンプルの断面模式図である。 図14のサンプルの測定結果を示す図である。 本発明の実施の形態5によるパワーモジュールの断面模式図である。
実施の形態1.
 図1は本発明の実施の形態1によるパワーモジュールの断面模式図であり、図2は図1のアダプタを示す図である。図3は本発明の実施の形態1によるパワーモジュールの鳥瞰図であり、図4は図3のアダプタ内部構造を示す上面図である。図5は図4の配線部材を示す鳥瞰図であり、図6は図4のアダプタの裏面鳥瞰図である。図7及び図8は、図1のパワーモジュールの製造過程を示す図である。パワーモジュール100は、パワー半導体素子1と、パワー半導体素子1が搭載された回路基板であるセラミック基板2と、パワー半導体素子1の表面電極14に接続される配線部材を有するアダプタ10と、放熱フィン6とを備える。
 放熱フィン6上に、放熱グリス5を用いてセラミック基板2が搭載されている。放熱フィン6は、例えば、アルミ鍛造で形成され、サイズが縦100mm、横150mm、厚さ12mmである。セラミック基板2は、セラミック基材21と、セラミック基材21の表側に形成された導体層22と、セラミック基材21の裏側に形成された導体層23とを備える。セラミック基材21は、例えば、AlN(窒化アルミニウム)製であり、サイズが縦95mm、横145mm、厚さ0.635mmである。導体層22および23は、例えば、銅製であり、厚さが0.4mmである。導体層22は、複数のパターンが形成されており、図1では3つの導体層22c、22s、22eを有する例を記載した。導体層22の表面には、銀シンター接合部42が形成される。銀シンター接合部42は、導体層22c、22s、22eに対応する銀シンター接合部42c、42s、42eを有する。
 導体層22には、パワー半導体素子1が、銀シンター接合材によってダイボンドされている。パワー半導体素子1は、例えば、Si(シリコン)製のIGBT(Insulated Gate Bipolar Transistor)であり、サイズが縦15mm、横15mm、厚さ0.3mmである。パワー半導体素子1の裏面側に形成されたコレクタ電極13は、銀シンター接合材が固化した銀シンター接合部42cを介して導体層22cに接続される。IGBTであるパワー半導体素子1の表面側に形成された表面電極14は、エミッタ電極14e及び信号電極(表面信号電極)14sである。パワー半導体素子1の上方に、複数の配線部材を有するアダプタ10が配置される。アダプタ10は、主電極配線部材31と、信号配線部材32と、封止樹脂8とを備える。主電極配線部材31及び信号配線部材32は、0.6mm厚さの銅フレームを打ち抜いて形成される。主電極配線部材31及び信号配線部材32は、連接されて配置され、すなわち近接して配置され、封止樹脂8で封止される。封止樹脂8は、例えば、PPS(Polyphenylenesulfide)製である。
 主電極配線部材31は、パワー半導体素子1のエミッタ電極14eに接続される素子接続部311と、セラミック基板2の導体層22eに接続される基板接続部312と、接続材であるワイヤ7に接続されるワイヤ接続部(接続材接続部)313を備える。信号配線部材32は、パワー半導体素子1の信号電極14sに接続される素子接続部(素子信号接続部)321と、セラミック基板2の導体層22sに接続される基板接続部(基板信号接続部)322と、接続材であるワイヤ71に接続されるワイヤ接続部(接続材信号接続部)323を備える。
 主電極配線部材31の素子接続部311は、封止樹脂8から露出しており、銀シンター接合部41によってパワー半導体素子1のエミッタ電極14e(表面主電極)と接合されている。銀シンター接合部41は、パワー半導体素子1の表面電極14に搭載された銀シンター接合材が固化した接合層である。銀シンター接合部41は、エミッタ電極14e上に形成される銀シンター接合部41eと、信号電極14s上に形成される銀シンター接合部41sを有する。基板接続部312及びワイヤ接続部313は、段差加工によって形成される。基板接続部312は、図4、図5に示すように、パワー半導体素子1の外縁3方向に広がって形成される。そのうちの1方向の基板接続部312には、その延伸先端部が段差加工によって持ち上げられてワイヤ接続部313が形成される。基板接続部312はセラミック基板2の導体層22eに銀シンター接合部42eを介して接続される。ワイヤ接続部313は、封止樹脂8から上面に露出しており、ワイヤ7に接続されている。
 信号配線部材32の素子接続部321は、主電極配線部材31の素子接続部311と同様に、封止樹脂8から露出しており、銀シンター接合部41sによってパワー半導体素子1の信号電極14sと接合されている。基板接続部322及びワイヤ接続部323は、段差加工によって形成される。基板接続部322及びワイヤ接続部323は、主電極配線部材31のワイヤ接続部313と逆方向に延伸している。基板接続部322はセラミック基板2の導体層22sに銀シンター接合部42sを介して接続される。基板接続部322の上面に位置するワイヤ接続部323は、封止樹脂8から上面側に露出しており、ワイヤ71に接続されている。セラミック基板2の導体層22は、3つの導体層22c、22s、22eを有しており、導体層22sはパワー半導体素子1の信号電極14sと接続され、導体層22eはパワー半導体素子1のエミッタ電極14eと接続され、導体層22cはパワー半導体素子1のコレクタ電極(裏面主電極)13と接続される。3つの導体層22c、22s、22eは、適宜必要な距離を持って電気的に絶縁されており、間隙は樹脂封止されている。なお、3つの導体層22c、22s、22eは、回路的に同電位である部分もある。
 また、ワイヤ接続部313、323は、素子接続部311、321と逆側である主電極配線部材31及び信号配線部材32の上面、および封止樹脂8の上面よりも低い位置で上面側に露出しており、銀シンター接合部41、42を形成する際の加熱加圧プロセスで邪魔になる突出部とならないように設計されている。また、ワイヤ接続部313、323はほぼ平坦で水平に露出しており、ワイヤボンドなどで回路形成する際の品質確保が容易になるように設計されている。
 図4に示すように、実施の形態1のパワーモジュール100は、主電極配線部材31における基板接続部312が3方向に展開しており、そのうちの一方向にワイヤ接続部313を形成している。なお、図4において、アダプタ10の封止樹脂8を破線で示した。ワイヤ7は、パワーモジュール100に必要な電流容量から本数が決まり、ここでは6本のワイヤ7でワイヤボンドを行っている。実施の形態1のパワーモジュール100は、信号配線部材32が3本形成されており、3つの信号電極14sに接続されている。3つの信号電極14sは、パワー半導体素子1のゲート電極、温度センス電極、アノード電極であり、表面主電極であるエミッタ電極14eよりも流れる電流が小電流である。信号電極14sは、エミッタ電極14eに比べると電流が小電流で温度上昇が小さいため、基板接続部322の直上がワイヤ接続部323となっている。
 図3に示すように、実施の形態1のパワーモジュール100は、ワイヤ接続部313、323が封止樹脂8の上面から一段低い構造となっている。なお、封止樹脂8をインサートモールド工法で形成する場合は、このような構造は可能である。また、封止樹脂8をインサートモールド工法で形成する場合は、ワイヤ接続部313、323の上面と封止樹脂8の上面との段差がほぼない、すなわち略同一(実質的に同一)の状態でもワイヤ接続部313、323を露出させることは可能である。
 図6に示すように、アダプタ10を裏面から見ると、素子接続部311、321は、基板接続部312、322よりも一段低い部分に露出しており、この段差はパワー半導体素子1と銀シンター接合部41の厚さを合計したものと略同一(実質的に同一)とすることで、アダプタ10及びパワー半導体素子1をセラミック基板2へ接合する際に略同一(実質的に同一)の高さとなるように、パワー半導体素子1の裏面と基板接続部312、322を配置することが可能となる。パワー半導体素子1の裏面と基板接続部312、322とを略同一(実質的に同一)の高さとなるように配置することで、アダプタ10及びパワー半導体素子1をセラミック基板2への接合が容易になり、接合面に均等に力が印加できるので、接合力を高めることができる。
 次に、図7、図8、図1を用いて、パワーモジュール100の製造プロセスを説明する。まず、アダプタ10を作成する。アダプタ10は、例えばインサートモールド工法で作成する。アダプタ10は、主電極配線部材31と信号配線部材32を、インサートモールド用の金型に配置した後に、この金型に封止樹脂8を注入して作成する。主電極配線部材31と信号配線部材32を封止樹脂8で固着したアダプタ10が完成する。
 図7のように、銀シンター接合材43、44を用い、パワー半導体素子1を、アダプタ10の素子接続部311、321に対して、300℃に加熱し、10MPaの荷重をかけながら10分間かけて接合する。図8に示すように、この接合工程により、パワー半導体素子1のエミッタ電極14e及び信号電極14sは、それぞれ銀シンター接合材43、44が硬化した銀シンター接合部41e、41sを介してアダプタ10の素子接続部311、321に接合される。アダプタ10とパワー半導体素子1とが接合したものを、半導体素子接合体と呼ぶことにする。
 次に図8のように、セラミック基板2に対して半導体素子接合体を位置決めし、銀シンター接合材45、46、47を用いて、パワー半導体素子1の裏面及びアダプタ10の基板接続部312、322を、300℃に加熱し、10MPaの荷重をかけながら10分間かけて接合する。図1に示すように、この接合工程により、パワー半導体素子1の裏面電極(裏面主電極)であるコレクタ電極13及びアダプタ10の基板接続部312、322は、それぞれ銀シンター接合材45、46、47が硬化した銀シンター接合部42c、42e、42sを介してセラミック基板2の導体層22c、22e、22sに接合される。
 次に図1のように、アダプタ10のワイヤ接続部323に、ワイヤ71をワイヤボンダーを用いて接続し、アダプタ10のワイヤ接続部313に、ワイヤ7をワイヤボンダーを用いて接続する。ワイヤ71は、例えば、アルミ製で、直径φ0.15mmである。ワイヤ7は、例えば、アルミ製で、直径φ0.4mmである。その後、セラミック基板2を放熱グリス5を用いて放熱フィン6に搭載して接着する。最後に、必要に応じて、ワイヤ接続部323とワイヤ71のワイヤボンド接合部やワイヤ接続部313とワイヤ7のワイヤボンド接合部などが浸かるようにゲル(シリコーン樹脂)やポッティング封止樹脂(エポキシ)などで封止する。放熱フィン6は、例えばアルミ製である。
 実施の形態1のパワーモジュール100は、パワー半導体素子1の表面電極14に接続された主電極配線部材31及び信号配線部材32がセラミック基板2に接続する基板接続部312、322を有するので、基板接続部312、322で回路基板であるセラミック基板2に対して放熱を行うことができ、ワイヤ接続部313、323の表面温度をパワー半導体素子1の素子温度よりも十分に低くすることができる。実施の形態1のパワーモジュール100は、ワイヤ接続部313、323がパワー半導体素子1の動作温度よりも十分に低温であるため、接続材であるワイヤ7、71がアルミ製であっても高温動作が可能で、信頼性の向上が可能となる。
 また、実施の形態1のパワーモジュール100は、ワイヤ接続部313、323をアダプタ10に形成してあるため、パワーモジュール100へのワイヤボンド工程をアダプタ10上で完結することが可能となる。パワーモジュール100へのワイヤボンド工程において、ワイヤ7、71をセラミック基板2に対して接続する必要がないため、セラミック基板2にワイヤ接続部を設ける必要がなく、パワーモジュール100の小型化が可能である。また、実施の形態1のパワーモジュール100は、セラミック基板2にワイヤ接続部がないので、半導体素子接合体とセラミック基板2とを、銀シンター接合材45、46、47を用いて銀シンター接合した後に、セラミック基板2のワイヤ接続部に対する洗浄や検査が不要となり、パワーモジュール100の製造工程を短縮することができる。
 実施の形態1のパワーモジュール100は、アダプタ10のワイヤ接続部313、323がセラミック基板2のセラミック基材21に対して、略平行な(実質的に平行な)面となるように形成されている。これにより、実施の形態1のパワーモジュール100は、アダプタ10のワイヤ接続部313、323に対して、超音波を印加しないワイヤボンドや超音波を印加するワイヤボンドが容易となる。
 実施の形態1のパワーモジュール100は、アダプタ10のワイヤ接続部313、323が、アダプタ10の素子接続部311、321と逆側である主電極配線部材31及び信号配線部材32の上面、および封止樹脂8の上面よりも低い位置で上面側に露出している。これにより、実施の形態1のパワーモジュール100は、素子接続部311、321とパワー半導体素子1のエミッタ電極14e及び信号電極14sとを加圧加熱接合(銀シンター接合など)を行う際に、素子接続部311、321と逆側である主電極配線部材31及び信号配線部材32の上面よりも上方に突出した部材が存在しないために、アダプタ10の素子接続部311、321とパワー半導体素子1のエミッタ電極14e及び信号電極14sとの間に十分な荷重をかけることができ、高品質な接合部を形成できる。なお、実施の形態1のパワーモジュール100は、アダプタ10のワイヤ接続部313、323が、アダプタ10の素子接続部311、321と逆側である主電極配線部材31及び信号配線部材32の上面と同一の高さに配置されてもよい。この場合でも、素子接続部311、321と逆側である主電極配線部材31及び信号配線部材32の上面よりも上方に突出した部材が存在しないために、アダプタ10の素子接続部311、321とパワー半導体素子1のエミッタ電極14e及び信号電極14sとの間に十分な荷重をかけることができ、高品質な接合部を形成できる。
 実施の形態1のパワーモジュール100は、アダプタ10の素子接続部311、321と逆側である主電極配線部材31及び信号配線部材32の上面を封止樹脂8で被覆しているので、素子接続部311、321とパワー半導体素子1のエミッタ電極14e及び信号電極14sとを加圧加熱接合(銀シンター接合など)を行う際に、アダプタ10の封止樹脂8の上面部に均一に荷重をかけることができ、パワー半導体素子1へのダメージを低減でき、高品質な接合部を形成できる。
 ここでは、セラミック基板2のセラミック基材21がAlN製である例で説明したが、SN(窒化ケイ素)製やアルミナ製であってもよい。この場合でもAlN製のセラミック基材21と同様の効果が得られる。セラミック基板2の導体層22、23についても、銅に限定する必要はなく、アルミであっても構わない。また金属板に樹脂絶縁層を積層した金属基板を、セラミック基板2に替えて用いることも可能である。
 また、ここでは主電極配線部材31や信号配線部材32が、銅製のリードフレームを打ち抜いて形成された例で説明した。主電極配線部材31や信号配線部材32の材料は銅に限定する必要はなく、パワー半導体素子1やセラミック基板2の熱膨張係数に近いコバール(Kovar)や42アロイ(42Alloy)でもよく、またCICクラッド材を用いてもよい。コバールは、鉄にニッケル、コバルトを配合した合金である。42アロイは、鉄にニッケルを配合した合金である。CICクラッド材は、銅/インバー(Invar)/銅を張り合わせたクラッド材である。主電極配線部材31や信号配線部材32がパワー半導体素子1やセラミック基板2の熱膨張係数に近い材料で形成された場合には、銀シンター接合部41、42にかかる熱応力を低減することが可能となる。銅の主電極配線部材31や信号配線部材32の場合に、主電極配線部材31や信号配線部材32にスリットや開口部を形成することで、パワーモジュール100は、主電極配線部材31や信号配線部材32の剛性を低減して、銀シンター接合部41、42などの接合部にかかる応力を低減することが可能となる。また、ワイヤ接続部313が素子接続部311及び基板接続部312が配置された面と逆側である逆側面に形成された例で説明したが、ワイヤ接続部313は、主電極配線部材31の端部を折り返して、素子接続部311及び基板接続部312が形成された面を上面とした部分に形成してもよい。
 また、ここでは主電極配線部材31や信号配線部材32などの配線部材とパワー半導体素子1やセラミック基板2との接合に銀シンター接合材を用いた例で説明したが、必要とするパワーモジュール100の耐熱温度があまり高くない場合には、スズ基はんだを用いて接合しても構わない。必要とするパワーモジュール100の耐熱温度が高い場合には、ビスマス基はんだ(融点270℃)や金スズはんだ(融点280℃)を用いて接合しても構わない。さらに、等温凝固によって接合温度より高い耐熱性を示す、銅粉入りスズペースト(弘輝製A-FAPなど)を、接合材として用いることでも高い耐熱性を得ることができる。
 また、ここではアダプタ10がインサートモールド工法を用いて作成される例を説明した。インサートモールド工法における封止樹脂8は、インサートモールド樹脂である。そして、インサートモールド樹脂としてPPS(熱軟化温度280℃)を用いた例で説明したが、PPSに限定する必要はなく、インサートモールド樹脂としてLCP8(Liquid Crystal Polymer 8)の液晶ポリマー(熱軟化温度340℃以上)を用いることも可能である。インサートモールド樹脂として、PPS以外にLCP8を選択可能なので、上記接合材(銀シンター接合材、スズ基はんだ、ビスマス基はんだ、金スズはんだ、銅粉入りスズペースト)の選択自由度が増す。
 さらに、封止樹脂8が熱可塑性インサートモールド樹脂の場合には、インサートモールド樹脂を主電極配線部材31や信号配線部材32などの金属配線部材やパワー半導体素子1上に溶け広がり、封止材として機能させることも可能である。すなわち、セラミック基板2にアダプタ10及びパワー半導体素子1を接合させた後に、インサートモールド樹脂が軟化する温度まで加熱することで、インサートモールド樹脂が熱軟化して主電極配線部材31や信号配線部材32などの金属配線部材やパワー半導体素子1上に溶け広がり、封止材として機能させることができる。この場合、主電極配線部材31や信号配線部材32などの金属配線部材を封止している封止樹脂8が熱可塑性インサートモールド樹脂なので、アダプタ10及びパワー半導体素子1をセラミック基板2に接合する銀シンター接合工程と、アダプタ10とセラミック基板2との間に隙間を封止する封止工程を同時に行うことができる。
 また、ここではアダプタ10のワイヤ接続部313、323と図示しない外部電極との接続として、アルミ製のワイヤを用いた例で説明したが、他の接続材を用いることもできる。他の接続材としては、アルミ合金ワイヤや銅ワイヤ、あるいはアルミリボンや銅リボンを用いてもよく、銅板バスバーをはんだ接合やろう付けしたり、あるいは超音波接合したり、銅板バスバーをスポット溶接や摩擦撹拌接合等によっても良好な接合を行うことが可能となる。
 なお、パワー半導体素子1における複数の表面電極14(3つの信号電極14s、1つのエミッタ電極14e)に接続するアダプタ10として、主電極配線部材31と、複数の信号配線部材32と、封止樹脂8を備える例で説明した。この場合には、近接して配置された複数の配線部材(3つの信号配線部材32、1つの主電極配線部材31)間で絶縁状態を維持するには、インサートモールド樹脂の封止樹脂8を用いることが必要である。しかし、近接した表面電極が無い場合や、表面電極が1つの場合には、インサートモールド樹脂の封止樹脂8を用いなくてもよい。近接した表面電極が無い場合や、表面電極が1つの場合には、アダプタ10は、封止樹脂8を備えないもの、すなわち主電極配線部材31及び信号配線部材32のみでも構わない。
 主電極配線部材31及び信号配線部材32のみのアダプタ10を用いる場合には、主電極配線部材31や信号配線部材32の周辺等の空間を埋めるために、ポッティング封止樹脂やゲルなど封止樹脂で覆う。なお、主電極配線部材31、複数の信号配線部材32、インサートモールド樹脂の封止樹脂8を備えるアダプタ10を備えたパワーモジュールにおいて、アダプタ10とセラミック基板2との間に隙間があれば、ポッティング封止樹脂やゲルなど封止樹脂で覆うことが必要である。なお、封止樹脂8を備えないアダプタ10は、従来の金属フレーム(配線用のリードフレーム)に対応するものである。また、封止樹脂8を備えたアダプタ10は、主電極配線部材31と信号配線部材32との相対位置が固定された配線部材集合体と言うこともできる。封止樹脂8を備えたアダプタ10は、インサートモールド工法で作成する場合に、予め分離された主電極配線部材31及び信号配線部材32を封止樹脂8にて封止することもできる。また、封止樹脂8を備えたアダプタ10は、フレーム(外周枠)で一体化された主電極配線部材31及び信号配線部材32を封止樹脂8にて封止した後に、主電極配線部材31、信号配線部材32をフレームから切り離すこともできる。
 以上のように、実施の形態1のパワーモジュール100は、回路基板(セラミック基板2)に搭載されたパワー半導体素子1と、パワー半導体素子1の表面主電極(エミッタ電極14e)に接続されたアダプタ10を備え、アダプタ10は、パワー半導体素子1の表面主電極(エミッタ電極14e)に接続された主電極配線部材31を備え、主電極配線部材31は、パワー半導体素子1の表面主電極(エミッタ電極14e)に接続された素子接続部311と、素子接続部311の外側に配置されると共に回路基板(セラミック基板2)に接続された基板接続部312と、素子接続部311の外側に配置されると共に外部電極に接続材(ワイヤ7)を介して接続する接続材接続部(ワイヤ接続部313)を備えることを特徴とする。この特徴により、実施の形態1のパワーモジュール100は、パワー半導体素子1の表面主電極(エミッタ電極14e)に接続されたアダプタ10の主電極配線部材31が、素子接続部311及び基板接続部312の外側に、外部電極に接続材(ワイヤ7)を介して接続する接続材接続部(ワイヤ接続部313)を備えるので、外部端子部品である外部電極とパワー半導体素子1の表面電極(エミッタ電極14e)とを回路基板(セラミック基板2)の導体層を中継することなく接続でき、外部端子部品と接続する接続材(ワイヤ7)がアルミ製であっても高温動作が可能で、信頼性を高めることができる。
実施の形態2.
 図9は、本発明の実施の形態2によるパワーモジュールの断面模式図である。実施の形態2によるパワーモジュール100は、パワー半導体素子1の信号電極14sの周辺に開口部39を形成し、ワイヤ71によって信号電極14sと図示しない外部電極とを接続する例である。図9において、信号配線部材32は図示しない他のパワー半導体素子の信号電極や、パワー半導体素子1の微細ピッチでない信号電極14sに接続するものである。図9では、セラミック基板2の導体層22における信号配線部材32と接続する部分を導体層22xとし、銀シンター接合部42における導体層22xと信号配線部材32とを接合する部分を銀シンター接合部42xと表記した。
 実施の形態2のアダプタ10は、インサートモールド工法におけるインサートモールド樹脂である封止樹脂8を備えておらず、少なくともパワー半導体素子1のエミッタ電極14e(表面主電極)に接続する主電極配線部材31を備えている。図9では、アダプタ10がパワー半導体素子1のエミッタ電極14e(表面主電極)に接続する主電極配線部材31と、図示しない他のパワー半導体素子の信号電極や、微細ピッチでないパワー半導体素子1の信号電極14sに接続する信号配線部材32を備えた例を示した。
 微細ピッチの信号電極14sが複数配置されている場合には、信号電極14sと信号配線部材32とを銀シンター接合すると隣接する信号電極14sや信号配線部材32間にいて接続し、絶縁不良がおきる可能性がある。微細ピッチの信号電極14sが複数配置されている場合には、実施の形態2によるパワーモジュールのようにワイヤ71によって信号電極14sと図示しない外部電極とを接続することで、近接した信号電極14sにおいても銀シンター接合材を介した絶縁不良を抑制することができる。
 また、パワー半導体素子1の信号電極14sは金属接合可能なメタライズが施されていない場合も多い。信号電極14sに金属接合可能なメタライズが施されていない場合でも、実施の形態2によるパワーモジュール100は、パワー半導体素子1の信号電極14sの周辺に開口部39を有するので、金属接合可能なメタライズが施されていない信号電極14sに対してワイヤ接続を行うことが可能となる。
実施の形態3.
 実施の形態3では、パワー半導体素子1の裏面に形成されたコレクタ電極(裏面主電極)13にセラミック基板2の導体層22を介して接続する主電極配線部材33を備えたパワーモジュール100を説明する。図10は本発明の実施の形態3によるパワーモジュールの鳥瞰図であり、図11は図10のアダプタの配線部材及びセラミック基板の導体層を示す鳥瞰図である。なお、図10、図11において、セラミック基板2のセラミック基材21、導体層23、放熱フィン6は省略した。主電極配線部材33は、裏面主電極であるコレクタ電極13に接続するので、裏面主電極配線部材である。
 実施の形態3のアダプタ10は、主電極配線部材31と、複数の信号配線部材32と、複数の主電極配線部材33と、封止樹脂8を備える。封止樹脂8は、インサートモールド工法におけるインサートモールド樹脂である。実施の形態3のアダプタ10は、実施の形態1のアダプタ10とは、複数の主電極配線部材33を有する点で異なる。実施の形態1と異なる部分を説明する。主電極配線部材33は、図11に示すように、基板接続部332とワイヤ接続部(接続材接続部)333を有する。セラミック基板2の導体層22は、エミッタ電極14eが主電極配線部材31を介して接続する導体層22eと、信号電極14sが信号配線部材32を介して接続する導体層22sと、パワー半導体素子1の裏面がダイボンドされると共に、パワー半導体素子1の外周まで延伸している導体層22cを有する。主電極配線部材31及び信号配線部材32は、実施の形態1と同様である。
 主電極配線部材31における3つの基板接続部312は、導体層22eにおける3つの接続領域221eにて、銀シンター接合部42eを介して接続される。信号配線部材32の基板接続部322は、導体層22sにおける接続領域221sにて、銀シンター接合部42sを介して接続される。主電極配線部材33における基板接続部332は、導体層22cにおける接続領域221cにて、主電極配線部材31及び信号配線部材32と同様に銀シンター接合されている。具体的には、主電極配線部材33における基板接続部332は、導体層22cにおける接続領域221cにて、銀シンター接合部42を介して接続される。
 図10では、3つの信号配線部材32のワイヤ接続部323の両脇に、主電極配線部材33のワイヤ接続部333が露出しており、各主電極配線部材33に3本、すなわちパワーモジュール100に合計6本のワイヤ72が接続されている。接続材であるワイヤ72は、例えば、アルミ製で、直径φ0.4mmである。ワイヤ72は、図示しない外部電極と主電極配線部材33とを接続している。
 実施の形態3のパワーモジュール100は、上記以外は実施の形態1のパワーモジュール100と同様なので、実施の形態1と同様の効果を奏する。また、実施の形態3のパワーモジュール100は、主電極配線部材33を追加することにより、すべての外部配線を、主電極配線部材31、信号配線部材32、主電極配線部材33の配線部材上で行うことができる。このため、実施の形態3のパワーモジュール100は、セラミック基板2の導体層22に関しては、ワイヤで接続するワイヤボンド接合強度(ワイヤボンド性)を考慮した導体層22へのメタライズが不要となり、銀シンター接合などの配線部材接合に特化した導体層22へのメタライズが可能となる。また、実施の形態3のパワーモジュール100は、セラミック基板2の導体層22にワイヤを接続しないので、ワイヤ接続部分の清浄度確保が不要となる。
 実施の形態3のパワーモジュール100は、アダプタ10のワイヤ接続部313、323、333がセラミック基板2のセラミック基材21に対して、略平行な(実質的に平行な)面となるように形成されている。これにより、実施の形態3のパワーモジュール100は、アダプタ10のワイヤ接続部313、323、333に対して、超音波を印加しないワイヤボンドや超音波を印加するワイヤボンドが容易となる。
実施の形態4.
 図12は本発明の実施の形態4によるパワーモジュールの断面模式図であり、図13は図12のアダプタ及びパワー半導体素子を示す図である。実施の形態4のパワーモジュール100は、実施の形態1のパワーモジュール100とは、パワー半導体素子1が2つ搭載され、1つの主電極配線部材31で2つのパワー半導体素子1の表面主電極に接続している点で異なる。ここでは、2つのパワー半導体素子1として、スイッチング素子1iとダイオード1dの例を説明する。スイッチング素子1iは、例えばIGBTである。
 放熱フィン6上に、放熱グリス5を用いてセラミック基板2が搭載されている。放熱フィン6は、例えば、アルミ鍛造で形成され、サイズが縦100mm、横150mm、厚さ12mmである。セラミック基板2は、セラミック基材21と、セラミック基材21の表側に形成された導体層22と、セラミック基材21の裏側に形成された導体層23とを備える。セラミック基材21は、例えば、AlN製であり、サイズが縦95mm、横145mm、厚さ0.635mmである。導体層22および23は、例えば、銅製であり、厚さが0.4mmである。導体層22は、複数のパターンが形成されており、図12では3つの導体層22c、22s、22eを有する例を記載した。導体層22の表面には、銀シンター接合部42が形成される。銀シンター接合部42は、導体層22s、22eに対応する銀シンター接合部42s、42eと、導体層22cに接続するスイッチング素子1iのコレクタ電極(裏面主電極)13及びダイオード1dのアノード電極(裏面主電極)15に対応する銀シンター接合部42c、42aとを有する。
 導体層22には、スイッチング素子1iおよびダイオード1dが、銀シンター接合材によってダイボンドされている。スイッチング素子1iは、Si製のIGBTであり、サイズが縦15mm、横15mm、厚さ0.3mmである。ダイオード1dは、Si製であり、サイズが縦15mm、横10mm、厚さ0.3mmである。スイッチング素子1iの裏面側に形成されたコレクタ電極13は、銀シンター接合材が固化した銀シンター接合部42cを介して導体層22cに接続される。ダイオード1dの裏面側に形成されたアノード電極15は、銀シンター接合材が固化した銀シンター接合部42aを介して導体層22cに接続される。IGBTであるスイッチング素子1iの表面側に形成された表面電極14は、エミッタ電極14e及び信号電極14sである。
 スイッチング素子1i及びダイオード1dの上方に、複数の配線部材を有するアダプタ10が配置される。アダプタ10は、主電極配線部材31と、信号配線部材32と、封止樹脂8とを備える。主電極配線部材31及び信号配線部材32は、0.6mm厚さの銅フレームを打ち抜いて形成される。主電極配線部材31及び信号配線部材32は、連接されて配置され、すなわち近接して配置され、封止樹脂8で封止される。封止樹脂8は、例えば、PPS製である。
 主電極配線部材31は、スイッチング素子1i及びダイオード1dの表面主電極に接続される素子接続部311と、セラミック基板2の導体層22eに接続される基板接続部312と、ワイヤ7に接続されるワイヤ接続部313を備える。素子接続部311は、スイッチング素子1iのエミッタ電極14eに接続される素子接続部311iと、ダイオード1dのカソード電極14kに接続される素子接続部311dとを有する。信号配線部材32は、スイッチング素子1iの信号電極14sに接続される素子接続部321と、セラミック基板2の導体層22sに接続される基板接続部322と、ワイヤ71に接続されるワイヤ接続部323を備える。
 主電極配線部材31の素子接続部311は、封止樹脂8から露出しており、銀シンター接合部41によってスイッチング素子1iのエミッタ電極14e(表面主電極)及びダイオード1dのカソード電極14k(表面主電極)と接合されている。銀シンター接合部41は、スイッチング素子1iの表面電極14及びダイオード1dの表面主電極であるカソード電極14kに搭載された銀シンター接合材が固化した接合層である。銀シンター接合部41は、スイッチング素子1iのエミッタ電極14e上に形成される銀シンター接合部41eと、スイッチング素子1iの信号電極14s上に形成される銀シンター接合部41sと、ダイオード1dのカソード電極14k上に形成される銀シンター接合部41kを有する。基板接続部312及びワイヤ接続部313は、段差加工によって形成される。基板接続部312は、図4、図5と同様に、スイッチング素子1i及びダイオード1dが配置された半導体素子配置領域の外縁3方向に広がって形成される。そのうちの1方向の基板接続部312には、その延伸先端部が段差加工によって持ち上げられてワイヤ接続部313が形成される。基板接続部312はセラミック基板2の導体層22eに銀シンター接合部42eを介して接続される。ワイヤ接続部313は、封止樹脂8から上面に露出しており、ワイヤ7に接続されている。
 信号配線部材32の素子接続部321は、主電極配線部材31の素子接続部311と同様に、封止樹脂8から露出しており、銀シンター接合部41sによってスイッチング素子1iの信号電極14sと接合されている。基板接続部322及びワイヤ接続部323は、段差加工によって形成される。基板接続部322及びワイヤ接続部323は、主電極配線部材31のワイヤ接続部313と逆方向に延伸している。基板接続部322はセラミック基板2の導体層22sに銀シンター接合部42sを介して接続される。基板接続部322の上面に位置するワイヤ接続部323は、封止樹脂8から上面側に露出しており、ワイヤ71に接続されている。
 次に、パワーモジュール100の製造プロセスを説明する。パワーモジュール100の製造プロセスは、基本的に実施の形態1で説明したものと同じである。まず、アダプタ10を作成する。アダプタ10は、例えばインサートモールド工法で作成する。アダプタ10は、主電極配線部材31と信号配線部材32を、インサートモールド用の金型に配置した後に、この金型に封止樹脂8を注入して作成する。連接して配置された主電極配線部材31と信号配線部材32を封止樹脂8で固着したアダプタ10が完成する。
 次に、銀シンター接合材(図7の銀シンター接合材43、44参照)を用い、スイッチング素子1i及びダイオード1dを、アダプタ10の素子接続部311、321に対して、300℃に加熱し、10MPaの荷重をかけながら10分間かけて接合する。この接合工程により、スイッチング素子1iのエミッタ電極14e及び信号電極14sと、ダイオード1dのカソード電極14kは、それぞれ銀シンター接合材が硬化した銀シンター接合部41e、41s、41kを介して、対応するアダプタ10の素子接続部311、321に接合される。アダプタ10とパワー半導体素子1とが接合したものを、半導体素子接合体と呼ぶことにする。
 次に図8と同様に、セラミック基板2に対して半導体素子接合体を位置決めし、銀シンター接合材(図8の銀シンター接合材45、46、47参照)を用いて、スイッチング素子1i及びダイオード1dの裏面及びアダプタ10の基板接続部312、322を、300℃に加熱し、10MPaの荷重をかけながら10分間かけて接合する。図12に示すように、この接合工程により、スイッチング素子1iの裏面電極(コレクタ電極13)、ダイオード1dの裏面電極(アノード電極15)、及びアダプタ10の基板接続部312、322は、それぞれ銀シンター接合材が硬化した銀シンター接合部42c、42a、42e、42sを介してセラミック基板2の導体層22c、22e、22sに接合される。
 次に図12のように、アダプタ10のワイヤ接続部323に、ワイヤ71をワイヤボンダーを用いて接続し、アダプタ10のワイヤ接続部313に、ワイヤ7をワイヤボンダーを用いて接続する。ワイヤ71は、例えば、アルミ製で、直径φ0.15mmである。ワイヤ7は、例えば、アルミ製で、直径φ0.4mmである。その後、セラミック基板2を放熱グリス5を用いて放熱フィン6に搭載して接着する。最後に、必要に応じて、ワイヤ接続部323とワイヤ71のワイヤボンド接合部やワイヤ接続部313とワイヤ7のワイヤボンド接合部などが浸かるようにゲル(シリコーン樹脂)やポッティング封止樹脂(エポキシ)などで封止する。
 パワーモジュール100の発熱状態を、評価サンプルを用いて測定した。発熱状態は、サーモビューアを用いて測定した。図14は図12のパワーモジュールを評価するサンプルの断面模式図であり、図15は図14のサンプルの測定結果を示す図である。図14に示すように、スイッチング素子1iの信号電極14sをワイヤ71によって接続した温度測定サンプル101を作製した。図15に示したサーモビューアでの観察結果は、スイッチング素子1iの温度が約130℃になるように電流を流した状態で観察したものである。なお、図15の観察結果は、見易くするために、代表的な温度境界を示したものでる。
 図15では、主電極配線部材31、ワイヤ接続部313、ワイヤ接続部313に繋がる基板接続部312、ダイオード1dの素子接続部311d、スイッチング素子1iの素子接続部311iの配置位置を追記した。主電極配線部材31の配置位置を一点鎖線で示した。また、図15では、代表的な温度境界を、破線102、103、104、及び点線105、108で示した。破線102、103、104は、95℃の境界であり、点線105は120℃の境界であり、点線108は75℃の境界である。図15では、破線102、103、104や点線105、108で区切られた温度領域S1、S2、S3、S4、S5を示した。温度領域S1は75℃以下であり、温度領域S2は75度以上80以下である。温度領域S3は80度以上95以下であり、温度領域S4は95度以上120度以下である。温度領域S5は、120度以上である。素子接続部311iの下側部分(斜線のパターン部分)が約130℃である。
 図15に示すように、主電極配線部材31において、スイッチング素子1iの素子接続部311iから遠ざかり、基板接続部312に近づくにつれて配線部材温度は低下し、ワイヤ接続部313付近では80℃にまで下がっていることが分かった。
 実施の形態4のパワーモジュール100は、パワー半導体素子であるスイッチング素子1i及びダイオード1dの表面主電極に接続された主電極配線部材31及び信号配線部材32がセラミック基板2に接続する基板接続部312、322を有するので、基板接続部312、322で回路基板であるセラミック基板2に対して放熱を行うことができ、ワイヤ接続部313、323の表面温度をスイッチング素子1i及びダイオード1dの素子温度よりも十分に低くすることができる。実施の形態4のパワーモジュール100は、ワイヤ接続部313、323がパワー半導体素子1の動作温度よりも十分に低温であるため、接続材であるワイヤ7、71がアルミ製であっても高温動作が可能で、信頼性の向上が可能となる。
 実施の形態4のパワーモジュール100は、実施の形態1のパワーモジュール100とは、パワー半導体素子1が2つ搭載され、1つの主電極配線部材31で2つのパワー半導体素子1の表面主電極に接続している点で異なっている。したがって、実施の形態4のパワーモジュール100は、実施の形態1のパワーモジュール100と同様の効果を奏する。
 実施の形態4のパワーモジュール100は、スイッチング素子1i及びダイオード1dの表面主電極を1つの主電極配線部材31で接続するので、スイッチング素子1i及びダイオード1dに個別に主電極配線部材31を接続するモジュールよりも、小型にすることができる。また、実施の形態4のパワーモジュール100は、スイッチング素子1i及びダイオード1dの表面主電極を1つの主電極配線部材31で接続するので、スイッチング素子1iとダイオード1dとを最短でかつ低抵抗に接続でき、パワーモジュールの特性改善ができる。
 ここでは、セラミック基板2のセラミック基材21がAlN製である例で説明したが、SN(窒化ケイ素)製やアルミナ製であってもよい。この場合でもAlN製のセラミック基材21と同様の効果が得られる。セラミック基板2の導体層22、23についても、銅に限定する必要はなく、アルミであっても構わない。また金属板に樹脂絶縁層を積層した金属基板を、セラミック基板2に替えて用いることも可能である。
 また、ここでは主電極配線部材31や信号配線部材32が、銅製のリードフレームを打ち抜いて形成された例で説明した。主電極配線部材31や信号配線部材32の材料は銅に限定する必要はなく、スイッチング素子1i及びダイオード1dやセラミック基板2の熱膨張係数に近いコバール(Kovar)や、42アロイ(42Alloy)でもよく、またCICクラッド材を用いてもよい。主電極配線部材31や信号配線部材32がスイッチング素子1i及びダイオード1dやセラミック基板2の熱膨張係数に近い材料で形成された場合には、銀シンター接合部41、42にかかる熱応力を低減することが可能となる。銅の主電極配線部材31や信号配線部材32の場合に、主電極配線部材31や信号配線部材32にスリットや開口部を形成することで、パワーモジュール100は、主電極配線部材31や信号配線部材32の剛性を低減して、銀シンター接合部41、42などの接合部にかかる応力を低減することが可能となる。また、ワイヤ接続部313が素子接続部311及び基板接続部312が配置された面と逆側である逆側面に形成された例で説明したが、ワイヤ接続部313は、主電極配線部材31の端部を折り返して、素子接続部311及び基板接続部312が形成された面を上面とした部分に形成してもよい。
 また、ここでは主電極配線部材31や信号配線部材32などの配線部材とスイッチング素子1i及びダイオード1dやセラミック基板2との接合に銀シンター接合材を用いた例で説明したが、必要とするパワーモジュール100の耐熱温度があまり高くない場合には、スズ基はんだを用いて接合しても構わない。必要とするパワーモジュール100の耐熱温度が高い場合には、ビスマス基はんだ(融点270℃)や金スズはんだ(融点280℃)を用いて接合しても構わない。さらに、等温凝固によって接合温度より高い耐熱性を示す、銅粉入りスズペースト(弘輝製A-FAPなど)を、接合材として用いることでも高い耐熱性を得ることができる。
 また、ここではアダプタ10がインサートモールド工法を用いて作成される例を説明した。インサートモールド工法における封止樹脂8は、インサートモールド樹脂である。そして、インサートモールド樹脂としてPPS(熱軟化温度280℃)を用いた例で説明したが、PPSに限定する必要はなく、インサートモールド樹脂としてLCP8の液晶ポリマー(熱軟化温度340℃以上)を用いることも可能である。インサートモールド樹脂として、PPS以外にLCP8を選択可能なので、上記接合材(銀シンター接合材、スズ基はんだ、ビスマス基はんだ、金スズはんだ、銅粉入りスズペースト)の選択自由度が増す。
 さらに、封止樹脂8が熱可塑性インサートモールド樹脂の場合には、インサートモールド樹脂を主電極配線部材31や信号配線部材32などの金属配線部材やスイッチング素子1i及びダイオード1d上に溶け広がり、封止材として機能させることも可能である。すなわち、セラミック基板2にアダプタ10及びパワー半導体素子1を接合させた後に、インサートモールド樹脂が軟化する温度まで加熱することで、インサートモールド樹脂が熱軟化して主電極配線部材31や信号配線部材32などの金属配線部材やスイッチング素子1i及びダイオード1d上に溶け広がり、封止材として機能させることができる。この場合、主電極配線部材31や信号配線部材32などの金属配線部材を封止している封止樹脂8が熱可塑性インサートモールド樹脂なので、アダプタ10及びスイッチング素子1i及びダイオード1dをセラミック基板2に接合する銀シンター接合工程と、アダプタ10とセラミック基板2との間に隙間を封止する封止工程を同時に行うことができる。
 また、ここではアダプタ10のワイヤ接続部313、323と図示しない外部電極との接続として、アルミ製のワイヤを用いた例で説明したが、他の接続材を用いることもできる。他の接続材としては、アルミ合金ワイヤや銅ワイヤ、あるいはアルミリボンや銅リボンを用いてもよく、銅板バスバーを超音波接合したり、銅板バスバーをスポット溶接や摩擦撹拌接合等によっても良好な接合を行うことが可能となる。
実施の形態5.
 図16は、本発明の実施の形態5によるパワーモジュールの断面模式図である。実施の形態5のパワーモジュール100は、銀シンター接合部41、42が隙間封止材81により覆われた点で、実施の形態1のパワーモジュール100と異なる。実施の形態1で説明したように、パワー半導体素子1をアダプタ10及びセラミック基板2に銀シンター接合部41、42を介して接合した後に、セラミック基板2を放熱グリス5を用いて放熱フィン6に搭載して接着する。最後に、必要に応じて、ワイヤ接続部323とワイヤ71のワイヤボンド接合部やワイヤ接続部313とワイヤ7のワイヤボンド接合部などが浸かるようにゲル(シリコーン樹脂)やポッティング封止樹脂(エポキシ)などで封止する。この際、ゲルやポッティング封止樹脂は、アダプタ10におけるセラミック基板2と対向する対向部からセラミック基板2から離れる方向に延伸する外周部と、セラミック基板2におけるアダプタ10の外周部周辺とをも同時に被覆している。
 アダプタ10の外周部とセラミック基板2におけるアダプタ10の外周部周辺とが被覆されると共に、ワイヤ接続部323とワイヤ71のワイヤボンド接合部やワイヤ接続部313とワイヤ7のワイヤボンド接合部などが浸かるように、ゲルやポッティング封止樹脂などで封止する場合には、隙間封止材81はゲルやポッティング封止樹脂よりも耐熱性(熱軟化温度)が高い封止材料、例えばポリイミド樹脂や低温焼成ガラスペーストを用いることが望ましい。実施の形態5のパワーモジュール100は、銀シンター接合部41、42が、ゲルやポッティング封止樹脂よりも耐熱性(熱軟化温度)が高い隙間封止材81により被覆され、パワー半導体素子1と主電極配線部材31及び信号配線部材32との隙間が封止されるので、高温動作するパワー半導体素子1をゲルやポッティング封止樹脂に直接接触させないようにでき、さらなる耐熱性を確保することが可能となる。なお、銀シンター接合部41、42を隙間封止材81により覆う方法は、実施の形態2~4のパワーモジュール100にも適用できる。
 なお、実施の形態1~5では、パワー半導体素子1は、シリコンウエハを基材とした一般的な素子(Si製の素子)でもよいが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を適用できる。パワー半導体素子1は、ダイオードや、IGBTに限らず、MOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子を搭載することができる。例えば、スイッチング素子として機能するパワー半導体素子1や、整流素子として機能するパワー半導体素子1に、炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料又はダイヤモンドを用いた場合、従来から用いられてきたシリコン(Si)で形成された素子よりも電力損失が低いため、パワーモジュール100の高効率化が可能となる。また、耐電圧性が高く、許容電流密度も高いため、パワーモジュール100の小型化が可能となる。さらにワイドバンドギャップ半導体素子は、耐熱性が高いので、高温動作が可能であり、放熱フィン6の小型化や、水冷部の空冷化も可能となるので、放熱フィン6を備えたパワーモジュール100の一層の小型化が可能になる。
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1…パワー半導体素子、1d…ダイオード、1i…スイッチング素子、2…セラミック基板(回路基板)、7…ワイヤ(接続材)、8…封止樹脂、10…アダプタ、13…コレクタ電極(裏面主電極)、14e…エミッタ電極(表面主電極)、14s…信号電極(表面信号電極)、14k…カソード電極(表面主電極)、22…導体層、22c…導体層、31…主電極配線部材、32…信号配線部材、33…主電極配線部材(裏面主電極配線部材)、39…開口部、81…隙間封止材、100…パワーモジュール、311…素子接続部、312…基板接続部、313…ワイヤ接続部(接続材接続部)、321…素子接続部(素子信号接続部)、322…基板接続部(基板信号接続部)、323…ワイヤ接続部(接続材信号接続部)、333…ワイヤ接続部(接続材接続部)

Claims (21)

  1.  回路基板に搭載されたパワー半導体素子と、前記パワー半導体素子の表面主電極に接続されたアダプタを備えたパワーモジュールであって、
    前記アダプタは、前記パワー半導体素子の前記表面主電極に接続された主電極配線部材を備え、
    前記主電極配線部材は、前記パワー半導体素子の前記表面主電極に接続された素子接続部と、前記素子接続部の外側に配置されると共に前記回路基板に接続された基板接続部と、前記素子接続部の外側に配置されると共に外部電極に接続材を介して接続する接続材接続部を備えることを特徴とするパワーモジュール。
  2.  前記主電極配線部材の前記接続材接続部は、前記回路基板と実質的に平行に配置されたことを特徴とする請求項1記載のパワーモジュール。
  3.  前記主電極配線部材の前記接続材接続部は、前記素子接続部の逆側面と同じ高さに、又は前記素子接続部の逆側面よりも低い高さに配置されたことを特徴とする請求項1または2に記載のパワーモジュール。
  4.  前記アダプタは、前記パワー半導体素子の表面信号電極に接続された信号配線部材を備え、
    前記信号配線部材は、前記パワー半導体素子の前記表面信号電極に接続された素子信号接続部と、前記素子信号接続部の外側に配置されると共に前記回路基板に接続された基板信号接続部と、前記素子信号接続部及び前記基板信号接続部が配置された面と逆側である逆側面に、前記素子信号接続部の外側に配置されると共に外部電極に接続材を介して接続する接続材信号接続部を備えることを特徴とする請求項1から3のいずれか1項に記載のパワーモジュール。
  5.  前記回路基板は、前記パワー半導体素子の裏面主電極に接続された導体層を備え、
    前記アダプタは、前記導体層を介して前記パワー半導体素子の前記裏面主電極に接続された裏面主電極配線部材を備え、
    前記裏面主電極配線部材は、前記導体層に対する接続面と逆側である逆側面に、外部電極に接続材を介して接続する接続材接続部を備えることを特徴とする請求項1から3のいずれか1項に記載のパワーモジュール。
  6.  前記回路基板は、前記パワー半導体素子の裏面主電極に接続された導体層を備え、
    前記アダプタは、前記導体層を介して前記パワー半導体素子の前記裏面主電極に接続された裏面主電極配線部材を備え、
    前記裏面主電極配線部材は、前記導体層に対する接続面と逆側である逆側面に、外部電極に接続材を介して接続する接続材接続部を備えることを特徴とする請求項4記載のパワーモジュール。
  7.  前記パワー半導体素子であるスイッチング素子及びダイオードが前記回路基板に搭載され、
    前記アダプタの前記主電極配線部材は、前記主電極配線部材が前記スイッチング素子及び前記ダイオードの各表面主電極に接続されたことを特徴とする請求項1から3のいずれか1項に記載のパワーモジュール。
  8.  前記パワー半導体素子であるスイッチング素子及びダイオードが前記回路基板に搭載され、
    前記アダプタの前記主電極配線部材は、前記主電極配線部材が前記スイッチング素子及び前記ダイオードの各表面主電極に接続されたことを特徴とする請求項4記載のパワーモジュール。
  9.  前記パワー半導体素子であるスイッチング素子及びダイオードが前記回路基板に搭載され、
    前記アダプタの前記主電極配線部材は、前記主電極配線部材が前記スイッチング素子及び前記ダイオードの各表面主電極に接続されたことを特徴とする請求項5記載のパワーモジュール。
  10.  前記パワー半導体素子であるスイッチング素子及びダイオードが前記回路基板に搭載され、
    前記アダプタの前記主電極配線部材は、前記主電極配線部材が前記スイッチング素子及び前記ダイオードの各表面主電極に接続されたことを特徴とする請求項6記載のパワーモジュール。
  11.  前記主電極配線部材は、前記素子接続部が配置された面と逆側である逆側面が樹脂により被覆されたことを特徴とする請求項1から3、及び7のいずれか1項に記載のパワーモジュール。
  12.  前記主電極配線部材は、前記素子接続部が配置された面と逆側である逆側面が樹脂により被覆され、
    前記信号配線部材は、前記素子信号接続部が配置された面と逆側である逆側面が前記樹脂により被覆されたことを特徴とする請求項4または8に記載のパワーモジュール。
  13.  前記主電極配線部材は、前記素子接続部が配置された面と逆側である逆側面が樹脂により被覆され、
    前記裏面主電極配線部材は、前記導体層に対する接続面と逆側である逆側面の一部が前記樹脂により被覆されたことを特徴とする請求項5または9に記載のパワーモジュール。
  14.  前記主電極配線部材は、前記素子接続部が配置された面と逆側である逆側面が樹脂により被覆され、
    前記信号配線部材は、前記素子信号接続部が配置された面と逆側である逆側面が前記樹脂により被覆され、
    前記裏面主電極配線部材は、前記導体層に対する接続面と逆側である逆側面の一部が前記樹脂により被覆されたことを特徴とする請求項6または10に記載のパワーモジュール。
  15.  前記主電極配線部材の前記素子接続部は隙間封止材により被覆されており、
    前記アダプタにおける前記回路基板と対向する対向部から前記回路基板から離れる方向に延伸する外周部と、前記回路基板とが外周部の封止材により被覆されており、
    前記隙間封止材は、前記外周部の封止材よりも耐熱性が高いことを特徴とする請求項11または13に記載のパワーモジュール。
  16.  前記主電極配線部材の前記素子接続部、及び前記信号配線部材の前記素子信号接続部は隙間封止材により被覆されており、
    前記アダプタにおける前記回路基板と対向する対向部から前記回路基板から離れる方向に延伸する外周部と、前記回路基板とが外周部の封止材により被覆されており、
    前記隙間封止材は、前記外周部の封止材よりも耐熱性が高いことを特徴とする請求項12または14に記載のパワーモジュール。
  17.  前記アダプタは、インサートモールド工法により熱可塑性インサートモールド樹脂で一部が被覆されたアダプタであり、
    前記樹脂は、前記熱可塑性インサートモールド樹脂であり、
    前記パワー半導体素子は、軟化した前記熱可塑性インサートモールド樹脂により被覆されたことを特徴とする請求項11から14のいずれか1項に記載のパワーモジュール。
  18.  前記パワー半導体素子は、前記表面主電極よりも小電流が流れる表面信号電極を備え、
    前記表面信号電極の上方に、前記表面信号電極から前記表面信号電極に接続する接続材が配置される開口部を備えたことを特徴とする請求項1から3のいずれか1項に記載のパワーモジュール。
  19.  前記接続材は、アルミ又は銅製の、ワイヤ又はリボンであることを特徴とする請求項1から18のいずれか1項に記載のパワーモジュール。
  20.  前記パワー半導体素子は、ワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項1から19のいずれか1項に記載のパワーモジュール。
  21.  前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、またはダイヤモンドのうちのいずれかであることを特徴とする請求項20記載のパワーモジュール。
PCT/JP2016/053779 2015-02-25 2016-02-09 パワーモジュール WO2016136457A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680006146.4A CN107210238B (zh) 2015-02-25 2016-02-09 功率模块
DE112016000904.6T DE112016000904T5 (de) 2015-02-25 2016-02-09 Leistungsmodul
US15/533,870 US10559538B2 (en) 2015-02-25 2016-02-09 Power module
JP2017502045A JP6234630B2 (ja) 2015-02-25 2016-02-09 パワーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-034734 2015-02-25
JP2015034734 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136457A1 true WO2016136457A1 (ja) 2016-09-01

Family

ID=56789586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053779 WO2016136457A1 (ja) 2015-02-25 2016-02-09 パワーモジュール

Country Status (5)

Country Link
US (1) US10559538B2 (ja)
JP (1) JP6234630B2 (ja)
CN (1) CN107210238B (ja)
DE (1) DE112016000904T5 (ja)
WO (1) WO2016136457A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105477A (ja) * 2014-11-25 2016-06-09 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 基板アダプタを製造する方法、基板アダプタ、および半導体素子を接触させるための方法
JP6289583B1 (ja) * 2016-10-24 2018-03-07 三菱電機株式会社 電力半導体装置
WO2018207406A1 (ja) * 2017-05-12 2018-11-15 三菱電機株式会社 半導体モジュールおよび電力変換装置
WO2020110287A1 (ja) * 2018-11-30 2020-06-04 日立金属株式会社 電気接続用部材、電気接続構造、および電気接続用部材の製造方法
WO2022018999A1 (ja) * 2020-07-22 2022-01-27 株式会社デンソー 半導体装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041479A (ja) * 2015-08-18 2017-02-23 セイコーエプソン株式会社 接合体、電子装置、プロジェクターおよび接合体の製造方法
JP6604211B2 (ja) * 2016-01-15 2019-11-13 富士通株式会社 積層半導体及び積層半導体の製造方法
WO2017168756A1 (ja) * 2016-04-01 2017-10-05 三菱電機株式会社 半導体装置
KR20180010368A (ko) 2016-07-20 2018-01-31 삼성전자주식회사 메모리 장치
JP6772768B2 (ja) * 2016-11-09 2020-10-21 株式会社デンソー 半導体装置
WO2018141811A1 (en) * 2017-02-01 2018-08-09 Abb Schweiz Ag Power semiconductor device with active short circuit failure mode
WO2018141867A1 (en) * 2017-02-01 2018-08-09 Abb Schweiz Ag Power semiconductor module with short circuit failure mode
JP6470328B2 (ja) * 2017-02-09 2019-02-13 株式会社東芝 半導体モジュール
JP7181217B2 (ja) * 2017-04-04 2022-11-30 クリック アンド ソッファ インダストリーズ、インク. 超音波溶接システムおよびその使用方法
CN110622301B (zh) * 2017-05-10 2023-06-23 罗姆股份有限公司 功率半导体装置及其制造方法
JP6881238B2 (ja) * 2017-10-31 2021-06-02 三菱電機株式会社 半導体モジュール、その製造方法及び電力変換装置
CN111819681A (zh) * 2018-03-27 2020-10-23 三菱综合材料株式会社 带散热器的绝缘电路基板
DE102018133089A1 (de) * 2018-12-20 2020-06-25 Danfoss Silicon Power Gmbh Halbleitermodul mit einem Halbleiter und einem den Halbleiter teilweise einhausenden Gehäuse
US11282791B2 (en) * 2019-06-27 2022-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a heat dissipation structure connected chip package
CN112530888A (zh) * 2019-09-17 2021-03-19 珠海格力电器股份有限公司 一种功率模块及其制造方法
DE102020205043A1 (de) * 2020-04-21 2021-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur Herstellung einer Leistungshalbleiterbauelementanordnung oder Leistungshalbleiterbauelementeinhausung
US11842953B2 (en) 2021-04-28 2023-12-12 Infineon Technologies Ag Semiconductor package with wire bond joints and related methods of manufacturing
DE102021209438A1 (de) * 2021-08-27 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Leistungshalbleiterbauteil und Verfahren zur Herstellung eines Leistungshalbleiterbauteils
DE102022205488A1 (de) * 2022-05-31 2023-11-30 Rolls-Royce Deutschland Ltd & Co Kg Dimensionierung des Spaltes zwischen Substrat und Kühlkörper in Hochspannungs-Leistungswandlern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347507A (ja) * 2002-05-27 2003-12-05 Fuji Electric Co Ltd 半導体パワーデバイス
JP2004349300A (ja) * 2003-05-20 2004-12-09 Toshiba Corp 半導体装置及びその製造方法
JP2005032879A (ja) * 2003-07-09 2005-02-03 Toshiba Corp 半導体装置
JP2006352080A (ja) * 2005-05-16 2006-12-28 Fuji Electric Holdings Co Ltd 半導体装置の製造方法および半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778405B2 (en) * 2001-09-25 2004-08-17 Innoveta Technologies Power module adapter
JP4262672B2 (ja) 2004-12-24 2009-05-13 株式会社ルネサステクノロジ 半導体装置およびその製造方法
JP4325571B2 (ja) * 2005-02-28 2009-09-02 株式会社日立製作所 電子装置の製造方法
US7262444B2 (en) * 2005-08-17 2007-08-28 General Electric Company Power semiconductor packaging method and structure
JP5863602B2 (ja) 2011-08-31 2016-02-16 三菱電機株式会社 電力用半導体装置
JP5661052B2 (ja) * 2012-01-18 2015-01-28 三菱電機株式会社 パワー半導体モジュールおよびその製造方法
CN104067387B (zh) * 2012-03-22 2016-12-14 三菱电机株式会社 半导体装置及其制造方法
JP6368646B2 (ja) * 2012-09-20 2018-08-01 ローム株式会社 パワーモジュール半導体装置およびインバータ装置、およびパワーモジュール半導体装置の製造方法、および金型
KR101443968B1 (ko) * 2012-10-29 2014-09-23 삼성전기주식회사 전력 모듈 패키지 및 그 제조방법
WO2015079600A1 (ja) * 2013-11-26 2015-06-04 三菱電機株式会社 パワーモジュール、及びパワーモジュールの製造方法
WO2016002803A1 (ja) * 2014-07-04 2016-01-07 三菱マテリアル株式会社 パワーモジュール用基板ユニット及びパワーモジュール
CN107004644B (zh) * 2014-12-18 2019-05-07 三菱电机株式会社 绝缘电路基板、功率模块以及功率单元
JP6689708B2 (ja) * 2016-08-10 2020-04-28 ルネサスエレクトロニクス株式会社 電子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347507A (ja) * 2002-05-27 2003-12-05 Fuji Electric Co Ltd 半導体パワーデバイス
JP2004349300A (ja) * 2003-05-20 2004-12-09 Toshiba Corp 半導体装置及びその製造方法
JP2005032879A (ja) * 2003-07-09 2005-02-03 Toshiba Corp 半導体装置
JP2006352080A (ja) * 2005-05-16 2006-12-28 Fuji Electric Holdings Co Ltd 半導体装置の製造方法および半導体装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105477A (ja) * 2014-11-25 2016-06-09 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー 基板アダプタを製造する方法、基板アダプタ、および半導体素子を接触させるための方法
JP6289583B1 (ja) * 2016-10-24 2018-03-07 三菱電機株式会社 電力半導体装置
JP2018073848A (ja) * 2016-10-24 2018-05-10 三菱電機株式会社 電力半導体装置
WO2018207406A1 (ja) * 2017-05-12 2018-11-15 三菱電機株式会社 半導体モジュールおよび電力変換装置
JPWO2018207406A1 (ja) * 2017-05-12 2019-06-27 三菱電機株式会社 半導体モジュールおよび電力変換装置
CN110622307A (zh) * 2017-05-12 2019-12-27 三菱电机株式会社 半导体模块以及电力变换装置
US10804186B2 (en) 2017-05-12 2020-10-13 Mitsubishi Electric Corporation Semiconductor module and power converter
CN110622307B (zh) * 2017-05-12 2023-06-16 三菱电机株式会社 半导体模块以及电力变换装置
WO2020110287A1 (ja) * 2018-11-30 2020-06-04 日立金属株式会社 電気接続用部材、電気接続構造、および電気接続用部材の製造方法
WO2022018999A1 (ja) * 2020-07-22 2022-01-27 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
DE112016000904T5 (de) 2017-11-09
JP6234630B2 (ja) 2017-11-22
US20170338190A1 (en) 2017-11-23
JPWO2016136457A1 (ja) 2017-06-15
US10559538B2 (en) 2020-02-11
CN107210238B (zh) 2020-03-17
CN107210238A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6234630B2 (ja) パワーモジュール
US10510640B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP4438489B2 (ja) 半導体装置
US10727163B2 (en) Semiconductor device
JP6300633B2 (ja) パワーモジュール
US9673118B2 (en) Power module and method of manufacturing power module
CN109314063B (zh) 电力用半导体装置
KR101173927B1 (ko) 반도체장치 모듈
JP6522241B2 (ja) 電力用半導体装置および電力用半導体装置の製造方法
CN108735692B (zh) 半导体装置
JP5659938B2 (ja) 半導体ユニットおよびそれを用いた半導体装置
JP5895220B2 (ja) 半導体装置の製造方法
CN102446864A (zh) 功率模块及其制造方法
WO2011040313A1 (ja) 半導体モジュールおよびその製造方法
US10615131B2 (en) Semiconductor device with high quality and reliability wiring connection, and method for manufacturing the same
CN111276447A (zh) 双侧冷却功率模块及其制造方法
CN111433910B (zh) 半导体装置以及半导体装置的制造方法
JP2009147123A (ja) 半導体装置及びその製造方法
JP4861200B2 (ja) パワーモジュール
WO2023136264A1 (ja) 樹脂封止型半導体装置
JP2011176087A (ja) 半導体モジュール、及び電力変換装置
JP5465313B2 (ja) 半導体装置モジュール
JP2015167171A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502045

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000904

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755204

Country of ref document: EP

Kind code of ref document: A1