WO2016133022A1 - Heat shielding film - Google Patents

Heat shielding film Download PDF

Info

Publication number
WO2016133022A1
WO2016133022A1 PCT/JP2016/054153 JP2016054153W WO2016133022A1 WO 2016133022 A1 WO2016133022 A1 WO 2016133022A1 JP 2016054153 W JP2016054153 W JP 2016054153W WO 2016133022 A1 WO2016133022 A1 WO 2016133022A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
film
mass
index layer
Prior art date
Application number
PCT/JP2016/054153
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 久光
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016133022A1 publication Critical patent/WO2016133022A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a thermal barrier film. More specifically, the present invention relates to a technique for improving weather resistance in a thermal barrier film having a thermal barrier layer containing tungsten oxide.
  • thermal barrier film that is attached to the window glass of buildings and vehicles and shields the transmission of solar heat rays (infrared rays).
  • Patent Document 1 discloses a light absorption layer containing tungsten oxide and / or composite tungsten oxide particles having an infrared cut function and an oxime compound between a pair of transparent substrates.
  • a laminated body for heat shielding has been proposed. It is described that the heat shielding laminate can suppress a decrease in visible light transmittance over time.
  • the laminated body for heat shielding described in Patent Document 1 has a problem in weather resistance because the haze tends to increase in a high temperature and high humidity environment.
  • an object of the present invention is to provide a means capable of suppressing and preventing an increase in haze over time in a high-temperature and high-humidity environment.
  • the present inventor has polymerized a (meth) acrylate monomer having a specific acid value in a thermal barrier layer containing tungsten oxide and / or composite tungsten oxide. It was learned that the above problems could be solved by using a product and a basic nitrogen-containing compound, and the present invention was completed.
  • the object is a thermal barrier film having a thermal barrier layer on a substrate, wherein the thermal barrier layer has an acid value containing at least one of tungsten oxide and composite tungsten oxide, and a (meth) acrylate monomer.
  • the thermal barrier film containing a polymer of 20 or less monomer components and a basic nitrogen-containing compound.
  • the heat shield film of the present invention has a heat shield layer on the substrate.
  • the thermal barrier layer comprises at least one of tungsten oxide and composite tungsten oxide, a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer, and a basic nitrogen-containing compound. contains. According to the above configuration, in the thermal insulation film having the thermal insulation layer containing tungsten oxide and / or composite tungsten oxide, it is possible to suppress / prevent increase in haze over time even in a high temperature and high humidity environment.
  • tungsten oxide and composite tungsten oxide are also collectively referred to as “tungsten oxide or the like”.
  • a polymer of a monomer component containing an (meth) acrylate monomer and having an acid value of 20 or less is also simply referred to as “polymer according to the present invention”.
  • the heat shielding laminate described in Patent Document 1 has a light absorption layer containing tungsten oxide or the like and an oxime compound that is a basic nitrogen-containing compound. Tungsten oxide or the like has a high energy absorption capability in the near infrared region. For this reason, although the heat shielding laminated body of patent document 1 is excellent in heat-shielding property, on the other hand, in an environment with much moisture, the haze is likely to increase with time, and there is a problem in terms of weather resistance. In Patent Document 1, it is described that the light absorption layer may contain a resin binder, but no investigation has been made on the resin binder.
  • the thermal barrier layer containing tungsten oxide or the like is a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer in addition to the basic nitrogen-containing compound. It is characterized by including.
  • the hydrogen ions generated during the formation of the heat shield layer cause hydrolysis of the (meth) acrylate resin (polymer according to the present invention). I guessed to catalyze it.
  • tungsten oxide or the like coexists, tungsten oxide or the like induces a redox reaction under acidic conditions, and further promotes hydrolysis of the polymer.
  • the haze of the thermal barrier film increases with time in a high temperature and high humidity environment.
  • the heat shielding layer according to the present invention contains a basic nitrogen-containing compound.
  • a polymer of a (meth) acrylate monomer having a low acid value for the heat shielding layer hydrolysis of the polymer under high humidity can be suppressed.
  • the carboxylic acid or carboxylate (COOR; R is an alkali metal or alkyl group) present in the polymer is hydrolyzed by the presence of moisture to generate hydrogen ions. And the polymer is hydrolyzed by the same mechanism as described above.
  • the basic nitrogen-containing compound traps (neutralizes) the generated hydrogen ions
  • the amount of hydrogen ions present in the heat shield layer is suppressed over time, and the concentration of hydrogen ions in the heat shield layer Is kept low, thereby inhibiting hydrolysis of the polymer.
  • the raise (especially raise with time) of the heat-shielding film can be suppressed / prevented even in a high temperature and high humidity environment.
  • thermolysis of the polymer in the heat-shielding layer can be suppressed / prevented even in a high-temperature and high-humidity environment. , Weather resistance can be improved.
  • (meth) acrylate and “(meth) acryl” are generic names for acrylate and methacrylate.
  • a compound containing (meth) such as (meth) acryl is a generic term for a compound having “meth” in the name and a compound not having “meta”. That is, “(meth) acryl” means “acryl and / or methacryl”.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the base material has a function of supporting a heat shielding layer and other optional layers (for example, a functional layer typified by a dielectric multilayer film).
  • the substrate is preferably transparent, and various resin films can be used.
  • polyolefin film polyethylene, polypropylene, etc.
  • polyester film polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride polyvinyl chloride
  • cellulose triacetate polyimide
  • polybutyral film polybutyral film
  • cycloolefin polymer film transparent cellulose nanofiber film, etc.
  • polyester films from the viewpoint of transparency, mechanical strength and dimensional stability, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and diols such as ethylene glycol and 1,4-cyclohexanedimethanol It is preferable that it is polyester which has the film formation property which makes a component a main structural component.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • a dielectric multilayer film to be described later and having a self-supporting property can be used.
  • limit especially as a dielectric multilayer film which has a self-supporting property For example, the dielectric multilayer film etc. which were produced by the co-extrusion method or the co-flow method, etc. are mentioned, for example.
  • the material and film thickness of the base material are preferably set so that the value obtained by dividing the thermal shrinkage rate of the thermal barrier film by the thermal shrinkage rate of the base material is in the range of 1 to 3.
  • the thickness of the substrate is preferably 30 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and most preferably 35 to 125 ⁇ m. It is preferable that the thickness of the substrate is 30 ⁇ m or more because wrinkles during handling are less likely to occur. On the other hand, when the thickness of the substrate is 200 ⁇ m or less, for example, when the thermal barrier film is bonded to the substrate, the followability to the curved substrate is improved, and wrinkles are less likely to occur.
  • the substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion. In particular, when it is used as a laminated glass for an automobile windshield, a stretched film is more preferable.
  • the heat shielding layer comprises (a) a tungsten oxide or the like, (b) a polymer of monomer components having a (meth) acrylate monomer and having an acid value of 20 or less, and (c) a basic nitrogen-containing compound. Is mandatory. Specifically, it is formed by applying a heat shielding layer coating solution containing the above (a), (b) and (c) on a substrate, and then irradiating with ultraviolet rays to cure the coating film.
  • the thickness of the heat shield layer is not particularly limited, but is preferably 1 to 10 ⁇ m, more preferably 1.5 to 8 ⁇ m. By setting the thickness to 1 ⁇ m or more, the heat shielding layer can exhibit sufficient heat shielding properties. On the other hand, by setting the thickness to 10 ⁇ m or less, it is possible to prevent cracking of the heat shield layer due to stress.
  • tungsten oxide is a kind of heat ray shielding metal oxide having infrared absorptivity (also referred to as “infrared shielding metal oxide”).
  • the heat shield layer formed from the coating solution has a heat shield function that shields transmission of heat rays (infrared rays).
  • the heat shield layer may contain tungsten oxide or composite tungsten oxide, or may contain a combination of tungsten oxide and composite tungsten oxide. Each of the tungsten oxide and the composite tungsten oxide may be used alone or in the form of a mixture of two or more.
  • the tungsten oxide is represented by the general formula: W y O z , and the same tungsten oxide as described in JP 2013-64042 A or JP 2010-215451 A can be used.
  • W represents tungsten.
  • O represents oxygen.
  • y and z are compositions of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y), and those satisfying the relationship of less than 3 (z / y ⁇ 3) are generally used. Further, the composition of tungsten and oxygen preferably satisfies the relationship of more than 2 and less than 3 (2 ⁇ z / y ⁇ 3), and 2.2 to 2.999 (2.2 ⁇ z / y ⁇ 2.999).
  • the material is chemically stable and can exhibit high infrared absorbing ability, and a necessary amount of free electrons can be generated to provide an efficient infrared absorbing material.
  • the composition of the composite tungsten oxide is not particularly limited, but is preferably an oxide represented by the general formula: M x W y O z in general from the viewpoint of stability. Also, the same ones as described in JP 2010-215451 A can be used.
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, I represents one or more elements selected from I.
  • W represents tungsten.
  • O represents oxygen.
  • x, y, and z are generally compositions of tungsten and M (composition of M with respect to tungsten, x / y) satisfying 0 ⁇ x / y ⁇ 1, and a composition of tungsten and oxygen (of oxygen with respect to tungsten).
  • a composition whose z / y) satisfies 2 ⁇ z / y ⁇ 3 is used.
  • composition of tungsten and M (composition of M with respect to tungsten, x / y) satisfies the relationship of 0.001 ⁇ x / y ⁇ 1, and the composition of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y) )
  • Preferably satisfies the relationship of 2.2 ⁇ z / y ⁇ 3, more preferably satisfies the relationship of 0.2 ⁇ x / y ⁇ 0.5 and 2.45 ⁇ z / y ⁇ 3, and 0 More preferably, the relationship of .31 ⁇ x / y ⁇ 0.35 and 0.27 ⁇ z / y ⁇ 3 is satisfied.
  • the alkali metal is a periodic table group 1 element excluding hydrogen, and is lithium, sodium, potassium, rubidium, cesium, or frangium.
  • Alkaline earth metals are Group 2 elements of the periodic table and are calcium, strontium, barium, and radium.
  • the rare earth elements are Sc, Y and lanthanoid elements (elements from 57th lanthanum to 71st lutetium).
  • the M element is one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Some are preferable, and a cesium-containing composite tungsten oxide represented by Cs x W y O z in which the M element is Cs is particularly preferable.
  • the tungsten oxide that can be used in one embodiment of the present invention is not particularly limited, and examples thereof include Cs 0.33 WO 3 and Rb 0.33 WO 3 . It is particularly preferable to use Cs 0.33 WO 3 which is a cesium-containing composite tungsten oxide. That is, in the present invention, the composite tungsten oxide is preferably cesium-doped tungsten oxide (the thermal barrier layer includes cesium-doped tungsten oxide as the composite tungsten oxide).
  • the shape of the tungsten oxide or the like is not particularly limited, and may take any structure such as a particle shape, a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indeterminate shape, a flake shape, and a spindle shape, but preferably a particulate shape. It is. Further, the size of tungsten oxide or the like is not particularly limited, but when tungsten oxide or the like is in the form of particles, the average particle size (average primary particle diameter, diameter) of the particles such as tungsten oxide is the reflection of visible light.
  • the average particle size is determined by observing particles themselves or particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1,000 arbitrary particles, and calculating the simple average value (number average). As required.
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the content of tungsten oxide or the like in the heat shielding layer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, based on the total solid content of the heat shielding layer. If it is such quantity, since tungsten oxide etc. can absorb a heat ray enough, the thermal insulation performance of an optical control film can be improved more.
  • the content of tungsten oxide or the like (in terms of solid content) in the heat shield layer is not particularly limited, but is preferably 10 with respect to the heat shield layer from the viewpoints of the heat shielding effect and the visible light transmittance. -50 mass%, more preferably 15-40 mass%.
  • the heat shielding layer essentially includes a polymer of a monomer component having an acid value of 20 or less including (b) a (meth) acrylate monomer.
  • the acid value of the monomer component exceeds 20, the concentration of hydrogen ions generated in the heat-shielding layer under high humidity becomes too high, excessively inducing hydrolysis of the polymer, and shielding.
  • the haze of the thermal film increases with time and with time.
  • the acid value of the monomer component is preferably 15 or less, more preferably 10 or less.
  • the (meth) acrylate monomer is a polymerizable compound that is cured by ultraviolet rays.
  • the term (meth) acrylate monomer is a concept that can include not only monomers but also oligomers and prepolymers that can be cured by ultraviolet irradiation.
  • the acid value of the monomer component when using two or more monomers means the acid value of the monomer mixture.
  • the acid value of a monomer component is the value measured by the following method.
  • (meth) acrylate monomer Sg (5 g) is precisely weighed in a flask and used as a sample.
  • the desired (meth) acrylate monomer or (meth) acrylate Monomers and other monomers are mixed at a predetermined mass ratio, and the resulting mixture is precisely weighed into a flask with Sg (5 g) (total mass) as a sample.
  • a mixed solvent of 50 mL of 2-propanol and 50 mL of diethyl ether is added and completely dissolved on a water bath.
  • the (meth) acrylate monomer having an acid value of 20 or less is not particularly limited, but isocyanuric acid EO-modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, diglycerin.
  • trimethylolprohuntri (meth) acrylate dipentaerythritol penta (meth) acrylate, dipenta Erythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable, and trimethylolprohantriacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate are more preferable.
  • a monomer component is other than the (meth) acrylate monomer whose said acid value exceeds 20, or a (meth) acrylate monomer.
  • Other monomers may be included.
  • the (meth) acrylate monomer having an acid value exceeding 20 is not particularly limited as long as it can be cured by ultraviolet irradiation, but ⁇ -carboxy-polycaprolactone mono (meth) acrylate, monohydroxy phthalate Examples include ethyl (meth) acrylate, ⁇ -carboxyethyl (meth) acrylate, and 2- (meth) acryloyloxyethyl succinate.
  • commercially available products such as Aronix M-5300 and M-5400 manufactured by Toagosei Co., Ltd. are also used as appropriate.
  • the monomer or monomer component may be synthesized or a commercially available product may be used.
  • commercially available products include Aronix M-215, M-220, M-225, M-270, M-240, M-309, M-310, M-321, M-350, M-360, M -313, M-315, M-306, M-305, M-303, M-452, M-450, M-408, M-403, M-400, M-402, M-404, M-406 , M-405, M-460 (above, manufactured by Toagosei Co., Ltd.), EBECRYL 145, IRR 214-K, OTA 480, EBECRYL 40, EBECRYL 180, EBECRYL 350 (above, manufactured by Daicel Ornex Co., Ltd.), KAYARAD NPGDA, PEG400DA, FM-400, R-167, HX-220, HX-620, R-604, R-684, GPO-3 3, THE-330, TPA-
  • the monomer component is composed only of a (meth) acrylate monomer having an acid value of 20 or less.
  • the (meth) acrylate monomer is preferably a polymerizable acrylate having a primary hydroxyl group. Since the acrylate having a hydroxyl group shortens the distance between reactive groups due to hydrogen bonding, the crosslinking density can be increased. Therefore, even if the polymer ((meth) acrylate monomer cured product) undergoes some hydrolysis over time, low molecular components are hardly generated, and haze increase can be more effectively suppressed.
  • the number of primary hydroxyl groups in the molecule of the (meth) acrylate monomer having a primary hydroxyl group is preferably 1 to 4. It is more preferable that it is 4 or less from the viewpoint of adhesion. From the same viewpoint, 1 to 2 is more preferable, and 1 is more preferable.
  • the hydroxyl value of the polymerizable acrylate is not particularly limited, but is preferably 20 or more in consideration of further suppression of an increase in haze. More preferably, it is 40 or more. That is, in the present invention, the hydroxyl value of the polymerizable acrylate is particularly preferably 40 or more.
  • the upper limit of the hydroxyl value of the (meth) acrylate monomer is not particularly limited, but usually 200 or less is sufficient. When the hydroxyl value is 200 or less, the effect of suppressing curling caused by moisture absorption is greater.
  • Examples of the (meth) acrylate monomer having such a hydroxyl value include dipentaerythritol penta (meth) acrylate and pentaerythritol tri (meth) acrylate.
  • commercially available products such as Aronix (registered trademark) M-305, M-402, M-404, M-405 manufactured by Toagosei Co., Ltd. may be used as appropriate.
  • the hydroxyl value of the (meth) acrylate monomer when two or more kinds of (meth) acrylate monomers are used means the hydroxyl value of the (meth) acrylate monomer mixture.
  • the hydroxyl value of a (meth) acrylate monomer is a value measured by the following method.
  • (meth) acrylate monomer Xg (1 g) is precisely weighed in a flask and used as a sample.
  • the desired (meth) acrylate monomers are mixed at a predetermined mass ratio, and the resulting mixture is Xg (1 g) (total Mass) is precisely weighed in a flask, and this is used as a sample.
  • 20 mL of an acetylating reagent a solution obtained by adding pyridine to 20 mL of acetic anhydride to 400 mL was accurately added.
  • an air cooling tube is attached to the mouth of the flask and heated in a glycerin bath at 95 to 100 ° C. After 1 hour and 30 minutes, the mixture is cooled, and 1 mL of purified water is added from an air cooling tube to decompose acetic anhydride into acetic acid.
  • titration is performed with a 0.5 mol / L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point. Further, as a blank test, titration is performed without a sample, and an inflection point of the titration curve is obtained.
  • the hydroxyl value is calculated by the following formula (2).
  • B is the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test; C is 0.5 mol / L potassium hydroxide used for titration Amount of ethanol solution (mL); f is a factor of 0.5 mol / L potassium hydroxide ethanol solution; X is sample weight (g); D is acid value; 05 represents 1/2 of 1 mol amount 56.11 of potassium hydroxide.
  • the content of the polymer in the heat shield layer is not particularly limited, but is preferably 20 to 90% by mass with respect to the heat shield layer from the viewpoint of the effect of improving the heat shield property, hard coat properties, and the like. More preferably, it is 20 to 80% by mass, and still more preferably 40 to 80% by mass.
  • the above “content of polymer in the heat shielding layer (solid content conversion)” excludes the solvent of the coating solution for the heat shielding layer. It can also be regarded as the ratio (mass%) of the monomer component to the total mass of the components.
  • the method for producing the polymer according to the present invention is not particularly limited, and a known polymerization method can be applied in the same manner or appropriately modified.
  • the preferable form of the manufacturing method (formation method of a heat shielding layer) of a polymer is explained in full detail below.
  • the heat shielding layer essentially includes (c) a basic nitrogen-containing compound.
  • the basic nitrogen-containing compound contains hydrogen ions generated by hydrolysis of carboxylic acid or carboxylate (COOR; R is an alkali metal or alkyl group) present in a polymer (a structural unit derived from a (meth) acrylate monomer). Trapping (neutralizing) suppresses a rise in the concentration of hydrogen ions existing in the heat shield layer over time.
  • the presence of the basic nitrogen-containing compound in the heat-shielding layer suppresses hydrolysis of the polymer, and increases the haze of the heat-shielding film (especially over time) even in a high-temperature and high-humidity environment. Rise) can be suppressed / prevented.
  • the term “basic” in a basic nitrogen-containing compound is intended to neutralize hydrogen ions generated by dissociation of a carboxylic acid or carboxylate of a polymer (particularly derived from a (meth) acrylate monomer).
  • “basic” in the basic nitrogen-containing compound means that the pKa (acid dissociation constant) in the water of the conjugate acid of the basic nitrogen-containing compound is larger than the pKa in the water of the (meth) acrylate monomer.
  • the ratio of the pKa in the water of the conjugate acid of the basic nitrogen-containing compound to the pKa in the water of the (meth) acrylate monomer is 1.05 to 2.5.
  • the basic nitrogen-containing compound sufficiently traps (neutralizes) hydrogen ions generated by hydrolysis of the carboxylic acid or carboxylate present in the polymer (particularly the (meth) acrylate monomer), Hydrolysis of the polymer can be more effectively suppressed.
  • the amine compound has the formula: N (X) (X ′) (X ′′) (X, X ′ and X ′′ each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, the number of carbon atoms 1 to 12 acyl groups or aryl groups, in which any two substituents of X, X ′ and X ′′ may be linked to form a ring).
  • X, X ′ and X ′′ may be the same or different.
  • alkyl group having 1 to 12 carbon atoms is not particularly limited, but is methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert.
  • n-pentyl isoamyl, neopentyl, tert-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl And linear, branched or cyclic alkyl groups such as a group, undecyl group, dodecyl group, norbornyl group, adamantyl group, bicycloheptyl group, bicycloheptyl group, and bicyclooctyl group.
  • the acyl group having 1 to 12 carbon atoms is not particularly limited, and examples thereof include formyl group, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group and the like. It is done.
  • the aryl group is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, an anthryl group, a pyrenyl group, an azulenyl group, an acenaphthylenyl group, a terphenyl group, and a phenanthryl group.
  • the oxime compound has the formula: HO—N ⁇ C (Y) (Y ′) (Y and Y ′ are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or 1 carbon atom. And a multimer (for example, a dimer) thereof, which is an acyl group or an aryl group of ⁇ 12, wherein Y and Y ′ may be linked to form a ring.
  • Y and Y ′ may be the same or different.
  • the alkyl group, acyl group, and aryl group having 1 to 12 carbon atoms are not particularly limited and have the same definition as the amine compound.
  • the imine compound has the formula: Z—N ⁇ C (Z) (Z ′) (Z, Z ′ and Z ′′ each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a carbon An acyl group or an aryl group having 1 to 12 atoms, wherein any two substituents of Z, Z ′ and Z ′′ may be linked to form a ring, but Z, Z ′ and Z ′′ is not a hydrogen atom).
  • Z, Z ′ and Z ′′ may be the same or different from each other.
  • the alkyl group, acyl group, and aryl group having 1 to 12 carbon atoms are not particularly limited and have the same definition as the amine compound.
  • the thermal barrier film of the present invention when used by being attached to a substrate (for example, glass), the film is considerably heated by sunlight.
  • the basic nitrogen-containing compound having the boiling point as described above does not volatilize from the heat-shielding layer, the effect (for example, the hydrolysis suppression effect of the polymerized product) due to the basic nitrogen-containing compound is longer. Can be demonstrated over a period of time.
  • the boiling point of the basic nitrogen-containing compound is preferably higher than 100 ° C., and preferably in the order of 120 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, 170 ° C. or higher, and 200 ° C. or higher.
  • the upper limit of the boiling point of the basic nitrogen-containing compound is not particularly limited, but is usually 500 ° C. or lower. That is, the boiling point of the basic nitrogen-containing compound is particularly preferably 200 ° C. or higher.
  • the content of the basic nitrogen-containing compound in the heat-shielding layer is not particularly limited, but from the viewpoint of improving the heat-shielding property and effectively suppressing the increase in haze over time, On the other hand, it is preferably 0.03 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 1% by mass. With such an amount, hydrogen ions generated by hydrolysis of the polymer ((meth) acrylate monomer) are trapped (neutralized) more efficiently, and even in a high temperature and high humidity environment, the haze of the thermal barrier film The rise (especially the rise over time) can be more effectively suppressed / prevented.
  • the heat-shielding layer according to the present invention comprises (a) a tungsten oxide or the like, (b) a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer, and (c) a basic nitrogen-containing layer.
  • the formation method is not particularly limited as long as the compound is essential. Although the preferable form of the formation method of the thermal-insulation layer concerning this invention is demonstrated below, this invention is not limited to the following form.
  • the thermal barrier layer according to the present invention comprises (a) a tungsten oxide or the like, (b) a monomer component having an acid value of 20 or less including a (meth) acrylate monomer, and (c) a basic nitrogen-containing layer. It is formed by applying a coating solution for a thermal barrier layer containing a compound, a solvent and, if necessary, other additives added onto the substrate, and then irradiating ultraviolet rays to cure the coating film.
  • a coating solution for a thermal barrier layer containing a compound, a solvent and, if necessary, other additives added onto the substrate and then irradiating ultraviolet rays to cure the coating film.
  • a coating solution for a thermal barrier layer containing (a) a tungsten oxide or the like, (b) a monomer component containing an (meth) acrylate monomer having an acid value of 20 or less, and (c) a basic nitrogen-containing compound is prepared. . Since the details of (a) to (c) have been described above, the description thereof is omitted here.
  • the coating solution for the heat shielding layer may contain a solvent in addition to the essential components (a) to (c).
  • the solvent is not particularly limited.
  • the content of the solvent in the coating solution for the heat shielding layer is not particularly limited, but is generally about 10 to 80% by mass, more preferably 15 to 60% by mass with respect to the total mass of the coating solution. More preferably, it is 20 to 40% by mass.
  • the concentration of tungsten oxide or the like in the coating solution for the heat shielding layer is not particularly limited, but is preferably such a concentration that the content of tungsten oxide or the like in the above-described heat shielding layer is obtained.
  • the concentration of tungsten oxide or the like in the heat shielding layer coating solution is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint of the heat shielding improvement effect.
  • the concentration of the (meth) acrylate monomer in the heat shielding layer coating solution is not particularly limited, but is preferably such a concentration that the content of the polymer in the heat shielding layer described above is obtained.
  • the concentration of the (meth) acrylate monomer in the coating solution for the heat shielding layer is preferably 10 to 50% by mass, more preferably 20 to 35%, from the viewpoint of adjusting the hardness and film modulus to desired values. % By mass.
  • the concentration of the basic nitrogen-containing compound in the coating solution for the heat-shielding layer is not particularly limited, but is preferably such a concentration that the content of the basic nitrogen-containing compound in the above-described heat-shielding layer is obtained.
  • the concentration of the basic nitrogen-containing compound in the coating solution for the heat shielding layer is preferably 0.005 to 5% by mass, more preferably 0.01 to 5% from the viewpoint of further improving the trapping efficiency of hydrogen ions. 1% by mass.
  • the coating solution for the heat shielding layer may contain various additives as necessary.
  • the additive include a photopolymerization initiator, a surfactant for imparting leveling properties, water repellency, slipperiness, and the like; a dye, a pigment, a sensitizer and the like for improving curability by ultraviolet irradiation. .
  • the type of the photopolymerization initiator is not particularly limited, and examples thereof include a cationic photopolymerization initiator, an anionic photopolymerization initiator, and a radical photopolymerization initiator. From the viewpoint of curability and productivity, A radical photopolymerization initiator is preferred.
  • the radical photopolymerization initiator is not particularly limited, and for example, acylphosphine oxides, acetophenones, anthraquinones, thioxanthones, ketals, benzophenones and azo compounds can be used.
  • Acylphosphine oxides are not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, and bis (2,6-dimethoxybenzoyl). ) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, and the like.
  • the acetophenones are not particularly limited.
  • benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal; acetophenone, 2,2- Examples include dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone.
  • the anthraquinones are not particularly limited, and examples thereof include methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and the like.
  • the thioxanthones are not particularly limited, and examples thereof include thioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone and the like.
  • the ketals are not particularly limited, and examples thereof include acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • the benzophenones are not particularly limited, and examples thereof include benzophenone and 4,4-bismethylaminobenzophenone.
  • photopolymerization initiators can be used alone or in combination of two or more.
  • the amount of these photopolymerization initiators used is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the monomer component including the (meth) acrylate monomer. .
  • the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used.
  • a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution.
  • the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation.
  • acrylic surfactant examples include Polyflow Series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal Series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK (registered trademark) -354 (manufactured by Big Chemie Japan Co., Ltd.).
  • silicone-based surfactant examples include BYK (registered trademark) -345, BYK (registered trademark) -347, BYK (registered trademark) -348, BYK (registered trademark) -349 (manufactured by BYK Japan).
  • Surfactants may be used alone or in admixture of two or more.
  • the surfactant is preferably contained in an amount of 0.01% by mass or more and 1% by mass or less based on the total mass of the components excluding the solvent of the coating solution for the heat shielding layer.
  • the coating solution for the heat shielding layer is adjusted by mixing the above components.
  • the order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
  • the coating liquid for heat-shielding layers on a base material (the surface of a base material, or the surface of the outermost layer arrange
  • coating by a well-known method for example, a wire bar Techniques such as spin coating and dip coating can be employed. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater or a comma coater.
  • the drying conditions after application are not particularly limited.
  • the drying temperature is preferably 70 to 110 ° C.
  • the drying time is preferably 30 seconds to 5 minutes.
  • the coating film obtained by applying the thermal barrier layer coating liquid on the substrate is irradiated with ultraviolet rays from the side of the coating film far from the substrate to cure the coating film.
  • the conditions such as the irradiation wavelength, the illuminance, and the light quantity of the ultraviolet rays vary depending on the type of the ultraviolet curable monomer and the polymerization initiator to be used.
  • the illuminance is preferably 50 to 1500 mW / cm 2 and the irradiation energy amount is preferably 50 to 1500 mJ / cm 2 .
  • the heat shield film according to one embodiment of the present invention may have a functional layer in addition to the base material and the heat shield layer.
  • the type of the functional layer is not particularly limited, but will be specifically described below with an example in which the functional layer is a dielectric multilayer film (hereinafter also referred to as “reflection layer”).
  • thermo barrier film including a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately stacked.
  • the dielectric multilayer film (reflective layer) has a configuration in which low refractive index layers and high refractive index layers are alternately stacked.
  • the high refractive index layer and the low refractive index layer are considered as follows.
  • a component that constitutes a high refractive index layer (hereinafter referred to as a high refractive index layer component) and a component that constitutes a low refractive index layer (hereinafter referred to as a low refractive index layer component) are mixed at the interface between the two layers.
  • a layer (mixed layer) including a refractive index layer component and a low refractive index layer component may be formed.
  • a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer
  • a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer.
  • the low refractive index layer contains, for example, a first metal oxide as a low refractive index component
  • the high refractive index layer contains a second metal oxide as a high refractive index component
  • the metal oxide concentration profile in the film thickness direction in these laminated films is measured, and can be regarded as a high refractive index layer or a low refractive index layer depending on the composition.
  • the metal oxide concentration profile of the laminated film is sputtered from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio.
  • a water-soluble resin (organic binder) concentration profile for example, the carbon concentration in the film thickness direction is measured to confirm that the mixed region exists, and the composition is further changed to EDX.
  • each layer etched by sputtering can be regarded as a high refractive index layer or a low refractive index layer.
  • the reflective layer may have a structure having at least one laminate (unit) in which a high refractive index layer and a low refractive index layer containing a polymer are alternately laminated on a substrate.
  • the number of low refractive index layers is not particularly limited, but is preferably 6 to 2000 (that is, 3 to 1000 units), more preferably 10 to 1500 (that is, 5 to 5). 750 units), more preferably 10 to 1000 (that is, 5 to 500 units). If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved.
  • the thermal insulation film which concerns on one form of this invention should just be the structure which has at least 1 or more units on the said base material.
  • the high refractive index layer preferably has a higher refractive index, but the refractive index is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, It is preferably 1.90 to 2.20.
  • the low refractive index layer preferably has a lower refractive index, but the refractive index is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1. 30 to 1.50.
  • the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably Is 0.2 or more, more preferably 0.25 or more.
  • the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferred range. Is preferred. However, the outermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers (high refractive index layer and low refractive index layer) and the number of layers, and the larger the refractive index difference, the same reflectance can be obtained with fewer layers. .
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectivity (infrared shielding rate) of 90% or more, if the difference in refractive index is smaller than 0.1, a laminate exceeding 100 layers is required, which not only reduces productivity. , Scattering at the laminated interface increases and transparency decreases. From the viewpoint of improving the reflectance and reducing the number of layers, there is no upper limit to the difference in refractive index, but it is substantially about 1.4.
  • the refractive index is obtained as a difference between the high refractive index layer and the low refractive index layer according to the following method. That is, each refractive index layer is formed as a single layer (using a base material if necessary), and after cutting this sample into 10 cm ⁇ 10 cm, the refractive index is obtained according to the following method. Using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray.
  • the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result.
  • n ⁇ d wavelength / 4 when viewed as a single layer film
  • the reflected light is controlled to be strengthened by the phase difference.
  • the reflectance can be increased.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the dielectric multilayer film can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area
  • a (near) infrared reflection (shield) film may be used.
  • the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, more preferably 70% or more, and 75% or more. Further preferred. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that when each refractive index layer constituting the dielectric multilayer film is focused on two adjacent refractive index layers, All forms other than those having the same refractive index are included.
  • the thickness of the refractive index layer per layer is preferably 20 to 1000 nm, more preferably 50 to 500 nm, still more preferably 100 to 300 nm, and even more preferably 100 to 200 nm. It is particularly preferred that The thickness per layer of the refractive index layer can be adjusted by changing the width in the film thickness direction at the die extrusion port and / or by stretching conditions. In addition, when extending
  • the low refractive index layer and the high refractive index layer essentially contain a polymer material.
  • a film forming method such as coating or spin coating can be selected. Since these methods are simple and do not ask the heat resistance of a base material, there are many choices, and it can be said that it is an effective film forming method particularly for a resin base material. For example, a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time.
  • membrane containing a polymer material has high flexibility, even if it winds up at the time of production or conveyance, these defects do not generate easily and there exists an advantage that it is excellent in handleability.
  • the polymer contained in the refractive index layer is not particularly limited, and specific examples include polyethylene terephthalate (PET), a copolymer of polyethylene terephthalate (coPET), poly (methyl methacrylate) (PMMA), and poly (methyl Methacrylate) copolymer (coPMMA), cyclohexanedimethanol (PETG), cyclohexanedimethanol copolymer (coPETG), polyethylene naphthalate (PEN) polyethylene naphthalate copolymer (coPEN), polyethylene naphthalate, polyethylene naphthalate copolymer, Examples include, but are not limited to, poly (methyl methacrylate) and copolymers of poly (methyl methacrylate).
  • each high refractive index layer and low refractive index layer one or a combination of two or more of these polymers can be used.
  • suitable polymer combinations include those described in US Pat. No. 6,352,761.
  • the polymer contained in the high refractive index layer and the low refractive index layer is preferably a water-soluble polymer that functions as a binder.
  • the high refractive index layer and the low refractive index layer preferably contain a water-soluble polymer, so that environmental problems due to the organic solvent can be solved and the flexibility of the coating film can be achieved.
  • the polymers contained in the high refractive index layer and the low refractive index layer may be the same component or different components, but are preferably different.
  • water-soluble polymer examples include gelatin, thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate- Acrylic resin such as acrylic acid ester copolymer or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer Styrene-acrylic resin such as styrene- ⁇ -methylstyrene-acrylic acid copolymer or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene- 2-hydroxyethacryl
  • the refractive index layer preferably contains polyvinyl alcohol which is a polyvinyl alcohol or a derivative thereof as a polymer.
  • a polymer may be used independently and may be used in combination of 2 or more type.
  • the polymer may be a synthetic product or a commercially available product.
  • the polymer is not particularly limited, and known polymers used for the high refractive index layer and the low refractive index layer, such as International Publication No. 2012/128109, JP2013-121567A, JP2013-148849A, and the like. Can be used in the same way.
  • the polyvinyl alcohol-based resin includes various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
  • the polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably an average degree of polymerization of 1,500 to 5,000.
  • the degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%.
  • modified polyvinyl alcohol examples include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383.
  • ethylene-modified polyvinyl alcohol for example, those described in JP-A-2009-107324, JP-A-2003-248123, JP-A-2003-342322, and Japanese Patent Application No. 2013-206913 can be used.
  • commercially available products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may be used.
  • Examples of the vinyl alcohol-based polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.), Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and polyvinyl acetal resin obtained by reacting polyvinyl alcohol with an aldehyde (for example, “S REC” manufactured by Sekisui Chemical Co., Ltd., silanol-modified polyvinyl alcohol having a silanol group (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol-based resin having an acetoacetyl group in the molecule (for example, And “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • EXEVAL trade name: manufactured by Kuraray Co., Ltd.
  • Nichigo G polymer trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • polyvinyl alcohol may be used alone or in combination of two or more.
  • Polyvinyl alcohol may be a synthetic product or a commercial product.
  • the mass average molecular weight of polyvinyl alcohol is preferably 60,000 to 250,000.
  • the value measured by static light scattering, gel permeation chromatography (GPC), TOFMASS, etc. is adopted as the value of “mass average molecular weight”.
  • the content of the water-soluble polymer in the refractive index layer is preferably 5 to 75% by mass, and more preferably 10 to 70% by mass with respect to the total solid content of the refractive index layer.
  • the refractive index layer is formed by a wet film-forming method when the content of the water-soluble polymer is 5% by mass or more, the transparency of the film surface is disturbed when the coating film obtained by coating is dried. This is preferable because it is possible to prevent the deterioration.
  • the content of the water-soluble polymer is 75% by mass or less, the content is suitable when the metal oxide particles are contained in the refractive index layer, and the refractive index between the low refractive index layer and the high refractive index layer.
  • the rate difference can be increased.
  • content of water-soluble polymer is calculated
  • At least one of the low refractive index layer or the high refractive index layer may contain a metal oxide (particle).
  • a metal oxide particle
  • the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved.
  • both the low refractive index layer and the high refractive index layer contain metal oxide particles
  • the refractive index difference can be further increased.
  • the number of stacked layers can be reduced and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
  • the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal
  • a metal oxide which is one kind or two or more kinds of metals can be used.
  • Metal oxide particles in high refractive index layer examples include titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, Iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide, barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, tin oxide, lead oxide, and Examples thereof include lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide (MgAl 2 O 4 ), which are double oxides composed of these oxides.
  • rare earth oxides can also be used as the metal oxide particles. Specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, and oxidation. Examples also include terbium, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
  • the metal oxide particles used in the high refractive index layer are preferably metal oxide particles having a refractive index of 1.90 or more, and examples thereof include zirconium oxide, cerium oxide, titanium oxide, and zinc oxide. Among them, titanium dioxide is preferable because it can form a transparent and higher refractive index layer having a higher refractive index, and it is particularly preferable to use rutile (tetragonal) titanium oxide particles.
  • the metal oxide particles used for the high refractive index layer may be used singly or in combination of two or more.
  • the volume average particle size of the metal oxide particles used for the metal oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. Further preferred.
  • titanium oxide particles those obtained by modifying the surface of the titanium oxide sol so as to be dispersible in water or an organic solvent are preferably used.
  • preparation method of the aqueous titanium oxide sol include, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, JP-A-63-3. Reference can be made to the matters described in Japanese Patent No. 17221.
  • the average particle diameter of titanium oxide used for the metal oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 50 nm or less, and the viewpoint that the haze value is low and the visible light transmittance is excellent. 1 to 30 nm is more preferable, and 1 to 20 nm is more preferable. If the volume average particle size is in the above range, it is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • the average particle diameter means a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a particle image appearing on the cross section or surface of the refractive index layer.
  • the particle diameters of 1,000 arbitrary particles are measured by the method of observing the above, and particles having particle diameters of d1, d2,.
  • the average particle size mv ⁇ (vi ⁇ di) ⁇ / ⁇ (vi) ⁇ The volume average particle size weighted by the volume to be measured.
  • the core-shell particles may be in the form of core-shell particles in which titanium oxide is coated with a silicon-containing hydrated oxide.
  • the core-shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on a titanium oxide serving as a core.
  • the intermixing of the low refractive index layer and the high refractive index layer is achieved by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin.
  • the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles.
  • the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. .
  • such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
  • the titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because rutile-type titanium oxide particles have lower photocatalytic activity than anatase-type titanium oxide particles, which increases the weather resistance of the high refractive index layer and the adjacent low refractive index layer, and further increases the refractive index. is there.
  • the “silicon-containing hydrated oxide” in this specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and the effect according to one embodiment of the present invention. It is more preferable to have a silanol group in order to obtain
  • the coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, and more preferably 3 to 8% by mass with respect to the metal oxide particles. This is because when the coating amount is 30% by mass or less, it is easy to increase the refractive index of the high refractive index layer, and when the coating amount is 3% by mass or more, the coated particles can be stably formed.
  • the titanium oxide particles As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method.
  • JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
  • titanium oxide particles are often used in a surface-treated state for the purpose of suppressing the photocatalytic activity of the particle surface and improving dispersibility in a solvent, etc.
  • Silica, alumina, aluminum hydroxide, zirconia, and the like are preferably treated with one or more of them. More specifically, the surface of the titanium oxide particle is covered with a coating layer made of silica, and the surface of the particle is negatively charged, or the surface is positively charged at a pH of 8 to 10 where a coating layer made of aluminum oxide is formed. The one that bears is known.
  • the content of the metal oxide particles in the high refractive index layer is preferably 20 to 80% by mass, more preferably 30 to 75% by mass, and further preferably 40 to 70% by mass.
  • Metal oxide particles in the low refractive index layer As the metal oxide particles mainly used in the low refractive index layer, it is preferable to use silicon dioxide as the metal oxide particles, and it is particularly preferable to use colloidal silica.
  • the metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm.
  • the average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle size of the metal oxide in the low refractive index layer is determined by observing the particles themselves or the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1,000 arbitrary particles. The simple average value (number average) is obtained.
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the content of the metal oxide particles in the low refractive index layer is preferably 5 to 80% by mass with respect to the solid content of the low refractive index layer, and preferably 10 to 75% by mass from the viewpoint of refractive index. More preferably.
  • Colloidal silica is obtained by heating and aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer.
  • a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer.
  • Such colloidal silica may be a synthetic product or a commercially available product.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • each refractive index layer includes, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No.
  • optical brighteners sulfuric acid, phosphoric acid, acetic acid PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents,
  • additives such as DOO agent may contain. The content of these additives is preferably 0.1 to 10% by mass with respect to the solid content of the refractive index layer.
  • a curing agent can be used to cure the water-soluble polymer.
  • Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc.), aldehyde-based curing agents (formaldehyde, glyoxal, etc.), active halogen-based curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active Examples thereof include vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.
  • each refractive index layer may contain a surfactant for adjusting the surface tension at the time of application.
  • a surfactant for adjusting the surface tension at the time of application.
  • an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant, and an anionic surfactant is more preferable.
  • Preferable compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule.
  • the content of the surfactant in each refractive index layer is preferably 0.01 to 5% by mass with respect to the solid content of the refractive index layer.
  • the method for producing the dielectric multilayer film is not particularly limited, and examples thereof include a method of forming by coating and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer.
  • the method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, and the monomer component, the metal oxide particles, the basic nitrogen-containing compound, and others added as necessary And a method of adding a solvent and stirring and mixing.
  • the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed all at once while stirring. If necessary, it may be adjusted to an appropriate viscosity using a solvent.
  • the coating solution for forming the low refractive index layer it may be prepared while heating appropriately.
  • the solvent for adjusting the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In consideration of environmental aspects due to the scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%.
  • volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
  • the coating is applied on the substrate and dried to form a dielectric multilayer film.
  • the coating method is not particularly limited and may be either a sequential coating method or a simultaneous multilayer coating method, but a simultaneous multilayer coating method is preferable from the viewpoint of productivity and the like.
  • a curtain coating method for example, a curtain coating method, a slide bead coating method using a hopper described in U.S. Pat. Nos. 2,761,419 and 2,761,791, an extrusion coating method and the like are preferably used. It is done.
  • the temperature of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer at the time of simultaneous multilayer coating is preferably 25 to 60 ° C., and 35 to 50 ° C. when using the slide bead coating method. A temperature range is more preferred. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating is not particularly limited.
  • the slide bead coating method it is preferably in the range of 5 to 100 mPa ⁇ s, more preferably in the range of 10 to 50 mPa ⁇ s, in the preferable temperature range of the coating liquid.
  • the curtain coating method it is preferably in the range of 5 to 1200 mPa ⁇ s, more preferably in the range of 25 to 500 mPa ⁇ s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • Specific coating and drying methods are not particularly limited, but when a reflective film is formed by a sequential coating method, the coating solution for low refractive index layer and the high refractive index layer heated to 25 to 60 ° C. One of the coating liquids is applied onto a substrate and dried to form a layer, and then the other coating liquid is applied onto this layer and dried to form a layer. This is sequentially applied so that the number of layers necessary for expressing the desired reflection performance is obtained, thereby obtaining a reflection film precursor.
  • drying it is preferable to dry the formed coating film at 30 ° C. or higher. For example, it is preferable to dry in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C.
  • the temperature of the constant rate drying unit is less than the temperature of the rate-decreasing drying unit.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the coating solution for the low refractive index layer and the coating solution for the high refractive index layer are heated to 25 to 60 ° C., and are applied to the low refractive index layer on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher.
  • More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, and the fluidity of the substances in each layer or in each layer is reduced or gelled. It means a process.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 7 minutes, and more preferably within 5 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more.
  • the components in the layer can be sufficiently mixed.
  • the set time by setting the set time to a short time, the interlayer diffusion of the metal oxide nanoparticles can be prevented, and the difference in refractive index between the high refractive index layer and the low refractive index layer can be made desirable. In the case where high elasticity occurs quickly at the interface between the high refractive index layer and the low refractive index layer, a suitable interface can be formed without providing a setting step.
  • the set time includes other components such as gelatin, pectin, agar, carrageenan, gellan gum and other known gelling agents. It can adjust by adding.
  • the configuration of the functional layer is specifically described by taking the case where the functional layer is a dielectric multilayer film as an example.
  • the present invention can be applied to various functional layers other than the dielectric multilayer film. Is possible.
  • the functional layer other than the dielectric multilayer film include an antistatic layer, an adhesion-imparting intermediate layer, a color material layer, and the like, and conventionally known knowledge is appropriately used for these specific configurations. Reference can be made.
  • the thermal barrier film according to this embodiment can be applied to a wide range of fields. For example, it is attached to facilities exposed to sunlight for a long time, such as outdoor windows of buildings and automobile windows, and it is mainly used to improve weather resistance as a film for window pasting to provide a heat shielding function, a film for agricultural greenhouses, etc. Used for purposes.
  • the heat shield film according to the present invention may have an adhesive layer.
  • This pressure-sensitive adhesive layer is usually provided on the outermost surface of the base material of the heat-shielding film on the side opposite to the heat-shielding layer, and further known release paper may be further provided.
  • the configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • the adhesive for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
  • the heat-shielding film according to this embodiment is preferably used for a heat-shielding body that is a member bonded to a substrate such as glass or a glass-substituting resin directly or via an adhesive layer or the adhesive layer. it can.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, Examples thereof include phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin, metal plate, ceramic and the like.
  • the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate that can be used in the present invention can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • glass is particularly preferable from the viewpoint of practicality.
  • the substrate may be a flat surface or a curved surface.
  • Thermoforming for laminating with a substrate having a curved surface is generally performed on one surface of the substrate having a curved surface, with the heat-shielding layer of the heat-shielding film on the inside, that is, in the state facing the substrate toward the substrate, Deform along the shape of the substrate.
  • the heat shielding layer of the heat shielding film is bonded to the substrate on the opposite surface of the substrate having a curved surface in a state where the heat shielding layer is directed to the outside, that is, the substrate is directed to the opposite side of the substrate.
  • another embodiment of the present invention is a heat shield made by bonding a heat shield film to a substrate.
  • the adhesive forming the adhesive layer examples include an adhesive mainly composed of a photocurable or thermosetting resin.
  • the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive.
  • an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost.
  • a solvent system is preferable in the acrylic pressure-sensitive adhesive because the peel strength can be easily controlled.
  • a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • polyvinyl butyral resin or ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Plastics Co., Ltd.
  • ethylene-vinyl acetate copolymer manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin
  • modified ethylene-vinyl acetate Copolymers manufactured by Tosoh Corporation
  • Insulation performance and solar heat shielding performance of a heat shielding film or a heat shield are generally JIS R 3209: 1998 (multi-layer glass), JIS R 3106: 1998 (transmittance, reflectance, emissivity, solar radiation of plate glass). Heat acquisition rate test method), JIS R 3107: 1998 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • the coating liquid used for preparation of the thermal-insulation film of an Example and a comparative example was prepared as follows.
  • thermal barrier coating liquid HC1 Aronix M-309 (trimethylol prohan triacrylate, manufactured by Toagosei Co., Ltd.) 390 parts by mass, cesium doped tungsten oxide (CWO) dispersion (YMF-02A, total solid concentration 28 mass% (cesium) as composite tungsten oxide Doped tungsten oxide concentration 18.5% by mass), composition: Cs 0.33 WO 3 , average primary particle size: 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 650 parts by mass, 2, 4, 6 as basic nitrogen-containing compounds -3 parts by mass of trimethylpyridine (manufactured by Kanto Chemical Co., Inc.) and 300 parts by mass of methyl ethyl ketone as a solvent were added.
  • CWO cesium doped tungsten oxide
  • YMF-02A total solid concentration 28 mass% (cesium) as composite tungsten oxide
  • Doped tungsten oxide concentration 18.5% by mass composition: Cs 0.33 WO 3 ,
  • thermal barrier coating liquid HC2 (Preparation of thermal barrier coating liquid HC2)
  • thermal barrier layer coating solution HC2 390 parts by mass of Aronix M-309, 366 parts by mass of Aronix M-309 and Aronix M-5300 ( ⁇ -carboxy-polycaprolactone monoacrylate, manufactured by Toagosei Co., Ltd. )
  • a thermal barrier layer coating solution HC2 was prepared in the same manner as the thermal barrier layer coating solution HC1 except that the mixture was changed to a mixture with 24 parts by mass.
  • thermo barrier coating liquid HC3 (Preparation of thermal barrier coating liquid HC3)
  • 2,4,6-trimethylpyridine was changed to triethylamine (manufactured by Kanto Chemical Co., Inc.)
  • the heat shielding layer was the same as the heat shielding layer coating solution HC1.
  • Coating solution HC3 was prepared.
  • thermo barrier coating liquid HC5 (Preparation of thermal barrier coating liquid HC5)
  • 2,4,6-trimethylpyridine was changed to 2,2,4,4-tetramethyl-3-pentanone imine (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • a heat shielding layer coating liquid HC5 was prepared.
  • thermo barrier coating liquid HC6 (Preparation of thermal barrier coating liquid HC6)
  • 2,4,6-trimethylpyridine was changed to cyclohexanone oxime (manufactured by Wako Pure Chemical Industries, Ltd.), the same as the heat shielding layer coating solution HC1, A coating solution HC6 for a heat shielding layer was prepared.
  • thermal barrier coating liquid HC7 (Preparation of thermal barrier coating liquid HC7)
  • the coating liquid HC7 for the thermal barrier layer was prepared in the same manner as the coating liquid HC6 for the thermal barrier layer, except that it was changed to).
  • thermal barrier coating liquid HC8 (Preparation of thermal barrier coating liquid HC8)
  • the heat shielding layer coating solution HC8 was prepared in the same manner as the heat shielding layer coating solution HC6 except that the addition amount of cyclohexanone oxime was changed from 3 parts by mass to 0.3 parts by mass.
  • thermo barrier coating liquid HC9 (Preparation of thermal barrier coating liquid HC9) In the preparation of the heat shielding layer coating solution HC8, except that the amount of cyclohexanone oxime added was changed from 0.3 parts by mass to 0.6 parts by mass, the same as the heat shielding layer coating solution HC8, A coating solution HC9 was prepared.
  • thermo barrier coating liquid HC10 (Preparation of thermal barrier coating liquid HC10) In the preparation of the heat shielding layer coating solution HC8, except that the addition amount of cyclohexanone oxime was changed from 0.3 parts by mass to 3 parts by mass, the same as the heat shielding layer coating solution HC8, the coating for the heat shielding layer Liquid HC10 was prepared.
  • thermal barrier coating liquid HC11 (Preparation of thermal barrier coating liquid HC11) In the preparation of the thermal barrier layer coating liquid HC8, the thermal barrier layer coating liquid HC8 was used except that the amount of cyclohexanone oxime added was changed from 0.3 parts by mass to 6 parts by mass. Liquid HC11 was prepared.
  • thermal barrier coating liquid HC12 preparation of thermal barrier coating liquid HC12.
  • the thermal barrier layer coating solution HC8 except that the amount of cyclohexanone oxime added was changed from 0.3 parts by mass to 31 parts by mass, the same procedure as for the thermal barrier layer coating solution HC8 was applied. Liquid HC12 was prepared.
  • thermal barrier coating liquid HC13 (Preparation of thermal barrier coating liquid HC13) In the preparation of the coating solution HC1 for the heat shielding layer, 390 parts by mass of Aronix M-309 was changed to a mixture of 293 parts by mass of Aronix M-309 and 97 parts by mass of Aronix M-5300. A thermal barrier layer coating solution HC13 was prepared in the same manner as the thermal barrier layer coating solution HC1, except that 6-trimethylpyridine was not added.
  • thermal barrier coating liquid HC14 (Preparation of thermal barrier coating liquid HC14)
  • the thermal barrier was changed except that 390 parts by mass of Aronix M-309 was changed to a mixture of 293 parts by mass of Aronix M-309 and 97 parts by mass of Aronix M-5300.
  • a heat shielding layer coating solution HC14 was prepared.
  • thermo barrier coating liquid HC15 preparation of thermal barrier coating liquid HC15
  • a heat shielding layer coating solution HC15 was prepared in the same manner as the heat shielding layer coating solution HC14 except that 2,4,6-trimethylpyridine was changed to cyclohexanone oxime. did.
  • thermal barrier coating liquid HC16 (Preparation of thermal barrier coating liquid HC16)
  • a thermal barrier layer coating solution HC16 was prepared in the same manner as the thermal barrier layer coating solution HC15.
  • the coating solution for low refractive index layer 380 parts by mass of colloidal silica (10% by mass, Snowtex (registered trademark) OXS, average particle size of primary particles 4-6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (3% by mass) 300 parts by weight of polyvinyl alcohol (4% by weight, JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, manufactured by Nippon Acetate / Poval) 3 parts by weight of surfactant (5% by weight, Softazolin LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 45 ° C.
  • the coating solution for low refractive index layer was prepared by finishing 1000 parts by mass with pure water.
  • titanium dioxide sol having a solid content concentration of 20% by mass and having SiO 2 adhered to the surface.
  • Attached titanium dioxide sol (volume average particle size: 9 nm).
  • a high refractive index layer coating solution was prepared by adding 0.4 parts by mass of a 5% by mass aqueous solution of LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.).
  • thermal barrier film sample 1 On a substrate (50 ⁇ m thick polyethylene terephthalate film, Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.), a thermal barrier coating solution HC1 was applied with a gravure coater under the condition that the dry film thickness was 5 ⁇ m, and 90 ° C. For 1 minute. Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface side far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2 , thereby shielding heat. A layer was formed, and a thermal barrier film sample 1 was produced.
  • Thermal barrier film samples 2 to 16 were produced in the same manner as the thermal barrier film sample 1 except that the thermal barrier layer coating liquid HC1 was changed to the thermal barrier layer coating liquids HC2 to 16, respectively.
  • thermal barrier film sample 17 A substrate (50 ⁇ m thick polyethylene terephthalate film, Cosmo Shine A4300) heated to 45 ° C. while keeping the coating solution for the low refractive index layer and the coating solution for the high refractive index layer at 45 ° C. using a slide hopper coating apparatus. , Manufactured by Toyobo Co., Ltd.), 11 layers were simultaneously applied (total film thickness: 1.5 ⁇ m). At this time, the lowermost layer and the uppermost layer were low refractive index layers, and other than that, the low refractive index layers and the high refractive index layers were alternately laminated.
  • the coating amount was adjusted so that the film thickness during drying was 150 nm for each low refractive index layer and 120 nm for each high refractive index layer.
  • 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown and dried to produce a dielectric multilayer film consisting of 11 layers.
  • the thermal barrier layer coating solution HC10 is applied with a gravure coater under the condition that the dry film thickness is 5 ⁇ m, and dried at 90 ° C. for 1 minute. I let you.
  • the coating film is cured by irradiating ultraviolet rays from the surface side far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2 , thereby shielding heat A layer was formed, and a thermal barrier film sample 17 was produced.
  • thermal barrier film samples 1 to 17 Details of these thermal barrier film samples 1 to 17 are shown in Table 1.
  • composition of HC1 to HC15 is summarized in Table 1 below.
  • “CWO” means cesium-doped tungsten oxide.
  • the amount of each basic nitrogen-containing compound added to the coating solution is the content of the basic nitrogen-containing compound in the heat shielding layer (in terms of solid content).
  • Each of the heat shield film samples 1 to 17 produced above was affixed to glass, and using a super xenon weather meter (Suga Test Machine SX75), with a radiant intensity of 180 W / m 2 and a rainfall of 18 minutes / 60 minutes. Irradiation was performed for 48 hours and 500 hours (weather resistance test).
  • the haze is measured using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.), and the difference between the haze values before the weather test and 48 hours after the weather test ( ⁇ HAZE (48h)) and before the weather test and 500 hours of the weather test.
  • the difference ( ⁇ HAZE (500 h)) of the later haze value was calculated.
  • the calculation was performed using the average value of 10 heat shield film samples. It means that the smaller the value of ⁇ HAZE, the smaller the degree of haze rise and the better the weather resistance.
  • the heat shield films 1 to 12 and 17 of Examples 1 to 13 increased in haze over time as compared to the heat shield films 13 to 16 of Comparative Examples 1 to 4. Can be significantly suppressed.
  • Heat shields 1 to 12 and 17 were produced using the above heat shield film samples 1 to 12 and 17. On the transparent acrylic resin plate having a thickness of 5 mm and 20 cm ⁇ 20 cm, the heat shielding film samples 1 to 12 and 17 were adhered with an acrylic adhesive to produce the heat shielding bodies 1 to 12 and 17, respectively.
  • the manufactured heat shields 1 to 12 and 17 were easily usable despite their large size, and excellent heat shielding performance could be confirmed.
  • the thermal barrier film sample 17 having a dielectric multilayer film was used, particularly excellent thermal barrier performance could be confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

 The present invention provides a means for suppressing/preventing an increase in hazing over time in high temperature, high humidity environments. This heat shielding film has a heat shielding layer on a substrate, said heat shielding layer comprising: at least one among tungsten oxide and composite tungsten oxide; a polymer of a monomer component having an acid value of at most 20 and including a (meth)acrylate monomer; and a basic, nitrogen-containing compound.

Description

遮熱フィルムThermal barrier film
 本発明は、遮熱フィルムに関する。より詳細には、本発明は、タングステン酸化物を含有する遮熱層を有する遮熱フィルムにおいて、耐候性を改善する技術に関する。 The present invention relates to a thermal barrier film. More specifically, the present invention relates to a technique for improving weather resistance in a thermal barrier film having a thermal barrier layer containing tungsten oxide.
 省エネルギー対策の一環として、冷房設備にかかる負荷を減らす観点から、建物や車両の窓ガラスに装着させて、太陽光の熱線(赤外線)の透過を遮蔽する遮熱フィルムへの要望が高まってきている。 As part of energy-saving measures, from the viewpoint of reducing the load on cooling equipment, there is an increasing demand for a thermal barrier film that is attached to the window glass of buildings and vehicles and shields the transmission of solar heat rays (infrared rays). .
 かような遮熱フィルムとしては、例えば、特許文献1には、一対の透明基板の間に、赤外線カット機能を有するタングステン酸化物および/または複合タングステン酸化物粒子ならびにオキシム化合物を含む光吸収層を配置してなる熱遮蔽用積層体が提案されている。当該熱遮蔽用積層体は、可視光透過率の経時的な低下を抑制できることが記載されている。 As such a heat-shielding film, for example, Patent Document 1 discloses a light absorption layer containing tungsten oxide and / or composite tungsten oxide particles having an infrared cut function and an oxime compound between a pair of transparent substrates. A laminated body for heat shielding has been proposed. It is described that the heat shielding laminate can suppress a decrease in visible light transmittance over time.
特開2013-088762号公報JP 2013-087762 A
 しかしながら、特許文献1に記載の熱遮蔽用積層体は、高温高湿環境下でヘイズが上昇しやすく耐候性に課題があった。 However, the laminated body for heat shielding described in Patent Document 1 has a problem in weather resistance because the haze tends to increase in a high temperature and high humidity environment.
 したがって、本発明は、上記事情を鑑みてなされたものであり、高温高湿環境下での経時的なヘイズの上昇を抑制・防止しうる手段を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a means capable of suppressing and preventing an increase in haze over time in a high-temperature and high-humidity environment.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った結果、タングステン酸化物および/または複合タングステン酸化物を含む遮熱層に、特定の酸価を有する(メタ)アクリレートモノマーの重合物および塩基性含窒素化合物を使用することによって、上記課題を解決できることを知得し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor has polymerized a (meth) acrylate monomer having a specific acid value in a thermal barrier layer containing tungsten oxide and / or composite tungsten oxide. It was learned that the above problems could be solved by using a product and a basic nitrogen-containing compound, and the present invention was completed.
 すなわち、上記目的は、基材上に遮熱層を有する遮熱フィルムであって、前記遮熱層が、タングステン酸化物および複合タングステン酸化物の少なくとも一方、(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物、ならびに塩基性含窒素化合物を含有する、遮熱フィルムによって達成される。 That is, the object is a thermal barrier film having a thermal barrier layer on a substrate, wherein the thermal barrier layer has an acid value containing at least one of tungsten oxide and composite tungsten oxide, and a (meth) acrylate monomer. This is achieved by a thermal barrier film containing a polymer of 20 or less monomer components and a basic nitrogen-containing compound.
 本発明の遮熱フィルムは、基材上に遮熱層を有する。本発明は、前記遮熱層が、タングステン酸化物および複合タングステン酸化物の少なくとも一方、(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物、ならびに塩基性含窒素化合物を含有する。上記構成によれば、タングステン酸化物および/または複合タングステン酸化物を含有する遮熱層を有する遮熱フィルムにおいて、高温高湿環境下であっても経時的なヘイズの上昇を抑制・防止できる。 The heat shield film of the present invention has a heat shield layer on the substrate. In the present invention, the thermal barrier layer comprises at least one of tungsten oxide and composite tungsten oxide, a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer, and a basic nitrogen-containing compound. contains. According to the above configuration, in the thermal insulation film having the thermal insulation layer containing tungsten oxide and / or composite tungsten oxide, it is possible to suppress / prevent increase in haze over time even in a high temperature and high humidity environment.
 本明細書では、「タングステン酸化物および複合タングステン酸化物の少なくとも一方」を一括して「タングステン酸化物等」とも称する。また、本明細書では、(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物を単に「本発明に係る重合物」とも称する。 In this specification, “at least one of tungsten oxide and composite tungsten oxide” is also collectively referred to as “tungsten oxide or the like”. In the present specification, a polymer of a monomer component containing an (meth) acrylate monomer and having an acid value of 20 or less is also simply referred to as “polymer according to the present invention”.
 特許文献1に記載される熱遮蔽用積層体は、タングステン酸化物等及び塩基性含窒素化合物であるオキシム化合物を含む光吸収層を有する。タングステン酸化物等は近赤外領域でのエネルギー吸収能が高い。このため、特許文献1の熱遮蔽用積層体は遮熱性に優れるが、その一方で、水分の多い環境下では経時的にヘイズが上昇しやすく耐候性の点で課題があった。なお、特許文献1では、光吸収層は樹脂バインダーを含んでもよいと記載されるものの、樹脂バインダーについてはなんら検討がなされていなかった。 The heat shielding laminate described in Patent Document 1 has a light absorption layer containing tungsten oxide or the like and an oxime compound that is a basic nitrogen-containing compound. Tungsten oxide or the like has a high energy absorption capability in the near infrared region. For this reason, although the heat shielding laminated body of patent document 1 is excellent in heat-shielding property, on the other hand, in an environment with much moisture, the haze is likely to increase with time, and there is a problem in terms of weather resistance. In Patent Document 1, it is described that the light absorption layer may contain a resin binder, but no investigation has been made on the resin binder.
 これに対して、本発明は、タングステン酸化物等を含む遮熱層が、塩基性含窒素化合物に加えて、(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物を含むことを特徴とする。当該構成をとることによって、高温高湿環境下であっても、遮熱フィルムのヘイズの経時的な上昇を抑制・防止できる。本発明の遮熱フィルムが上記効果を奏する詳細なメカニズムは不明であるが、以下のように推測される。なお、本発明は下記メカニズムに何ら拘束されるものではない。 On the other hand, in the present invention, the thermal barrier layer containing tungsten oxide or the like is a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer in addition to the basic nitrogen-containing compound. It is characterized by including. By taking this configuration, it is possible to suppress / prevent the increase in haze of the thermal barrier film over time even in a high temperature and high humidity environment. Although the detailed mechanism by which the heat-shielding film of the present invention exhibits the above effects is unknown, it is presumed as follows. In addition, this invention is not restrained by the following mechanism at all.
 すなわち、遮熱フィルムのヘイズの経時的な上昇の原因について鋭意検討を行った結果、遮熱層形成時に発生する水素イオンが(メタ)アクリレート系樹脂(本発明に係る重合物)の加水分解を触媒するためではないかと推測した。特に、タングステン酸化物等が共存すると、タングステン酸化物等が酸性条件下で酸化還元反応を誘導して、重合物の加水分解をさらに促進する。その結果、高温高湿環境下では遮熱フィルムのヘイズが経時的に上昇してしまう。このため、酸価の低い、即ち、カルボキシル基またはその塩の含有量の低い(メタ)アクリレートモノマーを含む単量体成分を使用することによって、高湿下で遮熱層中に発生する水素イオン量を低減し、これにより重合物の加水分解を抑制できる。ゆえに、上記構成をとることによって、高温高湿環境下であっても、遮熱フィルムのヘイズの上昇(特に初期の上昇)を抑制・防止することができる。 That is, as a result of earnestly examining the cause of the increase in the haze of the heat shield film over time, the hydrogen ions generated during the formation of the heat shield layer cause hydrolysis of the (meth) acrylate resin (polymer according to the present invention). I guessed to catalyze it. In particular, when tungsten oxide or the like coexists, tungsten oxide or the like induces a redox reaction under acidic conditions, and further promotes hydrolysis of the polymer. As a result, the haze of the thermal barrier film increases with time in a high temperature and high humidity environment. Therefore, by using a monomer component containing a (meth) acrylate monomer having a low acid value, that is, having a low carboxyl group or salt content, hydrogen ions generated in the heat shielding layer under high humidity The amount can be reduced, thereby suppressing hydrolysis of the polymer. Therefore, by taking the above configuration, it is possible to suppress / prevent the haze increase (particularly the initial increase) of the heat-shielding film even in a high temperature and high humidity environment.
 上記に加えて、本発明に係る遮熱層は、塩基性含窒素化合物を含む。上述したように、酸価の低い(メタ)アクリレートモノマーの重合物を遮熱層に使用することによって、高湿下での重合物の加水分解を抑制できる。しかし、重合物((メタ)アクリレートモノマー由来の構成単位)中に存在するカルボン酸またはカルボキシラート(COOR;Rは、アルカリ金属またはアルキル基である)は水分の存在によって加水分解して、水素イオンを発生し、上記と同様のメカニズムにより、重合物の加水分解を起こってしまう。しかし、当該塩基性含窒素化合物がこの発生した水素イオンをトラップ(中和)するため、遮熱層中に存在する水素イオン量の経時的な上昇を抑制し、遮熱層中の水素イオン濃度を低く維持し、これにより重合物の加水分解を抑制する。このため、上記構成をとることによって、高温高湿環境下であっても、遮熱フィルムのヘイズの上昇(特に経時的な上昇)を抑制・防止することができる。 In addition to the above, the heat shielding layer according to the present invention contains a basic nitrogen-containing compound. As described above, by using a polymer of a (meth) acrylate monomer having a low acid value for the heat shielding layer, hydrolysis of the polymer under high humidity can be suppressed. However, the carboxylic acid or carboxylate (COOR; R is an alkali metal or alkyl group) present in the polymer (a structural unit derived from a (meth) acrylate monomer) is hydrolyzed by the presence of moisture to generate hydrogen ions. And the polymer is hydrolyzed by the same mechanism as described above. However, since the basic nitrogen-containing compound traps (neutralizes) the generated hydrogen ions, the amount of hydrogen ions present in the heat shield layer is suppressed over time, and the concentration of hydrogen ions in the heat shield layer Is kept low, thereby inhibiting hydrolysis of the polymer. For this reason, by taking the said structure, the raise (especially raise with time) of the heat-shielding film can be suppressed / prevented even in a high temperature and high humidity environment.
 したがって、本発明の遮熱フィルムでは、高温高湿環境下であっても、遮熱層中の重合物の加水分解を抑制・防止できるため、フィルムのヘイズの経時的な上昇を抑制・防止し、耐候性を向上できる。 Therefore, in the heat-shielding film of the present invention, hydrolysis of the polymer in the heat-shielding layer can be suppressed / prevented even in a high-temperature and high-humidity environment. , Weather resistance can be improved.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment.
 本明細書において「(メタ)アクリレート」や「(メタ)アクリル」とは、アクリレートおよびメタアクリレートの総称である。(メタ)アクリル等の(メタ)を含む化合物等も同様に、名称中に「メタ」を有する化合物と「メタ」を有さない化合物の総称である。すなわち、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」を意味する。 In this specification, “(meth) acrylate” and “(meth) acryl” are generic names for acrylate and methacrylate. Similarly, a compound containing (meth) such as (meth) acryl is a generic term for a compound having “meth” in the name and a compound not having “meta”. That is, “(meth) acryl” means “acryl and / or methacryl”.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 [基材]
 基材は、遮熱層や、その他の任意で設けられる層(例えば、誘電体多層膜などに代表される機能層)を支持する機能を有する。
[Base material]
The base material has a function of supporting a heat shielding layer and other optional layers (for example, a functional layer typified by a dielectric multilayer film).
 基材は、透明であることが好ましく、種々の樹脂フィルムを用いることができる。例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース、ポリイミド、ポリブチラールフィルム、シクロオレフィンポリマーフィルム、透明なセルロースナノファイバーフィルム等を用いることができる。これらのうち、ポリエステルフィルムを用いることが好ましい。 The substrate is preferably transparent, and various resin films can be used. For example, polyolefin film (polyethylene, polypropylene, etc.), polyester film (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, polyimide, polybutyral film, cycloolefin polymer film, transparent cellulose nanofiber film, etc. Can be used. Among these, it is preferable to use a polyester film.
 当該ポリエステルフィルムの中でも透明性、機械的強度、寸法安定性などの観点から、テレフタル酸、2,6-ナフタレンジカルボン酸等のジカルボン酸成分と、エチレングリコールや1,4-シクロヘキサンジメタノール等のジオール成分と、を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。なかでも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。 Among the polyester films, from the viewpoint of transparency, mechanical strength and dimensional stability, dicarboxylic acid components such as terephthalic acid and 2,6-naphthalenedicarboxylic acid, and diols such as ethylene glycol and 1,4-cyclohexanedimethanol It is preferable that it is polyester which has the film formation property which makes a component a main structural component. Of these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 また、本願の基材としては、上記に挙げたもののほか、後述の誘電体多層膜で、自己支持性を有するものを使用することができる。自己支持性を有する誘電体多層膜としては、特に制限されないが、たとえば例えば共押出法や共流涎法にて作製された誘電体多層膜等が挙げられる。 Further, as the base material of the present application, in addition to those mentioned above, a dielectric multilayer film to be described later and having a self-supporting property can be used. Although it does not restrict | limit especially as a dielectric multilayer film which has a self-supporting property, For example, the dielectric multilayer film etc. which were produced by the co-extrusion method or the co-flow method, etc. are mentioned, for example.
 基材の材料および膜厚は、遮熱フィルムの熱収縮率を基材の熱収縮率で除した値が1~3の範囲内となるように設定されたものであることが好ましい。 The material and film thickness of the base material are preferably set so that the value obtained by dividing the thermal shrinkage rate of the thermal barrier film by the thermal shrinkage rate of the base material is in the range of 1 to 3.
 なかでも基材の膜厚は、30~200μmであることが好ましく、30~150μmであることがより好ましく、35~125μmであることが最も好ましい。基材の膜厚が30μm以上であると、取扱い中のシワが発生しにくくなることから好ましい。一方、基材の膜厚が200μm以下であると、遮熱フィルムを基体と貼り合わせる際に、例えば、曲面の基体への追従性が良くなり、シワが発生しにくくなることから好ましい。 In particular, the thickness of the substrate is preferably 30 to 200 μm, more preferably 30 to 150 μm, and most preferably 35 to 125 μm. It is preferable that the thickness of the substrate is 30 μm or more because wrinkles during handling are less likely to occur. On the other hand, when the thickness of the substrate is 200 μm or less, for example, when the thermal barrier film is bonded to the substrate, the followability to the curved substrate is improved, and wrinkles are less likely to occur.
 基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸または少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の観点から延伸フィルムであることが好ましい。特に自動車のフロントガラスの合わせガラスに用いられる際には、延伸フィルムであることがより好ましい。 The substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of improving strength and suppressing thermal expansion. In particular, when it is used as a laminated glass for an automobile windshield, a stretched film is more preferable.
 [遮熱層]
 本発明において、遮熱層は、(a)タングステン酸化物等、(b)(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物、および(c)塩基性含窒素化合物を必須に含む。具体的には、上記(a)、(b)及び(c)を含む遮熱層用塗布液を基材上に塗布後、紫外線を照射して塗膜を硬化させることによって形成される。
[Heat shield layer]
In the present invention, the heat shielding layer comprises (a) a tungsten oxide or the like, (b) a polymer of monomer components having a (meth) acrylate monomer and having an acid value of 20 or less, and (c) a basic nitrogen-containing compound. Is mandatory. Specifically, it is formed by applying a heat shielding layer coating solution containing the above (a), (b) and (c) on a substrate, and then irradiating with ultraviolet rays to cure the coating film.
 遮熱層の厚さは、特に制限されないが、好ましくは1~10μmであり、より好ましくは1.5~8μmである。厚さを1μm以上とすることによって、遮熱層は十分な遮熱性を発揮できる。一方、厚さを10μm以下とすることにより、応力による遮熱層の割れを防ぐことができる。 The thickness of the heat shield layer is not particularly limited, but is preferably 1 to 10 μm, more preferably 1.5 to 8 μm. By setting the thickness to 1 μm or more, the heat shielding layer can exhibit sufficient heat shielding properties. On the other hand, by setting the thickness to 10 μm or less, it is possible to prevent cracking of the heat shield layer due to stress.
 ここで、(a)タングステン酸化物は、赤外吸収性を有する熱線遮蔽性金属酸化物(「赤外線遮蔽性金属酸化物」とも称される)の1種であることから、前記遮熱層用塗布液から形成された遮熱層は、熱線(赤外線)の透過を遮蔽する遮熱機能を有する。 Here, (a) tungsten oxide is a kind of heat ray shielding metal oxide having infrared absorptivity (also referred to as “infrared shielding metal oxide”). The heat shield layer formed from the coating solution has a heat shield function that shields transmission of heat rays (infrared rays).
 遮熱層は、タングステン酸化物もしくは複合タングステン酸化物を含むものであっても、またはタングステン酸化物および複合タングステン酸化物を組み合わせて含むものであってもよい。また、タングステン酸化物および複合タングステン酸化物は、それぞれ、1種単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。 The heat shield layer may contain tungsten oxide or composite tungsten oxide, or may contain a combination of tungsten oxide and composite tungsten oxide. Each of the tungsten oxide and the composite tungsten oxide may be used alone or in the form of a mixture of two or more.
 タングステン酸化物は、一般式:Wで示され、特開2013-64042号公報や特開2010-215451号公報に記載されるのと同様のものが使用できる。上記一般式中、Wは、タングステンを表わす。Oは、酸素を表わす。y及びzは、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)であり、一般的に3未満(z/y<3)の関係を満たすものを用いる。また、タングステンと酸素との組成は2超過3未満(2<z/y<3)の関係を満たすことがより好ましく、2.2~2.999(2.2≦z/y≦2.999)の関係を満たすことがさらに好ましい。このようなz/y比であれば、材料として化学的に安定であり、高い赤外線吸収能を発揮できる上、必要量の自由電子が生成され効率よい赤外線吸収材料となり得る。 The tungsten oxide is represented by the general formula: W y O z , and the same tungsten oxide as described in JP 2013-64042 A or JP 2010-215451 A can be used. In the above general formula, W represents tungsten. O represents oxygen. y and z are compositions of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y), and those satisfying the relationship of less than 3 (z / y <3) are generally used. Further, the composition of tungsten and oxygen preferably satisfies the relationship of more than 2 and less than 3 (2 <z / y <3), and 2.2 to 2.999 (2.2 ≦ z / y ≦ 2.999). It is more preferable to satisfy the relationship of With such a z / y ratio, the material is chemically stable and can exhibit high infrared absorbing ability, and a necessary amount of free electrons can be generated to provide an efficient infrared absorbing material.
 また、複合タングステン酸化物の組成は、特に制限されないが、安定性の観点から、一般式:一般に、Mで表される酸化物であることが好ましく、特開2013-64042号や特開2010-215451号公報に記載されるのと同様のものが使用できる。上記一般式中、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素を表わす。Wは、タングステンを表わす。Oは、酸素を表わす。x、y及びzは、一般的にタングステンとMとの組成(タングステンに対するMの組成、x/y)が、0<x/y≦1を満たし、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)が、2<z/y≦3を満たすものを用いる。また、タングステンとMとの組成(タングステンに対するMの組成、x/y)が0.001≦x/y≦1の関係を満たし、タングステンと酸素との組成(タングステンに対する酸素の組成、z/y)が2.2≦z/y≦3の関係を満たすことが好ましく、0.2≦x/y≦0.5かつ2.45≦z/y≦3の関係を満たすことがより好ましく、0.31≦x/y≦0.35かつ0.27≦z/y≦3の関係を満たすことがさらに好ましい。ここで、アルカリ金属は、水素を除く周期表第1族元素であり、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランジウムである。アルカリ土類金属は、周期表第2族元素であり、カルシウム、ストロンチウム、バリウム、ラジウムである。希土類元素は、Sc、Y及びランタノイド元素(57番のランタンから71番のルテチウムまでの元素)である。特に、赤外線吸収材料としての光学特性、耐候性向上効果の観点から、M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちの1種類以上であるものが好ましく、M元素がCsであるCsで表されるセシウム含有複合タングステン酸化物であることが特に好ましい。 The composition of the composite tungsten oxide is not particularly limited, but is preferably an oxide represented by the general formula: M x W y O z in general from the viewpoint of stability. Also, the same ones as described in JP 2010-215451 A can be used. In the above general formula, M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, I represents one or more elements selected from I. W represents tungsten. O represents oxygen. x, y, and z are generally compositions of tungsten and M (composition of M with respect to tungsten, x / y) satisfying 0 <x / y ≦ 1, and a composition of tungsten and oxygen (of oxygen with respect to tungsten). A composition whose z / y) satisfies 2 <z / y ≦ 3 is used. Further, the composition of tungsten and M (composition of M with respect to tungsten, x / y) satisfies the relationship of 0.001 ≦ x / y ≦ 1, and the composition of tungsten and oxygen (composition of oxygen with respect to tungsten, z / y) ) Preferably satisfies the relationship of 2.2 ≦ z / y ≦ 3, more preferably satisfies the relationship of 0.2 ≦ x / y ≦ 0.5 and 2.45 ≦ z / y ≦ 3, and 0 More preferably, the relationship of .31 ≦ x / y ≦ 0.35 and 0.27 ≦ z / y ≦ 3 is satisfied. Here, the alkali metal is a periodic table group 1 element excluding hydrogen, and is lithium, sodium, potassium, rubidium, cesium, or frangium. Alkaline earth metals are Group 2 elements of the periodic table and are calcium, strontium, barium, and radium. The rare earth elements are Sc, Y and lanthanoid elements (elements from 57th lanthanum to 71st lutetium). In particular, from the viewpoint of the optical characteristics and the weather resistance improvement effect as an infrared absorbing material, the M element is one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Some are preferable, and a cesium-containing composite tungsten oxide represented by Cs x W y O z in which the M element is Cs is particularly preferable.
 本発明の一形態において用いることができるタングステン酸化物としては、特に制限されないが、例えば、Cs0.33WO、Rb0.33WO等が挙げられる。セシウム含有複合タングステン酸化物であるCs0.33WOを用いることが特に好ましい。すなわち、本発明では、複合タングステン酸化物がセシウムドープ酸化タングステンである(遮熱層が、複合タングステン酸化物としてセシウムドープ酸化タングステンを含む)ことが好ましい。 The tungsten oxide that can be used in one embodiment of the present invention is not particularly limited, and examples thereof include Cs 0.33 WO 3 and Rb 0.33 WO 3 . It is particularly preferable to use Cs 0.33 WO 3 which is a cesium-containing composite tungsten oxide. That is, in the present invention, the composite tungsten oxide is preferably cesium-doped tungsten oxide (the thermal barrier layer includes cesium-doped tungsten oxide as the composite tungsten oxide).
 タングステン酸化物等の形状は、特に制限されず、粒子状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうるが、好ましくは粒子状である。また、タングステン酸化物等の大きさも特に制限されないが、タングステン酸化物等が粒子状である場合には、タングステン酸化物等粒子の平均粒径(平均一次粒子径、直径)は、可視光の反射を抑制しつつ、熱線吸収効果を確保できること、また散乱によるヘイズの劣化が生じず、透明性を確保できることから、5~200nmであることが好ましく、10~100nmであることがより好ましい。上記平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The shape of the tungsten oxide or the like is not particularly limited, and may take any structure such as a particle shape, a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indeterminate shape, a flake shape, and a spindle shape, but preferably a particulate shape. It is. Further, the size of tungsten oxide or the like is not particularly limited, but when tungsten oxide or the like is in the form of particles, the average particle size (average primary particle diameter, diameter) of the particles such as tungsten oxide is the reflection of visible light. It is preferably 5 to 200 nm, more preferably 10 to 100 nm, since the heat ray absorption effect can be secured while suppressing haze, and haze deterioration due to scattering does not occur and transparency can be secured. The average particle size is determined by observing particles themselves or particles appearing on the cross section or surface of the refractive index layer with an electron microscope, measuring the particle size of 1,000 arbitrary particles, and calculating the simple average value (number average). As required. Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 また、遮熱層中、タングステン酸化物等の含有量は、遮熱層の全固形分に対して、好ましくは10~80質量%であり、より好ましくは20~70質量%である。このような量であれば、タングステン酸化物等は十分熱線を吸収できるため、光学制御フィルムの遮熱性能をより良くすることができる。 The content of tungsten oxide or the like in the heat shielding layer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, based on the total solid content of the heat shielding layer. If it is such quantity, since tungsten oxide etc. can absorb a heat ray enough, the thermal insulation performance of an optical control film can be improved more.
 または、遮熱層におけるタングステン酸化物等の含有量(固形分換算)は、特に制限されないが、遮熱性の向上効果、可視光透過率などの観点から、遮熱層に対して、好ましくは10~50質量%であり、より好ましくは15~40質量%である。 Alternatively, the content of tungsten oxide or the like (in terms of solid content) in the heat shield layer is not particularly limited, but is preferably 10 with respect to the heat shield layer from the viewpoints of the heat shielding effect and the visible light transmittance. -50 mass%, more preferably 15-40 mass%.
 また、これらの具体的な商品名としては、セシウムドープト酸化タングステン系としてCWO分散液(YMF-02A 住友金属鉱山社製)等が挙げられる。 In addition, specific trade names of these include CWO-dispersed tungsten oxide based CWO dispersion (YMF-02A, manufactured by Sumitomo Metal Mining Co., Ltd.).
 上記(a)に加えて、遮熱層は、(b)(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物を必須に含む。ここで、単量体成分の酸価が20を超えると、高湿下での遮熱層中に発生する水素イオン濃度が高くなりすぎて、重合物の加水分解を過度に誘導して、遮熱フィルムのヘイズが初期及び経時的に上昇してしまう。重合物の加水分解のさらなる抑制効果、ゆえに遮熱フィルムのヘイズの上昇のさらなる抑制効果を考慮すると、単量体成分の酸価は、好ましくは15以下、より好ましくは10以下である。なお、単量体成分の酸価は低いほど好ましいため、単量体成分の酸価の下限は、0であるが、1であれば十分である。なお、本明細書では、(メタ)アクリレートモノマーは、紫外線により硬化する重合性化合物である。また、(メタ)アクリレートモノマーとの用語は、単量体のみならず、紫外線照射により硬化可能なオリゴマーやプレポリマ-をも含みうる概念である。 In addition to the above (a), the heat shielding layer essentially includes a polymer of a monomer component having an acid value of 20 or less including (b) a (meth) acrylate monomer. Here, if the acid value of the monomer component exceeds 20, the concentration of hydrogen ions generated in the heat-shielding layer under high humidity becomes too high, excessively inducing hydrolysis of the polymer, and shielding. The haze of the thermal film increases with time and with time. Considering the further inhibitory effect of hydrolysis of the polymer, and hence the further inhibitory effect of the increase in haze of the thermal barrier film, the acid value of the monomer component is preferably 15 or less, more preferably 10 or less. In addition, since it is so preferable that the acid value of a monomer component is low, the minimum of the acid value of a monomer component is 0, but 1 is enough. In the present specification, the (meth) acrylate monomer is a polymerizable compound that is cured by ultraviolet rays. The term (meth) acrylate monomer is a concept that can include not only monomers but also oligomers and prepolymers that can be cured by ultraviolet irradiation.
 本明細書において、2種以上の単量体を使用する場合の単量体成分の酸価は、単量体混合物の酸価を意味する。また、本明細書において、単量体成分の酸価は、下記方法によって測定された値である。 In this specification, the acid value of the monomer component when using two or more monomers means the acid value of the monomer mixture. Moreover, in this specification, the acid value of a monomer component is the value measured by the following method.
 《単量体成分の酸価の測定方法》
 単量体成分の酸価は、JIS K 0070(1992)に準拠して測定する。
<Method for measuring acid value of monomer component>
The acid value of the monomer component is measured according to JIS K 0070 (1992).
 具体的には、(メタ)アクリレートモノマーSg(5g)をフラスコに精秤し、これを試料とする。なお、2種以上の(メタ)アクリレートモノマーの混合物または(メタ)アクリレートモノマーと他の単量体との混合物の酸価を測定する場合には、所望の(メタ)アクリレートモノマーまたは(メタ)アクリレートモノマー及び他の単量体を所定の質量比で混合し、得られた混合物をSg(5g)(総質量)をフラスコに精秤し、これを試料とする。このようにして調製した試料に、2-プロパノール50mLとジエチルエーテル50mLとの混合溶媒を加え、水浴上で完全に溶解する。次に、電位差滴定装置を用いて0.1mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。酸価は、下記式(1)によって算出する。 Specifically, (meth) acrylate monomer Sg (5 g) is precisely weighed in a flask and used as a sample. When measuring the acid value of a mixture of two or more (meth) acrylate monomers or a mixture of a (meth) acrylate monomer and another monomer, the desired (meth) acrylate monomer or (meth) acrylate Monomers and other monomers are mixed at a predetermined mass ratio, and the resulting mixture is precisely weighed into a flask with Sg (5 g) (total mass) as a sample. To the sample thus prepared, a mixed solvent of 50 mL of 2-propanol and 50 mL of diethyl ether is added and completely dissolved on a water bath. Next, titration is performed with a 0.1 mol / L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point. The acid value is calculated by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中、Bは、滴定に用いた0.1mol/l 水酸化カリウムエタノール溶液の量(ml)であり;fは、0.1mol/L 水酸化カリウムエタノール溶液のファクターであり;Sは、試料の質量(g)であり;5.611は、水酸化カリウムの1mol量56.11の1/10を表す。 In the above formula (1), B is the amount (ml) of 0.1 mol / l potassium hydroxide ethanol solution used for titration; f is the factor of 0.1 mol / L potassium hydroxide ethanol solution; S is the mass (g) of the sample; 5.611 represents 1/10 of the 1 mol amount of potassium hydroxide 56.11.
 ここで、酸価が20以下の(メタ)アクリレートモノマーとしては、特に制限されないが、イソシアヌル酸EO 変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジグリセリンEO 変性(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロハントリ(メタ)アクリレート、トリメチロールプロパンPO 変性トリ(メタ)アクリレート、トリメチロールプロパンEO 変性トリ(メタ)アクリレート、イソシアヌル酸EO 変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。これらのうち、重合物の加水分解のさらなる抑制効果、ゆえに遮熱フィルムのヘイズの上昇のさらなる抑制効果を考慮すると、トリメチロールプロハントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートが好ましく、トリメチロールプロハントリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートがより好ましい。 Here, the (meth) acrylate monomer having an acid value of 20 or less is not particularly limited, but isocyanuric acid EO-modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, diglycerin. EO-modified (meth) acrylate, 1,6-hexanediol di (meth) acrylate, PO-modified neopentylglycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, trimethylolprohuntri (meth) acrylate, Trimethylolpropane PO modified tri (meth) acrylate, trimethylolpropane EO modified tri (meth) acrylate, isocyanuric acid EO modified tri (meth) acrylate, pentaerythritol tri (me ) Acrylate, glycerol propoxy tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate. Of these, considering the further effect of suppressing hydrolysis of the polymer, and hence the effect of further suppressing the increase in haze of the thermal barrier film, trimethylolprohuntri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipenta Erythritol hexa (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable, and trimethylolprohantriacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate are more preferable.
 なお、上述したように、単量体成分の酸価が20以下であればよいため、単量体成分は、上記酸価が20を超える(メタ)アクリレートモノマー、または(メタ)アクリレートモノマー以外の他のモノマーを含んでもよい。ここで、酸価が20を超える(メタ)アクリレートモノマーとしては、紫外線照射によって硬化することができるものであれば特に制限されないが、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネートなどが挙げられる。または、例えば、東亞合成株式会社製のアロニックスM-5300、M-5400などの市販品も適宜用いられる。 In addition, since the acid value of a monomer component should just be 20 or less as mentioned above, a monomer component is other than the (meth) acrylate monomer whose said acid value exceeds 20, or a (meth) acrylate monomer. Other monomers may be included. Here, the (meth) acrylate monomer having an acid value exceeding 20 is not particularly limited as long as it can be cured by ultraviolet irradiation, but ω-carboxy-polycaprolactone mono (meth) acrylate, monohydroxy phthalate Examples include ethyl (meth) acrylate, β-carboxyethyl (meth) acrylate, and 2- (meth) acryloyloxyethyl succinate. Alternatively, for example, commercially available products such as Aronix M-5300 and M-5400 manufactured by Toagosei Co., Ltd. are also used as appropriate.
 ここで、単量体または単量体成分は、合成してもまたは市販品を使用してもよい。ここで、市販品としては、アロニックスM-215、M-220、M-225、M-270、M-240、M-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450、M-408、M-403、M-400、M-402、M-404、M-406、M-405、M-460(以上、東亞合成株式会社製)、EBECRYL 145、IRR 214-K、OTA 480、EBECRYL 40、EBECRYL 180、EBECRYL350(以上、ダイセル・オルネクス株式会社製)、KAYARAD NPGDA、PEG400DA、FM-400、R-167、HX-220、HX-620、R-604、R-684、GPO-303、THE-330、TPA-330、PET-30、DPEA-12、D-310、DPCA-20、DPCA-30、DPCA-60、DPCA-120、FM-700(以上、日本化薬株式会社製)などが使用できる。 Here, the monomer or monomer component may be synthesized or a commercially available product may be used. Here, commercially available products include Aronix M-215, M-220, M-225, M-270, M-240, M-309, M-310, M-321, M-350, M-360, M -313, M-315, M-306, M-305, M-303, M-452, M-450, M-408, M-403, M-400, M-402, M-404, M-406 , M-405, M-460 (above, manufactured by Toagosei Co., Ltd.), EBECRYL 145, IRR 214-K, OTA 480, EBECRYL 40, EBECRYL 180, EBECRYL 350 (above, manufactured by Daicel Ornex Co., Ltd.), KAYARAD NPGDA, PEG400DA, FM-400, R-167, HX-220, HX-620, R-604, R-684, GPO-3 3, THE-330, TPA-330, PET-30, DPEA-12, D-310, DPCA-20, DPCA-30, DPCA-60, DPCA-120, FM-700 (above, manufactured by Nippon Kayaku Co., Ltd.) ) Etc. can be used.
 特に好ましくは、単量体成分は、酸価が20以下の(メタ)アクリレートモノマーのみから構成される。 Particularly preferably, the monomer component is composed only of a (meth) acrylate monomer having an acid value of 20 or less.
 また、上記(メタ)アクリレートモノマーが1級水酸基を有する重合性アクリレートであることが好ましい。水酸基を有するアクリレートは水素結合により反応基同士の距離が短くなるため、架橋密度を高くすることができる。そのため、重合物((メタ)アクリレートモノマー硬化物)の経時的な加水分解が多少起きても、低分子成分が発生しにくく、ヘイズの上昇をさらに有効に抑制できる。ここで、1級水酸基を有する(メタ)アクリレートモノマーが分子内に有する1級水酸基の数としては、1~4個が好ましい。4個以下であると、密着性の観点より好ましい。同様の観点より、1~2個がより好ましく、1個がさらに好ましい。 Further, the (meth) acrylate monomer is preferably a polymerizable acrylate having a primary hydroxyl group. Since the acrylate having a hydroxyl group shortens the distance between reactive groups due to hydrogen bonding, the crosslinking density can be increased. Therefore, even if the polymer ((meth) acrylate monomer cured product) undergoes some hydrolysis over time, low molecular components are hardly generated, and haze increase can be more effectively suppressed. Here, the number of primary hydroxyl groups in the molecule of the (meth) acrylate monomer having a primary hydroxyl group is preferably 1 to 4. It is more preferable that it is 4 or less from the viewpoint of adhesion. From the same viewpoint, 1 to 2 is more preferable, and 1 is more preferable.
 上記(メタ)アクリレートモノマーが1級水酸基を有する重合性アクリレートである場合の、重合性アクリレートの水酸基価は、特に制限されないが、ヘイズの上昇のさらなる抑制などを考慮すると、好ましくは20以上であり、より好ましくは40以上である。すなわち、本発明では、重合性アクリレートの水酸基価が40以上であることが特に好ましい。なお、(メタ)アクリレートモノマーの水酸基価の上限は、特に制限されないが、通常は200以下であれば十分である。水酸基価が200以下であると、吸湿によって発生するカールの抑制効果がより大きい。 In the case where the (meth) acrylate monomer is a polymerizable acrylate having a primary hydroxyl group, the hydroxyl value of the polymerizable acrylate is not particularly limited, but is preferably 20 or more in consideration of further suppression of an increase in haze. More preferably, it is 40 or more. That is, in the present invention, the hydroxyl value of the polymerizable acrylate is particularly preferably 40 or more. The upper limit of the hydroxyl value of the (meth) acrylate monomer is not particularly limited, but usually 200 or less is sufficient. When the hydroxyl value is 200 or less, the effect of suppressing curling caused by moisture absorption is greater.
 このような水酸基価を有する(メタ)アクリレートモノマーとしては、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。または、東亞合成株式会社製のアロニックス(登録商標) M-305、M-402、M-404、M-405等の市販品も適宜用いられる。 Examples of the (meth) acrylate monomer having such a hydroxyl value include dipentaerythritol penta (meth) acrylate and pentaerythritol tri (meth) acrylate. Alternatively, commercially available products such as Aronix (registered trademark) M-305, M-402, M-404, M-405 manufactured by Toagosei Co., Ltd. may be used as appropriate.
 本明細書において、2種以上の(メタ)アクリレートモノマーを使用する場合の(メタ)アクリレートモノマーの水酸基価は、(メタ)アクリレートモノマー混合物の水酸基価を意味する。また、本明細書において、(メタ)アクリレートモノマーの水酸基価は、下記方法によって測定された値である。 In the present specification, the hydroxyl value of the (meth) acrylate monomer when two or more kinds of (meth) acrylate monomers are used means the hydroxyl value of the (meth) acrylate monomer mixture. Moreover, in this specification, the hydroxyl value of a (meth) acrylate monomer is a value measured by the following method.
 《(メタ)アクリレートモノマーの水酸基価の測定》
 (メタ)アクリレートモノマーの水酸基価は、JIS K 0070(1992)に準拠して測定する。
<< Measurement of hydroxyl value of (meth) acrylate monomer >>
The hydroxyl value of the (meth) acrylate monomer is measured according to JIS K 0070 (1992).
 具体的には、(メタ)アクリレートモノマーXg(1g)をフラスコに精秤し、これを試料とする。なお、2種以上の(メタ)アクリレートモノマーの混合物の水酸基価を測定する場合には、所望の(メタ)アクリレートモノマーを所定の質量比で混合し、得られた混合物をXg(1g)(総質量)をフラスコに精秤し、これを試料とする。このようにして調製した試料に、アセチル化試薬(無水酢酸20mLにピリジンを加えて400mLにしたもの)20mLを正確に加えた。次いで、フラスコの口に空気冷却管を装着し、95~100℃のグリセリン浴にて加熱する。1時間30分後、冷却し、空気冷却管から精製水1mLを加え、無水酢酸を酢酸に分解する。次に、電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。さらに空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。水酸基価は、下記式(2)によって算出する。 Specifically, (meth) acrylate monomer Xg (1 g) is precisely weighed in a flask and used as a sample. When measuring the hydroxyl value of a mixture of two or more (meth) acrylate monomers, the desired (meth) acrylate monomers are mixed at a predetermined mass ratio, and the resulting mixture is Xg (1 g) (total Mass) is precisely weighed in a flask, and this is used as a sample. To the sample thus prepared, 20 mL of an acetylating reagent (a solution obtained by adding pyridine to 20 mL of acetic anhydride to 400 mL) was accurately added. Next, an air cooling tube is attached to the mouth of the flask and heated in a glycerin bath at 95 to 100 ° C. After 1 hour and 30 minutes, the mixture is cooled, and 1 mL of purified water is added from an air cooling tube to decompose acetic anhydride into acetic acid. Next, titration is performed with a 0.5 mol / L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point. Further, as a blank test, titration is performed without a sample, and an inflection point of the titration curve is obtained. The hydroxyl value is calculated by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式(2)中、Bは、空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(mL)であり;Cは、滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(mL)であり;fは、0.5mol/L水酸化カリウムエタノール溶液のファクターであり;Xは、試料の質量(g)であり;Dは、酸価であり;28.05は、水酸化カリウムの1mol量56.11の1/2を表す。 In the above formula (2), B is the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test; C is 0.5 mol / L potassium hydroxide used for titration Amount of ethanol solution (mL); f is a factor of 0.5 mol / L potassium hydroxide ethanol solution; X is sample weight (g); D is acid value; 05 represents 1/2 of 1 mol amount 56.11 of potassium hydroxide.
 遮熱層における重合物の含有量(固形分換算)は、特に制限されないが、遮熱性の向上効果、ハードコート性などの観点から、遮熱層に対して、好ましくは20~90質量%、より好ましくは20~80質量%であり、さらに好ましくは40~80質量%である。なお、単量体成分を基材上で重合して形成する場合には、上記「遮熱層における重合物の含有量(固形分換算)」は、遮熱層用塗布液の溶媒を除いた成分の総質量に対する単量体成分の割合(質量%)とみなすこともできる。 The content of the polymer in the heat shield layer (in terms of solid content) is not particularly limited, but is preferably 20 to 90% by mass with respect to the heat shield layer from the viewpoint of the effect of improving the heat shield property, hard coat properties, and the like. More preferably, it is 20 to 80% by mass, and still more preferably 40 to 80% by mass. When the monomer component is formed by polymerization on a substrate, the above “content of polymer in the heat shielding layer (solid content conversion)” excludes the solvent of the coating solution for the heat shielding layer. It can also be regarded as the ratio (mass%) of the monomer component to the total mass of the components.
 本発明に係る重合物の製造方法は、特に制限されず、公知の重合方法が同様にしてまたは適宜修飾して適用できる。なお、重合物の製造方法(遮熱層の形成方法)の好ましい形態は、下記にて詳述する。 The method for producing the polymer according to the present invention is not particularly limited, and a known polymerization method can be applied in the same manner or appropriately modified. In addition, the preferable form of the manufacturing method (formation method of a heat shielding layer) of a polymer is explained in full detail below.
 上記(a)及び(b)に加えて、遮熱層は、(c)塩基性含窒素化合物を必須に含む。塩基性含窒素化合物は、重合物((メタ)アクリレートモノマー由来の構成単位)に存在するカルボン酸またはカルボキシラート(COOR;Rは、アルカリ金属またはアルキル基である)の加水分解によって生じる水素イオンをトラップ(中和)して、遮熱層中に存在する水素イオン濃度の経時的な上昇を抑制する。このため、塩基性含窒素化合物が遮熱層中に存在することによって、重合物の加水分解を抑制し、高温高湿環境下であっても、遮熱フィルムのヘイズの上昇(特に経時的な上昇)を抑制・防止することができる。 In addition to the above (a) and (b), the heat shielding layer essentially includes (c) a basic nitrogen-containing compound. The basic nitrogen-containing compound contains hydrogen ions generated by hydrolysis of carboxylic acid or carboxylate (COOR; R is an alkali metal or alkyl group) present in a polymer (a structural unit derived from a (meth) acrylate monomer). Trapping (neutralizing) suppresses a rise in the concentration of hydrogen ions existing in the heat shield layer over time. For this reason, the presence of the basic nitrogen-containing compound in the heat-shielding layer suppresses hydrolysis of the polymer, and increases the haze of the heat-shielding film (especially over time) even in a high-temperature and high-humidity environment. Rise) can be suppressed / prevented.
 本明細書において、塩基性含窒素化合物における「塩基性」ということばは、重合物(特に(メタ)アクリレートモノマー由来)のカルボン酸またはカルボキシラートが解離により生じた水素イオンを中和することを意図して使用される。詳細には、塩基性含窒素化合物における「塩基性」とは、塩基性含窒素化合物の共役酸の水におけるpKa(酸解離定数)が(メタ)アクリレートモノマーの水におけるpKaより大きいことを意味する。好ましくは、(メタ)アクリレートモノマーの水におけるpKaに対する塩基性含窒素化合物の共役酸の水におけるpKaの比が、1.05~2.5である。このような比であれば、塩基性含窒素化合物は、重合物(特に(メタ)アクリレートモノマー)に存在するカルボン酸またはカルボキシラートの加水分解によって生じる水素イオンを十分トラップ(中和)して、重合物の加水分解をより有効に抑制できる。 In the present specification, the term “basic” in a basic nitrogen-containing compound is intended to neutralize hydrogen ions generated by dissociation of a carboxylic acid or carboxylate of a polymer (particularly derived from a (meth) acrylate monomer). Used. Specifically, “basic” in the basic nitrogen-containing compound means that the pKa (acid dissociation constant) in the water of the conjugate acid of the basic nitrogen-containing compound is larger than the pKa in the water of the (meth) acrylate monomer. . Preferably, the ratio of the pKa in the water of the conjugate acid of the basic nitrogen-containing compound to the pKa in the water of the (meth) acrylate monomer is 1.05 to 2.5. With such a ratio, the basic nitrogen-containing compound sufficiently traps (neutralizes) hydrogen ions generated by hydrolysis of the carboxylic acid or carboxylate present in the polymer (particularly the (meth) acrylate monomer), Hydrolysis of the polymer can be more effectively suppressed.
 ここで、塩基性含窒素化合物としては、塩基性を示しかつ窒素原子を有するものであれば、特に制限されないが、2,4,6-トリメチルピリジン(沸点=171℃)、ピリジン(沸点=115℃)等の複素環化合物、アミン化合物、オキシム化合物、およびイミン化合物などが挙げられる。これらのうち、アミン化合物、オキシム化合物、およびイミン化合物が好ましい。すなわち、塩基性含窒素化合物が、アミン化合物、オキシム化合物、およびイミン化合物からなる群より選択される少なくとも一種の化合物であることが好ましい。なお、上記塩基性含窒素化合物は、単独で使用されても、2種以上を適宜組み合わせて使用してもよい。 Here, the basic nitrogen-containing compound is not particularly limited as long as it shows basicity and has a nitrogen atom, but 2,4,6-trimethylpyridine (boiling point = 171 ° C.), pyridine (boiling point = 115). ° C) and the like, amine compounds, oxime compounds, and imine compounds. Of these, amine compounds, oxime compounds, and imine compounds are preferred. That is, the basic nitrogen-containing compound is preferably at least one compound selected from the group consisting of amine compounds, oxime compounds, and imine compounds. In addition, the said basic nitrogen-containing compound may be used individually or may be used in combination of 2 or more types as appropriate.
 上記アミン化合物は、式:N(X)(X’)(X”)(X、X’及びX”は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数1~12のアシル基またはアリール基であり、この際、X、X’及びX”のいずれか2つの置換基はそれぞれ連結して環を形成してもよい)で表される化合物である。上記式において、X、X’及びX”は、同じであってもまたはそれぞれ異なるものであってもよい。また、炭素原子数1~12のアルキル基は、特に制限されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、ネオペンチル基、tert-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ノルボルニル基、アダマンチル基、ビシクロヘプチル基、ビシクロヘプチル基、ビシクロオクチル基等の直鎖、分岐鎖または環状のアルキル基が挙げられる。炭素原子数1~12のアシル基は、特に制限されないが、ホルミル基、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基などが挙げられる。アリール基は、特に制限されないが、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、アンスリル基、ピレニル基、アズレニル基、アセナフチレニル基、ターフェニル基、フェナンスリル基などが挙げられる。具体的には、アミン化合物としては、トリエチルアミン(沸点=89℃)、N,N-ジイソプロピルエチルアミン(沸点=127℃)、N,N-ジプロピルエチルアミン(沸点=132℃)、トリプロピルアミン(沸点=157℃)、トリイソブチルアミン(沸点=216℃)、トリイソアミルアミン(沸点=265~270℃)、トリ-n-オクチルアミン(沸点=169℃)、トリノニルアミン(沸点=466℃)、トリドデシルアミン(沸点=296℃/1mmHg)、ジイソプロピルアミン(沸点=84℃)、ジイソブチルアミン(沸点=137~139℃)、ジプロピルアミン(沸点=108℃)、tert-アミルアミン(沸点=77℃)、ネオペンチルアミン(沸点=83℃)、イソアミルアミン(沸点=97℃)、ヘプチルアミン(沸点=154~156℃)、2-エチルヘキシルアミン(沸点=169℃)などが挙げられる。 The amine compound has the formula: N (X) (X ′) (X ″) (X, X ′ and X ″ each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, the number of carbon atoms 1 to 12 acyl groups or aryl groups, in which any two substituents of X, X ′ and X ″ may be linked to form a ring). In the above formula, X, X ′ and X ″ may be the same or different. Further, the alkyl group having 1 to 12 carbon atoms is not particularly limited, but is methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert. -Butyl, n-pentyl, isoamyl, neopentyl, tert-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl And linear, branched or cyclic alkyl groups such as a group, undecyl group, dodecyl group, norbornyl group, adamantyl group, bicycloheptyl group, bicycloheptyl group, and bicyclooctyl group. The acyl group having 1 to 12 carbon atoms is not particularly limited, and examples thereof include formyl group, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group and the like. It is done. The aryl group is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, an anthryl group, a pyrenyl group, an azulenyl group, an acenaphthylenyl group, a terphenyl group, and a phenanthryl group. Specifically, the amine compounds include triethylamine (boiling point = 89 ° C.), N, N-diisopropylethylamine (boiling point = 127 ° C.), N, N-dipropylethylamine (boiling point = 132 ° C.), tripropylamine (boiling point). = 157 ° C), triisobutylamine (boiling point = 216 ° C), triisoamylamine (boiling point = 265 to 270 ° C), tri-n-octylamine (boiling point = 169 ° C), trinonylamine (boiling point = 466 ° C), Tridodecylamine (boiling point = 296 ° C / 1 mmHg), diisopropylamine (boiling point = 84 ° C), diisobutylamine (boiling point = 137 to 139 ° C), dipropylamine (boiling point = 108 ° C), tert-amylamine (boiling point = 77 ° C) ), Neopentylamine (boiling point = 83 ° C.), isoamylamine (boiling point = 97 ° C.), heptyl Min (boiling point = 154 ~ 156 ℃), and 2-ethylhexylamine (boiling point = 169 ° C.) and the like.
 また、上記オキシム化合物は、式:HO-N=C(Y)(Y’)(Y及びY’は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数1~12のアシル基またはアリール基であり、この際、Y及びY’はそれぞれ連結して環を形成してもよい)で表される化合物およびその多量体(例えば、二量体)である。上記式において、Y及びY’は、同じであってもまたはそれぞれ異なるものであってもよい。また、上記炭素原子数1~12のアルキル基、アシル基及びアリール基は、特に制限されず、上記アミン化合物と同様の定義である。具体的には、オキシム化合物としては、2-ブタノンオキシム(沸点=153℃)、3,3-ジメチル-2-ブタノンオキシム(沸点=172℃)、4-メチル-2-ペンタノンオキシム(沸点=69℃)、シクロヘキサノンオキシム(沸点=210℃)、シクロペンタノンオキシム(沸点=196℃)、シクロヘプタノンオキシム(沸点=152℃)、ニオキシム(沸点=189℃)、アセトアルドキシム(沸点=115℃)、アセトフェノンオキシム(沸点=119℃)、2-アダマンタノンオキシム(沸点=257℃)、ブチルアルドキシム(沸点=153℃)、(1R)-カンファーオキシム(沸点=243℃)、ジアセチルモノオキシム(沸点=185℃)などが挙げられる。 The oxime compound has the formula: HO—N═C (Y) (Y ′) (Y and Y ′ are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or 1 carbon atom. And a multimer (for example, a dimer) thereof, which is an acyl group or an aryl group of ˜12, wherein Y and Y ′ may be linked to form a ring. In the above formula, Y and Y ′ may be the same or different. The alkyl group, acyl group, and aryl group having 1 to 12 carbon atoms are not particularly limited and have the same definition as the amine compound. Specifically, as the oxime compound, 2-butanone oxime (boiling point = 153 ° C.), 3,3-dimethyl-2-butanone oxime (boiling point = 172 ° C.), 4-methyl-2-pentanone oxime (boiling point = 69 ° C), cyclohexanone oxime (boiling point = 210 ° C), cyclopentanone oxime (boiling point = 196 ° C), cycloheptanone oxime (boiling point = 152 ° C), nioxime (boiling point = 189 ° C), acetaldoxime (boiling point = 115) ° C), acetophenone oxime (boiling point = 119 ° C), 2-adamantanone oxime (boiling point = 257 ° C), butyl aldoxime (boiling point = 153 ° C), (1R) -camphor oxime (boiling point = 243 ° C), diacetyl monooxime (Boiling point = 185 ° C.).
 また、上記イミン化合物は、式:Z-N=C(Z)(Z’)(Z、Z’及びZ”は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数1~12のアシル基またはアリール基であり、この際、Z、Z’及びZ”のいずれか2つの置換基はそれぞれ連結して環を形成してもよいが、Z、Z’及びZ”すべてが水素原子であることはない)で表される化合物である。上記式において、Z、Z’及びZ”は、同じであってもまたはそれぞれ異なるものであってもよい。また、上記炭素原子数1~12のアルキル基、アシル基及びアリール基は、特に制限されず、上記アミン化合物と同様の定義である。具体的には、イミン化合物としては、ベンゾフェノンイミン(沸点=181℃)、2,2,4,4-テトラメチル-3-ペンタノンイミン(沸点=164℃)などが挙げられる。 Further, the imine compound has the formula: Z—N═C (Z) (Z ′) (Z, Z ′ and Z ″ each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a carbon An acyl group or an aryl group having 1 to 12 atoms, wherein any two substituents of Z, Z ′ and Z ″ may be linked to form a ring, but Z, Z ′ and Z ″ is not a hydrogen atom). In the above formula, Z, Z ′ and Z ″ may be the same or different from each other. The alkyl group, acyl group, and aryl group having 1 to 12 carbon atoms are not particularly limited and have the same definition as the amine compound. Specifically, examples of the imine compound include benzophenone imine (boiling point = 181 ° C.), 2,2,4,4-tetramethyl-3-pentanone imine (boiling point = 164 ° C.), and the like.
 例えば、本発明の遮熱フィルムを基体(例えば、ガラス)に貼りつけて使用する場合には、太陽光によりフィルムはかなり加熱される。しかし、上記したような沸点を有する塩基性含窒素化合物であれば、遮熱層から揮発することがないため、塩基性含窒素化合物による効果(例えば、重合物の加水分解抑制効果)をより長期間にわたって発揮することができる。上記点を考慮すると、上記塩基性含窒素化合物の沸点は、100℃を超えることが好ましく、120℃以上、150℃以上、160℃以上、170℃以上、および200℃以上の順で好ましい。なお、塩基性含窒素化合物の沸点の上限は特に制限されないが、通常、500℃以下である。すなわち、塩基性含窒素化合物の沸点が200℃以上であることが特に好ましい。 For example, when the thermal barrier film of the present invention is used by being attached to a substrate (for example, glass), the film is considerably heated by sunlight. However, since the basic nitrogen-containing compound having the boiling point as described above does not volatilize from the heat-shielding layer, the effect (for example, the hydrolysis suppression effect of the polymerized product) due to the basic nitrogen-containing compound is longer. Can be demonstrated over a period of time. Considering the above points, the boiling point of the basic nitrogen-containing compound is preferably higher than 100 ° C., and preferably in the order of 120 ° C. or higher, 150 ° C. or higher, 160 ° C. or higher, 170 ° C. or higher, and 200 ° C. or higher. The upper limit of the boiling point of the basic nitrogen-containing compound is not particularly limited, but is usually 500 ° C. or lower. That is, the boiling point of the basic nitrogen-containing compound is particularly preferably 200 ° C. or higher.
 遮熱層における塩基性含窒素化合物の含有量(固形分換算)は、特に制限されないが、遮熱性の向上効果、ヘイズの経時的な上昇の効果的な抑制などの観点から、遮熱層に対して、好ましくは0.03~10質量%、より好ましくは0.05~5質量%であり、さらに好ましくは0.1~1質量%である。このような量であれば、重合物((メタ)アクリレートモノマー)の加水分解によって生じる水素イオンをより効率よくトラップ(中和)し、高温高湿環境下であっても、遮熱フィルムのヘイズの上昇(特に経時的な上昇)をより有効に抑制・防止することができる。 The content of the basic nitrogen-containing compound in the heat-shielding layer (in terms of solid content) is not particularly limited, but from the viewpoint of improving the heat-shielding property and effectively suppressing the increase in haze over time, On the other hand, it is preferably 0.03 to 10% by mass, more preferably 0.05 to 5% by mass, and still more preferably 0.1 to 1% by mass. With such an amount, hydrogen ions generated by hydrolysis of the polymer ((meth) acrylate monomer) are trapped (neutralized) more efficiently, and even in a high temperature and high humidity environment, the haze of the thermal barrier film The rise (especially the rise over time) can be more effectively suppressed / prevented.
 (遮熱層の形成方法)
 本発明に係る遮熱層は、上記(a)タングステン酸化物等、(b)(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物、および(c)塩基性含窒素化合物を必須に含むものであればその形成方法は特に制限されない。以下に、本発明に係る遮熱層の形成方法の好ましい形態を説明するが、本発明は下記形態に限定されない。
(Method of forming a thermal barrier layer)
The heat-shielding layer according to the present invention comprises (a) a tungsten oxide or the like, (b) a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer, and (c) a basic nitrogen-containing layer. The formation method is not particularly limited as long as the compound is essential. Although the preferable form of the formation method of the thermal-insulation layer concerning this invention is demonstrated below, this invention is not limited to the following form.
 具体的には、本発明に係る遮熱層は、(a)タングステン酸化物等、(b)(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分および(c)塩基性含窒素化合物、ならびに溶媒および必要であれば必要に応じて添加されるその他の添加物を含む遮熱層用塗布液を基材上に塗布後、紫外線を照射して塗膜を硬化させることによって形成される。 Specifically, the thermal barrier layer according to the present invention comprises (a) a tungsten oxide or the like, (b) a monomer component having an acid value of 20 or less including a (meth) acrylate monomer, and (c) a basic nitrogen-containing layer. It is formed by applying a coating solution for a thermal barrier layer containing a compound, a solvent and, if necessary, other additives added onto the substrate, and then irradiating ultraviolet rays to cure the coating film. The
 まず、(a)タングステン酸化物等、(b)(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分および(c)塩基性含窒素化合物を含む遮熱層用塗布液を調製する。なお、上記(a)~(c)については、上記にて詳細を説明したため、ここでは説明を省略する。 First, a coating solution for a thermal barrier layer containing (a) a tungsten oxide or the like, (b) a monomer component containing an (meth) acrylate monomer having an acid value of 20 or less, and (c) a basic nitrogen-containing compound is prepared. . Since the details of (a) to (c) have been described above, the description thereof is omitted here.
 遮熱層用塗布液は、上記(a)~(c)の必須成分の他、溶媒を含んでもよい。溶媒は、特に制限されないが、例えば、水、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、2-ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、酢酸n-ブチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒等の中から適宜選択し、またはこれらを混合し利用できる。 The coating solution for the heat shielding layer may contain a solvent in addition to the essential components (a) to (c). The solvent is not particularly limited. For example, water, hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, 2-butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone) ), Esters (methyl acetate, ethyl acetate, n-butyl acetate, methyl lactate), glycol ethers, other organic solvents, etc., or a mixture thereof can be used.
 遮熱層用塗布液における溶媒の含有量は、特に制限されないが、一般的には、塗布液の総質量に対して10~80質量%程度であり、より好ましくは15~60質量%であり、さらに好ましくは20~40質量%である。 The content of the solvent in the coating solution for the heat shielding layer is not particularly limited, but is generally about 10 to 80% by mass, more preferably 15 to 60% by mass with respect to the total mass of the coating solution. More preferably, it is 20 to 40% by mass.
 ここで、遮熱層用塗布液におけるタングステン酸化物等の濃度は、特に制限されないが、上記した遮熱層におけるタングステン酸化物等の含有量になるような濃度であることが好ましい。具体的には、遮熱向上効果の観点から、遮熱層用塗布液におけるタングステン酸化物等の濃度は、好ましくは1~30質量%であり、より好ましくは5~20質量%である。遮熱層用塗布液における(メタ)アクリレートモノマーの濃度は、特に制限されないが、上記した遮熱層における重合物の含有量になるような濃度であることが好ましい。具体的には、遮熱層用塗布液における(メタ)アクリレートモノマーの濃度は、硬度や膜弾性率を所望の値に調整する観点から、好ましくは10~50質量%、より好ましくは20~35質量%である。遮熱層用塗布液における塩基性含窒素化合物の濃度は、特に制限されないが、上記した遮熱層における塩基性含窒素化合物の含有量になるような濃度であることが好ましい。具体的には、遮熱層用塗布液における塩基性含窒素化合物の濃度は、水素イオンのトラップ効率をさらに向上させる観点から、好ましくは0.005~5質量%、より好ましくは0.01~1質量%である。 Here, the concentration of tungsten oxide or the like in the coating solution for the heat shielding layer is not particularly limited, but is preferably such a concentration that the content of tungsten oxide or the like in the above-described heat shielding layer is obtained. Specifically, the concentration of tungsten oxide or the like in the heat shielding layer coating solution is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint of the heat shielding improvement effect. The concentration of the (meth) acrylate monomer in the heat shielding layer coating solution is not particularly limited, but is preferably such a concentration that the content of the polymer in the heat shielding layer described above is obtained. Specifically, the concentration of the (meth) acrylate monomer in the coating solution for the heat shielding layer is preferably 10 to 50% by mass, more preferably 20 to 35%, from the viewpoint of adjusting the hardness and film modulus to desired values. % By mass. The concentration of the basic nitrogen-containing compound in the coating solution for the heat-shielding layer is not particularly limited, but is preferably such a concentration that the content of the basic nitrogen-containing compound in the above-described heat-shielding layer is obtained. Specifically, the concentration of the basic nitrogen-containing compound in the coating solution for the heat shielding layer is preferably 0.005 to 5% by mass, more preferably 0.01 to 5% from the viewpoint of further improving the trapping efficiency of hydrogen ions. 1% by mass.
 遮熱層用塗布液は、必要に応じて、各種添加剤を含んでもよい。添加剤としては、光重合開始剤、レベリング性、撥水性、滑り性等を付与するための界面活性剤;紫外線照射による硬化性を向上させるための、染料、顔料、増感剤等が挙げられる。 The coating solution for the heat shielding layer may contain various additives as necessary. Examples of the additive include a photopolymerization initiator, a surfactant for imparting leveling properties, water repellency, slipperiness, and the like; a dye, a pigment, a sensitizer and the like for improving curability by ultraviolet irradiation. .
 また、前記光重合開始剤の種類として、特に制限はなく、カチオン性光重合開始剤、アニオン性光重合開始剤、ラジカル性光重合開始剤が挙げられるが、硬化性および生産性の観点から、ラジカル性光重合開始剤が好ましい。 Further, the type of the photopolymerization initiator is not particularly limited, and examples thereof include a cationic photopolymerization initiator, an anionic photopolymerization initiator, and a radical photopolymerization initiator. From the viewpoint of curability and productivity, A radical photopolymerization initiator is preferred.
 ラジカル性光重合開始剤としては、特に制限されないが、たとえば、アシルフォスフィンオキサイド類、アセトフェノン類、アントラキノン類、チオキサントン類、ケタール類、およびベンゾフェノン類およびアゾ化合物等を用いることができる。アシルフォスフィンオキサイド類としては、特に制限されないが、たとえば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等が挙げられる。アセトフェノン類としては、特に制限されないが、たとえばべンゾイン、ベンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタールなどのべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。アントラキノン類としては、特に制限されないが、たとえばメチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノン等が挙げられる。チオキサントン類としては、特に制限されないが、たとえばチオキサントン、2,4―ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等が挙げられる。ケタール類としては、特に制限されないが、たとえばアセトフェノンジメチルケタール、ベンジルジメチルケタール等が挙げられる。ベンゾフェノン類としては、特に限定されないが、ベンゾフェノン、4,4-ビスメチルアミノベンゾフェノン等が挙げられる。 The radical photopolymerization initiator is not particularly limited, and for example, acylphosphine oxides, acetophenones, anthraquinones, thioxanthones, ketals, benzophenones and azo compounds can be used. Acylphosphine oxides are not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, and bis (2,6-dimethoxybenzoyl). ) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, and the like. The acetophenones are not particularly limited. For example, benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzylmethyl ketal; acetophenone, 2,2- Examples include dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone. The anthraquinones are not particularly limited, and examples thereof include methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and the like. The thioxanthones are not particularly limited, and examples thereof include thioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone and the like. The ketals are not particularly limited, and examples thereof include acetophenone dimethyl ketal and benzyl dimethyl ketal. The benzophenones are not particularly limited, and examples thereof include benzophenone and 4,4-bismethylaminobenzophenone.
 また、たとえば、BASFジャパン社製のIrgacure(登録商標)184、651、1173、819、LUCIRIN(登録商標) TPO等の市販品も適宜用いられる。 For example, commercially available products such as Irgacure (registered trademark) 184, 651, 1173, 819, LUCIRIN (registered trademark) TPO manufactured by BASF Japan are also used as appropriate.
 これらの光重合開始剤は単独でもまたは2種以上組み合わせても使用することができる。これらの光重合開始剤の使用量は、(メタ)アクリレートモノマーを始めとする単量体成分100質量部に対して好ましくは0.5~20質量部、より好ましくは1~15質量部である。 These photopolymerization initiators can be used alone or in combination of two or more. The amount of these photopolymerization initiators used is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the monomer component including the (meth) acrylate monomer. .
 また、前記の界面活性剤の種類として、特に制限はなく、フッ素系界面活性剤、アクリル系界面活性剤、シリコーン系界面活性剤等を用いることができる。特に塗布液のレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。フッ素系界面活性剤の例としては、例えば、DIC株式会社製のメガファック(登録商標)Fシリーズ(F-430、F-477、F-552~F-559、F-561、F-562等)、DIC株式会社製のメガファック(登録商標)RSシリーズ(RS-76-E等)、AGCセイミケミカル株式会社製のサーフロン(登録商標)シリーズ、OMNOVA SOLUTIONS社製のPOLYFOXシリーズ、株式会社T&K TOKAのZXシリーズ、ダイキン工業株式会社製のオプツール(登録商標)シリーズ、株式会社ネオス製のフタージェント(登録商標)シリーズ(602A、650A等)等の市販品を使用することができる。アクリル系界面活性剤としては、ポリフローシリーズ(共栄社化学株式会社製)、ニューコールシリーズ(日本乳化剤株式会社製)、BYK(登録商標)-354(ビックケミー・ジャパン株式会社製)が挙げられる。シリコーン系界面活性剤としては、BYK(登録商標)-345、BYK(登録商標)-347、BYK(登録商標)-348、BYK(登録商標)-349(ビックケミー・ジャパン株式会社製)が挙げられる。界面活性剤は、単独でもまたは2種以上混合して用いてもよい。界面活性剤は、遮熱層用塗布液の溶媒を除いた成分の総質量に対して0.01質量%以上1質量%以下含むことが好ましい。 Further, the type of the surfactant is not particularly limited, and a fluorosurfactant, an acrylic surfactant, a silicone surfactant, and the like can be used. In particular, a fluorosurfactant is preferably used from the viewpoint of leveling properties, water repellency, and slipperiness of the coating solution. Examples of the fluorosurfactant include, for example, Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc., manufactured by DIC Corporation. ), Megafuck (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS Corporation, T & K TOKA Corporation Commercially available products such as ZX series, Optool (registered trademark) series manufactured by Daikin Industries, Ltd., and Footgent (registered trademark) series (602A, 650A, etc.) manufactured by Neos Corporation can be used. Examples of the acrylic surfactant include Polyflow Series (manufactured by Kyoeisha Chemical Co., Ltd.), New Coal Series (manufactured by Nippon Emulsifier Co., Ltd.), and BYK (registered trademark) -354 (manufactured by Big Chemie Japan Co., Ltd.). Examples of the silicone-based surfactant include BYK (registered trademark) -345, BYK (registered trademark) -347, BYK (registered trademark) -348, BYK (registered trademark) -349 (manufactured by BYK Japan). . Surfactants may be used alone or in admixture of two or more. The surfactant is preferably contained in an amount of 0.01% by mass or more and 1% by mass or less based on the total mass of the components excluding the solvent of the coating solution for the heat shielding layer.
 遮熱層用塗布液は、上記の各成分を混合することによって調整される。添加順序、添加方法は特に限定されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。 The coating solution for the heat shielding layer is adjusted by mixing the above components. The order of addition and the addition method are not particularly limited, and each component may be added and mixed sequentially while stirring, or may be added and mixed all at once while stirring.
 また、基材上(基材の表面または基材上配置された最表層の表面)に遮熱層用塗布液を塗布する方法についても特に制限はなく、公知の手法、例えば、ワイヤーバーによるコーティング、スピンコーティング、ディップコーティングなどの手法が採用されうる。また、ダイコーター、グラビアコーター、コンマコーターなどの連続塗布装置でも塗布することが可能である。 Moreover, there is no restriction | limiting in particular also about the method of apply | coating the coating liquid for heat-shielding layers on a base material (the surface of a base material, or the surface of the outermost layer arrange | positioned on a base material), For example, coating by a well-known method, for example, a wire bar Techniques such as spin coating and dip coating can be employed. Further, it can be applied by a continuous coating apparatus such as a die coater, a gravure coater or a comma coater.
 塗布後の乾燥条件としては、特に制限されない。例えば、乾燥温度は、70~110℃であることが好ましい。また、乾燥時間は、30秒~5分であることが好ましい。 The drying conditions after application are not particularly limited. For example, the drying temperature is preferably 70 to 110 ° C. The drying time is preferably 30 seconds to 5 minutes.
 その後、基材上に遮熱層用塗布液を塗布して得られた塗膜に、当該塗膜の基材から遠い面側から紫外線を照射し、塗膜を硬化させる。この際の紫外線の照射波長、照度、光量などの条件は、使用する紫外線硬化性モノマーや重合開始剤の種類によって異なるため、当業者によって適宜条件が調整されうる。例えば、紫外線ランプを用いる場合、その照度は50~1500mW/cmが好ましく、照射エネルギー量は50~1500mJ/cmが好ましい。 Thereafter, the coating film obtained by applying the thermal barrier layer coating liquid on the substrate is irradiated with ultraviolet rays from the side of the coating film far from the substrate to cure the coating film. In this case, the conditions such as the irradiation wavelength, the illuminance, and the light quantity of the ultraviolet rays vary depending on the type of the ultraviolet curable monomer and the polymerization initiator to be used. For example, when an ultraviolet lamp is used, the illuminance is preferably 50 to 1500 mW / cm 2 and the irradiation energy amount is preferably 50 to 1500 mJ / cm 2 .
 [機能層]
 本発明の一形態に係る遮熱フィルムは、上記の基材および遮熱層以外にも、機能層を有していてもよい。機能層の種類は、特に制限されないが、以下では機能層が誘電体多層膜(以下、「反射層」とも称される)である場合を例に挙げて具体的に説明する。
[Functional layer]
The heat shield film according to one embodiment of the present invention may have a functional layer in addition to the base material and the heat shield layer. The type of the functional layer is not particularly limited, but will be specifically described below with an example in which the functional layer is a dielectric multilayer film (hereinafter also referred to as “reflection layer”).
 (誘電体多層膜)
 本発明の他の形態は、高屈折率層と低屈折率層とが交互に積層されてなる誘電体多層膜を含む、遮熱フィルムである。
(Dielectric multilayer film)
Another embodiment of the present invention is a thermal barrier film including a dielectric multilayer film in which high refractive index layers and low refractive index layers are alternately stacked.
 誘電体多層膜(反射層)は、低屈折率層と高屈折率層とが交互に積層されてなる構成を有する。前記高屈折率層と前記低屈折率層とは、以下のように考える。 The dielectric multilayer film (reflective layer) has a configuration in which low refractive index layers and high refractive index layers are alternately stacked. The high refractive index layer and the low refractive index layer are considered as follows.
 例えば、高屈折率層を構成する成分(以下、高屈折率層成分)と低屈折率層を構成する成分(以下、低屈折率層成分)とが、ふたつの層の界面で混合され、高屈折率層成分と低屈折率層成分とを含む層(混合層)が形成される場合がある。この場合、混合層において、高屈折率層成分が50質量%以上である部位の集合を高屈折率層とし、低屈折率層成分が50質量%を超える部位の集合を低屈折率層とする。具体的には、低屈折率層が、例えば、低屈折率成分として第1の金属酸化物を、また、高屈折率層は高屈折率成分として第2の金属酸化物を含有している場合、これらの積層膜における膜厚方向での金属酸化物濃度プロファイルを測定し、その組成によって、高屈折率層または低屈折率層とみなすことができる。積層膜の金属酸化物濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで観測することができる。また、低屈折率成分または高屈折率成分に金属酸化物粒子が含有されておらず、高屈折率層または低屈折率層の一方が水溶性樹脂(有機バインダー)のみから形成されている積層体においても、同様にして、水溶性樹脂(有機バインダー)濃度プロファイルにて、例えば、膜厚方向での炭素濃度を測定することにより混合領域が存在していることを確認し、さらにその組成をEDXにより測定することで、スパッタでエッチングされた各層が、高屈折率層または低屈折率層とみなすことができる。 For example, a component that constitutes a high refractive index layer (hereinafter referred to as a high refractive index layer component) and a component that constitutes a low refractive index layer (hereinafter referred to as a low refractive index layer component) are mixed at the interface between the two layers. A layer (mixed layer) including a refractive index layer component and a low refractive index layer component may be formed. In this case, in the mixed layer, a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer, and a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer. . Specifically, when the low refractive index layer contains, for example, a first metal oxide as a low refractive index component, and the high refractive index layer contains a second metal oxide as a high refractive index component The metal oxide concentration profile in the film thickness direction in these laminated films is measured, and can be regarded as a high refractive index layer or a low refractive index layer depending on the composition. The metal oxide concentration profile of the laminated film is sputtered from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio. In addition, a laminate in which metal oxide particles are not contained in the low refractive index component or the high refractive index component, and one of the high refractive index layer or the low refractive index layer is formed only from a water-soluble resin (organic binder). Similarly, in the water-soluble resin (organic binder) concentration profile, for example, the carbon concentration in the film thickness direction is measured to confirm that the mixed region exists, and the composition is further changed to EDX. Thus, each layer etched by sputtering can be regarded as a high refractive index layer or a low refractive index layer.
 前記反射層は、基材上に、ポリマーを含む高屈折率層および低屈折率層が交互に積層された積層体(ユニット)を少なくとも1つ以上有する構成であればよいが、高屈折率層および低屈折率層の層数(屈折率層の総数)は、特に制限はないが、好ましくは6~2000(すなわち、3~1000ユニット)であり、より好ましくは10~1500(すなわち、5~750ユニット)であり、さらに好ましくは10~1000(すなわち、5~500ユニット)である。層数が2000を超えるとヘイズが発生しやすく、6未満であると所望の反射率に達しないことがある。また、本発明の一形態に係る遮熱フィルムは、上記基材上にユニットを少なくとも1つ以上有する構成であればよい。 The reflective layer may have a structure having at least one laminate (unit) in which a high refractive index layer and a low refractive index layer containing a polymer are alternately laminated on a substrate. The number of low refractive index layers (total number of refractive index layers) is not particularly limited, but is preferably 6 to 2000 (that is, 3 to 1000 units), more preferably 10 to 1500 (that is, 5 to 5). 750 units), more preferably 10 to 1000 (that is, 5 to 500 units). If the number of layers exceeds 2000, haze is likely to occur, and if it is less than 6, the desired reflectance may not be achieved. Moreover, the thermal insulation film which concerns on one form of this invention should just be the structure which has at least 1 or more units on the said base material.
 誘電体多層膜において、高屈折率層は、より高い屈折率が好ましいが、屈折率が、好ましくは1.70~2.50であり、より好ましくは1.80~2.20であり、さらに好ましくは1.90~2.20である。また、低屈折率層は、より低い屈折率が好ましいが、屈折率が、好ましくは1.10~1.60であり、より好ましくは1.30~1.55であり、さらに好ましくは1.30~1.50である。 In the dielectric multilayer film, the high refractive index layer preferably has a higher refractive index, but the refractive index is preferably 1.70 to 2.50, more preferably 1.80 to 2.20, It is preferably 1.90 to 2.20. The low refractive index layer preferably has a lower refractive index, but the refractive index is preferably 1.10 to 1.60, more preferably 1.30 to 1.55, and still more preferably 1. 30 to 1.50.
 誘電体多層膜においては、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができる観点から好ましい。高屈折率層および低屈折率層から構成されるユニットの少なくとも1つにおいて、隣接する該高屈折率層と低屈折率層との屈折率差が0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.25以上である。誘電体多層膜が低屈折率層および高屈折率層のユニットを複数有する場合には、全てのユニットにおける低屈折率層と高屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、誘電体多層膜の最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。 In the dielectric multilayer film, it is preferable to design a large difference in refractive index between the high refractive index layer and the low refractive index layer from the viewpoint of increasing the infrared reflectance with a small number of layers. In at least one of the units composed of the high refractive index layer and the low refractive index layer, the difference in refractive index between the adjacent high refractive index layer and low refractive index layer is preferably 0.1 or more, more preferably Is 0.2 or more, more preferably 0.25 or more. When the dielectric multilayer film has a plurality of units of a low refractive index layer and a high refractive index layer, the refractive index difference between the low refractive index layer and the high refractive index layer in all the units is within the preferred range. Is preferred. However, the outermost layer and the lowermost layer of the dielectric multilayer film may have a configuration outside the above preferred range.
 特定波長領域の反射率は、隣接する2層(高屈折率層と低屈折率層)の屈折率差と積層数で決まり、屈折率差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。例えば、赤外反射率(赤外遮蔽率)90%以上を得るためには、屈折率差が0.1より小さいと、100層を超える積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下する。反射率の向上と層数を少なくする観点からは、屈折率差に上限はないが、実質的には1.4程度である。 The reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers (high refractive index layer and low refractive index layer) and the number of layers, and the larger the refractive index difference, the same reflectance can be obtained with fewer layers. . The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectivity (infrared shielding rate) of 90% or more, if the difference in refractive index is smaller than 0.1, a laminate exceeding 100 layers is required, which not only reduces productivity. , Scattering at the laminated interface increases and transparency decreases. From the viewpoint of improving the reflectance and reducing the number of layers, there is no upper limit to the difference in refractive index, but it is substantially about 1.4.
 上記屈折率は、高屈折率層、低屈折率層の屈折率を下記の方法に従って求め、両者の差分として求める。すなわち、(必要により基材を用いて)各屈折率層を単層で作製し、このサンプルを10cm×10cmに断裁した後、下記の方法に従って屈折率を求める。分光光度計として、U-4000型(日立製作所社製)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm~700nm)の反射率を25点測定して平均値を求め、その測定結果より平均屈折率を求める。 The refractive index is obtained as a difference between the high refractive index layer and the low refractive index layer according to the following method. That is, each refractive index layer is formed as a single layer (using a base material if necessary), and after cutting this sample into 10 cm × 10 cm, the refractive index is obtained according to the following method. Using a U-4000 type (manufactured by Hitachi, Ltd.) as a spectrophotometer, the surface opposite to the measurement surface (back surface) of each sample is roughened, and then light absorption is performed with a black spray. Then, the reflection of light on the back surface is prevented, and the average value is obtained by measuring 25 points of reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees, and the average refractive index is determined from the measurement result. Ask.
 隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御でき、反射率を上げることができる。ここで、nは屈折率、また、dは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御出来る。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。 Since reflection at the interface between adjacent layers depends on the refractive index ratio between layers, the larger this refractive index ratio, the higher the reflectance. In addition, when the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is a relationship expressed by n · d = wavelength / 4 when viewed as a single layer film, the reflected light is controlled to be strengthened by the phase difference. The reflectance can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By using this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light. That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
 誘電体多層膜は反射率をアップさせる特定波長領域を変えることにより、可視光反射フィルムや近赤外線反射フィルムとすることができる。即ち、反射率をアップさせる特定波長領域を可視光領域に設定すれば可視光線反射フィルムとなり、近赤外領域に設定すれば近赤外線反射フィルムとなる。また、反射率をアップさせる特定波長領域を紫外光領域に設定すれば、紫外線反射フィルムとなる。本発明の一形態に係る遮熱フィルムにおいて誘電体多層膜を用いる場合は、(近)赤外反射(遮蔽)フィルムとすればよい。赤外反射フィルムの場合、JIS R3106:1998で示される可視光領域の550nmでの透過率が50%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。また、1200nmでの透過率が35%以下であることが好ましく、25%以下であることがより好ましく、20%以下であることがさらに好ましい。かような好適な範囲となるように光学膜厚とユニットを設計することが好ましい。また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 The dielectric multilayer film can be made into a visible light reflection film or a near infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set to the visible light region, the visible light reflecting film is obtained, and if the specific wavelength region is set to the near infrared region, the near infrared reflecting film is obtained. Moreover, if the specific wavelength area | region which raises a reflectance is set to an ultraviolet light area | region, it will become an ultraviolet reflective film. In the case of using a dielectric multilayer film in the heat shield film according to one embodiment of the present invention, a (near) infrared reflection (shield) film may be used. In the case of an infrared reflective film, the transmittance at 550 nm in the visible light region shown in JIS R3106: 1998 is preferably 50% or more, more preferably 70% or more, and 75% or more. Further preferred. Further, the transmittance at 1200 nm is preferably 35% or less, more preferably 25% or less, and further preferably 20% or less. It is preferable to design the optical film thickness and unit so as to be in such a suitable range. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 [低屈折率層と高屈折率層]
 本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、誘電体多層膜を構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。
[Low refractive index layer and high refractive index layer]
In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that when each refractive index layer constituting the dielectric multilayer film is focused on two adjacent refractive index layers, All forms other than those having the same refractive index are included.
 屈折率層の1層あたりの厚み(乾燥後の厚み)は、20~1000nmであることが好ましく、50~500nmであることがより好ましく、100~300nmであることがさらにより好ましく、100~200nmであることが特に好ましい。屈折率層の1層あたりの厚みは、ダイスの押出口におけるフィルム厚さ方向の幅を変更すること、および/または延伸条件により、調節することができる。なお、積層体を延伸する場合は、上記膜厚は延伸後の厚さを示す。 The thickness of the refractive index layer per layer (thickness after drying) is preferably 20 to 1000 nm, more preferably 50 to 500 nm, still more preferably 100 to 300 nm, and even more preferably 100 to 200 nm. It is particularly preferred that The thickness per layer of the refractive index layer can be adjusted by changing the width in the film thickness direction at the die extrusion port and / or by stretching conditions. In addition, when extending | stretching a laminated body, the said film thickness shows the thickness after extending | stretching.
 [ポリマー材料]
 低屈折率層および高屈折率層は必須にポリマー材料を含む。屈折率層を形成するのがポリマー材料であれば、塗布やスピンコートなどの成膜方法が選択可能となる。これらの方法は簡便であり、基材の耐熱性を問わないので選択肢が広く、特に樹脂基材に対して有効な成膜方法といえる。たとえば塗布型ならばロール・ツー・ロール法などの大量生産方式が採用でき、コスト面でもプロセス時間面でも有利になる。また、ポリマー材料を含む膜はフレキシブル性が高いため、生産時や運搬時に巻き取りを行っても、これらの欠陥が発生しづらく、取扱性に優れているという長所がある。
[Polymer material]
The low refractive index layer and the high refractive index layer essentially contain a polymer material. If the refractive index layer is formed of a polymer material, a film forming method such as coating or spin coating can be selected. Since these methods are simple and do not ask the heat resistance of a base material, there are many choices, and it can be said that it is an effective film forming method particularly for a resin base material. For example, a mass production method such as a roll-to-roll method can be adopted for the coating type, which is advantageous in terms of cost and process time. Moreover, since the film | membrane containing a polymer material has high flexibility, even if it winds up at the time of production or conveyance, these defects do not generate easily and there exists an advantage that it is excellent in handleability.
 屈折率層に含まれるポリマーは、特に制限されず、具体的な例としては、ポリエチレンテレフタラート(PET)、ポリエチレンテレフタラートのコポリマー(coPET)、ポリ(メチルメタクリラート)(PMMA)、ポリ(メチルメタクリラート)のコポリマー(coPMMA)、シクロヘキサンジメタノール(PETG)、シクロヘキサンジメタノールのコポリマー(coPETG)、ポリエチレンナフタラート(PEN)ポリエチレンナフタラートのコポリマー(coPEN)、ポリエチレンナフタラート、ポリエチレンナフタラートのコポリマー、ポリ(メチルメタクリラート)、およびポリ(メチルメタクリラート)のコポリマー等が挙げられるが、これらに限定されない。各高屈折率層および低屈折率層には、これらのポリマーを1種、または2種以上の組み合わせを用いることができる。また、好適なポリマーの組み合わせの例として、米国特許第6,352,761号明細書に記載のものが挙げられる。また、上記ポリマーを用いて、例えば共押出法または共流延法等により連続フラットフィルム製造ラインにより、反射層を形成することも可能である。 The polymer contained in the refractive index layer is not particularly limited, and specific examples include polyethylene terephthalate (PET), a copolymer of polyethylene terephthalate (coPET), poly (methyl methacrylate) (PMMA), and poly (methyl Methacrylate) copolymer (coPMMA), cyclohexanedimethanol (PETG), cyclohexanedimethanol copolymer (coPETG), polyethylene naphthalate (PEN) polyethylene naphthalate copolymer (coPEN), polyethylene naphthalate, polyethylene naphthalate copolymer, Examples include, but are not limited to, poly (methyl methacrylate) and copolymers of poly (methyl methacrylate). For each high refractive index layer and low refractive index layer, one or a combination of two or more of these polymers can be used. Examples of suitable polymer combinations include those described in US Pat. No. 6,352,761. Moreover, it is also possible to form a reflective layer using the said polymer with a continuous flat film manufacturing line, for example by a coextrusion method or a co-casting method.
 また、前記高屈折率層および前記低屈折率層に含まれるポリマーは、バインダーとして機能する水溶性高分子であることが好ましい。高屈折率層および低屈折率層は、水溶性高分子を含むことで、有機溶剤による環境上の問題を解決することができ、また塗膜の柔軟性も達成することができるから好ましい。なお、高屈折率層および低屈折率層に含有されるポリマーは、同じ構成成分であってもよく、異なる構成成分であってもよいが、異なることが好ましい。水溶性高分子としては、例えば、ゼラチン、増粘多糖類、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体などが挙げられる。これらのなかでも、塗布ムラや膜厚均一性(ヘイズ)などの向上効果の観点から、屈折率層はポリマーとしてポリビニルアルコール類であるポリビニルアルコールまたはその誘導体を含むことが好ましい。ポリマーは、単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、ポリマーは、合成品を用いてもよいし、市販品を用いてもよい。 The polymer contained in the high refractive index layer and the low refractive index layer is preferably a water-soluble polymer that functions as a binder. The high refractive index layer and the low refractive index layer preferably contain a water-soluble polymer, so that environmental problems due to the organic solvent can be solved and the flexibility of the coating film can be achieved. The polymers contained in the high refractive index layer and the low refractive index layer may be the same component or different components, but are preferably different. Examples of the water-soluble polymer include gelatin, thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate- Acrylic resin such as acrylic acid ester copolymer or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer Styrene-acrylic resin such as styrene-α-methylstyrene-acrylic acid copolymer or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene- 2-hydroxyethyl acrylate Copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic Examples thereof include acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate copolymers such as vinyl acetate-acrylic acid copolymers, and the like. Among these, from the viewpoint of improving effects such as coating unevenness and film thickness uniformity (haze), the refractive index layer preferably contains polyvinyl alcohol which is a polyvinyl alcohol or a derivative thereof as a polymer. A polymer may be used independently and may be used in combination of 2 or more type. The polymer may be a synthetic product or a commercially available product.
 ポリマーは特に制限されず、国際公開第2012/128109号、特開2013-121567号公報、特開2013-148849号公報等の、高屈折率層および前記低屈折率層に使用される公知のポリマーが同様にして使用できる。具体的には、ポリビニルアルコール系樹脂としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他、各種の変性ポリビニルアルコールも含まれる。 The polymer is not particularly limited, and known polymers used for the high refractive index layer and the low refractive index layer, such as International Publication No. 2012/128109, JP2013-121567A, JP2013-148849A, and the like. Can be used in the same way. Specifically, the polyvinyl alcohol-based resin includes various modified polyvinyl alcohols in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate.
 酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1,000以上であることが好ましく、平均重合度が1,500~5,000であることが特に好ましい。また、ケン化度は、70~100モル%であることが好ましく、80~99.9モル%であることが特に好ましい。 The polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, and particularly preferably an average degree of polymerization of 1,500 to 5,000. The degree of saponification is preferably 70 to 100 mol%, particularly preferably 80 to 99.9 mol%.
 変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、エチレン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。 Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, ethylene-modified polyvinyl alcohol, and vinyl alcohol polymers.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および同63-307979号公報に記載されているようなビニルアルコールと水溶性基を有するビニル化合物との共重合体、および特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されているような疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシル基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol as described, silanol modified polyvinyl alcohol having silanol group, reactivity having reactive group such as acetoacetyl group, carbonyl group, carboxyl group Examples thereof include group-modified polyvinyl alcohol.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383. Polyvinyl alcohol contained therein and obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 エチレン変性ポリビニルアルコールとしては、例えば、特開2009-107324号公報、特開2003-248123号公報、特開2003-342322号公報、特願2013-206813などに記載されるものが使用できる。または、エクセバール(商品名:株式会社クラレ製)等の市販品を使用してもよい。 As the ethylene-modified polyvinyl alcohol, for example, those described in JP-A-2009-107324, JP-A-2003-248123, JP-A-2003-342322, and Japanese Patent Application No. 2013-206913 can be used. Alternatively, commercially available products such as EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) may be used.
 ビニルアルコール系ポリマーとしては、例えば、エクセバール(商品名:株式会社クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業株式会社製)、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(例えば、積水化学工業株式会社製「エスレック」)、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、株式会社クラレ製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(例えば、日本合成化学工業株式会社製「ゴーセファイマー(登録商標)Z/WRシリーズ」)などが挙げられる。 Examples of the vinyl alcohol-based polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.), Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and polyvinyl acetal resin obtained by reacting polyvinyl alcohol with an aldehyde ( For example, “S REC” manufactured by Sekisui Chemical Co., Ltd., silanol-modified polyvinyl alcohol having a silanol group (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol-based resin having an acetoacetyl group in the molecule (for example, And “Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 なお、上述のポリビニルアルコールは、単独で用いても、2種以上を組み合わせて用いてもよい。また、ポリビニルアルコールは合成品を用いてもよいし、市販品を用いてもよい。 In addition, the above-mentioned polyvinyl alcohol may be used alone or in combination of two or more. Polyvinyl alcohol may be a synthetic product or a commercial product.
 ポリビニルアルコールの質量平均分子量は60,000~250,000であることが好ましい。なお、本明細書において、「質量平均分子量」の値は、静的光散乱法、ゲルパーミエーションクロマトグラフ法(GPC)、TOFMASSなどによって測定した値を採用するものとする。水溶性高分子の質量平均分子量が上記範囲にあると、湿式製膜法における塗布が可能となり、生産性を向上させることができることから好ましい。 The mass average molecular weight of polyvinyl alcohol is preferably 60,000 to 250,000. In this specification, the value measured by static light scattering, gel permeation chromatography (GPC), TOFMASS, etc. is adopted as the value of “mass average molecular weight”. When the weight average molecular weight of the water-soluble polymer is in the above range, it is preferable because application in a wet film forming method is possible and productivity can be improved.
 屈折率層における水溶性高分子の含有量は、屈折率層の全固形分に対して、5~75質量%であることが好ましく、10~70質量%であることがより好ましい。水溶性高分子の含有量が5質量%以上であると、湿式製膜法で屈折率層を形成する場合に、塗布して得られた塗膜の乾燥時に、膜面が乱れることによる透明性の劣化を防止できることから好ましい。一方、水溶性高分子の含有量が75質量%以下であると、屈折率層中に金属酸化物粒子を含有する場合に好適な含有量となり、低屈折率層と高屈折率層との屈折率差を大きくできることから好ましい。なお、本明細書において、水溶性高分子の含有量は、蒸発乾固法の残固形分より求められる。具体的には、遮熱フィルムを95℃の熱水に2時間浸し、残ったフィルムを除去した後、熱水を蒸発させ、得られた固形物の量を水溶性高分子量とする。この際、IR(赤外分光)スペクトルにおいて1700~1800cm-1、900~1000cm-1、および800~900cm-1の領域にそれぞれ1つずつピークが見られる場合、その水溶性高分子はポリビニルアルコールであると断定することができる。 The content of the water-soluble polymer in the refractive index layer is preferably 5 to 75% by mass, and more preferably 10 to 70% by mass with respect to the total solid content of the refractive index layer. When the refractive index layer is formed by a wet film-forming method when the content of the water-soluble polymer is 5% by mass or more, the transparency of the film surface is disturbed when the coating film obtained by coating is dried. This is preferable because it is possible to prevent the deterioration. On the other hand, when the content of the water-soluble polymer is 75% by mass or less, the content is suitable when the metal oxide particles are contained in the refractive index layer, and the refractive index between the low refractive index layer and the high refractive index layer. This is preferable because the rate difference can be increased. In addition, in this specification, content of water-soluble polymer is calculated | required from the residual solid content of the evaporation-drying method. Specifically, the thermal barrier film is immersed in hot water at 95 ° C. for 2 hours, and the remaining film is removed, and then the hot water is evaporated, and the amount of the obtained solid matter is made the water-soluble high molecular weight. At this time, when one peak is observed in each of the regions of 1700 to 1800 cm −1 , 900 to 1000 cm −1 , and 800 to 900 cm −1 in the IR (infrared spectroscopy) spectrum, the water-soluble polymer is polyvinyl alcohol. It can be determined that
 [金属酸化物粒子]
 低屈折率層または高屈折率層の少なくとも一方は、金属酸化物(粒子)を含有してもよい。金属酸化物粒子を含有することで各屈折率層間の屈折率差を大きくすることができ、反射特性が向上する。低屈折率層および高屈折率層の双方が金属酸化物粒子を含有することにより、屈折率差をより大きくすることができる。金属酸化物粒子を含むことにより、積層数を低減することができ、薄膜とすることができる。層数を減らすことで、生産性が向上し、積層界面での散乱による透明性の減少を抑制することができる。
[Metal oxide particles]
At least one of the low refractive index layer or the high refractive index layer may contain a metal oxide (particle). By containing metal oxide particles, the refractive index difference between the refractive index layers can be increased, and the reflection characteristics are improved. When both the low refractive index layer and the high refractive index layer contain metal oxide particles, the refractive index difference can be further increased. By including metal oxide particles, the number of stacked layers can be reduced and a thin film can be obtained. By reducing the number of layers, productivity can be improved and a decrease in transparency due to scattering at the lamination interface can be suppressed.
 金属酸化物粒子としては、金属酸化物を構成する金属が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物を用いることができる。 As the metal oxide particles, the metal constituting the metal oxide is Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and a rare earth metal A metal oxide which is one kind or two or more kinds of metals can be used.
 《高屈折率層中の金属酸化物粒子》
 高屈折率層に用いる金属酸化物粒子としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化バリウム、酸化インジウム、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、酸化鉛、ならびにこれら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)などが挙げられる。
《Metal oxide particles in high refractive index layer》
Examples of the metal oxide particles used in the high refractive index layer include titanium dioxide, zirconium oxide, zinc oxide, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, ferric oxide, Iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, hafnium oxide, niobium oxide, tantalum oxide, barium oxide, indium oxide, europium oxide, lanthanum oxide, zircon, tin oxide, lead oxide, and Examples thereof include lithium niobate, potassium niobate, lithium tantalate, and aluminum / magnesium oxide (MgAl 2 O 4 ), which are double oxides composed of these oxides.
 また、金属酸化物粒子として、希土類酸化物を用いることもでき、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。 In addition, rare earth oxides can also be used as the metal oxide particles. Specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, and oxidation. Examples also include terbium, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
 高屈折率層に用いられる金属酸化物粒子としては、屈折率が1.90以上の金属酸化物粒子が好ましく、例えば、酸化ジルコニウム、酸化セリウム、酸化チタン、酸化亜鉛等を挙げることができる。中でも、透明でより屈折率の高い高屈折率層を形成することのできることから、二酸化チタンが好ましく、特にルチル型(正方晶形)酸化チタン粒子を用いることが好ましい。高屈折率層に用いられる金属酸化物粒子は、1種単独であってもよいし、2種以上併用してもよい。 The metal oxide particles used in the high refractive index layer are preferably metal oxide particles having a refractive index of 1.90 or more, and examples thereof include zirconium oxide, cerium oxide, titanium oxide, and zinc oxide. Among them, titanium dioxide is preferable because it can form a transparent and higher refractive index layer having a higher refractive index, and it is particularly preferable to use rutile (tetragonal) titanium oxide particles. The metal oxide particles used for the high refractive index layer may be used singly or in combination of two or more.
 高屈折率層で用いられる金属酸化物粒子に用いられる金属酸化物粒子の体積平均粒径は、100nm以下であることが好ましく、1~30nmであることがより好ましく、5~15nmであることがさらに好ましい。 The volume average particle size of the metal oxide particles used for the metal oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 1 to 30 nm, and more preferably 5 to 15 nm. Further preferred.
 酸化チタン粒子は、酸化チタンゾルの表面を変性して水または有機溶剤等に分散可能な状態にしたものを用いることが好ましい。水系の酸化チタンゾルの調製方法としては、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報等に記載された事項を参照にすることができる。 As the titanium oxide particles, those obtained by modifying the surface of the titanium oxide sol so as to be dispersible in water or an organic solvent are preferably used. Examples of the preparation method of the aqueous titanium oxide sol include, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, JP-A-63-3. Reference can be made to the matters described in Japanese Patent No. 17221.
 高屈折率層で用いられる金属酸化物粒子に用いられる酸化チタンの平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、ヘイズ値が低く可視光透過率に優れる観点から1~30nmであることがさらに好ましく、1~20nmであることがより好ましい。体積平均粒径が上記範囲であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。なお、ここで平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子状の金属酸化物の集団において、粒子1個当りの体積をviとした場合に、平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた体積平均粒径である。 The average particle diameter of titanium oxide used for the metal oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably 50 nm or less, and the viewpoint that the haze value is low and the visible light transmittance is excellent. 1 to 30 nm is more preferable, and 1 to 20 nm is more preferable. If the volume average particle size is in the above range, it is preferable from the viewpoint of low haze and excellent visible light transmittance. Here, the average particle diameter means a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a particle image appearing on the cross section or surface of the refractive index layer. The particle diameters of 1,000 arbitrary particles are measured by the method of observing the above, and particles having particle diameters of d1, d2,. In a group of nk particulate metal oxides, when the volume per particle is vi, the average particle size mv = {Σ (vi · di)} / {Σ (vi)} The volume average particle size weighted by the volume to be measured.
 また、酸化チタンが含ケイ素の水和酸化物で被覆されたコアシェル粒子の形態であってもよい。当該コアシェル粒子は、酸化チタン粒子の表面を、コアとなる酸化チタンに含ケイ素の水和酸化物からなるシェルが被覆してなる構造を有する。かようなコアシェル粒子を高屈折率層に含有させることで、シェル層の含ケイ素の水和酸化物と水溶性樹脂との相互作用により、低屈折率層と高屈折率層との層間混合が抑制されうる。ここで、「被覆」とは、酸化チタン粒子の表面の少なくとも一部に、含ケイ素の水和酸化物が付着されている状態を意味する。すなわち、金属酸化物粒子として用いられる酸化チタン粒子の表面が、完全に含ケイ素の水和酸化物で被覆されていてもよく、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されていてもよい。被覆された酸化チタン粒子の屈折率が含ケイ素の水和酸化物の被覆量により制御される観点から、酸化チタン粒子の表面の一部が含ケイ素の水和酸化物で被覆されることが好ましい。以下ではこのような被覆された酸化チタン粒子を「シリカ付着二酸化チタンゾル」とも称する。 Alternatively, it may be in the form of core-shell particles in which titanium oxide is coated with a silicon-containing hydrated oxide. The core-shell particles have a structure in which the surface of the titanium oxide particles is coated with a shell made of a silicon-containing hydrated oxide on a titanium oxide serving as a core. By including such core-shell particles in the high refractive index layer, the intermixing of the low refractive index layer and the high refractive index layer is achieved by the interaction between the silicon-containing hydrated oxide of the shell layer and the water-soluble resin. Can be suppressed. Here, the “coating” means a state in which a silicon-containing hydrated oxide is attached to at least a part of the surface of the titanium oxide particles. That is, the surface of the titanium oxide particles used as the metal oxide particles may be completely covered with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particles is a silicon-containing hydrated oxide. It may be coated. From the viewpoint that the refractive index of the coated titanium oxide particles is controlled by the coating amount of the silicon-containing hydrated oxide, it is preferable that a part of the surface of the titanium oxide particles is coated with the silicon-containing hydrated oxide. . Hereinafter, such coated titanium oxide particles are also referred to as “silica-attached titanium dioxide sol”.
 含ケイ素の水和酸化物で被覆された酸化チタン粒子の酸化チタンはルチル型であってもアナターゼ型であってもよいが、ルチル型がより好ましい。これは、ルチル型の酸化チタン粒子が、アナターゼ型の酸化チタン粒子より光触媒活性が低いため、高屈折率層や隣接した低屈折率層の耐候性が高くなり、さらに屈折率が高くなるためである。 The titanium oxide of the titanium oxide particles coated with the silicon-containing hydrated oxide may be a rutile type or an anatase type, but a rutile type is more preferable. This is because rutile-type titanium oxide particles have lower photocatalytic activity than anatase-type titanium oxide particles, which increases the weather resistance of the high refractive index layer and the adjacent low refractive index layer, and further increases the refractive index. is there.
 本明細書における「含ケイ素の水和酸化物」とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよいが、本発明の一形態に係る効果を得るためにはシラノール基を有することがより好ましい。 The “silicon-containing hydrated oxide” in this specification may be any of a hydrate of an inorganic silicon compound, a hydrolyzate and / or a condensate of an organosilicon compound, and the effect according to one embodiment of the present invention. It is more preferable to have a silanol group in order to obtain
 含ケイ素の水和酸化物の被覆量は、金属酸化物粒子に対して3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の高屈折率化が容易となり、被覆量が3質量%以上であると、被覆した粒子を安定に形成することができるからである。 The coating amount of the silicon-containing hydrated oxide is 3 to 30% by mass, preferably 3 to 10% by mass, and more preferably 3 to 8% by mass with respect to the metal oxide particles. This is because when the coating amount is 30% by mass or less, it is easy to increase the refractive index of the high refractive index layer, and when the coating amount is 3% by mass or more, the coated particles can be stably formed.
 酸化チタン粒子を含ケイ素の水和酸化物で被覆する方法としては、従来公知の方法により製造することができ、例えば、特開平10-158015号公報、特開2000-204301号公報、特開2007-246351号公報等に記載された事項を参照することができる。 As a method of coating the titanium oxide particles with a silicon-containing hydrated oxide, it can be produced by a conventionally known method. For example, JP-A-10-158015, JP-A-2000-204301, JP-A-2007 Reference can be made to the matters described in Japanese Patent No. 246351.
 一般的に、酸化チタン粒子は、粒子表面の光触媒活性の抑制や、溶媒等への分散性を向上する目的で、表面処理が施された状態で使用されることが多く、表面処理としては、シリカ、アルミナ、水酸化アルミニウム、ジルコニア等、1種またその2種類以上で処理されているものが好ましい。より具体的には、酸化チタン粒子表面をシリカからなる被覆層で覆われ、粒子表面が負電荷を帯びたものや、アルミニウム酸化物からなる被覆層が形成されたpH8~10で表面が正電荷を帯びたものが知られている。 In general, titanium oxide particles are often used in a surface-treated state for the purpose of suppressing the photocatalytic activity of the particle surface and improving dispersibility in a solvent, etc. Silica, alumina, aluminum hydroxide, zirconia, and the like are preferably treated with one or more of them. More specifically, the surface of the titanium oxide particle is covered with a coating layer made of silica, and the surface of the particle is negatively charged, or the surface is positively charged at a pH of 8 to 10 where a coating layer made of aluminum oxide is formed. The one that bears is known.
 高屈折率層における金属酸化物粒子の含有量としては、高屈折率層の固形分100質量%に対して、赤外遮蔽の観点および曲面形状のガラスにフィルムを適用した場合の色ムラ低減の観点から、20~80質量%であることが好ましく、30~75質量%であることがより好ましく、40~70質量%であることがさらに好ましい。 As the content of the metal oxide particles in the high refractive index layer, with respect to the solid content of 100% by mass of the high refractive index layer, the viewpoint of infrared shielding and the reduction of color unevenness when a film is applied to curved glass From the viewpoint, it is preferably 20 to 80% by mass, more preferably 30 to 75% by mass, and further preferably 40 to 70% by mass.
 《低屈折率層中の金属酸化物粒子》
 主に低屈折率層に用いられる金属酸化物粒子としては、金属酸化物粒子として二酸化ケイ素を用いることが好ましく、コロイダルシリカを用いることが特に好ましい。低屈折率層に含まれる金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmであるのがより好ましく、3~40nmであるのがさらに好ましく、3~20nmであるのが特に好ましく、4~10nmであるのが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。低屈折率層中の金属酸化物の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
<< Metal oxide particles in the low refractive index layer >>
As the metal oxide particles mainly used in the low refractive index layer, it is preferable to use silicon dioxide as the metal oxide particles, and it is particularly preferable to use colloidal silica. The metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer preferably have an average particle size of 3 to 100 nm. The average particle diameter of primary particles of silicon dioxide dispersed in a primary particle state (particle diameter in a dispersion state before coating) is more preferably 3 to 50 nm, and further preferably 3 to 40 nm. It is particularly preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less. The average particle size of the metal oxide in the low refractive index layer is determined by observing the particles themselves or the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1,000 arbitrary particles. The simple average value (number average) is obtained. Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 低屈折率層における金属酸化物粒子の含有量としては、低屈折率層の固形分に対して、屈折率の観点から、5~80質量%であることが好ましく、10~75質量%であることがさらに好ましい。 The content of the metal oxide particles in the low refractive index layer is preferably 5 to 80% by mass with respect to the solid content of the low refractive index layer, and preferably 10 to 75% by mass from the viewpoint of refractive index. More preferably.
 コロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。この様なコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 Colloidal silica is obtained by heating and aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer. For example, JP-A-57-14091 and JP-A-60- No. 219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142, JP-A-7- 179029, JP-A-7-137431, and International Publication No. 94/26530. Such colloidal silica may be a synthetic product or a commercially available product. The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
 (その他の添加物)
 各屈折率層は、上記以外にも、例えば、特開昭57-74193号公報、同57-87988号公報および同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。これらの添加物の含有量は、屈折率層の固形分に対して、0.1~10質量%であることが好ましい。
(Other additives)
In addition to the above, each refractive index layer includes, for example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, and JP-A-57-74192. JP-A-57-87989, JP-A-60-72785, JP-A-61465991, JP-A-1-95091 and JP-A-3-13376, etc. No. 42993, 59-52689, 62-280069, 61-242871, and JP-A 4-219266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid PH adjusters such as citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, lubricants such as diethylene glycol, preservatives, antistatic agents, Various known additives such as DOO agent may contain. The content of these additives is preferably 0.1 to 10% by mass with respect to the solid content of the refractive index layer.
 または、各屈折率層が水溶性高分子を含む場合には、水溶性高分子を硬化させるために、硬化剤を使用することもできる。硬化剤としては、ホウ酸及びその塩、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬、ホウ砂等が挙げられる。屈折率層における硬化剤の含有量は、屈折率層の固形分に対して、1~10質量%であることが好ましい。 Alternatively, when each refractive index layer contains a water-soluble polymer, a curing agent can be used to cure the water-soluble polymer. Curing agents include boric acid and its salts, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidylcyclohexane, N, N-diglycidyl-4-glycidyloxyaniline, sorbitol polyglycidyl Ether, glycerol polyglycidyl ether, etc.), aldehyde-based curing agents (formaldehyde, glyoxal, etc.), active halogen-based curing agents (2,4-dichloro-4-hydroxy-1,3,5, -s-triazine, etc.), active Examples thereof include vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum, borax and the like. The content of the curing agent in the refractive index layer is preferably 1 to 10% by mass with respect to the solid content of the refractive index layer.
 または、各屈折率層は、塗布時の表面張力調整のために、界面活性剤を含んでもよい。ここで、界面活性剤としてアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤などを用いることができるが、アニオン系界面活性剤がより好ましい。好ましい化合物としては、1分子中に炭素数8~30の疎水性基とスルホン酸基又はその塩を含有するものが挙げられる。各屈折率層における界面活性剤の含有量は、屈折率層の固形分に対して、0.01~5質量%であることが好ましい。 Alternatively, each refractive index layer may contain a surfactant for adjusting the surface tension at the time of application. Here, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like can be used as the surfactant, and an anionic surfactant is more preferable. Preferable compounds include those containing a hydrophobic group having 8 to 30 carbon atoms and a sulfonic acid group or a salt thereof in one molecule. The content of the surfactant in each refractive index layer is preferably 0.01 to 5% by mass with respect to the solid content of the refractive index layer.
 誘電体多層膜の製造方法は、特に限定されないが、たとえば高屈折率層用塗布液および低屈折率層用塗布液を塗布、乾燥させることによって形成する方法が挙げられる。 The method for producing the dielectric multilayer film is not particularly limited, and examples thereof include a method of forming by coating and drying a coating solution for a high refractive index layer and a coating solution for a low refractive index layer.
 高屈折率層用塗布液および低屈折率層用塗布液の調製方法は、特に制限されず、単量体成分、金属酸化物粒子および塩基性含窒素化合物、ならびに必要に応じて添加されるその他の添加物、および溶媒を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に限定されず、攪拌しながら各成分を順次添加して混合してもよいし、攪拌しながら一度に添加して混合してもよい。必要に応じて、さらに溶媒を用いて適当な粘度に調整してもよい。 The method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, and the monomer component, the metal oxide particles, the basic nitrogen-containing compound, and others added as necessary And a method of adding a solvent and stirring and mixing. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed all at once while stirring. If necessary, it may be adjusted to an appropriate viscosity using a solvent.
 また、低屈折率層形成用塗布液を調整する際に、適宜加熱しながら調製してもよい。 Further, when adjusting the coating solution for forming the low refractive index layer, it may be prepared while heating appropriately.
 ここで、高屈折率層用塗布液および低屈折率層用塗布液を調整するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。また、有機溶媒の飛散による環境面を考慮すると、水、または水と少量の有機溶媒との混合溶媒がより好ましく、水が特に好ましい。前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましく、水がより好ましい。 Here, the solvent for adjusting the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In consideration of environmental aspects due to the scattering of the organic solvent, water or a mixed solvent of water and a small amount of an organic solvent is more preferable, and water is particularly preferable. Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%であることが好ましく、90~99.5質量%であることがより好ましい。ここで、80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができるからである。 When using a mixed solvent of water and a small amount of an organic solvent, the content of water in the mixed solvent is preferably 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, and preferably 90 to 99%. More preferably, it is 5 mass%. Here, by setting it to 80% by mass or more, volume fluctuation due to solvent volatilization can be reduced, handling is improved, and by setting it to 99.9% by mass or less, homogeneity at the time of liquid addition is increased and stable. This is because the obtained liquid properties can be obtained.
 次に、上記で調製した高屈折率層用塗布液および低屈折率層用塗布液を用いて、基材上に塗布し、乾燥させて、誘電体多層膜を形成する。 Next, using the coating solution for the high refractive index layer and the coating solution for the low refractive index layer prepared as described above, the coating is applied on the substrate and dried to form a dielectric multilayer film.
 前記塗布方法としては、特に限定されず、逐次塗布法、同時重層塗布法のいずれであってもよいが、生産性等の観点から同時重層塗布法であることが好ましい。 The coating method is not particularly limited and may be either a sequential coating method or a simultaneous multilayer coating method, but a simultaneous multilayer coating method is preferable from the viewpoint of productivity and the like.
 塗布方式としては、例えば、カーテン塗布方法、米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 As the coating method, for example, a curtain coating method, a slide bead coating method using a hopper described in U.S. Pat. Nos. 2,761,419 and 2,761,791, an extrusion coating method and the like are preferably used. It is done.
 同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の温度は、スライドビード塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、35~50℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 The temperature of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer at the time of simultaneous multilayer coating is preferably 25 to 60 ° C., and 35 to 50 ° C. when using the slide bead coating method. A temperature range is more preferred. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の高屈折率層用塗布液および低屈折率層用塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~100mPa・sの範囲であることが好ましく、10~50mPa・sの範囲であることがより好ましい。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲であることが好ましく、25~500mPa・sの範囲であることがより好ましい。このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 The viscosity of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, it is preferably in the range of 5 to 100 mPa · s, more preferably in the range of 10 to 50 mPa · s, in the preferable temperature range of the coating liquid. When the curtain coating method is used, it is preferably in the range of 5 to 1200 mPa · s, more preferably in the range of 25 to 500 mPa · s, in the preferable temperature range of the coating solution. If it is the range of such a viscosity, simultaneous multilayer coating can be performed efficiently.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 具体的な、塗布および乾燥方法としては、特に制限されないが、逐次塗布法で反射膜を形成する場合には、25~60℃に加温した低屈折率層用塗布液および高屈折率層用塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して層を形成する。これを所望の反射性能を発現するために必要な層数となるように逐次塗布を繰り返して、反射膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥することが好ましく、例えば、40~85℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥をすることが好ましく、恒率乾燥部の温度<減率乾燥部の温度にすることがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にすることが好ましい。 Specific coating and drying methods are not particularly limited, but when a reflective film is formed by a sequential coating method, the coating solution for low refractive index layer and the high refractive index layer heated to 25 to 60 ° C. One of the coating liquids is applied onto a substrate and dried to form a layer, and then the other coating liquid is applied onto this layer and dried to form a layer. This is sequentially applied so that the number of layers necessary for expressing the desired reflection performance is obtained, thereby obtaining a reflection film precursor. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, it is preferable to dry in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 85 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. In addition, it is preferable to perform a multi-stage process rather than a single process, and it is more preferable that the temperature of the constant rate drying unit is less than the temperature of the rate-decreasing drying unit. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布で反射層を形成する場合には、低屈折率層用塗布液および高屈折率層用塗布液を25~60℃に加温して、基材上に低屈折率層用塗布液および高屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 When a reflective layer is formed by simultaneous multilayer coating, the coating solution for the low refractive index layer and the coating solution for the high refractive index layer are heated to 25 to 60 ° C., and are applied to the low refractive index layer on the substrate. After simultaneous multi-layer coating of the coating solution and the coating solution for the high refractive index layer, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. . More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性の低下またはゲル化を行う工程を意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, and the fluidity of the substances in each layer or in each layer is reduced or gelled. It means a process. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 セット工程において使用される冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、7分以内であることが好ましく、5分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間を一定以上とることで、層中の成分が十分に混合しうる。一方、セット時間を短時間とすることにより、金属酸化物ナノ粒子の層間拡散を防止し、高屈折率層と低屈折率層との屈折率差を所望のものとすることができる。なお、高屈折率層と低屈折率層との間の境界面において高弾性化が素早く起こる場合には、セット工程を設けなくとも好適な界面を形成することができる。 The temperature of the cold air used in the setting process is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 7 minutes, and more preferably within 5 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. By setting the set time to a certain value or more, the components in the layer can be sufficiently mixed. On the other hand, by setting the set time to a short time, the interlayer diffusion of the metal oxide nanoparticles can be prevented, and the difference in refractive index between the high refractive index layer and the low refractive index layer can be made desirable. In the case where high elasticity occurs quickly at the interface between the high refractive index layer and the low refractive index layer, a suitable interface can be formed without providing a setting step.
 なお、セット時間は、水溶性樹脂の濃度や金属酸化物ナノ粒子の濃度を変更することの他、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など他の成分を添加することにより調整することができる。 In addition to changing the concentration of the water-soluble resin and the concentration of the metal oxide nanoparticles, the set time includes other components such as gelatin, pectin, agar, carrageenan, gellan gum and other known gelling agents. It can adjust by adding.
 高屈折率層用塗布液および低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚みとなるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the preferable thickness at the time of drying as shown above.
 以上、機能層が誘電体多層膜である場合を例に挙げて、その構成を具体的に説明したが、機能層は誘電体多層膜以外の種々の機能性層であっても本発明は適用可能である。機能層としての、誘電体多層膜以外の機能性層としては、例えば、帯電防止層、密着付与中間層、色材層などが挙げられ、これらの具体的な構成については従来公知の知見が適宜参照されうる。 The configuration of the functional layer is specifically described by taking the case where the functional layer is a dielectric multilayer film as an example. However, the present invention can be applied to various functional layers other than the dielectric multilayer film. Is possible. Examples of the functional layer other than the dielectric multilayer film include an antistatic layer, an adhesion-imparting intermediate layer, a color material layer, and the like, and conventionally known knowledge is appropriately used for these specific configurations. Reference can be made.
 (用途)
 本形態に係る遮熱フィルムは、幅広い分野に応用することができる。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備に貼り合せ、遮熱機能を付与する窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。
(Use)
The thermal barrier film according to this embodiment can be applied to a wide range of fields. For example, it is attached to facilities exposed to sunlight for a long time, such as outdoor windows of buildings and automobile windows, and it is mainly used to improve weather resistance as a film for window pasting to provide a heat shielding function, a film for agricultural greenhouses, etc. Used for purposes.
 [粘着層]
 また、本発明に係る遮熱フィルムは、粘着層を有していてもよい。この粘着層は通常、遮熱フィルムの基材における遮熱層とは反対側の最表面に設けられ、さらに公知の剥離紙がさらに設けられていてもよい。粘着層の構成としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。
[Adhesive layer]
Moreover, the heat shield film according to the present invention may have an adhesive layer. This pressure-sensitive adhesive layer is usually provided on the outermost surface of the base material of the heat-shielding film on the side opposite to the heat-shielding layer, and further known release paper may be further provided. The configuration of the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
 [遮熱体]
 特に、本形態に係る遮熱フィルムは、直接または接着層もしくは前記の粘着層を介してガラスまたはガラス代替の樹脂等の基体に貼合されてなる部材である遮熱体に好適に用いることができる。
[Heat shield]
In particular, the heat-shielding film according to this embodiment is preferably used for a heat-shielding body that is a member bonded to a substrate such as glass or a glass-substituting resin directly or via an adhesive layer or the adhesive layer. it can.
 前記基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。本発明で使用されうる基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚みは特に制限されないが、通常0.1mm~5cmである。基体としては、実用性の観点から、特にガラスが好ましい。 Specific examples of the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, Examples thereof include phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin, metal plate, ceramic and the like. The type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination. The substrate that can be used in the present invention can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like. The thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm. As the substrate, glass is particularly preferable from the viewpoint of practicality.
 ここで、基体は平面であっても曲面であってもよい。曲面を有する基体と貼合するための加熱成形は、一般的に、曲面を有する基体の一面に、遮熱フィルムの遮熱層を内側、すなわち基材に対して基体側へ向けた状態で、基体の形状に沿って変形させる。その後、曲面を有する基体の反対側の面に、遮熱フィルムの遮熱層が外側、すなわち基材に対して基体とは反対側へ向けた状態で基体と貼合する。 Here, the substrate may be a flat surface or a curved surface. Thermoforming for laminating with a substrate having a curved surface is generally performed on one surface of the substrate having a curved surface, with the heat-shielding layer of the heat-shielding film on the inside, that is, in the state facing the substrate toward the substrate, Deform along the shape of the substrate. After that, the heat shielding layer of the heat shielding film is bonded to the substrate on the opposite surface of the substrate having a curved surface in a state where the heat shielding layer is directed to the outside, that is, the substrate is directed to the opposite side of the substrate.
 このように、本発明の他の形態は、遮熱フィルムを基体に貼合してなる、遮熱体である。 Thus, another embodiment of the present invention is a heat shield made by bonding a heat shield film to a substrate.
 前記接着層を形成する接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤が挙げられる。接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール(積水化学工業株式会社製、三菱樹脂株式会社製等)、エチレン-酢酸ビニル共重合体(デュポン社製、武田薬品工業株式会社製、デュラミン)、変性エチレン-酢酸ビニル共重合体(東ソー株式会社製、メルセンG)等である。 Examples of the adhesive forming the adhesive layer include an adhesive mainly composed of a photocurable or thermosetting resin. The adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, a solvent system is preferable in the acrylic pressure-sensitive adhesive because the peel strength can be easily controlled. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer. Further, polyvinyl butyral resin or ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used. Specifically, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Plastics Co., Ltd.), ethylene-vinyl acetate copolymer (manufactured by DuPont, Takeda Pharmaceutical Co., Ltd., duramin), modified ethylene-vinyl acetate Copolymers (Mersen G manufactured by Tosoh Corporation) and the like.
 なお、接着層、または粘着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。 In addition, you may add and mix | blend an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, coloring, an adhesion regulator etc. suitably in an adhesion layer or an adhesion layer.
 [遮熱性能]
 遮熱フィルムまたは遮熱体の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209:1998(複層ガラス)、JIS R 3106:1998(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107:1998(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。
[Heat insulation performance]
Insulation performance and solar heat shielding performance of a heat shielding film or a heat shield are generally JIS R 3209: 1998 (multi-layer glass), JIS R 3106: 1998 (transmittance, reflectance, emissivity, solar radiation of plate glass). Heat acquisition rate test method), JIS R 3107: 1998 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
 《遮熱フィルムの作製》
 〈塗布液の調製〉
 実施例および比較例の遮熱フィルムの作製に使用する塗布液を下記のように調製した。
<< Production of thermal barrier film >>
<Preparation of coating solution>
The coating liquid used for preparation of the thermal-insulation film of an Example and a comparative example was prepared as follows.
 (遮熱層用塗布液HC1の調製)
 アロニックスM-309(トリメチロールプロハントリアクリレート、東亞合成株式会社製)390質量部、複合タングステン酸化物としてセシウムドープト酸化タングステン(CWO)分散液(YMF-02A、全固形分濃度28質量%(セシウムドープト酸化タングステン濃度18.5質量%)、組成:Cs0.33WO、平均一次粒子径:50nm、住友金属鉱山株式会社製)650質量部、塩基性含窒素化合物として2,4,6-トリメチルピリジン(関東化学株式会社製)3質量部、溶媒としてメチルエチルケトン300質量部、を加えた。さらに、重合開始剤としてIrgacure819(BASFジャパン株式会社製)20質量部、フッ素系界面活性剤(フタージェント650A、有効成分濃度30%、株式会社ネオス製)0.5質量部を添加して、遮熱層用塗布液HC1を調製した。
(Preparation of thermal barrier coating liquid HC1)
Aronix M-309 (trimethylol prohan triacrylate, manufactured by Toagosei Co., Ltd.) 390 parts by mass, cesium doped tungsten oxide (CWO) dispersion (YMF-02A, total solid concentration 28 mass% (cesium) as composite tungsten oxide Doped tungsten oxide concentration 18.5% by mass), composition: Cs 0.33 WO 3 , average primary particle size: 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) 650 parts by mass, 2, 4, 6 as basic nitrogen-containing compounds -3 parts by mass of trimethylpyridine (manufactured by Kanto Chemical Co., Inc.) and 300 parts by mass of methyl ethyl ketone as a solvent were added. Further, 20 parts by mass of Irgacure 819 (manufactured by BASF Japan Ltd.) and 0.5 part by mass of a fluorosurfactant (phthalent 650A, active ingredient concentration 30%, manufactured by Neos Co., Ltd.) were added as polymerization initiators. A thermal layer coating solution HC1 was prepared.
 (遮熱層用塗布液HC2の調製)
 上記遮熱層用塗布液HC1の調製において、アロニックスM-309の390質量部を、アロニックスM-309の366質量部とアロニックスM-5300(ω-カルボキシ-ポリカプロラクトンモノアクリレート、東亞合成株式会社製)24質量部との混合物に変更した以外は、遮熱層用塗布液HC1と同様にして、遮熱層用塗布液HC2を調製した。
(Preparation of thermal barrier coating liquid HC2)
In the preparation of the thermal barrier layer coating solution HC1, 390 parts by mass of Aronix M-309, 366 parts by mass of Aronix M-309 and Aronix M-5300 (ω-carboxy-polycaprolactone monoacrylate, manufactured by Toagosei Co., Ltd. ) A thermal barrier layer coating solution HC2 was prepared in the same manner as the thermal barrier layer coating solution HC1 except that the mixture was changed to a mixture with 24 parts by mass.
 (遮熱層用塗布液HC3の調製)
 上記遮熱層用塗布液HC1の調製において、2,4,6-トリメチルピリジンをトリエチルアミン(関東化学株式会社製)に変更した以外は、遮熱層用塗布液HC1と同様にして、遮熱層用塗布液HC3を調製した。
(Preparation of thermal barrier coating liquid HC3)
In the preparation of the heat shielding layer coating solution HC1, except that 2,4,6-trimethylpyridine was changed to triethylamine (manufactured by Kanto Chemical Co., Inc.), the heat shielding layer was the same as the heat shielding layer coating solution HC1. Coating solution HC3 was prepared.
 (遮熱層用塗布液HC4の調製)
 上記遮熱層用塗布液HC1の調製において、2,4,6-トリメチルピリジンを2-ブタノンオキシム(東京化成工業株式会社製)に変更した以外は、遮熱層用塗布液HC1と同様にして、遮熱層用塗布液HC4を調製した。
(Preparation of coating solution HC4 for heat shield layer)
In the preparation of the heat shielding layer coating liquid HC1, the same procedure as in the heat shielding layer coating liquid HC1 was conducted except that 2,4,6-trimethylpyridine was changed to 2-butanone oxime (manufactured by Tokyo Chemical Industry Co., Ltd.). Then, a coating solution HC4 for a heat shielding layer was prepared.
 (遮熱層用塗布液HC5の調製)
 上記遮熱層用塗布液HC1の調製において、2,4,6-トリメチルピリジンを2,2,4,4-テトラメチル-3-ペンタノンイミン(東京化成工業株式会社製)に変更した以外は、遮熱層用塗布液HC1と同様にして、遮熱層用塗布液HC5を調製した。
(Preparation of thermal barrier coating liquid HC5)
In the preparation of the heat shielding layer coating liquid HC1, 2,4,6-trimethylpyridine was changed to 2,2,4,4-tetramethyl-3-pentanone imine (manufactured by Tokyo Chemical Industry Co., Ltd.). In the same manner as the heat shielding layer coating liquid HC1, a heat shielding layer coating liquid HC5 was prepared.
 (遮熱層用塗布液HC6の調製)
 上記遮熱層用塗布液HC1の調製において、2,4,6-トリメチルピリジンをシクロヘキサノンオキシム(和光純薬工業株式会社製)に変更した以外は、遮熱層用塗布液HC1と同様にして、遮熱層用塗布液HC6を調製した。
(Preparation of thermal barrier coating liquid HC6)
In the preparation of the heat shielding layer coating solution HC1, except that 2,4,6-trimethylpyridine was changed to cyclohexanone oxime (manufactured by Wako Pure Chemical Industries, Ltd.), the same as the heat shielding layer coating solution HC1, A coating solution HC6 for a heat shielding layer was prepared.
 (遮熱層用塗布液HC7の調製)
 上記遮熱層用塗布液HC6の調製において、アロニックスM-309を、アロニックスM-405(ジペンタエリスリトールペンタアクリレート:ジペンタエリスリトールヘキサアクリレート=10~20:90~80の混合物、東亞合成株式会社製)に変更した以外は、遮熱層用塗布液HC6と同様にして、遮熱層用塗布液HC7を調製した。
(Preparation of thermal barrier coating liquid HC7)
In the preparation of the thermal barrier layer coating solution HC6, Aronix M-309 was mixed with Aronix M-405 (a mixture of dipentaerythritol pentaacrylate: dipentaerythritol hexaacrylate = 10-20: 90-80, manufactured by Toagosei Co., Ltd.). The coating liquid HC7 for the thermal barrier layer was prepared in the same manner as the coating liquid HC6 for the thermal barrier layer, except that it was changed to).
 (遮熱層用塗布液HC8の調製)
 上記遮熱層用塗布液HC6の調製において、アロニックスM-309を、アロニックスM-404(ジペンタエリスリトールペンタアクリレート:ジペンタエリスリトールヘキサアクリレート=30~40:70~60の混合物、東亞合成株式会社製)に変更し、シクロヘキサノンオキシムの添加量を3質量部から0.3質量部に変更した以外は、遮熱層用塗布液HC6と同様にして遮熱層用塗布液HC8を調製した。
(Preparation of thermal barrier coating liquid HC8)
In the preparation of the thermal barrier layer coating solution HC6, Aronix M-309 was mixed with Aronix M-404 (a mixture of dipentaerythritol pentaacrylate: dipentaerythritol hexaacrylate = 30-40: 70-60, manufactured by Toagosei Co., Ltd. The heat shielding layer coating solution HC8 was prepared in the same manner as the heat shielding layer coating solution HC6 except that the addition amount of cyclohexanone oxime was changed from 3 parts by mass to 0.3 parts by mass.
 (遮熱層用塗布液HC9の調製)
 上記遮熱層用塗布液HC8の調製において、シクロヘキサノンオキシムの添加量を0.3質量部から0.6質量部に変更した以外は、遮熱層用塗布液HC8と同様にして遮熱層用塗布液HC9を調製した。
(Preparation of thermal barrier coating liquid HC9)
In the preparation of the heat shielding layer coating solution HC8, except that the amount of cyclohexanone oxime added was changed from 0.3 parts by mass to 0.6 parts by mass, the same as the heat shielding layer coating solution HC8, A coating solution HC9 was prepared.
 (遮熱層用塗布液HC10の調製)
 上記遮熱層用塗布液HC8の調製において、シクロヘキサノンオキシムの添加量を0.3質量部から3質量部に変更した以外は、遮熱層用塗布液HC8と同様にして、遮熱層用塗布液HC10を調製した。
(Preparation of thermal barrier coating liquid HC10)
In the preparation of the heat shielding layer coating solution HC8, except that the addition amount of cyclohexanone oxime was changed from 0.3 parts by mass to 3 parts by mass, the same as the heat shielding layer coating solution HC8, the coating for the heat shielding layer Liquid HC10 was prepared.
 (遮熱層用塗布液HC11の調製)
 上記遮熱層用塗布液HC8の調製において、シクロヘキサノンオキシムの添加量を0.3質量部から6質量部に変更した以外は、遮熱層用塗布液HC8と同様にして、遮熱層用塗布液HC11を調製した。
(Preparation of thermal barrier coating liquid HC11)
In the preparation of the thermal barrier layer coating liquid HC8, the thermal barrier layer coating liquid HC8 was used except that the amount of cyclohexanone oxime added was changed from 0.3 parts by mass to 6 parts by mass. Liquid HC11 was prepared.
 (遮熱層用塗布液HC12の調製)
 上記遮熱層用塗布液HC8の調製において、シクロヘキサノンオキシムの添加量を0.3質量部から31質量部に変更した以外は、遮熱層用塗布液HC8と同様にして、遮熱層用塗布液HC12を調製した。
(Preparation of thermal barrier coating liquid HC12)
In the preparation of the thermal barrier layer coating solution HC8, except that the amount of cyclohexanone oxime added was changed from 0.3 parts by mass to 31 parts by mass, the same procedure as for the thermal barrier layer coating solution HC8 was applied. Liquid HC12 was prepared.
 (遮熱層用塗布液HC13の調製)
 上記遮熱層用塗布液HC1の調製において、アロニックスM-309の390質量部を、アロニックスM-309の293質量部とアロニックスM-5300の97質量部との混合物に変更し、2,4,6-トリメチルピリジンを添加しないこと以外は、遮熱層用塗布液HC1と同様にして遮熱層用塗布液HC13を調製した。
(Preparation of thermal barrier coating liquid HC13)
In the preparation of the coating solution HC1 for the heat shielding layer, 390 parts by mass of Aronix M-309 was changed to a mixture of 293 parts by mass of Aronix M-309 and 97 parts by mass of Aronix M-5300. A thermal barrier layer coating solution HC13 was prepared in the same manner as the thermal barrier layer coating solution HC1, except that 6-trimethylpyridine was not added.
 (遮熱層用塗布液HC14の調製)
 上記遮熱層用塗布液HC1の調製において、アロニックスM-309の390質量部を、アロニックスM-309の293質量部とアロニックスM-5300の97質量部との混合物に変更した以外は、遮熱層用塗布液HC1と同様にして、遮熱層用塗布液HC14を調製した。
(Preparation of thermal barrier coating liquid HC14)
In the preparation of the coating solution HC1 for the thermal barrier layer, the thermal barrier was changed except that 390 parts by mass of Aronix M-309 was changed to a mixture of 293 parts by mass of Aronix M-309 and 97 parts by mass of Aronix M-5300. In the same manner as the layer coating solution HC1, a heat shielding layer coating solution HC14 was prepared.
 (遮熱層用塗布液HC15の調製)
 上記遮熱層用塗布液HC14の調製において、2,4,6-トリメチルピリジンをシクロヘキサノンオキシムに変更した以外は、遮熱層用塗布液HC14と同様にして、遮熱層用塗布液HC15を調製した。
(Preparation of thermal barrier coating liquid HC15)
In the preparation of the heat shielding layer coating solution HC14, a heat shielding layer coating solution HC15 was prepared in the same manner as the heat shielding layer coating solution HC14 except that 2,4,6-trimethylpyridine was changed to cyclohexanone oxime. did.
 (遮熱層用塗布液HC16の調製)
 上記遮熱層用塗布液HC15の調製において、アロニックスM-309の293質量部とアロニックスM-5300の97質量部との混合物をCarboset526(ポリ(エチルアクリレート/メチルメタクリレート/アクリル酸)、Lubrizol Advanced Materials社製)の390質量部に変更した以外は、遮熱層用塗布液HC15と同様にして、遮熱層用塗布液HC16を調製した。
(Preparation of thermal barrier coating liquid HC16)
In the preparation of the thermal barrier coating solution HC15, a mixture of 293 parts by weight of Aronix M-309 and 97 parts by weight of Aronix M-5300 was mixed with Carboset 526 (poly (ethyl acrylate / methyl methacrylate / acrylic acid), Lubrizol Advanced Materials. Except for changing to 390 parts by mass), a thermal barrier layer coating solution HC16 was prepared in the same manner as the thermal barrier layer coating solution HC15.
 (低屈折率層塗布液の調製)
 380質量部のコロイダルシリカ(10質量%、スノーテックス(登録商標)OXS、1次粒子の平均粒径4~6nm、日産化学工業株式会社製)、50質量部のホウ酸水溶液(3質量%)、300質量部のポリビニルアルコール(4質量%、JP-45、重合度:4500、ケン化度:88mol%、日本酢ビ・ポバール株式会社製)、3質量部の界面活性剤(5質量%、ソフタゾリンLSB-R、川研ファインケミカル株式会社製)、を45℃でこの順に添加した。純水で1000質量部に仕上げ、低屈折率層用塗布液を調製した。
(Preparation of coating solution for low refractive index layer)
380 parts by mass of colloidal silica (10% by mass, Snowtex (registered trademark) OXS, average particle size of primary particles 4-6 nm, manufactured by Nissan Chemical Industries, Ltd.), 50 parts by mass of boric acid aqueous solution (3% by mass) 300 parts by weight of polyvinyl alcohol (4% by weight, JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, manufactured by Nippon Acetate / Poval) 3 parts by weight of surfactant (5% by weight, Softazolin LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.) was added in this order at 45 ° C. The coating solution for low refractive index layer was prepared by finishing 1000 parts by mass with pure water.
 (高屈折率層用塗布液の調製)
 (シリカ付着二酸化チタンゾルの調製)
 二酸化チタンゾル(15.0質量%、SRD-W、体積平均粒径:5nm、ルチル型二酸化チタン粒子、堺化学工業株式会社製)0.5質量部に純水2質量部を加えた後、90℃に加熱した。次いで、ケイ酸水溶液(ケイ酸ソーダ4号、日本化学工業株式会社製)をSiO濃度が0.5質量%となるように純水で希釈したもの)0.5質量部を徐々に添加し、ついでオートクレーブ中、175℃で18時間加熱処理を行い、冷却後、限外濾過膜にて濃縮することにより、固形分濃度20質量%の、SiOを表面に付着させた二酸化チタンゾル(「シリカ付着二酸化チタンゾル」とも称する)(体積平均粒径:9nm)を得た。
(Preparation of coating solution for high refractive index layer)
(Preparation of silica-attached titanium dioxide sol)
After adding 2 parts by mass of pure water to 0.5 parts by mass of titanium dioxide sol (15.0% by mass, SRD-W, volume average particle size: 5 nm, rutile titanium dioxide particles, manufactured by Sakai Chemical Industry Co., Ltd.), 90 Heated to ° C. Next, 0.5 part by mass of an aqueous silicic acid solution (sodium silicate No. 4, manufactured by Nippon Chemical Industry Co., Ltd. diluted with pure water so that the SiO 2 concentration becomes 0.5% by mass) was gradually added. Then, heat treatment was carried out at 175 ° C. for 18 hours in an autoclave, and after cooling, the solution was concentrated with an ultrafiltration membrane to obtain a titanium dioxide sol (“silica”) having a solid content concentration of 20% by mass and having SiO 2 adhered to the surface. (Also referred to as “attached titanium dioxide sol”) (volume average particle size: 9 nm).
 (塗布液の調製)
 このようにして得られたシリカ付着二酸化チタンゾル(固形分20質量%)113質量部に対して、クエン酸水溶液(1.92質量%)を48質量部加え、さらにエチレン変性ポリビニルアルコール(8質量%、エクセバールRS-2117、エチレン変性度3.0mol%、鹸化度:97.5~99モル%、重合度1700、株式会社クラレ製)113質量部を加えて撹拌し、最後に界面活性剤(ソフタゾリンLSB-R、川研ファインケミカル株式会社製)の5質量%水溶液0.4質量部を加えて、高屈折率層塗布液を調製した。
(Preparation of coating solution)
48 parts by mass of an aqueous citric acid solution (1.92% by mass) is added to 113 parts by mass of the silica-attached titanium dioxide sol thus obtained (solid content 20% by mass), and further ethylene-modified polyvinyl alcohol (8% by mass). , EXVAL RS-2117, ethylene modification degree 3.0 mol%, saponification degree: 97.5-99 mol%, polymerization degree 1700, manufactured by Kuraray Co., Ltd.) 113 parts by mass and stirred, and finally a surfactant (softazoline) A high refractive index layer coating solution was prepared by adding 0.4 parts by mass of a 5% by mass aqueous solution of LSB-R (manufactured by Kawaken Fine Chemical Co., Ltd.).
 (遮熱フィルム試料1の作製)
 基材(厚さ50μmのポリエチレンテレフタレートフィルム、コスモシャインA4300、東洋紡株式会社製)上に、遮熱層用塗布液HC1を、グラビアコーターにて乾燥膜厚が5μmとなる条件で塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.5J/cmの条件で塗膜の基材から遠い面側から紫外線を照射することにより塗膜を硬化させて遮熱層を形成し、遮熱フィルム試料1を作製した。
(Preparation of thermal barrier film sample 1)
On a substrate (50 μm thick polyethylene terephthalate film, Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.), a thermal barrier coating solution HC1 was applied with a gravure coater under the condition that the dry film thickness was 5 μm, and 90 ° C. For 1 minute. Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface side far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2 , thereby shielding heat. A layer was formed, and a thermal barrier film sample 1 was produced.
 (遮熱フィルム試料2~16の作製)
 遮熱層用塗布液HC1を、それぞれ遮熱層用塗布液HC2~16に変更した以外は、遮熱フィルム試料1と同様にして遮熱フィルム試料2~16を作製した。
(Preparation of thermal barrier film samples 2 to 16)
Thermal barrier film samples 2 to 16 were produced in the same manner as the thermal barrier film sample 1 except that the thermal barrier layer coating liquid HC1 was changed to the thermal barrier layer coating liquids HC2 to 16, respectively.
 (遮熱フィルム試料17の作製)
 スライドホッパー塗布装置を用い、低屈折率層用塗布液および高屈折率層用塗布液を45℃に保温しながら、45℃に加温した基材(厚さ50μmのポリエチレンテレフタレートフィルム、コスモシャインA4300、東洋紡株式会社製)上に、11層同時重層塗布(総膜厚;1.5μm)を行った。この際、最下層および最上層は低屈折率層とし、それ以外は低屈折率層および高屈折率層がそれぞれ交互に積層されるように設定した。塗布量については、乾燥時の膜厚が低屈折率層は各層150nm、高屈折率層は各層120nmになるように調節した。塗布直後、5℃の冷風を5分吹き付けたのち、80℃の温風を吹き付けて乾燥させて、11層からなる誘電体多層膜を作製した。
(Preparation of thermal barrier film sample 17)
A substrate (50 μm thick polyethylene terephthalate film, Cosmo Shine A4300) heated to 45 ° C. while keeping the coating solution for the low refractive index layer and the coating solution for the high refractive index layer at 45 ° C. using a slide hopper coating apparatus. , Manufactured by Toyobo Co., Ltd.), 11 layers were simultaneously applied (total film thickness: 1.5 μm). At this time, the lowermost layer and the uppermost layer were low refractive index layers, and other than that, the low refractive index layers and the high refractive index layers were alternately laminated. The coating amount was adjusted so that the film thickness during drying was 150 nm for each low refractive index layer and 120 nm for each high refractive index layer. Immediately after coating, 5 ° C. cold air was blown for 5 minutes, and then 80 ° C. hot air was blown and dried to produce a dielectric multilayer film consisting of 11 layers.
 次いで、基材の誘電体多層膜を形成した側とは反対側に、遮熱層用塗布液HC10を、グラビアコーターにて乾燥膜厚が5μmとなる条件で塗布し、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.5J/cmの条件で塗膜の基材から遠い面側から紫外線を照射することにより塗膜を硬化させて遮熱層を形成し、遮熱フィルム試料17を作製した。 Next, on the opposite side of the substrate on which the dielectric multilayer film is formed, the thermal barrier layer coating solution HC10 is applied with a gravure coater under the condition that the dry film thickness is 5 μm, and dried at 90 ° C. for 1 minute. I let you. Next, using an ultraviolet lamp, the coating film is cured by irradiating ultraviolet rays from the surface side far from the base material of the coating film under the conditions of an illuminance of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2 , thereby shielding heat A layer was formed, and a thermal barrier film sample 17 was produced.
 これら遮熱フィルム試料1~17の詳細は表1に示す。 Details of these thermal barrier film samples 1 to 17 are shown in Table 1.
 また、上記HC1~HC15の組成を下記表1に要約する。なお、下記表1において、「CWO」は、セシウムドープト酸化タングステンを意味する。また、塗布液中の各固形成分はそのまま遮熱層に残るため、塗布液中の各塩基性含窒素化合物の添加量は遮熱層における塩基性含窒素化合物の含有量(固形分換算)に対応する。 Also, the composition of HC1 to HC15 is summarized in Table 1 below. In Table 1 below, “CWO” means cesium-doped tungsten oxide. In addition, since each solid component in the coating solution remains in the heat shielding layer as it is, the amount of each basic nitrogen-containing compound added to the coating solution is the content of the basic nitrogen-containing compound in the heat shielding layer (in terms of solid content). Correspond.
 〔遮熱フィルムの評価〕
 <耐候性の評価>
 下記方法に従って、遮熱フィルムの耐候性を評価した。結果を下記表1に示す。
[Evaluation of thermal barrier film]
<Evaluation of weather resistance>
According to the following method, the weather resistance of the thermal barrier film was evaluated. The results are shown in Table 1 below.
 上記作製した遮熱フィルム試料1~17を、それぞれ、ガラスに貼り付け、スーパーキセノンウェザーメーター(スガ試験機 SX75)を用いて、放射強度180W/m、降雨18分/60分のサイクル条件で、48時間および500時間、照射を行った(耐候試験)。 Each of the heat shield film samples 1 to 17 produced above was affixed to glass, and using a super xenon weather meter (Suga Test Machine SX75), with a radiant intensity of 180 W / m 2 and a rainfall of 18 minutes / 60 minutes. Irradiation was performed for 48 hours and 500 hours (weather resistance test).
 ヘイズメーター(NDH2000型、日本電色工業社製)を用いてヘイズを測定し、耐候試験前と耐候試験48時間後のヘイズ値の差(ΔHAZE(48h))および耐候試験前と耐候試験500時間後のヘイズ値の差(ΔHAZE(500h))を算出した。算出は遮熱フィルム試料10枚の平均値で行った。ΔHAZEの値が小さいほど、ヘイズ上昇の程度が小さく耐候性に優れることを意味する。 The haze is measured using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.), and the difference between the haze values before the weather test and 48 hours after the weather test (ΔHAZE (48h)) and before the weather test and 500 hours of the weather test. The difference (ΔHAZE (500 h)) of the later haze value was calculated. The calculation was performed using the average value of 10 heat shield film samples. It means that the smaller the value of ΔHAZE, the smaller the degree of haze rise and the better the weather resistance.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1の結果から示されるように、実施例1~13の遮熱フィルム1~12及び17は、比較例1~4の遮熱フィルム13~16に比して、経時的なヘイズの上昇を有意に抑制できる。 As shown from the results in Table 1 above, the heat shield films 1 to 12 and 17 of Examples 1 to 13 increased in haze over time as compared to the heat shield films 13 to 16 of Comparative Examples 1 to 4. Can be significantly suppressed.
 《遮熱体の作製と評価》
 上記遮熱フィルム試料1~12及び17を用いて遮熱体1~12及び17を作製した。厚さ5mm、20cm×20cmの透明アクリル樹脂板上に、遮熱フィルム試料1~12及び17をアクリル接着剤で接着して、それぞれ遮熱体1~12及び17を作製した。
<Production and evaluation of heat shield>
Heat shields 1 to 12 and 17 were produced using the above heat shield film samples 1 to 12 and 17. On the transparent acrylic resin plate having a thickness of 5 mm and 20 cm × 20 cm, the heat shielding film samples 1 to 12 and 17 were adhered with an acrylic adhesive to produce the heat shielding bodies 1 to 12 and 17, respectively.
 上記作製した遮熱体1~12及び17は、サイズが大きいにもかかわらず、容易に利用可能であり、優れた遮熱性能を確認することができた。誘電体多層膜を有する遮熱フィルム試料17を利用した場合に、特に優れた遮熱性能を確認することができた。 The manufactured heat shields 1 to 12 and 17 were easily usable despite their large size, and excellent heat shielding performance could be confirmed. When the thermal barrier film sample 17 having a dielectric multilayer film was used, particularly excellent thermal barrier performance could be confirmed.
 さらに、本出願は、2015年2月20日に出願された日本特許出願番号2015-032276号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2015-032276 filed on February 20, 2015, the disclosure of which is incorporated by reference in its entirety.

Claims (7)

  1.  基材上に遮熱層を有する遮熱フィルムであって、
     前記遮熱層が、タングステン酸化物および複合タングステン酸化物の少なくとも一方、(メタ)アクリレートモノマーを含む酸価が20以下の単量体成分の重合物、ならびに塩基性含窒素化合物を含有する、遮熱フィルム。
    A thermal barrier film having a thermal barrier layer on a substrate,
    The heat-shielding layer contains at least one of tungsten oxide and composite tungsten oxide, a polymer of a monomer component having an acid value of 20 or less containing a (meth) acrylate monomer, and a basic nitrogen-containing compound. Thermal film.
  2.  前記塩基性含窒素化合物が、アミン化合物、オキシム化合物、およびイミン化合物からなる群より選択される少なくとも一種の化合物である、請求項1に記載の遮熱フィルム。 The heat shield film according to claim 1, wherein the basic nitrogen-containing compound is at least one compound selected from the group consisting of an amine compound, an oxime compound, and an imine compound.
  3.  前記塩基性含窒素化合物の沸点が200℃以上である、請求項1または2に記載の遮熱フィルム。 The heat-shielding film according to claim 1 or 2, wherein the basic nitrogen-containing compound has a boiling point of 200 ° C or higher.
  4.  前記複合タングステン酸化物がセシウムドープ酸化タングステンである、請求項1~3のいずれか1項に記載の遮熱フィルム。 The thermal barrier film according to any one of claims 1 to 3, wherein the composite tungsten oxide is cesium-doped tungsten oxide.
  5.  前記(メタ)アクリレートモノマーが1級水酸基を有する重合性アクリレートである、請求項1~4のいずれか1項に記載の遮熱フィルム。 The heat shielding film according to any one of claims 1 to 4, wherein the (meth) acrylate monomer is a polymerizable acrylate having a primary hydroxyl group.
  6.  前記重合性アクリレートの水酸基価が40以上である、請求項5に記載の遮熱フィルム。 The heat insulating film according to claim 5, wherein the polymerizable acrylate has a hydroxyl value of 40 or more.
  7.  前記塩基性含窒素化合物の含有量(固形分換算)が、前記遮熱層に対して、0.1~1質量%である、請求項1~6のいずれか1項に記載の遮熱フィルム。 The heat shield film according to any one of claims 1 to 6, wherein a content (in terms of solid content) of the basic nitrogen-containing compound is 0.1 to 1% by mass with respect to the heat shield layer. .
PCT/JP2016/054153 2015-02-20 2016-02-12 Heat shielding film WO2016133022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015032276A JP2018054641A (en) 2015-02-20 2015-02-20 Heat insulating film
JP2015-032276 2015-02-20

Publications (1)

Publication Number Publication Date
WO2016133022A1 true WO2016133022A1 (en) 2016-08-25

Family

ID=56688851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054153 WO2016133022A1 (en) 2015-02-20 2016-02-12 Heat shielding film

Country Status (2)

Country Link
JP (1) JP2018054641A (en)
WO (1) WO2016133022A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3732141A4 (en) * 2017-12-29 2021-09-22 Saint-Gobain Glass France Thermal insulating glass, method for preparing the same and thermal insulating glass product
CN117210167A (en) * 2023-11-08 2023-12-12 广东鑫瑞新材料有限公司 Nanofiber ceramic high-heat-insulation sun-shading adhesive film and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102242069B1 (en) * 2019-10-21 2021-04-21 경북대학교 산학협력단 Preparation method of composite and fiber which emitting near-infrared
KR102167106B1 (en) * 2020-04-10 2020-10-16 경북대학교 산학협력단 Polymer composite emitting near infrared ray, fiber with the same, non-woven fabric with the same and eyeglass frame with the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436337A (en) * 1990-05-31 1992-02-06 Kuraray Co Ltd Near-infrared-absorbing resin composition and its production
JP2009062411A (en) * 2007-09-04 2009-03-26 Bridgestone Corp Near infrared-shielding material, laminate and optical filter for display using the same and display
JP2009114326A (en) * 2007-11-06 2009-05-28 Sumitomo Metal Mining Co Ltd Dispersion liquid for near-infrared absorbing tacky adhesive, near-infrared absorbing self-adhesive, near-infrared absorbing filter for plasma display panel and plasma display panel
JP2011065146A (en) * 2009-08-17 2011-03-31 Sumitomo Metal Mining Co Ltd Dispersion liquid and coating liquid for forming infrared ray shielding adhesive film, infrared ray shielding adhesive film and infrared ray shielding optical member, and multilayer filter for plasma display panel and plasma display panel
JP2011070031A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Near-infrared absorbing adhesive film, antireflection film with near-infrared absorbing adhesive layer, electromagnetic wave shielding film with the near-infrared absorbing adhesive layer, and filter for plasma display
JP2011133586A (en) * 2009-12-24 2011-07-07 Hiraoka & Co Ltd Near infrared ray shielding highly translucent sheet, and near infrared ray noise shielding material
JP2013088762A (en) * 2011-10-21 2013-05-13 Three M Innovative Properties Co Heat-shielding laminate, and laminated film used in manufacturing the same
JP2015025932A (en) * 2013-07-26 2015-02-05 アキレス株式会社 Heat-ray shielding film for windows

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436337A (en) * 1990-05-31 1992-02-06 Kuraray Co Ltd Near-infrared-absorbing resin composition and its production
JP2009062411A (en) * 2007-09-04 2009-03-26 Bridgestone Corp Near infrared-shielding material, laminate and optical filter for display using the same and display
JP2009114326A (en) * 2007-11-06 2009-05-28 Sumitomo Metal Mining Co Ltd Dispersion liquid for near-infrared absorbing tacky adhesive, near-infrared absorbing self-adhesive, near-infrared absorbing filter for plasma display panel and plasma display panel
JP2011065146A (en) * 2009-08-17 2011-03-31 Sumitomo Metal Mining Co Ltd Dispersion liquid and coating liquid for forming infrared ray shielding adhesive film, infrared ray shielding adhesive film and infrared ray shielding optical member, and multilayer filter for plasma display panel and plasma display panel
JP2011070031A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Near-infrared absorbing adhesive film, antireflection film with near-infrared absorbing adhesive layer, electromagnetic wave shielding film with the near-infrared absorbing adhesive layer, and filter for plasma display
JP2011133586A (en) * 2009-12-24 2011-07-07 Hiraoka & Co Ltd Near infrared ray shielding highly translucent sheet, and near infrared ray noise shielding material
JP2013088762A (en) * 2011-10-21 2013-05-13 Three M Innovative Properties Co Heat-shielding laminate, and laminated film used in manufacturing the same
JP2015025932A (en) * 2013-07-26 2015-02-05 アキレス株式会社 Heat-ray shielding film for windows

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3732141A4 (en) * 2017-12-29 2021-09-22 Saint-Gobain Glass France Thermal insulating glass, method for preparing the same and thermal insulating glass product
CN117210167A (en) * 2023-11-08 2023-12-12 广东鑫瑞新材料有限公司 Nanofiber ceramic high-heat-insulation sun-shading adhesive film and preparation method and application thereof
CN117210167B (en) * 2023-11-08 2024-01-09 广东鑫瑞新材料有限公司 Nanofiber ceramic high-heat-insulation sun-shading adhesive film and preparation method and application thereof

Also Published As

Publication number Publication date
JP2018054641A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6443341B2 (en) Light reflecting film and light reflector using the same
JP6044638B2 (en) Infrared shield
JP6673220B2 (en) Heat shield film, method of manufacturing the same, and heat shield using the same
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
WO2016199682A1 (en) Infrared shielding body
WO2013099564A1 (en) Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
EP2873993A1 (en) Infrared-shielding film
WO2013111735A1 (en) Optical film
WO2016133022A1 (en) Heat shielding film
WO2016194560A1 (en) Infrared-shielding film
WO2016088852A1 (en) Heat-shielding film, production method therefor, and heat shield using said film
WO2014171494A1 (en) Optical reflective film, method for manufacturing same, and optical reflector using same
WO2013183544A1 (en) Infrared-shielding film and infrared-shielding body
JPWO2017110651A1 (en) Optical reflective film
JP2016155256A (en) Heat shielding film, and method for producing the same
WO2016152458A1 (en) Optical film and method for manufacturing optical film
JP6759697B2 (en) Roll-shaped optical reflective film
JP2016109872A (en) Light shield film
WO2017077810A1 (en) Light reflecting film
JP6724912B2 (en) Optical reflective film
JP2017109892A (en) Laminated glass
JP2017219694A (en) Optical reflection film, method for producing optical reflection film, and optical reflection body
JP2016083903A (en) Laminated film
JP5729144B2 (en) Infrared shielding film and infrared shielding body
JP2015212736A (en) Laminated reflective film, manufacturing method therefor, and optical reflector having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16752408

Country of ref document: EP

Kind code of ref document: A1