WO2016132890A1 - Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device - Google Patents

Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device Download PDF

Info

Publication number
WO2016132890A1
WO2016132890A1 PCT/JP2016/053069 JP2016053069W WO2016132890A1 WO 2016132890 A1 WO2016132890 A1 WO 2016132890A1 JP 2016053069 W JP2016053069 W JP 2016053069W WO 2016132890 A1 WO2016132890 A1 WO 2016132890A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
phosphor ceramic
semiconductor element
phosphor
less
Prior art date
Application number
PCT/JP2016/053069
Other languages
French (fr)
Japanese (ja)
Inventor
宏中 藤井
真広 白川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016000707A external-priority patent/JP5989268B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/318,071 priority Critical patent/US10001657B2/en
Priority to CN201680004659.1A priority patent/CN107112396B/en
Priority to KR1020177022521A priority patent/KR102520727B1/en
Priority to EP16752277.0A priority patent/EP3144985B1/en
Publication of WO2016132890A1 publication Critical patent/WO2016132890A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a phosphor ceramic, and a sealed optical semiconductor element, a circuit board, an optical semiconductor device, and a light emitting device including the phosphor ceramic.
  • a light emitting device such as an optical semiconductor device generally includes, for example, an LED (light emitting diode element) or LD (laser diode) that emits blue light, and a phosphor that can convert blue light into yellow light and is provided on the LED. With layers.
  • the light emitting device emits white light by mixing color of blue light emitted from the LED and transmitted through the phosphor layer and yellow light obtained by wavelength-converting part of the blue light in the phosphor layer.
  • a conversion element made of a ceramic material is known as such a phosphor layer (see, for example, Patent Document 1).
  • Patent Document 1 discloses a conversion element having a density of 97% or more of the theoretical solid state density of the ceramic material, and the pores in the conversion element having a diameter substantially between 250 nm and 2900 nm. ing.
  • Patent Document 1 has improved transparency in a wide viewing angle by having nano-order minute holes.
  • An object of the present invention is a phosphor ceramic that has good transparency and scattering properties, excellent productivity, and can reduce speckle noise, and a sealed optical semiconductor element, circuit board, and optical semiconductor including the phosphor ceramic It is to provide a device and a light emitting device.
  • the present invention is a phosphor ceramic having pores having a pore diameter of 3.0 ⁇ m or more and 12.0 ⁇ m or less, and the volume ratio of the pores in the phosphor ceramic is 1.5 vol% or more. It contains phosphor ceramic that is 9.5% by volume or less.
  • the phosphor ceramic has a plate shape and has the following formula: V ⁇ 1.30 ⁇ ( ⁇ log T) (V represents the volume ratio (%) of pores having a pore diameter of less than 3.0 ⁇ m, and T represents the thickness (mm) of the phosphor ceramic.)
  • V represents the volume ratio (%) of pores having a pore diameter of less than 3.0 ⁇ m
  • T represents the thickness (mm) of the phosphor ceramic.
  • the present invention [3] includes the phosphor ceramic according to [1] or [2] that satisfies at least one of the following requirements (1) to (3).
  • the present invention [4] includes the phosphor ceramic according to any one of [1] to [3], wherein the phosphor ceramic has an average pore size of 3.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the present invention [5] includes a substrate, an optical semiconductor element mounted on the substrate, an adhesive layer, and a surface of the adhesive layer opposite to the optical semiconductor element, and is disposed opposite to the optical semiconductor element.
  • An optical semiconductor device comprising the phosphor ceramic according to any one of [1] to [4].
  • the present invention [6] includes a substrate, an optical semiconductor element mounted on the substrate, a sealing layer for sealing the optical semiconductor element, and a surface of the sealing layer opposite to the optical semiconductor element.
  • An optical semiconductor device including the phosphor ceramic according to any one of [1] to [4], disposed and opposed to the optical semiconductor element.
  • the present invention [7] is an optical semiconductor element, a sealing layer that seals the optical semiconductor element, and a surface of the sealing layer that is opposite to the optical semiconductor element, facing the optical semiconductor element.
  • An encapsulating optical semiconductor element including the phosphor ceramic according to any one of [1] to [4] is included.
  • the present invention [8] provides the phosphor ceramic according to any one of [1] to [4] for mounting the optical semiconductor element on one side in the thickness direction, and one side in the thickness direction of the phosphor ceramic.
  • a circuit board is provided that is stacked and includes electrode wiring for electrically connecting to the optical semiconductor element.
  • the present invention [9] includes a light source that irradiates light on one side, a reflecting mirror that is disposed opposite to the light source at a distance from the light source, and has a through-hole through which the light passes, and the light
  • the light emitting device includes the phosphor ceramic according to any one of [1] to [4], which is disposed opposite to the reflecting mirror on one side so as to be irradiated.
  • the phosphor ceramic of the present invention has good transparency and scattering properties, and can reduce speckle noise. Moreover, it is excellent in productivity.
  • the encapsulated optical semiconductor element, circuit board, optical semiconductor device and light emitting device of the present invention comprising the phosphor ceramic of the present invention can suppress a decrease in light emission efficiency and have a good viewing angle.
  • speckle noise can be reduced in the case of a sealed optical semiconductor element or device using an LD or the like as a light source as an optical semiconductor element.
  • the manufacturing cost can be reduced.
  • FIG. 1A and 1B are process diagrams showing a process for manufacturing the first embodiment of the phosphor ceramic of the present invention.
  • FIG. 1A shows a green sheet manufacturing process
  • FIG. 1B shows a firing process.
  • 2A to 2C are process diagrams showing a process for manufacturing the first embodiment of the optical semiconductor device using the phosphor ceramic shown in FIG. 1B.
  • FIG. 2A is a process for producing a fluorescent adhesive sheet
  • FIG. 2C shows the adhesion process.
  • 3A to 3C are process diagrams showing a process for manufacturing the second embodiment of the optical semiconductor device of the present invention using the phosphor ceramic shown in FIG. 1B
  • FIG. FIG. 3B shows a sealing sheet arranging step
  • FIG. 3C shows a sealing step.
  • 4A to 4E show a process of manufacturing a first modification (embodiment for producing a sealed optical semiconductor element) of the second embodiment of the optical semiconductor device of the present invention using the phosphor ceramic shown in FIG. 1B.
  • 4A is a sealing sheet manufacturing process
  • FIG. 4B is a sealing sheet arrangement process
  • FIG. 4C is a sealing process
  • FIG. 4D is a peeling process
  • FIG. 4E is a mounting process.
  • FIG. 5 shows a second modification (embodiment in which the optical semiconductor device includes a housing) of the second embodiment of the optical semiconductor device.
  • 6A to 6C are process diagrams showing a process of manufacturing the third embodiment of the optical semiconductor device using the phosphor ceramic shown in FIG.
  • FIG. 6A is a circuit board manufacturing process
  • FIG. 6B is a circuit diagram.
  • the substrate placement process, FIG. 6C shows the mounting process.
  • FIG. 7 shows a light-emitting device including the phosphor ceramic shown in FIG. 1B.
  • 8A and 8B are diagrams showing a wavelength conversion heat radiating member provided in the light emitting device shown in FIG. 7, in which FIG. 8A shows a side sectional view and FIG. 8B shows a rear view.
  • FIG. 9 is a schematic diagram of a method for measuring the pores of the phosphor ceramic plate in the example.
  • the vertical direction of the paper surface of FIGS. 1A and 1B is the “vertical direction” (first direction, thickness direction), the upper side of the paper surface is the upper side, and the lower side of the paper surface is the lower side.
  • 1A and 1B is the “plane direction” (second direction, a direction orthogonal to the first direction), the right side of the page is the one side of the plane, and the left side of FIG. 1A and FIG. 1B The direction is the other side in the plane direction. 2 to 6 and 9 also refer to the directions of FIGS. 1A and 1B.
  • the vertical direction of the paper surface of FIG. 7 is the “vertical direction” (first direction, thickness direction), the upper side of the paper surface is the upper side, and the lower side of the paper surface is the lower side.
  • the left-right direction in FIG. 7 is the “front-rear direction” (second direction, width direction, direction orthogonal to the first direction), the right direction on the paper is the front side, and the left direction on the paper in FIG. 1 is the rear side.
  • the paper thickness direction in FIG. 7 is the “left-right direction” (the direction orthogonal to the third direction, the first direction, and the second direction), the paper thickness front in FIG. 7 is the left side, and the paper thickness back side in FIG. On the right. 8A and 8B also refer to the direction of FIG.
  • Phosphor Ceramics With reference to FIG. 1B, a phosphor ceramic plate 1 according to an embodiment of the phosphor ceramic of the present invention will be described.
  • the phosphor ceramic plate 1 is formed in a plate shape from a ceramic (fired body) of phosphor material and contains a phosphor.
  • the phosphor contained in the phosphor ceramic plate 1 has a wavelength conversion function, for example, a yellow phosphor capable of converting blue light into yellow light, and can convert blue light into red light. Examples include red phosphors.
  • yellow phosphors include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca) 3 (Al, Si, Ge, B, P, Ga) 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium) Aluminum garnet): Garnet-type phosphors having a garnet-type crystal structure such as Ce), for example, oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the phosphor ceramic plate 1 has pores inside.
  • the phosphor ceramic plate 1 has holes (hereinafter also referred to as “hollow holes”) having a hole diameter of 3.0 ⁇ m or more and 12.0 ⁇ m or less.
  • the lower limit of the volume ratio of the hollow holes in the phosphor ceramic plate 1 is 1.5% by volume or more, preferably 2.0% by volume or more, and more preferably 2.5% by volume or more. Moreover, an upper limit is 9.5 volume% or less, Preferably, it is 8.0 volume% or less.
  • the transparency and scattering of the phosphor ceramic plate 1 can be improved.
  • the hole diameter is the maximum length of the holes, and the cut surface of the phosphor ceramic plate 1 is measured using a laser microscope (device name: Lasertec, VL2000D, objective lens 20 times, magnification 1800 times). It is measured by observing.
  • the volume of the hole is calculated by converting the hole diameter of the hole (maximum length of the hole) into a true sphere as the diameter of the hole.
  • the phosphor ceramic plate 1 has holes having a hole diameter exceeding 12.0 ⁇ m (hereinafter also referred to as “large holes”) and holes having a hole diameter of less than 3.0 ⁇ m ( Hereinafter, it may also be referred to as a “small hole”.
  • the volume ratio of the large pores in the phosphor ceramic plate 1 is, for example, 12.0% by volume or less, preferably 9.0% by volume or less, more preferably 5.0% by volume or less, and still more preferably 2. 0% by volume or less.
  • the upper limit of the hole diameter of the large hole is, for example, 30.0 ⁇ m or less.
  • the volume ratio of the small holes in the phosphor ceramic plate 1 is, for example, 2.0% by volume or less, preferably 1.2% by volume or less, more preferably 1.0% by volume or less, and still more preferably 0%. .8% by volume or less.
  • the minimum of the hole diameter of a small hole is 0.3 micrometer or more, for example.
  • the average pore diameter of the pores is, for example, 2.5 ⁇ m or more, preferably 3.0 ⁇ m or more, and for example, 20.0 ⁇ m or less, preferably 15.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, More preferably, it is 5.5 ⁇ m or less.
  • the average pore diameter of the pores is in the above range, the transparency and the scattering property of the phosphor ceramic plate 1 are good. Further, from the viewpoint of reducing speckle noise (speckle contrast ratio), it is preferably 10.0 ⁇ m or less.
  • the manufacturing method of the phosphor ceramic plate 1 includes, for example, a green sheet manufacturing process (see FIG. 1A) and a firing process (FIG. 1B). Hereinafter, each process is explained in full detail.
  • a phosphor composition containing a phosphor material and organic particles is baked.
  • the slurry (phosphor composition slurry) containing a phosphor composition is apply
  • the phosphor composition slurry contains a phosphor composition containing a phosphor material and organic particles, and a solvent. That is, the phosphor composition slurry contains a phosphor material, organic particles, and a solvent.
  • the phosphor material is a raw material that constitutes the phosphor, and is appropriately selected according to the phosphor.
  • the phosphor material include a single metal constituting the phosphor, a metal oxide thereof, and a metal nitride.
  • examples of the phosphor material include yttrium-containing compounds such as yttrium oxide, aluminum-containing compounds such as aluminum oxide, and cerium oxide. Examples include metal oxides such as cerium-containing compounds.
  • the phosphor material is formed, for example, in the form of particles.
  • the purity of the phosphor material is, for example, 99.0% by mass or more, and preferably 99.9% by mass or more. Thereby, impurities contained in the phosphor ceramic plate 1 can be reduced.
  • Organic particles are contained in the phosphor composition slurry in order to form predetermined pores in the phosphor ceramic plate 1.
  • the material of the organic particles may be any material that can be completely pyrolyzed during the firing process, and examples thereof include thermoplastic resins and thermosetting resins.
  • thermoplastic resin examples include acrylic resin, styrene resin, acrylic-styrene resin, polycarbonate resin, benzoguanamine resin, polyolefin resin, polyester resin, polyamide resin, and polyimide resin.
  • an acrylic resin particularly, polymethyl methacrylate is used from the viewpoint of productivity.
  • thermosetting resin examples include an epoxy resin, a silicone resin, and a urethane resin.
  • the average particle diameter of the organic particles is, for example, 2.0 ⁇ m or more, preferably 3.4 ⁇ m or more, more preferably 4.0 ⁇ m or more, and for example, 25.0 ⁇ m or less, preferably 15.0 ⁇ m or less. More preferably, it is 8.0 ⁇ m or less. If the average particle size of the organic particles is below the lower limit, when the green sheet 15 is fired and the phosphor ceramic plate 1 is manufactured, the crystals of the phosphor ceramic plate 1 grow excessively toward the inside of the pores, There is a risk of vacancies disappearing.
  • the average particle diameter of the organic particles exceeds the above upper limit, a large amount of large pores are formed inside the phosphor ceramic plate 1, and the permeability and strength of the phosphor ceramic plate 1 may be reduced. Moreover, there exists a possibility that the impurity contained in the fluorescent substance ceramic plate 1 may increase.
  • the average particle diameter of the organic particles can be measured by a laser diffraction scattering method using, for example, a particle size distribution measuring device (“LS13 320” manufactured by Beckman Coulter, Inc.).
  • the content ratio of the organic particles is, for example, 1.5% by volume or more, preferably 2.0% by volume or more, and, for example, 12.0% by volume with respect to the total content of the phosphor material and the organic particles. % Or less, preferably 10.0% by volume or less, and more preferably 8.0% by volume or less.
  • the volume ratio of pores formed in the phosphor ceramic plate 1 can be adjusted to an appropriate range by setting the content ratio of the organic particles within the above range.
  • the phosphor composition may further contain a binder resin as necessary.
  • a known binder resin used for producing the green sheet 15 may be used, and examples thereof include an acrylic polymer, a butyral polymer, a vinyl polymer, and a urethane polymer.
  • an acrylic polymer is used.
  • the content ratio of the binder resin is, for example, 5 parts by volume or more, preferably 15 parts by volume or more, and, for example, 120 parts by volume or less, preferably 80 parts by volume or less with respect to 100 parts by volume of the phosphor material. More preferably, it is 60 parts by volume or less.
  • the phosphor composition may further contain known additives such as a dispersant, a plasticizer, and a sintering aid as necessary.
  • Examples of the solvent contained in the phosphor composition slurry include water and organic solvents such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, methyl propionate, and methyl cellosolve.
  • the content ratio of the solvent is, for example, 1 to 30% by mass in the phosphor composition slurry.
  • the phosphor composition slurry is prepared by blending the above components in the above proportions and wet-mixing with a ball mill or the like. That is, a phosphor composition slurry is prepared.
  • the above components may be wet mixed together.
  • the phosphor composition slurry may be prepared by wet-mixing components excluding organic particles to prepare a first slurry, and then wet-mixing the organic particles into the first slurry.
  • the release substrate 14 examples include a polyester film such as a polyethylene terephthalate (PET) film, a polycarbonate film such as a polyolefin film such as a polyethylene film and a polypropylene film, such as a polystyrene film, such as an acrylic film, such as silicone, and the like.
  • the resin film include resin films and fluororesin films.
  • metal foils, such as copper foil and stainless steel foil, are also mentioned, for example.
  • a resin film is preferable, and a polyester film is more preferable.
  • the surface of the peeling substrate 14 is subjected to a peeling treatment as necessary in order to improve the peelability.
  • the thickness of the peeling substrate 14 is, for example, 10 to 200 ⁇ m from the viewpoint of handling and cost.
  • Examples of the method for applying the phosphor composition slurry to the release substrate 14 include known application methods such as doctor blade coating, gravure coating, fountain coating, cast coating, spin coating, and roll coating.
  • the drying temperature is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
  • the drying time is, for example, 1 minute or more, preferably 2 minutes or more, and for example, 24 hours or less, preferably 5 hours or less.
  • the green sheet 15 obtained in this way is a ceramic before sintering of the phosphor ceramic plate 1 and is formed in a plate shape.
  • the peeling substrate 14 is peeled from the green sheet 15 as shown by the phantom line in FIG. 1A.
  • the green sheet 15 can also be formed by laminating a plurality (multiple layers) of green sheets 15 by thermal lamination.
  • the thickness of the green sheet 15 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the green sheet 15 is fired as shown in FIG. 1B. Thereby, the phosphor ceramic plate 1 is obtained.
  • Calcination temperature is, for example, 1300 ° C. or higher, preferably 1500 ° C. or higher, and for example, 2000 ° C. or lower, preferably 1800 ° C. or lower.
  • Calcination time is, for example, 1 hour or more, preferably 2 hours or more, and for example, 24 hours or less, preferably 8 hours or less.
  • Calcination may be performed under normal pressure, or may be performed under reduced pressure or under vacuum.
  • the rate of temperature increase in the firing is, for example, 0.5 to 20 ° C./min.
  • preheating is performed in the air at, for example, 600 to 1300 ° C. using an electric furnace to remove the binder. Processing may be performed.
  • the organic particles are baked through baking (when baking is performed, baking and binder processing), and pores are formed in the phosphor ceramic plate 1.
  • the phosphor ceramic plate 1 obtained in this way is formed in a plate shape.
  • the thickness T of the phosphor ceramic plate 1 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 130 ⁇ m or less.
  • the phosphor ceramic plate 1 preferably satisfies the following formula.
  • V ⁇ 1.30 ⁇ ( ⁇ log T)
  • V indicates the volume ratio (%) of pores (small pores) having a pore diameter of less than 3.0 ⁇ m.
  • T represents the thickness (mm) of the phosphor ceramic plate 1.
  • the phosphor ceramic plate 1 preferably satisfies at least one of the following requirements (1) to (3).
  • the sodium element is 67 ppm or less, preferably 50 ppm or less.
  • Magnesium element is 23 ppm or less, preferably 20 ppm or less.
  • the iron element is 21 ppm or less, preferably 15 ppm or less, more preferably 10 ppm or less.
  • the above elements can be measured by, for example, ICP-MS analysis.
  • the element is an impurity, and the quantum efficiency is excellent by setting the impurity to the upper limit or less.
  • the phosphor ceramic plate 1 has pores having a pore diameter of 3.0 ⁇ m or more and 12.0 ⁇ m or less, and the volume ratio of the pores in the phosphor ceramic plate 1 is 1.5 vol% or more and 9 vol%. .5% by volume or less. Therefore, the light incident from the optical semiconductor element into the phosphor ceramic plate 1 can be scattered while being satisfactorily transmitted. Therefore, it has excellent transparency and scattering properties.
  • speckle noise can be reduced particularly for light obtained by wavelength-converting light from the LD using the ceramic plate 1.
  • the phosphor ceramic plate 1 has a predetermined amount of relatively large holes (hollow holes). Therefore, when manufacturing the phosphor ceramic plate 1 (green sheet firing), it is not necessary to form minute holes that are difficult to form. Therefore, it is excellent in productivity.
  • the phosphor ceramic plate 1 is formed of a phosphor ceramic, it has excellent heat resistance and heat dissipation.
  • Such a phosphor ceramic plate 1 is an object of commercial transaction as a part of the optical semiconductor device 8 alone.
  • optical semiconductor device 8 including the phosphor ceramic plate 1 will be described below.
  • the manufacturing method of the first embodiment of the optical semiconductor device 8 includes, for example, a fluorescent adhesive sheet manufacturing step (see FIG. 2A), a fluorescent adhesive sheet arranging step (see FIG. 2B), and an adhesive step (see FIG. 2C).
  • the adhesive layer 2 is laminated on the phosphor ceramic plate 1.
  • the adhesive layer 2 is disposed on the entire upper surface (one surface) of the phosphor ceramic plate 1 and is formed into a sheet shape from the adhesive composition.
  • an adhesive composition for example, pressure sensitive adhesive compositions such as silicone and acrylic, for example, thermosetting adhesive compositions such as silicone and epoxy, such as glass and ceramic And an inorganic adhesive composition.
  • a silicone type composition is mentioned from a viewpoint of mass productivity, durability, and heat resistance.
  • the thickness of the adhesive layer 2 is, for example, 5 ⁇ m or more and 200 ⁇ m or less from the viewpoint of pressure-sensitive adhesiveness, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less from the viewpoint of thermal conductivity.
  • the adhesive composition is prepared as a varnish
  • the varnish is applied to the entire upper surface of the phosphor ceramic plate 1, such as a bar coater.
  • Application is performed by a known application method. Thereby, a film of the adhesive composition is formed. Subsequently, if necessary, the solvent is distilled off.
  • a film can be formed by applying varnish to the surface of a release sheet or the like, and the film can be transferred from the release sheet to the phosphor ceramic plate 1 after the solvent is distilled off if necessary.
  • the fluorescent adhesive sheet 6 includes the phosphor ceramic plate 1 and the adhesive layer 2, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8.
  • the substrate 7 on which the optical semiconductor element 5 is mounted and the fluorescent adhesive sheet 6 are arranged to face each other. That is, the substrate 7 and the fluorescent adhesive sheet 6 are arranged to face each other with an interval so that the optical semiconductor element 5 and the adhesive layer 2 face each other.
  • the substrate 7 is formed in a plate shape larger than the optical semiconductor element 5 in plan view.
  • the substrate 7 is made of an insulating substrate such as a silicon substrate, a ceramic substrate, a polyimide resin substrate, or a laminated substrate in which an insulating layer is laminated on a metal substrate.
  • a conductor pattern (not shown) including electrodes is formed on the upper surface of the substrate 7.
  • the optical semiconductor element 5 is, for example, an element that emits blue light (specifically, a blue LED or a blue LD) and is, for example, flip-chip mounted or wire bonded to an electrode (not shown) of the substrate 7. Connected by connection.
  • the fluorescent adhesive sheet 6 bonded to the optical semiconductor element 5 is formed in a shape that avoids (bypasses) the wire.
  • the fluorescent adhesive sheet 6 is attached to the optical semiconductor element 5.
  • the phosphor ceramic plate 1 is bonded onto the optical semiconductor element 5 via the adhesive layer 2.
  • the lamination of the fluorescent adhesive sheet 6 and the optical semiconductor element 5 is performed at room temperature (specifically, 20 to 25 ° C.). If necessary, the fluorescent adhesive sheet 6 can be heated to 30 to 150 ° C., for example.
  • the optical semiconductor device 8 to which the phosphor ceramic plate 1 is bonded through the bonding layer 2 is obtained.
  • the optical semiconductor device 8 includes the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the adhesive layer 2 formed on the optical semiconductor element 5, and the adhesive layer 2 (the optical semiconductor element 5 and the optical semiconductor element 5). Is disposed on the opposite side), and includes a phosphor ceramic plate 1 disposed opposite to the optical semiconductor element 5.
  • the optical semiconductor device 8 is obtained as a white light emitting device.
  • the sealing layer 3 can be provided on the optical semiconductor device 8 as indicated by a virtual line in FIG. 2C.
  • the sealing layer 3 is disposed on the substrate 7 so as to cover the optical semiconductor element 5 and the fluorescent adhesive sheet 6.
  • Sealing layer 3 is formed from a sealing resin composition.
  • the sealing resin composition includes a known transparent resin used for embedding and sealing the optical semiconductor element 5, and examples of the transparent resin include thermosetting resins such as silicone resins, epoxy resins, and urethane resins, Examples thereof include thermoplastic resins such as acrylic resin, styrene resin, polycarbonate resin, and polyolefin resin.
  • a method of providing the sealing layer 3 in the optical semiconductor device 8 for example, a method of directly forming the sealing layer 3 on the optical semiconductor device 8, or after forming the sealing layer 3 on another release sheet or the like, the sealing is performed. Examples include a method of transferring the layer 3 from the release sheet to the optical semiconductor device 8 by a laminator, thermocompression bonding, or the like.
  • the optical semiconductor device 8 of 1st Embodiment is equipped with the fluorescent substance ceramic plate 1, it can improve the permeability
  • FIG. Therefore, a decrease in luminous efficiency can be suppressed, and the viewing angle becomes good.
  • an LD is used as the optical semiconductor element 5
  • speckle noise of light emitted from the optical semiconductor device 8 can be reduced.
  • the optical semiconductor device 8 has good productivity, the manufacturing cost can be reduced.
  • the optical semiconductor device 8 is excellent in heat resistance and heat dissipation.
  • the manufacturing method of 2nd Embodiment of the optical semiconductor device 8 is equipped with the sealing sheet preparation process (refer FIG. 3A), the sealing sheet arrangement
  • FIG. 3A the sealing sheet preparation process
  • FIG. 3B the sealing sheet arrangement
  • FIG. 3C a sealing process
  • the sealing layer 3 is laminated on the phosphor ceramic plate 1 as shown in FIG. 3A.
  • the sealing layer 3 is disposed on the entire upper surface (one surface) of the phosphor ceramic plate 1 and is formed into a sheet shape from the above-described sealing resin composition.
  • a method of laminating the sealing layer 3 on the upper surface of the phosphor ceramic plate for example, a method of directly forming the sealing layer 3 on the phosphor ceramic plate 1, or after forming the sealing layer 3 on another release sheet or the like And a method of transferring the sealing layer 3 from the release sheet to the phosphor ceramic plate 1 by a laminator, thermocompression bonding, or the like.
  • the sealing layer 3 is heated to bring the sealing layer 3 made of the sealing resin composition into a B-stage state (semi-cured state).
  • the temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, and for example, 150 ° C. or lower, preferably 140 ° C. or lower.
  • the heating time is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 100 minutes or less, preferably 15 minutes or less. Note that whether or not the sealing layer 3 is in the B-stage state can be appropriately set according to the type of the thermosetting resin.
  • the wavelength conversion sealing sheet 4 includes the phosphor ceramic plate 1 and the encapsulating layer 3, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8 alone.
  • the substrate 7 on which the optical semiconductor element 5 is mounted and the wavelength conversion sealing sheet 4 are arranged to face each other. That is, the substrate 7 and the wavelength conversion sealing sheet 4 are arranged to face each other with an interval so that the optical semiconductor element 5 and the sealing layer 3 face each other.
  • the optical semiconductor element 5 is connected to an electrode (not shown) of the substrate 7 by wire bonding.
  • a terminal (not shown) provided on the upper surface of the optical semiconductor element 5 and an electrode (not shown) provided on the upper surface of the substrate 7 are electrically connected via a wire 16 (see a virtual line). Connected to.
  • the optical semiconductor element 5 may be flip-chip mounted on the substrate 7 (see solid line).
  • the optical semiconductor element 5 is embedded by the sealing layer 3 of the wavelength conversion sealing sheet 4.
  • the optical semiconductor element 5 and the wire 16 are embedded.
  • the sealing layer 3 is thermocompression bonded to the substrate 7.
  • the wavelength conversion encapsulating sheet 4 and the substrate 7 are pressed flat.
  • the temperature is, for example, 80 to 220 ° C.
  • the pressure is, for example, 0.01 to 1 MPa
  • the press time is, for example, 1 to 10 minutes.
  • the upper surface and side surfaces of the optical semiconductor element 5 and the wire are covered with the sealing layer 3 by this thermocompression bonding. That is, the optical semiconductor element 5 and the wire are embedded in the sealing layer 3.
  • the upper surface of the substrate 7 exposed from the optical semiconductor element 5 is covered with the sealing layer 3, and the wavelength conversion sealing sheet 4 is bonded to the optical semiconductor element 5 and the substrate 7.
  • the sealing layer 3 is in a C stage state (fully cured state).
  • the optical semiconductor device 8 includes the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the sealing layer 3 formed on the substrate 7 and sealing the optical semiconductor element 5, and the sealing layer 3. And a phosphor ceramic plate 1 disposed opposite to the optical semiconductor element 5.
  • the optical semiconductor device 8 of the second embodiment can also exhibit the same operational effects as the first embodiment.
  • the optical semiconductor element 5 mounted on the substrate 7 is encapsulated by the wavelength conversion encapsulating sheet 4, so that the light
  • the semiconductor device 8 is directly manufactured, for example, as shown in FIG. 4C, the optical semiconductor element 5 that is not yet mounted on the substrate 7 and is supported by the support sheet 9 is sealed, and the sealed optical semiconductor element
  • the optical semiconductor device 8 can also be manufactured after the 12 is manufactured.
  • the manufacturing method of the optical semiconductor device 8 includes, for example, a sealing sheet manufacturing process (see FIG. 4A), a sealing sheet arranging process (see FIG. 4B), a sealing process (see FIG. 4C), and a peeling process. (See FIG. 4D) and a mounting process (see FIG. 4E).
  • a sealing sheet manufacturing process see FIG. 4A
  • a sealing sheet arranging process see FIG. 4B
  • a sealing process see FIG. 4C
  • a peeling process See FIG. 4D
  • a mounting process see FIG. 4E.
  • the sealing sheet preparation process is the same as the sealing sheet preparation process described above with reference to FIG. 3A, as shown in FIG. 4A.
  • the supporting sheet 9 and the optical semiconductor element 5 supported by the supporting sheet 9 and the wavelength conversion sealing sheet 4 are arranged to face each other. That is, the support sheet 9 and the wavelength conversion sealing sheet 4 are arranged to face each other with an interval so that the optical semiconductor element 5 and the sealing layer 3 face each other.
  • the support sheet 9 includes a support plate 10 and an adhesive layer 11 laminated on the upper surface of the support plate 10.
  • the support plate 10 has a plate shape extending in the surface direction, is provided at a lower portion of the support sheet 9, and is formed in substantially the same shape as the support sheet 9 in plan view.
  • the support plate 10 is made of a hard material that cannot be stretched in the plane direction. Specifically, as such a material, for example, an oxide such as silicon oxide (quartz or the like), sapphire, or alumina, for example, stainless steel or the like is used. A metal such as silicon can be used.
  • the thickness of the support plate 10 is, for example, 0.1 to 2 mm.
  • the adhesive layer 11 is formed on the entire upper surface of the support plate 10.
  • the pressure-sensitive adhesive material that forms the pressure-sensitive adhesive layer 11 include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone-based pressure sensitive adhesives.
  • the adhesive layer 11 may be formed by, for example, an active energy ray irradiation release sheet whose adhesive strength is reduced by irradiation with an active energy ray (specifically, an active energy ray irradiation release sheet described in JP 2005-286003 A or the like). ) Or the like.
  • the thickness of the adhesive layer 11 is, for example, 0.1 to 1 mm.
  • the support plate 10 and the adhesive layer 11 are bonded together.
  • the support plate 10 is prepared, and then a varnish prepared from the above-mentioned adhesive material and a solvent blended as necessary is applied to the support plate 10, and then, if necessary, by a coating method of drying the solvent.
  • the adhesive layer 11 can also be directly laminated on the support plate 10.
  • the thickness of the support sheet 9 is, for example, 0.2 to 6 mm.
  • the optical semiconductor element 5 is laminated on the support sheet 9. Specifically, the lower surface of the optical semiconductor element 5 is brought into contact with the upper surface of the adhesive layer 11.
  • the optical semiconductor element 5 is arranged (placed) on the support sheet 9. That is, the optical semiconductor element 5 is supported on the support sheet 9.
  • the sealing process is the same as the sealing process described above with reference to FIG. 3C, as shown in FIG. 4C.
  • the sealed optical semiconductor element 12 is peeled from the upper surface of the adhesive layer 11 as shown by the arrow in FIG. 4D. Specifically, when the adhesive layer 11 is an active energy ray irradiation release sheet, the active energy ray is irradiated to the adhesive layer 11.
  • the optical semiconductor element 5, the sealing layer 3 that seals the optical semiconductor element 5, and the phosphor ceramic plate 1 that is disposed on the sealing layer 3 and is disposed to face the optical semiconductor element 5 are provided.
  • a sealed optical semiconductor element 12 is obtained.
  • the sealed optical semiconductor element 12 includes the optical semiconductor element 5, the sealing layer 3, and the phosphor ceramic plate 1.
  • the sealed optical semiconductor element 12 does not include the substrate 7 and is an object of commercial transaction as a part of the optical semiconductor device 8.
  • the sealed optical semiconductor element 12 includes the phosphor ceramic plate 1, it is possible to improve the transmission and scattering properties of the light emitted from the optical semiconductor element 5. Therefore, a decrease in luminous efficiency can be suppressed, and the viewing angle becomes good. Further, when an LD is used as the optical semiconductor element 5, speckle noise of light irradiated from the sealed optical semiconductor element 12 can be reduced. Moreover, since the sealing optical semiconductor element 12 has good productivity, the manufacturing cost can be reduced. Furthermore, the sealed optical semiconductor element 12 is excellent in heat resistance and heat dissipation.
  • the sealed optical semiconductor element 12 is then mounted on the substrate 7 as shown in FIG. 4E. Specifically, a terminal (not shown) provided on the lower surface of the optical semiconductor element 5 and an electrode (not shown) of the substrate 7 are connected, and the sealed optical semiconductor element 12 is flip-chip mounted on the substrate 7. .
  • the optical semiconductor device 8 including the substrate 7, the optical semiconductor element 5, the sealing layer 3, and the phosphor ceramic plate 1 is manufactured.
  • the optical semiconductor device 8 of the first modified example can also exhibit the same effects as described above.
  • the optical semiconductor device 8 includes a housing disposed on the substrate 7 so as to surround the optical semiconductor element 5.
  • the optical semiconductor device 8 may include a housing 13.
  • the optical semiconductor device 8 of the second modification example in FIG. 5 seals the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the housing 13 formed on the substrate 7, and the optical semiconductor element 5.
  • a sealing layer 3 and a phosphor ceramic plate 1 formed on the sealing layer 3 are provided.
  • the housing 13 has a substantially frame shape in a plan view, and is formed in a substantially trapezoidal cylindrical shape that becomes gradually narrower upward. Further, the housing 13 is disposed so as to surround the optical semiconductor element 5 and spaced from the optical semiconductor element 5.
  • the sealing layer 3 is filled in the housing 13.
  • the phosphor ceramic plate 1 is also disposed on the entire upper surface of the sealing layer 3 and the inner end of the upper surface of the housing 13.
  • the optical semiconductor device 8 shown in the second modification can also exhibit the same effects as described above.
  • the manufacturing method of the third embodiment of the optical semiconductor device 8 includes, for example, a circuit board manufacturing process (see FIG. 6A), a circuit board arrangement process (see FIG. 6B), and a mounting process (see FIG. 6C).
  • a circuit board manufacturing process see FIG. 6A
  • a circuit board arrangement process see FIG. 6B
  • a mounting process see FIG. 6C
  • the electrode wiring 41 is laminated on the phosphor ceramic plate 1.
  • the electrode wiring 41 is formed as a conductor pattern integrally including an electrode 42 for electrical connection with the terminal 44 of the optical semiconductor element 5 and a wiring 43 continuous therewith.
  • the electrode wiring 41 is made of a conductor such as gold, copper, silver, or nickel.
  • Two (one pair) of electrodes 42 are provided for one optical semiconductor element 5 (see FIG. 6B). Specifically, corresponding to two terminals 44 formed in one optical semiconductor element 5. Is provided.
  • a protective film (not shown) can be formed on the surface (upper surface and side surface) of the electrode wiring 41.
  • the protective film is formed as a plating layer made of, for example, Ni and / or Au from the viewpoint of oxidation prevention or connectivity.
  • the dimensions of the electrode wiring 41 are set as appropriate.
  • the maximum length of the electrode 42 is, for example, 0.03 mm or more, preferably 0.05 mm or more, and, for example, 50 mm or less, Preferably, it is 5 mm or less.
  • interval between the adjacent electrodes 42 is 0.05 mm or more, for example, Preferably, it is 0.1 mm or more, for example, is 3 mm or less, Preferably, it is 1 mm or less.
  • the width of the wiring 43 is, for example, 20 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 400 ⁇ m or less, preferably 200 ⁇ m or less.
  • the thickness of the electrode wiring 41 is, for example, 10 ⁇ m or more, preferably 25 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the thickness of the protective film (not shown) is, for example, 100 nm or more, preferably 300 nm or more, and, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less.
  • the electrode wiring 41 is laminated on the upper surface (one surface) of the phosphor ceramic plate 1.
  • Examples of the method of laminating the electrode wiring 41 on the upper surface of the phosphor ceramic plate 1 include a heat bonding method, a printing-heat bonding method, a Mo-Mn method, a copper sulfide method, a copper metallization method, a printing method, a transfer method, and the like.
  • a heat bonding method and a printing-heat bonding method are mentioned.
  • a conductor sheet for forming the electrode wiring 41 is brought into contact with the entire upper surface of the phosphor ceramic plate 1 and then, for example, 800 to 1200 in an inert atmosphere of Ar, N 2 or the like. Heating is performed at a temperature of ° C. to form a bonded substrate composed of the phosphor ceramic plate 1 and the conductor sheet. Thereafter, the electrode wiring 41 is formed by etching the conductor sheet.
  • a paste prepared by mixing a conductive powder, a binder such as an organic compound, and a solvent is printed on the upper surface of the phosphor ceramic plate 1 in the above pattern to form a printed pattern.
  • the conductor sheet is disposed by a dispenser along the printed pattern, and bonded by heating at the above-described temperature in an inert atmosphere or vacuum. Thereafter, a conductor pattern is formed on the conductor sheet by etching or the like.
  • the circuit board 40 includes the phosphor ceramic plate 1 for mounting the optical semiconductor element 5 thereon and the electrode wiring 41 stacked thereon and electrically connected to the optical semiconductor element 5 is obtained.
  • the circuit board 40 includes the phosphor ceramic plate 1 and the electrode wiring 41, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8.
  • the circuit board 40 includes the phosphor ceramic plate 1, it is possible to improve the transmission and scattering properties of the light emitted from the optical semiconductor element 5. Therefore, a decrease in luminous efficiency can be suppressed, and the viewing angle becomes good. Further, when the optical semiconductor device 8 is manufactured using the LD as the optical semiconductor element 5 in particular, speckle noise of light emitted from the optical semiconductor device 8 can be reduced. Moreover, since the circuit board 40 has good productivity, the manufacturing cost can be reduced. Furthermore, the circuit board 40 is excellent in heat resistance and heat dissipation.
  • the circuit board 40 includes the phosphor ceramic plate 1
  • the phosphor ceramic plate 1 can convert the wavelength of light emitted downward without separately providing a phosphor layer on the lower surface of the substrate. it can. Therefore, it is possible to simplify the configuration of the optical semiconductor device 8 by reducing the number of parts in the optical semiconductor device 8 while improving the light flux below the optical semiconductor device 8. As a result, the number of manufacturing steps of the optical semiconductor device 8 can be reduced, the manufacturing method can be simplified, the productivity of the optical semiconductor device 8 can be improved, and the manufacturing cost can be reduced.
  • the optical semiconductor element 5 and the circuit board 40 are arranged to face each other as shown in FIG. 6B. That is, the optical semiconductor element 5 and the circuit board 40 are arranged to face each other with an interval so that the terminal 44 provided on the lower surface of the optical semiconductor element 5 and the electrode wiring 41 provided on the upper surface of the circuit board 40 face each other.
  • the optical semiconductor element 5 is then mounted on the circuit board 40 as shown in FIG. 6C. Specifically, the terminal 44 of the optical semiconductor element 5 and the electrode 42 of the circuit board 40 are connected, and the optical semiconductor element 5 is flip-chip mounted on the circuit board 40.
  • the optical semiconductor device 8 includes the circuit substrate 40 and the optical semiconductor element 5 mounted on the circuit substrate 40 so as to be electrically connected to the electrode wiring 41.
  • the sealing layer 3 can be provided on the optical semiconductor device 8 as indicated by a virtual line in FIG. 6C.
  • the sealing layer 3 is disposed on the circuit board 40 so as to cover the optical semiconductor element 5.
  • the sealing layer 3 can also be made into the fluorescent substance sealing layer formed from the sealing resin composition containing the said fluorescent substance and the said transparent resin.
  • the optical semiconductor device 8 of the third embodiment can also exhibit the same operational effects as the first embodiment.
  • the circuit board 40 includes the phosphor ceramic plate 1
  • an optical semiconductor element is provided without separately providing a phosphor layer below the phosphor ceramic plate 1.
  • the wavelength of light emitted downward from 5 can be converted by the phosphor ceramic plate 1. Therefore, it is possible to simplify the configuration of the optical semiconductor device 8 by reducing the number of components while being excellent in the lower light flux. As a result, the productivity of the optical semiconductor device 8 can be improved.
  • the sealing layer 3 is a fluorescent sealing layer
  • the optical semiconductor element 5 is sealed to improve reliability, and the optical semiconductor element 5 is provided by the fluorescent sealing layer.
  • the wavelength of the light emitted upward and laterally from the light can be converted to improve the luminous flux of the light. Therefore, the optical semiconductor device 8 can be a double-sided light emission type that can emit light from both the upper and lower sides.
  • an illumination device 20 as an example of a light emitting device including the phosphor ceramic plate 1 will be described with reference to FIGS.
  • the illumination device 20 includes an illumination housing 22, a transparent member 23, a light source 24, a reflecting mirror 25, and a wavelength conversion heat radiating member 26.
  • the lighting housing 22 is formed in a substantially cylindrical shape extending in the front-rear direction, closed on the rear side, and opened on the front side.
  • the illumination housing 22 accommodates a transparent member 23, a light source 24, a reflecting mirror 25, and a wavelength conversion heat radiating member 26 described later.
  • the transparent member 23 has a substantially circular shape in a rear view and is formed in a plate shape with a thin thickness in the front-rear direction.
  • the outer shape of the transparent member 23 is formed so as to coincide with the inner peripheral edge at the front end of the illumination housing 22 when projected in the front-rear direction.
  • the transparent member 23 is provided at the front end of the lighting housing 22. Specifically, the transparent member 23 is accommodated in the illumination housing 22 so that the front end edge of the illumination housing 22 is flush with the front surface (front surface) of the transparent member 23 in the vertical direction.
  • Examples of the light source 24 include semiconductor light sources such as a light emitting diode (LED) and a laser diode (LD).
  • the light source 24 is provided at a substantially central portion in the up-down direction and the width direction (left-right direction) inside the illumination housing 22 with a space behind the transparent member 23.
  • An external wiring 28 routed from the outside of the illumination housing 22 is connected to the light source 24.
  • the light source 24 emits light such as monochromatic light toward the front side by the electric power received from the external wiring 28.
  • the reflecting mirror 25 is formed in a dome shape having a substantially circular shape in a rear view and a substantially semicircular arc shape in a side sectional view.
  • the outer shape of the reflecting mirror 25 is formed so as to coincide with the outer edge of the transparent member 23 when projected in the front-rear direction.
  • the reflecting mirror 25 is disposed on the other side (rear side) of the transparent member 23 and on one side (front side) of the light source 24 with a distance from the light source 24.
  • the reflecting mirror 25 is accommodated in the illumination housing 22 so that the front end edge thereof is in contact with the rear surface of the transparent member 23.
  • a through-hole 27 through which light from the light source 24 passes is formed at the center (vertical and width center) of the reflecting mirror 25.
  • the reflecting mirror 25 reflects the diffused light that passes through the through hole 27 toward the front side and is diffused toward the rear side by a wavelength conversion heat radiating member 26 (described later), and reflects the light toward the front side.
  • the wavelength conversion heat radiation member 26 is provided on the front side in the illumination housing 22. Specifically, it is disposed to face the front side with a gap from the reflecting mirror 25, and is disposed adjacent to the rear surface (rear surface) of the transparent member 23. As shown in FIGS. 8A and 8B, the wavelength conversion heat radiating member 26 includes a heat diffusion holding member 29 and a wavelength conversion bonding member 30.
  • the heat diffusion holding member 29 is formed in a substantially rectangular shape in rear view extending in the vertical direction, and is disposed adjacent to the transparent member 23. Specifically, the heat diffusion holding member 29 is disposed so that the front surface of the heat diffusion holding member 29 is in contact with the rear surface of the transparent member 23.
  • the heat diffusion holding member 29 includes a placement part 31 and a fixing part 32. *
  • the mounting portion 31 is formed in a substantially rectangular shape in rear view having a thickness in the front-rear direction.
  • the placement portion 31 is disposed such that the front surface of the placement portion 31 is in contact with the substantially central portion of the rear surface of the transparent member 23 in the rear view.
  • the fixing portion 32 is formed integrally with the placement portion 31 so as to extend downward from the front lower end of the placement portion 31.
  • the fixed portion 32 has a substantially rectangular shape in rear view extending in the vertical direction, and is formed in a plate shape whose thickness in the front-rear direction is thinner than that of the placement portion 31.
  • the fixed portion 32 is bent rearward so that the upper front surface is in contact with the rear surface of the transparent member 23 and is separated from the transparent member 23 in the middle of the vertical direction.
  • One end (lower end) of the fixing portion 32 passes through the reflecting mirror 25 and is fixed to the peripheral surface (inner end edge) of the illumination housing 22.
  • the thermal diffusion holding member 29 is made of a material having good thermal conductivity, for example, a thermal conductive metal such as aluminum or copper, or a ceramic material such as AlN.
  • the wavelength conversion bonding member 30 is provided on the rear surface of the placement portion 31.
  • the wavelength conversion bonding member 30 includes a bonding layer 34 and the phosphor ceramic plate 1.
  • the bonding layer 34 has a substantially rectangular shape when viewed from the back, and is formed in a plate shape.
  • the bonding layer 34 is provided on the rear surface of the mounting portion 31 and the front surface (one surface) of the phosphor ceramic plate 1. That is, the bonding layer 34 is disposed between the mounting portion 31 and the phosphor ceramic plate 1.
  • the bonding layer 34 overlaps with the placement portion 31 when projected in the front-rear direction, and specifically, is formed in the same shape as the placement portion 31 in the rear view.
  • the bonding layer 34 preferably has light reflectivity and heat dissipation, and is formed, for example, by curing a light reflective heat dissipation curable composition.
  • Examples of the light-reflective heat-dissipating curable composition include a ceramic ink, a curable resin composition containing a curable resin and inorganic particles, and an aqueous silicate solution containing alkali metal silicate and inorganic particles. .
  • Ceramic ink Commercially available products can be used as the ceramic ink, and specific examples include ceramic inks (RG type, AN type, UV type, SD type) manufactured by Ein Co., Ltd.
  • the curable resin contained in the curable resin composition examples include a curable silicone resin, an epoxy resin, and an acrylic resin.
  • a curable silicone resin commercially available products (trade name: KER-2500, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LR-7665, manufactured by Asahi Kasei Wacker) can be used. *
  • inorganic oxides such as silicon dioxide and titanium dioxide
  • metals such as silver and aluminum
  • titanic acid complex oxides for example, barium titanate and potassium titanate
  • the average particle diameter (average maximum length) of the inorganic particles is, for example, 0.1 to 50 ⁇ m.
  • the phosphor ceramic plate 1 has a substantially rectangular shape when viewed from the back, and is formed in a plate shape.
  • the phosphor ceramic plate 1 is provided on the rear surface of the bonding layer 34.
  • the phosphor ceramic plate 1 overlaps with the bonding layer 34 and the mounting portion 31 when projected in the front-rear direction.
  • the phosphor ceramic plate 1 has the same shape as the bonding layer 34 and the mounting portion 31 in the rear view. Is formed.
  • the phosphor ceramic plate 1 is arranged so as to be collinear with the light source 24 and the through hole 27. Specifically, the light source 24, the through-hole 27, and the phosphor ceramic plate 1 are accommodated in the illumination housing 22 so as to be aligned on a straight line that matches the axis of the illumination housing 22.
  • the light h 0 irradiated from the light source 24 passes through the through hole 27 and is converted into white light by the phosphor ceramic plate 1. Diffused in the direction.
  • the phosphor ceramic plate 1 is excellent in transmission and scattering properties, white light can be efficiently reflected in a wide range (to the rear side) (light h 1 to light in FIG. 7). h 4 ). That is, it is possible to reflect to the reflecting mirror 25 side in a wide range with high efficiency while reducing the loss of the light amount in the wavelength conversion heat radiating member 26. Therefore, the luminous efficiency emitted to the front side (and hence the outside) by the reflecting mirror 25 is good, and the viewing angle is good. In addition, speckle noise of light emitted from the illumination device 20 can be reduced.
  • the lighting device 20 since the lighting device 20 has good productivity, the manufacturing cost can be reduced. Furthermore, the lighting device 20 is excellent in heat resistance and heat dissipation.
  • the lighting device 20 can be suitably used for far-field illumination applications such as in-vehicle lamps, high ceiling hanging lamps, road lamps, and entertainment lamps.
  • Example 1 Yttrium oxide particles (purity 99.99% by mass, lot: N—YT4CP, manufactured by Japan Yttrium Co.) 11.34 g, aluminum oxide particles (purity 99.99% by mass, product number “AKP-30”, manufactured by Sumitomo Chemical) 8 A raw material powder of a phosphor material consisting of .577 g and cerium oxide particles (purity 99.99 mass%) 0.087 g was prepared.
  • organic particles polymethyl methacrylate, average particle size of 3.5 ⁇ m
  • wet mixing was performed to obtain a phosphor composition slurry.
  • the obtained phosphor composition slurry was tape-cast on a PET film by a doctor blade method and dried at 70 ° C. for 5 minutes to obtain a green sheet having a thickness of 90 ⁇ m. Thereafter, the green sheet was peeled from the PET film.
  • the green sheet was cut into a size of 20 mm ⁇ 20 mm. Two cut green sheets were produced, and the two green sheets were thermally laminated using a biaxial hot press to produce a green sheet laminate.
  • the produced green sheet laminate was heated to 1200 ° C. in the air at a heating rate of 1 ° C./min in an electric muffle furnace, and a binder removal treatment for decomposing and removing organic components such as a binder resin was performed. . Thereafter, the green sheet laminate is transferred to a high-temperature environment furnace, heated to 1750 ° C. at a rate of temperature increase of 5 ° C./min in a reducing atmosphere, and baked at that temperature for 5 hours. A phosphor ceramic plate made of Y 3 Al 5 O 12 : Ce was manufactured.
  • Example 2 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), except for adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 ⁇ m) Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Example 3 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), except for adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 5.0 ⁇ m) Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Example 4 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 6.5% by volume of organic particles (polymethyl methacrylate, average particle size 6.5 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Example 5 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 12.0% by volume of organic particles (polymethyl methacrylate, average particle size 12.5 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Example 6 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 9.0% by volume of organic particles (polymethyl methacrylate, average particle size 18.0 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Example 7 A phosphor ceramic plate having a thickness (T) of 150 ⁇ m was manufactured in the same manner as in Example 1 except that the coating amount of the phosphor composition slurry was adjusted and the thickness of the green sheet was adjusted to be thick.
  • Example 8 Example 2 and Example 2 except that the yttrium oxide particles (purity 99.99 mass%, lot: N-YT4CP, manufactured by Japan Yttrium Co.) were changed to yttrium oxide particles (purity 99.8 mass%, manufactured by Nanostructured & Amorphous Materials). Similarly, a phosphor ceramic plate was manufactured.
  • Comparative Example 1 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 4.0% by volume of organic particles (polymethyl methacrylate, average particle size 2.5 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Comparative Example 2 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 1.5% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Comparative Example 3 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 15.0% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Comparative Example 4 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 10.0% by volume of organic particles (polymethyl methacrylate, average particle size 25.0 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  • Each hole has a hole diameter of less than 3.0 ⁇ m (small hole), a hole of 3.0 ⁇ m or more and 12.0 ⁇ m or less (hollow hole), and a hole of more than 12.0 ⁇ m (large hole).
  • the volume of holes was calculated in terms of a true sphere, and the total volume of the divided holes was calculated. By dividing the calculated total volume by the volume of the phosphor ceramic plate (the portion where the pores were measured, including the pores), the volume ratio (surface direction) of the pore diameter was determined.
  • the phosphor ceramic plate is cut in the thickness direction, and the cut surface (thickness direction) is also observed for 15 surfaces in the same manner as described above, and the volume ratio of the pore diameter (thickness direction) in the same manner as described above. Asked.
  • the average of the volume ratio of the pore diameter (plane direction) and the volume ratio of the pore diameter (thickness direction) was defined as the volume ratio of the pore diameter of the phosphor ceramic plate of the present invention.
  • the results are shown in Table 1.
  • Multi-layer ceramic substrate with cavity (Sumitomo Metal Electrodevices, product number “207806”, housing height 0.6mmt, housing material alumina reflectivity 75%)
  • Cavity blue light emitting diode chip (Cree, product number “C450EZ1000- 0123 ”) was die-attached with Au-Sn solder, and an optical semiconductor device was prepared by wire bonding with Au wire.
  • Each phosphor ceramic plate was placed on the housing of the optical semiconductor device, and the angle dependency of the package at an angle of 45 degrees with the vertical direction was evaluated.
  • the results are shown in Table 1.
  • a blue LD light source (manufactured by Neoarc, “TCSQ0445-1600”) is used, and as the phosphor ceramic plate 1, the phosphor ceramic plates of the respective examples and comparative examples are used, and the LD excitation shown in FIG. The lighting device was manufactured.
  • the speckle contrast ratio of the irradiation light (average value of light at each point of h1 to h4) emitted from the illumination device was measured using a speckle contrast measurement device (manufactured by OXIDE, “Dr. SPECKLE”). .
  • the results are shown in Table 1.
  • the speckle contrast ratio of the irradiation light (only LD light) at the time of not using a phosphor ceramic plate was 0.45.
  • the phosphor ceramics of the present invention can be applied to various industrial products, and can be used for optical applications such as optical semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

This phosphor ceramic has pores having a pore diameter of 3.0-12.0 µm. The volume ratio of pores in the phosphor ceramic is 1.5-9.5 vol%.

Description

蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置Phosphor ceramics, sealed optical semiconductor element, circuit board, optical semiconductor device, and light emitting device
 本発明は、蛍光体セラミックス、ならびに、その蛍光体セラミックスを備える封止光半導体素子、回路基板、光半導体装置および発光装置に関する。 The present invention relates to a phosphor ceramic, and a sealed optical semiconductor element, a circuit board, an optical semiconductor device, and a light emitting device including the phosphor ceramic.
 光半導体装置などの発光装置は、一般的に、例えば青色光を発光するLED(発光ダイオード素子)やLD(レーザーダイオード)と、青色光を黄色光に変換でき、LEDの上に設けられる蛍光体層とを備えている。発光装置は、LEDから発光され、蛍光体層を透過した青色光と、蛍光体層において青色光の一部が波長変換された黄色光との混色によって、白色光を発光する。 A light emitting device such as an optical semiconductor device generally includes, for example, an LED (light emitting diode element) or LD (laser diode) that emits blue light, and a phosphor that can convert blue light into yellow light and is provided on the LED. With layers. The light emitting device emits white light by mixing color of blue light emitted from the LED and transmitted through the phosphor layer and yellow light obtained by wavelength-converting part of the blue light in the phosphor layer.
 このような蛍光体層としては、例えば、セラミック材料からなる変換素子が知られている(例えば、特許文献1参照。)。 For example, a conversion element made of a ceramic material is known as such a phosphor layer (see, for example, Patent Document 1).
 特許文献1には、セラミック材料の理論的な固体状態の密度の97%以上の密度を有し、変換素子内の孔は、実質的に250nm~2900nmの間の径を有する変換素子が開示されている。 Patent Document 1 discloses a conversion element having a density of 97% or more of the theoretical solid state density of the ceramic material, and the pores in the conversion element having a diameter substantially between 250 nm and 2900 nm. ing.
 特許文献1の変換素子は、ナノオーダーの微小な孔を有することにより、幅広い視野角での透過性を改善している。 The conversion element of Patent Document 1 has improved transparency in a wide viewing angle by having nano-order minute holes.
特許5049336号Patent 5049336
 しかるに、特許文献1の変換素子では、ナノオーダーの孔径を有する孔を製造する必要があるが、セラミックである変換素子の製造(高温焼結過程)時に、セラミックの結晶が成長するため、ナノオーダーの孔は消失し易い。すなわち、特許文献1の変換素子では、その孔の大きさの調整が難しく、生産性に劣るという不具合が生じる。 However, in the conversion element of Patent Document 1, it is necessary to manufacture a hole having a nano-order pore diameter. However, since a ceramic crystal grows during the manufacture of the conversion element that is ceramic (high-temperature sintering process), the nano-order. These holes are easy to disappear. That is, in the conversion element of patent document 1, adjustment of the magnitude | size of the hole is difficult and the malfunction that it is inferior to productivity arises.
 また、透明性および散乱性についてもさらなる改良が望まれている。 Also, further improvements are desired for transparency and scattering properties.
 さらには、例えばLDなどからの励起光を蛍光体で波長変換させた光を、対象物に照射すると、ギラギラとした不自然な視覚を感じる現象(スペックルノイズ)が発生するという不具合が生じる。 Furthermore, for example, when the object is irradiated with light obtained by converting the wavelength of excitation light from an LD or the like with a phosphor, an unnatural visual phenomenon (speckle noise) is generated.
 本発明の目的は、透過性および散乱性が良好であり、生産性に優れ、スペックルノイズを低減できる蛍光体セラミックス、および、その蛍光体セラミックスを備える封止光半導体素子、回路基板、光半導体装置および発光装置を提供することにある。 An object of the present invention is a phosphor ceramic that has good transparency and scattering properties, excellent productivity, and can reduce speckle noise, and a sealed optical semiconductor element, circuit board, and optical semiconductor including the phosphor ceramic It is to provide a device and a light emitting device.
 本発明[1]は、孔径が3.0μm以上12.0μm以下である空孔を有する蛍光体セラミックスであって、前記蛍光体セラミックスに占める前記空孔の体積割合が、1.5体積%以上9.5体積%以下である蛍光体セラミックスを含んでいる。 The present invention [1] is a phosphor ceramic having pores having a pore diameter of 3.0 μm or more and 12.0 μm or less, and the volume ratio of the pores in the phosphor ceramic is 1.5 vol% or more. It contains phosphor ceramic that is 9.5% by volume or less.
 本発明[2]は、前記蛍光体セラミックスが板状を有し、下記式:
  V ≦ 1.30×(-log T)
 (Vは、孔径が3.0μm未満である空孔の体積割合(%)を示し、Tは、前記蛍光体セラミックスの厚さ(mm)を示す。)
 を満たす[1]に記載の蛍光体セラミックスを含んでいる。
In the present invention [2], the phosphor ceramic has a plate shape and has the following formula:
V ≦ 1.30 × (−log T)
(V represents the volume ratio (%) of pores having a pore diameter of less than 3.0 μm, and T represents the thickness (mm) of the phosphor ceramic.)
The phosphor ceramic according to [1] that satisfies the above condition is included.
 本発明[3]は、下記(1)~(3)の少なくとも1つの要件を満たす[1]または[2]に記載の蛍光体セラミックスを含んでいる。
(1)ナトリウム元素が、67ppm以下である。
(2)マグネシウム元素が、23ppm以下である。
(3)鉄元素が、21ppm以下である。
The present invention [3] includes the phosphor ceramic according to [1] or [2] that satisfies at least one of the following requirements (1) to (3).
(1) Sodium element is 67 ppm or less.
(2) Magnesium element is 23 ppm or less.
(3) The iron element is 21 ppm or less.
 本発明[4]は、前記蛍光体セラミックスの平均孔径が、3.0μm以上10.0μm以下である[1]~[3]のいずれか一項に記載の蛍光体セラミックスを含んでいる。 The present invention [4] includes the phosphor ceramic according to any one of [1] to [3], wherein the phosphor ceramic has an average pore size of 3.0 μm or more and 10.0 μm or less.
 本発明[5]は、基板と、前記基板に実装される光半導体素子と、接着層と、前記接着層の前記光半導体素子とは反対側の面に配置され、前記光半導体素子と対向配置される[1]~[4]のいずれか一項に記載の蛍光体セラミックスとを備える光半導体装置を含んでいる。 The present invention [5] includes a substrate, an optical semiconductor element mounted on the substrate, an adhesive layer, and a surface of the adhesive layer opposite to the optical semiconductor element, and is disposed opposite to the optical semiconductor element. An optical semiconductor device comprising the phosphor ceramic according to any one of [1] to [4].
 本発明[6]は、基板と、前記基板に実装される光半導体素子と、前記光半導体素子を封止する封止層と、前記封止層の前記光半導体素子とは反対側の面に配置され、前記光半導体素子と対向配置される[1]~[4]のいずれか一項に記載の蛍光体セラミックスとを備える光半導体装置を含んでいる。 The present invention [6] includes a substrate, an optical semiconductor element mounted on the substrate, a sealing layer for sealing the optical semiconductor element, and a surface of the sealing layer opposite to the optical semiconductor element. An optical semiconductor device including the phosphor ceramic according to any one of [1] to [4], disposed and opposed to the optical semiconductor element.
 本発明[7]は、光半導体素子と、前記光半導体素子を封止する封止層と、前記封止層の前記光半導体素子とは反対側の面に配置され、前記光半導体素子と対向配置される[1]~[4]のいずれか一項に記載の蛍光体セラミックスとを備える封止光半導体素子を含んでいる。 The present invention [7] is an optical semiconductor element, a sealing layer that seals the optical semiconductor element, and a surface of the sealing layer that is opposite to the optical semiconductor element, facing the optical semiconductor element. An encapsulating optical semiconductor element including the phosphor ceramic according to any one of [1] to [4] is included.
 本発明[8]は、光半導体素子を厚み方向一方側に実装するための[1]~[4]のいずれか一項に記載の蛍光体セラミックスと、前記蛍光体セラミックスの厚み方向一方面に積層され、前記光半導体素子と電気的に接続するための電極配線とを備える回路基板を含んでいる。 The present invention [8] provides the phosphor ceramic according to any one of [1] to [4] for mounting the optical semiconductor element on one side in the thickness direction, and one side in the thickness direction of the phosphor ceramic. A circuit board is provided that is stacked and includes electrode wiring for electrically connecting to the optical semiconductor element.
 本発明[9]は、光を一方側に照射する光源と、前記光源と間隔を隔てて一方側に対向配置され、前記光が通過するための貫通孔が形成される反射鏡と、前記光が照射されるように、前記反射鏡と間隔を隔てて一方側に対向配置される[1]~[4]のいずれか一項に記載の蛍光体セラミックスとを備える発光装置を含んでいる。 The present invention [9] includes a light source that irradiates light on one side, a reflecting mirror that is disposed opposite to the light source at a distance from the light source, and has a through-hole through which the light passes, and the light The light emitting device includes the phosphor ceramic according to any one of [1] to [4], which is disposed opposite to the reflecting mirror on one side so as to be irradiated.
 本発明の蛍光体セラミックスは、透過性および散乱性が良好であり、スペックルノイズを低減することができる。また、生産性に優れる。 The phosphor ceramic of the present invention has good transparency and scattering properties, and can reduce speckle noise. Moreover, it is excellent in productivity.
 本発明の蛍光体セラミックスを備える本発明の封止光半導体素子、回路基板、光半導体装置および発光装置は、発光効率の低下を抑制でき、視野角が良好となる。また、特に光半導体素子としてLDなどを光源に用いた封止光半導体素子や装置である場合では、スペックルノイズを低減することができる。さらに、製造コストを低減できる。 The encapsulated optical semiconductor element, circuit board, optical semiconductor device and light emitting device of the present invention comprising the phosphor ceramic of the present invention can suppress a decrease in light emission efficiency and have a good viewing angle. In particular, speckle noise can be reduced in the case of a sealed optical semiconductor element or device using an LD or the like as a light source as an optical semiconductor element. Furthermore, the manufacturing cost can be reduced.
図1Aおよび図1Bは、本発明の蛍光体セラミックスの第1実施形態を製造する工程を示す工程図であって、図1Aはグリーンシート作製工程、図1Bは焼成工程を示す。1A and 1B are process diagrams showing a process for manufacturing the first embodiment of the phosphor ceramic of the present invention. FIG. 1A shows a green sheet manufacturing process, and FIG. 1B shows a firing process. 図2A~図2Cは、図1Bに示す蛍光体セラミックスを用いて、光半導体装置の第1実施形態を製造する工程を示す工程図であって、図2Aは蛍光接着シート作製工程、図2Bは蛍光接着シート配置工程、図2Cは接着工程を示す。2A to 2C are process diagrams showing a process for manufacturing the first embodiment of the optical semiconductor device using the phosphor ceramic shown in FIG. 1B. FIG. 2A is a process for producing a fluorescent adhesive sheet, and FIG. Fluorescent adhesive sheet arrangement process, FIG. 2C shows the adhesion process. 図3A~図3Cは、図1Bに示す蛍光体セラミックスを用いて、本発明の光半導体装置の第2実施形態を製造する工程を示す工程図であって、図3Aは封止シート作製工程、図3Bは封止シート配置工程、図3Cは封止工程を示す。3A to 3C are process diagrams showing a process for manufacturing the second embodiment of the optical semiconductor device of the present invention using the phosphor ceramic shown in FIG. 1B, and FIG. FIG. 3B shows a sealing sheet arranging step, and FIG. 3C shows a sealing step. 図4A~図4Eは、図1Bに示す蛍光体セラミックスを用いて、本発明の光半導体装置の第2実施形態の第1変形例(封止光半導体素子を作製する実施形態)を製造する工程を示す工程図であって、図4Aは封止シート作製工程、図4Bは封止シート配置工程、図4Cは封止工程、図4Dは剥離工程、図4Eは実装工程を示す。4A to 4E show a process of manufacturing a first modification (embodiment for producing a sealed optical semiconductor element) of the second embodiment of the optical semiconductor device of the present invention using the phosphor ceramic shown in FIG. 1B. 4A is a sealing sheet manufacturing process, FIG. 4B is a sealing sheet arrangement process, FIG. 4C is a sealing process, FIG. 4D is a peeling process, and FIG. 4E is a mounting process. 図5は、光半導体装置の第2実施形態の第2変形例(光半導体装置がハウジングを備える実施形態)を示す。FIG. 5 shows a second modification (embodiment in which the optical semiconductor device includes a housing) of the second embodiment of the optical semiconductor device. 図6A~図6Cは、図1Bに示す蛍光体セラミックスを用いて、光半導体装置の第3実施形態を製造する工程を示す工程図であって、図6Aは回路基板作製工程、図6Bは回路基板配置工程、図6Cは実装工程を示す。6A to 6C are process diagrams showing a process of manufacturing the third embodiment of the optical semiconductor device using the phosphor ceramic shown in FIG. 1B, wherein FIG. 6A is a circuit board manufacturing process, and FIG. 6B is a circuit diagram. The substrate placement process, FIG. 6C shows the mounting process. 図7は、図1Bに示す蛍光体セラミックスを備える発光装置を示す。FIG. 7 shows a light-emitting device including the phosphor ceramic shown in FIG. 1B. 図8Aおよび図8Bは、図7に示す発光装置が備える波長変換放熱部材を示す図であって、図8Aは側断面図を示し、図8Bは背面図を示す。8A and 8B are diagrams showing a wavelength conversion heat radiating member provided in the light emitting device shown in FIG. 7, in which FIG. 8A shows a side sectional view and FIG. 8B shows a rear view. 図9は、実施例において、蛍光体セラミックスプレートの空孔を測定する方法の模式図を示す。FIG. 9 is a schematic diagram of a method for measuring the pores of the phosphor ceramic plate in the example.
 図1Aおよび図1Bにおいて、図1Aおよび図1Bの紙面上下方向を「上下方向」(第1方向、厚み方向)とし、紙面上側が上側であり、紙面下側が下側である。また、図1Aおよび図1Bの紙面左右方向を「面方向」(第2方向、第1方向に直交する方向)とし、紙面右方向が面方向一方側であり、図1Aおよび図1Bの紙面左方向が面方向他方側である。図2~図6および図9についても、図1Aおよび図1Bの方向を基準する。 1A and 1B, the vertical direction of the paper surface of FIGS. 1A and 1B is the “vertical direction” (first direction, thickness direction), the upper side of the paper surface is the upper side, and the lower side of the paper surface is the lower side. 1A and 1B is the “plane direction” (second direction, a direction orthogonal to the first direction), the right side of the page is the one side of the plane, and the left side of FIG. 1A and FIG. 1B The direction is the other side in the plane direction. 2 to 6 and 9 also refer to the directions of FIGS. 1A and 1B.
 また、図7において、図7の紙面上下方向を「上下方向」(第1方向、厚み方向)とし、紙面上側が上側であり、紙面下側が下側である。また、図7の紙面左右方向を「前後方向」(第2方向、幅方向、第1方向に直交する方向)とし、紙面右方向が前側であり、図1の紙面左方向が後側である。また、図7の紙厚方向を「左右方向」(第3方向、第1方向および第2方向に直交する方向)とし、図7の紙厚手前が左側であり、図7の紙厚奥側が右側である。図8Aおよび図8Bについても、図7の方向を基準する。 Further, in FIG. 7, the vertical direction of the paper surface of FIG. 7 is the “vertical direction” (first direction, thickness direction), the upper side of the paper surface is the upper side, and the lower side of the paper surface is the lower side. Also, the left-right direction in FIG. 7 is the “front-rear direction” (second direction, width direction, direction orthogonal to the first direction), the right direction on the paper is the front side, and the left direction on the paper in FIG. 1 is the rear side. . Also, the paper thickness direction in FIG. 7 is the “left-right direction” (the direction orthogonal to the third direction, the first direction, and the second direction), the paper thickness front in FIG. 7 is the left side, and the paper thickness back side in FIG. On the right. 8A and 8B also refer to the direction of FIG.
 1.蛍光体セラミックス
 図1Bを参照して、本発明の蛍光体セラミックスの一実施形態に係る蛍光体セラミックスプレート1について説明する。
1. Phosphor Ceramics With reference to FIG. 1B, a phosphor ceramic plate 1 according to an embodiment of the phosphor ceramic of the present invention will be described.
 蛍光体セラミックスプレート1は、図1Bに示すように、蛍光体材料のセラミックス(焼成体)から板状に形成されており、蛍光体を含有している。 As shown in FIG. 1B, the phosphor ceramic plate 1 is formed in a plate shape from a ceramic (fired body) of phosphor material and contains a phosphor.
 蛍光体セラミックスプレート1に含有される蛍光体は、波長変換機能を有しており、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。 The phosphor contained in the phosphor ceramic plate 1 has a wavelength conversion function, for example, a yellow phosphor capable of converting blue light into yellow light, and can convert blue light into red light. Examples include red phosphors.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、(Y、Gd、Ba、Ca)(Al、Si、Ge、B、P、Ga)12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of yellow phosphors include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca) 3 (Al, Si, Ge, B, P, Ga) 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium) Aluminum garnet): Garnet-type phosphors having a garnet-type crystal structure such as Ce), for example, oxynitride phosphors such as Ca-α-SiAlON. Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 蛍光体セラミックスプレート1は、空孔を内部に有する。特に、蛍光体セラミックスプレート1は、孔径が3.0μm以上12.0μm以下である空孔(以下、「中空孔」とも称する。)を有する。 The phosphor ceramic plate 1 has pores inside. In particular, the phosphor ceramic plate 1 has holes (hereinafter also referred to as “hollow holes”) having a hole diameter of 3.0 μm or more and 12.0 μm or less.
 蛍光体セラミックスプレート1に占める中空孔の体積割合の下限は、1.5体積%以上であり、好ましくは、2.0体積%以上、より好ましくは、2.5体積%以上である。また、上限は、9.5体積%以下であり、好ましくは、8.0体積%以下である。 The lower limit of the volume ratio of the hollow holes in the phosphor ceramic plate 1 is 1.5% by volume or more, preferably 2.0% by volume or more, and more preferably 2.5% by volume or more. Moreover, an upper limit is 9.5 volume% or less, Preferably, it is 8.0 volume% or less.
 中空孔の体積割合を上記範囲内とすることにより、蛍光体セラミックスプレート1の透過性および散乱性が向上させることができる。 By setting the volume ratio of the hollow holes within the above range, the transparency and scattering of the phosphor ceramic plate 1 can be improved.
 空孔の孔径は、空孔の最大長さであって、蛍光体セラミックスプレート1の切断表面を、レーザー顕微鏡(装置名:レーザーテック、VL2000D、対物レンズ20倍、倍率1800倍)を用いて、孔径を観察することにより測定される。 The hole diameter is the maximum length of the holes, and the cut surface of the phosphor ceramic plate 1 is measured using a laser microscope (device name: Lasertec, VL2000D, objective lens 20 times, magnification 1800 times). It is measured by observing.
 空孔の体積は、上記空孔の孔径(空孔の最大長さ)を空孔の直径として、真球換算することにより算出される。 The volume of the hole is calculated by converting the hole diameter of the hole (maximum length of the hole) into a true sphere as the diameter of the hole.
 また、蛍光体セラミックスプレート1は、中空孔に加えて、孔径が12.0μmを超過する空孔(以下、「大空孔」とも称する。)、および、孔径が3.0μm未満である空孔(以下、「小空孔」とも称する。)を有していてもよい。 In addition to the hollow holes, the phosphor ceramic plate 1 has holes having a hole diameter exceeding 12.0 μm (hereinafter also referred to as “large holes”) and holes having a hole diameter of less than 3.0 μm ( Hereinafter, it may also be referred to as a “small hole”.
 蛍光体セラミックスプレート1に占める大空孔の体積割合は、例えば、12.0体積%以下、好ましくは、9.0体積%以下、より好ましくは、5.0体積%以下、さらに好ましくは、2.0体積%以下である。なお、大空孔の孔径の上限は、例えば、30. 0μm以下である。大空孔の体積割合が上記上限以下であると、蛍光体セラミックスプレート1の透明性、生産性が良好となる。また、蛍光体セラミックスプレート1に含まれる不純物を低減することができる。 The volume ratio of the large pores in the phosphor ceramic plate 1 is, for example, 12.0% by volume or less, preferably 9.0% by volume or less, more preferably 5.0% by volume or less, and still more preferably 2. 0% by volume or less. In addition, the upper limit of the hole diameter of the large hole is, for example, 30.0 μm or less. When the volume ratio of the large pores is not more than the above upper limit, the transparency and productivity of the phosphor ceramic plate 1 are improved. Moreover, impurities contained in the phosphor ceramic plate 1 can be reduced.
 蛍光体セラミックスプレート1に占める小空孔の体積割合は、例えば、2.0体積%以下、好ましくは、1.2体積%以下、より好ましくは、1.0体積%以下、さらに好ましくは、0.8体積%以下である。なお、小空孔の孔径の下限は、例えば、0.3μm以上である。小空孔の体積割合が上記上限以下であると、蛍光体セラミックスプレート1の透明性、生産性が良好となる。 The volume ratio of the small holes in the phosphor ceramic plate 1 is, for example, 2.0% by volume or less, preferably 1.2% by volume or less, more preferably 1.0% by volume or less, and still more preferably 0%. .8% by volume or less. In addition, the minimum of the hole diameter of a small hole is 0.3 micrometer or more, for example. When the volume ratio of the small holes is not more than the above upper limit, the transparency and productivity of the phosphor ceramic plate 1 are improved.
 空孔の平均孔径は、例えば、2.5μm以上、好ましくは、3.0μm以上であり、また、例えば、20.0μm以下、好ましくは、15.0μm以下、より好ましくは、10.0μm以下、さらに好ましくは、5.5μm以下である。空孔の平均孔径が上記範囲であると、蛍光体セラミックスプレート1の透明性、散乱性が良好となる。また、スペックルノイズ(スペックルコントラスト比)低減の観点からは、好ましくは、10.0μm以下である。 The average pore diameter of the pores is, for example, 2.5 μm or more, preferably 3.0 μm or more, and for example, 20.0 μm or less, preferably 15.0 μm or less, more preferably 10.0 μm or less, More preferably, it is 5.5 μm or less. When the average pore diameter of the pores is in the above range, the transparency and the scattering property of the phosphor ceramic plate 1 are good. Further, from the viewpoint of reducing speckle noise (speckle contrast ratio), it is preferably 10.0 μm or less.
 次に、蛍光体セラミックスプレート1を製造する方法について、図1A~図1Bを参照して説明する。 Next, a method for manufacturing the phosphor ceramic plate 1 will be described with reference to FIGS. 1A to 1B.
 蛍光体セラミックスプレート1の製造方法は、例えば、グリーンシート作製工程(図1A参照)、および、焼成工程(図1B)を備える。以下、各工程を詳述する。 The manufacturing method of the phosphor ceramic plate 1 includes, for example, a green sheet manufacturing process (see FIG. 1A) and a firing process (FIG. 1B). Hereinafter, each process is explained in full detail.
 グリーンシート作製工程では、蛍光体材料および有機粒子を含有する蛍光体組成物を焼成する。好ましくは、図1Aに示すように、蛍光体組成物を含有するスラリー(蛍光体組成物スラリー)を、剥離基材14の上面に塗布および乾燥する。これによって、グリーンシート15を得る。 In the green sheet manufacturing process, a phosphor composition containing a phosphor material and organic particles is baked. Preferably, as shown to FIG. 1A, the slurry (phosphor composition slurry) containing a phosphor composition is apply | coated to the upper surface of the peeling base material 14, and is dried. Thereby, the green sheet 15 is obtained.
 蛍光体組成物スラリーは、蛍光体材料および有機粒子を含有する蛍光体組成物と、溶媒とを含有する。すなわち、蛍光体組成物スラリーは、蛍光体材料、有機粒子および溶媒を含有する。 The phosphor composition slurry contains a phosphor composition containing a phosphor material and organic particles, and a solvent. That is, the phosphor composition slurry contains a phosphor material, organic particles, and a solvent.
 蛍光体材料は、上記の蛍光体を構成する原材料であって、蛍光体に応じて適宜選択される。蛍光体材料としては、例えば、蛍光体を構成する金属単体、その金属酸化物、金属窒化物などが挙げられる。具体的には、蛍光体としてYAl12:Ceを形成する場合は、蛍光体材料としては、例えば、酸化イットリウムなどのイットリウム含有化合物、酸化アルミニウムなどのアルミニウム含有化合物、酸化セリウムなどのセリウム含有化合物などの金属酸化物が挙げられる。蛍光体材料は、例えば、粒子状に形成されている。 The phosphor material is a raw material that constitutes the phosphor, and is appropriately selected according to the phosphor. Examples of the phosphor material include a single metal constituting the phosphor, a metal oxide thereof, and a metal nitride. Specifically, when Y 3 Al 5 O 12 : Ce is formed as the phosphor, examples of the phosphor material include yttrium-containing compounds such as yttrium oxide, aluminum-containing compounds such as aluminum oxide, and cerium oxide. Examples include metal oxides such as cerium-containing compounds. The phosphor material is formed, for example, in the form of particles.
 蛍光体材料の純度は、例えば、99.0質量%以上、好ましくは、99.9質量%以上である。これにより、蛍光体セラミックスプレート1に含まれる不純物を低減することができる。 The purity of the phosphor material is, for example, 99.0% by mass or more, and preferably 99.9% by mass or more. Thereby, impurities contained in the phosphor ceramic plate 1 can be reduced.
 有機粒子は、蛍光体セラミックスプレート1に所定の空孔を形成するために蛍光体組成物スラリーに含有される。 Organic particles are contained in the phosphor composition slurry in order to form predetermined pores in the phosphor ceramic plate 1.
 有機粒子の材料としては、焼成工程時に完全に熱分解される材料であればよく、例えば、熱可塑性樹脂および熱硬化性樹脂が挙げられる。 The material of the organic particles may be any material that can be completely pyrolyzed during the firing process, and examples thereof include thermoplastic resins and thermosetting resins.
 熱可塑性樹脂としては、例えば、アクリル樹脂、スチレン樹脂、アクリル-スチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂などが挙げられる。好ましくは、生産性の観点から、アクリル樹脂(特に、ポリメタクリル酸メチルなど)が挙げられる。 Examples of the thermoplastic resin include acrylic resin, styrene resin, acrylic-styrene resin, polycarbonate resin, benzoguanamine resin, polyolefin resin, polyester resin, polyamide resin, and polyimide resin. Preferably, an acrylic resin (particularly, polymethyl methacrylate) is used from the viewpoint of productivity.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂などが挙げられる。 Examples of the thermosetting resin include an epoxy resin, a silicone resin, and a urethane resin.
 有機粒子の平均粒子径は、例えば、2.0μm以上、好ましくは、3.4μm以上、より好ましくは、4.0μm以上であり、また、例えば、25.0μm以下、好ましくは、15.0μm以下、より好ましくは、8.0μm以下である。有機粒子の平均粒子径が上記下限を下回ると、グリーンシート15を焼成し、蛍光体セラミックスプレート1を製造する際に、蛍光体セラミックスプレート1の結晶が空孔内部に向って過度に成長し、空孔を消失させるおそれがある。一方、有機粒子の平均粒子径が上記上限を上回ると、大空孔が多量に蛍光体セラミックスプレート1内部に形成され、蛍光体セラミックスプレート1の透過性、強度などが低下するおそれがある。また、蛍光体セラミックスプレート1内に含まれる不純物が増加するおそれがある。 The average particle diameter of the organic particles is, for example, 2.0 μm or more, preferably 3.4 μm or more, more preferably 4.0 μm or more, and for example, 25.0 μm or less, preferably 15.0 μm or less. More preferably, it is 8.0 μm or less. If the average particle size of the organic particles is below the lower limit, when the green sheet 15 is fired and the phosphor ceramic plate 1 is manufactured, the crystals of the phosphor ceramic plate 1 grow excessively toward the inside of the pores, There is a risk of vacancies disappearing. On the other hand, when the average particle diameter of the organic particles exceeds the above upper limit, a large amount of large pores are formed inside the phosphor ceramic plate 1, and the permeability and strength of the phosphor ceramic plate 1 may be reduced. Moreover, there exists a possibility that the impurity contained in the fluorescent substance ceramic plate 1 may increase.
 有機粒子の平均粒子径は、例えば、粒度分布測定装置(ベックマン・コールター社製、「LS13 320」)を用いて、レーザー回折散乱法によって測定することができる。 The average particle diameter of the organic particles can be measured by a laser diffraction scattering method using, for example, a particle size distribution measuring device (“LS13 320” manufactured by Beckman Coulter, Inc.).
 有機粒子の含有割合は、蛍光体材料と有機粒子の合計含有量に対して、例えば、1.5体積%以上、好ましくは、2.0体積%以上であり、また、例えば、12.0体積%以下、好ましくは、10.0体積%以下、より好ましくは、8.0体積%以下である。 The content ratio of the organic particles is, for example, 1.5% by volume or more, preferably 2.0% by volume or more, and, for example, 12.0% by volume with respect to the total content of the phosphor material and the organic particles. % Or less, preferably 10.0% by volume or less, and more preferably 8.0% by volume or less.
 有機粒子の含有割合を上記範囲内にすることにより、蛍光体セラミックスプレート1内に形成される空孔の体積割合を適切な範囲に調節することができる。 The volume ratio of pores formed in the phosphor ceramic plate 1 can be adjusted to an appropriate range by setting the content ratio of the organic particles within the above range.
 蛍光体組成物には、必要に応じて、さらにバインダー樹脂を含有することができる。 The phosphor composition may further contain a binder resin as necessary.
 バインダー樹脂は、グリーンシート15の作製に用いられる公知のバインダー樹脂を使用すればよく、例えば、アクリル系ポリマー、ブチラール系ポリマー、ビニル系ポリマー、ウレタン系ポリマーなどが挙げられる。好ましくは、アクリル系ポリマーが挙げられる。 As the binder resin, a known binder resin used for producing the green sheet 15 may be used, and examples thereof include an acrylic polymer, a butyral polymer, a vinyl polymer, and a urethane polymer. Preferably, an acrylic polymer is used.
 バインダー樹脂の含有割合は、蛍光体材料100体積部に対して、例えば、5体積部以上、好ましくは、15体積部以上であり、また、例えば、120体積部以下、好ましくは、80体積部以下、より好ましくは、60体積部以下である。 The content ratio of the binder resin is, for example, 5 parts by volume or more, preferably 15 parts by volume or more, and, for example, 120 parts by volume or less, preferably 80 parts by volume or less with respect to 100 parts by volume of the phosphor material. More preferably, it is 60 parts by volume or less.
 蛍光体組成物には、必要に応じて、さらに分散剤、可塑剤、焼結助剤などの公知の添加剤を含有することができる。 The phosphor composition may further contain known additives such as a dispersant, a plasticizer, and a sintering aid as necessary.
 蛍光体組成物スラリーに含有される溶媒としては、例えば、水、例えば、アセトン、メチルエチルケトン、メタノール、エタノール、トルエン、プロピオン酸メチル、メチルセルソルブなどの有機溶媒が挙げられる。 Examples of the solvent contained in the phosphor composition slurry include water and organic solvents such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, methyl propionate, and methyl cellosolve.
 溶媒の含有割合は、蛍光体組成物スラリーにおいて、例えば、1~30質量%である。 The content ratio of the solvent is, for example, 1 to 30% by mass in the phosphor composition slurry.
 蛍光体組成物スラリーは、上記成分を上記割合で配合し、ボールミルなどで湿式混合することにより調製される。すなわち、蛍光体組成物スラリーが用意される。 The phosphor composition slurry is prepared by blending the above components in the above proportions and wet-mixing with a ball mill or the like. That is, a phosphor composition slurry is prepared.
 なお、この際、上記成分を一括で湿式混合してもよい。また、有機粒子を除く成分を湿式混合して第1スラリーを調製し、次いで、その第1スラリーに有機粒子を湿式混合することにより、蛍光体組成物スラリーを調製してもよい。 In this case, the above components may be wet mixed together. Alternatively, the phosphor composition slurry may be prepared by wet-mixing components excluding organic particles to prepare a first slurry, and then wet-mixing the organic particles into the first slurry.
 剥離基材14としては、例えば、ポリエチレンテレフタレート(PET)フィルムなどのポリエステルフィルム、例えば、ポリカーボネートフィルム、例えば、ポリエチレンフィルム、ポリプロピレンフィルムなどのポリオレフィンフィルム、例えば、ポリスチレンフィルム、例えば、アクリルフィルム、例えば、シリコーン樹脂フィルム、フッ素樹脂フィルムなどの樹脂フィルムなどが挙げられる。さらに、例えば、銅箔、ステンレス箔などの金属箔も挙げられる。好ましくは、樹脂フィルム、さらに好ましくは、ポリエステルフィルムが挙げられる。剥離基材14の表面には、剥離性を高めるため、必要により剥離処理が施されている。 Examples of the release substrate 14 include a polyester film such as a polyethylene terephthalate (PET) film, a polycarbonate film such as a polyolefin film such as a polyethylene film and a polypropylene film, such as a polystyrene film, such as an acrylic film, such as silicone, and the like. Examples of the resin film include resin films and fluororesin films. Furthermore, metal foils, such as copper foil and stainless steel foil, are also mentioned, for example. A resin film is preferable, and a polyester film is more preferable. The surface of the peeling substrate 14 is subjected to a peeling treatment as necessary in order to improve the peelability.
 剥離基材14の厚みは、例えば、取扱性、コストの観点から、例えば、10~200μmである。 The thickness of the peeling substrate 14 is, for example, 10 to 200 μm from the viewpoint of handling and cost.
 蛍光体組成物スラリーを剥離基材14に塗布する方法としては、ドクターブレードコート、グラビアコート、ファウンテンコート、キャストコート、スピンコート、ロールコートなどの公知の塗布方法が挙げられる。 Examples of the method for applying the phosphor composition slurry to the release substrate 14 include known application methods such as doctor blade coating, gravure coating, fountain coating, cast coating, spin coating, and roll coating.
 乾燥温度は、例えば、20℃以上、好ましくは、50℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。 The drying temperature is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
 乾燥時間は、例えば、1分以上、好ましくは、2分以上であり、また、例えば、24時間以下、好ましくは、5時間以下である。 The drying time is, for example, 1 minute or more, preferably 2 minutes or more, and for example, 24 hours or less, preferably 5 hours or less.
 このようにして得られるグリーンシート15は、蛍光体セラミックスプレート1の焼結前セラミックスであって、板状に形成されている。 The green sheet 15 obtained in this way is a ceramic before sintering of the phosphor ceramic plate 1 and is formed in a plate shape.
 その後、図1Aの仮想線に示すように、剥離基材14をグリーンシート15から剥離する。 Thereafter, the peeling substrate 14 is peeled from the green sheet 15 as shown by the phantom line in FIG. 1A.
 なお、グリーンシート15は、所望の厚みを得るために、複数(複層)のグリーンシート15を熱ラミネートによって積層することにより形成することもできる。 In addition, in order to obtain a desired thickness, the green sheet 15 can also be formed by laminating a plurality (multiple layers) of green sheets 15 by thermal lamination.
 グリーンシート15の厚みは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。 The thickness of the green sheet 15 is, for example, 10 μm or more, preferably 30 μm or more, and, for example, 500 μm or less, preferably 200 μm or less.
 焼成工程では、図1Bに示すように、グリーンシート15を焼成する。これによって、蛍光体セラミックスプレート1を得る。 In the firing step, the green sheet 15 is fired as shown in FIG. 1B. Thereby, the phosphor ceramic plate 1 is obtained.
 焼成温度は、例えば、1300℃以上、好ましくは、1500℃以上であり、また、例えば、2000℃以下、好ましくは、1800℃以下である。 Calcination temperature is, for example, 1300 ° C. or higher, preferably 1500 ° C. or higher, and for example, 2000 ° C. or lower, preferably 1800 ° C. or lower.
 焼成時間は、例えば、1時間以上、好ましくは、2時間以上であり、また、例えば、24時間以下、好ましくは、8時間以下である。 Calcination time is, for example, 1 hour or more, preferably 2 hours or more, and for example, 24 hours or less, preferably 8 hours or less.
 焼成は、常圧下で実施してもよく、また、減圧下または真空下で実施してもよい。 Calcination may be performed under normal pressure, or may be performed under reduced pressure or under vacuum.
 また、焼成における昇温速度は、例えば、0.5~20℃/分である。 Further, the rate of temperature increase in the firing is, for example, 0.5 to 20 ° C./min.
 上記焼成(本焼成)の前に、バインダー樹脂や分散剤などの有機成分を熱分解および除去するために、電気炉を用いて、空気中、例えば、600~1300℃で予備加熱し、脱バインダー処理を実施してもよい。 Prior to the above firing (main firing), in order to thermally decompose and remove organic components such as a binder resin and a dispersant, preheating is performed in the air at, for example, 600 to 1300 ° C. using an electric furnace to remove the binder. Processing may be performed.
 焼成(バインダー処理を実施する場合は、焼成およびバインダー処理)を通じて、有機粒子が焼成し、蛍光体セラミックスプレート1に空孔が形成される。 このようにして得られる蛍光体セラミックスプレート1は、板状に形成されている。 The organic particles are baked through baking (when baking is performed, baking and binder processing), and pores are formed in the phosphor ceramic plate 1. The phosphor ceramic plate 1 obtained in this way is formed in a plate shape.
 蛍光体セラミックスプレート1の厚みTは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下、より好ましくは、130μm以下である。 The thickness T of the phosphor ceramic plate 1 is, for example, 10 μm or more, preferably 30 μm or more, and, for example, 500 μm or less, preferably 200 μm or less, more preferably 130 μm or less.
 蛍光体セラミックスプレート1は、好ましくは、下記の式を満たす。 The phosphor ceramic plate 1 preferably satisfies the following formula.
 V ≦ 1.30×(-log T)
 Vは、孔径が3.0μm未満である空孔(小空孔)の体積割合(%)を示す。Tは、蛍光体セラミックスプレート1の厚さ(mm)を示す。
V ≦ 1.30 × (−log T)
V indicates the volume ratio (%) of pores (small pores) having a pore diameter of less than 3.0 μm. T represents the thickness (mm) of the phosphor ceramic plate 1.
 これにより、厚さが十分厚いときの過剰な空孔の発生を低減させ、蛍光体セラミックスプレート1の透過性、強度などの低下を抑制することができる。 Thereby, it is possible to reduce the generation of excessive vacancies when the thickness is sufficiently thick, and to suppress a decrease in the permeability and strength of the phosphor ceramic plate 1.
 蛍光体セラミックスプレート1は、好ましくは、下記(1)~(3)の少なくとも1つの要件を満たす。
(1)ナトリウム元素が、67ppm以下、好ましくは、50ppm以下である。
(2)マグネシウム元素が、23ppm以下、好ましくは、20ppm以下である。
(3)鉄元素が、21ppm以下、好ましくは、15ppm以下、より好ましくは、10ppm以下である。
The phosphor ceramic plate 1 preferably satisfies at least one of the following requirements (1) to (3).
(1) The sodium element is 67 ppm or less, preferably 50 ppm or less.
(2) Magnesium element is 23 ppm or less, preferably 20 ppm or less.
(3) The iron element is 21 ppm or less, preferably 15 ppm or less, more preferably 10 ppm or less.
 上記元素は、例えば、ICP-MS分析により測定することができる。 The above elements can be measured by, for example, ICP-MS analysis.
 上記元素は、不純物であり、上記不純物を上記上限以下とすることにより、量子効率に優れる。 The element is an impurity, and the quantum efficiency is excellent by setting the impurity to the upper limit or less.
 そして、この蛍光体セラミックスプレート1は、孔径が3.0μm以上12.0μm以下である空孔を有し、蛍光体セラミックスプレート1に占めるその空孔の体積割合が、1.5体積%以上9.5体積%以下である。そのため、光半導体素子から蛍光体セラミックスプレート1内部へと入射される光を良好に透過しつつ、散乱させることができる。よって、透過性および散乱性に優れる。 The phosphor ceramic plate 1 has pores having a pore diameter of 3.0 μm or more and 12.0 μm or less, and the volume ratio of the pores in the phosphor ceramic plate 1 is 1.5 vol% or more and 9 vol%. .5% by volume or less. Therefore, the light incident from the optical semiconductor element into the phosphor ceramic plate 1 can be scattered while being satisfactorily transmitted. Therefore, it has excellent transparency and scattering properties.
 また、特にLDからの光をこのセラミックスプレート1を用いて波長変換させた光に対して、スペックルノイズを低減させることができる。 Further, speckle noise can be reduced particularly for light obtained by wavelength-converting light from the LD using the ceramic plate 1.
 また、蛍光体セラミックスプレート1は、比較的大きい空孔(中空孔)を所定量、有している。そのため、その蛍光体セラミックスプレート1の製造(グリーンシートの焼成)時において、形成の難しい微小な空孔を形成する必要がない。よって、生産性に優れる。 The phosphor ceramic plate 1 has a predetermined amount of relatively large holes (hollow holes). Therefore, when manufacturing the phosphor ceramic plate 1 (green sheet firing), it is not necessary to form minute holes that are difficult to form. Therefore, it is excellent in productivity.
 さらに、蛍光体セラミックスプレート1は、蛍光体のセラミックスから形成されているため、耐熱性および放熱性に優れる。 Furthermore, since the phosphor ceramic plate 1 is formed of a phosphor ceramic, it has excellent heat resistance and heat dissipation.
 このような蛍光体セラミックスプレート1は、光半導体装置8の部品として単独で商取引の対象となる。 Such a phosphor ceramic plate 1 is an object of commercial transaction as a part of the optical semiconductor device 8 alone.
 2.光半導体装置
 蛍光体セラミックスプレート1を備える光半導体装置8について以下に説明する。
2. Optical Semiconductor Device An optical semiconductor device 8 including the phosphor ceramic plate 1 will be described below.
 (第1実施形態)
 光半導体装置8の第1実施形態およびその製造方法について、図2A~図2Cを参照して説明する。
(First embodiment)
A first embodiment of the optical semiconductor device 8 and a manufacturing method thereof will be described with reference to FIGS. 2A to 2C.
 光半導体装置8の第1実施形態の製造方法は、例えば、蛍光接着シート作製工程(図2A参照)、蛍光接着シート配置工程(図2B参照)、および、接着工程(図2C参照)を備える。 The manufacturing method of the first embodiment of the optical semiconductor device 8 includes, for example, a fluorescent adhesive sheet manufacturing step (see FIG. 2A), a fluorescent adhesive sheet arranging step (see FIG. 2B), and an adhesive step (see FIG. 2C).
 蛍光接着シート作製工程では、図2Aに示すように、蛍光体セラミックスプレート1に接着層2を積層させる。 In the fluorescent adhesive sheet manufacturing process, as shown in FIG. 2A, the adhesive layer 2 is laminated on the phosphor ceramic plate 1.
 接着層2は、蛍光体セラミックスプレート1の上面(一方面)全面に配置されており、接着剤組成物からシート状に形成されている。 The adhesive layer 2 is disposed on the entire upper surface (one surface) of the phosphor ceramic plate 1 and is formed into a sheet shape from the adhesive composition.
 接着剤組成物としては限定的でないが、例えば、シリコーン系、アクリル系などの感圧接着剤組成物、例えば、シリコーン系、エポキシ系などの熱硬化型接着剤組成物、例えば、ガラスやセラミックなどの無機系接着剤組成物が挙げられる。好ましくは、量産性、耐久性、耐熱性の観点から、シリコーン系組成物が挙げられる。 Although it is not limited as an adhesive composition, for example, pressure sensitive adhesive compositions such as silicone and acrylic, for example, thermosetting adhesive compositions such as silicone and epoxy, such as glass and ceramic And an inorganic adhesive composition. Preferably, a silicone type composition is mentioned from a viewpoint of mass productivity, durability, and heat resistance.
 接着層2の厚みは、感圧接着性の観点から、例えば、5μm以上200μm以下であり、好ましくは、熱伝導性の観点から、100μm以下、より好ましくは、50μm以下である。 The thickness of the adhesive layer 2 is, for example, 5 μm or more and 200 μm or less from the viewpoint of pressure-sensitive adhesiveness, preferably 100 μm or less, more preferably 50 μm or less from the viewpoint of thermal conductivity.
 接着層2を蛍光体セラミックスプレート1の上面に積層するには、接着剤組成物がワニスとして調製される場合には、例えば、ワニスを蛍光体セラミックスプレート1の上面全面に、例えば、バーコータなど、公知の塗布方法によって塗布する。これによって、接着剤組成物の皮膜を形成する。続いて、必要により、溶媒を留去する。 In order to laminate the adhesive layer 2 on the upper surface of the phosphor ceramic plate 1, when the adhesive composition is prepared as a varnish, for example, the varnish is applied to the entire upper surface of the phosphor ceramic plate 1, such as a bar coater. Application is performed by a known application method. Thereby, a film of the adhesive composition is formed. Subsequently, if necessary, the solvent is distilled off.
 または、ワニスを離型シートなどの表面に塗布して皮膜を形成し、その皮膜を必要により溶媒を留去した後、剥離シートから蛍光体セラミックスプレート1に転写することもできる。 Alternatively, a film can be formed by applying varnish to the surface of a release sheet or the like, and the film can be transferred from the release sheet to the phosphor ceramic plate 1 after the solvent is distilled off if necessary.
 これによって、蛍光体セラミックスプレート1、および、その上に積層される接着層2を備える蛍光接着シート6を得る。蛍光接着シート6は、蛍光体セラミックスプレート1および接着層2からなり、光半導体素子5を含まず、光半導体装置8の部品として単独で商取引の対象となる。 Thereby, the phosphor adhesive sheet 6 including the phosphor ceramic plate 1 and the adhesive layer 2 laminated thereon is obtained. The fluorescent adhesive sheet 6 includes the phosphor ceramic plate 1 and the adhesive layer 2, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8.
 蛍光接着シート配置工程では、図2Bに示すように、光半導体素子5が実装された基板7と、蛍光接着シート6とを対向配置する。すなわち、光半導体素子5と接着層2とが向かい合うように、基板7と蛍光接着シート6とを間隔を隔てて対向配置する。 In the fluorescent adhesive sheet arranging step, as shown in FIG. 2B, the substrate 7 on which the optical semiconductor element 5 is mounted and the fluorescent adhesive sheet 6 are arranged to face each other. That is, the substrate 7 and the fluorescent adhesive sheet 6 are arranged to face each other with an interval so that the optical semiconductor element 5 and the adhesive layer 2 face each other.
 基板7は、平面視において光半導体素子5より大きい平板状に形成されている。基板7は、例えば、シリコン基板、セラミック基板、ポリイミド樹脂基板、金属基板に絶縁層が積層された積層基板などの絶縁基板からなる。基板7の上面には、電極を含む導体パターン(図示せず)が形成されている。 The substrate 7 is formed in a plate shape larger than the optical semiconductor element 5 in plan view. The substrate 7 is made of an insulating substrate such as a silicon substrate, a ceramic substrate, a polyimide resin substrate, or a laminated substrate in which an insulating layer is laminated on a metal substrate. A conductor pattern (not shown) including electrodes is formed on the upper surface of the substrate 7.
 光半導体素子5は、例えば、青色光を発光する素子(具体的には、青色LED、青色LD)であり、基板7の電極(図示せず)に対して、例えば、フリップチップ実装またはワイヤボンディング接続によって、接続される。なお、光半導体素子5が基板7にワイヤボンディング接続される場合には、光半導体素子5に接着する蛍光接着シート6は、ワイヤーを避ける(迂回する)形状に形成される。 The optical semiconductor element 5 is, for example, an element that emits blue light (specifically, a blue LED or a blue LD) and is, for example, flip-chip mounted or wire bonded to an electrode (not shown) of the substrate 7. Connected by connection. When the optical semiconductor element 5 is connected to the substrate 7 by wire bonding, the fluorescent adhesive sheet 6 bonded to the optical semiconductor element 5 is formed in a shape that avoids (bypasses) the wire.
 接着工程では、図2Cに示すように、蛍光接着シート6を光半導体素子5に貼着する。 In the adhering step, as shown in FIG. 2C, the fluorescent adhesive sheet 6 is attached to the optical semiconductor element 5.
 具体的には、蛍光体セラミックスプレート1を、接着層2を介して、光半導体素子5の上に接着する。 Specifically, the phosphor ceramic plate 1 is bonded onto the optical semiconductor element 5 via the adhesive layer 2.
 蛍光接着シート6と光半導体素子5との貼り合わせは、常温(具体的には、20~25℃)で実施する。必要により、蛍光接着シート6を、例えば、30~150℃に加熱して実施することもできる。 The lamination of the fluorescent adhesive sheet 6 and the optical semiconductor element 5 is performed at room temperature (specifically, 20 to 25 ° C.). If necessary, the fluorescent adhesive sheet 6 can be heated to 30 to 150 ° C., for example.
 これによって、接着層2を介して蛍光体セラミックスプレート1が接着された光半導体装置8を得る。 Thereby, the optical semiconductor device 8 to which the phosphor ceramic plate 1 is bonded through the bonding layer 2 is obtained.
 つまり、光半導体装置8は、基板7と、基板7に実装される光半導体素子5と、光半導体素子5の上に形成される接着層2と、接着層2の上(光半導体素子5とは反対側)に配置され、光半導体素子5と対向配置される蛍光体セラミックスプレート1とを備える。 In other words, the optical semiconductor device 8 includes the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the adhesive layer 2 formed on the optical semiconductor element 5, and the adhesive layer 2 (the optical semiconductor element 5 and the optical semiconductor element 5). Is disposed on the opposite side), and includes a phosphor ceramic plate 1 disposed opposite to the optical semiconductor element 5.
 なお、光半導体素子5が青色LEDである場合には、光半導体装置8を白色発光装置として得る。 When the optical semiconductor element 5 is a blue LED, the optical semiconductor device 8 is obtained as a white light emitting device.
 その後、必要により、図2Cの仮想線で示すように、封止層3を光半導体装置8に設けることもできる。封止層3は、光半導体素子5および蛍光接着シート6を被覆するように、基板7の上に配置されている。 Thereafter, if necessary, the sealing layer 3 can be provided on the optical semiconductor device 8 as indicated by a virtual line in FIG. 2C. The sealing layer 3 is disposed on the substrate 7 so as to cover the optical semiconductor element 5 and the fluorescent adhesive sheet 6.
 封止層3は、封止樹脂組成物から形成されている。封止樹脂組成物は、光半導体素子5の埋設および封止に用いられる公知の透明性樹脂を含み、透明性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂、例えば、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂などの熱可塑性樹脂なども挙げられる。 Sealing layer 3 is formed from a sealing resin composition. The sealing resin composition includes a known transparent resin used for embedding and sealing the optical semiconductor element 5, and examples of the transparent resin include thermosetting resins such as silicone resins, epoxy resins, and urethane resins, Examples thereof include thermoplastic resins such as acrylic resin, styrene resin, polycarbonate resin, and polyolefin resin.
 封止層3を光半導体装置8に設ける方法としては、例えば、封止層3を光半導体装置8に直接形成する方法、封止層3を別の剥離シートなどに形成した後、その封止層3を、ラミネータ、熱圧着などによって、その剥離シートから光半導体装置8に転写する方法などが挙げられる。 As a method of providing the sealing layer 3 in the optical semiconductor device 8, for example, a method of directly forming the sealing layer 3 on the optical semiconductor device 8, or after forming the sealing layer 3 on another release sheet or the like, the sealing is performed. Examples include a method of transferring the layer 3 from the release sheet to the optical semiconductor device 8 by a laminator, thermocompression bonding, or the like.
 そして、第1実施形態の光半導体装置8は、蛍光体セラミックスプレート1を備えているため、光半導体素子5から発光される光の透過性および散乱性を向上させることができる。そのため、発光効率の低下を抑制でき、視野角が良好となる。また、光半導体素子5として特にLDを用いる場合、光半導体装置8から照射される光のスペックルノイズを低減させることができる。また、光半導体装置8は、生産性が良好であるため、製造コストを低減することができる。さらには、光半導体装置8は、耐熱性および放熱性に優れる。 And since the optical semiconductor device 8 of 1st Embodiment is equipped with the fluorescent substance ceramic plate 1, it can improve the permeability | transmittance and scattering property of the light emitted from the optical semiconductor element 5. FIG. Therefore, a decrease in luminous efficiency can be suppressed, and the viewing angle becomes good. Further, when an LD is used as the optical semiconductor element 5, speckle noise of light emitted from the optical semiconductor device 8 can be reduced. Moreover, since the optical semiconductor device 8 has good productivity, the manufacturing cost can be reduced. Furthermore, the optical semiconductor device 8 is excellent in heat resistance and heat dissipation.
 (第2実施形態)
 光半導体装置8の第2実施形態の一実施形態およびその製造方法について、図3A~図3Cを参照して説明する。第2実施形態において、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
(Second Embodiment)
An embodiment of the second embodiment of the optical semiconductor device 8 and a method for manufacturing the same will be described with reference to FIGS. 3A to 3C. In 2nd Embodiment, the same code | symbol is attached | subjected to the member similar to above-described 1st Embodiment, and the description is abbreviate | omitted.
 光半導体装置8の第2実施形態の製造方法は、例えば、封止シート作製工程(図3A参照)、封止シート配置工程(図3B参照)、および、封止工程(図3C参照)を備える。以下、各工程を詳述する。 The manufacturing method of 2nd Embodiment of the optical semiconductor device 8 is equipped with the sealing sheet preparation process (refer FIG. 3A), the sealing sheet arrangement | positioning process (refer FIG. 3B), and a sealing process (refer FIG. 3C), for example. . Hereinafter, each process is explained in full detail.
 封止シート作製工程では、図3Aに示すように、蛍光体セラミックスプレート1に封止層3を積層させる。 In the sealing sheet manufacturing step, the sealing layer 3 is laminated on the phosphor ceramic plate 1 as shown in FIG. 3A.
 封止層3は、蛍光体セラミックスプレート1の上面(一方面)全面に配置されており、上記の封止樹脂組成物からシート状に形成されている。 The sealing layer 3 is disposed on the entire upper surface (one surface) of the phosphor ceramic plate 1 and is formed into a sheet shape from the above-described sealing resin composition.
 封止層3を蛍光体セラミックスプレート1の上面に積層させる方法として、例えば、封止層3を蛍光体セラミックスプレート1に直接形成する方法、封止層3を別の剥離シートなどに形成した後、その封止層3を、ラミネータ、熱圧着などによって、その剥離シートから蛍光体セラミックスプレート1に転写する方法などが挙げられる。 As a method of laminating the sealing layer 3 on the upper surface of the phosphor ceramic plate 1, for example, a method of directly forming the sealing layer 3 on the phosphor ceramic plate 1, or after forming the sealing layer 3 on another release sheet or the like And a method of transferring the sealing layer 3 from the release sheet to the phosphor ceramic plate 1 by a laminator, thermocompression bonding, or the like.
 なお、封止樹脂組成物が熱硬化性樹脂を含有する場合、封止層3を加熱して、封止樹脂組成物からなる封止層3をBステージ状態(半硬化状態)にする。 In addition, when the sealing resin composition contains a thermosetting resin, the sealing layer 3 is heated to bring the sealing layer 3 made of the sealing resin composition into a B-stage state (semi-cured state).
 加熱条件としては、温度は、例えば、50℃以上、好ましくは、80℃以上であり、また、例えば、150℃以下、好ましくは、140℃以下である。加熱時間は、例えば、1分間以上、好ましくは、5分間以上であり、また、例えば、100分間以下、好ましくは、15分間以下である。なお、封止層3がBステージ状態とするか否かは、熱硬化性樹脂の種類に応じて適宜設定することができる。 As heating conditions, the temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, and for example, 150 ° C. or lower, preferably 140 ° C. or lower. The heating time is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 100 minutes or less, preferably 15 minutes or less. Note that whether or not the sealing layer 3 is in the B-stage state can be appropriately set according to the type of the thermosetting resin.
 これによって、蛍光体セラミックスプレート1、および、その上に積層される封止層3を備える波長変換用封止シート4を得る。波長変換用封止シート4は、蛍光体セラミックスプレート1および封止層3からなり、光半導体素子5を含まず、光半導体装置8の部品として単独で商取引の対象となる。 Thereby, a wavelength conversion sealing sheet 4 including the phosphor ceramic plate 1 and the sealing layer 3 laminated thereon is obtained. The wavelength conversion encapsulating sheet 4 includes the phosphor ceramic plate 1 and the encapsulating layer 3, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8 alone.
 封止シート配置工程では、図3Bに示すように、光半導体素子5が実装された基板7と、波長変換用封止シート4とを対向配置する。すなわち、光半導体素子5と封止層3とが向かい合うように、基板7と波長変換用封止シート4とを間隔を隔てて対向配置する。 In the sealing sheet arranging step, as shown in FIG. 3B, the substrate 7 on which the optical semiconductor element 5 is mounted and the wavelength conversion sealing sheet 4 are arranged to face each other. That is, the substrate 7 and the wavelength conversion sealing sheet 4 are arranged to face each other with an interval so that the optical semiconductor element 5 and the sealing layer 3 face each other.
 光半導体素子5は、基板7の電極(図示せず)に対してワイヤボンディング接続されている。ワイヤボンディング接続では、ワイヤ16(仮想線参照)を介して、光半導体素子5の上面に設けられる端子(図示せず)と、基板7の上面に設けられる電極(図示せず)とが電気的に接続される。 The optical semiconductor element 5 is connected to an electrode (not shown) of the substrate 7 by wire bonding. In the wire bonding connection, a terminal (not shown) provided on the upper surface of the optical semiconductor element 5 and an electrode (not shown) provided on the upper surface of the substrate 7 are electrically connected via a wire 16 (see a virtual line). Connected to.
 なお、光半導体素子5は、基板7に対してフリップチップ実装(実線参照)されていてもよい。 The optical semiconductor element 5 may be flip-chip mounted on the substrate 7 (see solid line).
 封止工程では、図3Cに示すように、波長変換用封止シート4の封止層3によって、光半導体素子5を埋設する。なお、光半導体素子5が基板7に対してワイヤボンディング接続されている場合には、光半導体素子5およびワイヤ16を埋設する。 In the sealing step, as shown in FIG. 3C, the optical semiconductor element 5 is embedded by the sealing layer 3 of the wavelength conversion sealing sheet 4. When the optical semiconductor element 5 is connected to the substrate 7 by wire bonding, the optical semiconductor element 5 and the wire 16 are embedded.
 具体的には、封止層3を基板7に対して熱圧着させる。好ましくは、波長変換用封止シート4および基板7を平板プレスする。 Specifically, the sealing layer 3 is thermocompression bonded to the substrate 7. Preferably, the wavelength conversion encapsulating sheet 4 and the substrate 7 are pressed flat.
 熱圧着条件としては、温度が、例えば、80~220℃であり、圧力が、例えば、0.01~1MPaであり、プレス時間が、例えば、1~10分間である。 As thermocompression bonding conditions, the temperature is, for example, 80 to 220 ° C., the pressure is, for example, 0.01 to 1 MPa, and the press time is, for example, 1 to 10 minutes.
 この熱圧着により、光半導体素子5の上面および側面およびワイヤは、封止層3によって被覆される。つまり、光半導体素子5およびワイヤが封止層3に埋設される。 The upper surface and side surfaces of the optical semiconductor element 5 and the wire are covered with the sealing layer 3 by this thermocompression bonding. That is, the optical semiconductor element 5 and the wire are embedded in the sealing layer 3.
 また、光半導体素子5から露出する基板7の上面は、封止層3によって被覆され、波長変換用封止シート4が、光半導体素子5および基板7に接着される。 Further, the upper surface of the substrate 7 exposed from the optical semiconductor element 5 is covered with the sealing layer 3, and the wavelength conversion sealing sheet 4 is bonded to the optical semiconductor element 5 and the substrate 7.
 そして、この熱圧着によって、封止樹脂組成物が熱硬化性樹脂を含有する場合には、それぞれ、封止層3がCステージ状態(完全硬化状態)となる。 And by this thermocompression bonding, when the sealing resin composition contains a thermosetting resin, the sealing layer 3 is in a C stage state (fully cured state).
 これによって、封止層3によって光半導体素子5が封止された光半導体装置8を得る。 Thereby, the optical semiconductor device 8 in which the optical semiconductor element 5 is sealed by the sealing layer 3 is obtained.
 つまり、光半導体装置8は、基板7と、基板7に実装される光半導体素子5と、基板7の上に形成され、光半導体素子5を封止する封止層3と、封止層3の上に配置され、光半導体素子5と対向配置される蛍光体セラミックスプレート1とを備える。 That is, the optical semiconductor device 8 includes the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the sealing layer 3 formed on the substrate 7 and sealing the optical semiconductor element 5, and the sealing layer 3. And a phosphor ceramic plate 1 disposed opposite to the optical semiconductor element 5.
 そして、第2実施形態の光半導体装置8も、第1実施形態と同様の作用効果を奏することができる。 The optical semiconductor device 8 of the second embodiment can also exhibit the same operational effects as the first embodiment.
 (第2実施形態の第1変形例)
 上記した光半導体装置8の第2実施形態の一実施形態では、図3Cに示すように、波長変換用封止シート4によって、基板7に実装された光半導体素子5を封止して、光半導体装置8を直接製造しているが、例えば、図4Cに示すように、基板7にまだ実装されずに支持シート9に支持された光半導体素子5を封止して、封止光半導体素子12を作製した後に、光半導体装置8を製造することもできる。
(First Modification of Second Embodiment)
In one embodiment of the second embodiment of the optical semiconductor device 8 described above, as shown in FIG. 3C, the optical semiconductor element 5 mounted on the substrate 7 is encapsulated by the wavelength conversion encapsulating sheet 4, so that the light Although the semiconductor device 8 is directly manufactured, for example, as shown in FIG. 4C, the optical semiconductor element 5 that is not yet mounted on the substrate 7 and is supported by the support sheet 9 is sealed, and the sealed optical semiconductor element The optical semiconductor device 8 can also be manufactured after the 12 is manufactured.
 第1変形例において、光半導体装置8の製造方法は、例えば、封止シート作製工程(図4A参照)、封止シート配置工程(図4B参照)、封止工程(図4C参照)、剥離工程(図4D参照)、および、実装工程(図4E参照)を備える。以下、各工程を詳述する。 In the first modification, the manufacturing method of the optical semiconductor device 8 includes, for example, a sealing sheet manufacturing process (see FIG. 4A), a sealing sheet arranging process (see FIG. 4B), a sealing process (see FIG. 4C), and a peeling process. (See FIG. 4D) and a mounting process (see FIG. 4E). Hereinafter, each process is explained in full detail.
 封止シート作製工程は、図4Aに示すように、図3Aで上記した封止シート作製工程と同様である。 The sealing sheet preparation process is the same as the sealing sheet preparation process described above with reference to FIG. 3A, as shown in FIG. 4A.
 封止シート配置工程では、図4Bに示すように、支持シート9および支持シート9に支持される光半導体素子5と、波長変換用封止シート4とを対向配置する。すなわち、光半導体素子5と封止層3とが向かい合うように、支持シート9と波長変換用封止シート4とを間隔を隔てて対向配置する。 In the sealing sheet arranging step, as shown in FIG. 4B, the supporting sheet 9 and the optical semiconductor element 5 supported by the supporting sheet 9 and the wavelength conversion sealing sheet 4 are arranged to face each other. That is, the support sheet 9 and the wavelength conversion sealing sheet 4 are arranged to face each other with an interval so that the optical semiconductor element 5 and the sealing layer 3 face each other.
 支持シート9は、支持板10と、支持板10の上面に積層される粘着層11とを備える。 The support sheet 9 includes a support plate 10 and an adhesive layer 11 laminated on the upper surface of the support plate 10.
 支持板10は、面方向に延びる板形状をなし、支持シート9における下部に設けられており、支持シート9と平面視略同一形状に形成されている。支持板10は、面方向に延伸不能な硬質の材料からなり、具体的には、そのような材料として、例えば、酸化ケイ素(石英など)、サファイア、アルミナなどの酸化物、例えば、ステンレスなどの金属、例えば、シリコンなどが挙げられる。支持板10の厚みは、例えば、0.1~2mmである。 The support plate 10 has a plate shape extending in the surface direction, is provided at a lower portion of the support sheet 9, and is formed in substantially the same shape as the support sheet 9 in plan view. The support plate 10 is made of a hard material that cannot be stretched in the plane direction. Specifically, as such a material, for example, an oxide such as silicon oxide (quartz or the like), sapphire, or alumina, for example, stainless steel or the like is used. A metal such as silicon can be used. The thickness of the support plate 10 is, for example, 0.1 to 2 mm.
 粘着層11は、支持板10の上面全面に形成されている。粘着層11を形成する粘着材料としては、例えば、アクリル系感圧接着剤、シリコーン系感圧接着剤などの感圧接着剤が挙げられる。また、粘着層11を、例えば、活性エネルギー線の照射によって粘着力が低下する活性エネルギー線照射剥離シート(具体的には、特開2005-286003号公報などに記載される活性エネルギー線照射剥離シート)などから形成することもできる。粘着層11の厚みは、例えば、0.1~1mmである。 The adhesive layer 11 is formed on the entire upper surface of the support plate 10. Examples of the pressure-sensitive adhesive material that forms the pressure-sensitive adhesive layer 11 include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone-based pressure sensitive adhesives. In addition, the adhesive layer 11 may be formed by, for example, an active energy ray irradiation release sheet whose adhesive strength is reduced by irradiation with an active energy ray (specifically, an active energy ray irradiation release sheet described in JP 2005-286003 A or the like). ) Or the like. The thickness of the adhesive layer 11 is, for example, 0.1 to 1 mm.
 支持シート9を用意するには、例えば、支持板10と粘着層11とを貼り合わせる。なお、まず、支持板10を用意し、次いで、上記した粘着材料および必要により配合される溶媒から調製されるワニスを支持板10に塗布し、その後、必要により、溶媒を乾燥する塗布方法などによって、粘着層11を支持板10に直接積層することもできる。 To prepare the support sheet 9, for example, the support plate 10 and the adhesive layer 11 are bonded together. First, the support plate 10 is prepared, and then a varnish prepared from the above-mentioned adhesive material and a solvent blended as necessary is applied to the support plate 10, and then, if necessary, by a coating method of drying the solvent. The adhesive layer 11 can also be directly laminated on the support plate 10.
 支持シート9の厚みは、例えば、0.2~6mmである。 The thickness of the support sheet 9 is, for example, 0.2 to 6 mm.
 次に、光半導体素子5を、支持シート9に対して積層する。具体的には、光半導体素子5の下面を、粘着層11の上面に接触させる。 Next, the optical semiconductor element 5 is laminated on the support sheet 9. Specifically, the lower surface of the optical semiconductor element 5 is brought into contact with the upper surface of the adhesive layer 11.
 これによって、光半導体素子5を、支持シート9に配置(載置)する。つまり、支持シート9に、光半導体素子5を支持させる。 Thereby, the optical semiconductor element 5 is arranged (placed) on the support sheet 9. That is, the optical semiconductor element 5 is supported on the support sheet 9.
 封止工程は、図4Cに示すように、図3Cで上記した封止工程と同様である。 The sealing process is the same as the sealing process described above with reference to FIG. 3C, as shown in FIG. 4C.
 剥離工程では、図4Dの矢印で示すように、封止光半導体素子12を、粘着層11の上面から剥離する。具体的には、粘着層11が活性エネルギー線照射剥離シートである場合には、活性エネルギー線を粘着層11に照射する。 In the peeling step, the sealed optical semiconductor element 12 is peeled from the upper surface of the adhesive layer 11 as shown by the arrow in FIG. 4D. Specifically, when the adhesive layer 11 is an active energy ray irradiation release sheet, the active energy ray is irradiated to the adhesive layer 11.
 これによって、光半導体素子5と、光半導体素子5を封止する封止層3と、封止層3の上に配置され、光半導体素子5と対向配置される蛍光体セラミックスプレート1とを備える封止光半導体素子12を得る。封止光半導体素子12は、光半導体素子5、封止層3および蛍光体セラミックスプレート1からなり、基板7を含まず、光半導体装置8の部品として単独で商取引の対象となる。 Thus, the optical semiconductor element 5, the sealing layer 3 that seals the optical semiconductor element 5, and the phosphor ceramic plate 1 that is disposed on the sealing layer 3 and is disposed to face the optical semiconductor element 5 are provided. A sealed optical semiconductor element 12 is obtained. The sealed optical semiconductor element 12 includes the optical semiconductor element 5, the sealing layer 3, and the phosphor ceramic plate 1. The sealed optical semiconductor element 12 does not include the substrate 7 and is an object of commercial transaction as a part of the optical semiconductor device 8.
 封止光半導体素子12は、蛍光体セラミックスプレート1を備えているため、光半導体素子5から発光される光の透過性および散乱性を向上させることができる。そのため、発光効率の低下を抑制でき、視野角が良好となる。また、光半導体素子5として特にLDを用いる場合、封止光半導体素子12から照射される光のスペックルノイズを低減させることができる。また、封止光半導体素子12は、生産性が良好であるため、製造コストを低減することができる。さらには、封止光半導体素子12は、耐熱性および放熱性に優れる。 Since the sealed optical semiconductor element 12 includes the phosphor ceramic plate 1, it is possible to improve the transmission and scattering properties of the light emitted from the optical semiconductor element 5. Therefore, a decrease in luminous efficiency can be suppressed, and the viewing angle becomes good. Further, when an LD is used as the optical semiconductor element 5, speckle noise of light irradiated from the sealed optical semiconductor element 12 can be reduced. Moreover, since the sealing optical semiconductor element 12 has good productivity, the manufacturing cost can be reduced. Furthermore, the sealed optical semiconductor element 12 is excellent in heat resistance and heat dissipation.
 実装工程では、その後、図4Eに示すように、封止光半導体素子12を、基板7に実装する。具体的には、光半導体素子5の下面に設けられる端子(図示せず)と基板7の電極(図示せず)とを接続して、封止光半導体素子12を基板7にフリップチップ実装する。 In the mounting process, the sealed optical semiconductor element 12 is then mounted on the substrate 7 as shown in FIG. 4E. Specifically, a terminal (not shown) provided on the lower surface of the optical semiconductor element 5 and an electrode (not shown) of the substrate 7 are connected, and the sealed optical semiconductor element 12 is flip-chip mounted on the substrate 7. .
 これによって、基板7、光半導体素子5、封止層3および蛍光体セラミックスプレート1を備える光半導体装置8を製造する。 Thereby, the optical semiconductor device 8 including the substrate 7, the optical semiconductor element 5, the sealing layer 3, and the phosphor ceramic plate 1 is manufactured.
 第1変形例の光半導体装置8も、上記と同様の作用効果を奏することができる。 The optical semiconductor device 8 of the first modified example can also exhibit the same effects as described above.
 (第2実施形態の第2変形例)
 上記した光半導体装置8の第2実施形態の一実施形態では、図3Cに示すように、光半導体装置8は、基板7の上には光半導体素子5を囲むように配置されるハウジングを備えていないが、例えば、図5に示すように、光半導体装置8は、ハウジング13を備えることもできる。
(Second Modification of Second Embodiment)
In one embodiment of the second embodiment of the optical semiconductor device 8 described above, as shown in FIG. 3C, the optical semiconductor device 8 includes a housing disposed on the substrate 7 so as to surround the optical semiconductor element 5. However, for example, as shown in FIG. 5, the optical semiconductor device 8 may include a housing 13.
 図5の第2変形例の光半導体装置8は、基板7と、基板7に実装される光半導体素子5と、基板7の上に形成されるハウジング13と、光半導体素子5を封止する封止層3と、封止層3の上に形成される蛍光体セラミックスプレート1とを備えている。 The optical semiconductor device 8 of the second modification example in FIG. 5 seals the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the housing 13 formed on the substrate 7, and the optical semiconductor element 5. A sealing layer 3 and a phosphor ceramic plate 1 formed on the sealing layer 3 are provided.
 ハウジング13は、平面視略枠形状をなし、上方に向かって次第に幅狭となる略台形筒状に形成されている。また、ハウジング13は、光半導体素子5を囲むように、光半導体素子5と間隔を隔てて、配置されている。 The housing 13 has a substantially frame shape in a plan view, and is formed in a substantially trapezoidal cylindrical shape that becomes gradually narrower upward. Further, the housing 13 is disposed so as to surround the optical semiconductor element 5 and spaced from the optical semiconductor element 5.
 封止層3は、ハウジング13内に充填されている。 The sealing layer 3 is filled in the housing 13.
 蛍光体セラミックスプレート1は、封止層3の上面全面、および、ハウジング13の上面の内側端部にも配置されている。 The phosphor ceramic plate 1 is also disposed on the entire upper surface of the sealing layer 3 and the inner end of the upper surface of the housing 13.
 第2変形例に示す光半導体装置8も、上記と同様の作用効果を奏することができる。 The optical semiconductor device 8 shown in the second modification can also exhibit the same effects as described above.
 (第3実施形態)
 光半導体装置8の第3実施形態およびその製造方法について、図6A~図6Cを参照して説明する。第3実施形態において、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
(Third embodiment)
A third embodiment of the optical semiconductor device 8 and a manufacturing method thereof will be described with reference to FIGS. 6A to 6C. In 3rd Embodiment, the same code | symbol is attached | subjected to the member similar to above-described 1st Embodiment, and the description is abbreviate | omitted.
 光半導体装置8の第3実施形態の製造方法は、例えば、回路基板作製工程(図6A参照)、回路基板配置工程(図6B参照)、および、実装工程(図6C参照)を備える。以下、各工程を詳述する。 The manufacturing method of the third embodiment of the optical semiconductor device 8 includes, for example, a circuit board manufacturing process (see FIG. 6A), a circuit board arrangement process (see FIG. 6B), and a mounting process (see FIG. 6C). Hereinafter, each process is explained in full detail.
 回路基板作製工程では、図6Aに示すように、蛍光体セラミックスプレート1に電極配線41を積層させる。 In the circuit board manufacturing process, as shown in FIG. 6A, the electrode wiring 41 is laminated on the phosphor ceramic plate 1.
 電極配線41は、光半導体素子5の端子44と電気的に接続するための電極42と、それに連続する配線43とを一体的に備える導体パターンとして形成されている。電極配線41は、例えば、金、銅、銀、ニッケルなどの導体から形成されている。 The electrode wiring 41 is formed as a conductor pattern integrally including an electrode 42 for electrical connection with the terminal 44 of the optical semiconductor element 5 and a wiring 43 continuous therewith. The electrode wiring 41 is made of a conductor such as gold, copper, silver, or nickel.
 電極42は、1つの光半導体素子5(図6B参照)に対して2つ(1対)設けられ、具体的には、1つの光半導体素子5に形成される2つの端子44に対応して設けられている。 Two (one pair) of electrodes 42 are provided for one optical semiconductor element 5 (see FIG. 6B). Specifically, corresponding to two terminals 44 formed in one optical semiconductor element 5. Is provided.
 また、電極配線41の表面(上面および側面)に、図示しない保護膜を形成することもできる。保護膜は、酸化防止、または、接続性の観点から、例えば、Niおよび/またはAuからなるめっき層として形成されている。 Further, a protective film (not shown) can be formed on the surface (upper surface and side surface) of the electrode wiring 41. The protective film is formed as a plating layer made of, for example, Ni and / or Au from the viewpoint of oxidation prevention or connectivity.
 電極配線41の寸法は、適宜設定されており、具体的には、電極42の最大長さが、例えば、0.03mm以上、好ましくは、0.05mm以上であり、また、例えば、50mm以下、好ましくは、5mm以下である。また、隣接する電極42間の間隔は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、3mm以下、好ましくは、1mm以下である。また、配線43の幅は、例えば、20μm以上、好ましくは、30μm以上であり、また、例えば、400μm以下、好ましくは、200μm以下である。 The dimensions of the electrode wiring 41 are set as appropriate. Specifically, the maximum length of the electrode 42 is, for example, 0.03 mm or more, preferably 0.05 mm or more, and, for example, 50 mm or less, Preferably, it is 5 mm or less. Moreover, the space | interval between the adjacent electrodes 42 is 0.05 mm or more, for example, Preferably, it is 0.1 mm or more, for example, is 3 mm or less, Preferably, it is 1 mm or less. The width of the wiring 43 is, for example, 20 μm or more, preferably 30 μm or more, and for example, 400 μm or less, preferably 200 μm or less.
 電極配線41の厚みは、例えば、10μm以上、好ましくは、25μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。また、図示しない保護膜の厚みは、例えば、100nm以上、好ましくは、300nm以上であり、また、例えば、5μm以下、好ましくは、1μm以下である。 The thickness of the electrode wiring 41 is, for example, 10 μm or more, preferably 25 μm or more, and for example, 200 μm or less, preferably 100 μm or less. The thickness of the protective film (not shown) is, for example, 100 nm or more, preferably 300 nm or more, and, for example, 5 μm or less, preferably 1 μm or less.
 この方法では、図6Aに示すように、電極配線41を、蛍光体セラミックスプレート1の上面(一方面)に積層する。 In this method, as shown in FIG. 6A, the electrode wiring 41 is laminated on the upper surface (one surface) of the phosphor ceramic plate 1.
 電極配線41を蛍光体セラミックスプレート1の上面に積層する方法としては、例えば、加熱接合法、印刷-加熱接合法、Mo-Mn法、硫化銅法、銅メタライズ法、印刷法、転写法などが挙げられ、好ましくは、加熱接合法、印刷-加熱接合法が挙げられる。 Examples of the method of laminating the electrode wiring 41 on the upper surface of the phosphor ceramic plate 1 include a heat bonding method, a printing-heat bonding method, a Mo-Mn method, a copper sulfide method, a copper metallization method, a printing method, a transfer method, and the like. Preferably, a heat bonding method and a printing-heat bonding method are mentioned.
 加熱接合法では、例えば、電極配線41を形成するための導体シートを蛍光体セラミックスプレート1の上面全面に接触させ、続いて、例えば、Ar,Nなどの不活性雰囲気中で、800~1200℃の温度で加熱し、蛍光体セラミックスプレート1と導体シートとからなる接合基板を形成する。その後、導体シートをエッチングなどによって、電極配線41を形成する。 In the heat bonding method, for example, a conductor sheet for forming the electrode wiring 41 is brought into contact with the entire upper surface of the phosphor ceramic plate 1 and then, for example, 800 to 1200 in an inert atmosphere of Ar, N 2 or the like. Heating is performed at a temperature of ° C. to form a bonded substrate composed of the phosphor ceramic plate 1 and the conductor sheet. Thereafter, the electrode wiring 41 is formed by etching the conductor sheet.
 印刷-加熱接合法では、例えば、導体の粉末に、有機化合物などのバインダーおよび溶媒を混合して調製したペーストを、蛍光体セラミックスプレート1の上面に、上記したパターンに印刷して印刷パターンを形成し、その印刷パターンに沿って、導体シートをディスペンサーによって配置して、不活性雰囲気または真空中で、上記した温度で加熱して接合する。その後、導体シートをエッチングなどによって、導体パターンを形成する。 In the printing-heat bonding method, for example, a paste prepared by mixing a conductive powder, a binder such as an organic compound, and a solvent is printed on the upper surface of the phosphor ceramic plate 1 in the above pattern to form a printed pattern. Then, the conductor sheet is disposed by a dispenser along the printed pattern, and bonded by heating at the above-described temperature in an inert atmosphere or vacuum. Thereafter, a conductor pattern is formed on the conductor sheet by etching or the like.
 これによって、光半導体素子5を上に実装するための蛍光体セラミックスプレート1と、その上に積層され、光半導体素子5と電気的に接続するための電極配線41とを備える回路基板40を得る。回路基板40は、蛍光体セラミックスプレート1および電極配線41からなり、光半導体素子5を含まず、光半導体装置8の部品として単独で商取引の対象となる。 As a result, a circuit board 40 including the phosphor ceramic plate 1 for mounting the optical semiconductor element 5 thereon and the electrode wiring 41 stacked thereon and electrically connected to the optical semiconductor element 5 is obtained. . The circuit board 40 includes the phosphor ceramic plate 1 and the electrode wiring 41, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8.
 回路基板40は、蛍光体セラミックスプレート1を備えているため、光半導体素子5から発光される光の透過性および散乱性を向上させることができる。そのため、発光効率の低下を抑制でき、視野角が良好となる。また、光半導体素子5として特にLDを用いて光半導体装置8を製造する場合、光半導体装置8から照射される光のスペックルノイズを低減させることができる。また、回路基板40は、生産性が良好であるため、製造コストを低減することができる。さらには、回路基板40は、耐熱性および放熱性に優れる。 Since the circuit board 40 includes the phosphor ceramic plate 1, it is possible to improve the transmission and scattering properties of the light emitted from the optical semiconductor element 5. Therefore, a decrease in luminous efficiency can be suppressed, and the viewing angle becomes good. Further, when the optical semiconductor device 8 is manufactured using the LD as the optical semiconductor element 5 in particular, speckle noise of light emitted from the optical semiconductor device 8 can be reduced. Moreover, since the circuit board 40 has good productivity, the manufacturing cost can be reduced. Furthermore, the circuit board 40 is excellent in heat resistance and heat dissipation.
 また、回路基板40が、蛍光体セラミックスプレート1を備えるので、別途、蛍光体層を基板の下面に設けることなく、下方に発光される光を、蛍光体セラミックスプレート1によって、波長変換することができる。そのため、光半導体装置8の下方の光束を向上させながら、光半導体装置8における部品点数を低減して、光半導体装置8の構成を簡易にすることができる。その結果、光半導体装置8の製造工数を低減して、製造方法を簡易にして、光半導体装置8の生産性を向上させて、製造コストを低減することができる。 Further, since the circuit board 40 includes the phosphor ceramic plate 1, the phosphor ceramic plate 1 can convert the wavelength of light emitted downward without separately providing a phosphor layer on the lower surface of the substrate. it can. Therefore, it is possible to simplify the configuration of the optical semiconductor device 8 by reducing the number of parts in the optical semiconductor device 8 while improving the light flux below the optical semiconductor device 8. As a result, the number of manufacturing steps of the optical semiconductor device 8 can be reduced, the manufacturing method can be simplified, the productivity of the optical semiconductor device 8 can be improved, and the manufacturing cost can be reduced.
 回路基板配置工程では、図6Bに示すように光半導体素子5と、回路基板40とを対向配置する。すなわち、光半導体素子5の下面に設けられる端子44と、回路基板40の上面に設けられる電極配線41とが向かい合うように、光半導体素子5と回路基板40とを間隔を隔てて対向配置する。 In the circuit board arrangement step, the optical semiconductor element 5 and the circuit board 40 are arranged to face each other as shown in FIG. 6B. That is, the optical semiconductor element 5 and the circuit board 40 are arranged to face each other with an interval so that the terminal 44 provided on the lower surface of the optical semiconductor element 5 and the electrode wiring 41 provided on the upper surface of the circuit board 40 face each other.
 実装工程では、その後、図6Cに示すように、光半導体素子5を、回路基板40に対して実装する。具体的には、光半導体素子5の端子44と、回路基板40の電極42とを接続して、光半導体素子5を回路基板40にフリップチップ実装する。 In the mounting process, the optical semiconductor element 5 is then mounted on the circuit board 40 as shown in FIG. 6C. Specifically, the terminal 44 of the optical semiconductor element 5 and the electrode 42 of the circuit board 40 are connected, and the optical semiconductor element 5 is flip-chip mounted on the circuit board 40.
 これによって、端子44が電極42と電気的に接続された光半導体装置8を得る。 Thereby, the optical semiconductor device 8 in which the terminal 44 is electrically connected to the electrode 42 is obtained.
 つまり、光半導体装置8は、回路基板40と、回路基板40の上に、電極配線41に電気的に接続されるように、実装される光半導体素子5とを備える。 That is, the optical semiconductor device 8 includes the circuit substrate 40 and the optical semiconductor element 5 mounted on the circuit substrate 40 so as to be electrically connected to the electrode wiring 41.
 その後、必要により、図6Cの仮想線で示すように、封止層3を光半導体装置8に設けることもできる。封止層3は、光半導体素子5を被覆するように、回路基板40の上に配置されている。なお、封止層3は、上記蛍光体および上記透明性樹脂を含有する封止樹脂組成物から形成される蛍光体封止層とすることもできる。 Thereafter, if necessary, the sealing layer 3 can be provided on the optical semiconductor device 8 as indicated by a virtual line in FIG. 6C. The sealing layer 3 is disposed on the circuit board 40 so as to cover the optical semiconductor element 5. In addition, the sealing layer 3 can also be made into the fluorescent substance sealing layer formed from the sealing resin composition containing the said fluorescent substance and the said transparent resin.
 第3実施形態の光半導体装置8も、第1実施形態と同様の作用効果を奏することができる。 The optical semiconductor device 8 of the third embodiment can also exhibit the same operational effects as the first embodiment.
 加えて、第3実施形態の光半導体装置8では、回路基板40が蛍光体セラミックスプレート1を備えるので、別途、蛍光体層を、蛍光体セラミックスプレート1の下側に設けることなく、光半導体素子5から下方に発光される光を、蛍光体セラミックスプレート1によって、波長変換することができる。そのため、下方の光束に優れながら、部品点数を低減して、光半導体装置8の構成を簡易にすることができる。その結果、光半導体装置8の生産性を向上させることができる。 In addition, in the optical semiconductor device 8 of the third embodiment, since the circuit board 40 includes the phosphor ceramic plate 1, an optical semiconductor element is provided without separately providing a phosphor layer below the phosphor ceramic plate 1. The wavelength of light emitted downward from 5 can be converted by the phosphor ceramic plate 1. Therefore, it is possible to simplify the configuration of the optical semiconductor device 8 by reducing the number of components while being excellent in the lower light flux. As a result, the productivity of the optical semiconductor device 8 can be improved.
 さらに、この光半導体装置8では、封止層3を蛍光封止層とすれば、光半導体素子5を封止して、信頼性を向上させ、かつ、蛍光封止層によって、光半導体素子5から上方および側方に発光される光を波長変換して、それらの光の光束を向上させることができる。従って、光半導体装置8を、上下両面から発光できる両面発光タイプとすることができる。 Furthermore, in this optical semiconductor device 8, if the sealing layer 3 is a fluorescent sealing layer, the optical semiconductor element 5 is sealed to improve reliability, and the optical semiconductor element 5 is provided by the fluorescent sealing layer. The wavelength of the light emitted upward and laterally from the light can be converted to improve the luminous flux of the light. Therefore, the optical semiconductor device 8 can be a double-sided light emission type that can emit light from both the upper and lower sides.
 3.発光装置
 次に、蛍光体セラミックスプレート1を備える発光装置の一例としての照明装置20について、図7~図8を参照して説明する。
3. Light Emitting Device Next, an illumination device 20 as an example of a light emitting device including the phosphor ceramic plate 1 will be described with reference to FIGS.
 図7に示すように、照明装置20は、照明ハウジング22と、透明部材23と、光源24と、反射鏡25と、波長変換放熱部材26とを備えている。 As shown in FIG. 7, the illumination device 20 includes an illumination housing 22, a transparent member 23, a light source 24, a reflecting mirror 25, and a wavelength conversion heat radiating member 26.
 照明ハウジング22は、前後方向に延び、後側が閉鎖され、前側が開放される略円筒状に形成されている。照明ハウジング22は、後述する透明部材23、光源24、反射鏡25および波長変換放熱部材26を内部に収容する。 The lighting housing 22 is formed in a substantially cylindrical shape extending in the front-rear direction, closed on the rear side, and opened on the front side. The illumination housing 22 accommodates a transparent member 23, a light source 24, a reflecting mirror 25, and a wavelength conversion heat radiating member 26 described later.
 透明部材23は、背面視において略円形状をなし、前後方向厚みが薄い板状に形成されている。透明部材23の外形形状は、前後方向に投影したときに、照明ハウジング22の前端における内周縁と一致するように形成されている。 The transparent member 23 has a substantially circular shape in a rear view and is formed in a plate shape with a thin thickness in the front-rear direction. The outer shape of the transparent member 23 is formed so as to coincide with the inner peripheral edge at the front end of the illumination housing 22 when projected in the front-rear direction.
 透明部材23は、照明ハウジング22の前端に設けられている。具体的には、透明部材23は、照明ハウジング22の前端縁が透明部材23の前面(前側表面)と上下方向に面一となるように、照明ハウジング22内に収容されている。 The transparent member 23 is provided at the front end of the lighting housing 22. Specifically, the transparent member 23 is accommodated in the illumination housing 22 so that the front end edge of the illumination housing 22 is flush with the front surface (front surface) of the transparent member 23 in the vertical direction.
 光源24としては、例えば、発光ダイオード(LED)、レーザーダイオード(LD)などの半導体光源が挙げられる。光源24は、透明部材23の後側に間隔を隔てて、照明ハウジング22内部の上下方向および幅方向(左右方向)の略中央部に設けられている。光源24には、照明ハウジング22の外部から引き回される外部配線28が接続されている。光源24は、外部配線28から受け取る電力によって、前側に向かって単色光などの光を照射する。 Examples of the light source 24 include semiconductor light sources such as a light emitting diode (LED) and a laser diode (LD). The light source 24 is provided at a substantially central portion in the up-down direction and the width direction (left-right direction) inside the illumination housing 22 with a space behind the transparent member 23. An external wiring 28 routed from the outside of the illumination housing 22 is connected to the light source 24. The light source 24 emits light such as monochromatic light toward the front side by the electric power received from the external wiring 28.
 反射鏡25は、背面視略円形状で、側断面視略半円弧状のドーム形状に形成されている。反射鏡25の外形形状は、前後方向に投影したときに、透明部材23の外端縁と一致するように形成されている。反射鏡25は、透明部材23の他方側(後側)であって、光源24の一方側(前側)に、光源24と間隔を隔てて配置されている。また、反射鏡25は、その前端縁が透明部材23の後面と接触するように、照明ハウジング22内に収容されている。 The reflecting mirror 25 is formed in a dome shape having a substantially circular shape in a rear view and a substantially semicircular arc shape in a side sectional view. The outer shape of the reflecting mirror 25 is formed so as to coincide with the outer edge of the transparent member 23 when projected in the front-rear direction. The reflecting mirror 25 is disposed on the other side (rear side) of the transparent member 23 and on one side (front side) of the light source 24 with a distance from the light source 24. Moreover, the reflecting mirror 25 is accommodated in the illumination housing 22 so that the front end edge thereof is in contact with the rear surface of the transparent member 23.
 反射鏡25の中心(上下方向および幅方向の中央)には、光源24からの光が通過するための貫通孔27が形成されている。反射鏡25は、貫通孔27を前側に向かって通過して波長変換放熱部材26(後述)で後側に向かって拡散される拡散光を、前側に向かって反射する。 A through-hole 27 through which light from the light source 24 passes is formed at the center (vertical and width center) of the reflecting mirror 25. The reflecting mirror 25 reflects the diffused light that passes through the through hole 27 toward the front side and is diffused toward the rear side by a wavelength conversion heat radiating member 26 (described later), and reflects the light toward the front side.
 波長変換放熱部材26は、照明ハウジング22内の前側に設けられている。具体的には、反射鏡25と間隔を隔てて前側に対向配置され、透明部材23の後面(後側表面)と隣接配置されている。波長変換放熱部材26は、図8Aおよび図8Bに示すように、熱拡散保持部材29と、波長変換接合部材30とを備えている。 The wavelength conversion heat radiation member 26 is provided on the front side in the illumination housing 22. Specifically, it is disposed to face the front side with a gap from the reflecting mirror 25, and is disposed adjacent to the rear surface (rear surface) of the transparent member 23. As shown in FIGS. 8A and 8B, the wavelength conversion heat radiating member 26 includes a heat diffusion holding member 29 and a wavelength conversion bonding member 30.
 熱拡散保持部材29は、上下方向に延びる背面視略矩形状に形成され、透明部材23に隣接配置されている。具体的には、熱拡散保持部材29は、熱拡散保持部材29の前面が透明部材23の後面と接触するように、配置されている。 The heat diffusion holding member 29 is formed in a substantially rectangular shape in rear view extending in the vertical direction, and is disposed adjacent to the transparent member 23. Specifically, the heat diffusion holding member 29 is disposed so that the front surface of the heat diffusion holding member 29 is in contact with the rear surface of the transparent member 23.
 熱拡散保持部材29は、載置部31と固定部32とを備えている。  The heat diffusion holding member 29 includes a placement part 31 and a fixing part 32. *
 載置部31は、前後方向に厚みを有する背面視略矩形状に形成されている。載置部31は、載置部31の前面が透明部材23の後面の背面視略中央部と接触するように、配置されている。 The mounting portion 31 is formed in a substantially rectangular shape in rear view having a thickness in the front-rear direction. The placement portion 31 is disposed such that the front surface of the placement portion 31 is in contact with the substantially central portion of the rear surface of the transparent member 23 in the rear view.
 固定部32は、載置部31の前側下端から下側に延びるように、載置部31と一体的に形成されている。固定部32は、上下方向に延びる背面視略矩形状をなし、前後方向の厚みが載置部31よりも薄い板状に形成されている。固定部32は、上側前面が透明部材23の後面と接触し、上下方向途中において透明部材23と離間するように、後側に屈曲している。固定部32の一端(下端)は、反射鏡25を貫通して、照明ハウジング22の周面(内端縁)に固定されている。 The fixing portion 32 is formed integrally with the placement portion 31 so as to extend downward from the front lower end of the placement portion 31. The fixed portion 32 has a substantially rectangular shape in rear view extending in the vertical direction, and is formed in a plate shape whose thickness in the front-rear direction is thinner than that of the placement portion 31. The fixed portion 32 is bent rearward so that the upper front surface is in contact with the rear surface of the transparent member 23 and is separated from the transparent member 23 in the middle of the vertical direction. One end (lower end) of the fixing portion 32 passes through the reflecting mirror 25 and is fixed to the peripheral surface (inner end edge) of the illumination housing 22.
 熱拡散保持部材29は、熱伝導性が良好である材料から形成されており、例えば、アルミニウム、銅などの熱伝導性金属やAlNなどのセラミックス材料から形成されている。 The thermal diffusion holding member 29 is made of a material having good thermal conductivity, for example, a thermal conductive metal such as aluminum or copper, or a ceramic material such as AlN.
 波長変換接合部材30は、載置部31の後面に設けられている。 The wavelength conversion bonding member 30 is provided on the rear surface of the placement portion 31.
 波長変換接合部材30は、接合層34と、蛍光体セラミックスプレート1とを備えている。 The wavelength conversion bonding member 30 includes a bonding layer 34 and the phosphor ceramic plate 1.
 接合層34は、背面視略矩形状をなし、板状に形成されている。接合層34は、載置部31の後面および蛍光体セラミックスプレート1の前面(一方面)に設けられている。すなわち、接合層34は、載置部31と蛍光体セラミックスプレート1との間に配置されている。接合層34は、前後方向に投影したときに、載置部31と重複しており、具体的には、背面視において、載置部31と同一形状に形成されている。 The bonding layer 34 has a substantially rectangular shape when viewed from the back, and is formed in a plate shape. The bonding layer 34 is provided on the rear surface of the mounting portion 31 and the front surface (one surface) of the phosphor ceramic plate 1. That is, the bonding layer 34 is disposed between the mounting portion 31 and the phosphor ceramic plate 1. The bonding layer 34 overlaps with the placement portion 31 when projected in the front-rear direction, and specifically, is formed in the same shape as the placement portion 31 in the rear view.
 接合層34は、好ましくは、光反射性および放熱性を備えており、例えば、光反射性放熱性硬化性組成物を硬化することに形成されている。 The bonding layer 34 preferably has light reflectivity and heat dissipation, and is formed, for example, by curing a light reflective heat dissipation curable composition.
 光反射性放熱性硬化性組成物としては、例えば、セラミックスインク、硬化性樹脂および無機粒子を含有する硬化性樹脂組成物、アルカリ金属ケイ酸塩および無機粒子を含有するケイ酸塩水溶液が挙げられる。 Examples of the light-reflective heat-dissipating curable composition include a ceramic ink, a curable resin composition containing a curable resin and inorganic particles, and an aqueous silicate solution containing alkali metal silicate and inorganic particles. .
 セラミックスインクとしては、市販品を用いることができ、具体的には、株式会社アイン社製のセラミックスインク(RGタイプ、ANタイプ、UVタイプ、SDタイプ)などが挙げられる。 Commercially available products can be used as the ceramic ink, and specific examples include ceramic inks (RG type, AN type, UV type, SD type) manufactured by Ein Co., Ltd.
 硬化性樹脂組成物に含まれる硬化性樹脂としては、例えば、硬化性シリコーン樹脂、エポキシ樹脂、アクリル樹脂などが挙げられる。硬化型シリコーン樹脂としては、市販品(商品名:KER-2500、信越化学工業社製、商品名:LR-7665、旭化成ワッカー社製)を用いることができる。  Examples of the curable resin contained in the curable resin composition include a curable silicone resin, an epoxy resin, and an acrylic resin. As the curable silicone resin, commercially available products (trade name: KER-2500, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LR-7665, manufactured by Asahi Kasei Wacker) can be used. *
 無機粒子を構成する無機物としては、例えば、二酸化珪素、二酸化チタンなどの無機酸化物、例えば、銀、アルミニウムなどの金属、例えば、チタン酸複合酸化物(例えば、チタン酸バリウム、チタン酸カリウム)などの複合酸化物などが挙げられる。 As an inorganic substance constituting the inorganic particles, for example, inorganic oxides such as silicon dioxide and titanium dioxide, metals such as silver and aluminum, for example, titanic acid complex oxides (for example, barium titanate and potassium titanate), etc. And the like.
 無機粒子の平均粒子径(平均最大長さ)は、例えば、0.1~50μmである。 The average particle diameter (average maximum length) of the inorganic particles is, for example, 0.1 to 50 μm.
 蛍光体セラミックスプレート1は、背面視略矩形状をなし、板状に形成されている。蛍光体セラミックスプレート1は、接合層34の後面に設けられている。蛍光体セラミックスプレート1は、前後方向に投影したときに、接合層34および載置部31と重複しており、具体的には、背面視において、接合層34および載置部31と同一形状に形成されている。 The phosphor ceramic plate 1 has a substantially rectangular shape when viewed from the back, and is formed in a plate shape. The phosphor ceramic plate 1 is provided on the rear surface of the bonding layer 34. The phosphor ceramic plate 1 overlaps with the bonding layer 34 and the mounting portion 31 when projected in the front-rear direction. Specifically, the phosphor ceramic plate 1 has the same shape as the bonding layer 34 and the mounting portion 31 in the rear view. Is formed.
 また、蛍光体セラミックスプレート1は、光源24および貫通孔27と、同一直線上となるように配置されている。具体的には、光源24、貫通孔27および蛍光体セラミックスプレート1は、照明ハウジング22の軸線と一致する直線上に並ぶように、照明ハウジング22内に収容されている。 Further, the phosphor ceramic plate 1 is arranged so as to be collinear with the light source 24 and the through hole 27. Specifically, the light source 24, the through-hole 27, and the phosphor ceramic plate 1 are accommodated in the illumination housing 22 so as to be aligned on a straight line that matches the axis of the illumination housing 22.
 そして、蛍光体セラミックスプレート1を備える照明装置20では、光源24から照射される光hが、貫通孔27を通過し、蛍光体セラミックスプレート1にて白色光に波長変換されると同時に、全方向に拡散される。この際、蛍光体セラミックスプレート1は、透過性および散乱性に優れるため、白色光は効率よく、かつ広範囲に反射鏡25側(後側に)反射することができる(図7の光h~hを参照)。すなわち、波長変換放熱部材26における光量の損失を低下しつつ、高効率でかつ広範囲で反射鏡25側に反射することができる。そのため、反射鏡25にて前側(ひいては外部)に放出される発光効率が良好であり、視野角が良好となる。また、照明装置20から照射される光のスペックルノイズを低減させることができる。 And in the illuminating device 20 provided with the phosphor ceramic plate 1, the light h 0 irradiated from the light source 24 passes through the through hole 27 and is converted into white light by the phosphor ceramic plate 1. Diffused in the direction. At this time, since the phosphor ceramic plate 1 is excellent in transmission and scattering properties, white light can be efficiently reflected in a wide range (to the rear side) (light h 1 to light in FIG. 7). h 4 ). That is, it is possible to reflect to the reflecting mirror 25 side in a wide range with high efficiency while reducing the loss of the light amount in the wavelength conversion heat radiating member 26. Therefore, the luminous efficiency emitted to the front side (and hence the outside) by the reflecting mirror 25 is good, and the viewing angle is good. In addition, speckle noise of light emitted from the illumination device 20 can be reduced.
 また、照明装置20は、生産性が良好であるため、製造コストを低減することができる。さらには、照明装置20は、耐熱性および放熱性に優れる。 Moreover, since the lighting device 20 has good productivity, the manufacturing cost can be reduced. Furthermore, the lighting device 20 is excellent in heat resistance and heat dissipation.
 この照明装置20は、例えば、車載灯具、高天井吊下げ灯具、道路灯具、演芸灯具などの遠方照射用途に好適に用いることができる。 The lighting device 20 can be suitably used for far-field illumination applications such as in-vehicle lamps, high ceiling hanging lamps, road lamps, and entertainment lamps.
 以下に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はそれらに限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, specific numerical values such as a blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and a blending ratio corresponding to them ( Substituting the upper limit value (numerical value defined as “less than” or “less than”) or the lower limit value (number defined as “greater than” or “exceeded”) such as content ratio), physical property values, parameters, etc. be able to.
  実施例1
 酸化イットリウム粒子(純度99.99質量%、lot:N-YT4CP、日本イットリウム社製)11.34g、酸化アルミニウム粒子(純度99.99質量%、品番「AKP-30」、住友化学社製)8.577g、および、酸化セリウム粒子(純度99.99質量%)0.087gからなる蛍光体材料の原料粉末を調製した。
Example 1
Yttrium oxide particles (purity 99.99% by mass, lot: N—YT4CP, manufactured by Japan Yttrium Co.) 11.34 g, aluminum oxide particles (purity 99.99% by mass, product number “AKP-30”, manufactured by Sumitomo Chemical) 8 A raw material powder of a phosphor material consisting of .577 g and cerium oxide particles (purity 99.99 mass%) 0.087 g was prepared.
 調製した蛍光体材料の原料粉末20gと、水溶性バインダー樹脂(「WB4101」、Polymer Inovations,Inc社製)とを、固形分の体積比率が60:40となるように混合し、さらに蒸留水を加えてアルミナ製容器に入れ、直径3mmのジルコニアボールを加えて24時間、ボールミルにより湿式混合することで、蛍光体の原料粒子のスラリーを調製した。 20 g of the prepared phosphor material powder and a water-soluble binder resin (“WB4101”, manufactured by Polymer Innovations, Inc.) are mixed so that the volume ratio of the solid content is 60:40, and distilled water is further added. In addition, it was put in an alumina container, zirconia balls having a diameter of 3 mm were added, and wet mixing was performed by a ball mill for 24 hours to prepare a slurry of phosphor raw material particles.
 次いで、調製したスラリーに、有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を、蛍光体材料粉末と有機粒子との合計含有量に対して、3.0体積%となるように添加して、さらに湿式混合して、蛍光体組成物スラリーを得た。 Next, organic particles (polymethyl methacrylate, average particle size of 3.5 μm) are added to the prepared slurry so that the total content of the phosphor material powder and the organic particles is 3.0% by volume. Further, wet mixing was performed to obtain a phosphor composition slurry.
 次いで、得られた蛍光体組成物スラリーを、PETフィルム上にドクターブレード法によりテープキャスティングして70℃、5分にて乾燥し、厚み90μmのグリーンシートを得た。その後、グリーンシートをPETフィルムから剥離した。 Next, the obtained phosphor composition slurry was tape-cast on a PET film by a doctor blade method and dried at 70 ° C. for 5 minutes to obtain a green sheet having a thickness of 90 μm. Thereafter, the green sheet was peeled from the PET film.
 次いで、グリーンシートを20mm×20mmのサイズに切り出した。切り出したグリーンシートを2枚作製し、この2枚のグリーンシートを2軸ホットプレスを用いて熱ラミネートすることにより、グリーンシート積層体を作製した。 Next, the green sheet was cut into a size of 20 mm × 20 mm. Two cut green sheets were produced, and the two green sheets were thermally laminated using a biaxial hot press to produce a green sheet laminate.
 次いで、作製したグリーンシート積層体を、電気マッフル炉にて、大気中、1℃/分の昇温速度で1200℃まで加熱し、バインダー樹脂などの有機成分を分解除去する脱バインダー処理を実施した。その後、高温環境炉にグリーンシート積層体を移し、還元雰囲気下で、5℃/分の昇温速度で1750℃まで加熱し、その温度で5時間焼成することにより、厚み(T)120μmの、YAl12:Ceからなる蛍光体セラミックスプレートを製造した。 Next, the produced green sheet laminate was heated to 1200 ° C. in the air at a heating rate of 1 ° C./min in an electric muffle furnace, and a binder removal treatment for decomposing and removing organic components such as a binder resin was performed. . Thereafter, the green sheet laminate is transferred to a high-temperature environment furnace, heated to 1750 ° C. at a rate of temperature increase of 5 ° C./min in a reducing atmosphere, and baked at that temperature for 5 hours. A phosphor ceramic plate made of Y 3 Al 5 O 12 : Ce was manufactured.
  実施例2
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径4.0μm)を3.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Example 2
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), except for adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 μm) Produced a phosphor ceramic plate in the same manner as in Example 1.
  実施例3
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径5.0μm)を3.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Example 3
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), except for adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 5.0 μm) Produced a phosphor ceramic plate in the same manner as in Example 1.
  実施例4
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径6.5μm)を6.5体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Example 4
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 6.5% by volume of organic particles (polymethyl methacrylate, average particle size 6.5 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  実施例5
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径12.5μm)を12.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Example 5
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 12.0% by volume of organic particles (polymethyl methacrylate, average particle size 12.5 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  実施例6
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径18.0μm)を9.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Example 6
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 9.0% by volume of organic particles (polymethyl methacrylate, average particle size 18.0 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  実施例7
 蛍光体組成物スラリーの塗布量を調製し、グリーンシートの厚みを厚く調整した以外は、実施例1と同様にして、厚み(T)150μmの蛍光体セラミックスプレートを製造した。
Example 7
A phosphor ceramic plate having a thickness (T) of 150 μm was manufactured in the same manner as in Example 1 except that the coating amount of the phosphor composition slurry was adjusted and the thickness of the green sheet was adjusted to be thick.
  実施例8
 酸化イットリウム粒子(純度99.99質量%、lot:N-YT4CP、日本イットリウム社製)を酸化イットリウム粒子(純度99.8質量%、Nanostructured & Amorphous Materials社製)に変更以外は、実施例2と同様にして、蛍光体セラミックスプレートを製造した。
Example 8
Example 2 and Example 2 except that the yttrium oxide particles (purity 99.99 mass%, lot: N-YT4CP, manufactured by Japan Yttrium Co.) were changed to yttrium oxide particles (purity 99.8 mass%, manufactured by Nanostructured & Amorphous Materials). Similarly, a phosphor ceramic plate was manufactured.
  比較例1
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径2.5μm)を4.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Comparative Example 1
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 4.0% by volume of organic particles (polymethyl methacrylate, average particle size 2.5 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  比較例2
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径4.0μm)を1.5体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Comparative Example 2
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 1.5% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  比較例3
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径4.0μm)を15.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Comparative Example 3
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 15.0% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  比較例4
 有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径25.0μm)を10.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
Comparative Example 4
Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 μm), 10.0% by volume of organic particles (polymethyl methacrylate, average particle size 25.0 μm) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
  (孔径の体積の算出)
 各実施例および各比較例の蛍光体セラミックスプレートを面方向(厚み方向と直交方向、水平方向)に切断し、その切断表面(面方向)を、レーザー顕微鏡(装置名:レーザーテック、VL2000D、対物レンズ20倍、倍率1800倍)を用いて、孔径を観察した。その後、さらに0.5μm間隔で面方向に切断していき、合計15面(厚み方向7.5μm)の切断表面を観察した。このとき、切断表面に観察される各空孔のうち同一空孔においては、15面の切断表面のうちの最大長さを各空孔の孔径(面方向)とした(図9参照。)。
(Calculation of volume of pore diameter)
The phosphor ceramic plates of each example and each comparative example were cut in a plane direction (a direction perpendicular to the thickness direction and a horizontal direction), and the cut surface (plane direction) was cut with a laser microscope (device name: Lasertec, VL2000D, objective lens). The pore size was observed using 20 times and 1800 times magnification. Then, it cut | disconnected further in the surface direction at intervals of 0.5 micrometer, and observed the cutting surface of a total of 15 surfaces (thickness direction 7.5 micrometers). At this time, in the same hole among the holes observed on the cut surface, the maximum length of the 15 cut surfaces was defined as the hole diameter (plane direction) of each hole (see FIG. 9).
 各空孔を、孔径が3.0μm未満の空孔(小空孔)と、3.0μm以上12.0μm以下の空孔(中空孔)と、12.0μm超過の空孔(大空孔)とに区分けし、それぞれを真球換算にて空孔体積を計算し、区分けした空孔の総体積を算出した。算出した総体積を、蛍光体セラミックスプレートの体積(空孔を測定した部分、空孔も含む)で除することにより、孔径の体積割合(面方向)を求めた。 Each hole has a hole diameter of less than 3.0 μm (small hole), a hole of 3.0 μm or more and 12.0 μm or less (hollow hole), and a hole of more than 12.0 μm (large hole). The volume of holes was calculated in terms of a true sphere, and the total volume of the divided holes was calculated. By dividing the calculated total volume by the volume of the phosphor ceramic plate (the portion where the pores were measured, including the pores), the volume ratio (surface direction) of the pore diameter was determined.
 また、蛍光体セラミックスプレートの厚み方向に切断し、その切断表面(厚み方向)についても、上記と同様に15面分を観察し、上記と同様の方法にて、孔径の体積割合(厚み方向)を求めた。 Further, the phosphor ceramic plate is cut in the thickness direction, and the cut surface (thickness direction) is also observed for 15 surfaces in the same manner as described above, and the volume ratio of the pore diameter (thickness direction) in the same manner as described above. Asked.
 孔径の体積割合(面方向)および孔径の体積割合(厚み方向)の平均を、本発明の蛍光体セラミックスプレートの孔径の体積割合とした。結果を表1に示す。 The average of the volume ratio of the pore diameter (plane direction) and the volume ratio of the pore diameter (thickness direction) was defined as the volume ratio of the pore diameter of the phosphor ceramic plate of the present invention. The results are shown in Table 1.
 (平均孔径の算出)
 上記で算出した各空孔の孔径から、各空孔の孔径の平均(各空孔の孔径の合計/空孔の数)を求めた。なお、孔径(面方向)の平均と孔径(厚み方向)の平均との平均を、平均孔径とした。結果を表1に示す。
(Calculation of average pore diameter)
From the hole diameter of each hole calculated above, the average of the hole diameters of each hole (total hole diameter of each hole / number of holes) was determined. In addition, the average of the hole diameter (surface direction) and the average of the hole diameter (thickness direction) was defined as the average hole diameter. The results are shown in Table 1.
 (透過率)
 各実施例および各比較例の蛍光体セラミックスプレートについて、分光光度計(紫外可視近赤外分光光度計V-670、日本分光社製)を用いて任意の3点で全光線透過率(波長800nm)を測定し、3点の平均値を透過率とした。結果を表1に示す。
(Transmittance)
With respect to the phosphor ceramic plates of each example and each comparative example, the total light transmittance (wavelength 800 nm) at any three points using a spectrophotometer (ultraviolet visible near infrared spectrophotometer V-670, manufactured by JASCO Corporation). ) Was measured, and the average value of the three points was taken as the transmittance. The results are shown in Table 1.
 (散乱性)
 各実施例および各比較例の蛍光体セラミックスプレートの散乱性を下記の光半導体装置の配光性にて評価した。
(Scattering)
The scattering properties of the phosphor ceramic plates of each example and each comparative example were evaluated by the light distribution of the following optical semiconductor device.
 キャビティ付き多層セラミック基板(住友金属エレクトロデバイス社製、品番「207806」、ハウジング高さ0.6mmt、ハウジング材質アルミナ反射率75%)のキャビティ内に青色発光ダイオードチップ(Cree社製、品番「C450EZ1000-0123」)をAu-Snハンダでダイアタッチし、Au線にてワイヤボンディングした光半導体装置を作製した。 Multi-layer ceramic substrate with cavity (Sumitomo Metal Electrodevices, product number “207806”, housing height 0.6mmt, housing material alumina reflectivity 75%) Cavity blue light emitting diode chip (Cree, product number “C450EZ1000- 0123 ") was die-attached with Au-Sn solder, and an optical semiconductor device was prepared by wire bonding with Au wire.
 その光半導体装置のハウジングの上に各蛍光体セラミックプレートを配置し、垂直方向と45度の角度でのパッケージの角度依存性を評価した。CIE色度xの差が、垂直方向基準で、±0.02以内である場合を○、±0.04以内である場合を△、それ以外である場合を×と評価した。結果を表1に示す。 Each phosphor ceramic plate was placed on the housing of the optical semiconductor device, and the angle dependency of the package at an angle of 45 degrees with the vertical direction was evaluated. The case where the difference in CIE chromaticity x was within ± 0.02 on the vertical direction basis was evaluated as ◯, the case within ± 0.04 was evaluated as Δ, and the case other than that was evaluated as ×. The results are shown in Table 1.
 (不純物の測定)
 各実施例および各比較例の蛍光体セラミックスプレートのNa元素、Mg元素およびFe元素の不純物をICP-MS分析により測定した。結果を表1に示す。
(Measurement of impurities)
Impurities of Na element, Mg element and Fe element of the phosphor ceramic plates of each example and each comparative example were measured by ICP-MS analysis. The results are shown in Table 1.
 (量子効率の測定)
 各実施例および比較例の蛍光体セラミックプレートの量子効率を、量子効率測定システム(大塚電子社製、「QE2100」)にて測定した。結果を表1に示す。
(Measurement of quantum efficiency)
The quantum efficiencies of the phosphor ceramic plates of the examples and comparative examples were measured with a quantum efficiency measurement system (“QE2100” manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 1.
 (スペックルコントラスト比の測定) 
 光源24として、青色LD光源(ネオアーク社製、「TCSQ0445-1600」)を用い、蛍光体セラミックスプレート1として、各実施例および各比較例の蛍光体セラミックスプレートを用いて、図7に示すLD励起の照明装置を作製した。
(Measurement of speckle contrast ratio)
As the light source 24, a blue LD light source (manufactured by Neoarc, “TCSQ0445-1600”) is used, and as the phosphor ceramic plate 1, the phosphor ceramic plates of the respective examples and comparative examples are used, and the LD excitation shown in FIG. The lighting device was manufactured.
 照明装置から照射される照射光(h1~h4の各地点の光の平均値)のスペックルコントラスト比を、スペックルコントラスト測定装置(OXIDE社製、「Dr.SPECKLE」)を用いて、測定した。結果を表1に示す。なお、蛍光体セラミックプレートを用いなかった場合の照射光(LD光のみ)のスペックルコントラスト比は、0.45であった。 The speckle contrast ratio of the irradiation light (average value of light at each point of h1 to h4) emitted from the illumination device was measured using a speckle contrast measurement device (manufactured by OXIDE, “Dr. SPECKLE”). . The results are shown in Table 1. In addition, the speckle contrast ratio of the irradiation light (only LD light) at the time of not using a phosphor ceramic plate was 0.45.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 本発明の蛍光体セラミックスは、各種の工業製品に適用することができ、例えば、光半導体装置などの光学用途などに用いることができる。 The phosphor ceramics of the present invention can be applied to various industrial products, and can be used for optical applications such as optical semiconductor devices.
1 蛍光体セラミックスプレート
2 接着層
3 封止層
5 半導体素子
7 基板
20 照明装置
24 光源
25 反射鏡
27 貫通孔
40 回路基板
41 電極配線
 
DESCRIPTION OF SYMBOLS 1 Phosphor ceramic plate 2 Adhesion layer 3 Sealing layer 5 Semiconductor element 7 Substrate 20 Illumination device 24 Light source 25 Reflection mirror 27 Through-hole 40 Circuit board 41 Electrode wiring

Claims (9)

  1.  孔径が3.0μm以上12.0μm以下である空孔を有する蛍光体セラミックスであって、
     前記蛍光体セラミックスに占める前記空孔の体積割合が、1.5体積%以上9.5体積%以下であることを特徴とする、蛍光体セラミックス。
    A phosphor ceramic having pores having a pore diameter of 3.0 μm or more and 12.0 μm or less,
    The phosphor ceramic according to claim 1, wherein a volume ratio of the pores in the phosphor ceramic is 1.5 volume% or more and 9.5 volume% or less.
  2.  前記蛍光体セラミックスが板状を有し、
     下記式:
      V ≦ 1.30×(-log T)
      (Vは、孔径が3.0μm未満である空孔の体積割合(%)を示し、
       Tは、前記蛍光体セラミックスの厚さ(mm)を示す。)
    を満たすことを特徴とする、請求項1に記載の蛍光体セラミックス。
    The phosphor ceramic has a plate shape,
    Following formula:
    V ≦ 1.30 × (−log T)
    (V indicates the volume ratio (%) of pores having a pore diameter of less than 3.0 μm,
    T represents the thickness (mm) of the phosphor ceramic. )
    The phosphor ceramic according to claim 1, wherein:
  3.  下記(1)~(3)の少なくとも1つの要件を満たすことを特徴とする、請求項1に記載の蛍光体セラミックス。
     (1)ナトリウム元素が、67ppm以下である。
     (2)マグネシウム元素が、23ppm以下である。
     (3)鉄元素が、21ppm以下である。
    2. The phosphor ceramic according to claim 1, wherein at least one of the following requirements (1) to (3) is satisfied.
    (1) Sodium element is 67 ppm or less.
    (2) Magnesium element is 23 ppm or less.
    (3) The iron element is 21 ppm or less.
  4.  前記蛍光体セラミックスの平均孔径が、3.0μm以上10.0μm以下であることを特徴とする、請求項1に記載の蛍光体セラミックス。 2. The phosphor ceramic according to claim 1, wherein an average pore diameter of the phosphor ceramic is 3.0 μm or more and 10.0 μm or less.
  5.  基板と、
     前記基板に実装される光半導体素子と、
     接着層と、
     前記接着層の前記光半導体素子とは反対側の面に配置され、前記光半導体素子と対向配置される請求項1に記載の蛍光体セラミックスと
    を備えることを特徴とする、光半導体装置。
    A substrate,
    An optical semiconductor element mounted on the substrate;
    An adhesive layer;
    2. An optical semiconductor device comprising: the phosphor ceramic according to claim 1, which is disposed on a surface of the adhesive layer opposite to the optical semiconductor element and disposed opposite to the optical semiconductor element.
  6.  基板と、
     前記基板に実装される光半導体素子と、
     前記光半導体素子を封止する封止層と、
     前記封止層の前記光半導体素子とは反対側の面に配置され、前記光半導体素子と対向配置される請求項1に記載の蛍光体セラミックスと
    を備えることを特徴とする、光半導体装置。
    A substrate,
    An optical semiconductor element mounted on the substrate;
    A sealing layer for sealing the optical semiconductor element;
    2. An optical semiconductor device comprising: the phosphor ceramic according to claim 1, which is disposed on a surface of the sealing layer opposite to the optical semiconductor element and disposed opposite to the optical semiconductor element.
  7.  光半導体素子と、
     前記光半導体素子を封止する封止層と、
     前記封止層の前記光半導体素子とは反対側の面に配置され、前記光半導体素子と対向配置される請求項1に記載の蛍光体セラミックスと
     を備えることを特徴とする、封止光半導体素子。
    An optical semiconductor element;
    A sealing layer for sealing the optical semiconductor element;
    2. The sealed optical semiconductor comprising: the phosphor ceramic according to claim 1, which is disposed on a surface of the sealing layer opposite to the optical semiconductor element and is disposed to face the optical semiconductor element. element.
  8.  光半導体素子を厚み方向一方側に実装するための請求項1に記載の蛍光体セラミックスと、
     前記蛍光体セラミックスの厚み方向一方面に積層され、前記光半導体素子と電気的に接続するための電極配線と
    を備えることを特徴とする、回路基板。
    The phosphor ceramic according to claim 1 for mounting the optical semiconductor element on one side in the thickness direction;
    A circuit board comprising electrode wiring for being laminated on one surface in the thickness direction of the phosphor ceramic and electrically connected to the optical semiconductor element.
  9.  光を一方側に照射する光源と、
     前記光源と間隔を隔てて一方側に対向配置され、前記光が通過するための貫通孔が形成される反射鏡と、
     前記光が照射されるように、前記反射鏡と間隔を隔てて一方側に対向配置される請求項1に記載の蛍光体セラミックスと
    を備えることを特徴とする、発光装置。
    A light source that emits light on one side;
    A reflecting mirror that is disposed opposite to the light source on one side with a space therebetween, and a through hole for allowing the light to pass therethrough is formed;
    2. A light emitting device comprising: the phosphor ceramic according to claim 1, wherein the phosphor ceramic is disposed so as to be opposed to one side at a distance from the reflecting mirror so as to be irradiated with the light.
PCT/JP2016/053069 2015-02-18 2016-02-02 Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device WO2016132890A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/318,071 US10001657B2 (en) 2015-02-18 2016-02-02 Phosphor ceramic, encapsulated optical semiconductor element, circuit board, optical semiconductor device and light-emitting device
CN201680004659.1A CN107112396B (en) 2015-02-18 2016-02-02 Phosphor ceramic, packaged optical semiconductor element, circuit board, optical semiconductor device, and light emitting device
KR1020177022521A KR102520727B1 (en) 2015-02-18 2016-02-02 Phosphor ceramics, encapsulated optical semiconductor elements, circuit boards, optical semiconductor devices and light emitting devices
EP16752277.0A EP3144985B1 (en) 2015-02-18 2016-02-02 Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-029592 2015-02-18
JP2015029592 2015-02-18
JP2016-000707 2016-01-05
JP2016000707A JP5989268B2 (en) 2015-02-18 2016-01-05 Phosphor ceramics, sealed optical semiconductor element, circuit board, optical semiconductor device, and light emitting device

Publications (1)

Publication Number Publication Date
WO2016132890A1 true WO2016132890A1 (en) 2016-08-25

Family

ID=56692215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053069 WO2016132890A1 (en) 2015-02-18 2016-02-02 Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device

Country Status (1)

Country Link
WO (1) WO2016132890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798244B (en) * 2017-08-03 2023-04-11 美商亮銳公司 Light emitting devices and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146835A (en) * 2002-10-22 2004-05-20 Osram Opto Semiconductors Gmbh Light source having led and emitter converter, and method for manufacturing the emitter converter
JP2008533270A (en) * 2005-03-14 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
JP2009530788A (en) * 2006-03-21 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device
JP2012064484A (en) * 2010-09-17 2012-03-29 Stanley Electric Co Ltd Light source device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146835A (en) * 2002-10-22 2004-05-20 Osram Opto Semiconductors Gmbh Light source having led and emitter converter, and method for manufacturing the emitter converter
JP2008533270A (en) * 2005-03-14 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
JP2009530788A (en) * 2006-03-21 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device
JP2012064484A (en) * 2010-09-17 2012-03-29 Stanley Electric Co Ltd Light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798244B (en) * 2017-08-03 2023-04-11 美商亮銳公司 Light emitting devices and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5989268B2 (en) Phosphor ceramics, sealed optical semiconductor element, circuit board, optical semiconductor device, and light emitting device
KR101549736B1 (en) Inorganic shaped body for converting wavelength and method for manufacturing the same, and light emitting device
JP5966501B2 (en) Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
KR20200062150A (en) Light emitting device
JP6069890B2 (en) Inorganic molded body for wavelength conversion and light emitting device
TWI749058B (en) Thin sheet for covering the optical semiconductor element
TW201044645A (en) Light emitting semiconductor device and method of manufacture thereof
WO2015163108A1 (en) Wavelength conversion joining member, wavelength conversion heat-radiating member, and light emission device
JP2013216800A (en) Inorganic molded product for color conversion, method for manufacturing the same, and light emitting device
JP2012023288A (en) Light emitting device component, light emitting device, and method for manufacturing the light emitting device
WO2015163109A1 (en) Wavelength conversion member and method for manufacturing same
JP2018107285A (en) Light-emitting device and method for manufacturing the same
JP2015090887A (en) Light-emitting element and light-emitting device
JP5966529B2 (en) Inorganic molded body for wavelength conversion and light emitting device
JP2017143236A (en) Ceramic plate and method of manufacturing the same, and optical semiconductor device
WO2017221606A1 (en) Optical semiconductor element having phosphor layer, and method for manufacturing optical semiconductor element
JP2007149810A (en) Wiring board for light-emitting element, and light-emitting device
CN109681846B (en) Wavelength conversion device and preparation method thereof
WO2016132890A1 (en) Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device
WO2015163110A1 (en) Wavelength conversion member and method for producing same
TWI660526B (en) Light-emitting element, light-emitting device, and manufacturing method thereof
WO2017221608A1 (en) Phosphor layer sheet, and manufacturing method of optical semiconductor element with phosphor layer
WO2014020897A1 (en) Wavelength conversion particle, wavelength conversion member, and light-emitting device
JP2006066630A (en) Wiring board, electric device, and light emitting device
JP2013026590A (en) Light-emitting device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318071

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016752277

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016752277

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177022521

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE