WO2016129328A1 - 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 - Google Patents

立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 Download PDF

Info

Publication number
WO2016129328A1
WO2016129328A1 PCT/JP2016/051221 JP2016051221W WO2016129328A1 WO 2016129328 A1 WO2016129328 A1 WO 2016129328A1 JP 2016051221 W JP2016051221 W JP 2016051221W WO 2016129328 A1 WO2016129328 A1 WO 2016129328A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
polycrystal
tool
nitride polycrystal
Prior art date
Application number
PCT/JP2016/051221
Other languages
English (en)
French (fr)
Inventor
雄 石田
桂子 有元
山本 佳津子
角谷 均
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP16748973.1A priority Critical patent/EP3257829B1/en
Priority to US15/549,783 priority patent/US10519068B2/en
Priority to CN201680009499.XA priority patent/CN107207364B/zh
Publication of WO2016129328A1 publication Critical patent/WO2016129328A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a cubic boron nitride polycrystal, a cutting tool, an antiwear tool, a grinding tool, and a method for producing a cubic boron nitride polycrystal, and particularly useful as a cutting tool, an antiwear tool, and a grinding tool of an iron-based material.
  • the present invention relates to a cubic boron nitride polycrystal, a cutting tool, an anti-wear tool, a grinding tool, and a method for producing a cubic boron nitride polycrystal.
  • Cubic boron nitride (hereinafter also referred to as “cBN”) has hardness next to diamond, and is excellent in thermal stability and chemical stability. Further, since iron-based materials are more stable than diamond, cBN sintered bodies have been used as processing tools for iron-based materials.
  • this cBN sintered body contains about 10 to 40% by volume of a binder, and this binder causes a decrease in strength, heat resistance, and thermal diffusibility of the sintered body. Therefore, especially when cutting iron-based materials at a high speed, the heat load becomes large, and the cutting edge of the cutting edge and cracks are liable to occur, thereby shortening the tool life.
  • a method of producing a cBN sintered body using a catalyst without using a binder there is a method of producing a cBN sintered body using a catalyst without using a binder.
  • hexagonal boron nitride (hBN) is used as a raw material
  • magnesium boronitride (Mg 3 BN 3 ) or the like is used as a catalyst for reaction sintering. Since the cBN sintered body obtained by this method does not contain a binder, the cBNs are strongly bonded to each other, and the thermal conductivity is increased. Therefore, it is used for heat sink materials and TAB (Tape Automated Bonding) bonding tools.
  • a cBN sintered body can be obtained by converting normal pressure type BN (boron nitride) such as hBN directly from hBN to cBN and sintering at the same time without using a catalyst under an ultra-high pressure and high temperature (direct conversion sintering method). Is obtained.
  • normal pressure type BN boron nitride
  • Patent Document 1 Japanese Patent Application Laid-Open No. 47-034099
  • Patent Document 2 show a method for obtaining a cBN sintered body by converting hBN into cBN under ultra-high pressure and high temperature. Has been.
  • Patent Document 5 Japanese Patent Publication No. 49-027518
  • Patent Document 6 Japanese Patent Application Laid-Open No. 11-246271
  • Patent Document 5 discloses a method of obtaining a cBN sintered body under conditions of a pressure of 6 GPa and 1100 ° C.
  • hBN contains boron oxide impurities or adsorbed gas of about several mass%. Therefore, due to the influence of these impurities and adsorbed gas, sintering does not proceed sufficiently, and since it contains an oxide, the hardness, strength, and heat resistance are lowered, and it cannot be used as a cutting tool or wear-resistant tool. .
  • Patent Document 6 discloses a method of synthesizing under conditions of 6 to 7 GPa and 1550 to 2100 ° C. using low crystalline hexagonal boron nitride as a raw material in order to solve the above problem. Further, it is disclosed that the cBN polycrystal synthesized by this method has a crystal grain size of about 0.1 to 1 ⁇ m.
  • the sintering temperature is lowered in order to obtain a cBN polycrystal having a small particle size useful for finishing and precision machining, the sinterability is lowered and the strength of the polycrystal is lowered. Furthermore, when the particle size is reduced, the toughness is lowered, and there is also a problem that the tool is easily chipped.
  • the cubic boron nitride polycrystal according to one embodiment of the present invention includes cubic boron nitride, and the cubic boron nitride has an average particle size of 150 nm or less and 100 N / min using a diamond indenter of R200 ⁇ m. In the fracture strength test in which a load is applied at a speed of 1, the crack generation load is 25 N or more.
  • the method for producing a cubic boron nitride polycrystal includes: Preparing a hexagonal boron nitride powder having a particle size of 0.5 ⁇ m or less as a starting material; When the pressure is P (GPa) and the temperature is T (° C.), P ⁇ ⁇ 7.68 ⁇ 10 ⁇ 9 T 3 + 5.3003 ⁇ 10 ⁇ 5 T 2 ⁇ 0.1224T + 102.23, T ⁇ 2200 and P ⁇ 25 And a step of converting the hexagonal boron nitride powder into cubic boron nitride and wurtzite boron nitride and sintering at a temperature and pressure that satisfy the following conditions.
  • the cubic boron nitride polycrystal is a tough polycrystal with a fine grain size of the cubic boron nitride constituting it.
  • the present inventors have converted a fine structure by converting hexagonal boron nitride powder having a particle size of 0.5 ⁇ m or less into cubic boron nitride under high pressure and high temperature. It has been found that a tough cubic boron nitride polycrystal is obtained.
  • the cubic boron nitride polycrystal according to one embodiment of the present invention includes cubic boron nitride, and the cubic boron nitride has an average particle diameter of 150 nm or less and has a diamond indenter of R200 ⁇ m. In the fracture strength test in which a load is applied at a speed of 100 N / min, the crack generation load is 25 N or more.
  • This cubic boron nitride polycrystal is a tough polycrystal having a fine grain size of the cubic boron nitride constituting it.
  • the cubic boron nitride preferably has an average particle size of 100 nm or less. By further reducing the average particle size in this way, application to applications where a small particle size is required becomes more suitable.
  • the cubic boron nitride polycrystal preferably contains 0.01% by volume or more of wurtzite boron nitride. Thereby, the structure of the polycrystalline body becomes denser.
  • the cubic boron nitride polycrystal preferably contains 0.01 to 0.5% by volume of a compressed hexagonal boron nitride. Thereby, progress of a crack can be prevented and toughness can be improved.
  • the cubic boron nitride has a ratio I (220) / I of the X-ray diffraction intensity I (220) of the (220) plane to the X-ray diffraction intensity I (111) of the ( 111 ) plane in X-ray diffraction.
  • (111) is preferably 0.1 or more and 0.3 or less.
  • a cutting tool includes the above-described cubic boron nitride polycrystal. This cutting tool is useful for cutting ferrous materials.
  • a wear-resistant tool of one embodiment of the present invention is provided with the above-described cubic boron nitride polycrystal. This wear-resistant tool is useful for processing ferrous materials.
  • a grinding tool of one embodiment of the present invention is provided with the above-described cubic boron nitride polycrystal. This grinding tool is useful for grinding ferrous materials.
  • a method for producing a cubic boron nitride polycrystal according to an aspect of the present invention includes: Preparing a hexagonal boron nitride powder having a particle size of 0.5 ⁇ m or less as a starting material; When the pressure is P (GPa) and the temperature is T (° C.), P ⁇ ⁇ 7.68 ⁇ 10 ⁇ 9 T 3 + 5.3003 ⁇ 10 ⁇ 5 T 2 ⁇ 0.1224T + 102.23, T ⁇ 2200 and P ⁇ 25 And a step of converting the hexagonal boron nitride powder into cubic boron nitride and wurtzite boron nitride and sintering at a temperature and pressure that satisfy the following conditions.
  • the cubic boron nitride polycrystal obtained by this production method is a tough polycrystal having a fine grain size of the cubic boron nitride constituting it.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in more detail.
  • the cubic boron nitride polycrystal according to the present embodiment includes cubic boron nitride, and the cubic boron nitride has an average particle size of 150 nm or less.
  • the cubic boron nitride polycrystal has a crack generation load of 25 N or more in a fracture strength test in which a load is applied at a rate of 100 N / min using a diamond indenter of R 200 ⁇ m.
  • the cubic boron nitride polycrystal according to the present embodiment includes cubic boron nitride.
  • inevitable impurities may be included in the range showing the effect of the present embodiment. Examples of inevitable impurities include nitrogen (N 2 ), hydrogen (H 2 ), oxygen (O 2 ), and the like.
  • the polycrystalline body substantially does not contain a binder, a sintering aid, a catalyst and the like, and is one of the advantages of the cubic boron nitride polycrystalline body of the present embodiment. This is because the disadvantages of including a binder, a sintering aid, and a catalyst as in a conventional cubic boron nitride sintered body can be eliminated.
  • the cubic boron nitride polycrystal preferably has a normal pressure boron nitride content of 0.1% by volume or less. This is because if the atmospheric pressure boron nitride exceeds 0.1% by volume, the strength may be significantly reduced.
  • cubic boron nitride polycrystal is a sintered body
  • the term “polycrystal” is used in this embodiment because the sintered body is usually intended to contain a binder. Yes.
  • the cubic boron nitride contained in the cubic boron nitride polycrystal of the present embodiment has a small particle size, preferably has an average particle size of 150 nm or less, and has an average particle size of 100 nm or less. Is more preferable. Moreover, since this average particle diameter is so preferable that it becomes small, it is not necessary to limit the lower limit, but from a manufacturing viewpoint, the lower limit is 10 nm.
  • the particle diameter of such cubic boron nitride is preferably uniform from the viewpoint of high strength without stress concentration, and therefore the average particle diameter herein preferably shows a normal distribution.
  • the average particle size shows a normal distribution and is uniform.
  • the term “cubic boron nitride particle size” simply indicates the particle size of the cubic boron nitride crystal grains constituting the cubic boron nitride polycrystal.
  • the above average particle diameter can be obtained by a cutting method using a scanning electron microscope. Specifically, first, a cubic boron nitride polycrystal is observed at a magnification of 1000 to 100,000 using a scanning electron microscope (SEM) to obtain an SEM image.
  • SEM scanning electron microscope
  • the observation magnification and the diameter of the circle are preferably set so that the number of cubic boron nitride particles (crystal grains) placed on one straight line is about 10 to 50.
  • the average intercept length is obtained by dividing the length of the straight line by the number of crossing, and the average intercept length is 1.128.
  • the numerical value obtained by multiplying the average particle size is defined as the average particle size (this method is based on the method of calculating the nominal particle size of the ASTM standard).
  • the average particle size is more preferably obtained by using several SEM images and obtaining the average particle size by the method described above for each image, and the average value of the average particle size is defined as the average particle size. It is preferable to do.
  • the measurement by the method as described above may include the particle size of particles other than cubic boron nitride (for example, wurtzite boron nitride crystal particles). Even if it is included, it is regarded as the average particle diameter of cubic boron nitride.
  • cubic boron nitride for example, wurtzite boron nitride crystal particles. Even if it is included, it is regarded as the average particle diameter of cubic boron nitride.
  • the cubic boron nitride contained in the cubic boron nitride polycrystal according to the present embodiment has such a small particle size, so that it can be used for a wide range of applications such as a heavy load application and a fine machining application when used for a tool or the like. It will be applicable.
  • the cubic boron nitride polycrystal of this embodiment may contain wurtzite boron nitride (wBN), and preferably contains 0.01% by volume or more of such wurtzite boron nitride. Thereby, the structure of the polycrystalline body becomes denser.
  • the upper limit of the content of the wurtzite type boron nitride to be contained is 70% by volume or less from the viewpoint of the characteristics of the wurtzite type boron nitride.
  • wurtzite boron nitride has the effect of inhibiting crack growth and improving toughness, but wurtzite boron nitride is a metastable phase during the transition from hexagonal boron nitride to cubic boron nitride, It is inferior in stability to cubic boron nitride and has low wear resistance.
  • a more preferable range of the content of wurtzite boron nitride is 0.01 to 20% by volume.
  • the cubic boron nitride polycrystal includes wurtzite boron nitride, a plurality of cubic boron nitride crystal grains and a plurality of wurtzite boron nitride crystal grains are configured to be dispersed with each other.
  • the cubic boron nitrides, the wurtzite boron nitrides, and the cubic boron nitride and the wurtzite boron nitride are all firmly bonded and have a dense structure.
  • the cubic boron nitride polycrystal having a wurtzite boron nitride content of 0.01% by volume or more and the balance of cubic boron nitride and inevitable impurities has a cubic boron nitride content of 20 nm to It has an average particle diameter of about 72 nm, and the crack initiation load in the later-described fracture strength test is 33 N or more.
  • the cubic boron nitride polycrystal of the present embodiment may contain compressed hexagonal boron nitride, and preferably contains 0.01 to 0.5% by volume of such compressed hexagonal boron nitride.
  • action which prevents progress of a crack and improves toughness can be brought about.
  • the compression type hBN sintering is possible in a wide temperature range, and productivity is improved.
  • the compression type hBN exceeds 0.5% by volume, the stress concentration in the compression type hBN becomes large, and the strength may decrease.
  • the upper limit is 0.5% by volume.
  • the volume content of the compressed hBN is more preferably 0.01% by volume to 0.1% by volume, and particularly preferably 0.05% by volume to 0.1% by volume.
  • the cubic boron nitride polycrystal of the present embodiment requires a crack generation load of 25 N or more in a fracture strength test in which a load is applied at a rate of 100 N / min using a diamond indenter of R 200 ⁇ m.
  • This breaking strength test is carried out as follows.
  • R200 ⁇ m diamond indenter indicates that the radius of curvature of the tip shape of the diamond indenter is 200 ⁇ m. As long as this condition is satisfied, a diamond indenter can be used without any particular limitation.
  • the diamond indenter is brought into contact with the surface of the cubic boron nitride polycrystal, and a load is applied to the cubic boron nitride polycrystal at a rate of 100 N / min by the diamond indenter. Then, the load at the moment when a crack is generated in the cubic boron nitride polycrystal is measured, and this load is defined as a crack generation load. The moment when a crack occurs can be detected by an AE (acoustic emission) sensor.
  • AE acoustic emission
  • the crack generation load is more preferably 30N or more, and further preferably 40N or more.
  • the upper limit is not specifically limited. However, if cracks do not occur even when a load of 200 N or more is applied, the diamond indenter itself may be plastically deformed. Therefore, the upper limit (limit value) of crack generation load by this test (measurement method) is 200 N. Become.
  • the sample (cubic boron nitride polycrystal) is plastically deformed before the crack is generated, and the exact strength against the crack cannot be measured. Further, although measurement is possible using an indenter having a radius of curvature larger than R200 ⁇ m, a larger load is required until a crack occurs. Therefore, in the fracture strength test of the cubic boron nitride polycrystal of the present embodiment, an indenter of R200 ⁇ m was used.
  • the fracture strength test of the present embodiment is performed under a temperature condition of 23 ° C. ⁇ 5 ° C. This corresponds to approximately room temperature, for the purpose of excluding changes in the strength of the sample due to temperature and suppressing measurement variations.
  • rate which applies a load is 100 N / min as mentioned above, it may be a speed
  • the ratio I (220) / I (111) is preferably 0.1 or more and 0.3 or less.
  • the polycrystalline body When the ratio I (220) / I (111) is outside the above range, the polycrystalline body is oriented, and anisotropy occurs in the polycrystalline body. In this case, the polycrystalline body has a strength distribution, and there are a high strength surface and a weak surface. Therefore, it becomes inappropriate to use the polycrystalline body for a tool.
  • a rotary tool such as an end mill is divided into a surface that is likely to be worn or broken and a surface that is difficult to break, resulting in uneven wear. In order to eliminate the above disadvantages, it is preferable to make the polycrystal isotropic.
  • the ratio I (220) / I (111) is more preferably 0.15 or more and 0.25 or less.
  • the cubic boron nitride polycrystal of the present embodiment is suitable for use in cutting tools, antiwear tools, grinding tools and the like because the cubic boron nitride (crystal grains) has a fine grain size and is tough. Become. That is, the cutting tool, the wear-resistant tool, and the grinding tool of the present embodiment are each provided with the above cubic boron nitride polycrystal.
  • Each of the above-mentioned tools may be composed entirely of cubic boron nitride polycrystal, or only a part thereof (for example, a cutting edge portion in the case of a cutting tool) is made of cubic boron nitride polycrystal. It may be configured. Each tool may have a coating film formed on the surface thereof.
  • the cutting tool includes a drill, an end mill, a cutting edge exchangeable cutting tip for a drill, a cutting edge exchangeable cutting tip for an end mill, a cutting edge exchangeable cutting tip for milling, a cutting edge exchangeable cutting tip for turning, a metal saw, a tooth
  • Examples include cutting tools, reamers, taps, cutting tools, and the like.
  • examples of the anti-wear tool include a die, a scriber, a scribing wheel, and a dresser.
  • the method for producing a cubic boron nitride polycrystal according to this embodiment is as follows.
  • a step of preparing hexagonal boron nitride powder having a particle size of 0.5 ⁇ m or less as a starting material (hereinafter also referred to as “preparation step”);
  • T temperature
  • sintering step a step of converting the hexagonal boron nitride powder into cubic boron nitride and wurtzite boron nitride and sintering
  • the cubic boron nitride polycrystal described above can be manufactured by the above manufacturing method. That is, the cubic boron nitride polycrystal obtained by this production method has a fine grain size (that is, an average grain size of 150 nm or less) of the cubic boron nitride constituting it and is strong (that is, the above-described fracture strength test).
  • the polycrystal is a crack generation load at 25 N or more.
  • the hexagonal boron nitride powder as the starting material has a particle size slightly larger than the average particle size of the cubic boron nitride of the resulting cubic boron nitride polycrystal. Also good.
  • the bond between hBN is cut and recombined through recombination of atoms, so the particle size of cubic boron nitride is smaller than the particle size of the raw material. It is.
  • the particle size of the raw material is small, there will be many grain boundaries without bonds between the original hBN, and the particle size of the cubic boron nitride after conversion will be small.
  • the particle size of the cubic boron nitride is increased. Therefore, the particle size of the hexagonal boron nitride powder is 0.5 ⁇ m or less, and its lower limit is 0.05 ⁇ m for manufacturing reasons.
  • a more preferable particle size is 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the particle diameter of the hexagonal boron nitride powder is an average particle diameter measured by a laser diffraction scattering method using laser light.
  • Such a preparation step is not limited as long as the above hexagonal boron nitride powder is prepared.
  • a hexagonal boron nitride powder is produced by a conventionally known synthesis method, or a commercially available hexagonal crystal is obtained.
  • the means include obtaining boron nitride powder.
  • the pressure P (GPa) and temperature T (° C.) in the above-described sintering process are caused by problems such as grain growth on the high temperature side and residual unconverted hBN on the low temperature side, resulting in a decrease in strength.
  • the temperature T (° C.) is not particularly limited as long as the cubic boron nitride polycrystal is obtained, and it is not necessary to define the lower limit value.
  • the temperature T (° C.) is more preferably 1300 to 2100 ° C.
  • the pressure P (GPa) is not particularly limited as long as the cubic boron nitride polycrystal is obtained, and it is not necessary to define the lower limit thereof.
  • This pressure P (GPa) is more preferably 10 to 20 GPa.
  • the crack generation load of the obtained cubic boron nitride polycrystal becomes 25 N or more.
  • the application time of the temperature and pressure in the sintering process is 5 to 20 minutes. If it is shorter than 5 minutes, the sintering is insufficient, and even if it is longer than 20 minutes, there is no difference in the sintered state, which is economically disadvantageous. A more preferable application time is 10 minutes to 20 minutes.
  • Such a sintering process is a process in which hexagonal boron nitride powder is converted into cubic boron nitride and wurtzite boron nitride and sintered.
  • the conversion to type boron nitride is one in which hexagonal boron nitride is directly converted directly into cubic boron nitride and wurtzite type boron nitride without using a sintering aid or catalyst. It will be done at the same time.
  • the cubic boron nitride polycrystal obtained by the manufacturing method as described above has a toughness with improved fracture resistance because the grain size of the cubic boron nitride constituting it is fine and exhibits elastic behavior. It becomes a polycrystal.
  • the cubic boron nitride polycrystal can be suitably used for a cutting tool, an anti-abrasion tool, a grinding tool, and the like used for applications such as high-speed fine processing with a large load.
  • Examples 1 to 7 Cubic boron nitride polycrystals according to Examples 1 to 7 were produced by the following method. First, a hexagonal boron nitride powder having a particle size of 0.5 ⁇ m was prepared as a starting material (shown as “fine-grained hBN powder” in the column of starting material in Table 1 below) (preparation step).
  • the hexagonal boron nitride powder prepared above is put into a capsule made of a refractory metal and held for 20 minutes at the temperature and pressure described in Table 1 (in the column of “Synthesis conditions”) using an ultrahigh pressure and high temperature generator.
  • the hexagonal boron nitride powder was converted into cubic boron nitride and wurtzite boron nitride and sintered (sintering step). Thereby, a cubic boron nitride polycrystal was obtained.
  • the temperature and pressure in Table 1 satisfy the condition of P ⁇ ⁇ 7.68 ⁇ 10 ⁇ 9 T 3 + 5.3003 ⁇ 10 ⁇ 5 T 2 ⁇ 0.1224T + 102.23.
  • a cubic boron nitride polycrystal according to Comparative Example 1 was produced by the following method. First, a hexagonal boron nitride powder having a particle size of 0.5 ⁇ m was prepared as a starting material (shown as “fine-grained hBN powder” in the column of starting material in Table 1 below) (preparation step).
  • the hexagonal boron nitride powder prepared above is put into a capsule made of a refractory metal and held for 20 minutes at the temperature and pressure described in Table 1 (in the column of “Synthesis conditions”) using an ultrahigh pressure and high temperature generator.
  • the hexagonal boron nitride powder was converted into cubic boron nitride and sintered (sintering step). Thereby, a cubic boron nitride polycrystal was obtained.
  • ⁇ Comparative example 2> A cubic boron nitride polycrystal according to Comparative Example 2 was produced by the following method. First, a hexagonal boron nitride powder having a particle size of 0.5 ⁇ m was prepared as a starting material (shown as “fine-grained hBN powder” in the column of starting material in Table 1 below) (preparation step).
  • the hexagonal boron nitride powder prepared above is put into a capsule made of a refractory metal, and the temperature and pressure described in Table 1 (“Synthesis conditions” column) using a belt-type high-pressure high-temperature generator of the vertical pressurization type.
  • the hexagonal boron nitride powder was converted into cubic boron nitride and wurtzite boron nitride and sintered (sintering step). Thereby, a cubic boron nitride polycrystal was obtained.
  • a cubic boron nitride polycrystal according to Comparative Example 3 was produced by the following method. First, a hexagonal boron nitride powder having a particle size of 5 ⁇ m or less (shown as “coarse hBN powder” in the column of the starting material in Table 1 below) was prepared as a starting material (preparation step).
  • the hexagonal boron nitride powder prepared above is put into a capsule made of a refractory metal and held for 20 minutes at the temperature and pressure described in Table 1 (in the column of “Synthesis conditions”) using an ultrahigh pressure and high temperature generator.
  • the hexagonal boron nitride powder was converted into cubic boron nitride and wurtzite boron nitride and sintered (sintering step). Thereby, a cubic boron nitride polycrystal was obtained.
  • the above conditions satisfy the relationship of P ⁇ ⁇ 7.68 ⁇ 10 ⁇ 9 T 3 + 5.3003 ⁇ 10 ⁇ 5 T 2 ⁇ 0.1224T + 102.23, but the starting material has a particle size of 5 ⁇ m or less. Therefore, the particle size is different from that of the starting materials of the examples.
  • a cubic boron nitride sintered body according to Comparative Example 4 was produced by the following method. First, cubic boron nitride powder having an average particle diameter of 2 ⁇ m or less and a Co-based metal binder powder (shown as “cBN powder / metal binder powder” in the column of the starting material in Table 1 below) were prepared as starting materials. (Preparation process).
  • the cubic boron nitride powder and the Co-based metal binder powder prepared above are put in a capsule made of a refractory metal and described in Table 1 ("Synthesis conditions" column) using an ultrahigh pressure and high temperature generator. Sintering was carried out by holding at the temperature and pressure for 20 minutes (sintering step). Thereby, a cubic boron nitride sintered body was obtained.
  • the starting materials are different from the starting materials in the examples.
  • the generated load was measured by the following method.
  • each cross section of the cubic boron nitride polycrystal and the cubic boron nitride sintered body was observed using a scanning electron microscope (SEM) to obtain an SEM image.
  • SEM scanning electron microscope
  • a circle was drawn on the SEM image, and eight straight lines were drawn from the center of the circle to the outer circumference of the circle in a radial pattern (so that the crossing angle between the straight lines was almost equal).
  • the observation magnification and the circle diameter were set so that the number of cubic boron nitride particles placed on one straight line was about 10 to 50.
  • the average intercept length is obtained by dividing the length of the straight line by the number of crossing, and the average intercept length is 1.128.
  • the magnification of the above SEM image was 30000 times. The reason is that at a magnification less than this, the number of grains in the circle increases, the grain boundary becomes difficult to see and count errors occur, and the possibility of including a plate-like structure when drawing a line increases. It is. Further, when the magnification is higher than this, the number of grains in the circle is too small, and an accurate average particle diameter cannot be calculated. However, in Comparative Examples 1 and 4, since the particle size was too large, the magnification was set to 3000 times.
  • a diamond indenter of R 200 ⁇ m was prepared as an indenter, and the indenter was pressed against a sample (each cubic boron nitride polycrystal and cubic boron nitride sintered body) at a speed of 100 N / min at 23 ° C. ⁇ 5 ° C. A load was applied until cracking occurred, and the load when cracking occurred was measured as the cracking load. This measurement was performed three times. Further, as a crack generation load of each sample, an average value of three values obtained as a result of measurement three times as described above was obtained, and the result is shown in the column of “crack generation load” in Table 1.
  • Examples 1 to 4, 6, and 7 were confirmed to contain 0.6 to 62% by volume of wurtzite boron nitride (wBN).
  • the average particle size of the cubic boron nitride of Examples 1 to 7 was 20 to 88 nm.
  • the crack generation load of Examples 1 to 7 was 27 to 55.
  • the average particle size of the cubic boron nitride of Comparative Example 1 was 1240 nm, which was larger than Examples 1-7. Further, the crack generation load of Comparative Example 1 is 17 N, which is lower than Examples 1 to 7, and it is clear that the strength is low.
  • Comparative Example 2 the ratio I (220) / I (111) in X-ray diffraction of cubic boron nitride is 0.03, and the orientation is large and is not isotropic. Further, the crack generation load of Comparative Example 2 is 15 N, which is lower than those of Examples 1 to 7, and it is clear that the strength is low.
  • Comparative Example 4 uses cubic boron nitride powder and a binder as raw materials, and the crack generation load is 10 N, which is clearly lower than Examples 1 to 7, and thus the strength is also low.
  • the cubic boron nitride polycrystals and the cubic boron nitride sintered bodies of the respective examples and comparative examples were attached to the tip of a ball end mill tool having a tip diameter of 0.5 mm, and the cutting performance was evaluated.
  • a hardened steel of HRC60 was prepared as a work material, and 24 m was cut under the conditions of a rotational speed of 60000 rpm, a cutting speed of 200 mm / min, a cutting depth of 5 ⁇ m, and a feed amount of 3 ⁇ m.
  • Table 2 shows the wear amount of the tool at the end of cutting as a tool wear relative ratio.
  • Example 7 As shown in Table 2, on the basis of Example 7 with the smallest amount of wear, the amount of wear in Examples was 1 to 2.0. On the other hand, in Comparative Example 1 and Comparative Example 2, large chips occurred at the cutting lengths of 12 m and 10 m, respectively, and the processing was stopped. Further, in Comparative Examples 3 and 4, the wear amount was 3.5 times and 8.1 times that of Example 7 and was significantly worn. For this reason, it was confirmed that the cubic boron nitride polycrystal of the example was tougher than the cubic boron nitride polycrystal of the comparative example and the cubic boron nitride sintered body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

 立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素を含み、該立方晶窒化ホウ素は、150nm以下の平均粒径を有し、R200μmのダイヤモンド圧子を用いて100N/minの速度で荷重をかけていく破壊強度試験において、亀裂発生荷重が25N以上であるものである。

Description

立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
 本発明は、立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法に関し、特に鉄系材料の切削工具、耐摩工具、および研削工具として有用な立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法に関するものである。
 立方晶窒化ホウ素(以下「cBN」とも記す)はダイヤモンドに次ぐ硬度を有し、熱的安定性および化学的安定性にも優れる。また、鉄系材料に対しては、ダイヤモンドよりも安定なため、鉄系材料の加工工具としてcBN焼結体が用いられてきた。
 しかし、このcBN焼結体には、10~40体積%程度のバインダーが含まれており、このバインダーが、焼結体の強度、耐熱性、熱拡散性を低下させる原因となっていた。そのため、特に鉄系材料を高速で切削加工する場合に、熱負荷が大きくなり、刃先の欠損や亀裂が生じやすく工具の寿命を短くしていた。
 この問題を解決する手法として、バインダーを用いずに、触媒を用いてcBN焼結体を製造する方法がある。この方法では、六方晶窒化ホウ素(hBN)を原料とし、ホウ窒化マグネシウム(Mg3BN3)等を触媒として反応焼結させる。この方法で得られたcBN焼結体は、バインダーを含まないため、cBN同士が強く結合しており、熱伝導率が高くなる。そのため、ヒートシンク材やTAB(Tape Automated Bonding)ボンディングツールなどに用いられている。しかし、この焼結体の中には触媒が少量残留しているため、熱を加えると触媒とcBNとの熱膨張差による微細クラックが入りやすく、切削工具等には向かない。また、粒径が10μm前後と大きいため、熱伝導率が高いものの、強度は弱く、負荷の大きい切削用途等には耐えられない。
 一方、hBN等の常圧型BN(窒化ホウ素)を、超高圧高温下で触媒を用いず、直接hBNからcBNへ変換させると同時に焼結させること(直接変換焼結法)によってもcBN焼結体は得られる。たとえば、特開昭47-034099号公報(特許文献1)や特開平03-159964号公報(特許文献2)に、hBNを超高圧高温下でcBNに変換させcBN焼結体を得る方法が示されている。また、熱分解窒化ホウ素(pBN)を原料とし、cBN焼結体を得る方法がある。この種の方法が、例えば特開昭54-033510号公報(特許文献3)や特開平08-047801号公報(特許文献4)に示されている。この方法では7GPa、2100℃以上の条件が必要である。
 上記の条件よりもマイルドな条件でcBN焼結体を得る方法が、特公昭49-027518号公報(特許文献5)および特開平11-246271号公報(特許文献6)に記載されている。
特開昭47-034099号公報 特開平03-159964号公報 特開昭54-033510号公報 特開平08-047801号公報 特公昭49-027518号公報 特開平11-246271号公報
 特許文献5は、圧力6GPa、1100℃という条件でcBN焼結体を得る方法を開示している。この方法では原料であるhBNの粒子を3μm以下にするため、hBNが数質量%程度の酸化ホウ素不純物や吸着ガスを含む。したがって、これらの不純物や吸着ガスの影響により、焼結が十分に進行せず、また、酸化物を含むために硬度、強度、耐熱性が低くなり、切削工具および耐摩工具等として用いることができない。
 特許文献6は、上記の問題を解決するために、低結晶性の六方晶窒化ホウ素を原料とし、6~7GPa、1550~2100℃の条件で合成する方法を開示している。また、この方法で合成されたcBN多結晶体では結晶粒径が0.1~1μm程度であることが開示されている。
 しかしながら、仕上げ加工用および精密加工用などに有用な小さい粒径のcBN多結晶体を得るために焼結温度を低くすると、焼結性が低くなり多結晶体の強度が低くなる。さらに、粒径が小さくなると靭性が低くなり、工具が欠けやすくなるという課題もある。
 そこで、上記のような課題に鑑み、小さい粒径で、かつ強靭な立方晶窒化ホウ素多結晶体を提供することを目的とする。
 本発明の一態様に係る立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素を含み、該立方晶窒化ホウ素は、150nm以下の平均粒径を有し、R200μmのダイヤモンド圧子を用いて100N/minの速度で荷重をかけていく破壊強度試験において、亀裂発生荷重が25N以上であるものである。
 また、本発明の一態様に係る立方晶窒化ホウ素多結晶体の製造方法は、
 出発物質として粒径0.5μm以下の六方晶窒化ホウ素粉末を準備する工程と、
 圧力をP(GPa)、温度をT(℃)としたときに、
P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、該六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させる工程と
を備えている。
 上記によれば、立方晶窒化ホウ素多結晶体は、それを構成する立方晶窒化ホウ素の粒径が微細で、かつ強靭な多結晶体となる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、高圧高温下において、粒径0.5μm以下の六方晶窒化ホウ素粉末を立方晶窒化ホウ素に変換することにより、微細な組織を有し、かつ強靱な立方晶窒化ホウ素多結晶体が得られることを見出した。
 [1]すなわち、本発明の一態様に係る立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素を含み、該立方晶窒化ホウ素は、150nm以下の平均粒径を有し、R200μmのダイヤモンド圧子を用いて100N/minの速度で荷重をかけていく破壊強度試験において、亀裂発生荷重が25N以上であるものである。この立方晶窒化ホウ素多結晶体は、それを構成する立方晶窒化ホウ素の粒径が微細で、かつ強靭な多結晶体となる。
 [2]上記立方晶窒化ホウ素は、100nm以下の平均粒径を有することが好ましい。このように平均粒径をさらに小さくすることにより、小さな粒径が求められる用途への適用がより好適になる。
 [3]上記立方晶窒化ホウ素多結晶体は、ウルツ鉱型窒化ホウ素を0.01体積%以上含むことが好ましい。これにより、多結晶体の組織がより緻密なものとなる。
 [4]上記立方晶窒化ホウ素多結晶体は、圧縮型六方晶窒化ホウ素を0.01~0.5体積%含むことが好ましい。これにより、亀裂の進展を阻止し靭性を向上させることができる。
 [5]上記立方晶窒化ホウ素は、X線回折において、(111)面のX線回折強度I(111)に対する(220)面のX線回折強度I(220)の比I(220)/I(111)が0.1以上0.3以下であることが好ましい。これにより、多結晶体が等方的なものとなり、工具等とした場合に偏摩耗が低減される。
 [6]本発明の一態様の切削工具は、上記の立方晶窒化ホウ素多結晶体を備えたものである。この切削工具は、鉄系材料の切削に有用である。
 [7]本発明の一態様の耐摩工具は、上記の立方晶窒化ホウ素多結晶体を備えたものである。この耐摩工具は、鉄系材料の加工に有用である。
 [8]本発明の一態様の研削工具は、上記の立方晶窒化ホウ素多結晶体を備えたものである。この研削工具は、鉄系材料の研削に有用である。
 [9]本発明の一態様に係る立方晶窒化ホウ素多結晶体の製造方法は、
 出発物質として粒径0.5μm以下の六方晶窒化ホウ素粉末を準備する工程と、
 圧力をP(GPa)、温度をT(℃)としたときに、
P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、該六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させる工程と
を備えている。この製造方法により得られる立方晶窒化ホウ素多結晶体は、それを構成する立方晶窒化ホウ素の粒径が微細で、かつ強靭な多結晶体となる。
 [本発明の実施形態の詳細]
 以下、本発明の実施形態(以下「本実施形態」と記す)についてさらに詳細に説明する。
 <立方晶窒化ホウ素多結晶体>
 本実施形態に係る立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素を含み、該立方晶窒化ホウ素は、150nm以下の平均粒径を有する。そして、当該立方晶窒化ホウ素多結晶体は、R200μmのダイヤモンド圧子を用いて100N/minの速度で荷重をかけていく破壊強度試験において、亀裂発生荷重が25N以上であるものである。
 このように本実施形態に係る立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素を含む。立方晶窒化ホウ素を含む限り、本実施形態の効果を示す範囲において不可避不純物を含んでいても差し支えない。不可避不純物としては、たとえば窒素(N2)、水素(H2)、酸素(O2)などを挙げることができる。該多結晶体は、実質的にバインダー、焼結助剤、触媒などを含んでおらず、本実施形態の立方晶窒化ホウ素多結晶体の有利な点の一つである。なぜなら、従来の立方晶窒化ホウ素焼結体のように、バインダーを含んだり、焼結助剤や触媒を含むことによるデメリットを解消できるからである。
 また、該立方晶窒化ホウ素多結晶体は、常圧型窒化ホウ素の含有率が0.1体積%以下であることが好ましい。常圧型窒化ホウ素が0.1体積%を超えて含有すると、強度が大幅に低下する可能性があるためである。
 なお、該立方晶窒化ホウ素多結晶体は焼結体であるが、通常焼結体とはバインダーを含むことを意図する場合が多いため、本実施形態では「多結晶体」という用語を用いている。
 <立方晶窒化ホウ素>
 本実施形態の立方晶窒化ホウ素多結晶体に含まれる立方晶窒化ホウ素は、小さい粒径を有するものであり、150nm以下の平均粒径を有することが好ましく、100nm以下の平均粒径を有することがより好ましい。また、この平均粒径は、小さくなればなる程好ましいため、その下限をあえて限定する必要はないが、製造的観点からその下限は10nmである。
 このような立方晶窒化ホウ素の粒径は、応力集中が無く高強度になるという観点から均一であることが好ましく、このためここでいう平均粒径とは正規分布を示すことが好ましい。粒径が大きい粒子や小さい粒子が含まれる場合、そこに応力が集中してしまい強度が低くなるため、平均粒径は正規分布を示し、均一であることが好ましい。なお、本願において、単に立方晶窒化ホウ素の粒径という場合は、立方晶窒化ホウ素多結晶体を構成する立方晶窒化ホウ素の結晶粒の粒径を示すものとする。
 上記の平均粒径は、走査電子顕微鏡を用いた切断法により求めることができる。具体的には、まず走査電子顕微鏡(SEM)を用いて立方晶窒化ホウ素多結晶体を1000~100000倍の倍率で観察し、SEM画像を得る。
 次にそのSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引く。この場合、上記の観察倍率および円の直径は、上記の直線1本あたりに載る立方晶窒化ホウ素粒子(結晶粒)の個数が10~50個程度になるように設定することが好ましい。
 引続き、上記の各直線毎に立方晶窒化ホウ素の結晶粒界を横切る数を数え、直線の長さをその横切る数で割ることにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を平均粒径とする(この方法は、ASTM規格の公称粒径を算出する方法に準じたものである)。なお、このような平均粒径は、より好ましくは数枚のSEM画像を用いて、各画像毎に上記のような方法で平均粒径を求め、その平均粒径の平均値を平均粒径とすることが好適である。また、上記のような方法による測定では、立方晶窒化ホウ素以外の粒子(たとえばウルツ鉱型窒化ホウ素の結晶粒)の粒径を含む可能性があるが、このように他の粒子の粒径を含む場合であっても、立方晶窒化ホウ素の平均粒径とみなすものとする。
 本実施形態の立方晶窒化ホウ素多結晶体に含まれる立方晶窒化ホウ素は、このように小さい粒径を有することにより、工具等に用いる場合に負荷の大きな用途や微細加工用途など広範囲の用途に適用することができるものとなる。
 <ウルツ鉱型窒化ホウ素>
 本実施形態の立方晶窒化ホウ素多結晶体は、ウルツ鉱型窒化ホウ素(wBN)を含んでいても良く、このようなウルツ鉱型窒化ホウ素を0.01体積%以上含むことが好ましい。これにより、多結晶体の組織がより緻密なものとなる。なお、含有されるウルツ鉱型窒化ホウ素の含有量の上限は、ウルツ鉱型窒化ホウ素の特性の観点から70体積%以下である。ウルツ鉱型窒化ホウ素が存在すると亀裂進展を阻害し靱性を向上させる効果があるが、ウルツ鉱型窒化ホウ素は六方晶窒化ホウ素から立方晶窒化ホウ素への転移の間の準安定相であるため、立方晶窒化ホウ素よりも安定性に劣り、耐摩耗性が低いという特性を有する。ウルツ鉱型窒化ホウ素の含有量のより好ましい範囲は、0.01~20体積%である。
 立方晶窒化ホウ素多結晶体がウルツ鉱型窒化ホウ素を含む場合、複数の立方晶窒化ホウ素の結晶粒と複数のウルツ鉱型窒化ホウ素の結晶粒とが、互いに分散するように構成される。そして、立方晶窒化ホウ素同士、ウルツ鉱型窒化ホウ素同士、さらに立方晶窒化ホウ素とウルツ鉱型窒化ホウ素とは、いずれも強固に結合し、緻密な組織を有することになる。
 なお、ウルツ鉱型窒化ホウ素の含有率が0.01体積%以上であって、残部が立方晶窒化ホウ素および不可避不純物で構成される立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素が20nm~72nm程度の平均粒径を有し、後述の破壊強度試験における亀裂発生荷重が33N以上となる。
 <圧縮型六方晶窒化ホウ素>
 本実施形態の立方晶窒化ホウ素多結晶体は、圧縮型六方晶窒化ホウ素を含んでいても良く、このような圧縮型六方晶窒化ホウ素を0.01~0.5体積%含むことが好ましい。これにより、亀裂の進展を阻止し靭性を向上させる作用をもたらすことができる。また圧縮型hBNの存在を許容することで、広い温度範囲で焼結が可能となり、生産性が向上する。ただし圧縮型hBNが0.5体積%を超えると、圧縮型hBNでの応力集中が大きくなり強度が低下する場合もある。したがって立方晶窒化ホウ素多結晶体が圧縮型hBNをさらに含む場合、その上限は0.5体積%である。圧縮型hBNの体積含有率は、より好ましくは0.01体積%以上0.1体積%以下であり、特に好ましくは0.05体積%以上0.1体積%以下である。
 <破壊強度試験>
 本実施形態の立方晶窒化ホウ素多結晶体は、R200μmのダイヤモンド圧子を用いて100N/minの速度で荷重をかけていく破壊強度試験において、亀裂発生荷重が25N以上であることを要する。この破壊強度試験は次のようにして実施する。
 まず、R200μmのダイヤモンド圧子を準備する。「R200μmのダイヤモンド圧子」とは、当該ダイヤモンド圧子の先端形状の曲率半径が200μmであることを示す。この条件を満たす限り、他は特に限定することなくダイヤモンド圧子を用いることができる。
 次いで、このダイヤモンド圧子を立方晶窒化ホウ素多結晶体の表面に当接させ、このダイヤモンド圧子により100N/minの速度で立方晶窒化ホウ素多結晶体に荷重をかけていく。そして、立方晶窒化ホウ素多結晶体に亀裂が発生した瞬間の荷重を測定し、この荷重を亀裂発生荷重とする。なお、亀裂が発生する瞬間はAE(アコースティック・エミッション)センサーで検知することができる。
 この亀裂発生荷重が大きいほど強度が高いことを示す。よって、亀裂発生荷重は30N以上であることがより好ましく、40N以上であることがさらに好ましい。なお、亀裂発生荷重は大きいほど好ましいためその上限は特に限定されない。しかし、200N以上の荷重をかけても亀裂が発生しない場合は、ダイヤモンド圧子自体が塑性変形する可能性があるため、この試験(測定手法)による亀裂発生荷重の上限値(限界値)は200Nとなる。
 この亀裂発生荷重が25N未満の場合、切削加工時等において容易に欠損する傾向にあり、切削加工等の用途に適さないものとなる。
 なお、上記の曲率半径がR200μmよりも小さくなると、亀裂が発生する前に試料(立方晶窒化ホウ素多結晶体)が塑性変形してしまい、亀裂に対する正確な強度を測定できない。また、曲率半径がR200μmよりも大きい圧子を用いても測定は可能であるが、亀裂が発生するまでにより大きな荷重が必要となる。そのため、本実施形態の立方晶窒化ホウ素多結晶体の破壊強度試験ではR200μmの圧子を用いることにした。
 また、本実施形態の破壊強度試験は、23℃±5℃の温度条件下で実行されることが好ましい。これは、略室温に相当し、温度による試料の強度変化の除外や測定バラツキの抑制のためである。また、上記のように荷重をかける速度は100N/minとしているが、これよりも小さい速度であっても差し支えない。しかし、100N/minを超える速度で荷重をかけると、測定値がバラツキやすくなるため好ましくない。
 <X線回折>
 本実施形態の立方晶窒化ホウ素多結晶体に含まれる立方晶窒化ホウ素は、X線回折において、(111)面のX線回折強度I(111)に対する(220)面のX線回折強度I(220)の比I(220)/I(111)が0.1以上0.3以下であることが好ましい。これにより、多結晶体が等方的なものとなり、工具等とした場合に偏摩耗が低減される。
 比I(220)/I(111)が上記の範囲外である場合、多結晶体は配向することとなり、多結晶体に異方性が生じることになる。この場合、多結晶体に強度の分布が生じてしまい、強度の高い面と弱い面とが存在することなる。したがって、多結晶体を工具用途に用いることが不適切となる。特にエンドミルといった回転工具では摩耗もしくは欠損しやすい面としにくい面とに分かれてしまい、偏摩耗が生じる。上記の欠点を無くすために多結晶体を等方的にすることが好ましい。
 上記の比I(220)/I(111)は、より好ましくは0.15以上0.25以下である。
 <用途>
 本実施形態の立方晶窒化ホウ素多結晶体は、立方晶窒化ホウ素(結晶粒)の粒径が微細であり、かつ強靭であるため、切削工具、耐摩工具、研削工具などに用いることが好適となる。すなわち、本実施形態の切削工具、耐摩工具、および研削工具は、それぞれ上記の立方晶窒化ホウ素多結晶体を備えたものである。
 なお、上記の各工具は、その全体が立方晶窒化ホウ素多結晶体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化ホウ素多結晶体で構成されていても良い。また、各工具は、その表面にコーティング膜が形成されていても良い。
 ここで、上記切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイト等を挙げることができる。
 また、上記耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。
 また、上記研削工具としては、研削砥石などを挙げることができる。
 <製造方法>
 本実施形態に係る立方晶窒化ホウ素多結晶体の製造方法は、
 出発物質として粒径0.5μm以下の六方晶窒化ホウ素粉末を準備する工程(以下「準備工程」とも記す)と、
 圧力をP(GPa)、温度をT(℃)としたときに、
P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23、
T≦2200、および
P≦25
という条件を満たす温度および圧力において、該六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させる工程(以下「焼結工程」とも記す)と
を備えている。
 上記の製造方法により、上記で説明してきた立方晶窒化ホウ素多結晶体を製造することができる。すなわち、この製造方法により得られる立方晶窒化ホウ素多結晶体は、それを構成する立方晶窒化ホウ素の粒径が微細(すなわち平均粒径が150nm以下)で、かつ強靭(すなわち上記の破壊強度試験における亀裂発生荷重が25N以上)な多結晶体となる。
 上記準備工程において、出発物質である六方晶窒化ホウ素粉末の粒径は、得られる立方晶窒化ホウ素多結晶体の立方晶窒化ホウ素の平均粒径よりも少し大きな粒径を有するものを採用しても良い。六方晶窒化ホウ素から立方晶窒化ホウ素へと転移する際にhBN間の結合を切って、原子の組み換えを経て再結合するために原料の粒径よりも立方晶窒化ホウ素の粒径が小さくなるためである。ただし、原料の粒径が小さいと本来のhBN間の結合が無い粒界が多くなるため、変換後の立方晶窒化ホウ素の粒径は小さくなる。逆に原料の粒径が大きいと立方晶窒化ホウ素の粒径が大きくなる。したがって、六方晶窒化ホウ素粉末の粒径は0.5μm以下とし、製造的理由からその下限値は0.05μmである。より好ましい粒径は、0.1μm以上0.5μm以下である。
 なお、六方晶窒化ホウ素粉末の粒径は、レーザー光を利用したレーザー回折散乱法により測定された平均粒径をいう。
 このような準備工程は、上記の六方晶窒化ホウ素粉末を準備するものである限り、その手段は限定されず、たとえば六方晶窒化ホウ素粉末を従来公知の合成法により製造したり、市販の六方晶窒化ホウ素粉末を入手する等の手段を挙げることができる。
 また、上記の焼結工程における圧力P(GPa)および温度T(℃)は、高温側では粒成長、低温側では未変換hBNの残留などの問題が発生し、強度が下がってしまうという理由から、以下の
P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23、
T≦2200、および
P≦25
という条件を満たすことが必要である。
 ここで、温度T(℃)は、立方晶窒化ホウ素多結晶体が得られる温度であれば特に限定はなく、その下限値を規定する必要はない。この温度T(℃)は、より好ましくは1300~2100℃である。
 また、圧力P(GPa)も、立方晶窒化ホウ素多結晶体が得られる圧力であれば特に限定はなく、その下限値を規定する必要はない。この圧力P(GPa)は、より好ましくは10~20GPaである。
 上記した好適な範囲の温度および圧力を採用しかつ上記の関係式を満たす焼結工程を実行すると、得られる立方晶窒化ホウ素多結晶体の亀裂発生荷重は25N以上となる。
 なお、上記焼結工程における上記温度および圧力の適用時間は、5分~20分である。5分より短い場合、焼結が不十分となり、20分より長くしても焼結状態に差はなく経済的に不利となる。より好ましい適用時間は、10分~20分である。
 このような焼結工程は、六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させる工程であるが、六方晶窒化ホウ素粉末の立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素への変換は、焼結助剤や触媒を用いることなく、六方晶窒化ホウ素が単独で直接立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換されるものであり、通常この変換は焼結と同時に行なわれることになる。
 上記のような製造方法により得られる立方晶窒化ホウ素多結晶体は、それを構成する立方晶窒化ホウ素の粒径が微細で、かつ弾性的な振舞を示すため、耐欠損性が向上した強靭な多結晶体となる。このため、立方晶窒化ホウ素多結晶体は、負荷の大きな高速の微細加工等の用途に使用される切削工具、耐摩工具、研削工具等に好適に用いることができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1~7>
 実施例1~実施例7に係る立方晶窒化ホウ素多結晶体を以下の方法で作製した。まず、出発物質として粒径0.5μmの六方晶窒化ホウ素粉末(以下の表1の出発物質の欄に「微粒hBN粉末」と示す)を準備した(準備工程)。
 次いで、上記で準備した六方晶窒化ホウ素粉末を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1(「合成条件」の欄)に記載した温度および圧力において20分間保持することにより、六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させた(焼結工程)。これにより、立方晶窒化ホウ素多結晶体を得た。
 なお、表1の温度および圧力は、P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23という条件を満たしている。
 <比較例1>
 比較例1に係る立方晶窒化ホウ素多結晶体を以下の方法で作製した。まず、出発物質として粒径0.5μmの六方晶窒化ホウ素粉末(以下の表1の出発物質の欄に「微粒hBN粉末」と示す)を準備した(準備工程)。
 次いで、上記で準備した六方晶窒化ホウ素粉末を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1(「合成条件」の欄)に記載した温度および圧力において20分間保持することにより、六方晶窒化ホウ素粉末を立方晶窒化ホウ素に変換させ、かつ焼結させた(焼結工程)。これにより、立方晶窒化ホウ素多結晶体を得た。
 なお、上記の条件は、温度が2400℃であるため、T≦2200という条件を満たさない。
 <比較例2>
 比較例2に係る立方晶窒化ホウ素多結晶体を以下の方法で作製した。まず、出発物質として粒径0.5μmの六方晶窒化ホウ素粉末(以下の表1の出発物質の欄に「微粒hBN粉末」と示す)を準備した(準備工程)。
 次いで、上記で準備した六方晶窒化ホウ素粉末を高融点金属からなるカプセルに入れ、上下加圧式のベルト型高圧高温発生装置を用いて表1(「合成条件」の欄)に記載した温度および圧力において20分間保持することにより、六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させた(焼結工程)。これにより、立方晶窒化ホウ素多結晶体を得た。
 なお、上記の条件は、P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23という関係を満たさず、X線回折強度I(220)の比I(220)/I(111)が0.1以上0.3以下という関係も満たしていない。
 <比較例3>
 比較例3に係る立方晶窒化ホウ素多結晶体を以下の方法で作製した。まず、出発物質として粒径5μm以下の六方晶窒化ホウ素粉末(以下の表1の出発物質の欄に「粗粒hBN粉末」と示す)を準備した(準備工程)。
 次いで、上記で準備した六方晶窒化ホウ素粉末を高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1(「合成条件」の欄)に記載した温度および圧力において20分間保持することにより、六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させた(焼結工程)。これにより、立方晶窒化ホウ素多結晶体を得た。
 なお、上記の条件は、P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23という関係を満たしているが、出発物質の粒径が5μm以下とされているため、実施例の出発物質に比し粒径が大きい点が異なっている。
 <比較例4>
 比較例4に係る立方晶窒化ホウ素焼結体を以下の方法で作製した。まず、出発物質として平均粒径2μm以下の立方晶窒化ホウ素粉末とCo系の金属結合材粉末(以下の表1の出発物質の欄に「cBN粉末/金属結合材粉末」と示す)を準備した(準備工程)。
 次いで、上記で準備した立方晶窒化ホウ素粉末とCo系の金属結合材粉末とを高融点金属からなるカプセルに入れ、超高圧高温発生装置を用いて表1(「合成条件」の欄)に記載した温度および圧力において20分間保持することにより焼結させた(焼結工程)。これにより、立方晶窒化ホウ素焼結体を得た。
 なお、上記の条件は、出発物質が実施例の出発物質と異なっている。
 <評価>
 上記の様にして得られた実施例1~7および比較例1~3の立方晶窒化ホウ素多結晶体、比較例4の立方晶窒化ホウ素焼結体の組成、X線回折、粒径、亀裂発生荷重を下記の手法で測定した。
 <組成>
 各立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体に含まれる立方晶窒化ホウ素(cBN)、圧縮型六方晶窒化ホウ素(hBN)、およびウルツ鉱型窒化ホウ素(wBN)を、X線回折装置により同定した。この装置のX線の線源はCuであり、波長1.54ÅのKα線であった。その結果を表1の「組成」の欄に示す。
 <X線回折>
 各立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体に含まれる立方晶窒化ホウ素について、X線回折装置により、(111)面のX線回折強度I(111)に対する(220)面のX線回折強度I(220)の比I(220)/I(111)を求めた。この装置のX線の線源はCuであり、波長1.54ÅのKα線であった。その結果を表1の「XRD I(220)/I(111)」の欄に示す。
 <粒径>
 各立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体に含まれる立方晶窒化ホウ素の平均粒径を、走査電子顕微鏡を用いた切断法により求めた。
 すなわち、まず走査電子顕微鏡(SEM)を用いて立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体の各断面を観察し、SEM画像を得た。
 次にそのSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引いた。この場合、上記の観察倍率および円の直径は、上記の直線1本あたりに載る立方晶窒化ホウ素粒子の個数が10~50個程度になるように設定した。
 引続き、上記の各直線毎に立方晶窒化ホウ素の結晶粒界を横切る数を数え、直線の長さをその横切る数で割ることにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を平均粒径とした。
 なお、上記のSEM画像の倍率は30000倍とした。その理由は、これ以下の倍率では、円内の粒の数が多くなり、粒界が見えにくくなるとともに数え間違いが発生する上、線を引く際に板状組織を含める可能性が高くなるからである。また、これ以上の倍率では、円内の粒の数が少な過ぎて、正確な平均粒径が算出できないからである。ただし、比較例1および4に関しては、粒径が大きすぎるため、倍率を3000倍とした。
 また、各実施例および各比較例毎に、1つの試料に対して別々の箇所を撮影した3枚のSEM画像を使用し、各SEM画像毎に上記の方法で平均粒径を求め、得られた3つの平均粒径の平均値を平均粒径とした。その結果を表1の「平均粒径」の欄に示す。
 <亀裂発生荷重>
 各立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体について、亀裂発生荷重を測定するために、以下の条件で破壊強度試験を実施した。
 すなわち、圧子としてR200μmのダイヤモンド圧子を準備し、23℃±5℃において100N/minの速度で圧子を試料(各立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体)に押し付けて、亀裂が発生するまで荷重をかけ、亀裂が発生した際の荷重を亀裂発生荷重として測定した。この測定を3回行なった。また、各試料の亀裂発生荷重として、上記のように3回測定した結果の3つの値の平均値を求め、その結果を表1の「亀裂発生荷重」の欄に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4、6、7は、0.6~62体積%のウルツ鉱型窒化ホウ素(wBN)を含有していることが確認された。また、実施例1~7の立方晶窒化ホウ素の平均粒径は、20~88nmであった。このとき、実施例1~7の亀裂発生荷重は27~55であった。
 これに対し、比較例1の立方晶窒化ホウ素の平均粒径は1240nmと実施例1~7と比較して大きかった。また比較例1の亀裂発生荷重は17Nであり、実施例1~7よりも低く、以って強度が低いことは明らかである。
 また、比較例2は、立方晶窒化ホウ素のX線回折における比I(220)/I(111)が0.03となっており、配向性が大きく、等方的ではない。また比較例2の亀裂発生荷重は15Nであり、実施例1~7よりも低く、以って強度が低いことは明らかである。
 また、比較例3は、粒径5μmの六方晶窒化ホウ素粉末を原料としており、平均粒径が165nmで実施例1~7と比較して大きかった。このとき、亀裂発生荷重は21Nであり、実施例1~7よりも低く、以って強度も低いことは明らかである。
 また、比較例4は立方晶窒化ホウ素粉末と結合材を原料としており、亀裂発生荷重は10Nであり、実施例1~7よりも低く、以って強度も低いことは明らかである。
 さらに、各実施例および各比較例の立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体を先端径0.5mmのボールエンドミル工具の先端に取り付け、切削性能について評価を行なった。被削材としてHRC60の焼入鋼を準備し、回転数60000rpm、切削速度200mm/min、切り込み量5μm、送り量3μmの条件で、24mの切削を行なった。切削終了時の工具の摩耗量を工具損耗相対比として表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、一番摩耗量が少なかった実施例7を基準とすると実施例の摩耗量は1~2.0であった。これに対し、比較例1および比較例2はそれぞれ切削長12mおよび10mの段階で大きな欠けが発生し、加工を中止した。また、比較例3および4は実施例7に対して摩耗量が3.5倍と8.1倍と大きく摩耗していた。このため、実施例の立方晶窒化ホウ素多結晶体が比較例の立方晶窒化ホウ素多結晶体および立方晶窒化ホウ素焼結体に対し、強靭であることが確認された。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (9)

  1.  立方晶窒化ホウ素を含み、
     前記立方晶窒化ホウ素は、150nm以下の平均粒径を有し、
     R200μmのダイヤモンド圧子を用いて100N/minの速度で荷重をかけていく破壊強度試験において、亀裂発生荷重が25N以上である、立方晶窒化ホウ素多結晶体。
  2.  前記立方晶窒化ホウ素は、100nm以下の平均粒径を有する、請求項1に記載の立方晶窒化ホウ素多結晶体。
  3.  前記立方晶窒化ホウ素多結晶体は、ウルツ鉱型窒化ホウ素を0.01体積%以上含む、請求項1または請求項2に記載の立方晶窒化ホウ素多結晶体。
  4.  前記立方晶窒化ホウ素多結晶体は、圧縮型六方晶窒化ホウ素を0.01~0.5体積%含む、請求項1~請求項3のいずれか1項に記載の立方晶窒化ホウ素多結晶体。
  5.  前記立方晶窒化ホウ素は、X線回折において、(111)面のX線回折強度I(111)に対する(220)面のX線回折強度I(220)の比I(220)/I(111)が0.1以上0.3以下である、請求項1~請求項4のいずれか1項に記載の立方晶窒化ホウ素多結晶体。
  6.  請求項1~請求項5のいずれか1項に記載の立方晶窒化ホウ素多結晶体を備えた切削工具。
  7.  請求項1~請求項5のいずれか1項に記載の立方晶窒化ホウ素多結晶体を備えた耐摩工具。
  8.  請求項1~請求項5のいずれか1項に記載の立方晶窒化ホウ素多結晶体を備えた研削工具。
  9.  出発物質として粒径0.5μm以下の六方晶窒化ホウ素粉末を準備する工程と、
     圧力をP(GPa)、温度をT(℃)としたときに、
    P≧-7.68×10-93+5.3003×10-52-0.1224T+102.23、
    T≦2200、および
    P≦25
    という条件を満たす温度および圧力において、前記六方晶窒化ホウ素粉末を立方晶窒化ホウ素およびウルツ鉱型窒化ホウ素に変換させ、かつ焼結させる工程と
    を備えた、立方晶窒化ホウ素多結晶体の製造方法。
PCT/JP2016/051221 2015-02-09 2016-01-18 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法 WO2016129328A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16748973.1A EP3257829B1 (en) 2015-02-09 2016-01-18 Cubic boron nitride polycrystal, cutting tool, wear resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
US15/549,783 US10519068B2 (en) 2015-02-09 2016-01-18 Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
CN201680009499.XA CN107207364B (zh) 2015-02-09 2016-01-18 立方氮化硼多晶体、切削工具、耐磨工具、研磨工具、和立方氮化硼多晶体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-023244 2015-02-09
JP2015023244A JP6447205B2 (ja) 2015-02-09 2015-02-09 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法

Publications (1)

Publication Number Publication Date
WO2016129328A1 true WO2016129328A1 (ja) 2016-08-18

Family

ID=56614487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051221 WO2016129328A1 (ja) 2015-02-09 2016-01-18 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法

Country Status (5)

Country Link
US (1) US10519068B2 (ja)
EP (1) EP3257829B1 (ja)
JP (1) JP6447205B2 (ja)
CN (1) CN107207364B (ja)
WO (1) WO2016129328A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066261A1 (ja) * 2016-10-06 2018-04-12 住友電気工業株式会社 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具
WO2019244894A1 (ja) 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法
WO2020009117A1 (ja) 2018-07-03 2020-01-09 住友電工ハードメタル株式会社 切削インサート及びその製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447197B2 (ja) 2015-02-04 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
US11041791B2 (en) * 2017-08-10 2021-06-22 Sumitomo Electric Industries, Ltd. Indenter made of polycrystalline diamond, and method and apparatus using the same for evaluating crack initiation load
EP3932890A4 (en) * 2019-02-28 2022-04-27 Sumitomo Electric Hardmetal Corp. POLYCRYSTALLINE CUBIC BORON NITRIDE AND METHOD FOR PRODUCTION
WO2020174923A1 (ja) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法
WO2020174922A1 (ja) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法
JP7204558B2 (ja) * 2019-03-27 2023-01-16 京セラ株式会社 窒化硼素質焼結体、インサートおよび切削工具
DE112020003057T8 (de) * 2019-06-27 2022-04-28 Kyocera Corporation Einsatz und Schneidwerkzeug
US20210032934A1 (en) * 2019-07-29 2021-02-04 Saudi Arabian Oil Company Milling tools from new wurtzite boron nitride (w-bn) superhard material
CN110467469B (zh) * 2019-08-28 2023-04-25 郑州中南杰特超硬材料有限公司 一种合成多晶立方氮化硼用前驱物的制备方法
JPWO2021059700A1 (ja) * 2019-09-25 2021-04-01
WO2021131051A1 (ja) * 2019-12-27 2021-07-01 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体及びその製造方法
US11866372B2 (en) * 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)
JP7259137B2 (ja) * 2020-08-20 2023-04-17 デンカ株式会社 窒化ホウ素粒子、窒化ホウ素粉末、樹脂組成物、及び樹脂組成物の製造方法
WO2022070402A1 (ja) 2020-10-02 2022-04-07 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JPWO2022138146A1 (ja) * 2020-12-25 2022-06-30
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927518B1 (ja) * 1970-05-23 1974-07-18
JP2007217281A (ja) * 2007-05-22 2007-08-30 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素焼結体およびその製造方法
JP2014034487A (ja) * 2012-08-08 2014-02-24 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引きダイス、ならびに研削工具
JP2014080322A (ja) * 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515660B2 (ja) 1972-07-11 1976-02-21
IN150013B (ja) 1977-07-01 1982-06-26 Gen Electric
JP2590413B2 (ja) 1989-11-17 1997-03-12 科学技術庁無機材質研究所長 透光性高純度立方晶窒化ほう素焼結体の製造法
JP3472630B2 (ja) 1994-08-05 2003-12-02 電気化学工業株式会社 切削工具用立方晶窒化ほう素燒結体及び切削工具
JPH08336705A (ja) 1995-06-07 1996-12-24 Mitsubishi Materials Corp 切刃のすくい面がすぐれた耐摩耗性を示す立方晶窒化ほう素焼結体製切削工具
JP4106574B2 (ja) 1998-02-28 2008-06-25 住友電気工業株式会社 立方晶窒化ホウ素焼結体およびその製造方法
JP2008019164A (ja) * 2007-08-08 2008-01-31 National Institute For Materials Science 超微粒子cBN焼結体
JP5648178B2 (ja) 2011-01-19 2015-01-07 名古屋市 六方晶系窒化ホウ素焼結体の製造方法及び六方晶系窒化ホウ素焼結体
JP5958835B2 (ja) * 2011-04-11 2016-08-02 住友電気工業株式会社 切削工具およびその製造方法
JP5900502B2 (ja) * 2011-08-30 2016-04-06 住友電気工業株式会社 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引ダイス、ならびに研削工具
GB201305873D0 (en) 2013-03-31 2013-05-15 Element Six Abrasives Sa Superhard constructions & method of making same
JP6256169B2 (ja) * 2014-04-14 2018-01-10 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JP6447197B2 (ja) * 2015-02-04 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927518B1 (ja) * 1970-05-23 1974-07-18
JP2007217281A (ja) * 2007-05-22 2007-08-30 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素焼結体およびその製造方法
JP2014034487A (ja) * 2012-08-08 2014-02-24 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引きダイス、ならびに研削工具
JP2014080322A (ja) * 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3257829A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066261A1 (ja) * 2016-10-06 2018-04-12 住友電気工業株式会社 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具
JPWO2018066261A1 (ja) * 2016-10-06 2018-10-04 住友電気工業株式会社 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具
EP3333141A4 (en) * 2016-10-06 2019-05-01 Sumitomo Electric Industries, Ltd. METHOD OF PREPARING BORONITRIDE POLYCRYSTALL, BORNITRIDE POLYCRYLENE, CUTTING TOOL, WEAR-RESISTANT TOOL, AND GRINDING TOOL
US11453589B2 (en) 2016-10-06 2022-09-27 Sumitomo Electric Industries, Ltd. Method of producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resisting tool, and grinding tool
WO2019244894A1 (ja) 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法
KR20200140372A (ko) 2018-06-18 2020-12-15 스미또모 덴꼬오 하드메탈 가부시끼가이샤 입방정 질화붕소 다결정체 및 그 제조 방법
US11046581B2 (en) 2018-06-18 2021-06-29 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and method for manufacturing the same
WO2020009117A1 (ja) 2018-07-03 2020-01-09 住友電工ハードメタル株式会社 切削インサート及びその製造方法

Also Published As

Publication number Publication date
US20180029942A1 (en) 2018-02-01
EP3257829A4 (en) 2018-07-25
US10519068B2 (en) 2019-12-31
CN107207364A (zh) 2017-09-26
CN107207364B (zh) 2021-09-28
JP2016145131A (ja) 2016-08-12
EP3257829A1 (en) 2017-12-20
EP3257829B1 (en) 2021-03-03
JP6447205B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6447205B2 (ja) 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
JP6447197B2 (ja) 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
JP6291995B2 (ja) 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
JP6665920B2 (ja) 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具
JP5900502B2 (ja) 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引ダイス、ならびに研削工具
JP6458559B2 (ja) ダイヤモンド多結晶体、切削工具、耐摩工具、および研削工具
JP6387897B2 (ja) ダイヤモンド多結晶体、切削工具、耐摩工具、および研削工具
JP6256169B2 (ja) 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JP2014080323A (ja) 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具
JP5929655B2 (ja) 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、ならびに耐摩工具
JP6291986B2 (ja) 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JPWO2020017040A1 (ja) ダイヤモンド多結晶体及びそれを備えた工具
JP6720816B2 (ja) 窒化ホウ素多結晶体の製造方法、窒化ホウ素多結晶体、切削工具、耐摩工具および研削工具
JPWO2020017039A1 (ja) ダイヤモンド多結晶体及びそれを備えた工具
JP2016074550A (ja) 焼結体、焼結体を用いた切削工具および焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748973

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016748973

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE