WO2016125794A1 - Steering angle ratio varying device - Google Patents

Steering angle ratio varying device Download PDF

Info

Publication number
WO2016125794A1
WO2016125794A1 PCT/JP2016/053060 JP2016053060W WO2016125794A1 WO 2016125794 A1 WO2016125794 A1 WO 2016125794A1 JP 2016053060 W JP2016053060 W JP 2016053060W WO 2016125794 A1 WO2016125794 A1 WO 2016125794A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio variable
angle ratio
steering
electric motor
variable device
Prior art date
Application number
PCT/JP2016/053060
Other languages
French (fr)
Japanese (ja)
Inventor
徹 亀井
康継 野村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015018750A external-priority patent/JP2016141261A/en
Priority claimed from JP2015018751A external-priority patent/JP2016141262A/en
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2016125794A1 publication Critical patent/WO2016125794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the present invention relates to a steering angle ratio variable device.
  • a steering device makes a ratio of a steered wheel turning angle to a steering input angle to a steering wheel by a driver (so-called steering gear ratio) variable (for example, Patent Document 1).
  • the steering angle ratio variable device detects the traveling speed of the vehicle provided with the steering angle ratio variable device and the rotation amount of the shaft of the steering column provided with the steering wheel by various sensors, and the steering wheel of the steering wheel according to the detection result.
  • the turning angle is determined, and the direction of the steered wheels is changed by operating the electric motor with a driving amount corresponding to the turning angle.
  • the steering angle ratio variable device includes an electronic control unit (ECU) that performs processing for determining the turning angle of the steered wheel according to the detection result of the sensor, in addition to the above-described sensor and electric motor. .
  • ECU electronice control unit
  • the ECU is provided in a separate and independent case from the case in which the sensor and the electric motor are provided.
  • An object of the present invention is to provide a rudder angle ratio variable device capable of shortening the wiring.
  • the present invention provides a steering angle ratio variable device that varies the amount of drive of an electric motor that changes the direction of the steering wheel according to the turning angle and operation of the steering wheel with respect to the steering input angle to the steering wheel.
  • a housing of an electronic control unit that determines the turning angle based on the steering input angle and the vehicle traveling state and operates the electric motor in accordance with the turning angle, under the control of the electronic control unit. It is integrated with the electric motor that operates.
  • the rotating shaft of the electric motor is coaxial with the shaft to which the rotation input through the steering wheel is transmitted.
  • the wiring between the electronic control unit and the electric motor can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wiring.
  • the electronic control unit is provided in a direction along the shaft with respect to the electric motor.
  • the steering angle ratio variable device can be made more compact in the direction orthogonal to the shaft.
  • the casing of the electronic control unit has an arc shape or a cylindrical shape provided with a space inside which the shaft rotates.
  • an electronic control unit can be provided at a position between the shaft and the electric motor having a rotation axis that is coaxial with the shaft, and the degree of freedom of arrangement of the electronic control unit integrated with the electric motor is further increased.
  • the shaft has blades that send wind toward the outside as it rotates, and the blades are provided in the space.
  • the electronic control unit can be cooled by the airflow generated by the blades whose positions are changed as the shaft rotates.
  • the steering angle ratio variable device is provided on a pinion side of a rack and pinion mechanism that connects the shaft and the steered wheels.
  • the electronic control unit is arranged on the rack and pinion mechanism side.
  • the electronic control unit can be brought close to the housing of the rack and pinion mechanism, heat generated by the electronic control unit can be easily released to the housing of the rack and pinion mechanism.
  • the electronic control unit and the rack and pinion mechanism are in contact with each other.
  • the heat generated in the electronic control unit can be efficiently released by the case of the rack and pinion mechanism, and the heat of the electronic control unit can be released more efficiently.
  • the housing is integrated with the housing of the rack and pinion mechanism.
  • the heat generated in the electronic control unit can be efficiently released by the case of the rack and pinion mechanism, and the heat of the electronic control unit can be released more efficiently.
  • the electronic control unit is disposed around a gear portion that connects the electric motor and the electric motor to the pinion.
  • the steering angle ratio variable device can be made more compact in the direction along the shaft.
  • the pinion and the rotating shaft are in a coaxial relationship.
  • the pinion and the electric motor can be arranged linearly.
  • the electronic control unit is arranged around the motor.
  • the wiring between the electronic control unit and the electric motor can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wiring.
  • the electronic control unit is arranged in the direction of the rotation axis of the motor with respect to the motor.
  • the steering angle ratio variable device can be made more compact in the direction orthogonal to the rotation axis.
  • a groove is provided between the electronic control unit and the electric motor.
  • the surface area of the casing of the electronic control unit can be increased, the cooling efficiency of the electronic control unit can be further increased.
  • the rotating shaft of the electric motor has a relationship between the pinion and the twist.
  • the electronic control unit is disposed on the front side of the vehicle.
  • a substrate or a circuit provided in the electronic control unit is disposed on the outer peripheral side of the casing of the electronic control unit.
  • a heat radiating plate is provided on the outer peripheral side.
  • the electronic control unit can be cooled more efficiently.
  • the vehicle running state is at least one of a vehicle speed and a yaw rate.
  • a steered angle based on at least one of the vehicle speed and the yaw rate can be given to the steered wheels.
  • the wiring can be made shorter.
  • FIG. 1 is a main configuration diagram of a steering device (steering) including a steering angle ratio variable device according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration near the steering angle ratio variable unit according to the first embodiment.
  • FIG. 3 is a main configuration layout diagram of the steering angle ratio variable unit according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an example of arrangement of steering gears in the vehicle.
  • FIG. 5 is a main configuration layout diagram of the steering angle ratio variable unit according to the second embodiment.
  • FIG. 6 is a main configuration layout diagram of the steering angle ratio variable unit according to the second embodiment.
  • FIG. 7 is a schematic diagram of an ECU according to the first modification.
  • FIG. 8 is a schematic diagram of an ECU according to the second modification.
  • FIG. 1 is a main configuration diagram of a steering device (steering) including a steering angle ratio variable device according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration near the steering angle ratio
  • FIG. 9 is a schematic diagram of an ECU according to the second modification.
  • FIG. 10 is a schematic diagram of an ECU according to the third modification.
  • FIG. 11 is a schematic diagram of an ECU according to the third modification.
  • FIG. 12 is a schematic diagram of an ECU according to the fourth modification.
  • FIG. 13 is a main configuration layout diagram of the steering angle ratio variable unit according to the third embodiment.
  • FIG. 14 is a main configuration layout diagram of the steering angle ratio variable unit according to the third embodiment.
  • FIG. 15 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the fourth embodiment.
  • FIG. 16 is a main configuration diagram of steering according to the fifth embodiment.
  • FIG. 17 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the fifth embodiment.
  • FIG. 18 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the sixth embodiment.
  • FIG. 19 is a main configuration layout diagram of the steering angle ratio variable unit according to the sixth embodiment.
  • FIG. 20 is an internal configuration diagram of the ECU along a plane orthogonal to the shaft of the sixth embodiment.
  • FIG. 21 is a schematic diagram illustrating an arrangement example of the steering gear according to the sixth embodiment in a vehicle.
  • FIG. 22 is a main configuration layout diagram of the steering angle ratio variable unit according to the seventh embodiment.
  • FIG. 23 is an internal configuration diagram of an ECU according to the seventh embodiment.
  • FIG. 24 is a main configuration layout diagram of the steering angle ratio variable unit according to the eighth embodiment.
  • FIG. 25 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the ninth embodiment.
  • 26 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 27 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the tenth embodiment.
  • FIG. 28 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the eleventh embodiment.
  • FIG. 29 is an internal configuration diagram of an ECU according to Modification 5.
  • FIG. 30 is an internal configuration diagram of an ECU according to Modification 6.
  • FIG. 31 is an internal configuration diagram of an ECU according to Modification 6.
  • FIG. 32 is an internal configuration diagram of an ECU according to Modification 7.
  • FIG. 33 is a main configuration layout diagram of a steering angle ratio variable unit according to Modification 7.
  • FIG. 34 is an internal configuration diagram of an ECU according to Modification 8.
  • FIG. 1 is a main configuration diagram of a steering device (steering) including a steering angle ratio variable device according to the first embodiment.
  • the steering wheel 81, the steering shaft 82, the universal joint 84, the lower shaft 85, the universal joint 86, the shaft 87, and the steering angle ratio variable unit 83 are arranged in the order in which the force given by the steering person is transmitted.
  • the steering gear 88 and the tie rod 89 are provided.
  • the steering shaft 82 is a steering column shaft provided with a steering wheel 81.
  • the steering shaft 82 has one end connected to the steering wheel 81 and the other end connected to the universal joint 84.
  • the lower shaft 85 has one end connected to the universal joint 84 and the other end connected to the universal joint 86.
  • the shaft 87 has one end connected to the universal joint 86 and the other end connected to the steering gear 88 via the steering angle ratio variable unit 83. That is, the shaft 87 is a shaft to which the rotation input via the steering wheel 81 is transmitted.
  • the shaft 87 is connected to the steering shaft 82 by connection via universal joints 84 and 86.
  • the steering gear 88 includes a pinion 88a and a rack 88b.
  • the pinion 88 a is connected to the shaft 87 via the rudder angle ratio variable unit 83.
  • the rack 88b meshes with the pinion 88a.
  • the steering gear 88 is configured as a rack and pinion type.
  • the steering gear 88 converts the rotational motion transmitted to the pinion 88a into a linear motion by the rack 88b.
  • the tie rod 89 is connected to the rack 88b.
  • the tie rod 89 is connected to the steered wheel W.
  • the steering gear 88 connected to the steering wheel W via the tie rod 89 is a rack and pinion mechanism that connects the shaft (for example, the shaft 87) and the steering wheel W.
  • the steering is provided with a torque sensor 91a.
  • the torque sensor 91a is provided near the shaft 87, for example, and measures a rotational force (torque) applied to the shaft 87.
  • the torque sensor 91a can detect the amount of rotation corresponding to the steering input angle to the steering wheel 91.
  • the torque sensor 91a may be a torque angle sensor.
  • the vehicle B having a steering is provided with a speed sensor 91b.
  • the speed sensor 91b generates a pulse signal in proportion to the rotational speed of the axle, and outputs information indicating the traveling speed to the ECU 90 or the like on the assumption that the movement of the vehicle B has occurred at a traveling speed (vehicle speed) proportional to the number of pulse signals. To do.
  • the rudder angle ratio variable unit 83 includes an ECU 90, a gear unit 92, and the electric motor 10.
  • the steering angle ratio variable unit 83 makes the steering angle of the steered wheels variable with respect to the steering input angle to the steering wheel 81.
  • the steering angle ratio variable unit 83 changes the turning angle of the steered wheels W with respect to the steering input angle to the steering wheel 81 based on the steering input angle and the vehicle speed, for example.
  • the steering angle ratio variable unit 83 of the present embodiment is configured to change the steering angle based on the vehicle speed, but is not limited to the vehicle speed, and is configured to change the steering angle based on other information indicating the vehicle traveling state. It may be.
  • the steering angle ratio variable unit 83 may change the steering angle based on the steering input angle and the yaw rate.
  • a configuration for measuring the yaw rate such as a rate gyro, is provided in the vehicle B.
  • the rudder angle ratio variable unit 83 may change the steered angle based on two or more information indicating the vehicle running state, such as changing the steered angle based on the vehicle speed and the yaw rate.
  • the ECU 90 has a substrate 90b on which various circuits are provided.
  • the ECU 90 is connected to the torque sensor 91a and the speed sensor 91b via a wire harness.
  • the ECU 90 determines the driving amount of the shaft 87 by the electric motor 10 and the gear ratio of the gear portion 92 based on the rotation amount detected by the torque sensor 91a and the traveling speed detected by the speed sensor 91b. That is, the ECU 90 determines a turning angle based on the steering input angle and the vehicle speed, and operates the electric motor 10 according to the turning angle. Further, the ECU 90 determines a turning angle based on the steering input angle and the vehicle speed, and determines the gear ratio of the gear unit 92 according to the turning angle.
  • the electric motor 10 changes the direction of the steered wheels W according to the driving amount by the operation.
  • the rotating shaft 10b has a twisted relationship with the shaft 87 (see FIG. 2 and the like).
  • the shaft 87 and the pinion 88a have a coaxial relationship. That is, the rotating shaft 10b is in a twisted relationship with the pinion 88a.
  • the rotating shaft 10b of the electric motor 10 is connected to the gear portion 92 by, for example, connection via a screw gear or worm gear or connection via a plurality of gears (gears).
  • the electric motor 10 of the first embodiment operates to give a steering angle for changing the steering angle to the pinion 88a via the gear portion 92.
  • the gear portion 92 is interposed between the shaft 87 and the pinion 88a.
  • the gear part 92 is a mechanism provided so that the rotation ratio (gear ratio) of the shaft 87 and the pinion 88a can be changed by a combination of a plurality of gears, for example.
  • the steering has a power steering function.
  • the steering is provided with an ECU 100 that performs processing related to the realization of the power steering function.
  • the ECU 100 is an electronic control unit provided for an electric power steering (EPS) function.
  • EPS electric power steering
  • the ECU 100 controls the operation of an electric motor dedicated to EPS that directly assists steering by, for example, driving force.
  • ECU 100 may be an electronic control unit that controls the operation of an electric motor that generates hydraulic pressure to assist steering.
  • the power steering function is realized by a rack assist type power steering mechanism, but a different power steering mechanism such as a column assist type may be used.
  • the speed sensor 91b detects the traveling speed of the vehicle B on which the steering is mounted.
  • the electric motor 10, the torque sensor 91a, and the speed sensor 91b are electrically connected.
  • FIG. 2 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit 83 according to the first embodiment.
  • the steering angle ratio variable unit 83 according to the first embodiment is provided on the pinion side of the rack and pinion mechanism. Specifically, the housing (housing) of the steering angle ratio variable unit 83 is in contact with the housing 88 c of the steering gear 88. The pinion 88a and the rack 88b of the steering gear 88 are provided in the housing 88c.
  • FIG. 3 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the first embodiment.
  • the ECU 90 is disposed in the direction of the rotating shaft 10b of the electric motor 10 with respect to the electric motor 10.
  • the housing 90 a that houses the ECU 90 is integrated with the electric motor 10.
  • the casing 90 a is a container-like member having an outer shape that is cylindrical and whose diameter is larger than the length of the cylinder, and a substrate of the ECU 90 on which various circuits are provided. 90b is included.
  • the diameter of the casing 90a and the diameter of the casing 10a of the electric motor 10 are the same. However, this is an example and not limited to this, and can be changed as appropriate.
  • the ECU 100 is provided in the vicinity of the casing 88c.
  • the ECU 90 of the steering angle ratio variable unit 83 and the ECU 100 of the EPS are provided in the vicinity of the steering gear 88, so that the processing of the ECU 90 related to the cooperation and cooperation of the steering angle ratio variable function and the power steering function can be achieved.
  • the wire harness H between the ECU 90 and the ECU 100 which is necessary for realizing cooperation with the processing of the ECU 100, can be further shortened.
  • FIG. 4 is a schematic diagram illustrating an arrangement example of the steering gear 88 in the vehicle B.
  • the steering gear 88 provided with the rudder angle ratio variable portion 83 is provided on the front side of the vehicle B.
  • the ECU 90, 100, etc. can be cooled by the intake air provided on the front side of the vehicle B, the air flowing so as to pass near the steering gear 88 from below the vehicle body, and the like.
  • the steering gear 88 is disposed behind the steering wheel W, but this is an example of the layout of the steering gear 88 and is not limited thereto.
  • a steering gear 88 may be disposed in front of the steering wheel W.
  • the ECU 90 is provided on the front side of the vehicle body with respect to the electric motor 10. By disposing the ECU 90 in this way, the ECU 90 can apply air well. Further, the ECU 90 can be moved away from the engine that is a heat source in the vehicle B.
  • the housing 90a that houses the ECU 90 is integrated with the electric motor 10, the wiring between the ECU 90 and the electric motor 10 can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wiring.
  • the steering angle ratio variable unit 83 can be made more compact in the direction orthogonal to the rotation shaft 10b.
  • the rudder angle ratio variable portion 83 is provided on the pinion 88a side of the rack and pinion mechanism (steering gear 88) that connects the shaft (for example, the shaft 87) and the steered wheels W, the steering angle ratio variable portion 83 is provided on the front side of the vehicle B during traveling.
  • the ECU 90 or the like can be cooled by air that flows so as to pass through the vicinity of the steering gear 88 from the intake provided, the lower side of the vehicle body, or the like.
  • the information indicating the vehicle running state is information indicating at least one of the vehicle speed and the yaw rate
  • the steered angle based on at least one of the vehicle speed and the yaw rate can be given to the steered wheels W.
  • Embodiments 2 to 6 different in part from the steering according to Embodiment 1 will be described.
  • the same components as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the configuration of the steering according to another embodiment is the same as that of the steering according to the first embodiment, except for matters described in the description of the other embodiments.
  • FIGS. 5 and 6 are main configuration layout diagrams of the steering angle ratio variable unit 83 according to the second embodiment.
  • FIG. 5 is a diagram illustrating an arrangement when viewed from a direction perpendicular to the shaft 87 and the rotating shaft 10 b of the electric motor 10.
  • FIG. 6 is a diagram illustrating an arrangement when the electric motor 10 is viewed from the direction of the rotating shaft 10b.
  • the ECU 90 of the second embodiment is disposed around the electric motor 10. Specifically, as shown in FIGS. 5 and 6, the ECU 90 according to the second embodiment is arranged around the electric motor 10.
  • the casing 900 of the ECU 90 is a container having a perforated donut shape, and abuts the casing 10a of the electric motor 10 on a surface (inner peripheral surface) surrounding the inner hole. .
  • the size of the rudder angle ratio variable unit 83 can be made more compact in the direction of the rotating shaft 10b of the electric motor 10. Further, since the surface area of the casing 10a of the ECU 90 can be increased, the cooling efficiency of the ECU 90 can be further increased.
  • modified examples 1 to 4 of the casing 900 of the ECU 90 according to the second embodiment will be described with reference to FIGS. 7 to 12, the outer frame of the casings 900, 901, and 902 of the ECU 90 and the substrate 90b hidden in the casings 900, 901, and 902 are clearly shown by solid lines in order to clarify the arrangement and the like of the board 90b. is doing.
  • FIG. 7 is a schematic diagram of the ECU 90 according to the first modification.
  • the circuit provided on the board 90 b is arranged on the inner side (space side) of the casing 900 of the ECU 90 and the circuit provided on the board 90 b is arranged on the outer peripheral side of the casing 900.
  • the positional relationship may be reversed.
  • the substrate 90b is disposed on the outer peripheral side, and the circuit is disposed on the inner peripheral side.
  • the circuit is on the outer peripheral side as in the first embodiment or the board 90b is on the outer peripheral side as in Modification 1 can be selected as appropriate according to the circuit accompanying the operation of the ECU 90 and the heat status of the board 90b. is there. Since the outer peripheral side has a larger surface area than the inner peripheral side, heat dissipation efficiency is good. In particular, as in the example of FIG. 5, in consideration of cooling by air flowing so as to pass through the vicinity of the ECU 90 when the vehicle B travels, cooling is performed more efficiently when the configuration requiring cooling is on the outer peripheral side. Will be able to. Therefore, for example, by setting the circuit to the outer peripheral side, the circuit that generates heat with the operation can be cooled more efficiently. In addition, by setting the substrate to the outer peripheral side, the circuit provided on the substrate can be cooled from the substrate side regardless of the height of the circuit with respect to the substrate.
  • (Modification 2) 8 and 9 are schematic diagrams of the ECU 90 according to the second modification.
  • the casing 900 of the ECU 90 has a perforated donut shape and the cross-sectional shape on the outer peripheral side is circular, but the shape of the casing of the ECU 90 is made to conform to the substrate 90b of the ECU 90. You may do it.
  • the cross-sectional shape on the outer peripheral side of the housing 901 may be a polygonal shape
  • the substrate 90 b may be arranged so that the plate surface of the substrate 90 b is along the side surface of the polygonal shape. Good. Further, as shown in FIG.
  • the substrate 90b may be arranged so that only the portion corresponding to a part of the substrates 90b has the outer peripheral side of the housing 902 as a plane and the plate surface of the substrate 90b is along the plane. .
  • casing 901,902 is improved more.
  • the shape of the casings 901 and 902 of the ECU 90 can be changed as appropriate without being limited to the examples shown in FIGS.
  • FIGS. 10 and 11 are schematic diagrams of the ECU 90 according to the third modification.
  • a heat radiating plate is provided on the outer peripheral side of the ECU 90 of the third modification.
  • cooling fins 95 may be provided on the surface (for example, a flat surface) of the housing 902 along the plate surface of the substrate 90b.
  • the ECU 90 can be cooled more efficiently by the heat dissipation plate such as the fins 95.
  • the fin 95 is added to the example shown in FIG. 9, but the fin 95 may be added similarly in the example shown in FIG.
  • not only the outer peripheral plane as shown in FIG. 10, but also a circular (curved) outer peripheral surface not along the plate surface of the substrate 90b as shown in FIG. 4 or the like, and an inner peripheral surface surrounding the space, etc. 95 may be provided.
  • FIG. 12 is a schematic diagram of the ECU 90 according to the fourth modification.
  • the casing 903 of the ECU 90 may not be a perfect cylinder, but may be an arc shape in which a part of the space is continuous with the outer space.
  • the cross-sectional shape of the arc-shaped inner peripheral side and outer peripheral side is not necessarily circular, and may be polygonal.
  • FIGS. 13 and 14 are layout diagrams of main components of the steering angle ratio variable unit 83 according to the third embodiment. Similar to the ECU 90 according to the second embodiment, the ECU 90 according to the third embodiment is provided so as to surround the outer periphery of the housing 10 a of the electric motor 10. However, in the third embodiment, a groove 99 is provided between the ECU 90 and the electric motor 10. Specifically, as shown in FIG. 13, the casing 904 of the perforated donut-shaped ECU 90 is provided so as to protrude from the inner peripheral surface provided so as to surround the casing 10 a of the electric motor 10.
  • a contact portion 904a that contacts the housing 10a and a non-contact portion that does not contact the housing 10a of the electric motor 10 are provided.
  • the ratio of the contact portion 904a and the non-contact portion in the entire width of the casing 904 along the direction of the rotation shaft 10b of the electric motor 10 is arbitrary.
  • the non-contact portion becomes a groove 99 between the ECU 90 and the electric motor 10.
  • the groove 99 functions as a space between the ECU 90 and the electric motor 10.
  • the ECU 90 of the third embodiment is the same as that of the second embodiment except that a groove 99 is provided between the ECU 90 and the electric motor 10.
  • the ECU 90 of the third embodiment can apply the modification of the second embodiment while maintaining the state in which the groove 99 is provided between the ECU 90 and the electric motor 10.
  • the bottom (abutting portion) of a part of the groove 99 may be removed so that air or the like can be inserted. In this case, it is desirable to provide a gap so that the contact between the housing 904 of the ECU 90 and the housing 10a of the electric motor 10 is maintained.
  • the groove 99 is provided between the ECU 90 and the electric motor 10, the surface area of the casing 904 of the ECU 90 can be increased, and thus the cooling efficiency of the ECU 90 can be further increased. .
  • FIG. 15 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit 83 according to the fourth embodiment.
  • the steering angle ratio variable unit 83 according to the fourth embodiment is integrated with a housing that encloses the components (ASSY) of the torque sensor 91a.
  • the configuration is arranged in the order of the torque sensor 91a and the gear portion 92 along the direction from the shaft 87 side to the steering gear 88 side.
  • the wire harness H3 that connects the torque sensor 91a and the ECU 90 can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wire harness H3.
  • FIG. 16 is a main configuration diagram of steering according to the fifth embodiment.
  • the steering according to the fifth embodiment further includes a chassis integration system.
  • the chassis integrated system performs various processes and controls for realizing support, complementation, proxy, and the like of the driver of the vehicle B.
  • the functions of the vehicle B realized by the chassis integrated system include, for example, monitoring of a blind spot from the driver's seat (back, etc.), support for maintaining the lane while driving, display of the surrounding situation at night (night vision), Examples include automatic steering control and automatic brake control.
  • the chassis integrated system includes an ECU 110 independent of the ECU 90 of the steering angle ratio variable unit 83 and the ECU 100 of the EPS.
  • the ECU 110 of the chassis integrated system controls the ECU 90 of the steering angle ratio variable unit 83 and the ECU 100 of the EPS.
  • vehicle B provided with the steering according to the fifth embodiment is provided with various sensors, cameras, and the like that constitute the chassis integrated system.
  • FIG. 17 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the fifth embodiment.
  • the wire harness H1 connecting the ECU 110 and the ECU 90 can be further shortened.
  • the wire harness H2 that connects the ECU 100 and the ECU 110 can be further shortened. Therefore, various excellent effects such as weight reduction, cost reduction, reduction in power loss, higher noise resistance, and the like by shortening and reducing the wire harnesses H1 and H2 can be obtained.
  • the ECU 110 of the chassis integrated system is arranged near the steering gear 88, among the sensors and cameras for realizing the functions of the chassis integrated system, the sensors, cameras, etc. provided in front of the vehicle B and the ECU 110
  • the wire harness between can be made shorter.
  • Embodiments 1 to 5 described above can be used in combination as long as their configurations do not contradict each other.
  • any one of the first to third embodiments, the fourth embodiment, and the fifth embodiment can be adopted by combining some or all of them.
  • FIG. 18 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the sixth embodiment.
  • FIG. 19 is a layout diagram of main components of the steering angle ratio variable unit 83 according to the sixth embodiment.
  • FIG. 20 is an internal configuration diagram of the ECU 90 along a plane orthogonal to the shaft 87 of the sixth embodiment.
  • FIG. 21 is a schematic diagram illustrating an arrangement example of the steering gear 88 of the sixth embodiment in the vehicle B.
  • the rotation axis is coaxial with the shaft 87 (see FIG. 18 and the like).
  • the shaft 87 and the pinion 88a have a coaxial relationship. That is, the pinion 88a and the rotating shaft of the electric motor 10 are in a coaxial relationship.
  • the electric motor 10 according to the sixth embodiment operates to drive the gear unit 92 to give the pinion 88a a steering angle for changing the steering angle.
  • the configuration is arranged in the order of the ECU 90, the electric motor 10, and the gear portion 92 along the direction from the shaft 87 side toward the steering gear 88 side.
  • the ECU 90 is provided in a direction along the shaft (for example, the shaft 87) with respect to the electric motor 10.
  • the internal configurations of the ECU 90, the electric motor 10, and the gear unit 92 are indicated by solid lines, but these configurations are actually covered by the respective casings having outer walls.
  • the housing 909 that houses the ECU 90 is integrated with the electric motor 10.
  • the housing 909 is a container having a perforated donut shape and a diameter larger than the length of the cylinder, and a board 90b of the ECU 90 provided with various circuits. Contain.
  • the diameter of the casing 909 and the diameter of the casing 10a of the electric motor 10 are the same. However, this is an example and not limited to this, and can be changed as appropriate.
  • the casing 909 of the ECU 90 has a cylindrical shape provided with a space in which the rotation shaft rotates inside.
  • a shaft 87 is provided so as to be inserted through the inside of the housing 909.
  • the housing 909 has a space having a circular cross-sectional shape along a plane orthogonal to the shaft 87 on the inside, and the shaft 87 can be inserted into the space.
  • the other end of the shaft 87 provided so as to pass through the inside of the housing 909 is fixed to the rotating shaft of the electric motor 10.
  • the steering angle ratio variable unit 83 is further provided in the direction orthogonal to the shaft. It can be made compact.
  • the housing 909 of the ECU 90 has an arc shape or a cylindrical shape in which a space for rotating a shaft (for example, the shaft 87) is provided, between the electric motor 10 having a rotation axis coaxial with the shaft and the shaft.
  • the ECU 90 can also be provided at this position. Therefore, the degree of freedom of arrangement of the ECU 90 integrated with the electric motor 10 is further increased.
  • FIG. 22 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the seventh embodiment.
  • FIG. 23 is an internal configuration diagram of the ECU 90 according to the seventh embodiment.
  • the steering according to the seventh embodiment includes a blade 87a that sends a wind toward the outside as the shaft inserted through the inside of the housing 909 of the ECU 90 rotates.
  • the shaft 87 in the seventh embodiment is provided with blades 87a.
  • the blades 87 a are provided in the space of the casing 909 of the ECU 90, and change positions in the space as the shaft 87 rotates to generate an air flow in the space. Such airflow provides a cooling effect to the housing 909 of the ECU 90.
  • the number of the blades 87a provided on the shaft 87 is four.
  • the shaft (for example, the shaft 87) has the vane 87a that sends the wind toward the outside as it rotates, and the vane 87a is provided in the space of the casing 909 of the ECU 90. Therefore, the ECU 90 can be cooled by the airflow generated by the blade 87a whose position is changed with the rotation of the shaft.
  • FIG. 24 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the eighth embodiment.
  • the ECU 90 of the eighth embodiment is arranged around the electric motor 10 and a gear portion 92 that connects the electric motor 10 and the pinion.
  • the casing 911 of the ECU 90 according to the eighth embodiment is provided so as to surround the outer periphery of the casing 10 a of the electric motor 10 and the casing of the gear unit 92.
  • the steering angle ratio variable portion 83 can be made more compact in the direction along the shaft (for example, the shaft 87).
  • FIG. 25 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the ninth embodiment.
  • 26 is a cross-sectional view taken along the line AA in FIG.
  • the steering angle ratio variable unit 83 according to the ninth embodiment includes a gear unit 92, an electric motor 10, and an ECU 90 in this order along the direction from the shaft 87 side to the steering gear 88 side. Is arranged. That is, the casing 910 of the ECU 90 in the configuration of the rudder angle ratio variable unit 83 is disposed closest to the casing 88c.
  • the housing 910 of the ECU 90 according to the ninth embodiment is provided in a portion of the housing 88c that houses the pinion 88a inside, and also has a function of including the pinion 88a.
  • the casing 910 of the ECU 90 according to the ninth embodiment is integrated with the casing (housing 88c) of the rack and pinion mechanism.
  • the ECU 90 is arranged on the rack and pinion mechanism side (steering gear 88 side).
  • the housing 910 of the ECU 90 is integrated with the housing (housing 88c) of the rack and pinion mechanism, the heat generated in the ECU 90 is more efficiently transmitted to the housing 88c. Can escape. Therefore, the heat of the ECU 90 can be released more efficiently.
  • the ECU 90 is disposed on the rack and pinion mechanism side (steering gear 88 side), the ECU 90 can be brought close to the rack and pinion mechanism having the larger casing 88c, and thus the heat generated in the ECU 90 is accommodated. It becomes easy to escape to the body 88c.
  • the configuration of the steering angle ratio variable unit 83 is arranged in the order of the ECU 90, the electric motor 10, and the gear unit 92 along the direction from the shaft 87 side to the steering gear 88 side as in the sixth embodiment.
  • the rudder angle ratio variable unit 83 may be integrated with the housing (housing 88c) of the rack and pinion mechanism.
  • the configuration of the steering angle ratio variable unit 83 (for example, the gear unit 92, the electric motor 10, the ECU 90, etc.) is provided.
  • the ECU 90 may be disposed closest to the steering gear 88.
  • the heat generated in the ECU 90 can be easily released to the casing 88c.
  • FIG. 27 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit 83 according to the tenth embodiment.
  • the rudder angle ratio variable unit 83 according to the tenth embodiment is integrated with a housing that encloses the components (ASSY) of the torque sensor 91a.
  • the configuration is arranged in the order of the torque sensor 91a, the ECU 90, the electric motor 10, and the gear portion 92 along the direction from the shaft 87 side to the steering gear 88 side.
  • the wire harness connecting the torque sensor 91a and the ECU 90 can be made shorter. Therefore, various excellent effects, such as weight reduction of a steering angle ratio variable apparatus by shortening and reduction of a wire harness, cost reduction, reduction of electric power loss, higher noise tolerance, etc., can be acquired.
  • the circuit constituting the torque sensor 91a is mounted on the board 90b of the ECU 90, so that it is necessary to separately provide a housing for accommodating the board of the torque sensor 91a and the board of the torque sensor 91a.
  • the torque sensor 91a and the steering angle ratio variable unit 83 can be integrated.
  • FIG. 28 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the eleventh embodiment.
  • the steering according to the eleventh embodiment further includes a chassis integration system as in the fifth embodiment described with reference to FIG. According to the eleventh embodiment, the same effects as those of the fifth embodiment can be obtained in the configuration based on the sixth embodiment.
  • Embodiments 6 to 11 described above can be used in combination as long as their configurations do not contradict each other.
  • any one of Embodiments 6 to 9, Embodiment 10, and Embodiment 11 can be used by combining some or all of them.
  • modified examples 5 to 8 of the casing 909 of the ECU 90 according to the sixth to eleventh embodiments will be described.
  • the specific form of the housing 909 of the ECU 90 shown in FIGS. 29 to 34 referred to in the description of the modified examples 5 to 8 is the form of the housing 909 of the ECU 90 of the sixth embodiment, but the modified examples 5 to 8 are other forms. This can also be applied to the seventh to eleventh embodiments.
  • FIG. 29 is an internal configuration diagram of the ECU 90 according to the fifth modification.
  • the circuit board 90b is arranged on the inner side (space side) of the casing 909 of the ECU 90 and the circuit provided on the board 90b is arranged on the outer peripheral side of the casing 909. The positional relationship may be reversed.
  • the substrate 90b is disposed on the outer peripheral side and the circuit is disposed on the inner peripheral side.
  • the circuit is on the outer peripheral side as in the sixth embodiment or the board 90b is on the outer peripheral side as in Modification 5 can be appropriately selected according to the circuit accompanying the operation of the ECU 90 and the heat status of the board 90b. is there. Since the outer peripheral side has a larger surface area than the inner peripheral side, heat dissipation efficiency is good. In particular, as in the example of FIG. 21, when cooling by air flowing so as to pass through the vicinity of the ECU 90 when the vehicle B travels is considered, cooling is more efficiently performed when the configuration requiring cooling is on the outer peripheral side. Will be able to. Therefore, for example, by setting the circuit to the outer peripheral side, the circuit that generates heat with the operation can be cooled more efficiently. In addition, by setting the substrate to the outer peripheral side, the circuit provided on the substrate can be cooled from the substrate side regardless of the height of the circuit with respect to the substrate.
  • (Modification 6) 30 and 31 are internal configuration diagrams of the ECU 90 according to the sixth modification.
  • the casing 909 of the ECU 90 has a perforated donut shape and the outer peripheral side has a circular cross-sectional shape. Also good.
  • the cross-sectional shape on the outer peripheral side of the housing 912 is polygonal, and the substrate 90b may be arranged so that the plate surface of the substrate 90b is along the side surface of the polygon.
  • the substrate 90b may be arranged such that only the portion corresponding to a part of the substrates 90b is the outer peripheral side of the housing 913 as a plane and the plate surface of the substrate 90b is along the plane.
  • FIG. 32 is an internal configuration diagram of the ECU 90 according to Modification 7.
  • FIG. 33 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the modified example 7.
  • a heat radiating plate is provided on the outer peripheral side of the ECU 90 of the modified example 7.
  • cooling fins 95 may be provided on the surface (for example, a plane) of the housing 913 along the plate surface of the substrate 90b.
  • the ECU 90 can be cooled more efficiently by the heat dissipation plate such as the fins 95.
  • the fin 95 is added to the example shown in FIG. 31, but the fin 95 may be added in the same manner in the example shown in FIG.
  • fins on the inner peripheral surface surrounding the space, etc. 95 may be provided.
  • FIG. 34 is an internal configuration diagram of the ECU 90 according to Modification 8.
  • the casing 914 of the ECU 90 may not be a perfect cylinder, but may be an arc that allows a part of the space to be continuous with the outer space.
  • the cross-sectional shape of the arc-shaped inner peripheral side and outer peripheral side is not necessarily circular, and may be polygonal.
  • the steering angle ratio variable unit 83 is provided on the pinion side of the rack and pinion mechanism, but this is an example and the present invention is not limited thereto. According to the present invention, the wiring between the ECU 90 and the electric motor 10 can be made shorter regardless of the position where the steering angle ratio variable unit 83 is provided.
  • the rotating shaft 10b of the electric motor 10 of the rudder angle ratio variable unit 83 may be coaxial with the steering shaft fixed to the steering wheel.
  • a wire harness may be used as the wiring.
  • this is an example of a specific form of wiring and is not limited thereto.
  • the specific form of the wiring can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

Provided is a steering angle ratio varying device that can vary: a turning angle of steered wheels in response to a steering input angle input to a steering wheel; and a drive amount of an electric motor that operates to change the orientation of the steered wheels. An electronic control unit case and the electric motor which operates under the control of an electronic control unit are integrated. The electronic control unit determines the turning angle on the basis of the steering input angle and a vehicle travel state, and causes the electric motor to operate in accordance with the determined turning angle.

Description

舵角比可変装置Steering angle ratio variable device
 本発明は、舵角比可変装置に関する。 The present invention relates to a steering angle ratio variable device.
 運転者によるステアリングホイールへの操舵入力角に対する操舵輪の転舵角の比(所謂ステアリングギヤ比)を可変にする操舵装置が知られている(例えば特許文献1)。舵角比可変装置は、舵角比可変装置が設けられた車両の走行速度及びステアリングホイールが設けられたステアリングコラムのシャフトの回動量を各種のセンサで検知し、検知結果に応じて操舵輪の転舵角を決定し、当該転舵角に応じた駆動量で電動機を動作させて操舵輪の向きを変える。 2. Description of the Related Art A steering device is known that makes a ratio of a steered wheel turning angle to a steering input angle to a steering wheel by a driver (so-called steering gear ratio) variable (for example, Patent Document 1). The steering angle ratio variable device detects the traveling speed of the vehicle provided with the steering angle ratio variable device and the rotation amount of the shaft of the steering column provided with the steering wheel by various sensors, and the steering wheel of the steering wheel according to the detection result. The turning angle is determined, and the direction of the steered wheels is changed by operating the electric motor with a driving amount corresponding to the turning angle.
 舵角比可変装置は、上記のセンサ、電動機の他、センサの検知結果に応じて操舵輪の転舵角を決定するための処理を行う電子制御ユニット(ECU:Electronic Control Unit)を備えている。従来の舵角比可変装置では、ECUはセンサ及び電動機が設けられた筐体と別個の独立した筐体に設けられる。 The steering angle ratio variable device includes an electronic control unit (ECU) that performs processing for determining the turning angle of the steered wheel according to the detection result of the sensor, in addition to the above-described sensor and electric motor. . In the conventional steering angle ratio variable device, the ECU is provided in a separate and independent case from the case in which the sensor and the electric motor are provided.
特開2010-215067号公報JP 2010-215067 A
 しかしながら、ECUとセンサ、ECUと電動機との間には配線(ワイヤーハーネス)を設ける必要がある。この配線が長い程、舵角比可変装置の重量が重くなり、コストが高くなり、電力ロスが大きくなり、ノイズ耐性も弱くなる傾向がある。よって、より短い配線で済む舵角比可変装置が求められていた。 However, it is necessary to provide wiring (wire harness) between the ECU and the sensor and between the ECU and the electric motor. The longer the wiring, the heavier the steering angle ratio variable device, the higher the cost, the higher the power loss, and the lower the noise resistance. Therefore, there has been a demand for a steering angle ratio variable device that requires shorter wiring.
 本発明は、配線をより短くすることができる舵角比可変装置を提供することを目的とする。 An object of the present invention is to provide a rudder angle ratio variable device capable of shortening the wiring.
 上記の目的を達成するための本発明は、ステアリングホイールへの操舵入力角に対する操舵輪の転舵角及び動作により前記操舵輪の向きを変える電動機の駆動量を可変にする舵角比可変装置であって、前記操舵入力角及び車両走行状態に基づいて前記転舵角を決定して当該転舵角に応じて前記電動機を動作させる電子制御ユニットの筐体は、前記電子制御ユニットの制御下で動作する前記電動機と一体化されている。 In order to achieve the above object, the present invention provides a steering angle ratio variable device that varies the amount of drive of an electric motor that changes the direction of the steering wheel according to the turning angle and operation of the steering wheel with respect to the steering input angle to the steering wheel. A housing of an electronic control unit that determines the turning angle based on the steering input angle and the vehicle traveling state and operates the electric motor in accordance with the turning angle, under the control of the electronic control unit. It is integrated with the electric motor that operates.
 本発明の舵角比可変装置では、前記電動機の回転軸は、前記ステアリングホイールを介して入力される回動が伝達されるシャフトと同軸である。 In the rudder angle ratio variable device according to the present invention, the rotating shaft of the electric motor is coaxial with the shaft to which the rotation input through the steering wheel is transmitted.
 従って、電子制御ユニットと電動機との間の配線をより短くすることができる。よって、配線の短縮及び削減による舵角比可変装置の軽量化、低コスト化、電力ロスの低減、より高いノイズ耐性等、各種の優れた効果を得ることができる。 Therefore, the wiring between the electronic control unit and the electric motor can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wiring.
 本発明の舵角比可変装置では、前記電子制御ユニットは、前記電動機に対して前記シャフトに沿う方向に設けられている。 In the rudder angle ratio variable device according to the present invention, the electronic control unit is provided in a direction along the shaft with respect to the electric motor.
 従って、シャフトに直交する方向について舵角比可変装置をよりコンパクトにすることができる。 Therefore, the steering angle ratio variable device can be made more compact in the direction orthogonal to the shaft.
 本発明の舵角比可変装置では、前記電子制御ユニットの筐体は、内側で前記シャフトが回転するスペースが設けられた弧状又は筒状の形状を有する。 In the rudder angle ratio variable device according to the present invention, the casing of the electronic control unit has an arc shape or a cylindrical shape provided with a space inside which the shaft rotates.
 従って、シャフトと同軸である回転軸を有する電動機とシャフトとの間の位置にも電子制御ユニットを設けることができ、電動機と一体化されている電子制御ユニットの配置自由度がより高まる。 Therefore, an electronic control unit can be provided at a position between the shaft and the electric motor having a rotation axis that is coaxial with the shaft, and the degree of freedom of arrangement of the electronic control unit integrated with the electric motor is further increased.
 本発明の舵角比可変装置では、前記シャフトは、回転に伴い外側に向かって風を送る羽根を有し、前記羽根は、前記スペース内に設けられる。 In the rudder angle ratio variable device of the present invention, the shaft has blades that send wind toward the outside as it rotates, and the blades are provided in the space.
 従って、シャフトの回動に伴い位置を変じた羽根が生じさせる気流によって電子制御ユニットを冷却することができる。 Therefore, the electronic control unit can be cooled by the airflow generated by the blades whose positions are changed as the shaft rotates.
 本発明の舵角比可変装置では、前記シャフトと前記操舵輪とを連結するラックアンドピニオン機構のピニオン側に設けられる。 In the steering angle ratio variable device according to the present invention, the steering angle ratio variable device is provided on a pinion side of a rack and pinion mechanism that connects the shaft and the steered wheels.
 従って、走行時において車両の前面側に設けられたインテーク、車体の下方等からラックアンドピニオン機構付近を通過するように流れる空気による冷却を電子制御ユニット等に施すことができる。 Therefore, it is possible to cool the electronic control unit or the like with air flowing so as to pass through the vicinity of the rack and pinion mechanism from the intake provided under the front surface of the vehicle or the lower part of the vehicle body during traveling.
 本発明の舵角比可変装置では、前記電子制御ユニットが前記ラックアンドピニオン機構側に配置されている。 In the rudder angle ratio variable device of the present invention, the electronic control unit is arranged on the rack and pinion mechanism side.
 従って、ラックアンドピニオン機構の筐体に電子制御ユニットを近接させることができることから、電子制御ユニットで生じた熱をラックアンドピニオン機構の筐体に逃がしやすくなる。 Therefore, since the electronic control unit can be brought close to the housing of the rack and pinion mechanism, heat generated by the electronic control unit can be easily released to the housing of the rack and pinion mechanism.
 本発明の舵角比可変装置では、前記電子制御ユニットと前記ラックアンドピニオン機構とが当接している。 In the rudder angle ratio variable device according to the present invention, the electronic control unit and the rack and pinion mechanism are in contact with each other.
 従って、電子制御ユニットで生じた熱をラックアンドピニオン機構の筐体により効率的に逃がすことができる、より効率的に電子制御ユニットの熱を逃がすことができる。 Therefore, the heat generated in the electronic control unit can be efficiently released by the case of the rack and pinion mechanism, and the heat of the electronic control unit can be released more efficiently.
 本発明の舵角比可変装置では、前記筐体は、前記ラックアンドピニオン機構の筐体と一体化されている。 In the rudder angle ratio variable device according to the present invention, the housing is integrated with the housing of the rack and pinion mechanism.
 従って、電子制御ユニットで生じた熱をラックアンドピニオン機構の筐体により効率的に逃がすことができる、より効率的に電子制御ユニットの熱を逃がすことができる。 Therefore, the heat generated in the electronic control unit can be efficiently released by the case of the rack and pinion mechanism, and the heat of the electronic control unit can be released more efficiently.
 本発明の舵角比可変装置では、前記電子制御ユニットは、前記電動機及び前記電動機と前記ピニオンとを連結するギヤ部の周囲に配置されている。 In the rudder angle ratio variable device according to the present invention, the electronic control unit is disposed around a gear portion that connects the electric motor and the electric motor to the pinion.
 従って、シャフトに沿う方向について舵角比可変装置をよりコンパクトにすることができる。 Therefore, the steering angle ratio variable device can be made more compact in the direction along the shaft.
 本発明の舵角比可変装置では、前記ピニオンと前記回転軸とが同軸の関係にある。 In the rudder angle ratio variable device of the present invention, the pinion and the rotating shaft are in a coaxial relationship.
 従って、ピニオンと電動機とを直線状に配置することができる。 Therefore, the pinion and the electric motor can be arranged linearly.
 本発明の舵角比可変装置では、前記電子制御ユニットは、前記電動機の周囲に配置される。 In the rudder angle ratio variable device of the present invention, the electronic control unit is arranged around the motor.
 従って、電子制御ユニットと電動機との間の配線をより短くすることができる。よって、配線の短縮及び削減による舵角比可変装置の軽量化、低コスト化、電力ロスの低減、より高いノイズ耐性等、各種の優れた効果を得ることができる。 Therefore, the wiring between the electronic control unit and the electric motor can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wiring.
 本発明の舵角比可変装置では、前記電子制御ユニットは、前記電動機に対して前記電動機の回転軸方向に配置される。 In the rudder angle ratio variable device according to the present invention, the electronic control unit is arranged in the direction of the rotation axis of the motor with respect to the motor.
 従って、回転軸に直交する方向について舵角比可変装置をよりコンパクトにすることができる。 Therefore, the steering angle ratio variable device can be made more compact in the direction orthogonal to the rotation axis.
 本発明の舵角比可変装置では、前記電子制御ユニットと前記電動機との間に溝が設けられている。 In the rudder angle ratio variable device according to the present invention, a groove is provided between the electronic control unit and the electric motor.
 従って、電子制御ユニットの筐体の表面積をより大きくすることができるので、電子制御ユニットの冷却効率をより高めることができる。 Therefore, since the surface area of the casing of the electronic control unit can be increased, the cooling efficiency of the electronic control unit can be further increased.
 本発明の舵角比可変装置では、前記電動機の回転軸は前記ピニオンとねじれの関係である。 In the rudder angle ratio variable device according to the present invention, the rotating shaft of the electric motor has a relationship between the pinion and the twist.
 従って、電動機の配置についてピニオンの軸方向による制限をより低減することができる。 Therefore, it is possible to further reduce restrictions on the arrangement of the motors due to the axial direction of the pinion.
 本発明の舵角比可変装置では、前記電子制御ユニットが車両の前方側に配置されている。 In the rudder angle ratio variable device of the present invention, the electronic control unit is disposed on the front side of the vehicle.
 従って、前進走行時において電子制御ユニットにより良好に空気を当てることができる。 Therefore, air can be applied well by the electronic control unit during forward traveling.
 本発明の舵角比可変装置では、前記電子制御ユニットに設けられた基板又は回路が前記電子制御ユニットの筐体の外周側に配置されている。 In the rudder angle ratio variable device according to the present invention, a substrate or a circuit provided in the electronic control unit is disposed on the outer peripheral side of the casing of the electronic control unit.
 従って、電子制御ユニットが有する構成のうち、電子制御ユニットの動作に伴い熱を持つ構成を外周側に配置することでより効率的に熱を逃がすことができる。 Therefore, among the configurations of the electronic control unit, it is possible to dissipate heat more efficiently by disposing a configuration having heat with the operation of the electronic control unit on the outer peripheral side.
 本発明の舵角比可変装置では、前記外周側に放熱板が設けられている。 In the rudder angle ratio variable device of the present invention, a heat radiating plate is provided on the outer peripheral side.
 従って、より効率的に電子制御ユニットを冷却することができる。 Therefore, the electronic control unit can be cooled more efficiently.
 本発明の舵角比可変装置では、前記車両走行状態は、車速及びヨーレートの少なくとも一方である。 In the rudder angle ratio variable device according to the present invention, the vehicle running state is at least one of a vehicle speed and a yaw rate.
 従って、車速及びヨーレートの少なくとも一方に基づいた転舵角を操舵輪に与えることができる。 Therefore, a steered angle based on at least one of the vehicle speed and the yaw rate can be given to the steered wheels.
 本発明の舵角比可変装置によれば、配線をより短くすることができる。 According to the steering angle ratio variable device of the present invention, the wiring can be made shorter.
図1は、実施形態1に係る舵角比可変装置を備えた操舵装置(ステアリング)の主要構成図である。FIG. 1 is a main configuration diagram of a steering device (steering) including a steering angle ratio variable device according to the first embodiment. 図2は、実施形態1に係る舵角比可変部付近の構成を示す概略図である。FIG. 2 is a schematic diagram illustrating a configuration near the steering angle ratio variable unit according to the first embodiment. 図3は、実施形態1に係る舵角比可変部の主要構成配置図である。FIG. 3 is a main configuration layout diagram of the steering angle ratio variable unit according to the first embodiment. 図4は、車両におけるステアリングギヤの配置例を示す概略図である。FIG. 4 is a schematic diagram showing an example of arrangement of steering gears in the vehicle. 図5は、実施形態2に係る舵角比可変部の主要構成配置図である。FIG. 5 is a main configuration layout diagram of the steering angle ratio variable unit according to the second embodiment. 図6は、実施形態2に係る舵角比可変部の主要構成配置図である。FIG. 6 is a main configuration layout diagram of the steering angle ratio variable unit according to the second embodiment. 図7は、変形例1に係るECUの概略図である。FIG. 7 is a schematic diagram of an ECU according to the first modification. 図8は、変形例2に係るECUの概略図である。FIG. 8 is a schematic diagram of an ECU according to the second modification. 図9は、変形例2に係るECUの概略図である。FIG. 9 is a schematic diagram of an ECU according to the second modification. 図10は、変形例3に係るECUの概略図である。FIG. 10 is a schematic diagram of an ECU according to the third modification. 図11は、変形例3に係るECUの概略図である。FIG. 11 is a schematic diagram of an ECU according to the third modification. 図12は、変形例4に係るECUの概略図である。FIG. 12 is a schematic diagram of an ECU according to the fourth modification. 図13は、実施形態3に係る舵角比可変部の主要構成配置図である。FIG. 13 is a main configuration layout diagram of the steering angle ratio variable unit according to the third embodiment. 図14は、実施形態3に係る舵角比可変部の主要構成配置図である。FIG. 14 is a main configuration layout diagram of the steering angle ratio variable unit according to the third embodiment. 図15は、実施形態4に係る舵角比可変部付近の構成を示す概略図である。FIG. 15 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the fourth embodiment. 図16は、実施形態5に係るステアリングの主要構成図である。FIG. 16 is a main configuration diagram of steering according to the fifth embodiment. 図17は、実施形態5に係る舵角比可変部付近の構成を示す概略図である。FIG. 17 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the fifth embodiment. 図18は、実施形態6に係る舵角比可変部付近の構成を示す概略図である。FIG. 18 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the sixth embodiment. 図19は、実施形態6に係る舵角比可変部の主要構成配置図である。FIG. 19 is a main configuration layout diagram of the steering angle ratio variable unit according to the sixth embodiment. 図20は、実施形態6のシャフトに直交する平面に沿ったECUの内部構成図である。FIG. 20 is an internal configuration diagram of the ECU along a plane orthogonal to the shaft of the sixth embodiment. 図21は、車両における実施形態6のステアリングギヤの配置例を示す概略図である。FIG. 21 is a schematic diagram illustrating an arrangement example of the steering gear according to the sixth embodiment in a vehicle. 図22は、実施形態7に係る舵角比可変部の主要構成配置図である。FIG. 22 is a main configuration layout diagram of the steering angle ratio variable unit according to the seventh embodiment. 図23は、実施形態7に係るECUの内部構成図である。FIG. 23 is an internal configuration diagram of an ECU according to the seventh embodiment. 図24は、実施形態8に係る舵角比可変部の主要構成配置図である。FIG. 24 is a main configuration layout diagram of the steering angle ratio variable unit according to the eighth embodiment. 図25は、実施形態9に係る舵角比可変部付近の構成を示す概略図である。FIG. 25 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the ninth embodiment. 図26は、図25におけるA-A断面図である。26 is a cross-sectional view taken along the line AA in FIG. 図27は、実施形態10に係る舵角比可変部付近の構成を示す概略図である。FIG. 27 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the tenth embodiment. 図28は、実施形態11に係る舵角比可変部付近の構成を示す概略図である。FIG. 28 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit according to the eleventh embodiment. 図29は、変形例5に係るECUの内部構成図である。FIG. 29 is an internal configuration diagram of an ECU according to Modification 5. 図30は、変形例6に係るECUの内部構成図である。FIG. 30 is an internal configuration diagram of an ECU according to Modification 6. 図31は、変形例6に係るECUの内部構成図である。FIG. 31 is an internal configuration diagram of an ECU according to Modification 6. 図32は、変形例7に係るECUの内部構成図である。FIG. 32 is an internal configuration diagram of an ECU according to Modification 7. 図33は、変形例7に係る舵角比可変部の主要構成配置図である。FIG. 33 is a main configuration layout diagram of a steering angle ratio variable unit according to Modification 7. 図34は、変形例8に係るECUの内部構成図である。FIG. 34 is an internal configuration diagram of an ECU according to Modification 8.
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The requirements of the embodiments described below can be combined as appropriate. Some components may not be used.
(実施形態1)
 図1は、実施形態1に係る舵角比可変装置を備えた操舵装置(ステアリング)の主要構成図である。ステアリングは、操舵者から与えられる力が伝達する順に、ステアリングホイール81と、ステアリングシャフト82と、ユニバーサルジョイント84と、ロアシャフト85と、ユニバーサルジョイント86と、シャフト87と、舵角比可変部83と、ステアリングギヤ88と、タイロッド89とを備える。
(Embodiment 1)
FIG. 1 is a main configuration diagram of a steering device (steering) including a steering angle ratio variable device according to the first embodiment. In the steering, the steering wheel 81, the steering shaft 82, the universal joint 84, the lower shaft 85, the universal joint 86, the shaft 87, and the steering angle ratio variable unit 83 are arranged in the order in which the force given by the steering person is transmitted. The steering gear 88 and the tie rod 89 are provided.
 ステアリングシャフト82は、ステアリングホイール81が設けられたステアリングコラムのシャフトである。ステアリングシャフト82は、一方の端部がステアリングホイール81に連結され、他方の端部がユニバーサルジョイント84に連結される。ロアシャフト85は、一方の端部がユニバーサルジョイント84に連結され、他方の端部がユニバーサルジョイント86に連結される。シャフト87は、一方の端部がユニバーサルジョイント86に連結され、他方の端部が舵角比可変部83を介してステアリングギヤ88に連結される。すなわち、シャフト87は、ステアリングホイール81を介して入力される回動が伝達されるシャフトである。シャフト87は、ユニバーサルジョイント84,86を介した連結によりステアリングシャフト82と連結されている。 The steering shaft 82 is a steering column shaft provided with a steering wheel 81. The steering shaft 82 has one end connected to the steering wheel 81 and the other end connected to the universal joint 84. The lower shaft 85 has one end connected to the universal joint 84 and the other end connected to the universal joint 86. The shaft 87 has one end connected to the universal joint 86 and the other end connected to the steering gear 88 via the steering angle ratio variable unit 83. That is, the shaft 87 is a shaft to which the rotation input via the steering wheel 81 is transmitted. The shaft 87 is connected to the steering shaft 82 by connection via universal joints 84 and 86.
 ステアリングギヤ88は、ピニオン88aと、ラック88bとを含む。ピニオン88aは、舵角比可変部83を介してシャフト87に連結される。ラック88bは、ピニオン88aに噛み合う。ステアリングギヤ88は、ラックアンドピニオン形式として構成される。ステアリングギヤ88は、ピニオン88aに伝達された回転運動をラック88bで直進運動に変換する。タイロッド89は、ラック88bに連結される。タイロッド89は、操舵輪Wに連結される。このように、タイロッド89を介して操舵輪Wに連結されるステアリングギヤ88は、シャフト(例えばシャフト87)と操舵輪Wとを連結するラックアンドピニオン機構である。 The steering gear 88 includes a pinion 88a and a rack 88b. The pinion 88 a is connected to the shaft 87 via the rudder angle ratio variable unit 83. The rack 88b meshes with the pinion 88a. The steering gear 88 is configured as a rack and pinion type. The steering gear 88 converts the rotational motion transmitted to the pinion 88a into a linear motion by the rack 88b. The tie rod 89 is connected to the rack 88b. The tie rod 89 is connected to the steered wheel W. As described above, the steering gear 88 connected to the steering wheel W via the tie rod 89 is a rack and pinion mechanism that connects the shaft (for example, the shaft 87) and the steering wheel W.
 また、ステアリングには、トルクセンサ91aが設けられている。トルクセンサ91aは、例えばシャフト87付近に設けられて、シャフト87に加わる回動方向の力(トルク)を計測する。トルクセンサ91aによって、ステアリングホイール91への操舵入力角に応じた回動量を検出することができる。トルクセンサ91aは、トルクアングルセンサであってもよい。 Further, the steering is provided with a torque sensor 91a. The torque sensor 91a is provided near the shaft 87, for example, and measures a rotational force (torque) applied to the shaft 87. The torque sensor 91a can detect the amount of rotation corresponding to the steering input angle to the steering wheel 91. The torque sensor 91a may be a torque angle sensor.
 また、ステアリングを有する車両Bには、速度センサ91bが設けられている。速度センサ91bは、車軸の回転数に比例してパルス信号を発生させ、パルス信号の数量に比例した走行速度(車速)で車両Bの移動が生じたとしてECU90等に走行速度を示す情報を出力する。 Further, the vehicle B having a steering is provided with a speed sensor 91b. The speed sensor 91b generates a pulse signal in proportion to the rotational speed of the axle, and outputs information indicating the traveling speed to the ECU 90 or the like on the assumption that the movement of the vehicle B has occurred at a traveling speed (vehicle speed) proportional to the number of pulse signals. To do.
 次に、舵角比可変部83について説明する。舵角比可変部83は、ECU90と、ギヤ部92と、電動機10とを備える。舵角比可変部83は、ステアリングホイール81への操舵入力角に対する操舵輪の転舵角を可変にする。具体的には、舵角比可変部83は、例えば、ステアリングホイール81への操舵入力角に対する操舵輪Wの転舵角を操舵入力角及び車速に基づいて変更させる。本実施形態の舵角比可変部83は、車速に基づいて転舵角を変更させる構成であるが、車速に限らず、車両走行状態を示す他の情報に基づいて転舵角を変更させる構成であってもよい。具体例を挙げると、舵角比可変部83は、操舵入力角及びヨーレートに基づいて転舵角を変更させてもよい。この場合、レートジャイロ等、ヨーレートを計測するための構成が車両Bに設けられる。また、舵角比可変部83は、車速及びヨーレートに基づいて転舵角を変更させる等、車両走行状態を示す2以上の情報に基づいて転舵角を変更させてもよい。 Next, the steering angle ratio variable unit 83 will be described. The rudder angle ratio variable unit 83 includes an ECU 90, a gear unit 92, and the electric motor 10. The steering angle ratio variable unit 83 makes the steering angle of the steered wheels variable with respect to the steering input angle to the steering wheel 81. Specifically, the steering angle ratio variable unit 83 changes the turning angle of the steered wheels W with respect to the steering input angle to the steering wheel 81 based on the steering input angle and the vehicle speed, for example. The steering angle ratio variable unit 83 of the present embodiment is configured to change the steering angle based on the vehicle speed, but is not limited to the vehicle speed, and is configured to change the steering angle based on other information indicating the vehicle traveling state. It may be. As a specific example, the steering angle ratio variable unit 83 may change the steering angle based on the steering input angle and the yaw rate. In this case, a configuration for measuring the yaw rate, such as a rate gyro, is provided in the vehicle B. Further, the rudder angle ratio variable unit 83 may change the steered angle based on two or more information indicating the vehicle running state, such as changing the steered angle based on the vehicle speed and the yaw rate.
 ECU90は、各種の回路が設けられた基板90bを有する。ECU90は、トルクセンサ91a及び速度センサ91bとワイヤーハーネスを介して接続されている。ECU90は、トルクセンサ91aにより検知された回動量と速度センサ91bにより検出された走行速度とに基づいて電動機10によるシャフト87の駆動量及びギヤ部92のギヤ比を決定する。すなわち、ECU90は、操舵入力角及び車速に基づいて転舵角を決定して当該転舵角に応じて電動機10を動作させる。また、ECU90は、操舵入力角及び車速に基づいて転舵角を決定して当該転舵角に応じてギヤ部92のギヤ比を決定する。 The ECU 90 has a substrate 90b on which various circuits are provided. The ECU 90 is connected to the torque sensor 91a and the speed sensor 91b via a wire harness. The ECU 90 determines the driving amount of the shaft 87 by the electric motor 10 and the gear ratio of the gear portion 92 based on the rotation amount detected by the torque sensor 91a and the traveling speed detected by the speed sensor 91b. That is, the ECU 90 determines a turning angle based on the steering input angle and the vehicle speed, and operates the electric motor 10 according to the turning angle. Further, the ECU 90 determines a turning angle based on the steering input angle and the vehicle speed, and determines the gear ratio of the gear unit 92 according to the turning angle.
 電動機10は、動作により、駆動量に応じて操舵輪Wの向きを変える。実施形態1の電動機10は、回転軸10bがシャフト87とねじれの関係である(図2等参照)。また、シャフト87とピニオン88aとは同軸の関係である。すなわち、回転軸10bは、ピニオン88aとねじれの関係にある。電動機10の回転軸10bは、例えばねじ歯車若しくはウォームギヤを介した連結又は複数の歯車(ギヤ)を介した連結によりギヤ部92と連結される。実施形態1の電動機10は、動作することでギヤ部92を介してピニオン88aに舵角変更のための舵角を与える。 The electric motor 10 changes the direction of the steered wheels W according to the driving amount by the operation. In the electric motor 10 of the first embodiment, the rotating shaft 10b has a twisted relationship with the shaft 87 (see FIG. 2 and the like). The shaft 87 and the pinion 88a have a coaxial relationship. That is, the rotating shaft 10b is in a twisted relationship with the pinion 88a. The rotating shaft 10b of the electric motor 10 is connected to the gear portion 92 by, for example, connection via a screw gear or worm gear or connection via a plurality of gears (gears). The electric motor 10 of the first embodiment operates to give a steering angle for changing the steering angle to the pinion 88a via the gear portion 92.
 ギヤ部92は、シャフト87とピニオン88aとの間に介在する。ギヤ部92は、例えば複数のギヤの組み合わせによってシャフト87とピニオン88aの回転比(ギヤ比)を変更可能に設けられた機構である。 The gear portion 92 is interposed between the shaft 87 and the pinion 88a. The gear part 92 is a mechanism provided so that the rotation ratio (gear ratio) of the shaft 87 and the pinion 88a can be changed by a combination of a plurality of gears, for example.
 また、ステアリングは、パワーステアリング機能を有する。このため、ステアリングには、パワーステアリング機能の実現に係る処理を行うECU100が設けられている。ECU100は、電動式のパワーステアリング(EPS:Electric Power Steering)機能のために設けられる電子制御ユニットである。ECU100は、例えば駆動力により直接操舵を補助するEPS専用の電動機の動作を制御する。ECU100は、操舵を補助するための油圧を生じさせる電動機の動作を制御する電子制御ユニットであってもよい。また、実施形態1では、例えばラックアシスト式のパワーステアリング機構によりパワーステアリング機能を実現しているが、コラムアシスト式等、異なるパワーステアリング機構によってもよい。 Also, the steering has a power steering function. For this reason, the steering is provided with an ECU 100 that performs processing related to the realization of the power steering function. The ECU 100 is an electronic control unit provided for an electric power steering (EPS) function. The ECU 100 controls the operation of an electric motor dedicated to EPS that directly assists steering by, for example, driving force. ECU 100 may be an electronic control unit that controls the operation of an electric motor that generates hydraulic pressure to assist steering. In the first embodiment, for example, the power steering function is realized by a rack assist type power steering mechanism, but a different power steering mechanism such as a column assist type may be used.
 速度センサ91bは、ステアリングが搭載される車両Bの走行速度を検出する。ECU90は、電動機10と、トルクセンサ91aと、速度センサ91bとが電気的に接続される。 The speed sensor 91b detects the traveling speed of the vehicle B on which the steering is mounted. In the ECU 90, the electric motor 10, the torque sensor 91a, and the speed sensor 91b are electrically connected.
 図2は、実施形態1に係る舵角比可変部83付近の構成を示す概略図である。図2に示すように、実施形態1に係る舵角比可変部83は、ラックアンドピニオン機構のピニオン側に設けられる。具体的には、舵角比可変部83のハウジング(筐体)は、ステアリングギヤ88の筐体88cに当接している。ステアリングギヤ88のピニオン88a及びラック88bは、筐体88c内に設けられる。 FIG. 2 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit 83 according to the first embodiment. As shown in FIG. 2, the steering angle ratio variable unit 83 according to the first embodiment is provided on the pinion side of the rack and pinion mechanism. Specifically, the housing (housing) of the steering angle ratio variable unit 83 is in contact with the housing 88 c of the steering gear 88. The pinion 88a and the rack 88b of the steering gear 88 are provided in the housing 88c.
 図3は、実施形態1に係る舵角比可変部83の主要構成配置図である。ECU90は、電動機10に対して電動機10の回転軸10b方向に配置されている。 FIG. 3 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the first embodiment. The ECU 90 is disposed in the direction of the rotating shaft 10b of the electric motor 10 with respect to the electric motor 10.
 ECU90を収納する筐体90aは、電動機10と一体化されている。具体的には、筐体90aは、例えば図3に示すように、外形が円柱形状であって径が筒の長さよりも大きい容器状の部材であり、各種の回路が設けられたECU90の基板90bを内包する。実施形態1では、筐体90aの径と電動機10の筐体10aの径とが同一であるが、これは一例であってこれに限られるものでなく、適宜変更可能である。 The housing 90 a that houses the ECU 90 is integrated with the electric motor 10. Specifically, as shown in FIG. 3, for example, the casing 90 a is a container-like member having an outer shape that is cylindrical and whose diameter is larger than the length of the cylinder, and a substrate of the ECU 90 on which various circuits are provided. 90b is included. In the first embodiment, the diameter of the casing 90a and the diameter of the casing 10a of the electric motor 10 are the same. However, this is an example and not limited to this, and can be changed as appropriate.
 また、実施形態1では、ECU100が筐体88cの近傍に設けられている。このように、舵角比可変部83のECU90とEPSのECU100がステアリングギヤ88付近に設けられていることで、舵角比可変機能とパワーステアリング機能との協調、協働に係るECU90の処理とECU100の処理との連携を実現するうえで必要となるECU90とECU100との間のワイヤーハーネスHをより短くすることができる。 In the first embodiment, the ECU 100 is provided in the vicinity of the casing 88c. As described above, the ECU 90 of the steering angle ratio variable unit 83 and the ECU 100 of the EPS are provided in the vicinity of the steering gear 88, so that the processing of the ECU 90 related to the cooperation and cooperation of the steering angle ratio variable function and the power steering function can be achieved. The wire harness H between the ECU 90 and the ECU 100, which is necessary for realizing cooperation with the processing of the ECU 100, can be further shortened.
 図4は、車両Bにおけるステアリングギヤ88の配置例を示す概略図である。図4に示すように、舵角比可変部83が設けられたステアリングギヤ88は、車両Bの前方側に設けられている。このため、走行時において車両Bの前面側に設けられたインテーク、車体の下方等からステアリングギヤ88付近を通過するように流れる空気による冷却をECU90、100等に施すことができる。図4では、操舵輪Wの後方にステアリングギヤ88が配置されているが、これはステアリングギヤ88のレイアウトの一例であってこれに限られるものでない。例えば、操舵輪Wの前方にステアリングギヤ88が配置されていてもよい。 FIG. 4 is a schematic diagram illustrating an arrangement example of the steering gear 88 in the vehicle B. As shown in FIG. 4, the steering gear 88 provided with the rudder angle ratio variable portion 83 is provided on the front side of the vehicle B. For this reason, during traveling, the ECU 90, 100, etc. can be cooled by the intake air provided on the front side of the vehicle B, the air flowing so as to pass near the steering gear 88 from below the vehicle body, and the like. In FIG. 4, the steering gear 88 is disposed behind the steering wheel W, but this is an example of the layout of the steering gear 88 and is not limited thereto. For example, a steering gear 88 may be disposed in front of the steering wheel W.
 また、実施形態1では、ECU90が電動機10に対して車体の前方側に位置するように設けられている。このようにECU90を配置することにより、ECU90により良好に空気を当てることができる。また、車両Bにおいて熱源となるエンジンからECU90を遠ざけることができる。 In the first embodiment, the ECU 90 is provided on the front side of the vehicle body with respect to the electric motor 10. By disposing the ECU 90 in this way, the ECU 90 can apply air well. Further, the ECU 90 can be moved away from the engine that is a heat source in the vehicle B.
 以上説明したように、実施形態1によれば、ECU90を収納する筐体90aが電動機10と一体化されているので、ECU90と電動機10との間の配線をより短くすることができる。よって、配線の短縮及び削減による舵角比可変装置の軽量化、低コスト化、電力ロスの低減、より高いノイズ耐性等、各種の優れた効果を得ることができる。 As described above, according to the first embodiment, since the housing 90a that houses the ECU 90 is integrated with the electric motor 10, the wiring between the ECU 90 and the electric motor 10 can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wiring.
 また、ECU90が電動機10に対して電動機10の回転軸10b方向に配置されているので、回転軸10bに直交する方向について舵角比可変部83をよりコンパクトにすることができる。 Further, since the ECU 90 is disposed in the direction of the rotation shaft 10b of the electric motor 10 with respect to the electric motor 10, the steering angle ratio variable unit 83 can be made more compact in the direction orthogonal to the rotation shaft 10b.
 また、舵角比可変部83がシャフト(例えばシャフト87)と操舵輪Wとを連結するラックアンドピニオン機構(ステアリングギヤ88)のピニオン88a側に設けられるので、走行時において車両Bの前面側に設けられたインテーク、車体の下方等からステアリングギヤ88付近を通過するように流れる空気による冷却をECU90等に施すことができる。 Further, since the rudder angle ratio variable portion 83 is provided on the pinion 88a side of the rack and pinion mechanism (steering gear 88) that connects the shaft (for example, the shaft 87) and the steered wheels W, the steering angle ratio variable portion 83 is provided on the front side of the vehicle B during traveling. The ECU 90 or the like can be cooled by air that flows so as to pass through the vicinity of the steering gear 88 from the intake provided, the lower side of the vehicle body, or the like.
 また、車両走行状態を示す情報が、車速及びヨーレートの少なくとも一方を示す情報であるので、車速及びヨーレートの少なくとも一方に基づいた転舵角を操舵輪Wに与えることができる。 Further, since the information indicating the vehicle running state is information indicating at least one of the vehicle speed and the yaw rate, the steered angle based on at least one of the vehicle speed and the yaw rate can be given to the steered wheels W.
 以下、実施形態1に係るステアリングと一部の構成が異なる他の実施形態(実施形態2~6)について説明する。他の実施形態の説明において実施形態1と同様の構成については同じ符号を付して説明を省略することがある。また、他の実施形態の説明において説明している事項を除いて、他の実施形態に係るステアリングの構成は、実施形態1に係るステアリングと同様である。 Hereinafter, other embodiments (Embodiments 2 to 6) different in part from the steering according to Embodiment 1 will be described. In the description of other embodiments, the same components as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted. Further, the configuration of the steering according to another embodiment is the same as that of the steering according to the first embodiment, except for matters described in the description of the other embodiments.
(実施形態2)
 図5、図6は、実施形態2に係る舵角比可変部83の主要構成配置図である。図5は、シャフト87及び電動機10の回転軸10bに直行する方向から見た場合の配置を示す図である。図6は、電動機10の回転軸10b方向から見た場合の配置を示す図である。実施形態2のECU90は、電動機10の周囲に配置されている。具体的には、図5、図6に示すように、実施形態2に係るECU90は、電動機10の周囲に配置されている。具体的には、実施形態2に係るECU90の筐体900は、孔あきドーナツ形状の外形を有する容器であり、内側の孔を取り巻く面(内周面)で電動機10の筐体10aと当接する。
(Embodiment 2)
5 and 6 are main configuration layout diagrams of the steering angle ratio variable unit 83 according to the second embodiment. FIG. 5 is a diagram illustrating an arrangement when viewed from a direction perpendicular to the shaft 87 and the rotating shaft 10 b of the electric motor 10. FIG. 6 is a diagram illustrating an arrangement when the electric motor 10 is viewed from the direction of the rotating shaft 10b. The ECU 90 of the second embodiment is disposed around the electric motor 10. Specifically, as shown in FIGS. 5 and 6, the ECU 90 according to the second embodiment is arranged around the electric motor 10. Specifically, the casing 900 of the ECU 90 according to the second embodiment is a container having a perforated donut shape, and abuts the casing 10a of the electric motor 10 on a surface (inner peripheral surface) surrounding the inner hole. .
 実施形態2によれば、舵角比可変部83の大きさを電動機10の回転軸10b方向についてよりコンパクトにすることができる。また、ECU90の筐体10aの表面積をより大きくすることができるので、ECU90の冷却効率をより高めることができる。 According to the second embodiment, the size of the rudder angle ratio variable unit 83 can be made more compact in the direction of the rotating shaft 10b of the electric motor 10. Further, since the surface area of the casing 10a of the ECU 90 can be increased, the cooling efficiency of the ECU 90 can be further increased.
 以下、実施形態2のECU90の筐体900の変形例1~4について、図7乃至図12を参照して説明する。図7乃至図12では、基板90bの配置等の明確化のため、ECU90の筐体900,901,902の外枠及び筐体900,901,902内に隠れている基板90b等を実線で明示している。 Hereinafter, modified examples 1 to 4 of the casing 900 of the ECU 90 according to the second embodiment will be described with reference to FIGS. 7 to 12, the outer frame of the casings 900, 901, and 902 of the ECU 90 and the substrate 90b hidden in the casings 900, 901, and 902 are clearly shown by solid lines in order to clarify the arrangement and the like of the board 90b. is doing.
(変形例1)
 図7は、変形例1に係るECU90の概略図である。図7に示す例では、基板90bがECU90の筐体900の内側(スペース側)に配置されて基板90bに設けられた回路が筐体900の外周側に配置されていたが、基板90bと回路の位置関係を逆にしてもよい。この場合、図7に示すように、基板90bが外周側に配置されて回路が内周側に配置される。
(Modification 1)
FIG. 7 is a schematic diagram of the ECU 90 according to the first modification. In the example shown in FIG. 7, the circuit provided on the board 90 b is arranged on the inner side (space side) of the casing 900 of the ECU 90 and the circuit provided on the board 90 b is arranged on the outer peripheral side of the casing 900. The positional relationship may be reversed. In this case, as shown in FIG. 7, the substrate 90b is disposed on the outer peripheral side, and the circuit is disposed on the inner peripheral side.
 実施形態1のように回路を外周側にするか、変形例1のように基板90bを外周側にするかは、ECU90の動作に伴う回路及び基板90bの熱の状況に応じて適宜選択可能である。外周側は、内周側に比して表面積が大きいことから、熱の発散効率がよい。特に、図5の例のように、車両Bの走行時に伴いECU90付近を通過するように流れる空気による冷却を考慮すると、冷却が必要な構成が外周側にある方がより効率的に冷却を行うことができることになる。そこで、例えば、回路を外周側にすることで、動作に伴い熱を発する回路をより効率的に冷却することができる。また、基板を外周側にすることで、基板に対する回路の高さに関係なく基板側から基板に設けられた回路を冷却することができる。 Whether the circuit is on the outer peripheral side as in the first embodiment or the board 90b is on the outer peripheral side as in Modification 1 can be selected as appropriate according to the circuit accompanying the operation of the ECU 90 and the heat status of the board 90b. is there. Since the outer peripheral side has a larger surface area than the inner peripheral side, heat dissipation efficiency is good. In particular, as in the example of FIG. 5, in consideration of cooling by air flowing so as to pass through the vicinity of the ECU 90 when the vehicle B travels, cooling is performed more efficiently when the configuration requiring cooling is on the outer peripheral side. Will be able to. Therefore, for example, by setting the circuit to the outer peripheral side, the circuit that generates heat with the operation can be cooled more efficiently. In addition, by setting the substrate to the outer peripheral side, the circuit provided on the substrate can be cooled from the substrate side regardless of the height of the circuit with respect to the substrate.
(変形例2)
 図8、図9は、変形例2に係るECU90の概略図である。図7等に示す変形例1では、ECU90の筐体900が孔あきドーナツ形状であり、外周側の断面形状が円状であったが、ECU90の筐体の形状をECU90の基板90bに沿わせるようにしてもよい。具体的には、図8に示すように、筐体901の外周側の断面形状を多角形状にし、基板90bの板面が当該多角形状の側面に沿うように基板90bを配置するようにしてもよい。また、図9に示すように、一部の基板90bに対応する部分のみ筐体902の外周側を平面として当該平面に基板90bの板面が沿うように基板90bを配置するようにしてもよい。このようにすることで、筐体901,902を介したECU90の放熱効率がより高まる。図8、図9に示す例に限らず、ECU90の筐体901,902の形状は適宜変更可能である。
(Modification 2)
8 and 9 are schematic diagrams of the ECU 90 according to the second modification. In the first modification shown in FIG. 7 and the like, the casing 900 of the ECU 90 has a perforated donut shape and the cross-sectional shape on the outer peripheral side is circular, but the shape of the casing of the ECU 90 is made to conform to the substrate 90b of the ECU 90. You may do it. Specifically, as shown in FIG. 8, the cross-sectional shape on the outer peripheral side of the housing 901 may be a polygonal shape, and the substrate 90 b may be arranged so that the plate surface of the substrate 90 b is along the side surface of the polygonal shape. Good. Further, as shown in FIG. 9, the substrate 90b may be arranged so that only the portion corresponding to a part of the substrates 90b has the outer peripheral side of the housing 902 as a plane and the plate surface of the substrate 90b is along the plane. . By doing in this way, the heat dissipation efficiency of ECU90 via the housing | casing 901,902 is improved more. The shape of the casings 901 and 902 of the ECU 90 can be changed as appropriate without being limited to the examples shown in FIGS.
(変形例3)
 図10、図11は、変形例3に係るECU90の概略図である。変形例3のECU90の外周側には放熱板が設けられている。具体的には、図10、図11に示すように、基板90bの板面に沿う筐体902の面(例えば、平面)に冷却用のフィン95を設けるようにしてもよい。係るフィン95のような放熱板により、ECU90をより効率的に冷却することができる。図10に示す例は、図9に示す例にフィン95を追加したものであるが、図8に示す例でも同様にフィン95を追加してよい。また、図10に示すような外周側の平面に限らず、図4等に示すような基板90bの板面に沿わない円状(曲面状)の外周面、スペースを取り巻く内周面等にフィン95を設けるようにしてもよい。
(Modification 3)
10 and 11 are schematic diagrams of the ECU 90 according to the third modification. A heat radiating plate is provided on the outer peripheral side of the ECU 90 of the third modification. Specifically, as shown in FIGS. 10 and 11, cooling fins 95 may be provided on the surface (for example, a flat surface) of the housing 902 along the plate surface of the substrate 90b. The ECU 90 can be cooled more efficiently by the heat dissipation plate such as the fins 95. In the example shown in FIG. 10, the fin 95 is added to the example shown in FIG. 9, but the fin 95 may be added similarly in the example shown in FIG. Further, not only the outer peripheral plane as shown in FIG. 10, but also a circular (curved) outer peripheral surface not along the plate surface of the substrate 90b as shown in FIG. 4 or the like, and an inner peripheral surface surrounding the space, etc. 95 may be provided.
(変形例4)
 図12は、変形例4に係るECU90の概略図である。図12に示すように、ECU90の筐体903は、完全な筒状でなく、スペースの一部が外周側の空間と連続するような弧状であってもよい。ここで、係る弧状の内周側及び外周側の断面形状は必ずしも円状である必要はなく、多角形状であってもよい。
(Modification 4)
FIG. 12 is a schematic diagram of the ECU 90 according to the fourth modification. As shown in FIG. 12, the casing 903 of the ECU 90 may not be a perfect cylinder, but may be an arc shape in which a part of the space is continuous with the outer space. Here, the cross-sectional shape of the arc-shaped inner peripheral side and outer peripheral side is not necessarily circular, and may be polygonal.
(実施形態3)
 図13、図14は、実施形態3に係る舵角比可変部83の主要構成配置図である。実施形態3に係るECU90は、実施形態2に係るECU90と同様に、電動機10の筐体10aの外周を取り巻くように設けられている。ただし、実施形態3では、ECU90と電動機10との間に溝99が設けられている。具体的には、図13に示すように、孔あきドーナツ形状のECU90の筐体904は、電動機10の筐体10aを取り巻くように設けられた内周面から突出するよう設けられて電動機10の筐体10aに当接する当接部904aと、電動機10の筐体10aに当接しない非当接部とを有する。電動機10の回転軸10b方向に沿った筐体904の全幅における当接部904aと非当接部の比率は任意である。図13、図14に示すように、非当接部は、ECU90と電動機10との間の溝99になる。溝99は、ECU90と電動機10との間の空間として機能する。
(Embodiment 3)
FIGS. 13 and 14 are layout diagrams of main components of the steering angle ratio variable unit 83 according to the third embodiment. Similar to the ECU 90 according to the second embodiment, the ECU 90 according to the third embodiment is provided so as to surround the outer periphery of the housing 10 a of the electric motor 10. However, in the third embodiment, a groove 99 is provided between the ECU 90 and the electric motor 10. Specifically, as shown in FIG. 13, the casing 904 of the perforated donut-shaped ECU 90 is provided so as to protrude from the inner peripheral surface provided so as to surround the casing 10 a of the electric motor 10. A contact portion 904a that contacts the housing 10a and a non-contact portion that does not contact the housing 10a of the electric motor 10 are provided. The ratio of the contact portion 904a and the non-contact portion in the entire width of the casing 904 along the direction of the rotation shaft 10b of the electric motor 10 is arbitrary. As shown in FIGS. 13 and 14, the non-contact portion becomes a groove 99 between the ECU 90 and the electric motor 10. The groove 99 functions as a space between the ECU 90 and the electric motor 10.
 実施形態3のECU90は、ECU90と電動機10との間に溝99が設けられている点を除いて実施形態2と同様である。実施形態3のECU90は、ECU90と電動機10との間に溝99が設けられている状態が維持しつつ、実施形態2の変形例を適用することができる。 The ECU 90 of the third embodiment is the same as that of the second embodiment except that a groove 99 is provided between the ECU 90 and the electric motor 10. The ECU 90 of the third embodiment can apply the modification of the second embodiment while maintaining the state in which the groove 99 is provided between the ECU 90 and the electric motor 10.
 なお、実施形態3では、溝99の一部分の底(当接部)を抜いて空気等が挿通可能な隙間としてもよい。この場合、当接部によるECU90の筐体904と電動機10の筐体10aとの固定が維持されるように隙間を設けることが望ましい。 In the third embodiment, the bottom (abutting portion) of a part of the groove 99 may be removed so that air or the like can be inserted. In this case, it is desirable to provide a gap so that the contact between the housing 904 of the ECU 90 and the housing 10a of the electric motor 10 is maintained.
 実施形態3によれば、ECU90と電動機10との間に溝99が設けられているので、ECU90の筐体904の表面積をより大きくすることができるので、ECU90の冷却効率をより高めることができる。 According to the third embodiment, since the groove 99 is provided between the ECU 90 and the electric motor 10, the surface area of the casing 904 of the ECU 90 can be increased, and thus the cooling efficiency of the ECU 90 can be further increased. .
(実施形態4)
 図15は、実施形態4に係る舵角比可変部83付近の構成を示す概略図である。図15に示すように、実施形態4に係る舵角比可変部83には、トルクセンサ91aの構成部品(ASSY)を内包する筐体が一体化されている。具体的には、シャフト87側からステアリングギヤ88側に向かう方向に沿って、トルクセンサ91a、ギヤ部92の順に構成が配置されている。実施形態4によれば、トルクセンサ91aとECU90とを接続するワイヤーハーネスH3をより短くすることができる。よって、ワイヤーハーネスH3の短縮及び削減による舵角比可変装置の軽量化、低コスト化、電力ロスの低減、より高いノイズ耐性等、各種の優れた効果を得ることができる。
(Embodiment 4)
FIG. 15 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit 83 according to the fourth embodiment. As shown in FIG. 15, the steering angle ratio variable unit 83 according to the fourth embodiment is integrated with a housing that encloses the components (ASSY) of the torque sensor 91a. Specifically, the configuration is arranged in the order of the torque sensor 91a and the gear portion 92 along the direction from the shaft 87 side to the steering gear 88 side. According to the fourth embodiment, the wire harness H3 that connects the torque sensor 91a and the ECU 90 can be further shortened. Therefore, it is possible to obtain various excellent effects such as weight reduction, cost reduction, power loss reduction, higher noise resistance, and the like by shortening and reducing the wire harness H3.
(実施形態5)
 図16は、実施形態5に係るステアリングの主要構成図である。実施形態5に係るステアリングは、シャシー統合システムをさらに備える。
シャシー統合システムは、車両Bの運転者の支援、補完、代理等を実現するための各種の処理及び制御を行う。シャシー統合システムにより実現される車両Bの機能として、例えば、運転席から死角となる位置(背後等)のモニタリング、走行中の車線維持の支援、夜間における周囲の状況の表示(ナイト・ビジョン)、ステアリングの自動制御、ブレーキの自動制御等が挙げられる。シャシー統合システムは、舵角比可変部83のECU90及びEPSのECU100とは独立したECU110を有する。実施形態5では、シャシー統合システムのECU110が舵角比可変部83のECU90及びEPSのECU100を統括制御する。
(Embodiment 5)
FIG. 16 is a main configuration diagram of steering according to the fifth embodiment. The steering according to the fifth embodiment further includes a chassis integration system.
The chassis integrated system performs various processes and controls for realizing support, complementation, proxy, and the like of the driver of the vehicle B. The functions of the vehicle B realized by the chassis integrated system include, for example, monitoring of a blind spot from the driver's seat (back, etc.), support for maintaining the lane while driving, display of the surrounding situation at night (night vision), Examples include automatic steering control and automatic brake control. The chassis integrated system includes an ECU 110 independent of the ECU 90 of the steering angle ratio variable unit 83 and the ECU 100 of the EPS. In the fifth embodiment, the ECU 110 of the chassis integrated system controls the ECU 90 of the steering angle ratio variable unit 83 and the ECU 100 of the EPS.
 また、実施形態5に係るステアリングを備える車両Bには、シャシー統合システムを構成する各種のセンサ、カメラ等が設けられる。 Further, the vehicle B provided with the steering according to the fifth embodiment is provided with various sensors, cameras, and the like that constitute the chassis integrated system.
 図17は、実施形態5に係る舵角比可変部83付近の構成を示す概略図である。図17に示すように、シャシー統合システムのECU110を舵角比可変部83のECU90の近傍に配置することで、ECU110とECU90とを接続するワイヤーハーネスH1をより短くすることができる。また、これに伴い、ECU100とECU110との距離も短くすることができることから、ECU100とECU110とを接続するワイヤーハーネスH2をより短くすることができる。よって、ワイヤーハーネスH1,H2の短縮及び削減による舵角比可変装置の軽量化、低コスト化、電力ロスの低減、より高いノイズ耐性等、各種の優れた効果を得ることができる。 FIG. 17 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the fifth embodiment. As shown in FIG. 17, by arranging the ECU 110 of the chassis integrated system in the vicinity of the ECU 90 of the steering angle ratio variable unit 83, the wire harness H1 connecting the ECU 110 and the ECU 90 can be further shortened. Further, since the distance between the ECU 100 and the ECU 110 can be shortened accordingly, the wire harness H2 that connects the ECU 100 and the ECU 110 can be further shortened. Therefore, various excellent effects such as weight reduction, cost reduction, reduction in power loss, higher noise resistance, and the like by shortening and reducing the wire harnesses H1 and H2 can be obtained.
 また、シャシー統合システムのECU110の配置がステアリングギヤ88付近であることで、シャシー統合システムの機能を実現するためのセンサ、カメラ等のうち、車両Bの前方に設けられるセンサ、カメラ等とECU110との間のワイヤーハーネスをより短くすることができる。 Further, since the ECU 110 of the chassis integrated system is arranged near the steering gear 88, among the sensors and cameras for realizing the functions of the chassis integrated system, the sensors, cameras, etc. provided in front of the vehicle B and the ECU 110 The wire harness between can be made shorter.
 なお、上記の実施形態1~5は、互いの構成が矛盾しない範囲内で組み合わせて採用することができる。例えば、実施形態1から3のいずれかと、実施形態4と、実施形態5とは、その一部又は全部を任意に組み合わせて採用することができる。 It should be noted that Embodiments 1 to 5 described above can be used in combination as long as their configurations do not contradict each other. For example, any one of the first to third embodiments, the fourth embodiment, and the fifth embodiment can be adopted by combining some or all of them.
(実施形態6)
 図18は、実施形態6に係る舵角比可変部83付近の構成を示す概略図である。図19は、実施形態6に係る舵角比可変部83の主要構成配置図である。図20は、実施形態6のシャフト87に直交する平面に沿ったECU90の内部構成図である。図21は、車両Bにおける実施形態6のステアリングギヤ88の配置例を示す概略図である。実施形態6の電動機10は、回転軸がシャフト87と同軸である(図18等参照)。また、シャフト87とピニオン88aとは同軸の関係にある。すなわち、ピニオン88aと電動機10の回転軸とは同軸の関係にある。実施形態6の電動機10は、動作することでギヤ部92を駆動し、ピニオン88aに舵角変更のための舵角を与える。
(Embodiment 6)
FIG. 18 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the sixth embodiment. FIG. 19 is a layout diagram of main components of the steering angle ratio variable unit 83 according to the sixth embodiment. FIG. 20 is an internal configuration diagram of the ECU 90 along a plane orthogonal to the shaft 87 of the sixth embodiment. FIG. 21 is a schematic diagram illustrating an arrangement example of the steering gear 88 of the sixth embodiment in the vehicle B. In the electric motor 10 of the sixth embodiment, the rotation axis is coaxial with the shaft 87 (see FIG. 18 and the like). Further, the shaft 87 and the pinion 88a have a coaxial relationship. That is, the pinion 88a and the rotating shaft of the electric motor 10 are in a coaxial relationship. The electric motor 10 according to the sixth embodiment operates to drive the gear unit 92 to give the pinion 88a a steering angle for changing the steering angle.
 舵角比可変部83には、シャフト87側からステアリングギヤ88側に向かう方向に沿って、ECU90、電動機10、ギヤ部92の順に構成が配置されている。図18、図19に示すように、ECU90は、電動機10に対してシャフト(例えばシャフト87)に沿う方向に設けられている。なお、図19等ではECU90、電動機10、ギヤ部92の筐体内の構成を実線で記載しているが、実際にはこれらの構成は外壁を有するそれぞれの筐体に覆われている。 In the rudder angle ratio variable portion 83, the configuration is arranged in the order of the ECU 90, the electric motor 10, and the gear portion 92 along the direction from the shaft 87 side toward the steering gear 88 side. As shown in FIGS. 18 and 19, the ECU 90 is provided in a direction along the shaft (for example, the shaft 87) with respect to the electric motor 10. In FIG. 19 and the like, the internal configurations of the ECU 90, the electric motor 10, and the gear unit 92 are indicated by solid lines, but these configurations are actually covered by the respective casings having outer walls.
 ECU90を収納する筐体909は、電動機10と一体化されている。具体的には、筐体909は、例えば図20に示すように、外形が孔あきドーナツ形状であって径が筒の長さよりも大きい容器であり、各種の回路が設けられたECU90の基板90bを内包する。実施形態6では、筐体909の径と電動機10の筐体10aの径とが同一であるが、これは一例であってこれに限られるものでなく、適宜変更可能である。 The housing 909 that houses the ECU 90 is integrated with the electric motor 10. Specifically, for example, as shown in FIG. 20, the housing 909 is a container having a perforated donut shape and a diameter larger than the length of the cylinder, and a board 90b of the ECU 90 provided with various circuits. Contain. In the sixth embodiment, the diameter of the casing 909 and the diameter of the casing 10a of the electric motor 10 are the same. However, this is an example and not limited to this, and can be changed as appropriate.
 ECU90の筐体909は、内側で回転軸が回転するスペースが設けられた筒状の形状を有する。具体的には、筐体909の内側を挿通するようシャフト87が設けられている。筐体909は、例えば図20に示すように、シャフト87に直交する平面に沿う断面形状が円形であるスペースを内側に有し、当該スペースにシャフト87が挿通可能に設けられている。筐体909の内側を挿通するよう設けられたシャフト87の他方の端部は、電動機10の回転軸に固定されている。 The casing 909 of the ECU 90 has a cylindrical shape provided with a space in which the rotation shaft rotates inside. Specifically, a shaft 87 is provided so as to be inserted through the inside of the housing 909. For example, as illustrated in FIG. 20, the housing 909 has a space having a circular cross-sectional shape along a plane orthogonal to the shaft 87 on the inside, and the shaft 87 can be inserted into the space. The other end of the shaft 87 provided so as to pass through the inside of the housing 909 is fixed to the rotating shaft of the electric motor 10.
 以上説明したように、実施形態6によれば、ECU90が電動機10に対してシャフト(例えばシャフト87)に沿う方向に設けられているので、シャフトに直交する方向について舵角比可変部83をよりコンパクトにすることができる。 As described above, according to the sixth embodiment, since the ECU 90 is provided in the direction along the shaft (for example, the shaft 87) with respect to the electric motor 10, the steering angle ratio variable unit 83 is further provided in the direction orthogonal to the shaft. It can be made compact.
 また、ECU90の筐体909が内側でシャフト(例えばシャフト87)が回転するスペースが設けられた弧状又は筒状の形状を有するので、シャフトと同軸である回転軸を有する電動機10とシャフトとの間の位置にもECU90を設けることができる。よって、電動機10と一体化されているECU90の配置自由度がより高まる。 Further, since the housing 909 of the ECU 90 has an arc shape or a cylindrical shape in which a space for rotating a shaft (for example, the shaft 87) is provided, between the electric motor 10 having a rotation axis coaxial with the shaft and the shaft. The ECU 90 can also be provided at this position. Therefore, the degree of freedom of arrangement of the ECU 90 integrated with the electric motor 10 is further increased.
 以下、実施形態6をベースとして、実施形態6に係るステアリングと一部の構成が異なる他の実施形態(実施形態7~11)について説明する。他の実施形態の説明において実施形態6と同様の構成については同じ符号を付して説明を省略することがある。また、他の実施形態の説明において説明している事項を除いて、他の実施形態に係るステアリングの構成は、実施形態6に係るステアリングと同様である。 Hereinafter, based on the sixth embodiment, other embodiments (the seventh to eleventh embodiments) different from the steering according to the sixth embodiment in some configurations will be described. In the description of other embodiments, the same components as those in Embodiment 6 may be denoted by the same reference numerals and description thereof may be omitted. Further, except for matters described in the description of the other embodiments, the configuration of the steering according to the other embodiments is the same as that of the steering according to the sixth embodiment.
(実施形態7)
 図22は、実施形態7に係る舵角比可変部83の主要構成配置図である。図23は、実施形態7に係るECU90の内部構成図である。実施形態7に係るステアリングは、ECU90の筐体909の内側を挿通するシャフトが回転に伴い外側に向かって風を送る羽根87aを有する。具体的には、例えば図22、図23に示すように、実施形態7におけるシャフト87には、羽根87aが設けられている。羽根87aは、ECU90の筐体909のスペース内に設けられ、シャフト87の回動に伴いスペース内で位置を変じてスペース内に気流を生じさせる。係る気流は、ECU90の筐体909に冷却効果をもたらす。
(Embodiment 7)
FIG. 22 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the seventh embodiment. FIG. 23 is an internal configuration diagram of the ECU 90 according to the seventh embodiment. The steering according to the seventh embodiment includes a blade 87a that sends a wind toward the outside as the shaft inserted through the inside of the housing 909 of the ECU 90 rotates. Specifically, for example, as shown in FIGS. 22 and 23, the shaft 87 in the seventh embodiment is provided with blades 87a. The blades 87 a are provided in the space of the casing 909 of the ECU 90, and change positions in the space as the shaft 87 rotates to generate an air flow in the space. Such airflow provides a cooling effect to the housing 909 of the ECU 90.
 図22、図23に示す例では、シャフト87に設けられた羽根87aの数は4つであるが、これは羽根87aの具体的形態の一例であってこれに限られるものでなく、適宜変更可能である。また、スペース内を挿通するシャフトがシャフト87以外のシャフトであっても、同様に羽根87aを設けることができる。 In the example shown in FIGS. 22 and 23, the number of the blades 87a provided on the shaft 87 is four. However, this is an example of a specific form of the blades 87a and is not limited thereto, and may be changed as appropriate. Is possible. Further, even if the shaft inserted through the space is a shaft other than the shaft 87, the blades 87a can be similarly provided.
 以上説明したように、実施形態7によれば、シャフト(例えばシャフト87)が回転に伴い外側に向かって風を送る羽根87aを有し、係る羽根87aがECU90の筐体909のスペース内に設けられるので、シャフトの回動に伴い位置を変じた羽根87aが生じさせる気流によってECU90を冷却することができる。 As described above, according to the seventh embodiment, the shaft (for example, the shaft 87) has the vane 87a that sends the wind toward the outside as it rotates, and the vane 87a is provided in the space of the casing 909 of the ECU 90. Therefore, the ECU 90 can be cooled by the airflow generated by the blade 87a whose position is changed with the rotation of the shaft.
(実施形態8)
 図24は、実施形態8に係る舵角比可変部83の主要構成配置図である。実施形態8のECU90は、電動機10及び電動機10とピニオンとを連結するギヤ部92の周囲に配置されている。具体的には、図24に示すように、実施形態8に係るECU90の筐体911は、電動機10の筐体10a及びギヤ部92の筐体の外周を取り巻くように設けられている。
(Embodiment 8)
FIG. 24 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the eighth embodiment. The ECU 90 of the eighth embodiment is arranged around the electric motor 10 and a gear portion 92 that connects the electric motor 10 and the pinion. Specifically, as illustrated in FIG. 24, the casing 911 of the ECU 90 according to the eighth embodiment is provided so as to surround the outer periphery of the casing 10 a of the electric motor 10 and the casing of the gear unit 92.
 実施形態8によれば、シャフト(例えばシャフト87)に沿う方向について舵角比可変部83をよりコンパクトにすることができる。 According to the eighth embodiment, the steering angle ratio variable portion 83 can be made more compact in the direction along the shaft (for example, the shaft 87).
(実施形態9)
 図25は、実施形態9に係る舵角比可変部83付近の構成を示す概略図である。図26は、図25におけるA-A断面図である。図25、図26に示すように、実施形態9に係る舵角比可変部83には、シャフト87側からステアリングギヤ88側に向かう方向に沿って、ギヤ部92、電動機10、ECU90の順に構成が配置されている。すなわち、舵角比可変部83の構成のうちECU90の筐体910が最も筐体88c側に配置されている。また、実施形態9に係るECU90の筐体910は、筐体88cのうちピニオン88aを内側に収める部分に設けられ、ピニオン88aを内包する機能を兼ねている。このように、実施形態9に係るECU90の筐体910は、ラックアンドピニオン機構の筐体(筐体88c)と一体化されている。また、実施形態9では、ECU90がラックアンドピニオン機構側(ステアリングギヤ88側)に配置されている。
(Embodiment 9)
FIG. 25 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the ninth embodiment. 26 is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 25 and 26, the steering angle ratio variable unit 83 according to the ninth embodiment includes a gear unit 92, an electric motor 10, and an ECU 90 in this order along the direction from the shaft 87 side to the steering gear 88 side. Is arranged. That is, the casing 910 of the ECU 90 in the configuration of the rudder angle ratio variable unit 83 is disposed closest to the casing 88c. Further, the housing 910 of the ECU 90 according to the ninth embodiment is provided in a portion of the housing 88c that houses the pinion 88a inside, and also has a function of including the pinion 88a. As described above, the casing 910 of the ECU 90 according to the ninth embodiment is integrated with the casing (housing 88c) of the rack and pinion mechanism. In the ninth embodiment, the ECU 90 is arranged on the rack and pinion mechanism side (steering gear 88 side).
 以上のように、実施形態9によれば、ECU90の筐体910がラックアンドピニオン機構の筐体(筐体88c)と一体化されているので、ECU90で生じた熱を筐体88cにより効率的に逃がすことができる。よって、より効率的にECU90の熱を逃がすことができる。 As described above, according to the ninth embodiment, since the housing 910 of the ECU 90 is integrated with the housing (housing 88c) of the rack and pinion mechanism, the heat generated in the ECU 90 is more efficiently transmitted to the housing 88c. Can escape. Therefore, the heat of the ECU 90 can be released more efficiently.
 また、ECU90がラックアンドピニオン機構側(ステアリングギヤ88側)に配置されているので、より大きな筐体88cを有するラックアンドピニオン機構にECU90を近接させることができることから、ECU90で生じた熱を筐体88cに逃がしやすくなる。 Further, since the ECU 90 is disposed on the rack and pinion mechanism side (steering gear 88 side), the ECU 90 can be brought close to the rack and pinion mechanism having the larger casing 88c, and thus the heat generated in the ECU 90 is accommodated. It becomes easy to escape to the body 88c.
 なお、実施形態6等のように、シャフト87側からステアリングギヤ88側に向かう方向に沿って、ECU90、電動機10、ギヤ部92の順に舵角比可変部83の構成が配置されている場合に、舵角比可変部83をラックアンドピニオン機構の筐体(筐体88c)と一体化するようにしてもよい。 In the case where the configuration of the steering angle ratio variable unit 83 is arranged in the order of the ECU 90, the electric motor 10, and the gear unit 92 along the direction from the shaft 87 side to the steering gear 88 side as in the sixth embodiment. The rudder angle ratio variable unit 83 may be integrated with the housing (housing 88c) of the rack and pinion mechanism.
 また、実施形態6のように舵角比可変部83とステアリングギヤ88とが一体化していない構造において、舵角比可変部83が備える構成(例えば、ギヤ部92、電動機10、ECU90等)のうちECU90を最もステアリングギヤ88寄りに配置するようにしてもよい。ここで、ECU90とステアリングギヤ88とを当接させることで、ECU90で生じた熱を筐体88cに逃がしやすくなる。 Further, in the structure in which the steering angle ratio variable unit 83 and the steering gear 88 are not integrated as in the sixth embodiment, the configuration of the steering angle ratio variable unit 83 (for example, the gear unit 92, the electric motor 10, the ECU 90, etc.) is provided. Of these, the ECU 90 may be disposed closest to the steering gear 88. Here, by bringing the ECU 90 and the steering gear 88 into contact with each other, the heat generated in the ECU 90 can be easily released to the casing 88c.
(実施形態10)
 図27は、実施形態10に係る舵角比可変部83付近の構成を示す概略図である。図27に示すように、実施形態10に係る舵角比可変部83には、トルクセンサ91aの構成部品(ASSY)を内包する筐体が一体化されている。具体的には、シャフト87側からステアリングギヤ88側に向かう方向に沿って、トルクセンサ91a、ECU90、電動機10、ギヤ部92の順に構成が配置されている。実施形態10によれば、トルクセンサ91aとECU90とを接続するワイヤーハーネスをより短くすることができる。よって、ワイヤーハーネスの短縮及び削減による舵角比可変装置の軽量化、低コスト化、電力ロスの低減、より高いノイズ耐性等、各種の優れた効果を得ることができる。
(Embodiment 10)
FIG. 27 is a schematic diagram illustrating a configuration in the vicinity of the steering angle ratio variable unit 83 according to the tenth embodiment. As shown in FIG. 27, the rudder angle ratio variable unit 83 according to the tenth embodiment is integrated with a housing that encloses the components (ASSY) of the torque sensor 91a. Specifically, the configuration is arranged in the order of the torque sensor 91a, the ECU 90, the electric motor 10, and the gear portion 92 along the direction from the shaft 87 side to the steering gear 88 side. According to the tenth embodiment, the wire harness connecting the torque sensor 91a and the ECU 90 can be made shorter. Therefore, various excellent effects, such as weight reduction of a steering angle ratio variable apparatus by shortening and reduction of a wire harness, cost reduction, reduction of electric power loss, higher noise tolerance, etc., can be acquired.
 また、実施形態10においてトルクセンサ91aを構成する回路の実装をECU90の基板90bに行うようにすることで、トルクセンサ91aの基板及びトルクセンサ91aの基板を収容する筐体を個別に設ける必要がなくなり、トルクセンサ91aと舵角比可変部83とを一体化することができる。 Further, in the tenth embodiment, the circuit constituting the torque sensor 91a is mounted on the board 90b of the ECU 90, so that it is necessary to separately provide a housing for accommodating the board of the torque sensor 91a and the board of the torque sensor 91a. Thus, the torque sensor 91a and the steering angle ratio variable unit 83 can be integrated.
(実施形態11)
 図28は、実施形態11に係る舵角比可変部83付近の構成を示す概略図である。実施形態11に係るステアリングは、図16を参照して説明した実施形態5と同様、シャシー統合システムをさらに備える。実施形態11によれば、実施形態6をベースとした構成において実施形態5と同様の効果を奏することができる。
(Embodiment 11)
FIG. 28 is a schematic diagram illustrating a configuration in the vicinity of the rudder angle ratio variable unit 83 according to the eleventh embodiment. The steering according to the eleventh embodiment further includes a chassis integration system as in the fifth embodiment described with reference to FIG. According to the eleventh embodiment, the same effects as those of the fifth embodiment can be obtained in the configuration based on the sixth embodiment.
 なお、上記の実施形態6~11は、互いの構成が矛盾しない範囲内で組み合わせて採用することができる。例えば、実施形態6から9のいずれかと、実施形態10と、実施形態11とは、その一部又は全部を任意に組み合わせて採用することができる。 It should be noted that Embodiments 6 to 11 described above can be used in combination as long as their configurations do not contradict each other. For example, any one of Embodiments 6 to 9, Embodiment 10, and Embodiment 11 can be used by combining some or all of them.
 以下、実施形態6~11におけるECU90の筐体909の変形例5~8について説明する。変形例5~8の説明において参照する図29乃至図34に示すECU90の筐体909の具体的形態は、実施形態6のECU90の筐体909の形態であるが、変形例5~8は他の実施形態7~11にも適用することができる。 Hereinafter, modified examples 5 to 8 of the casing 909 of the ECU 90 according to the sixth to eleventh embodiments will be described. The specific form of the housing 909 of the ECU 90 shown in FIGS. 29 to 34 referred to in the description of the modified examples 5 to 8 is the form of the housing 909 of the ECU 90 of the sixth embodiment, but the modified examples 5 to 8 are other forms. This can also be applied to the seventh to eleventh embodiments.
(変形例5)
 図29は、変形例5に係るECU90の内部構成図である。図20に示す例では、基板90bがECU90の筐体909の内側(スペース側)に配置されて基板90bに設けられた回路が筐体909の外周側に配置されていたが、基板90bと回路の位置関係を逆にしてもよい。この場合、図29に示すように、基板90bが外周側に配置されて回路が内周側に配置される。
(Modification 5)
FIG. 29 is an internal configuration diagram of the ECU 90 according to the fifth modification. In the example shown in FIG. 20, the circuit board 90b is arranged on the inner side (space side) of the casing 909 of the ECU 90 and the circuit provided on the board 90b is arranged on the outer peripheral side of the casing 909. The positional relationship may be reversed. In this case, as shown in FIG. 29, the substrate 90b is disposed on the outer peripheral side and the circuit is disposed on the inner peripheral side.
 実施形態6のように回路を外周側にするか、変形例5のように基板90bを外周側にするかは、ECU90の動作に伴う回路及び基板90bの熱の状況に応じて適宜選択可能である。外周側は、内周側に比して表面積が大きいことから、熱の発散効率がよい。特に、図21の例のように、車両Bの走行時に伴いECU90付近を通過するように流れる空気による冷却を考慮すると、冷却が必要な構成が外周側にある方がより効率的に冷却を行うことができることになる。そこで、例えば、回路を外周側にすることで、動作に伴い熱を発する回路をより効率的に冷却することができる。また、基板を外周側にすることで、基板に対する回路の高さに関係なく基板側から基板に設けられた回路を冷却することができる。 Whether the circuit is on the outer peripheral side as in the sixth embodiment or the board 90b is on the outer peripheral side as in Modification 5 can be appropriately selected according to the circuit accompanying the operation of the ECU 90 and the heat status of the board 90b. is there. Since the outer peripheral side has a larger surface area than the inner peripheral side, heat dissipation efficiency is good. In particular, as in the example of FIG. 21, when cooling by air flowing so as to pass through the vicinity of the ECU 90 when the vehicle B travels is considered, cooling is more efficiently performed when the configuration requiring cooling is on the outer peripheral side. Will be able to. Therefore, for example, by setting the circuit to the outer peripheral side, the circuit that generates heat with the operation can be cooled more efficiently. In addition, by setting the substrate to the outer peripheral side, the circuit provided on the substrate can be cooled from the substrate side regardless of the height of the circuit with respect to the substrate.
(変形例6)
 図30、図31は、変形例6に係るECU90の内部構成図である。図20に示す例では、ECU90の筐体909が孔あきドーナツ形状であり、外周側の断面形状が円状であったが、ECU90の筐体の形状をECU90の基板90bに沿わせるようにしてもよい。具体的には、図30に示すように、筐体912の外周側の断面形状を多角形状にし、基板90bの板面が当該多角形状の側面に沿うように基板90bを配置するようにしてもよい。また、図31に示すように、一部の基板90bに対応する部分のみ筐体913の外周側を平面として当該平面に基板90bの板面が沿うように基板90bを配置するようにしてもよい。このようにすることで、筐体913を介したECU90の放熱効率がより高まる。図30、図31に示す筐体912,913の例に限らず、ECU90の筐体の形状は適宜変更可能である。
(Modification 6)
30 and 31 are internal configuration diagrams of the ECU 90 according to the sixth modification. In the example shown in FIG. 20, the casing 909 of the ECU 90 has a perforated donut shape and the outer peripheral side has a circular cross-sectional shape. Also good. Specifically, as shown in FIG. 30, the cross-sectional shape on the outer peripheral side of the housing 912 is polygonal, and the substrate 90b may be arranged so that the plate surface of the substrate 90b is along the side surface of the polygon. Good. Further, as shown in FIG. 31, the substrate 90b may be arranged such that only the portion corresponding to a part of the substrates 90b is the outer peripheral side of the housing 913 as a plane and the plate surface of the substrate 90b is along the plane. . By doing in this way, the heat dissipation efficiency of ECU90 via the housing | casing 913 increases more. Not only the examples of the casings 912 and 913 shown in FIGS. 30 and 31, the shape of the casing of the ECU 90 can be changed as appropriate.
(変形例7)
 図32は、変形例7に係るECU90の内部構成図である。図33は、変形例7に係る舵角比可変部83の主要構成配置図である。変形例7のECU90の外周側には放熱板が設けられている。具体的には、図32、図33に示すように、基板90bの板面に沿う筐体913の面(例えば、平面)に冷却用のフィン95を設けるようにしてもよい。係るフィン95のような放熱板により、ECU90をより効率的に冷却することができる。図32に示す例は、図31に示す例にフィン95を追加したものであるが、図30に示す例でも同様にフィン95を追加してよい。また、図32に示すような外周側の平面に限らず、図20等に示すような基板90bの板面に沿わない円状(曲面状)の外周面、スペースを取り巻く内周面等にフィン95を設けるようにしてもよい。
(Modification 7)
FIG. 32 is an internal configuration diagram of the ECU 90 according to Modification 7. FIG. 33 is a main configuration layout diagram of the steering angle ratio variable unit 83 according to the modified example 7. A heat radiating plate is provided on the outer peripheral side of the ECU 90 of the modified example 7. Specifically, as shown in FIGS. 32 and 33, cooling fins 95 may be provided on the surface (for example, a plane) of the housing 913 along the plate surface of the substrate 90b. The ECU 90 can be cooled more efficiently by the heat dissipation plate such as the fins 95. In the example shown in FIG. 32, the fin 95 is added to the example shown in FIG. 31, but the fin 95 may be added in the same manner in the example shown in FIG. Further, not only on the outer peripheral plane as shown in FIG. 32, but also on a circular (curved) outer peripheral surface that does not follow the plate surface of the substrate 90b as shown in FIG. 20 and the like, fins on the inner peripheral surface surrounding the space, etc. 95 may be provided.
(変形例8)
 図34は、変形例8に係るECU90の内部構成図である。図34に示すように、ECU90の筐体914は、完全な筒状でなく、スペースの一部が外周側の空間と連続するような弧状であってもよい。ここで、係る弧状の内周側及び外周側の断面形状は必ずしも円状である必要はなく、多角形状であってもよい。
(Modification 8)
FIG. 34 is an internal configuration diagram of the ECU 90 according to Modification 8. As shown in FIG. 34, the casing 914 of the ECU 90 may not be a perfect cylinder, but may be an arc that allows a part of the space to be continuous with the outer space. Here, the cross-sectional shape of the arc-shaped inner peripheral side and outer peripheral side is not necessarily circular, and may be polygonal.
 また、上記の各実施形態では、舵角比可変部83がラックアンドピニオン機構のピニオン側に設けられているが、これは一例であってこれに限られるものでない。本発明によれば、舵角比可変部83が設けられる位置に関わらず、ECU90と電動機10との間の配線をより短くすることができる。例えば、舵角比可変部83の電動機10の回転軸10bはステアリングホイールに固定されたステアリング軸と同軸であってもよい。 Further, in each of the above embodiments, the steering angle ratio variable unit 83 is provided on the pinion side of the rack and pinion mechanism, but this is an example and the present invention is not limited thereto. According to the present invention, the wiring between the ECU 90 and the electric motor 10 can be made shorter regardless of the position where the steering angle ratio variable unit 83 is provided. For example, the rotating shaft 10b of the electric motor 10 of the rudder angle ratio variable unit 83 may be coaxial with the steering shaft fixed to the steering wheel.
 また、上記の実施形態では、配線としてワイヤーハーネスを用いていることがあるが、これは配線の具体的形態の一例であってこれに限られるものでない。配線の具体的形態は、適宜変更可能である。 In the above embodiment, a wire harness may be used as the wiring. However, this is an example of a specific form of wiring and is not limited thereto. The specific form of the wiring can be changed as appropriate.
10 電動機
10a 筐体
81 ステアリングホイール
82 ステアリングシャフト
87 シャフト
88 ステアリングギヤ
88a ピニオン
88b ラック
88c 筐体
90 ECU
90a 筐体
90b 基板
91a トルクセンサ
91b 速度センサ
92 ギヤ部
95 フィン
B  車両
H,H1,H2 ワイヤーハーネス
W  操舵輪
DESCRIPTION OF SYMBOLS 10 Electric motor 10a Case 81 Steering wheel 82 Steering shaft 87 Shaft 88 Steering gear 88a Pinion 88b Rack 88c Case 90 ECU
90a Case 90b Substrate 91a Torque sensor 91b Speed sensor 92 Gear part 95 Fin B Vehicle H, H1, H2 Wire harness W Steering wheel

Claims (20)

  1.  ステアリングホイールへの操舵入力角に対する操舵輪の転舵角及び動作により前記操舵輪の向きを変える電動機の駆動量を可変にする舵角比可変装置であって、
     前記操舵入力角及び車両走行状態に基づいて前記転舵角を決定して当該転舵角に応じて前記電動機を動作させる電子制御ユニットの筐体は、前記電子制御ユニットの制御下で動作する前記電動機と一体化されている
     舵角比可変装置。 
    A steering angle ratio variable device that varies the drive amount of an electric motor that changes the direction of the steering wheel according to the turning angle and operation of the steering wheel with respect to the steering input angle to the steering wheel,
    A housing of an electronic control unit that determines the turning angle based on the steering input angle and the vehicle traveling state and operates the electric motor according to the turning angle operates under the control of the electronic control unit. A rudder angle ratio variable device integrated with an electric motor.
  2.  前記電動機の回転軸は、前記ステアリングホイールを介して入力される回動が伝達されるシャフトと同軸である
     請求項2に記載の舵角比可変装置。
    The rudder angle ratio variable device according to claim 2, wherein a rotation shaft of the electric motor is coaxial with a shaft to which a rotation input via the steering wheel is transmitted.
  3.  前記電子制御ユニットは、前記電動機に対して前記シャフトに沿う方向に設けられている
     請求項2に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 2, wherein the electronic control unit is provided in a direction along the shaft with respect to the electric motor.
  4.  前記電子制御ユニットの筐体は、内側で前記シャフトが回転するスペースが設けられた弧状又は筒状の形状を有する
     請求項3に記載の舵角比可変装置。 
    The rudder angle ratio variable device according to claim 3, wherein the casing of the electronic control unit has an arc shape or a cylindrical shape in which a space for rotating the shaft is provided inside.
  5.  前記シャフトは、回転に伴い外側に向かって風を送る羽根を有し、
     前記羽根は、前記スペース内に設けられる
     請求項4に記載の舵角比可変装置。
    The shaft has blades that send wind toward the outside as it rotates,
    The rudder angle ratio variable device according to claim 4, wherein the blade is provided in the space.
  6.  前記シャフトと前記操舵輪とを連結するラックアンドピニオン機構のピニオン側に設けられる
     請求項1から4のいずれか一項に記載の舵角比可変装置。
    The steering angle ratio variable device according to any one of claims 1 to 4, provided on a pinion side of a rack and pinion mechanism that connects the shaft and the steered wheel.
  7.  前記電子制御ユニットが前記ラックアンドピニオン機構側に配置されている
     請求項6に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 6, wherein the electronic control unit is arranged on the rack and pinion mechanism side.
  8.  前記電子制御ユニットと前記ラックアンドピニオン機構とが当接している
     請求項6又は7に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 6 or 7, wherein the electronic control unit and the rack and pinion mechanism are in contact with each other.
  9.  前記筐体は、前記ラックアンドピニオン機構の筐体と一体化されている
     請求項6又は7に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 6 or 7, wherein the casing is integrated with a casing of the rack and pinion mechanism.
  10.  前記電子制御ユニットは、前記電動機及び前記電動機と前記ピニオンとを連結するギヤ部の周囲に配置されている
     請求項6に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 6, wherein the electronic control unit is disposed around a gear portion that connects the electric motor and the electric motor and the pinion.
  11.  前記ピニオンと前記回転軸とが同軸の関係にある
     請求項6から10のいずれか一項に記載の舵角比可変装置。 
    The steering angle ratio variable device according to any one of claims 6 to 10, wherein the pinion and the rotation shaft are in a coaxial relationship.
  12.  前記電子制御ユニットは、前記電動機の周囲に配置される
     請求項1に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 1, wherein the electronic control unit is arranged around the electric motor.
  13.  前記電子制御ユニットは、前記電動機に対して前記電動機の回転軸方向に配置される
     請求項12に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 12, wherein the electronic control unit is disposed in a direction of a rotation axis of the electric motor with respect to the electric motor.
  14.  前記電子制御ユニットと前記電動機との間に溝が設けられている
     請求項13に記載の舵角比可変装置。 
    The steering angle ratio variable device according to claim 13, wherein a groove is provided between the electronic control unit and the electric motor.
  15.  前記舵角比可変装置と前記操舵輪とを連結するラックアンドピニオン機構のピニオン側に設けられる
     請求項12から14のいずれか一項に記載の舵角比可変装置。 
    The steering angle ratio variable device according to any one of claims 12 to 14, provided on a pinion side of a rack and pinion mechanism that connects the steering angle ratio variable device and the steering wheel.
  16.  前記電動機の回転軸は前記ピニオンとねじれの関係である
     請求項1、12から15のいずれか一項に記載の舵角比可変装置。
    The rudder angle ratio variable device according to any one of claims 1 and 12, wherein a rotating shaft of the electric motor has a relationship between the pinion and a twist.
  17.  前記電子制御ユニットが車両の前方側に配置されている
     請求項1から16のいずれか一項に記載の舵角比可変装置。 
    The steering angle ratio variable device according to any one of claims 1 to 16, wherein the electronic control unit is disposed on the front side of the vehicle.
  18.  前記電子制御ユニットに設けられた基板又は回路が前記電子制御ユニットの筐体の外周側に配置されている
     請求項1から17のいずれか一項に記載の舵角比可変装置。 
    The steering angle ratio variable device according to any one of claims 1 to 17, wherein a board or a circuit provided in the electronic control unit is disposed on an outer peripheral side of a casing of the electronic control unit.
  19.  前記外周側に放熱板が設けられている
     請求項18に記載の舵角比可変装置。 
    The rudder angle ratio variable device according to claim 18, wherein a heat radiating plate is provided on the outer peripheral side.
  20.  前記車両走行状態は、車速及びヨーレートの少なくとも一方である
     請求項1から19のいずれか一項に記載の舵角比可変装置。
    The rudder angle ratio variable device according to any one of claims 1 to 19, wherein the vehicle running state is at least one of a vehicle speed and a yaw rate.
PCT/JP2016/053060 2015-02-02 2016-02-02 Steering angle ratio varying device WO2016125794A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015018750A JP2016141261A (en) 2015-02-02 2015-02-02 Rudder angle ratio variable device
JP2015018751A JP2016141262A (en) 2015-02-02 2015-02-02 Rudder angle ratio variable device
JP2015-018750 2015-08-26
JP2015-018751 2015-08-26

Publications (1)

Publication Number Publication Date
WO2016125794A1 true WO2016125794A1 (en) 2016-08-11

Family

ID=56564134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053060 WO2016125794A1 (en) 2015-02-02 2016-02-02 Steering angle ratio varying device

Country Status (1)

Country Link
WO (1) WO2016125794A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198452A (en) * 1999-01-08 2000-07-18 Honda Motor Co Ltd Steering device with variable steering angle ratio
JP2005263066A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Steering device
JP2005297808A (en) * 2004-04-13 2005-10-27 Toyota Motor Corp Vehicular steering control device
JP2006131141A (en) * 2004-11-08 2006-05-25 Toyota Motor Corp Transmission ratio variable steering device
JP2007516896A (en) * 2003-12-24 2007-06-28 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Power steering system
JP2010215067A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Steering angle ratio variable device for vehicle
JP2011160636A (en) * 2010-02-04 2011-08-18 Denso Corp Motor, and power steering device employing the same
JP2013216109A (en) * 2012-04-04 2013-10-24 Jtekt Corp Electric power steering device
JP2014058212A (en) * 2012-09-18 2014-04-03 Hitachi Automotive Systems Steering Ltd Electric power steering device
JP2014100969A (en) * 2012-11-19 2014-06-05 Hitachi Automotive Systems Ltd Electric power steering device
JP2014189166A (en) * 2013-03-27 2014-10-06 Nidec Elesys Corp Electronic control unit for electric power steering

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198452A (en) * 1999-01-08 2000-07-18 Honda Motor Co Ltd Steering device with variable steering angle ratio
JP2007516896A (en) * 2003-12-24 2007-06-28 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Power steering system
JP2005263066A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Steering device
JP2005297808A (en) * 2004-04-13 2005-10-27 Toyota Motor Corp Vehicular steering control device
JP2006131141A (en) * 2004-11-08 2006-05-25 Toyota Motor Corp Transmission ratio variable steering device
JP2010215067A (en) * 2009-03-16 2010-09-30 Toyota Motor Corp Steering angle ratio variable device for vehicle
JP2011160636A (en) * 2010-02-04 2011-08-18 Denso Corp Motor, and power steering device employing the same
JP2013216109A (en) * 2012-04-04 2013-10-24 Jtekt Corp Electric power steering device
JP2014058212A (en) * 2012-09-18 2014-04-03 Hitachi Automotive Systems Steering Ltd Electric power steering device
JP2014100969A (en) * 2012-11-19 2014-06-05 Hitachi Automotive Systems Ltd Electric power steering device
JP2014189166A (en) * 2013-03-27 2014-10-06 Nidec Elesys Corp Electronic control unit for electric power steering

Similar Documents

Publication Publication Date Title
KR101900134B1 (en) Electromotive drive and electric power steering device
JP6160575B2 (en) DRIVE DEVICE AND ELECTRIC POWER STEERING DEVICE USING THE SAME
JP5397652B2 (en) Vehicle steering system
JP5936306B2 (en) Electric car
JP6770863B2 (en) Electric drive device and electric power steering device
US9789900B2 (en) Modular steering system
JPH08192757A (en) Electric power steering device
JP2007106319A (en) Vehicular steering device
CN109955896A (en) Torque is superimposed transfer
JP2009119894A (en) Steering system for vehicle
JP2007313984A (en) Steering mechanism of vehicle
WO2017006429A1 (en) Arrangement structure for wheel drive device
WO2016125794A1 (en) Steering angle ratio varying device
JP5397654B2 (en) Vehicle steering system
JP2016141261A (en) Rudder angle ratio variable device
JP2016141262A (en) Rudder angle ratio variable device
JP2012010465A (en) Motor controller and vehicular steering device
US8550205B2 (en) Electric power steering system
JP6800261B2 (en) Electric drive
JP2013056581A (en) Electric drive type power steering device
JP5970923B2 (en) Electric power steering device
JP4734883B2 (en) Electric power steering device
JP2012125058A (en) Motor controller and vehicle steering gear
JP5196237B2 (en) Vehicle steering system
JP5299664B2 (en) Vehicle steering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746625

Country of ref document: EP

Kind code of ref document: A1