WO2016125779A1 - プリフォーム、繊維強化複合材料および繊維強化複合材料の製造方法 - Google Patents

プリフォーム、繊維強化複合材料および繊維強化複合材料の製造方法 Download PDF

Info

Publication number
WO2016125779A1
WO2016125779A1 PCT/JP2016/053032 JP2016053032W WO2016125779A1 WO 2016125779 A1 WO2016125779 A1 WO 2016125779A1 JP 2016053032 W JP2016053032 W JP 2016053032W WO 2016125779 A1 WO2016125779 A1 WO 2016125779A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
composite material
reinforced composite
preform
Prior art date
Application number
PCT/JP2016/053032
Other languages
English (en)
French (fr)
Inventor
平野公則
本遠和範
富岡伸之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US15/548,268 priority Critical patent/US10792869B2/en
Priority to EP16746610.1A priority patent/EP3255083B1/en
Priority to JP2016507312A priority patent/JP6436160B2/ja
Publication of WO2016125779A1 publication Critical patent/WO2016125779A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • B32B27/205Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/145Variation across the thickness of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0264Polyamide particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to a reinforced fiber preform and a fiber reinforced composite material.
  • Fiber reinforced composite materials consisting of reinforced fibers and matrix resins can be used to design materials that make use of the advantages of reinforced fibers and matrix resins, thus expanding the application to the aerospace field, automobile field, sports field, general industrial field, etc. Has been.
  • the reinforcing fiber glass fiber, aramid fiber, carbon fiber, boron fiber, etc. are used.
  • the matrix resin either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used.
  • the thermosetting resin a resin composition obtained by adding a curing agent or a curing catalyst to an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, a bismaleimide resin, a cyanate resin, or the like is used.
  • Fiber reinforced composite materials are manufactured by various methods.
  • a liquid thermosetting resin (matrix resin) is injected into a reinforced fiber base placed in a mold, and heat cured to obtain a fiber reinforced composite material RTM (The Resin Transfer Molding (resin injection molding) method is attracting attention as a method with excellent low-cost productivity.
  • a preform in which a reinforcing fiber substrate is processed into a shape close to a desired product is prepared in advance, and the preform is placed in a mold and a liquid matrix resin is injected. There are many.
  • a method for producing a preform As a method for producing a preform, several methods are known, such as a method for producing a three-dimensional braid from reinforcing fibers, and a method for stacking and stitching reinforcing fiber fabrics. There is known a method of laminating and shaping a sheet-like substrate such as a reinforcing fiber fabric using a hot-melt binder (tackifier).
  • tackifier hot-melt binder
  • thermoplastic resin a resin that does not have tackiness at room temperature but softens at high temperature and has adhesiveness is used.
  • thermosetting resin both a thermoplastic resin and a thermosetting resin can be applied.
  • thermosetting resin When a thermosetting resin is used as a hot melt binder, there are a type in which the binder alone is curable and a type in which the binder alone is not curable.
  • the former is excellent in that it can be cured without depending on the liquid matrix resin, and the latter is excellent in storage stability.
  • thermosetting resins such as epoxy resins as liquid matrix resins
  • thermoplastic resins It is known that the impact resistance of the resin is relatively low.
  • improvement in impact resistance has been a major issue because excellent impact resistance is required against tool dropping during assembly and impact of a kite during operation.
  • the fiber reinforced composite material generally has a laminated structure, and when an impact is applied thereto, a high stress is generated between the reinforcing fiber layer and the reinforcing fiber layer, and a crack is generated. In order to suppress the generation of cracks, it is effective to increase the plastic deformation ability of the thermosetting resin, and as a means for that, it is effective to blend a thermoplastic resin having an excellent plastic deformation ability.
  • Patent Literature A technique is known in which a fiber-reinforced composite material is produced using a binder blended with a thermoplastic resin so that the thermoplastic resin is present between cracked laminated layers and the impact resistance is improved (Patent Literature). 1-5).
  • Patent Documents 1 and 2 disclose a binder containing a thermoplastic resin that is compatible with a matrix resin.
  • Patent Documents 3 and 4 disclose a binder having a curing property by blending a thermoplastic resin compatible with a matrix resin.
  • Patent Document 5 discloses a binder obtained by melt-kneading polyamide, which is a thermoplastic resin insoluble in a matrix resin, with other components.
  • thermoplastic resin is likely to be present between the layers by partially curing the binder at the time of preforming.
  • the layers are not uniform when the fiber-reinforced composite material is used, and the layers are thin. And voids are likely to occur.
  • Patent Document 5 by including a polyamide insoluble in the matrix resin, the thermoplastic resin component is likely to remain locally between the layers even after molding, and a high toughness effect can be obtained, but the thickness between the layers should be ensured uniformly. It is difficult.
  • the object of the present invention is to improve the shortcomings of the prior art, to improve the impact resistance, and to provide stable physical properties regardless of the molding conditions and the shape and size of the molded body. It is to provide a fiber-reinforced composite material having a sufficient thickness and excellent in impregnation property of a matrix resin and having less voids, and to provide a preform capable of manufacturing such a fiber-reinforced composite material. .
  • a preform according to the present invention is a preform in which a plurality of reinforcing fiber layers are connected with a binder resin, and spacer particles insoluble in the binder resin are present in the binder resin. Further, the occupation ratio of the spacer particles in the binder resin existing between the reinforcing fiber layers is 10% to 80%.
  • the fiber-reinforced composite material of the present invention is a fiber-reinforced composite material obtained by impregnating the above-described preform with a matrix resin and curing.
  • the method for producing a fiber-reinforced composite material of the present invention is a method for producing a fiber-reinforced composite material in which the above-described preform is impregnated with a matrix resin and cured.
  • the binder resin dissolves in the matrix resin, while the spacer particles do not dissolve in the matrix resin, but are arranged between the layers, and the interlayer thickness is 1 to 3 times the average particle diameter of the spacer particles.
  • the spacer particles present in the binder resin disposed between the reinforcing fiber base layers in order to improve the impact resistance and to provide stable physical properties regardless of the molding conditions and the shape and size of the molded body.
  • a fiber-reinforced composite material having a uniform and sufficient thickness between layers when made into a fiber-reinforced composite material and having few voids can be produced.
  • the preform according to the present invention is a preform in which interlayers of a plurality of reinforcing fiber layers are connected by a binder resin, and spacer particles insoluble in the binder resin exist in the binder resin, and exist between the layers of the reinforcing fiber layer.
  • Occupancy ratio of spacer particles in the binder resin (hereinafter, the occupancy ratio of spacer particles in the binder resin existing between the reinforcing fiber layers may be referred to as spacer particle occupancy ratio) is a specific ratio.
  • the reinforcing fiber layer is formed of a reinforcing fiber base as will be described later, they are laminated, and the layers are connected by a binder resin. Due to the presence of the spacer particles in the binder resin, the spacer particles are arranged between the layers by the heating and pressure during molding in the process of impregnating and curing the matrix resin in the preform, and uniformly having an appropriate interlayer thickness. In addition, a fiber-reinforced composite material with less voids can be obtained by securing a flow path during the impregnation of the matrix resin. Note that uniformly having an appropriate interlayer thickness means that there are few areas where the thickness is too thin or too thick, and the ratio of the area where the interlayer thickness is 10 ⁇ m or less and the interlayer is not substantially secured is 30% or less. Say something.
  • a binder resin composition containing a binder resin and spacer particles can be used.
  • a binder resin preferably contains a thermosetting resin, and more preferably contains an epoxy resin.
  • thermosetting resin is a resin material that undergoes a curing reaction upon heating to form a crosslinked structure, and examples thereof include epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, bismaleimide resins, and cyanate resins.
  • an epoxy resin is suitably used as the thermosetting resin.
  • An epoxy resin means a compound having two or more epoxy groups in one molecule.
  • Such an epoxy resin may consist of only one kind of compound having an epoxy group, or may be a mixture of plural kinds.
  • the epoxy resin examples include an aromatic glycidyl ether obtained from a phenol compound having a plurality of hydroxyl groups, an aliphatic glycidyl ether obtained from an alcohol compound having a plurality of hydroxyl groups, a glycidyl amine obtained from an amine compound, and a carboxyl having a plurality of carboxyl groups.
  • examples include epoxy resins having epoxy groups such as glycidyl esters obtained from acid compounds as part of the glycidyl groups, and epoxy resins containing oxirane rings obtained by oxidizing unsaturated alicyclic compounds such as cyclohexene. It is done.
  • the epoxy resin preferably contains a solid epoxy resin from the viewpoint of stability during storage.
  • the solid epoxy resin is an epoxy resin having a glass transition temperature of 20 ° C. or higher.
  • the glass transition temperature is determined by differential scanning calorimetry (DSC) according to JIS K 7121: 1987.
  • DSC differential scanning calorimetry
  • An example of a measuring device that can be used for the above standard is Pyris1 DSC (manufactured by Perkin Elmer).
  • a sample to be measured is collected in an aluminum sample pan and measured in a nitrogen atmosphere at a temperature increase rate of 40 ° C./min.
  • the midpoint of displacement in the region where the baseline in the DSC curve thus obtained shifts to the endothermic side is adopted as the glass transition temperature.
  • Epoxy resins are bisphenol-type epoxy resins, novolak-type epoxy resins, and aralkyls because they have excellent balance of adhesion between the reinforcing fiber base layers and toughness and heat resistance when they are mixed with matrix resins and made into fiber-reinforced composite materials. It is preferable to include at least one epoxy resin selected from the group consisting of type epoxy resins.
  • bisphenol type epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol Z type epoxy resin, and alkyl substitution products and halogen substitution products thereof. Hydrogenated materials can be used, but are not limited thereto.
  • novolak type epoxy resins include commercially available phenol novolak type epoxy resins such as “jER” (registered trademark) 152, 154 (manufactured by Mitsubishi Chemical Corporation), “Epicron” (registered trademark) N- 740, N-770, N-775 (manufactured by DIC Corporation) and the like, and “Epiclon” (registered trademark) N-660, N-665, N- 670, N-680, N-695 (above, DIC Corporation), EOCN-1020, EOCN-102S (above, Nippon Kayaku Co., Ltd.), YDCN-700, YDCN-701 (above, Shinichi) Sakai Chemical Co., Ltd.).
  • aralkyl type epoxy resins include commercially available phenol aralkyl type epoxy resins such as NC-2000 series (manufactured by Nippon Kayaku Co., Ltd.), NC-7000 series (manufactured by Nippon Kayaku Co., Ltd.), NC- 3000 series (manufactured by Nippon Kayaku Co., Ltd.) and the like, and as commercial products of naphthol aralkyl type epoxy resins, NC-7300 series (manufactured by Nippon Kayaku Co., Ltd.), ESN-165, ESN-175, ESN- 185, ESN-195 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • the binder resin contains a thermosetting resin
  • the binder resin contains a thermoplastic resin that is soluble in the thermosetting resin contained in the binder resin in order to improve the interlayer toughness when the fiber-reinforced composite material is used. Is more preferable.
  • thermosetting resin being soluble in a thermosetting resin means that the thermoplastic resin can form a uniform phase with the thermosetting resin when the thermoplastic resin is dispersed in the thermosetting resin and heated. To do.
  • thermoplastic resin when 5 parts by mass of a thermoplastic resin is mixed with 100 parts by mass of a thermosetting resin, a preparation containing a resin composition heated and stirred at a predetermined temperature is prepared and observed with an optical microscope. This can be judged by the fact that a clear interface is not observed between the thermosetting resin and the thermoplastic resin.
  • Thermoplastic resins soluble in the thermosetting resin contained in the binder resin include polyacetal, polyphenylene ether, polyphenylene sulfide, polyarylate, polyester, polyethersulfone, polysulfone, polyetherimide, polyetherketone, polyetheretherketone. , Polyaramide, polyether nitrile, polybenzimidazole, polyurethane, urea resin, polyvinyl acetal, polyvinyl formal, polyvinyl alcohol, polymethyl methacrylate, phenoxy resin, etc., which are soluble in the thermosetting resin contained in the binder resin Specific examples.
  • polyethersulfone, polysulfone, polyetherimide, polyvinyl acetal, polyvinyl formal, polyvinyl alcohol, and phenoxy resin are preferably used.
  • thermoplastic resin soluble in the thermosetting resin contained in the binder resin polyethersulfone, polysulfone, polyetherimide are particularly preferable from the viewpoint of heat resistance, impact resistance, and interlayer toughness of the obtained fiber-reinforced composite material. It is preferable to use at least one thermoplastic resin selected from the group consisting of polyvinyl acetal, polymethyl methacrylate and phenoxy resin.
  • the thermoplastic resin soluble in the thermosetting resin contained in the binder resin preferably has a glass transition temperature of 150 ° C. or higher, more preferably 180 ° C. or higher. When the glass transition temperature is lower than 150 ° C., the heat resistance of the obtained fiber reinforced composite material may be insufficient.
  • the thermoplastic resin soluble in the thermosetting resin contained in the binder resin preferably has a glass transition temperature of 280 ° C. or lower, and more preferably 250 ° C. or lower. When the glass transition temperature exceeds 280 ° C., the compatibility with the thermosetting resin may decrease.
  • the thermoplastic resin soluble in the thermosetting resin contained in the binder resin is preferably contained in a proportion of 5 to 80% by mass, and in a proportion of 20 to 60% by mass with respect to the total mass of the binder resin. More preferably.
  • the ratio of the thermoplastic resin soluble in the thermosetting resin contained in the binder resin is less than 5% by mass, the effect of improving the interlayer toughness may not be exhibited.
  • the ratio of the thermoplastic resin soluble in the thermosetting resin contained in the binder resin is more than 80% by mass, the adhesiveness of the preform may be lowered.
  • the total mass of the binder resin here does not include the mass of the spacer particles.
  • Spacer particles are included for the purpose of ensuring uniform interlayer thickness and for suppressing voids in a fiber-reinforced composite material obtained by impregnating and curing a matrix resin in a preform.
  • the occupation ratio of the spacer particles in the binder resin existing between the reinforcing fiber layers is 10 to 80%.
  • the occupation ratio of the spacer particles in the binder resin existing between the layers of the reinforcing fiber layer is smaller than 10%, a sufficiently thick interlayer cannot be formed when the fiber reinforced composite material is used, and the interlayer thickness is uneven.
  • the occupation ratio of the spacer particles is preferably 15% or more, and more preferably 20% or more.
  • the occupation ratio of the spacer particles is larger than 80%, the function as a binder may not be achieved. From such a viewpoint, the occupation ratio of the spacer particles is preferably 60% or less, and more preferably 50% or less.
  • the occupancy ratio of the spacer particles in the binder resin existing between the layers of the reinforcing fiber layer is, for example, by observing 100 sections arbitrarily selected with a scanning electron microscope in the cross section of the preform. It can be obtained by calculating the average value of the ratio of the area of the spacer particles to the area of the binder resin existing between the layers and the entire spacer particles.
  • the content of spacer particles between the reinforcing fiber layers is preferably 2 to 9 g / m 2 and more preferably 2 to 7 g / m 2 .
  • the content is less than 2 g / m 2
  • the interlaminar securing by the spacer particles may be insufficient when the fiber reinforced composite material is used.
  • the content is more than 9 g / m 2 , the impregnation property of the matrix resin is lowered. And voids may occur.
  • the total content of the binder resin and spacer particles in the interlayer of the reinforcing fiber layer for example, the content of the binder resin composition in the interlayer of the reinforcing fiber layer when using the binder resin composition described later, 1 interlayer per 0.5 ⁇ 50g / m 2, it is preferred that preferably 1 ⁇ 30g / m 2. If such content is less than 0.5 g / m 2, may inter secured by spacer particles when the form fixed as preform was difficult fiber-reinforced composite material is insufficient, from 50 g / m 2 If the amount is too large, the impregnation property of the matrix resin is lowered and voids may be generated.
  • the total content of the binder resin and the spacer particles between the reinforcing fiber layers in the preform is determined based on the average value of the mass of the preform per unit area measured for 100 arbitrarily selected locations.
  • the difference between the average value of the mass of the reinforcing fiber substrate in the preform measured by heat-treating the binder resin and spacer particles by baking or elution in a solvent is divided by the number of layers present in the preform. This can be calculated.
  • the spacer particles are preferably insoluble in the binder resin and also insoluble in the matrix resin impregnated in the preform used for the fiber-reinforced composite material described later.
  • insoluble in the binder resin or insoluble in the matrix resin is clearly defined between the spacer particles and the binder resin or matrix resin when the spacer resin is dispersed or the binder resin or matrix resin is heated and cured. It means having an interface.
  • a preparation containing a resin composition in which 5 parts by mass of spacer particles are dispersed with respect to 100 parts by mass of a binder resin or a matrix resin is prepared and heated at a desired temperature on a hot stage of an optical microscope. This can be determined by observing the interface between the spacer particles and the binder resin or matrix resin.
  • the spacer particles preferably have a sphericity in the range of 75 to 100, and more preferably a sphericity in the range of 85 to 100.
  • a relatively high sphericity the layers are easily formed uniformly when a fiber-reinforced composite material is obtained.
  • the sphericity is less than 75, unevenness may occur in the interlayer thickness when the fiber reinforced composite material is used.
  • the sphericity is measured by observing spacer particles with a scanning electron microscope and measuring the minor axis and the major axis individually from each projected shape for m particles (usually 30) arbitrarily selected. It is calculated according to the following formula (1).
  • the minor axis and the major axis are the short side and long side of the circumscribed rectangle that minimizes the area circumscribing the particle, respectively.
  • the spacer particles preferably have a particle size distribution index in the range of 1 to 5, more preferably a particle size distribution index in the range of 1 to 2.5.
  • a particle size distribution index in the range of 1 to 5
  • region can be raised effectively.
  • a fiber-reinforced composite material having a uniform interlayer thickness can be obtained without the occurrence of a region having an excessive interlayer thickness due to the presence of some coarse particles.
  • the particle size distribution index exceeds 5, the particle filling rate in the interlayer region may be difficult to improve, or the interlayer thickness may be uneven.
  • the particle size distribution index is determined by observing spacer particles with a scanning electron microscope, measuring the particle size of arbitrarily selected n particles (usually 100 particles), and applying the following formula (2) to Calculate based on (4).
  • n particles usually 100 particles
  • the major axis is measured as the particle size.
  • Di particle size of each particle
  • n number of measurements
  • Dn number average particle size
  • Dv volume average particle size
  • PDI particle size distribution index
  • the spacer particles preferably have an average particle diameter in the range of 1 to 50 ⁇ m, and more preferably in the range of 5 to 30 ⁇ m.
  • the average particle size refers to the number average particle size of spacer particles measured with a scanning electron microscope at a magnification of 1000 and measured for 100 arbitrary particle sizes.
  • the major axis is measured as the particle diameter, and those having a diameter of 100 nm or less are not included.
  • spacer fibers may enter the reinforcing fiber layer when the fiber-reinforced composite material is produced, and the thickness between the layers may not be ensured.
  • spacer particles In the case of large particles having an average particle diameter exceeding 50 ⁇ m, an area having an excessive interlayer thickness occurs due to the presence of coarse particles, and unevenness in the interlayer thickness is likely to occur.
  • Components constituting the spacer particles are not particularly limited, and organic particles such as rubber particles, thermoplastic resin particles, and thermosetting resin particles.
  • Inorganic particles such as silica, alumina, smectite, synthetic mica, and metal particles can be used.
  • the spacer particles are preferably polymer particles composed of a thermoplastic resin and / or a thermosetting resin, from the viewpoint of adhesion to a cured matrix resin when used as a fiber-reinforced composite material and interlayer toughness. It can also be used in seeds.
  • being composed of a thermoplastic resin and a thermosetting resin indicates a composition containing both.
  • thermosetting resins that can be used for the spacer particles include epoxy resins, benzoxazine resins, vinyl ester resins, unsaturated polyester resins, urethane resins, phenol resins, melamine resins, maleimide resins, cyanate ester resins, and the like. A urea resin etc. are mentioned. These thermosetting resins may be in an uncured state or a cured product.
  • thermoplastic resins that can be used for the spacer particles include vinyl polymers, polyesters, polyamides, polyamideimides, polyimides, polycarbonates, polyarylene sulfides (polyphenylene sulfide, etc.), polyarylene ethers (polyphenylene ether, etc.), poly Among the ether sulfones, polysulfones, polyether ketones, polyphenylene ethers, polyether ether ketones, polyether ether sulfones, polyurethanes, polyether imides, polyacetals, silicones and copolymers thereof, those insoluble in the binder resin may be mentioned.
  • polyamide polyamide, polyamideimide, polyimide, polycarbonate, polyphenylene sulfide, polyphenylene ether, polyether ether ketone, and copolymers thereof are preferably used as spacer particles from the viewpoints of elongation and toughness.
  • polyamide is particularly preferable in that it has excellent heat resistance and solvent resistance in addition to impact resistance and interlayer toughness when used as a fiber reinforced composite material.
  • polyamides examples include polyhexamethylene terephthalamide (nylon 6T), polynonane terephthalamide (nylon 9T), poly-m-xylene adipamide (nylon MXD), 3,3'-dimethyl-4,4'- Copolymer of diaminodicyclohexylmethane, isophthalic acid and 12-aminododecanoic acid (for example, “Grillamide” ® TR55, manufactured by Mzavelke), 3,3′-dimethyl-4,4′-diaminodicyclohexyl Copolymer of methane and dodecadioic acid (for example, “grillamide” (registered trademark) TR90, manufactured by Mzavelke), copolymer of 4,4′-diaminodicyclohexylmethane and dodecadioic acid (for example , “TROGAMID” (registered trademark) CX7323, manufactured by Degussa) The
  • the spacer particles are preferably polymer particles having a glass transition temperature of 80 ° C. or higher, and more preferably polymer particles having a glass transition temperature of 130 ° C. or higher. When the glass transition temperature is less than 80 ° C., the particles are easily deformed during the impregnation and curing of the matrix resin, and the interlayer thickness may be uneven.
  • the spacer particles are preferably polymer particles having a glass transition temperature of 350 ° C. or lower, and more preferably 300 ° C. or lower. When the glass transition temperature exceeds 350 ° C., the interlayer thickness may be uneven.
  • the binder resin composition of the present invention is used for the above-described preform or a reinforcing fiber substrate with a binder resin composition described later, and includes the above-described binder resin and the above-described spacer particles.
  • the spacer particles are preferably contained in the binder resin composition used for the precursor in a proportion of 5 to 80% by mass, more preferably in a proportion of 10 to 50% by mass with respect to the total mass. If the content of the spacer particles in the binder resin composition is less than 5% by mass, a sufficiently thick interlayer may not be formed. On the other hand, when the content of the spacer particles in the binder resin composition is more than 80% by mass, the interlaminar adhesive strength when formed into a preform may be lowered and the function as a binder may not be achieved.
  • binder resin composition in this invention, Forms, such as a film, a tape, a long fiber, a short fiber, a spun yarn, a woven fabric, a knit, a nonwoven fabric, a network, a particle
  • a particle form or a fiber form can be particularly preferably used.
  • a binder resin composition is a particle form
  • grains which consist of a binder resin composition are called binder particle
  • the fiber which consists of binder resin compositions is called a binder fiber.
  • the average particle diameter is preferably 10 to 500 ⁇ m.
  • the average particle diameter refers to the median diameter, and the average particle diameter of the binder particles can be measured using, for example, a laser diffraction type particle size distribution meter.
  • the average particle diameter is smaller than 10 ⁇ m, the adhesive strength and workability when forming a preform may be lowered. From this viewpoint, the average particle diameter is more preferably 30 ⁇ m or more.
  • the average particle diameter is larger than 500 ⁇ m, the reinforced fibers may be swelled when formed into a preform, and the mechanical properties of the resulting fiber reinforced composite material may be deteriorated. From this viewpoint, the average particle diameter is more preferably 300 ⁇ m or less.
  • the average diameter is preferably 10 to 300 ⁇ m.
  • the average diameter is obtained by observing the cross section of the binder fiber with a scanning electron microscope, measuring the diameter of 100 arbitrarily selected binder fibers, and calculating the average value.
  • the cross-sectional shape of the fiber is not a perfect circle, the minor axis is measured as the diameter.
  • the average diameter is smaller than 10 ⁇ m, the adhesive strength of the preform may be lowered.
  • the average diameter is larger than 300 ⁇ m, waviness occurs in the reinforcing fibers of the preform, and the mechanical properties of the obtained fiber-reinforced composite material may be deteriorated. From this viewpoint, the average diameter is more preferably 100 ⁇ m or less.
  • carbon fiber As the reinforcing fiber used in the preform of the present invention, carbon fiber, glass fiber, aramid fiber, metal fiber, or a combination thereof can be used. Among these, carbon fibers can be suitably used because they are excellent in lightness and strength.
  • the reinforcing fiber may be either a short fiber or a continuous fiber, or both may be used in combination.
  • a fiber-reinforced composite material having a high fiber volume content hereinafter referred to as high Vf
  • the reinforcing fiber may be used in the form of a strand, but a reinforcing fiber substrate obtained by processing the reinforcing fiber into a mat, woven fabric, knit, braid, unidirectional sheet or the like is preferably used. Among them, a woven fabric or a unidirectional sheet that is easy to obtain a fiber reinforced composite material having a high Vf and excellent in handleability is preferably used as the reinforcing fiber substrate.
  • Plain weave, satin weave, twill weave, non-crimp cloth, etc. can be selected as appropriate when weaving is selected as the reinforcing fiber base material. When weaving is used, the design is enhanced. Also, satin weave and twill weave are good for draping and are therefore preferably used when shaping a three-dimensional shape with a deep depth.
  • the ratio of the net volume of the reinforcing fiber to the apparent volume of the reinforcing fiber fabric is defined as the filling rate of the reinforcing fiber fabric.
  • the filling rate of the reinforcing fiber fabric is expressed by the formula W / (1000 t ⁇ ⁇ f) from the weight per unit area W (unit: g / m 2 ), the thickness t (unit: mm), and the density ⁇ f (unit: g / cm 3 ) of the reinforcing fiber. Is required.
  • the basis weight and thickness of the reinforcing fiber fabric are determined in accordance with JIS R 7602: 1995. The higher the filling rate of the fabric, the easier it is to obtain a fiber reinforced composite material having a high fiber volume content. Therefore, the filling rate of the fabric is preferably 0.10 to 0.85, more preferably 0.40 to 0.85, More preferably, it is in the range of 0.50 to 0.85.
  • the binder resin composition of the present invention is attached to at least the surface of a reinforcing fiber substrate and used as a reinforcing fiber substrate with a binder resin composition. That is, the binder resin composition of the present invention is used not only for the above-described preform, but also for a reinforcing fiber base with a binder resin composition.
  • the reinforcing fiber substrate with a binder resin composition of the present invention has the above-described binder resin composition on at least the surface, and is used for the above-described preform.
  • the adhesion amount is less than 0.5 g / m 2 , it is difficult to fix the form when the preform is formed, and there is a case where the interlayer securing by the spacer particles is insufficient when the fiber reinforced composite material is used.
  • it is more than 2 the impregnation property of the matrix resin becomes poor and voids may be generated.
  • the preform of the present invention is formed by laminating a reinforcing fiber substrate with a binder resin composition having at least the above-described binder resin composition on the surface and fixing the form. After the binder resin composition is attached to at least one surface of the reinforcing fiber substrate by heating to form a reinforcing fiber substrate with a binder resin composition, the binder resin composition is at least obtained by laminating a plurality of these. A laminate having the laminate layers is obtained. This is heated and cooled, and the binder resin composition fixes the base material layers to fix the form, whereby a preform having at least the binder resin composition between the laminated layers is obtained.
  • a preform can be produced by cutting a reinforcing fiber substrate with a binder resin composition to which a binder resin composition is adhered into a predetermined shape, laminating on a mold, and applying appropriate heat and pressure.
  • the pressurizing means may be a press, or a method of enclosing with a vacuum bag film and sucking the inside with a vacuum pump and pressurizing with atmospheric pressure.
  • the interlayer thickness of the reinforcing fiber layer is preferably 1 to 5 times the average particle diameter of the spacer particles.
  • the interlayer thickness of the reinforcing fiber layer is smaller than 1 times the average particle diameter of the spacer particles, the interlayer when the fiber-reinforced composite material is obtained may not be ensured.
  • the average particle diameter of the spacer particles is larger than 5 times, unevenness may remain in the interlayer thickness when the fiber-reinforced composite material is obtained.
  • the interlayer thickness of the reinforcing fiber layer in the preform is, for example, a cross section of the preform is observed at 100 locations arbitrarily selected with a scanning electron microscope, and the fiber layer region of the portion where the binder resin composition is present It is obtained by measuring the average distance between the boundary lines of the fiber interlayer region.
  • a fiber-reinforced composite material can be produced by impregnating the preform of the present invention with a matrix resin and curing the matrix resin.
  • the binder resin dissolves in the matrix resin while the spacer particles do not dissolve in the matrix resin and are arranged between the layers. Can be done.
  • the interlayer thickness of the obtained fiber-reinforced composite material is preferably 1 to 3 times the average particle diameter of the spacer particles. When the interlayer thickness is smaller than 1 times the average particle diameter of the spacer particles, the interlayer is not secured by the spacer particles, and the interlayer thickness is uneven. When the average particle diameter is larger than 3 times, the effect of the spacer particles is small, and unevenness in the interlayer thickness may occur.
  • the fiber reinforced composite material of the present invention preferably has an interlayer thickness of 1 to 150 ⁇ m.
  • the interlayer thickness is smaller than 1 ⁇ m, a sufficient interlayer cannot be secured. If it is larger than 150 ⁇ m, the interlayer thickness may be uneven.
  • the production method of the fiber reinforced composite material in the present invention is not particularly limited, but a molding method using a two-component resin such as a hand layup method or an RTM method is preferably used.
  • the RTM method is particularly preferably used from the viewpoints of productivity and the shape freedom of the molded body.
  • a liquid matrix resin is injected and impregnated into a reinforcing fiber base disposed in a mold and cured to obtain a fiber-reinforced composite material.
  • the matrix resin is a thermosetting resin, and includes a liquid resin mainly composed of monomer components and a curing agent or a curing catalyst that is polymerized by three-dimensionally crosslinking the monomer components.
  • an epoxy resin is preferable in terms of impregnation into a preform and mechanical properties when a fiber-reinforced composite material is used.
  • epoxy resins include aromatic glycidyl ethers obtained from phenols having a plurality of hydroxyl groups, aliphatic glycidyl ethers obtained from alcohols having a plurality of hydroxyl groups, glycidyl amines obtained from amines, and carboxylic acids having a plurality of carboxyl groups.
  • examples thereof include glycidyl esters and epoxy resins having an oxirane ring.
  • aliphatic polyamines aromatic polyamines, acid anhydrides, imidazoles, Lewis acid complexes and the like are suitable, and they are appropriately selected and used depending on the intended use.
  • Prefabricated matrix resin is impregnated and cured to produce a fiber reinforced composite material.
  • curing proceeds by heating.
  • the temperature of the mold during heat curing may be the same as the temperature of the mold during injection / impregnation of the matrix resin, but in the case of curing at a low temperature, the rigidity is such that the fiber-reinforced composite material does not deform during demolding. Since it may take time to advance the curing until the temperature is obtained, it is preferable to select a temperature higher than the temperature of the mold at the time of pouring, for example, in the range of 60 to 180 ° C.
  • the binder resin is dissolved in the matrix resin, while the spacer particles are not dissolved in the matrix resin and are arranged between the layers, and the interlayer thickness is an average of the spacer particles. It is preferably 1 to 3 times the particle diameter.
  • the fiber volume content Vf is preferably in the range of 40 to 85%, preferably 45 to 85%.
  • the fiber volume content Vf of the fiber reinforced composite material is a value defined and measured by the following in accordance with ASTM D3171 (1999), and is a liquid matrix with respect to the reinforced fiber substrate. This refers to the state after the resin is injected and cured. That is, the measurement of the fiber volume content Vf of the fiber reinforced composite material can be expressed by the following formula (5) from the thickness h of the fiber reinforced composite material.
  • Fiber volume content Vf (%) (Af ⁇ N) / ( ⁇ f ⁇ h) / 10 (5)
  • Af reinforcing fiber substrate one ⁇ 1 m 2 per mass (g / m 2)
  • N Number of laminated reinforcing fiber substrates (sheets)
  • ⁇ f density of reinforcing fiber (g / cm 3 )
  • h Thickness (mm) of the fiber reinforced composite material (test piece).
  • the combustion method or nitric acid decomposition method based on JIS K 7075: 1991 The fiber volume content of the fiber reinforced composite material is measured by any of the sulfuric acid decomposition methods.
  • the density of the reinforcing fiber used in this case a value measured based on JIS R 7603: 1999 is used.
  • Binder resin composition raw material In order to obtain the binder resin composition of each Example, the following resin raw materials were used. In addition, unless otherwise indicated, the unit of the content rate of the resin composition of a table
  • surface means "mass part”.
  • binder resin epoxy resin, thermoplastic resin soluble in epoxy resin “jER” (registered trademark) 825 (manufactured by Mitsubishi Chemical Corporation): liquid bifunctional bisphenol A type epoxy resin, epoxy equivalent 175 "JER” (registered trademark) 1007 (manufactured by Mitsubishi Chemical Corporation): solid bifunctional bisphenol A type epoxy resin, epoxy equivalent 1925 "EPICLON” (registered trademark) N-660 (manufactured by DIC Corporation): solid cresol novolac type epoxy resin, epoxy equivalent 207 NC-7300 (Nippon Kayaku Co., Ltd.): Solid naphthol aralkyl epoxy resin, epoxy equivalent 220 "Sumika Excel” (registered trademark) PES5200P (manufactured by Sumitomo Chemical Co., Ltd.): polyethersulfone, mass average molecular weight 55100 "Ultem” (registered trademark) 1010 (manufactured by GE Plastics): polyetherimide, mass average molecular weight 55100
  • the solution was atomized using a spray gun for coating, and sprayed toward the liquid surface of 3000 parts by mass of n-hexane, which was well stirred, to precipitate a solute.
  • the precipitated solid is separated by filtration and thoroughly washed with n-hexane, then vacuum dried at 100 ° C. for 24 hours, and further, a small particle component and a large component are removed using a sieve, and a relatively large particle size distribution is obtained. A uniform particle was obtained.
  • Observation of the obtained powder with a scanning electron microscope revealed an average particle size of 18.0 ⁇ m, a particle size distribution index of 1.5, and a sphericity of 85.
  • Particle 2 (“Orgasol” (registered trademark) 1002D, polyamide, manufactured by Arkema Co., Ltd., average particle size 21 ⁇ m, particle size distribution index 1.9, sphericity 78, glass transition temperature 53 ° C.)
  • Particle 3 (“Trogamide” (registered trademark) CX7233 as a raw material produced by the production method described below, average particle size 13 ⁇ m, particle size distribution index 1.2, sphericity 97, glass transition temperature 137 ° C.) (Manufacturing method of the particle 3: Reference was made to the pamphlet of International Publication No.
  • Carbon fiber fabric The reinforcing fiber fabric used in the examples was prepared as follows. Carbon fiber bundle “Torayca” (registered trademark) T800S-24K-10E (manufactured by Toray Industries, Inc., PAN-based carbon fiber, number of filaments: 24,000, fineness: 1,033 tex, tensile elastic modulus: 294 GPa) as warp Glass fiber bundle ECDE-75-1 / 0-1.0Z (manufactured by Nittobo Co., Ltd., number of filaments) as auxiliary warp yarns arranged at a density of 1.8 yarns / cm, parallel and alternately arranged therewith
  • the unidirectional sheet-like reinforcing fiber bundle group was formed by aligning 800 pieces and fineness: 67.5 tex) at a density of 1.8 pieces / cm.
  • Glass fiber bundle E-glass yarn ECE-225-1 / 0-1.0Z (manufactured by Nittobo Co., Ltd., number of filaments: 200, fineness: 22.5 tex) is used as the weft to reinforce the unidirectional sheet.
  • the fineness ratio of the weft to the carbon fiber bundle fineness of the obtained reinforcing fiber fabric is 2.2%
  • the fineness ratio of the auxiliary warp is 6.5%
  • the basis weight of the carbon fiber is 192 g / m 2
  • the reinforcing fiber fabric was 0.45.
  • Matrix resin The matrix resin used in the examples is a two-component amine-curable epoxy resin, and was prepared as follows.
  • Aldite (registered trademark) MY721 as a monomer component (manufactured by Huntsman Japan KK, component: N, N, N ′, N′-tetraglycidyl-4,4′-methylenedianiline) 50 parts and GAN ( 50 parts of Nippon Kayaku Co., Ltd., component: N, N-diglycidyl aniline) were mixed at a temperature of 70 ° C. to obtain a main agent.
  • the average particle diameter was calculated by measuring 100 particle diameters arbitrarily selected from the photograph and calculating the arithmetic average thereof.
  • the average particle diameter here refers to the number average particle diameter.
  • binder resin composition Small twin screw extruder with raw materials described in Table 1 (epoxy resin, thermoplastic resin soluble in epoxy resin, polymer particles insoluble in epoxy resin) at a compounding ratio of 180 ° C
  • a binder resin composition was prepared by kneading using (S1 KRC Kneader, Kurimoto Steel Works).
  • Binder Particles The prepared binder resin composition was freeze-pulverized using liquid nitrogen using a hammer mill (PULVERIZER, manufactured by Hosokawa Micron Corporation) with a screen having a pore size of 1 mm to obtain binder particles. The particles were passed through sieves having an opening size of 150 ⁇ m and 75 ⁇ m, and the binder particles remaining on the sieve having an opening size of 75 ⁇ m were used for evaluation.
  • PULVERIZER manufactured by Hosokawa Micron Corporation
  • the reinforcing fiber substrate with the binder resin composition obtained was cut into a predetermined size, the reinforcing fiber substrate with 4 layers of the binder resin composition was subjected to [+ 45 ° / 0 ° / -45 ° / 90 °] to obtain a laminate having a total of four layers.
  • two of the four-layered laminates were laminated symmetrically so that the 90-degree layers faced each other to obtain a total of eight-layered laminates.
  • the obtained laminate was placed on the surface of an aluminum flat mold, and the top was sealed with a bag material (polyamide film) and a sealant.
  • the mold After the cavity formed by the mold and the bag material is evacuated, the mold is transferred to a hot air dryer, the temperature is raised from room temperature to 90 ° C. by 3 ° C. per minute, and then at a temperature of 90 ° C. Heated for 2 hours. Then, after cooling to 60 ° C. or lower in the atmosphere while maintaining the vacuum state of the cavity, the cavity was released to the atmosphere to obtain a preform.
  • Spacer particle occupancy measurement in the binder resin between the preform layers The prepared preform is embedded in epoxy resin under the condition that the binder resin does not dissolve, and carbon contained in two layers (90 ° layer) sandwiching the middle layer After polishing from the direction intersecting the fibers, the cross section was magnified 400 times with an optical microscope and photographed. For the randomly selected fiber interlayer region on the photograph, draw the boundary line between the fiber layer region and the fiber interlayer region, and the ratio of the spacer particle area to the entire binder resin composition existing between the boundary lines is the spacer particle occupancy rate Measurement was taken. The same operation was performed on arbitrary 100 fiber interlayer regions, and the average value was adopted.
  • the prepared preform was cut from the direction perpendicular to the carbon fibers contained in the central 90 ° layer, and the cross section was polished, magnified 400 times with an optical microscope, and photographed. A boundary line between the fiber layer region and the fiber interlayer region was drawn for a portion where the binder resin composition in the fiber interlayer region randomly selected on the photograph was present, and the distance between the boundary lines was defined as the interlayer thickness. The same operation was performed on arbitrary 100 fiber interlayer regions, and the average value was adopted.
  • the obtained preform is placed on the surface of an aluminum flat mold, a polyester fabric subjected to a release treatment as a peel ply, and a polypropylene knit as a resin diffusion medium are placed in this order, and a bag is placed thereon.
  • a material and a sealant except for providing a resin injection port and a vacuum suction port, it was sealed to form a cavity.
  • the inside of the cavity was sucked from the vacuum suction port by a vacuum pump to adjust the degree of vacuum to ⁇ 90 kPa or less, and then the temperature of the mold and the preform was adjusted to 70 ° C.
  • a hot air dryer was used for temperature adjustment.
  • the matrix resin main component and the curing agent were mixed at a ratio of 41.9 parts of the curing agent to 100 parts of the main component to prepare a matrix resin.
  • the matrix resin was preheated for 30 minutes at a temperature of 70 ° C., and vacuum degassing was performed.
  • the pre-heated and degassed matrix resin is set in the resin inlet of the mold, and the matrix resin is injected into the vacuumed cavity by utilizing the pressure difference between the pressure in the cavity and atmospheric pressure.
  • the preform was impregnated.
  • the resin injection port was closed, and the vacuum suction port was closed after holding for another hour while continuing the suction from the vacuum suction port.
  • Molding conditions The temperature was raised to 140 ° C. by 1.5 ° C. per minute for 1 minute, and then cured for 2 hours at a temperature of 140 ° C. After removing from the mold, the temperature was raised to 180 ° C. at a rate of 1.5 ° C. per minute in a hot air dryer, and then cured at a temperature of 180 ° C. for 2 hours to obtain a fiber-reinforced composite material.
  • Molding condition 2 After heating up to a temperature of 180 ° C. at a rate of 1.5 ° C. per minute, the fiber-reinforced composite material was obtained by curing at a temperature of 180 ° C. for 2 hours. The fiber volume content Vf of the obtained fiber-reinforced composite material was between 55% and 60% under all conditions.
  • region where the thickness is less than 10 micrometers among the interlayer thickness measured at 100 places, and an interlayer is not ensured substantially was measured.
  • the amount of voids in the fiber reinforced composite material is obtained by smoothly polishing a cross section perpendicular to the reinforced fiber layer of the fiber reinforced composite material, and observing the cross section at a magnification of 200 times using a falling-down optical microscope, This is a value obtained by calculating the ratio (%) of the void area to the observation visual field area.
  • CAI post-impact compressive strength
  • Examples 1 to 7 A fiber-reinforced composite material was produced as described above using the base material using the binder particles prepared as described above according to the blending ratio in Table 1. Interlayer thickness measurement was performed about each produced fiber reinforced composite material.
  • Example 1 as shown in Table 1, particles 1 (TR) were used as spacer particles in a binder resin in which 25 parts by mass of a liquid bisphenol type epoxy resin, 15 parts by weight of an aralkyl type epoxy resin, and 60 parts by mass of polyethersulfone were compatible.
  • Fiber reinforced composite material was prepared using binder particles having an average particle size of 110 ⁇ m in which 40 parts by mass of ⁇ 55) were dispersed.
  • the fiber-reinforced composite material produced using the binder particles has a uniform interlayer thickness even when the molding conditions are changed, and has excellent CAI strength.
  • the particles 2 (1002D), the particles 3 (CX7323), the particles 4 (SP-500), the particles 5 (4000TF), and the particles 6 (TR-55 finely pulverized product (1)) are used as spacer particles.
  • Binder particles and fiber reinforced composite material were prepared in the same manner as in Example 1 except that Particle 7 (TR-55 finely pulverized product (2)) was used.
  • Particle 7 TR-55 finely pulverized product (2)
  • Example 8 and 9 binder particles and fiber reinforced composite materials were produced in the same manner as in Example 1 except that polyetherimide and phenoxy resin were used as thermoplastic resins soluble in the epoxy resin, respectively.
  • polyetherimide and phenoxy resin were used as thermoplastic resins soluble in the epoxy resin, respectively.
  • CAI was also equivalent.
  • Example 10 is similar to Example 1 except that the composition of the binder resin is 85 parts by mass of a solid bisphenol type epoxy resin, 15 parts of an aralkyl type epoxy resin, and does not contain a thermoplastic resin soluble in the epoxy resin. Binder particles and fiber reinforced composite material were prepared. The fiber reinforced composite material produced using these binder particles had no significant difference in interlayer thickness when molding conditions 1 and 2 were compared, and the CAI was also equivalent.
  • Example 11 produced binder particles and a fiber-reinforced composite material in the same manner as in Example 1 except that the aralkyl type epoxy resin was replaced with a cresol novolac type epoxy resin as a binder resin component.
  • the fiber reinforced composite material produced using these binder particles had no significant difference in interlayer thickness when molding conditions 1 and 2 were compared, and the CAI was also equivalent.
  • Example 12 binder particles and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that all of the epoxy resin was replaced with a liquid bisphenol type epoxy resin as a binder resin component.
  • the fiber reinforced composite material produced using these binder particles had no significant difference in interlayer thickness when molding conditions 1 and 2 were compared, and the CAI was also equivalent.
  • Example 13 binder particles and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that the blending amount of the spacer particles was 10 parts by mass.
  • the fiber reinforced composite material produced using this binder particle had a slightly reduced interlayer thickness, but when molding conditions 1 and 2 were compared, there was no significant difference in interlayer thickness, and CAI was also equivalent.
  • Examples 14 and 15 In Examples 11 and 12, binder particles and fiber-reinforced composites were prepared in the same manner as in Example 1 except that binder particles prepared with the same composition as in Example 1 were used with an average particle diameter of 30 ⁇ m and 300 ⁇ m. The material was made. The fiber reinforced composite material produced using these binder particles had no significant difference in interlayer thickness when molding conditions 1 and 2 were compared, and the CAI was also equivalent.
  • Example 16 binder particles and particles 1 (TR-55) and 4 (SP-500) were used as spacer particles in the same manner as in Example 1 except that 30 parts by mass and 10 parts by mass were used in combination. A fiber reinforced composite material was prepared. In the fiber reinforced composite material produced using this binder particle, when molding conditions 1 and 2 were compared, there was no significant difference in interlayer thickness, and CAI was also equivalent.
  • Comparative Example 1 produced binder particles and a fiber-reinforced composite material in the same manner as in Example 1 except that the spacer particles were not included. Since the binder particles are not included in the binder particles, those applied with molding conditions 2 that have been molded at a higher temperature have a thinner interlayer thickness and significantly lower CAI strength than those applied with molding conditions 1. It was a thing.
  • Comparative example 2 In Comparative Example 2, binder particles and a fiber-reinforced composite material were produced in the same manner as in Example 1 except that the amount of spacer particles was 3 parts by mass. Because there are few spacer particles in the binder particles, the one with the molding condition 2 that has been molded at a higher temperature has a thinner interlayer thickness and significantly lower CAI strength than the one with the molding condition 1 applied. Met.
  • Comparative Example 3 binder particles and fiber reinforced composite material were produced in the same manner as in Example 1 except that the amount of spacer particles was 75 parts by mass. Since there were too many spacer particles in the binder particles, the impregnation property of the matrix resin was lowered and the CAI strength was significantly low.
  • Comparative Example 4 did not include an epoxy resin as a binder resin, and only spacer particles were used to obtain a preform under the same conditions as in Example 1. However, the preform layer did not adhere, and the preform and Fabrication of fiber reinforced composite material was impossible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

耐衝撃性に優れ、成形条件や成形体の形状や大きさによらず安定した物性を出すべく、繊維強化複合材料の層間が一様に十分な厚みを有し、マトリックス樹脂の含浸性に優れたボイドの少ない繊維強化複合材料を製造することができるプリフォームおよびそれを用いた繊維強化複合材料を提供することを課題とする。複数の強化繊維層の層間がバインダー樹脂で連結され、かかるバインダー樹脂内に、バインダー樹脂に不溶なスペーサー粒子が存在するプリフォームであり、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率が10%~80%であるプリフォーム。

Description

プリフォーム、繊維強化複合材料および繊維強化複合材料の製造方法
 本発明は、強化繊維のプリフォームおよび繊維強化複合材料に関するものである。
 強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、強化繊維とマトリックス樹脂の利点を生かした材料設計が出来るため、航空宇宙分野を始め、自動車分野、スポーツ分野、一般産業分野などに用途が拡大されている。
 強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維などが用いられる。マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いられるが、強化繊維への含浸が容易な熱硬化性樹脂が用いられることが多い。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂などに硬化剤または硬化触媒を加えた樹脂組成物が用いられる。
 繊維強化複合材料は様々な方法で製造されるが、型内に配置した強化繊維基材に液状の熱硬化性樹脂(マトリックス樹脂)を注入し、加熱硬化して繊維強化複合材料を得るRTM(Resin Transfer Molding:樹脂注入成形)法が、低コスト生産性に優れた方法として注目されている。
 RTM法で繊維強化複合材料を製造する場合、強化繊維基材を所望の製品と近い形状に加工したプリフォームを予め作製し、このプリフォームを型内に設置して液状マトリックス樹脂を注入することが多い。
 プリフォームの作製方法には、強化繊維から3次元ブレイドを作製する方法や、強化繊維織物を積層してステッチする方法など、いくつかの方法が知られているが、汎用性の高い方法として、ホットメルト性のバインダー(タッキファイヤー)を用いて強化繊維織物などのシート状基材を積層、賦形する方法が知られている。
 ホットメルト性のバインダーには、室温では粘着性を持たず、高温で軟化して接着性を有するような樹脂が用いられる。ホットメルト性のバインダーとしては、熱可塑性樹脂および熱硬化性樹脂ともに適用可能である。
 ホットメルト性のバインダーとして熱硬化性樹脂を使用する場合、バインダー単体で硬化性を有するタイプと、バインダー単体では硬化性を有さないタイプがある。前者は液状マトリックス樹脂に依存せずに硬化可能である点で優れ、後者は保存安定性に優れる。
 一方、エポキシ樹脂などの熱硬化性樹脂を液状マトリックス樹脂とした繊維強化複合材料は、熱硬化性樹脂の硬化物が熱可塑性樹脂に比べて、破壊靭性が一般的に低いため、繊維強化複合材料の耐衝撃性が相対的に低いものとなることが知られている。特に航空機用構造部材の場合、組立中の工具落下や運用中の雹の衝撃などに対して優れた耐衝撃性が要求されるため、耐衝撃性の向上は大きな課題であった。
 繊維強化複合材料は一般に積層構造をとっており、これに衝撃が加わると強化繊維層と強化繊維層との層間に高い応力が発生し、クラックが発生する。クラック発生を抑制するには熱硬化性樹脂の塑性変形能力を高めることが有効であり、その手段としては塑性変形能力に優れている熱可塑性樹脂を配合することが有効である。
 熱可塑性樹脂を配合したバインダーを使用して繊維強化複合材料を作製することにより、クラックの入りやすい積層層間に熱可塑性樹脂を存在させ、耐衝撃性を向上させる手法が知られている(特許文献1~5)。
 特許文献1、2ではマトリックス樹脂と相溶する熱可塑性樹脂を配合したバインダーが開示されている。
 特許文献3、4では、マトリックス樹脂と相溶する熱可塑性樹脂を配合し、硬化性を有するバインダーが開示されている。
 特許文献5には、マトリックス樹脂に不溶な熱可塑性樹脂であるポリアミドを他成分と溶融混練したバインダーが開示されている。
特開2005-194456号公報 特表2010-510110号公報 特表2001-524171号公報 国際公開2014/007288号公報 国際公開2011/034040号公報
 特許文献1、2に開示されているバインダーでは繊維強化複合材料の成形時にバインダーがマトリックス樹脂と相溶するため、成形時の圧力により層間が薄く、不均一になりやすい。また、層間が薄くなることにより注入するマトリックス樹脂が含浸しにくく、ボイドが発生しやすい。このため、熱可塑性樹脂による高靭性化効果を十分に発揮できないとともに、成形条件や成形体の位置によって物性にムラが発生してしまう。
 特許文献3、4では、プリフォーム時にバインダーを一部硬化させることにより、層間に熱可塑性樹脂が存在しやすくなるが、やはり繊維強化複合材料とした時の層間が不均一になり、層間が薄くなる部分やボイドが発生しやすい。
 特許文献5では、マトリックス樹脂に不溶なポリアミドを含むことにより、成形後も熱可塑性樹脂成分が層間に局在的に残りやすく高靭性効果が得られるが、層間の厚みを一様に確保することは困難である。
 本発明の目的は、かかる従来技術の欠点を改良し、耐衝撃性に優れ、成形条件や成形体の形状や大きさによらず安定した物性を出すべく、繊維強化複合材料の層間が一様に十分な厚みを有し、マトリックス樹脂の含浸性に優れた、ボイドの少ない繊維強化複合材料を提供することにあり、かかる繊維強化複合材料を製造することができるプリフォームを提供することにある。
 上記課題を解決するために、本発明に係るプリフォームは、複数の強化繊維層の層間がバインダー樹脂で連結され、かかるバインダー樹脂内に、バインダー樹脂に不溶なスペーサー粒子が存在するプリフォームであり、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率が10%~80%であることを特徴とする。
 また、上記課題を解決するために、本発明の繊維強化複合材料は、前記したプリフォームにマトリックス樹脂を含浸、硬化させてなる繊維強化複合材料である。
 さらに、上記課題を解決するために、本発明の繊維強化複合材料の製造方法は、前記したプリフォームにマトリックス樹脂を含浸、硬化させる繊維強化複合材料の製造方法であって、マトリックス樹脂の含浸、硬化の過程で、バインダー樹脂がマトリックス樹脂に溶解する一方、スペーサー粒子はマトリックス樹脂に溶解せず、層間に配置され、かかる層間厚みをスペーサー粒子の平均粒子径の1~3倍とすることを特徴とする。
 本発明によれば、耐衝撃性を改善し、成形条件や成形体の形状や大きさによらず安定した物性を出すべく、強化繊維基材層間に配置されるバインダー樹脂内に存在するスペーサー粒子により、繊維強化複合材料とした時の層間が一様に十分な厚みを有し、ボイドの少ない繊維強化複合材料を製造することができる。
 以下に、本発明の望ましい実施の形態について説明する。
 本発明に係るプリフォームは、複数の強化繊維層の層間がバインダー樹脂で連結され、かかるバインダー樹脂内に、バインダー樹脂に不溶なスペーサー粒子が存在するプリフォームであり、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率(以降、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率をスペーサー粒子の占有率と記す場合もある)が特定割合であることを特徴とする。
 強化繊維層は、後述するような強化繊維基材により形成され、それらが積層され、その層間がバインダー樹脂で連結されて形成されている。そのバインダー樹脂内にスペーサー粒子が存在することにより、プリフォームにマトリックス樹脂を含浸、硬化する過程で、スペーサー粒子が成形時の加熱、圧力により層間に配置され、一様に適切な層間厚みを有するとともに、マトリックス樹脂の含浸時の流路が確保されることでボイドの少ない繊維強化複合材料が得られる。なお、一様に適切な層間厚みを有するとは、厚みが薄すぎたり、厚すぎたりする領域が少なく、特に層間厚みが10μm以下となり実質的に層間が確保されない領域の割合が30%以下であることをいう。
 本発明のプリフォームとするために、バインダー樹脂とスペーサー粒子とを含むバインダー樹脂組成物を使用することができる。バインダー樹脂組成物を強化繊維層の層間に配置することにより、バインダー樹脂が強化繊維基材同士を接着し、強化繊維層の層間が連結される。かかるバインダー樹脂は熱硬化性樹脂を含むことが好ましく、エポキシ樹脂を含むことがさらに好ましい。
 熱硬化性樹脂とは、加熱により硬化反応が進行し架橋構造を形成する樹脂材料であり、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ビスマレイミド樹脂、シアネート樹脂などが挙げられる。本発明においては、熱硬化性樹脂としてエポキシ樹脂が好適に用いられる。
 エポキシ樹脂とは、一分子内に2個以上のエポキシ基を有する化合物を意味する。かかるエポキシ樹脂はエポキシ基を有する化合物1種類のみからなるものでも良く、複数種の混合物であっても良い。
 エポキシ樹脂の具体例としては、水酸基を複数有するフェノール化合物から得られる芳香族グリシジルエーテル、水酸基を複数有するアルコール化合物から得られる脂肪族グリシジルエーテル、アミン化合物から得られるグリシジルアミン、カルボキシル基を複数有するカルボン酸化合物から得られるグリシジルエステルなどのエポキシ基をグリシジル基の一部として有するエポキシ樹脂や、シクロヘキセンなどの不飽和脂環化合物を酸化することにより得られるオキシラン環を構造中に含むエポキシ樹脂などが挙げられる。
 本発明において、エポキシ樹脂は、保管時安定性の観点から固形エポキシ樹脂を含むことが好ましい。固形エポキシ樹脂とは、ガラス転移温度が20℃以上であるエポキシ樹脂のことである。
 なお、本発明において、ガラス転移温度は、JIS K 7121:1987に従って、示差走査熱量測定(DSC)により求めたものをいう。上記規格に用いうる測定装置としては、例えばPyris1 DSC(Perkin Elmer製)が挙げられる。測定すべき試料をアルミニウム製のサンプルパンに採取し、窒素雰囲気下において、40℃/minの昇温速度で測定を行う。こうして得られるDSC曲線におけるベースラインが吸熱側にシフトする領域の変位の中間点をガラス転移温度として採用する。
 エポキシ樹脂としては、強化繊維基材層間の接着性およびマトリックス樹脂と相溶し繊維強化複合材料とした時の靭性、耐熱性のバランスに優れることから、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂およびアラルキル型エポキシ樹脂からなる群より選ばれる少なくとも1つのエポキシ樹脂を含むことが好ましい。
 ビスフェノール型エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、およびそれらのアルキル置換体、ハロゲン置換体、水素添加物などが使用できるが、これらに限定されるものではない。
 ノボラック型エポキシ樹脂の具体例としては、フェノールノボラック型エポキシ樹脂の市販品として、“jER”(登録商標)152、154(以上、三菱化学(株)製)、“エピクロン”(登録商標)N-740、N-770、N-775(以上、DIC(株)製)などが挙げられ、クレゾールノボラック型エポキシ樹脂の市販品として、“エピクロン”(登録商標)N-660、N-665、N-670、N-680、N-695(以上、DIC(株)製)、EOCN-1020、EOCN-102S(以上、日本化薬(株)製)、YDCN-700、YDCN-701(以上、新日鐵化学(株)製)などが挙げられる。
 アラルキル型エポキシ樹脂の具体例としては、フェノールアラルキル型エポキシ樹脂の市販品として、NC-2000シリーズ(日本化薬(株)製)、NC-7000シリーズ(日本化薬(株)製)、NC-3000シリーズ(日本化薬(株)製)などが挙げられ、ナフトールアラルキル型エポキシ樹脂の市販品として、NC-7300シリーズ(日本化薬(株)製)、ESN-165、ESN-175、ESN-185、ESN-195(以上、新日鉄住金化学(株)製)などが挙げられる。
 バインダー樹脂が熱硬化性樹脂を含む場合、繊維強化複合材料とした時の層間靭性を向上させるため、バインダー樹脂は、当該バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂を含むことがさらに好ましい。
 ここで、熱硬化性樹脂に可溶とは、かかる熱硬化性樹脂に熱可塑性樹脂を分散させて加熱した際に、熱可塑性樹脂が熱硬化性樹脂と均一な相を形成しうることを意味する。
 具体的には、例えば熱硬化性樹脂100質量部に対し5質量部の熱可塑性樹脂を混合し、所定の温度で加熱攪拌した樹脂組成物を含むプレパラートを作製し、光学顕微鏡で観察した時に、熱硬化性樹脂と熱可塑性樹脂の間に明確な界面が観察されないことで判断できる。
 バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂としては、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリエーテルニトリル、ポリベンズイミダゾール、ポリウレタン、尿素樹脂、ポリビニルアセタール、ポリビニルホルマール、ポリビニルアルコール、ポリメチルメタクリレートおよびフェノキシ樹脂などの内、バインダー樹脂に含まれる熱硬化性樹脂に可溶なものが具体的に挙げられる。特に、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリビニルアセタール、ポリビニルホルマール、ポリビニルアルコール、フェノキシ樹脂が好ましく用いられる。
 バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂としては、得られた繊維強化複合材料の耐熱性、耐衝撃性、層間靭性の観点から、特にポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリビニルアセタール、ポリメチルメタクリレートおよびフェノキシ樹脂からなる群より選ばれる少なくとも1つの熱可塑性樹脂を用いることが好ましい。
 バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂は、そのガラス転移温度が150℃以上であることが好ましく、180℃以上であることがより好ましい。ガラス転移温度が150℃を下回る場合、得られた繊維強化複合材料の耐熱性が不足する場合がある。また、バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂は、ガラス転移温度が280℃以下であることが好ましく、250℃以下であることがより好ましい。ガラス転移温度が280℃を超える場合、熱硬化性樹脂との相溶性が低下する場合がある。
 バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂は、バインダー樹脂の全質量に対して5~80質量%の割合で含まれることが好ましく、20~60質量%の割合で含まれることがさらに好ましい。バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂の割合が5質量%よりも少ない場合、層間靭性向上の効果が発現しない場合がある。一方、バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂の割合が80質量%よりも多い場合、プリフォームの接着性が低下する場合がある。なお、ここでいうバインダー樹脂の全質量にはスペーサー粒子の質量は含まれない。
 スペーサー粒子はプリフォームに、マトリックス樹脂を含浸、硬化して得られる繊維強化複合材料において、層間厚みを均一に確保する目的、およびボイドを抑制する目的で含まれる。
 本発明のプリフォームは、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率が、10~80%である。強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率が10%よりも小さい場合、繊維強化複合材料とした時に十分な厚みの層間を形成できず、層間厚みにムラが発生する。かかる観点から、スペーサー粒子の占有率は、15%以上であることが好ましく、20%以上であることがさらに好ましい。スペーサー粒子の占有率が80%よりも大きい場合、バインダーとしての機能を果たすことができない場合がある。かかる観点から、スペーサー粒子の占有率は、60%以下であることが好ましく、50%以下であることがさらに好ましい。
 ここで、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率は、例えばプリフォームの断面を走査型電子顕微鏡にて、任意に選択された100箇所について観察し、強化繊維層の層間に存在するバインダー樹脂とスペーサー粒子全体の面積に対するスペーサー粒子の面積の割合の平均値を算出することで得られる。
 本発明のプリフォームは、強化繊維層の層間におけるスペーサー粒子の含有量が1層間当たり2~9g/mであることが好ましく、2~7g/mであることがより好ましい。含有量が2g/mよりも少ない場合、繊維強化複合材料とした時のスペーサー粒子による層間確保が不十分となる場合があり、9g/mよりも多い場合、マトリックス樹脂の含浸性が低下しボイドが発生する場合がある。
 本発明のプリフォームは、強化繊維層の層間におけるバインダー樹脂とスペーサー粒子の総量の含有量、たとえば後述するバインダー樹脂組成物を用いる場合の強化繊維層の層間におけるバインダー樹脂組成物の含有量が、1層間当たり0.5~50g/m、好ましくは1~30g/mであることが好ましい。かかる含有量が0.5g/mよりも少ない場合、プリフォームとしての形態固定が難しく繊維強化複合材料とした時のスペーサー粒子による層間確保が不十分となる場合があり、50g/mよりも多いと、マトリックス樹脂の含浸性が低くなりボイドが発生する場合がある。
 なお、プリフォームにおける強化繊維層の層間におけるバインダー樹脂とスペーサー粒子の総量の含有量は、任意に選択された100箇所について測定した単位面積当たりのプリフォームの質量の平均値から、その後プリフォーム中のバインダー樹脂とスペーサー粒子を熱処理して焼き飛ばす、または溶媒に溶出させることで測定したプリフォーム中の強化繊維基材の質量の平均値との差を、プリフォームに存在する層間の数で除することにより算出することができる。
 スペーサー粒子は、バインダー樹脂に不溶であり、後述する繊維強化複合材料に用いられるプリフォームに含浸させるマトリックス樹脂にも不溶であることが好ましい。
 ここで、バインダー樹脂に不溶またはマトリックス樹脂に不溶とは、かかるスペーサー粒子を分散した、バインダー樹脂またはマトリックス樹脂を加熱・硬化した際に、スペーサー粒子と、バインダー樹脂またはマトリックス樹脂との間に、明確な界面を有することを意味する。
 具体的には、例えばバインダー樹脂またはマトリックス樹脂100質量部に対し5質量部のスペーサー粒子を分散した樹脂組成物を含むプレパラートを作製し、光学顕微鏡のホットステージ上で所望の温度で加熱した時の、スペーサー粒子と、バインダー樹脂またはマトリックス樹脂の界面を観察することで判断できる。
 スペーサー粒子は、真球度が75~100の範囲にあることが好ましく、真球度が85~100の範囲にあることがより好ましい。このような比較的高い真球度とすることで、繊維強化複合材料とした時に層間が均一に形成されやすくなる。真球度が75に満たない場合、繊維強化複合材料とした時の層間厚みにムラが発生する場合がある。
 ここで真球度は、走査型電子顕微鏡にてスペーサー粒子を観察し、任意に選択された粒子m個(通常、30個)について、それぞれの投影形状から個々に短径と長径を測定し、次の式(1)に従い算出されるものである。なお、短径、長径とは、それぞれ、粒子に外接する面積が最小となる外接長方形の短辺、長辺である。
Figure JPOXMLDOC01-appb-M000001
 また、スペーサー粒子は、粒子径分布指数が1~5の範囲にあることが好ましく、粒子径分布指数が1~2.5の範囲にあることがさらに好ましい。このような比較的狭い粒子径分布とすることで、繊維強化複合材料とした時に、層間領域での粒子の充填率を効果的に高めることができる。また、一部の粗大な粒子の存在により層間厚みの過大な領域が発生することなく、均一な層間厚みを有する繊維強化複合材料を得ることが出来る。粒子径分布指数が5を上回ると、層間領域での粒子の充填率が向上しにくい場合や、層間厚みのムラが発生する場合がある。
 ここで粒子径分布指数は、走査型電子顕微鏡にてスペーサー粒子を観察し、任意に選択されたn個(通常、100個)の粒子について粒子径を測長し、次の式(2)~(4)に基づき算出する。粒子の投影形状が真円でない場合、長径をその粒子径として測定する。
Figure JPOXMLDOC01-appb-M000002
 尚、Di:粒子個々の粒子径、n:測定数、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
 スペーサー粒子は、その平均粒子径が1~50μmの範囲にあることが好ましく、5~30μmの範囲にあることがより好ましい。かかる平均粒子径は、走査型電子顕微鏡にてスペーサー粒子を1000倍で観察し、任意の100個の粒子径を測長したものの数平均粒子径を指す。尚、粒子の形状が真円でない場合は長径をその粒子径として測定し、径が100nm以下となるものは含めない。平均粒子径が1μmを下回る小さな粒子の場合、繊維強化複合材料を作製した時に、強化繊維層内にスペーサー粒子が入り込み、層間の厚みを確保できなくなる場合がある。平均粒子径が50μmを上回る大きな粒子の場合、粗大な粒子の存在により層間厚みの過大な領域が発生し、層間の厚みにムラが発生しやすくなる。また、複数種のスペーサー粒子を混合して、使用することもできる
 スペーサー粒子を構成する成分は、特に限定されるものではなく、ゴム粒子、熱可塑性樹脂粒子、熱硬化性樹脂粒子などの有機粒子、およびシリカ、アルミナ、スメクタイト、合成マイカ、金属粒子などの無機粒子を使用することができる。
 中でも、繊維強化複合材料とした時の硬化したマトリックス樹脂との接着性や層間靭性の観点で、スペーサー粒子は、熱可塑性樹脂および/または熱硬化性樹脂からなるポリマー粒子であることが好ましく、複数種で用いることもできる。ここで、熱可塑性樹脂および熱硬化性樹脂からなるとは、両者を含む組成物を示す。
 スペーサー粒子に用い得る熱硬化性樹脂としては、具体的には、エポキシ樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、マレイミド樹脂、シアン酸エステル樹脂および尿素樹脂などが挙げられる。これらの熱硬化性樹脂は、未硬化の状態であっても、硬化物であってもよい。
 スペーサー粒子に用い得る熱可塑性樹脂として、具体的には、ビニル系重合体、ポリエステル、ポリアミド、ポリアミドイミド、ポリイミド、ポリカーボネート、ポリアリーレンスルフィド(ポリフェニレンスルフィドなど)、ポリアリーレンエーテル(ポリフェニレンエーテルなど)、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリエーテルエーテルスルホン、ポリウレタン、ポリエーテルイミド、ポリアセタール、シリコーンおよびこれらの共重合体などのうちバインダー樹脂に不溶なものが挙げられる。中でも、ポリアミド、ポリアミドイミド、ポリイミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルエーテルケトンおよびこれらの共重合体などが伸度、靭性の観点からスペーサー粒子として好ましく用いられる。さらに、繊維強化複合材料とした際の耐衝撃性、層間靭性に加えて、耐湿熱性、耐溶剤性にも優れる点で、ポリアミドであることが特に好ましい。 ポリアミドの例としては、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリノナンテレフタルアミド(ナイロン9T)、ポリ-m-キシレンアジパミド(ナイロンMXD)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と12-アミノドデカン酸の共重合体(例示するならば、“グリルアミド”(登録商標) TR55、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(例示するならば、“ グリルアミド”(登録商標) TR90、エムザベルケ社製)、4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(例示するならば、“TROGAMID”(登録商標)CX7323 、デグサ社製)などが挙げられる。
 スペーサー粒子は、ガラス転移温度が80℃以上のポリマー粒子であることが好ましく、130℃以上のポリマー粒子であることがより好ましい。ガラス転移温度が80℃を下回る場合、マトリックス樹脂の含浸、硬化の際に粒子の変形が起こりやすく、層間厚みにムラが発生する場合がある。また、スペーサー粒子は、ガラス転移温度が350℃以下のポリマー粒子であることが好ましく、300℃以下のポリマー粒子であることがより好ましい。ガラス転移温度が350℃を超える場合、層間厚みにムラが発生する場合がある。
 本発明のバインダー樹脂組成物は、前記したプリフォームまたは後述するバインダー樹脂組成物付き強化繊維基材に使用されるものであり、前記したバインダー樹脂と前記したスペーサー粒子を含んでなる。
 スペーサー粒子は、プリカーサーに使用するバインダー樹脂組成物中にその全質量に対して5~80質量%の割合で含まれることが好ましく、10~50質量%の割合で含まれることがさらに好ましい。バインダー樹脂組成物中におけるスペーサー粒子の含有量が5質量%よりも少ない場合、十分な厚みの層間を形成できない場合がある。一方、バインダー樹脂組成物中におけるスペーサー粒子の含有量が80質量%よりも多い場合、プリフォームとした時の層間接着強度が低下してバインダーとしての機能を果たすことができない場合がある。
 本発明におけるバインダー樹脂組成物の形態としては、特に限定されるものではないが、フィルム、テープ、長繊維、短繊維、紡績糸、織物、ニット、不織布、網状体、粒子などの形態を採用することができる。中でも、粒子形態、または繊維形態が特に好適に使用できる。なお、バインダー樹脂組成物が粒子形態である場合バインダー樹脂組成物からなる粒子をバインダー粒子、バインダー樹脂組成物が繊維形態である場合バインダー樹脂組成物からなる繊維をバインダー繊維という。
 バインダー樹脂組成物の形態として粒子形態を採用する場合、その平均粒子径は10~500μmであることが好ましい。ここで平均粒子径はメディアン径を指し、バインダー粒子の平均粒子径は、例えばレーザー回折型粒度分布計などを用いて測定することができる。平均粒子径が10μmよりも小さい場合は、プリフォームとした時の接着強度および作業性が低下する場合がある。かかる観点から、平均粒子径は30μm以上であることがより好ましい。平均粒子径が500μmよりも大きい場合は、プリフォームとした時に強化繊維にうねりが生じ、得られる繊維強化複合材料の力学特性の低下が生じる場合がある。かかる観点から、平均粒子径は300μm以下であることがより好ましい。
 バインダー樹脂組成物の形態として繊維形態を採用する場合、その平均直径は10~300μmであることが好ましい。ここで平均直径は、走査型電子顕微鏡にてバインダー繊維の断面を観察し、任意に選択された100個のバインダー繊維について直径を測長し、その平均値を算出する。繊維の断面形状が真円でない場合、短径をその直径として測定する。平均直径が10μmよりも小さい場合は、プリフォームの接着強度が低下する場合がある。平均直径が300μmよりも大きい場合は、プリフォームの強化繊維にうねりが生じ、得られる繊維強化複合材料の力学特性の低下が生じる場合がある。かかる観点から、平均直径は100μm以下であることがより好ましい。
 本発明のプリフォームに使用する強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、金属繊維など、あるいはこれらを組合せたものが使用できる。中でも、炭素繊維は、軽量性や強度に優れているため好適に用いることができる。
 強化繊維は、短繊維、連続繊維いずれであってもよく、両者を併用してもよい。高繊維体積含有率(以降、高Vfと記す)の繊維強化複合材料を得るためには、連続繊維を用いることが好ましい。
 強化繊維はストランドの形態で用いられることもあるが、強化繊維をマット、織物、ニット、ブレイド、一方向シート等の形態に加工した強化繊維基材が好適に用いられる。中でも、高Vfの繊維強化複合材料が得やすく、かつ取扱い性に優れた織物や一方向シートが強化繊維基材として好ましく用いられる。
 強化繊維基材に織物を選択した場合の織組織としては、平織り、朱子織り、綾織り、ノンクリンプクロスなどが適宜選択できるが、クリア塗装により織り目を意匠面に見せる場合には、平織りや綾織りを用いると意匠性が高くなる。また、朱子織りや綾織りの織布はドレープ性が良いため、奥行きの深さが深い3次元形状を賦形する場合に好適に使用される。
 強化繊維織物の見かけ体積に対する、強化繊維の正味の体積の比を強化繊維織物の充填率とする。強化繊維織物の充填率は、目付W(単位:g/m)、厚みt(単位:mm)、強化繊維の密度ρf(単位:g/cm)からW/(1000t・ρf)の式により求められる。強化繊維織物の目付と厚みはJIS R 7602:1995に準拠して求められる。織物の充填率が高い方が高繊維体積含有率の繊維強化複合材料を得やすいため、織物の充填率は、0.10~0.85が好ましく、0.40~0.85がより好ましく、0.50~0.85の範囲内であることがさらに好ましい。
 本発明のバインダー樹脂組成物は強化繊維基材の少なくとも表面に付着させてバインダー樹脂組成物付き強化繊維基材として用いられる。すなわち、本発明のバインダー樹脂組成物は前記したプリフォームに使用されるだけでなく、バインダー樹脂組成物付き強化繊維基材に使用されるものでもある。また、本発明のバインダー樹脂組成物付き強化繊維基材は、前記したバインダー樹脂組成物を少なくとも表面に有しており、前記したプリフォームに使用される。
 バインダー樹脂組成物を表面に付着させる場合の付着量としては、片面または両面に、片面当たり0.5~50g/m、好ましくは1~30g/mの目付で付着していることが好ましい。付着量が0.5g/mよりも少ない場合、プリフォームとした時の形態固定が難しく、繊維強化複合材料とした時のスペーサー粒子による層間確保が不十分となる場合があり、50g/mよりも多い場合、マトリックス樹脂の含浸性が乏しくなり、ボイドが発生する場合がある。
 本発明のプリフォームは、前記したバインダー樹脂組成物を少なくとも表面に有するバインダー樹脂組成物付き強化繊維基材を積層し、形態を固定してなる。バインダー樹脂組成物を、加熱により強化繊維基材の少なくとも片面の少なくとも表面に付着させてバインダー樹脂組成物付き強化繊維基材とした後、これを複数枚積層することにより、バインダー樹脂組成物を少なくとも積層層間に有する積層体が得られる。これを加熱および冷却をし、バインダー樹脂組成物が基材層間を固着して形態を固定することで、バインダー樹脂組成物を少なくとも積層層間に有するプリフォームが得られる。
 通常、プリフォームは、バインダー樹脂組成物が付着したバインダー樹脂組成物付き強化繊維基材を所定の形状に切り出し、型の上で積層し、適切な熱と圧力を加えて作製することができる。加圧の手段はプレスを用いることもできるし、真空バッグフィルムで囲って内部を真空ポンプで吸引して大気圧により加圧する方法を用いることもできる。
 本発明のプリフォームは、強化繊維層の層間厚みがスペーサー粒子の平均粒子径の1~5倍であることが好ましい。強化繊維層の層間厚みがスペーサー粒子の平均粒子径の1倍よりも小さい場合、繊維強化複合材料とした時の層間を確保できない場合がある。スペーサー粒子の平均粒子径の5倍よりも大きい場合、繊維強化複合材料とした時の層間厚みにムラが残る場合がある。
 ここで、プリフォームにおける強化繊維層の層間厚みは、例えばプリフォームの断面を走査型電子顕微鏡にて任意に選択された100箇所について観察し、バインダー樹脂組成物の存在する部分の繊維層領域と繊維層間領域の境界ライン間の距離の平均値を測定することにより得られる。
 本発明のプリフォームに、マトリックス樹脂を含浸させ、マトリックス樹脂を硬化させることにより、繊維強化複合材料を作製することができる。
 バインダー樹脂とスペーサー粒子の材質として前述した好ましいものを選択することによりマトリックス樹脂を含浸、硬化させる過程で、バインダー樹脂がマトリックス樹脂に溶解する一方、スペーサー粒子はマトリックス樹脂に溶解せず、層間に配置されることができる。スペーサー粒子が配置されることにより、得られる繊維強化複合材料の層間厚みがスペーサー粒子の平均粒子径の1~3倍となることが好ましい。層間厚みがスペーサー粒子の平均粒子径の1倍よりも小さい場合、スペーサー粒子により層間が確保できておらず、層間厚みにムラが発生する。平均粒子径の3倍よりも大きい場合、スペーサー粒子による効果が小さく、層間厚みにムラが発生する場合がある。
 また、本発明の繊維強化複合材料は、層間厚みが1~150μmであることが好ましい。層間厚みが1μmよりも小さい場合、十分な層間が確保できていない。150μmよりも大きい場合、層間厚みにムラが発生する場合がある。
 本発明における繊維強化複合材料の作製方法は特に限定されるものではないが、ハンドレイアップ法、RTM法などの、二液型樹脂を用いる成形方法が好適に用いられる。これらのうち、生産性や成形体の形状自由度といった観点で、特にRTM法が好適に用いられる。RTM法とは、成形型内に配置した強化繊維基材に液状のマトリックス樹脂を注入して含浸させ、硬化させて繊維強化複合材料を得るものである。
 マトリックス樹脂は、熱硬化性樹脂であり、主にモノマー成分からなる液状樹脂とモノマー成分を三次元架橋させてポリマー化する硬化剤あるいは硬化触媒を含む。
 モノマー成分としては、プリフォームへの含浸性や繊維強化複合材料とした時の力学特性などの点からエポキシ樹脂が好ましい。
 かかるエポキシ樹脂の具体例としては、水酸基を複数有するフェノールから得られる芳香族グリシジルエーテル、水酸基を複数有するアルコールから得られる脂肪族グリシジルエーテル、アミンから得られるグリシジルアミン、カルボキシル基を複数有するカルボン酸から得られるグリシジルエステル、オキシラン環を有するエポキシ樹脂などが挙げられる。
 かかる硬化剤としては、脂肪族ポリアミン、芳香族ポリアミン、酸無水物、イミダゾール、ルイス酸錯体などが適しており、目的用途により適宜選択して用いる。
 プリフォームにマトリックス樹脂を含浸、硬化させて繊維強化複合材料を製造する。通常、硬化は加熱により進む。加熱硬化時の成形型の温度は、マトリックス樹脂の注入・含浸時における成形型の温度と同じでも良いが、低温での硬化の場合、脱型の際に繊維強化複合材料が変形しない程度の剛性が得られるまで硬化を進めるのに時間がかかる場合があるため、注入時の成形型の温度より高い温度を選ぶことが好ましく、例えば60~180℃の範囲が好ましい。
 そして、前記したように、マトリックス樹脂を含浸、硬化させる過程で、バインダー樹脂がマトリックス樹脂に溶解する一方、スペーサー粒子はマトリックス樹脂に溶解せず、層間に配置され、かかる層間厚みがスペーサー粒子の平均粒子径の1~3倍となることが好ましい。
 繊維強化複合材料が高い比強度、あるいは比弾性率をもつためには、その繊維体積含有率Vfが、40~85%、好ましくは45~85%の範囲内であることが好ましい。なお、ここで言う、繊維強化複合材料の繊維体積含有率Vfとは、ASTM D3171(1999)に準拠して、以下により定義され、測定される値であり、強化繊維基材に対して液状マトリックス樹脂を注入、硬化した後の状態でのものをいう。すなわち、繊維強化複合材料の繊維体積含有率Vfの測定は、繊維強化複合材料の厚みhから、下記式(5)を用いて表すことができる。
 繊維体積含有率Vf(%)=(Af×N)/(ρf×h)/10 ・・・(5)
  Af:強化繊維基材1枚・1m当たりの質量(g/m
  N:強化繊維基材の積層枚数(枚)
  ρf:強化繊維の密度(g/cm
  h:繊維強化複合材料(試験片)の厚み(mm)。
 なお、強化繊維基材1枚・1m当たりの質量Afや、強化繊維基材の積層枚数N、強化繊維の密度ρfが明らかでない場合は、JIS K 7075:1991に基づく燃焼法もしくは硝酸分解法、硫酸分解法のいずれかにより、繊維強化複合材料の繊維体積含有率を測定する。この場合に用いる強化繊維の密度は、JIS R 7603:1999に基づき測定した値を用いる。
 以下、実施例により、本発明についてさらに詳細に説明する。
 1.バインダー樹脂組成物原料
 各実施例のバインダー樹脂組成物を得るために、以下の樹脂原料を用いた。なお、表の樹脂組成物の含有割合の単位は、特に断らない限り「質量部」を意味する。
 バインダー樹脂を構成する成分:エポキシ樹脂、エポキシ樹脂に可溶な熱可塑性樹脂
・“jER”(登録商標)825(三菱化学(株)製):液状2官能ビスフェノールA型エポキシ樹脂、エポキシ当量175
・“jER”(登録商標)1007(三菱化学(株)製):固形2官能ビスフェノールA型エポキシ樹脂、エポキシ当量1925
・“EPICLON”(登録商標)N-660(DIC(株)製):固形クレゾールノボラック型エポキシ樹脂、エポキシ当量207
・NC-7300(日本化薬(株)製):固形ナフトールアラルキル型エポキシ樹脂、エポキシ当量220
・“スミカエクセル”(商標登録)PES5200P(住友化学(株)製):ポリエーテルスルホン、質量平均分子量55100
・“ウルテム”(商標登録)1010(ジーイープラスチックス(株)製):ポリエーテルイミド、質量平均分子量55000
・YP-50(新日鉄住金化学(株)製):フェノキシ樹脂、重量平均分子量70000
 スペーサー粒子:エポキシ樹脂に不溶なポリマー粒子
・粒子1(エムザベルケ(株)社製“グリルアミド”(登録商標)TR―55を原料として以下に記す製造方法にて作製した粒子、平均粒子径18.0μm、粒子径分布指数1.5、真球度85、Tg160℃)
 (粒子1の製造方法)
 4,4’-ジアミノ-3,3’ジメチルジシクロヘキシルメタンを必須構成成分として含有するポリアミド(エムザベルケ(株)社製“グリルアミド(登録商標)”TR-55)94質量部、エポキシ樹脂(ジャパンエポキシレジン(株)社製“jER(登録商標)”828)4質量部および硬化剤(富士化成工業(株)社製“トーマイド(登録商標)”#296)2質量部を、クロロホルム300質量部とメタノール100質量部の混合溶媒中に添加して均一溶液を得た。次に該溶液を塗装用のスプレーガンを用いて霧状にして、よく撹拌した3000質量部のn-ヘキサンの液面に向かって吹き付けて溶質を析出させた。析出した固体を濾別し、n-ヘキサンでよく洗浄した後、100℃24時間の真空乾燥を行い、さらに篩を用いて粒子径の小さい成分と大きい成分をそれぞれ取り除き、比較的粒子径分布の揃った粒子を得た。得られた粉体を走査型電子顕微鏡にて、観察したところ、平均粒子径 18.0μm、粒子径分布指数1.5、真球度85であった。
・粒子2(“Orgasol”(登録商標)1002D、ポリアミド、アルケマ(株)社製、平均粒子径21μm、粒子径分布指数1.9、真球度78、ガラス転移温度53℃)
・粒子3(“トロガミド”(登録商標)CX7323を原料として以下に記す製造方法にて作製した粒子、平均粒子径13μm、粒子径分布指数1.2、真球度97、ガラス転移温度137℃)
 (粒子3の製造方法:国際公開2009/142231号パンフレットを参考とした。)
 1000mlの耐圧ガラスオートクレーブ(耐圧硝子工業(株)ハイパーグラスターTEM-V1000N)の中に、ポリマーAとしてポリアミド(質量平均分子量 17,000、デグザ社製 “TROGAMID”(登録商標)CX7323)を35g、有機溶媒としてN-メチル-2-ピロリドン 287g、ポリマーBとしてポリビニルアルコール 28g(日本合成化学工業株式会社製 “ゴーセノール”(登録商標)GM-14 質量平均分子量 29,000、酢酸ナトリウム含量0.23質量%、SP値32.8(J/cm1/2)を加え、99体積%以上の窒素置換を行った後、180℃に加熱し、ポリマーが溶解するまで2時間攪拌を行った。その後、貧溶媒として350gのイオン交換水を、送液ポンプを経由して、2.92g/分のスピードで滴下した。約200gのイオン交換水を加えた時点で、系が白色に変化した。全量の水を入れ終わった後、攪拌したまま降温させ、得られた懸濁液を、ろ過し、イオン交換水 700gを加えてリスラリー洗浄し、濾別したものを、80℃ 10時間真空乾燥を行い、灰色に着色した固体を34g得た。得られた粉体を走査型電子顕微鏡にて観察したところ、真球状の微粒子形状であり、平均粒子径 13μm、粒子径分布指数 1.2であった。
・粒子4(SP-500、ポリアミド、東レ(株)製、平均粒子径5μm、粒子径分布指数1.1、真球度96、ガラス転移温度55℃)
・粒子5(“TORLON”(登録商標)4000TF、ポリアミドイミド、ソルベイアドバンストポリマーズ社製、平均粒子径15μmに分級、粒子径分布指数1.5、真球度91、ガラス転移温度53℃)
・粒子6(4,4’-ジアミノ-3,3’ジメチルジシクロヘキシルメタンを必須構成成分として含有するポリアミド(エムザベルケ(株)社製“グリルアミド”(登録商標) TR55をハンマーミルにて凍結粉砕・分級して作製した、平均粒子径45μm、粒子径分布指数3.2、真球度65、ガラス転移温度167℃:TR55微粉砕品(1)と記すこともある)
・粒子7(4,4’-ジアミノ-3,3’ジメチルジシクロヘキシルメタンを必須構成成分として含有するポリアミド(エムザベルケ(株)社製“グリルアミド”(登録商標) TR55をハンマーミルにて凍結粉砕・分級して作製した、平均粒子径55μm、粒子径分布指数2.4、真球度76、ガラス転移温度167℃:TR55微粉砕品(2)と記すこともある)
 2.炭素繊維織物
 実施例で用いた強化繊維織物は以下のように作製した。炭素繊維束“トレカ”(登録商標)T800S-24K-10E(東レ(株)製、PAN系炭素繊維、フィラメント数:24,000本、繊度:1,033tex、引張弾性率:294GPa)を経糸として1.8本/cmの密度で引き揃え、これに平行、かつ交互に配列された補助経糸としてガラス繊維束ECDE-75-1/0-1.0Z(日東紡(株)製、フィラメント数:800本、繊度:67.5tex)を1.8本/cmの密度で引き揃えて一方向性シート状強化繊維束群を形成した。緯糸としてガラス繊維束E-glassヤーンECE-225-1/0-1.0Z(日東紡(株)製、フィラメント数:200本、繊度:22.5tex)を用い、前記一方向性シート状強化繊維束群に直交する方向に3本/cmの密度で配列し、織機を用いて該補助経糸と該緯糸が互いに交差するように織り込み、実質的に炭素繊維が一方向に配列されクリンプがない、一方向性ノンクリンプ織物を作製した。なお、得られた強化繊維織物の炭素繊維束繊度に対する緯糸の繊度割合は2.2%、補助経糸の繊度割合は6.5%であり、炭素繊維の目付は192g/m、強化繊維織物の充填率は0.45であった。
 3.マトリックス樹脂
 実施例で用いたマトリックス樹脂は、二液型のアミン硬化型エポキシ樹脂であり、以下のように調製した。
 モノマー成分である“アラルダイト”(登録商標)MY721(ハンツマン・ジャパン(株)製、成分:N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン)50部およびGAN(日本化薬(株)製、成分:N,N-ジグリシジルアニリン)50部を70℃の温度下で混合し、主剤とした。
 主剤とは別に、“jERキュア”(登録商標)W(三菱化学(株)製、成分:ジエチルトルエンジアミン)29.3部、3,3’-DAS(小西化学工業(株)製、成分:3,3’-ジアミノジフェニルスルホン)12.6部を130℃の温度下で攪拌しながら固形物が存在しない状態まで混合して硬化剤とした。
 4.スペーサー粒子の平均粒子径、真球度、粒子径分布指数の測定
 スペーサー粒子の個々の粒子径は、走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、粒子を1000倍で観察し、径が100nmを超えるものを測長した。尚、粒子の投影形状が真円でない場合は長径をその粒子径として測定した。
 平均粒子径は、写真から任意に選択した100個の粒子径を測長し、その算術平均を求めることにより算出した。ここでいう平均粒子径は、数平均粒子径を指す。
 真球度は、写真から任意に選択した30個の粒子について短径と長径を測定し、m=30として下記式(1)に従い、算出した。
Figure JPOXMLDOC01-appb-M000003
 粒子径分布を示す粒子径分布指数は、上記で得られた個々の粒子径の値を用い、n=100として下記式(2)~(4)に基づき算出した。
Figure JPOXMLDOC01-appb-M000004
 5.バインダー樹脂組成物の調製
 表1に記載した原料(エポキシ樹脂、エポキシ樹脂に可溶な熱可塑性樹脂、エポキシ樹脂に不溶なポリマー粒子)と配合比で180℃の温度条件にて小型二軸押出機(S1KRCニーダー、(株)栗本鐵工所)を使用して混練を行ってバインダー樹脂組成物を調製した。
 6.バインダー粒子の作製
 調製したバインダー樹脂組成物をハンマーミル(PULVERIZER、ホソカワミクロン(株)製)にて、孔サイズ1mmのスクリーンを使用し、液体窒素を用いて凍結粉砕してバインダー粒子を得た。かかる粒子を目開きサイズ150μmと75μmの篩いに通し、目開きサイズ75μmの篩いに残ったバインダー粒子を評価に使用した。
 7.バインダー粒子の平均粒子径測定
 レーザー解析・散乱式粒子径・粒度分布測定装置MT3300II(日機装(株)製)を用い、取り込み回数500回で測定したメディアン径をバインダー粒子の平均粒子径とした。
 8.スペーサー粒子、バインダー樹脂に可溶な熱可塑性樹脂、バインダー粒子のガラス転移温度測定
 スペーサー粒子、バインダー樹脂に可溶な熱可塑性樹脂またはバインダー粒子を試料として、JIS K 7121:1987に従って、示差走査熱量計(DSC)を用いて中間点ガラス転移温度を測定した。測定装置にはPyris1 DSC(Perkin Elmer製)を使用した。アルミニウム製サンプルパンに5~10mgの試料を採取し、窒素雰囲気下で-30~300℃の温度範囲、40℃/minの昇温速度で測定を行い、DSC曲線が吸熱側に階段状変化を示す部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をガラス転移温度とした。
 9.バインダー樹脂組成物付き強化繊維基材の作製
 得られたバインダー粒子を、前記の炭素繊維織物の片面に25g/mの目付で散布した。その後、遠赤外線ヒーターを使用して加熱し、バインダー粒子を融着させ、片側表面にバインダー粒子が付与されたバインダー樹脂組成物付き強化繊維基材を得た。
 10.プリフォームの作製 
 得られたバインダー樹脂組成物付き強化繊維基材を所定の大きさにカットした後、4層のバインダー樹脂組成物付き強化繊維基材を、炭素繊維の長手方向が、[+45°/0°/-45°/90°]と積層し合計4層の積層体を得た。次に該4層の積層体2つを90度層同士が向かい合うように対称に積層し、合計8層の積層体を得た。得られた積層体をアルミニウム製の平面状成形型の面上に配置し、その上をバッグ材(ポリアミドフィルム)とシーラントにて密閉した。成形型とバッグ材により形成されたキャビティを真空にした後、成形型を熱風乾燥機に移し、室温から90℃の温度まで、1分間に3℃ずつ昇温した後、90℃の温度下で2時間加熱した。その後、キャビティの真空状態を保ちながら大気中にて60℃以下に冷却した後、キャビティを大気解放してプリフォームを得た。
 11.プリフォーム層間にあるバインダー樹脂内のスペーサー粒子占有率測定
 作製したプリフォームを、バインダー樹脂が溶解しない条件でエポキシ樹脂に包埋し、中央の層間を挟む2層(90°層)に含まれる炭素繊維に交差する方向から研磨した後、その断面を光学顕微鏡で400倍に拡大し写真撮影した。写真上の無作為に選んだ繊維層間領域について、繊維層領域と繊維層間領域の境界ラインを引き、その境界ライン間に存在するバインダー樹脂組成物全体に対するスペーサー粒子の面積の割合をスペーサー粒子占有率測定とした。同様の操作を、任意の100箇所の繊維層間領域について実施し、その平均値を採用した。
 12.プリフォームの層間厚み測定
 作製したプリフォームを中央の90°層に含まれる炭素繊維に直交する方向から切断し、その断面を研磨後、光学顕微鏡で400倍に拡大し写真撮影した。写真上の無作為に選んだ繊維層間領域のバインダー樹脂組成物の存在する部分について、繊維層領域と繊維層間領域の境界ラインを引き、その境界ライン間の距離を層間厚みとした。同様の操作を、任意の100箇所の繊維層間領域について実施し、その平均値を採用した。
 13.繊維強化複合材料の作製 
 得られたプリフォームをアルミニウム製の平面状成形型の面上に配置し、その上にピールプライとして離型処理を施したポリエステル布帛、樹脂拡散媒体としてポリプロピレン製ニットを順に配置し、その上をバッグ材とシーラントを用いて、樹脂注入口と減圧吸引口を設けた以外は密閉してキャビティを形成した。そして、減圧吸引口から真空ポンプによってキャビティ内を吸引して、真空度を-90kPa以下になるよう調整した後、成形型およびプリフォームを70℃に温度調節した。温度調整には熱風乾燥機を使用した。
 別途、前記のマトリックス樹脂の主剤と硬化剤を、主剤100部に対して前記硬化剤41.9部の割合で混合して、マトリックス樹脂を作成した。マトリックス樹脂を70℃の温度下で30分間予備加熱を行い、真空脱気処理を行った。
 予備加熱および脱気処理を行ったマトリックス樹脂を成形型の樹脂注入口にセットし、真空にしたキャビティ内に、キャビティ内の圧力と大気圧との差圧を利用することによってマトリックス樹脂を注入し、プリフォームに含浸させた。マトリックス樹脂が減圧吸引口に到達したら樹脂注入口を閉じ、減圧吸引口から吸引を継続したままさらに1時間保持した後、減圧吸引口を閉じた。
 次いで、昇温し降下を行った。条件については以下の2条件を適用した。
成形条件1:1分間に1.5℃ずつ140℃の温度まで昇温した後、140℃の温度下で2時間硬化した。型から取り出した後に、熱風乾燥機中で1分間に1.5℃ずつ、180℃の温度まで昇温した後、180℃の温度下で2時間硬化して繊維強化複合材料を得た。
成形条件2:1分間に1.5℃ずつ180℃の温度まで昇温した後、180℃の温度下で2時間硬化して繊維強化複合材料を得た。
得られた繊維強化複合材料の繊維体積含有率Vfは、いずれの条件においても55%~60%の間となった。
 14.繊維強化複合材料の層間厚み測定
 作製した繊維強化複合材料を中央の90°層に含まれる炭素繊維に直交する方向から切断し、その断面を研磨後、光学顕微鏡で400倍に拡大し写真撮影した。写真上の無作為に選んだ繊維層間領域について、繊維層領域と繊維層間領域の境界ラインを引き、その境界ライン間の距離を層間厚みとした。同様の操作を、任意の100箇所の繊維層間領域について実施し、その平均値を採用した。 
 また、100箇所で計測した層間厚みの内、厚みが10μm未満であり、実質的に層間が確保されない領域の割合を計測した。
 15.繊維強化複合材料のボイド評価
 得られた繊維強化複合材料の断面を観察し、ボイド量が1%未満と、ボイドが実質的に存在しないものをgood、繊維強化複合材料の外観に樹脂未含浸部分は認められないが、繊維強化複合材料中のボイド量が1%以上3%未満であるものをfair、繊維強化複合材料の外観に樹脂未含浸部分が認められる、または繊維強化複合材料中のボイド量が3%以上であるものをbadとした。
 なお、繊維強化複合材料中のボイド量は、繊維強化複合材料の強化繊維層に直交する断面を平滑に研磨し、その断面を落斜型光学顕微鏡を使用して200倍の倍率で観察し、観察視野の面積に対するボイドの面積の割合(%)を算出することで得られる値である。
 16.繊維強化複合材料の衝撃後圧縮強度(CAI)の測定
 得られた繊維強化複合材料から、試験片の長手方向を炭素繊維配向角0度として縦150mm、横100mmの矩形試験片を切り出し、その矩形試験片の中心に、JIS K 7089:1996に従って、試験片の厚さ1mmあたり6.76Jの落錘衝撃を与えた後、JIS K 7089:1996に従い衝撃付与後の残存圧縮強度(CAI)を測定した。サンプル数は5とし、平均値を求めた。
 〈実施例1~7〉
 表1の配合比に従って、前記したようにして調製したバインダー粒子を用いた基材で、前記のようにして繊維強化複合材料を作製した。作製したそれぞれの繊維強化複合材料について、層間厚み測定を行った。
 実施例1では、表1に示したように、液状ビスフェノール型エポキシ樹脂25質量部、アラルキル型エポキシ樹脂15部、ポリエーテルスルホン60質量部が相溶したバインダー樹脂に、スペーサー粒子として粒子1(TR-55)が40質量部分散した平均粒子径110μmのバインダー粒子を使用して、繊維強化複合材料を作製した。このバインダー粒子を使用して作製した繊維強化複合材料は、成形条件を変更しても一様に十分な層間厚みが確保され、CAI強度にも優れていた。
 実施例2~7では、スペーサー粒子としてそれぞれ粒子2(1002D)、粒子3(CX7323)、粒子4(SP-500)、粒子5(4000TF)、粒子6(TR-55微粉砕品(1))、粒子7(TR-55微粉砕品(2))を使用した以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。いずれのバインダー粒子を使用して作製した繊維強化複合材料においても、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例8、9〉
 実施例8、9では、エポキシ樹脂に可溶な熱可塑性樹脂としてそれぞれポリエーテルイミド、フェノキシ樹脂を使用した以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。いずれのバインダー粒子を使用して作製した繊維強化複合材料においても、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例10〉
 実施例10は、バインダー樹脂の組成を固形ビスフェノール型エポキシ樹脂85質量部、アラルキル型エポキシ樹脂15部とし、エポキシ樹脂に可溶な熱可塑性樹脂を含まないこと以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。このバインダー粒子を使用して作製した繊維強化複合材料は、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例11〉
 実施例11は、バインダー樹脂成分としてアラルキル型エポキシ樹脂をクレゾールノボラック型エポキシ樹脂に置き換えた以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。このバインダー粒子を使用して作製した繊維強化複合材料は、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例12〉
 実施例12は、バインダー樹脂成分としてエポキシ樹脂を全て液状ビスフェノール型エポキシ樹脂に置き換えた以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。このバインダー粒子を使用して作製した繊維強化複合材料は、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例13〉
 実施例13は、スペーサー粒子の配合量を10質量部とした以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。このバインダー粒子を使用して作製した繊維強化複合材料は、層間厚みがやや薄くなるものの成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例14、15〉
 実施例11、12は、実施例1と同様の組成で作製したバインダー粒子の平均粒子径を30μm、300μmとしたものを使用した以外は、実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。これらのバインダー粒子を使用して作製した繊維強化複合材料は、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈実施例16〉
 実施例16では、スペーサー粒子として粒子1(TR-55)と粒子4(SP-500)をそれぞれ30質量部、10質量部を併せて使用した以外は実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。このバインダー粒子を使用して作製した繊維強化複合材料では、成形条件1と2とを比較した時に層間厚みに大きな差はなく、CAIも同等であった。
 〈比較例1〉
 比較例1はスペーサー粒子を含まない以外は、実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。バインダー粒子中にスペーサー粒子を含まないため、より高温での成形を行った成形条件2を適用したものは成形条件1を適用したものに比較して、層間厚みが薄く、CAI強度が大幅に低いものであった。
 〈比較例2〉
 比較例2では、スペーサー粒子の配合量を3質量部とした以外は、実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。バインダー粒子中のスペーサー粒子が少ないため、より高温での成形を行った成形条件2を適用したものは成形条件1を適用したものに比較して、層間厚みが薄く、CAI強度が大幅に低いものであった。
 〈比較例3〉
 比較例3では、スペーサー粒子の配合量を75質量部とした以外は、実施例1と同様にして、バインダー粒子および繊維強化複合材料を作製した。バインダー粒子中のスペーサー粒子が多すぎるため、マトリックス樹脂の含浸性が低下し、CAI強度が大幅に低いものであった。
 〈比較例4〉
 比較例4はバインダー樹脂であるエポキシ樹脂を含まず、スペーサー粒子のみを使用して、実施例1と同様の条件でプリフォームを得ようとしたが、プリフォーム層間が接着せず、プリフォームおよび繊維強化複合材料の作製が不可能であった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 

Claims (17)

  1. 複数の強化繊維層の層間がバインダー樹脂で連結され、かかるバインダー樹脂内に、バインダー樹脂に不溶なスペーサー粒子が存在するプリフォームであり、強化繊維層の層間に存在するバインダー樹脂内におけるスペーサー粒子の占有率が10%~80%であるプリフォーム。
  2. スペーサー粒子の真球度が75~100の範囲にあり、粒子径分布指数が1~5の範囲にある、請求項1に記載のプリフォーム。
  3. スペーサー粒子の平均粒子径が1~50μmである、請求項1または2に記載のプリフォーム。
  4. 強化繊維層の層間におけるスペーサー粒子の含有量が1層間当たり2~9g/mである、請求項1~3のいずれかに記載のプリフォーム。
  5. スペーサー粒子は、ガラス転移温度が80℃以上のポリマー粒子である、請求項1~4のいずれかに記載のプリフォーム。
  6. スペーサー粒子が、ポリアミド、ポリアミドイミド、ポリイミド、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルエーテルケトンおよびそれらの共重合体からなる群より選ばれる少なくとも1つの樹脂からなる、請求項1~5のいずれかに記載のプリフォーム。
  7. バインダー樹脂が熱硬化性樹脂を含む、請求項1~6のいずれかに記載のプリフォーム。
  8. 熱硬化性樹脂がエポキシ樹脂である、請求項7に記載のプリフォーム。
  9. エポキシ樹脂として固形エポキシ樹脂を含む、請求項8に記載のプリフォーム。
  10. エポキシ樹脂としてビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂およびアラルキル型エポキシ樹脂からなる群より選ばれる少なくとも1つのエポキシ樹脂を含む、請求項8または9に記載のプリフォーム。
  11. バインダー樹脂が、バインダー樹脂に含まれる熱硬化性樹脂に可溶な熱可塑性樹脂を含む、請求項7~10のいずれかに記載のプリフォーム。
  12. 前記熱可塑性樹脂が、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリビニルアセタール、ポリメチルメタクリレートおよびフェノキシ樹脂からなる群より選ばれる少なくとも1つである、請求項11に記載のプリフォーム。
  13. 前記熱可塑性樹脂は、ガラス転移温度が150℃以上である、請求項11または12に記載のプリフォーム。
  14. 請求項1~13のいずれかに記載のプリフォームに、マトリックス樹脂を含浸、硬化させてなる繊維強化複合材料。
  15. 層間厚みがスペーサー粒子の平均粒子径の1~3倍である、請求項14に記載の繊維強化複合材料。
  16. 層間厚みが1~150μmである、請求項14または15に記載の繊維強化複合材料。
  17. 請求項1~13のいずれかに記載のプリフォームにマトリックス樹脂を含浸、硬化させる繊維強化複合材料の製造方法であって、マトリックス樹脂の含浸、硬化の過程で、バインダー樹脂がマトリックス樹脂に溶解する一方、スペーサー粒子はマトリックス樹脂に溶解せず、層間に配置され、かかる層間厚みがスペーサー粒子の平均粒子径の1~3倍となる繊維強化複合材料の製造方法。
     
PCT/JP2016/053032 2015-02-05 2016-02-02 プリフォーム、繊維強化複合材料および繊維強化複合材料の製造方法 WO2016125779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/548,268 US10792869B2 (en) 2015-02-05 2016-02-02 Preform, fiber-reinforced composite material, and method of manufacturing fiber-reinforced composite material
EP16746610.1A EP3255083B1 (en) 2015-02-05 2016-02-02 Preform, fiber-reinforced composite material, and method for manufacturing fiber-reinforced composite material
JP2016507312A JP6436160B2 (ja) 2015-02-05 2016-02-02 プリフォームおよび繊維強化複合材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-021275 2015-02-05
JP2015021275 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125779A1 true WO2016125779A1 (ja) 2016-08-11

Family

ID=56564120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053032 WO2016125779A1 (ja) 2015-02-05 2016-02-02 プリフォーム、繊維強化複合材料および繊維強化複合材料の製造方法

Country Status (4)

Country Link
US (1) US10792869B2 (ja)
EP (1) EP3255083B1 (ja)
JP (1) JP6436160B2 (ja)
WO (1) WO2016125779A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104445A1 (ja) * 2015-12-17 2017-06-22 東レ株式会社 プリフォーム用バインダー樹脂組成物、バインダー粒子、強化繊維基材、プリフォームおよび繊維強化複合材料
JP2018066000A (ja) * 2016-10-19 2018-04-26 東レ株式会社 強化繊維基材および繊維強化樹脂
TWI754045B (zh) * 2017-05-10 2022-02-01 日商東麗股份有限公司 纖維強化複合材料的製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667126B (zh) * 2018-05-30 2019-08-01 永虹先進材料股份有限公司 Long fiber sheet molding compound and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541629A (ja) * 2010-11-09 2013-11-14 サイテク・テクノロジー・コーポレーシヨン 二次強化用適合性キャリヤー
JP5655976B1 (ja) * 2013-01-28 2015-01-21 東レ株式会社 プリプレグ、繊維強化複合材料および熱可塑性樹脂粒子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268223A (en) * 1991-05-31 1993-12-07 Amoco Corporation Toughened fiber-reinforced composites
GB9709166D0 (en) 1997-05-06 1997-06-25 Cytec Ind Inc Preforms for moulding process and resins therefor
JP4547916B2 (ja) 2004-01-09 2010-09-22 東レ株式会社 プリフォーム作製用バインダー組成物、強化繊維基材、プリフォームおよび繊維強化複合材料の製造方法
JP4969363B2 (ja) 2006-08-07 2012-07-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
GB2473226A (en) * 2009-09-04 2011-03-09 Hexcel Composites Ltd Composite materials
CN101589127B (zh) 2006-11-21 2012-10-10 汉高公司 用于预先加工的增韧粘合剂组合物
EP2479217B1 (en) 2009-09-16 2019-08-28 Toray Industries, Inc. Binder composition, reinforcing-fiber base material, preform, fiber-reinforced composite material, and manufacturing method therefor
WO2012102201A1 (ja) * 2011-01-28 2012-08-02 東レ株式会社 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
RU2014107466A (ru) * 2011-07-27 2015-09-10 Торэй Индастриз, Инк. Препрег и армированный волокном композитный материал
GB201206885D0 (en) * 2012-04-19 2012-06-06 Cytec Tech Corp Composite materials
US10053575B2 (en) 2012-07-05 2018-08-21 Toray Industries, Inc. Binder resin composition for preform, binder particle, preform, and fiber-reinforced composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541629A (ja) * 2010-11-09 2013-11-14 サイテク・テクノロジー・コーポレーシヨン 二次強化用適合性キャリヤー
JP5655976B1 (ja) * 2013-01-28 2015-01-21 東レ株式会社 プリプレグ、繊維強化複合材料および熱可塑性樹脂粒子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255083A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104445A1 (ja) * 2015-12-17 2017-06-22 東レ株式会社 プリフォーム用バインダー樹脂組成物、バインダー粒子、強化繊維基材、プリフォームおよび繊維強化複合材料
JP2018066000A (ja) * 2016-10-19 2018-04-26 東レ株式会社 強化繊維基材および繊維強化樹脂
TWI754045B (zh) * 2017-05-10 2022-02-01 日商東麗股份有限公司 纖維強化複合材料的製造方法

Also Published As

Publication number Publication date
JP6436160B2 (ja) 2018-12-12
EP3255083B1 (en) 2021-09-15
US20180264754A1 (en) 2018-09-20
EP3255083A4 (en) 2018-10-03
EP3255083A1 (en) 2017-12-13
US10792869B2 (en) 2020-10-06
JPWO2016125779A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP5532549B2 (ja) プリプレグおよび繊維強化複合材料の成形方法
EP2691199B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
KR102417660B1 (ko) 절입 프리프레그 및 절입 프리프레그 시트
JP5672006B2 (ja) バインダー組成物、強化繊維基材、プリフォームおよび繊維強化複合材料とその製造方法
JP7320945B2 (ja) 複合材料の中間層としてのハイブリッドベール
JP6436160B2 (ja) プリフォームおよび繊維強化複合材料の製造方法
US11192985B2 (en) Composite material and resin composition containing metastable particles
JPH045688B2 (ja)
JP5723505B2 (ja) 樹脂組成物、硬化物、プリプレグ、および繊維強化複合材料
EP3360919A1 (en) Fiber-reinforced resin, process for producing same, and molded article
JP2016169381A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
CN111989359B (zh) 预浸料坯、层合体、纤维增强复合材料及纤维增强复合材料的制造方法
JP2008050587A (ja) プリプレグおよび複合材料
JP2014111772A (ja) 繊維強化複合材料の成形方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016507312

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016746610

Country of ref document: EP