WO2016123812A1 - 具有六自由度检测的激光外差干涉直线度测量装置及方法 - Google Patents

具有六自由度检测的激光外差干涉直线度测量装置及方法 Download PDF

Info

Publication number
WO2016123812A1
WO2016123812A1 PCT/CN2015/072460 CN2015072460W WO2016123812A1 WO 2016123812 A1 WO2016123812 A1 WO 2016123812A1 CN 2015072460 W CN2015072460 W CN 2015072460W WO 2016123812 A1 WO2016123812 A1 WO 2016123812A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
reflected
prism
error
incident
Prior art date
Application number
PCT/CN2015/072460
Other languages
English (en)
French (fr)
Inventor
陈本永
严利平
张恩政
徐斌
Original Assignee
浙江理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江理工大学 filed Critical 浙江理工大学
Priority to US15/112,193 priority Critical patent/US9863753B2/en
Priority to PCT/CN2015/072460 priority patent/WO2016123812A1/zh
Publication of WO2016123812A1 publication Critical patent/WO2016123812A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02021Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different faces of object, e.g. opposite faces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02061Reduction or prevention of effects of tilts or misalignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the invention relates to a laser heterodyne interference straightness measuring device and method, in particular to a laser heterodyne interference straightness measuring device and method with six degrees of freedom detection.
  • the laser heterodyne straightness interferometer is mainly composed of a dual-frequency laser, a Wollaston prism and a V-shaped mirror. Generally, only one degree of freedom parameter detection of the straightness error of the measured object is detected.
  • the invention patents (200910100065.2 and 200910100068.6) of the research group use the optical path structure of the depolarization beam splitter, the Wollaston prism, the V-shaped mirror and the polarization beam splitter to realize the straightness error of the object to be measured and its position. Detection of degrees of freedom parameters.
  • the measuring mirror of the laser heterodyne straightness interferometer is mounted on the moving platform of the measured object.
  • the platform has six degrees of freedom error parameters during the motion, including three linear parameters (vertical Straightness error, horizontal straightness error and straightness error position) and three rotation parameters (yaw angle error, pitch angle error and roll angle error), three of which will seriously affect the straightness error and its position Measurement results result in reduced measurement accuracy. Therefore, the current laser heterodyne interference straightness measuring device and method have no technical problems to eliminate the influence of these rotational errors on the straightness measurement result, and at the same time, the simultaneous measurement of the six degrees of freedom error parameters of the measured object is not realized.
  • the principle of laser heterodyne drying involves laser spot detection, which not only realizes the simultaneous detection of multiple degrees of freedom motion parameters of the object under test, but also realizes the error compensation for straightness and its position detection, and solves the laser heterodyne interference line.
  • the technical problem of the influence of the rotation error on the measurement result in the degree measurement improves the measurement accuracy of the straightness and its position detection, and simultaneously realizes the simultaneous measurement of the six degrees of freedom error parameters of the measured object.
  • a laser heterodyne interference straightness measuring device with six degrees of freedom detection is provided.
  • laser heterodyne interference straightness and its position detection part include dual-frequency laser with beat signal output, depolarization beam splitter, Wollaston prism, a reflective prism, a first polarization beam splitter, a first analyzer, a second analyzer, a first photodetector and a second photodetector;
  • the error detection and compensation portion comprises a first common beam splitter and a second common beam splitter , plane mirror, convex lens, position sensitive detector, third common beam splitter, second polarizing beam splitter, first four quadrant detector and second four quadrant detector; plane mirror and reflecting prism composed of measuring mirror through measuring mirror
  • the bracket is mounted on the moving platform of the object to be tested;
  • the beat frequency signal outputted from the beat signal output of the dual-frequency laser is used as a reference signal, and the output beam of the dual-frequency laser is transmitted through the first common beam splitter and then incident on the depolarization beam splitter, and is divided into the transmission and reflection by the depolarization beam splitter.
  • transmission depolarized beam splitter PBS reflects the beam and the beam extinction, eliminating reflected light beam is incident on the polarization beam splitter a first polarization beam splitter into transmitted and reflected respectively by the transmitted light beam and the frequency of the frequencies f 1 to f 2 of the reflected light beam,
  • the transmitted beam of the depolarizing beam splitter is incident on the Wollaston prism and split into light beams of frequency f 1 and frequency f 2 ; the two beams after the Wollaston prism are reflected by the reflecting prism are superimposed
  • the Doppler shift caused by the motion of the object is measured.
  • the frequencies of the two beams after reflection are changed to f 1 ⁇ f 1 and f 2 ⁇ f 2 , respectively, and the two reflected beams are incident on the Wollaston prism to form a bundle.
  • the synthesized outgoing light of the Wollaston prism is transmitted through the third ordinary beam splitter and then incident on the first polarizing beam splitter. After being transmitted and reflected by the first polarizing beam splitter, it is divided into a transmitted beam and a reflected beam: the combined outgoing light is incident on the first A polarizing beam splitter output beam having a frequency f 1 ⁇ f 1 and a reflected beam of the depolarizing beam splitter incident on the first polarizing beam splitter output beam f 2 are combined to form a beam directed to the first analyzer, An analyzer is incident on the first photodetector to generate a first measurement signal; the synthesized incident light is incident on the first polarization beam splitter, and the reflected beam of the output frequency of f 2 ⁇ f 2 is incident on the reflected beam of the depolarizing beam splitter The first polarizing beam splitter outputs a transmitted beam of frequency f 1 to form a beam that is directed toward the second analyzer, and is incident by the second analyzer to
  • the output beam of the dual-frequency laser is reflected by the first ordinary beam splitter and reflects a reflected beam.
  • the reflected beam is reflected by the second ordinary beam splitter and then incident on the plane mirror.
  • the reflected beam of the plane mirror is sequentially passed through the second common beam.
  • the beam splitter transmits and the convex lens focuses to form a spot, which is projected to the position sensitive detector for reception;
  • the synthesized exiting light of the Wollaston prism is reflected by the third ordinary spectroscope and also reflects a reflected beam which is incident on the second polarizing beam splitter after being transmitted and reflected, and is divided into a transmitted beam and a reflected beam, and the transmitted beam is incident.
  • the reflected beam is incident on the first four quadrant detector.
  • the reflective prism comprises two right-angle prisms respectively located at upper and lower positions, and the two beams split by the Wollaston prism respectively respectively emit two right-angle prisms in an upward and a downward position, and the second polarization beam splitter will
  • the light beam from the right-angle prism on the reflective prism is reflected to the first four-quadrant detector, and the light beam from the right-angle prism under the reflective prism is transmitted to the second four-quadrant detector.
  • the measuring device comprises a data acquisition module and a computer, wherein the dual-frequency laser, the first photodetector and the second photodetector are connected to the computer via the data acquisition module, and the output of the first photodetector and the second photodetector The two measurement signals are transmitted to the computer along with the reference signal of the dual-frequency laser via the data acquisition module.
  • the planar mirror is fixed directly above the reflective prism.
  • the dual-frequency laser output beam is orthogonal linearly polarized light.
  • a measuring mirror composed of a plane mirror and a reflecting prism, by measuring a moving platform on which the mirror bracket is mounted, selecting a dual-frequency laser capable of outputting orthogonal linearly polarized light and having a beat signal output end, the output thereof
  • the linearly polarized light frequencies are f 1 and f 2 , respectively, and the beam output by the dual-frequency laser is subjected to a laser heterodyne interference optical path and an error detecting and compensating optical path;
  • the beat frequency signal outputted from the beat signal output of the dual-frequency laser is used as a reference signal, and the output beam of the dual-frequency laser is transmitted through the first common beam splitter and then incident on the depolarization beam splitter, and is divided into the transmission and reflection by the depolarization beam splitter.
  • transmission depolarized beam splitter PBS reflects the beam and the beam extinction, eliminating reflected light beam is incident on the polarization beam splitter a first polarization beam splitter into transmitted and reflected respectively by the transmitted light beam and the frequency of the frequencies f 1 to f 2 of the reflected light beam,
  • the transmitted beam of the depolarizing beam splitter is incident on the Wollaston prism and split into light beams of frequency f 1 and frequency f 2 ; the two beams after the Wollaston prism are reflected by the reflecting prism are superimposed
  • the Doppler shift caused by the motion of the object is measured.
  • the frequencies of the two beams after reflection are changed to f 1 ⁇ f 1 and f 2 ⁇ f 2 , respectively, and the two reflected beams are incident on the Wollaston prism to form a bundle.
  • Light exiting; the synthesized outgoing light of the Wollaston prism is transmitted through the third ordinary beam splitter and then incident on the first polarizing beam splitter. After being transmitted and reflected by the first polarizing beam splitter, it is divided into a transmitted beam and a counter.
  • Beams Synthesis of emitted light incident to the first polarization beam splitter output frequency f 1 ⁇ ⁇ f extinction of the transmitted beam and the reflected beam incident on the polarization beam splitter to an output frequency of a first polarization beam splitter for reflecting a beam combiner toward a bunch of f 2
  • the first analyzer is incident on the first photodetector and is received by the first photodetector to generate a first measurement signal;
  • the synthesized outgoing light is incident on the first polarization beam splitter and the output beam is f 2 ⁇ f 2
  • the reflected beam of the depolarizing beam splitter is incident on the first polarizing beam splitter and the transmitted beam of the output frequency f 1 is combined to form a beam directed to the second analyzer, and is incident on the second photodetector through the second analyzer to generate a second Road measurement signal;
  • the output beam of the dual-frequency laser is reflected by the first ordinary beam splitter and also reflects a reflected beam.
  • the reflected beam is incident on the second ordinary beam splitter, and after being reflected, it is incident on the plane mirror and reflected again.
  • the beam reflected by the mirror is sequentially transmitted by the second ordinary beam splitter and focused by the convex lens to form a spot, which is projected to the position sensitive detector;
  • the synthesized exiting light of the Wollaston prism is reflected by the third ordinary beam splitter and also reflects a reflected beam, which is incident on the second polarizing beam splitter, and the second polarizing beam splitter will be from the reflecting prism.
  • the beam of the upper right-angle prism is reflected to the first four-quadrant detector to form a spot, and the light beam from the lower right-angle prism of the reflective prism is transmitted to the second four-quadrant detector to form a spot;
  • the position sensitive detector and the two four-quadrant detectors are adjusted so that the laser spot can be incident on the respective centers; in the measurement, the moving platform of the measured object moves from the initial position to the other end, and the detection signals of the respective detectors After processing, various degrees of freedom parameters of the object to be tested are obtained;
  • is half of the beam splitting angle of the Wollaston prism
  • L 1 is the first path displacement measurement value
  • L 2 is the second path displacement measurement value
  • the error detection and compensation optical path uses the yaw angle and elevation angle detection methods, the roll angle and the horizontal straightness detection method to simultaneously measure the four freedoms of the yaw angle, the elevation angle, the roll angle and the horizontal straightness of the measured object.
  • Degree, and the error compensation method is used to compensate the error of the vertical straightness of the laser heterodyne interference optical path measurement and its position, so as to complete the six-degree-of-freedom detection of the measured object and realize the measurement of the heterodyne interference straightness.
  • the first path displacement measurement value L 1 and the second path displacement measurement value L 2 are respectively calculated in the following manner:
  • ⁇ f 1 is the Doppler shift of the beam of frequency f 1 due to the motion of the object under test
  • ⁇ 1 is the wavelength of the beam of frequency f 1
  • f 1 is the frequency of the transmitted beam of the output of the first polarization beam splitter
  • t is time
  • ⁇ f 2 is the Doppler shift of the beam of frequency f 2 due to the motion of the object under test
  • ⁇ 2 is the wavelength of the beam of frequency f 2
  • f 2 is the frequency of the reflected beam of the output of the first polarization beam splitter.
  • the method for detecting the yaw angle and the pitch angle in the step 4) specifically includes: adjusting the position of the position sensitive detector before the measurement starts, so that the spot on the position sensitive detector is located at the center thereof; during the measurement, according to the position sensitive detection
  • the spot position offset detected by the device is calculated by the following formula to obtain the yaw angle error and the pitch angle error during the motion of the measured object:
  • ⁇ x PSD is the spot position offset in the horizontal direction of the position sensitive detector
  • ⁇ y PSD is the spot position offset in the vertical direction of the position sensitive detector
  • f is the focal length of the convex lens
  • the method for detecting the roll angle and the horizontal straightness in the step 4) specifically includes: adjusting the positions of the two four-quadrant detectors before the measurement starts, so that the spots on the two four-quadrant detectors are respectively located at the respective centers; According to the mapping relationship between the spot position offset detected by the two four-quadrant detectors and the degrees of freedom in the motion of the object under test, the following formula is used to calculate the roll angle error and horizontal straightness error during the motion of the measured object. :
  • ⁇ x QD1 is the spot position offset in the horizontal direction of the first four-quadrant detector
  • ⁇ x QD2 is the spot position offset in the horizontal direction of the second four-quadrant detector
  • B is the measuring mirror holder and the upper and lower right-angle prisms.
  • L is the length of the hypotenuse of the right-angle prism
  • H is the distance between the intersection of the right-angled prism of the upper and lower right-angle prisms and the moving platform
  • n is the refractive index of the material of the right-angle prism
  • s 0 is the measurement before the start of the measurement.
  • the moving platform of the measuring object measures the distance between the mirror bracket and the Wollaston prism at the initial position, ⁇ is the yaw angle error, ⁇ is the roll angle error, s is the straightness error position, and ⁇ is the Wollaston prism. Half of the splitting angle.
  • the error compensation method in the step 4) specifically includes: during the measurement process, the rotation error of the measured object affects the measurement result of the vertical straightness error and the position thereof, and the laser heterodyne interference method is calculated by the following formula.
  • B is the distance between the measuring mirror bracket and the right angle edge of the upper and lower right-angle prism
  • L is the length of the oblique side of the right-angle prism
  • H is the distance between the intersection of the right-angled prism of the upper and lower right-angle prism and the moving platform
  • n is a right-angle prism.
  • the refractive index of the material s 0 is the distance between the mirror support and the Wollaston prism at the initial position of the moving platform of the measured object before the start of the measurement
  • is the yaw angle error
  • is the pitch angle error
  • ⁇ h is Vertical straightness error
  • s is the straightness error position.
  • the above calculation can obtain the vertical straightness error of the measured object and its position by the two measurement signals output by the two photodetectors and the reference signal output by the dual-frequency laser, and the position sensitive detector and two
  • the laser spot position signal output by the four-quadrant detector is subjected to data acquisition and computer processing to obtain the yaw angle error, the pitch angle error, the roll angle error and the horizontal straightness error of the measured object, and is processed by computer according to the error compensation method.
  • the vertical straightness error and its position accurate value affected by the rotation error of the measured object are eliminated.
  • the measurement method can realize the simultaneous detection of the six degrees of freedom error parameters of the measured object, which provides great convenience for the performance detection and calibration of the precision worktable or the guide rail;
  • the measurement method uses the error compensation method to eliminate the influence of the laser heterodyne interference straightness and the rotation error of the measured object during the position measurement process, effectively improve the measurement accuracy, and improve the laser heterodyne interference straightness and its position. Measuring method;
  • the invention is mainly applicable to the simultaneous detection of straightness, displacement and other multi-degree of freedom motion parameters of precision worktables and precision guide rails involved in technical fields such as ultra-precision machining, micro-optical electromechanical systems, integrated circuit chip manufacturing and precision instruments.
  • Figure 1 is an optical path diagram of laser heterodyne interference straightness measurement with six degrees of freedom detection.
  • Figure 2 is a schematic diagram of laser heterodyne interference straightness and its position measurement.
  • Figure 3 is a schematic diagram of the yaw angle and pitch angle measurements (take the pitch angle as an example).
  • Figure 4 is a schematic diagram of roll angle and horizontal straightness measurement.
  • Figure 5 is a schematic diagram of the influence of the rotation error of the measured object on the vertical straightness error and its position measurement (take the elevation angle as an example).
  • the optical path structure of the device of the present invention is as shown in FIG. 1 , including the laser heterodyne interference straightness and its position detecting portion and the error detecting and compensating portion.
  • the specific implementation process is as follows:
  • the dual-frequency laser 1 adopts a Heze-heavy He-Ne stabilized-frequency laser with a transverse Zeeman effect, and the orthogonal linearly polarized beams whose output frequencies are f 1 and f 2 respectively are split into two beams after the first ordinary beam splitter 2, wherein the reflected beam is split.
  • the second ordinary beam splitter 5 After being reflected by the second ordinary beam splitter 5, it is incident on a plane mirror 10 mounted on the top of a reflecting prism 9 composed of upper and lower right-angle prisms.
  • the plane mirror 10 and the reflecting prism 9 constitute a measuring mirror, which is fixed by the measuring mirror holder 12.
  • the light beam is reflected by the plane mirror 10, returned to the second ordinary beam splitter 5 and transmitted, and is concentrated by the convex lens 4 and projected onto the position sensitive detector 3; and the first common beam splitter 2
  • the transmitted beam is incident on the depolarizing beam splitter 6 and split into two beams, the reflected beam is incident on the first polarization beam splitter 7, and the transmitted beam is incident on the Wollaston prism 8; due to the Wollaston prism 8 birefringence effect, after the light beam into two beams outgoing frequencies of f 1 and f 2 and angled linearly polarized light are incident on the reflecting prism and the right-angle prism 9 in the lower right-angle prism, the two right-angle prisms via Then reflected exit point and converge to another Wollaston prism 8, and at this time due to the superposition of two frequency beams due to motion of the measured object becomes a Doppler shift f 1 ⁇ Df 1, f 2 ⁇ Df 2
  • the light beam having the frequency f 1 ⁇ Df 1 is transmitted and combined with the light beam of the frequency f 2 reflected by the depolarization beam splitter 6 and the first polarization beam splitter 7 to be directed to the first analyzer 17 and subjected to the first detection.
  • the device 17 forms a beat signal and is received by the first photodetector 18,
  • a first green channel measurement signal of the frequency f 2 ⁇ Df 2 after the light beam reflected by the beam splitter and the polarization beam splitter 6 reflects extinction and the first polarization beam transmitted frequency f 1 to 7 in conjunction with the analyzer toward the second
  • the device 19 forms a beat signal after passing through the second analyzer 19 and is received by the second photodetector 20 to generate a second measurement signal.
  • the first ordinary beam splitter 2 of the present invention is placed between the dual-frequency laser 1 and the depolarization beam splitter 6; the third ordinary beam splitter 13 is placed between the Wollaston prism 8 and the first polarization beam splitter 7.
  • the beat frequency signal with the frequency f 1 -f 2 at the tail of the dual-frequency laser 1 serves as a reference signal shared by the two measurement signals, and the three signals constitute the laser heterodyne interference straightness and the position measurement portion thereof.
  • the source of the signal; the position information of the laser spot on the position sensitive detector 3 and the two four-quadrant detectors 15 and 16 constitutes the source of the error detection and compensation portion.
  • the signals of the above two parts are sent to the data acquisition module and the computer for related processing and display, and the yaw angle error, the pitch angle error, the roll angle error, the horizontal straightness error and the error compensation after the motion of the measured object are obtained.
  • Six degrees of freedom parameters such as vertical straightness error and its position.
  • the laser heterodyne interference signal processing adopts the high-speed signal processing board of the FPGA chip EP2C20Q240 of Altera Corporation of the United States.
  • the position sensitive detector 3 adopts the PDP90A position sensitive detector of Thorlab Company of the United States, and its detection resolution is 0.675 ⁇ m.
  • the position sensitive detector signal processing adopts Thorlabs' TQD001 signal processing module.
  • the four-quadrant detectors 15 and 16 use the Spoonusb-qq of Duma, Israel, with a resolution of 0.75 ⁇ m and an accuracy of ⁇ 1 ⁇ m.
  • the four-quadrant detector signal processing uses the Manafold Box signal processing module from Duma, and the computer uses the Pro4500 from Hewlett-Packard Co. Desktop.
  • black dots and vertical short lines in the optical path indicate linearly polarized light of two different frequencies whose polarization directions are orthogonal, and black dots with triangles above and vertical short lines with triangles represent Doppler Orthogonal linearly polarized light of frequency shift information.
  • the reflecting prism 9 having the flat mirror 10 on the top is mounted on the moving platform 11 of the object to be measured by the measuring mirror holder 12, and the platform is moved to one end of the object to be measured as the initial position for measurement. And measuring the correlation constant, including the distance H between the intersection of the right-angled prism of the reflective prism 9 and the moving platform 11, the distance B between the measuring mirror bracket 12 and the right-angled prism of the reflective prism 9 and the measuring mirror bracket.
  • the distance s 0 between the 12 and the Wollaston prism 8; the position sensitive detector 3 and the two four-quadrant detectors 15 and 16 are adjusted so that the laser spot can be incident on the center of each detector;
  • the moving platform 11 of the measured object moves from the initial position to the other end with a certain step displacement, and each detector detects the relevant signal and collects the data, and sends it to the computer for processing to obtain the measured object.
  • Various degrees of freedom parameters
  • the reflecting prism 9 moves from the initial position to the current position, the moving speed v is 1 mm/s, the step displacement is 5 mm, and the Wollaston prism 8
  • the beam splitting angle is 1.5°, and the frequency changes of the measuring beams f 1 and f 2 caused by the Doppler effect are:
  • ⁇ 1 and ⁇ 2 are laser wavelengths of two frequencies, respectively, and ⁇ is half of the beam splitting angle of the Wollaston prism;
  • the frequencies of the first measurement signal and the second measurement signal are f 1 -f 2 ⁇ f 1 and f 1 -f 2 ⁇ f 2 , respectively, which are respectively deviated from the reference signal (frequency f 1 -f 2 ) After the frequency, ⁇ f 1 and ⁇ f 2 are obtained , and the corresponding first and second displacement measurements are:
  • the vertical straightness error and its position during the motion of the measured object can be obtained as follows:
  • the measurement principle of the two is the same, and the elevation angle is taken as an example for description.
  • the beam reflected by the plane mirror 10 will produce a 2 ⁇ pitch angle change, which is incident on the convex lens 4 and then focused onto the position sensitive detector 3 at the detector.
  • the displacement of the spot position generated in the vertical direction is ⁇ y PSD .
  • the pitch angle error during the motion of the measured object can be obtained as follows:
  • ⁇ x PSD is the spot position offset in the horizontal direction of the position sensitive detector
  • ⁇ y PSD is the spot position offset in the vertical direction of the position sensitive detector
  • f is the focal length of the convex lens
  • the light beam reflected by the third ordinary beam splitter 13 is incident on the second polarization beam splitter 14, and the second polarization beam splitter 14 will be from the reflection.
  • the beam of the right-angle prism on the prism 9 is reflected to the first four-quadrant detector 15, and the light beam from the right-angle prism below the reflecting prism 9 is transmitted to the second four-quadrant detector 16; the spot position detected by the two four-quadrant detectors
  • the mapping relationship between the amount of change and the degrees of freedom of the measured object during motion is obtained by using the laser tracing method and the optical geometry method to obtain the roll angle error and the horizontal straightness error during the motion of the measured object:
  • ⁇ x QD1 is the spot position shift amount in the horizontal direction of the first four-quadrant detector
  • ⁇ x QD2 is the spot position shift amount in the horizontal direction of the second four-quadrant detector
  • B is the measuring mirror bracket 12 and
  • L is the length of the oblique sides of the right-angle prisms
  • H is the distance between the intersection of the right-angled edges of the upper and lower right-angle prisms and the moving platform 11
  • n is the refractive index of the right-angle prism material, s 0 Measuring the distance between the mirror holder 12 and the Wollaston prism 8 in the initial position for measuring the moving platform 11 of the object to be measured before starting;
  • the correlation constant and the angle measurement value are substituted into the formula of the roll angle error and the horizontal straightness error to obtain the measured values of the two;
  • the rotation error of the measured object will affect the measurement of the vertical straightness error and its position.
  • the elevation angle is taken as an example to illustrate when the mobile platform 11 moves from the initial position.
  • the object under test has a pitch angle error of ⁇ , using laser tracing and optics.
  • the geometrical method obtains the compensation expressions of the vertical straightness error ⁇ h and its position s measured by the laser heterodyne interferometry:
  • the relevant constants and angle measurement values are substituted into the above two formulas, and the measured values in step (3) are compensated.
  • the vertical straightness error and its position which eliminate the influence of the rotation error of the measured object are obtained. The exact value.
  • the measurement accuracy of the results of the example is: the vertical straightness measurement result before compensation is 41.85 ⁇ m, the vertical straightness measurement result after compensation is 9.85 ⁇ m, and the standard deviation of the position measurement result of the straightness error before compensation is 3.67 ⁇ m, the straightness after compensation The standard deviation of the position measurement of the error is 0.33 ⁇ m.
  • the invention realizes the simultaneous detection of the six degrees of freedom error parameters of the measured object, and provides great convenience for the performance detection and calibration of the precision worktable or the guide rail; and eliminates the rotation error of the measured object to the vertical
  • the influence of straightness error and its position measurement result improves the measurement accuracy; and the optical path structure is simple, easy to use, and has outstanding technical effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种具有六自由度检测的激光外差干涉直线度测量装置及方法。包括激光外差干涉直线度与其位置检测部分和误差检测与补偿部分;在激光外差干涉直线度与其位置检测部分的光路结构中,加入由三个普通分光镜(2、5、13)、一个偏振分光镜(14)、一个平面反射镜(10)、一个凸透镜(4)、一个位置敏感探测器(3)和两个四象限探测器(15、16)构成的四自由度误差检测光路,利用了激光外差干涉法与激光光斑检测法相结合的方法,实现了被测对象的偏摆角、俯仰角、滚转角、水平直线度、垂直直线度以及直线度位置的六自由度同时检测,并对垂直直线度及其位置进行了误差补偿,消除了直线度测量过程中被测对象转动误差对测量结果的影响,提高了激光外差干涉直线度及其位置的测量精度。

Description

具有六自由度检测的激光外差干涉直线度测量装置及方法 技术领域
本发明涉及一种激光外差干涉直线度测量装置及方法,尤其是涉及一种具有六自由度检测的激光外差干涉直线度测量装置及方法。
背景技术
在现代精密机械及仪器的制造中,直线度作为表征工作台或导轨零件形状的主要几何要素之一,在机械精度检测中有着重要的地位和作用。目前直线度测量方法很多,根据是否采用激光作为测量载体可以分为激光类测量法和非激光类测量法,前者相较于后者能够达到更高的测量精度且测量方便,因此一直是国内外学者及企业研究的主要对象。在激光类测量法中,激光外差直线度干涉仪因具有良好的抗干扰性、高信噪比、高精度等性能,在直线度测量领域得到了比较广泛的应用。激光外差直线度干涉仪主要由双频激光器、渥拉斯顿棱镜和V型反射镜等组成,一般仅实现被测对象直线度误差这一个自由度参数的检测。本课题组的发明专利(200910100065.2和200910100068.6)采用消偏振分光镜、渥拉斯顿棱镜、V型反射镜和偏振分光镜的光路结构,实现了对被测对象的直线度误差及其位置二个自由度参数的检测。
在实际直线度测量过程中,激光外差直线度干涉仪的测量镜安装在被测对象的移动平台上,该平台在运动过程中存在六个自由度的误差参数,包括三个线性参数(垂直直线度误差、水平直线度误差和直线度误差的位置)和三个转动参数(偏摆角误差、俯仰角误差和滚转角误差),其中三个转动误差会严重影响直线度误差及其位置的测量结果,导致测量精度降低。因此,目前的激光外差干涉直线度测量装置及方法存在没有消除这些转动误差对直线度测量结果带来影响的技术问题,同时也并未实现被测对象六个自由度误差参数的同时测量。
发明内容
本发明的目的在于提供一种具有六自由度检测的激光外差干涉直线度测量装置及方法。采用激光外差干涉及激光光斑检测的原理,既实现了被测对象的多个自由度运动参数的同时检测,又实现了对直线度及其位置检测的误差补偿,解决了激光外差干涉直线度测量中转动误差对测量结果影响的技术问题,提高了直线度及其位置检测的测量精度,同时实现了被测对象的六个自由度误差参数的同时测量。
本发明解决其技术问题所采用的技术方案是:
一、一种具有六自由度检测的激光外差干涉直线度测量装置:
包括激光外差干涉直线度与其位置检测部分以及误差检测与补偿部分,激光外差干涉直线度与其位置检测部分包括具有拍频信号输出的双频激光器、消偏振分光镜、渥拉斯顿棱镜、反射棱镜、第一偏振分光镜、第一检偏器、第二检偏器、第一光电探测器和第二光电探测器;误差检测与补偿部分包括第一普通分光镜、第二普通分光镜、平面反射镜、凸透镜、位置敏感探测器、第三普通分光镜、第二偏振分光镜、第一四象限探测器和第二四象限探测器;平面反射镜和反射棱镜组成测量镜通过测量镜支架安装在被测对象的移动平台上;
双频激光器拍频信号输出端输出的拍频信号作为参考信号,双频激光器输出光束经第一普通分光镜透射后入射到消偏振分光镜上,经消偏振分光镜的透射和反射后分为消偏振分光镜透射光束和消偏振分光镜反射光束,消偏振分光镜反射光束入射到第一偏振分光镜分别经透射和反射分为频率为f1的透射光束和频率为f2的反射光束,消偏振分光镜的透射光束入射到渥拉斯顿棱镜上分光,分为频率为f1和频率为f2的光束;渥拉斯顿棱镜分光后的两束光束经反射棱镜反射后叠加有被测对象运动导致的多普勒频移,反射叠加后的两束光束的频率分别变为f1±Δf1和f2±Δf2,两束反射光束入射回到渥拉斯顿棱镜合成一束光出射;
渥拉斯顿棱镜的合成出射光经过第三普通分光镜透射后入射到第一偏振分光镜,经第一偏振分光镜的透射和反射后分为透射光束和反射光束:合成出射光入射到第一偏振分光镜输出频率为f1±Δf1的透射光束与消偏振分光镜反射光束入射到第一偏振分光镜输出频率为f2的反射光束合成一束射向第一检偏器,经第一检偏器入射到第一光电探测器接收,产生第一路测量信号;合成出射光入射到第一偏振分光镜输出频率为f2±Δf2的反射光束与消偏振分光镜反射光束入射到第一偏振分光镜输出频率为f1的透射光束合成一束射向第二检偏器,经第二检偏器入射到第二光电探测器接收,产生第二路测量信号;
双频激光器输出光束经第一普通分光镜透射外还反射有一路反射光束,该反射光束经第二普通分光镜反射后入射到平面反射镜,平面反射镜反射后的光束再依次经第二普通分光镜透射、凸透镜聚焦后形成光斑,投射到位置敏感探测器接收;
渥拉斯顿棱镜的合成出射光经第三普通分光镜透射外还反射有一路反射光束,该反射光束入射到第二偏振分光镜经透射和反射后分为透射光束和反射光束,透射光束入射到第二四象限探测器,反射光束入射到第一四象限探测器。
所述的反射棱镜包括分别位于上、下位置的两个直角棱镜,渥拉斯顿棱镜分光后的两束光束分别射向上、下位置的两个直角棱镜,所述的第二偏振分光镜将来自于反射棱镜上直角棱镜的光束反射到第一四象限探测器,将来自于反射棱镜下直角棱镜的光束透射到第二四象限探测器。
所述的测量装置包含有数据采集模块以及计算机,双频激光器、第一光电探测器和第二光电探测器均经数据采集模块与计算机连接,第一光电探测器和第二光电探测器输出的两路测量信号与双频激光器的参考信号一起经数据采集模块传输到计算机处理。
所述的平面反射镜固定在反射棱镜的正上方。
所述的双频激光器输出光束为正交线偏振光。
二、一种具有六自由度检测的激光外差干涉直线度测量方法:
1)采用所述测量装置,平面反射镜和反射棱镜组成的测量镜通过测量镜支架安装在的移动平台上,选择能够输出正交线偏振光且具有拍频信号输出端的双频激光器,其输出的线偏振光频率分别为f1和f2,双频激光器输出的光束经历有激光外差干涉光路和误差检测与补偿光路;
1.1)激光外差干涉光路:
双频激光器拍频信号输出端输出的拍频信号作为参考信号,双频激光器输出光束经第一普通分光镜透射后入射到消偏振分光镜上,经消偏振分光镜的透射和反射后分为消偏振分光镜透射光束和消偏振分光镜反射光束,消偏振分光镜反射光束入射到第一偏振分光镜分别经透射和反射分为频率为f1的透射光束和频率为f2的反射光束,消偏振分光镜的透射光束入射到渥拉斯顿棱镜上分光,分为频率为f1和频率为f2的光束;渥拉斯顿棱镜分光后的两束光束经反射棱镜反射后叠加有被测对象运动导致的多普勒频移,反射叠加后的两束光束的频率分别变为f1±Δf1和f2±Δf2,两束反射光束入射回到渥拉斯顿棱镜合成一束光出射;渥拉斯顿棱镜的合成出射光经过第三普通分光镜透射后入射到第一偏振分光镜,经第一偏振分光镜的透射和反射后分为透射光束和反射光束:合成出射光入射到第一偏振分光镜输出频率为f1±Δf1的透射光束与消偏振分光镜反射光束入射到第一偏振分光镜输出频率为f2的反射光束合成一束射向第一检偏器,经第一检偏器入射到第一光电探测器接收,产生第一路测量信号;合成出射光入射到第一偏振分光镜输出频率为f2±Δf2的反射光束与消偏振分光镜反射光束入射到第一偏振分光镜输出频率为f1的透射光束合成一束射向第二检偏器,经第二检偏器入射到第二光电探测器接收,产生第二路测量信号;
1.2)误差检测与补偿光路:
1.2.1)双频激光器输出光束经第一普通分光镜透射外还反射有一路反射光束,该反射光束入射到第二普通分光镜上,经其反射后入射到平面反射镜再次反射,平面反射镜反射后的光束依次经第二普通分光镜透射、凸透镜聚焦后形成光斑,投射到位置敏感探测器;
1.2.2)渥拉斯顿棱镜的合成出射光经第三普通分光镜透射外还反射有一路反射光束,该反射光束入射到第二偏振分光镜中,第二偏振分光镜将来自于反射棱镜的上直角棱镜的光束反射到第一四象限探测器形成光斑,并将来自于反射棱镜的下直角棱镜的光束透射到第二四象限探测器形成光斑;
2)将移动平台移动至被测对象的一端作为测量初始位置,并测量相关常数,包括反射棱镜上下直角棱镜的直角棱边交点与移动平台之间的距离H、测量镜支架与反射棱镜上下直角棱镜的直角棱边交点的距离B以及测量镜支架与渥拉斯顿棱镜之间的距离s0
测量前,调节位置敏感探测器以及两个四象限探测器和,使激光光斑能入射到各自的中心;测量中,被测对象的移动平台从初始位置向另一端运动,各个探测器的探测信号经处理后得到被测对象的各个自由度参数;
3)激光外差干涉光路根据几何关系采用以下公式得到被测对象在运动过程中的垂直直线度误差及其直线度误差位置:
垂直直线度误差:
Figure PCTCN2015072460-appb-000001
直线度误差位置:
Figure PCTCN2015072460-appb-000002
其中,θ为渥拉斯顿棱镜分束角的一半,L1为第一路位移测量值,L2为第二路位移测量值;
4)误差检测与补偿光路分别采用偏摆角和俯仰角检测方法、滚转角和水平直线度检测方法同时测量得到被测对象的偏摆角、俯仰角、滚转角和水平直线度的四个自由度,并采用误差补偿方法对激光外差干涉光路测量的垂直直线度及其位置的误差进行补偿,从而完成被测对象的六自由度检测,实现对外差干涉直线度的测量。
所述的第一路位移测量值L1和第二路位移测量值L2分别采用以下方式计算得到:
3.1)由双频激光器输出的参考信号和第一光电探测器输出的第一路测量信号采用以下公式计算得到第一路位移测量值L1
Figure PCTCN2015072460-appb-000003
其中,Δf1为频率为f1的光束由于被测对象运动导致的多普勒频移,λ1为频率为f1的光束波长,f1为第一偏振分光镜输出的透射光束的频率,t为时间;
3.2)由双频激光器输出的参考信号和第二光电探测器输出的第二路测量信号采用以下公式计算得到第二路位移测量值L2
Figure PCTCN2015072460-appb-000004
其中,Δf2为频率为f2的光束由于被测对象运动导致的多普勒频移,λ2为频率为f2的光束波长,f2为第一偏振分光镜输出的反射光束的频率。
所述步骤4)中的偏摆角和俯仰角检测方法具体包括:测量开始前,调节位置敏感探测器的位置,使位置敏感探测器上的光斑位于其中心;测量过程中,根据位置敏感探测器探测的光斑位置偏移量,采用以下公式计算得到被测对象运动过程中的偏摆角误差和俯仰角误差:
偏摆角误差:
Figure PCTCN2015072460-appb-000005
俯仰角误差:
Figure PCTCN2015072460-appb-000006
其中,ΔxPSD为位置敏感探测器水平方向上的光斑位置偏移量,ΔyPSD为位置敏感探测器垂直方向上的光斑位置偏移量,f为凸透镜的焦距。
所述步骤4)中的滚转角和水平直线度检测方法具体包括:测量开始前,调节两个四象限探测器的位置,使两个四象限探测器上的光斑分别位于各自的中心;测量过程中,根据两个四象限探测器探测的光斑位置偏移量与被测对象运动过程中各个自由度的映射关系,采用以下公式计算得到被测对象运动过程中的滚转角误差和水平直线度误差:
滚转角误差:
Figure PCTCN2015072460-appb-000007
水平直线度误差:
Figure PCTCN2015072460-appb-000008
其中,ΔxQD1为第一四象限探测器水平方向上的光斑位置偏移量,ΔxQD2为第二四象限探测器水平方向上的光斑位置偏移量,B为测量镜支架与上下直角棱镜的直角棱边交点的距离,L为直角棱镜斜边的长度,H为上下直角棱镜的直角棱边交点与移动平台之间的距离,n为直角棱镜材料的折射率,s0为测量开始前被测对象的移动平台在初始位置时测量镜支架与渥拉斯顿棱镜之间的距离,α为 偏摆角误差,γ为滚转角误差,s为直线度误差位置,θ为渥拉斯顿棱镜分束角的一半。
所述步骤4)中的误差补偿方法具体包括:测量过程中,被测对象的转动误差会对垂直直线度误差及其位置的测量结果产生影响,采用以下公式计算得到对激光外差干涉法测得的垂直直线度误差及其位置的补偿:
补偿后的垂直直线度误差:Δh′=Δh-(s0+s-B)β
补偿后的直线度误差位置:
Figure PCTCN2015072460-appb-000009
其中,B为测量镜支架与上下直角棱镜的直角棱边交点的距离,L为直角棱镜斜边的长度,H为上下直角棱镜的直角棱边交点与移动平台之间的距离,n为直角棱镜材料的折射率,s0为测量开始前被测对象的移动平台在初始位置时测量镜支架与渥拉斯顿棱镜之间的距离,α为偏摆角误差,β为俯仰角误差,Δh为垂直直线度误差,s为直线度误差位置。
上述计算可由两个光电探测器输出的两路测量信号与双频激光器输出的参考信号一起经数据采集及计算机处理后得到被测对象的垂直直线度误差及其位置,位置敏感探测器和两个四象限探测器输出的激光光斑位置信号经过数据采集及计算机处理后得到被测对象的偏摆角误差、俯仰角误差、滚转角误差和水平直线度误差,并根据误差补偿方法经过计算机处理后得到消除了被测对象转动误差影响的垂直直线度误差及其位置的准确值。
本发明具有的有益效果是:
(1)该测量方法可以实现被测对象的六个自由度误差参数的同时检测,为精密工作台或导轨的性能检测与校准提供了极大方便;
(2)该测量方法运用误差补偿方法消除了激光外差干涉直线度及其位置测量过程中被测对象转动误差的影响,有效地提高了测量精度,完善了激光外差干涉直线度及其位置的测量方法;
(3)光路结构简单,使用方便。
本发明主要适用于超精密机械加工、微光机电***、集成电路芯片制造和精密仪器等技术领域所涉及的精密工作台及精密导轨的直线度、位移以及其他多自由度运动参数的同时检测。
附图说明
图1是具有六自由度检测的激光外差干涉直线度测量的光路图。
图2是激光外差干涉直线度及其位置测量的原理图。
图3是偏摆角和俯仰角测量的原理图(以俯仰角为例)。
图4是滚转角及水平直线度测量的原理图。
图5是被测对象转动误差对垂直直线度误差及其位置测量的影响示意图(以俯仰角为例)。
图中:1、双频激光器,2、第一普通分光镜,3、位置敏感探测器,4、凸透镜,5、第二普通分光镜,6、消偏振分光镜,7、第一偏振分光镜,8、渥拉斯顿棱镜,9、反射棱镜,10、平面反射镜,11、被测对象移动平台,12、测量镜支架,13、第三普通分光镜,14、第二偏振分光镜,15、第一四象限探测器,16、第二四象限探测器,17、第一检偏器,18、第一光电探测器,19、第二检偏器,20、第二光电探测器。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明的装置的光路结构如图1所示,包括激光外差干涉直线度与其位置检测部分和误差检测与补偿部分,具体实施过程如下:
双频激光器1采用一横向塞曼效应的He-Ne稳频激光器,输出频率分别为f1和f2的正交线偏振光束,经第一普通分光镜2后分成两束光,其中反射光束经第二普通分光镜5反射后入射到安装在由上下直角棱镜构成的反射棱镜9顶部的平面反射镜10上,平面反射镜10和反射棱镜9组成测量镜,通过测量镜支架12被固定在被测对象的移动平台11上,该光束被平面反射镜10反射后回到第二普通分光镜5并透射,经过凸透镜4汇聚后投射到位置敏感探测器3上;而经第一普通分光镜2透射的光束入射到消偏振分光镜6并被分成两束,反射光束入射到第一偏振分光镜7中,而透射光束则入射到渥拉斯顿棱镜8;由于渥拉斯顿棱镜8的双折射作用,该光束在出射后分成两束频率分别为f1和f2且成一定角度的线偏振光,分别入射到反射棱镜9的上直角棱镜和下直角棱镜中,经两直角棱镜内部反射后又出射并汇聚到渥拉斯顿棱镜8的另一点上,此时的两光束频率由于叠加了被测对象运动导致的多普勒频移变为f1±Df1、f2±Df2,它们在渥拉斯顿棱镜8的另一面出射后形成一束正交线偏振光,经过第三普通分光镜13后分成两部分,其中的反射光束入射到第二偏振分光镜14后分成频率分别为f1±Df1和f2±Df2的两束线偏振光,前者来自反射棱镜9的上直角棱镜,其投射到第一四象限探测器15上,后者来自反射棱镜9的下直角棱镜,其投射到第二四象限探测器16上;而经过第三普通分光镜13透射的光束则入射到第一偏振分光镜7上,并再次分成两束不同频率的线偏振光,其中频率为f1±Df1的光束透射后与经消偏振分光镜6和第一偏振分光镜7反射的频率为f2的光束结合,射向第一检偏器17,经过第一检偏器17后形成拍频信号并被第一光电探测器 18接收,产生第一路测量信号,而频率为f2±Df2的光束反射后与经消偏振分光镜6反射及第一偏振分光镜7透射的频率为f1的光束结合,射向第二检偏器19,经过第二检偏器19后形成拍频信号并被第二光电探测器20接收,产生第二路测量信号。
本发明的第一普通分光镜2放置在双频激光器1和消偏振分光镜6之间;第三普通分光镜13放置在渥拉斯顿棱镜8和第一偏振分光镜7之间。
另外,双频激光器1尾部自带的频率为f1-f2的拍频信号则作为两路测量信号共用的参考信号,这三路信号组成了激光外差干涉直线度及其位置测量部分的信号来源;而位置敏感探测器3和两个四象限探测器15和16上的激光光斑位置信息则组成了误差检测与补偿部分的信号来源。以上两个部分的信号被送入数据采集模块和计算机进行相关处理和显示,得到被测对象运动过程中的偏摆角误差、俯仰角误差、滚转角误差、水平直线度误差和误差补偿后的垂直直线度误差及其位置等六自由度参数。
具体实施中的双频激光器1采用美国Agilent公司的5517A双纵模稳频He-Ne激光器,其输出的正交线偏振光的频率差为f1-f2=1.7MHz、中心波长λ=632.99137nm。激光外差干涉信号处理采用美国Altera公司的FPGA芯片EP2C20Q240的高速信号处理板。位置敏感探测器3采用美国Thorlab公司的PDP90A位置敏感探测器,其探测分辨率为0.675μm,位置敏感探测器信号处理采用Thorlabs公司的TQD001信号处理模块。四象限探测器15和16采用以色列Duma公司的Spotonusb-qq,其分辨率为0.75μm、精度为±1μm,四象限探测器信号处理采用Duma公司的Manifold Box信号处理模块,计算机采用惠普公司的Pro4500台式机。
在图1中,光路中的黑点和竖直短线表示偏振方向正交的两个不同频率的线偏振光,而上方带有三角的黑点和带有三角的竖直短线代表含有多普勒频移信息的正交线偏振光。
结合图2、图3、图4以及图5,本发明激光外差干涉直线度测量的具体实施例及其原理过程如下:
(1)测量开始前,将顶部装有平面反射镜10的反射棱镜9通过测量镜支架12安装在被测对象的移动平台11上,将该平台移动至被测对象的一端作为测量初始位置,并测量相关常数,包括反射棱镜9上下直角棱镜的直角棱边交点与移动平台11之间的距离H、测量镜支架12与反射棱镜9上下直角棱镜的直角棱边交点的距离B、测量镜支架12与渥拉斯顿棱镜8之间的距离s0;调节 位置敏感探测器3以及两个四象限探测器15和16,使激光光斑能入射到各个探测器的中心;
(2)测量开始后,被测对象的移动平台11从初始位置以一定的步进位移向另一端运动,各个探测器探测相关的信号并经数据采集,送入计算机处理后得到被测对象的各个自由度参数;
(3)对于垂直直线度及其位置的检测,如图2所示,反射棱镜9从初始位置运动到当前位置,移动速度v为1mm/s,步进位移为5mm,渥拉斯顿棱镜8的分束角为1.5°,由多普勒效应引起的测量光束f1和f2的频率变化为:
Figure PCTCN2015072460-appb-000010
Figure PCTCN2015072460-appb-000011
式中:λ1、λ2分别为两个频率的激光波长,θ为渥拉斯顿棱镜分束角的一半;
第一路测量信号和第二路测量信号的频率分别为f1-f2±Δf1和f1-f2±Δf2,两者分别与参考信号(频率为f1-f2)求差频后可得Δf1和Δf2,则对应的第一路和第二路位移测量值分别为:
Figure PCTCN2015072460-appb-000012
Figure PCTCN2015072460-appb-000013
两路位移值的差为:
DL=L1-L2
根据图2所示的几何关系,可求出被测对象运动过程中的垂直直线度误差及其位置分别为:
垂直直线度误差:
Figure PCTCN2015072460-appb-000014
直线度误差位置:
Figure PCTCN2015072460-appb-000015
当反射棱镜9相对于测量基准线向上运动时,即由图2中的虚线位置移动到实线位置,Δh为正,反之为负;
(4)对于偏摆角及俯仰角检测,如图3所示,两者的测量原理相同,以俯仰角为例进行说明。在当前位置时被测对象存在俯仰角误差β,则经过平面反射镜10反射后的光束将产生2β的俯仰角变化,其入射到凸透镜4后被聚焦到位 置敏感探测器3上,在探测器垂直方向上产生的光斑位置偏移量为ΔyPSD,根据几何关系可以得到被测对象运动过程中的俯仰角误差为:
俯仰角误差:
Figure PCTCN2015072460-appb-000016
同理可以得到被测对象运动过程中的偏摆角误差为:
偏摆角误差:
Figure PCTCN2015072460-appb-000017
式中:ΔxPSD为位置敏感探测器水平方向上的光斑位置偏移量,ΔyPSD为位置敏感探测器垂直方向上的光斑位置偏移量,f为凸透镜的焦距;
(5)对于滚转角及横向直线度的检测,如图4所示,经第三普通分光镜13反射后的光束入射到第二偏振分光镜14中,第二偏振分光镜14将来自于反射棱镜9上直角棱镜的光束反射到第一四象限探测器15,而将来自于反射棱镜9下直角棱镜的光束透射到第二四象限探测器16;根据两个四象限探测器探测的光斑位置变化量与被测对象运动过程中各个自由度的映射关系,利用激光追迹法和光学几何法得到被测对象运动过程中的滚转角误差和水平直线度误差分别为:
滚转角误差:
Figure PCTCN2015072460-appb-000018
水平直线度误差:
Figure PCTCN2015072460-appb-000019
式中:ΔxQD1为第一四象限探测器15水平方向上的光斑位置偏移量,ΔxQD2为第二四象限探测器16水平方向上的光斑位置偏移量,B为测量镜支架12与上下直角棱镜的直角棱边交点的距离,L为直角棱镜斜边的长度,H为上下直角棱镜的直角棱边交点与移动平台11之间的距离,n为直角棱镜材料的折射率,s0为测量开始前被测对象的移动平台11在初始位置时测量镜支架12与渥拉斯顿棱镜8之间的距离;
计算处理时,将相关常数以及角度测量值代入到滚转角误差及水平直线度误差的公式中即可得到两者的测量值;
(6)测量过程中,被测对象的转动误差会对垂直直线度误差及其位置的测量结果产生影响,如图5所示,以俯仰角为例进行说明,当移动平台11从初始位置运动至当前位置时,被测对象发生了俯仰角误差β,利用激光追迹法和光学 几何法得到对激光外差干涉法测得的垂直直线度误差Δh及其位置s的补偿表达式分别为:
垂直直线度误差补偿表达式:Δh′=Δh-(s0+s-B)β
直线度误差位置补偿表达式:
Figure PCTCN2015072460-appb-000020
测量结束后,将相关常数以及角度测量值代入以上两式,对步骤(3)中的测量值进行补偿,经过计算机处理后,得到消除了被测对象转动误差影响的垂直直线度误差及其位置的准确值。实施例结果的测量精度为:补偿前垂直直线度测量结果为41.85μm,补偿后垂直直线度测量结果为9.85μm,补偿前直线度误差的位置测量结果的标准偏差为3.67μm,补偿后直线度误差的位置测量结果的标准偏差为0.33μm。
由此可见,本发明实现了被测对象的六个自由度误差参数的同时检测,为精密工作台或导轨的性能检测与校准提供了极大方便;而且消除了被测对象的转动误差对垂直直线度误差及其位置测量结果的影响,提高了测量精度;并且光路结构简单,使用方便,具有突出显著的技术效果。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (10)

  1. 一种具有六自由度检测的激光外差干涉直线度测量装置,其特征在于:
    包括激光外差干涉直线度与其位置检测部分以及误差检测与补偿部分,激光外差干涉直线度与其位置检测部分包括具有拍频信号输出的双频激光器(1)、消偏振分光镜(6)、渥拉斯顿棱镜(8)、反射棱镜(9)、第一偏振分光镜(7)、第一检偏器(17)、第二检偏器(19)、第一光电探测器(18)和第二光电探测器(20);误差检测与补偿部分包括第一普通分光镜(2)、第二普通分光镜(5)、平面反射镜(10)、凸透镜(4)、位置敏感探测器(3)、第三普通分光镜(13)、第二偏振分光镜(14)、第一四象限探测器(15)和第二四象限探测器(16);平面反射镜(10)和反射棱镜(9)组成测量镜通过测量镜支架(12)安装在被测对象的移动平台(11)上;
    双频激光器(1)拍频信号输出端输出的拍频信号作为参考信号,双频激光器(1)输出光束经第一普通分光镜(2)透射后入射到消偏振分光镜(6)上,经消偏振分光镜(6)的透射和反射后分为消偏振分光镜透射光束和消偏振分光镜反射光束,消偏振分光镜反射光束入射到第一偏振分光镜(7)分别经透射和反射分为频率为f1的透射光束和频率为f2的反射光束,消偏振分光镜(6)的透射光束入射到渥拉斯顿棱镜(8)上分光,分为频率为f1和频率为f2的光束;渥拉斯顿棱镜(8)分光后的两束光束经反射棱镜(9)反射后叠加有被测对象运动导致的多普勒频移,反射叠加后的两束光束的频率分别变为f1±Δf1和f2±Δf2,两束反射光束入射回到渥拉斯顿棱镜(8)合成一束光出射;
    渥拉斯顿棱镜(8)的合成出射光经过第三普通分光镜(13)透射后入射到第一偏振分光镜(7),经第一偏振分光镜(7)的透射和反射后分为透射光束和反射光束:合成出射光入射到第一偏振分光镜(7)输出频率为f1±Δf1的透射光束与消偏振分光镜反射光束入射到第一偏振分光镜(7)输出频率为f2的反射光束合成一束射向第一检偏器(17),经第一检偏器(17)入射到第一光电探测器(18)接收,产生第一路测量信号;合成出射光入射到第一偏振分光镜(7)输出频率为f2±Δf2的反射光束与消偏振分光镜反射光束入射到第一偏振分光镜(7)输出频率为f1的透射光束合成一束射向第二检偏器(19),经第二检偏器(19)入射到第二光电探测器(20)接收,产生第二路测量信号;
    双频激光器(1)输出光束经第一普通分光镜(2)透射外还反射有一路反射光束,该反射光束经第二普通分光镜(5)反射后入射到平面反射镜(10),平面反射镜(10)反射后的光束再依次经第二普通分光镜(5)透射、凸透镜(4) 聚焦后形成光斑,投射到位置敏感探测器(3)接收;
    渥拉斯顿棱镜(8)的合成出射光经第三普通分光镜(13)透射外还反射有一路反射光束,该反射光束入射到第二偏振分光镜(14)经透射和反射后分为透射光束和反射光束,透射光束入射到第二四象限探测器(16),反射光束入射到第一四象限探测器(15)。
  2. 根据权利要求1所述的一种具有六自由度检测的激光外差干涉直线度测量装置,其特征在于:所述的反射棱镜(9)包括分别位于上、下位置的两个直角棱镜,渥拉斯顿棱镜(8)分光后的两束光束分别射向上、下位置的两个直角棱镜,所述的第二偏振分光镜(14)将来自于反射棱镜(9)上直角棱镜的光束反射到第一四象限探测器(15),将来自于反射棱镜(9)下直角棱镜的光束透射到第二四象限探测器(16)。
  3. 根据权利要求1所述的一种具有六自由度检测的激光外差干涉直线度测量装置,其特征在于:所述的测量装置包含有数据采集模块以及计算机,双频激光器(1)、第一光电探测器(18)和第二光电探测器(20)均经数据采集模块与计算机连接,第一光电探测器(18)和第二光电探测器(20)输出的两路测量信号与双频激光器(1)的参考信号一起经数据采集模块传输到计算机处理。
  4. 根据权利要求1所述的一种具有六自由度检测的激光外差干涉直线度测量装置,其特征在于:所述的平面反射镜(10)固定在反射棱镜(9)的正上方。
  5. 根据权利要求1所述的一种具有六自由度检测的激光外差干涉直线度测量装置,其特征在于:所述的双频激光器(1)输出光束为正交线偏振光。
  6. 应用于权利要求1~5任一所述装置的一种具有六自由度检测的激光外差干涉直线度测量方法,其特征在于:
    1)采用所述测量装置,平面反射镜(10)和反射棱镜(9)组成的测量镜通过测量镜支架(12)安装在的移动平台(11)上,选择能够输出正交线偏振光且具有拍频信号输出端的双频激光器(1),其输出的线偏振光频率分别为f1和f2,双频激光器(1)输出的光束经历有激光外差干涉光路和误差检测与补偿光路;
    1.1)激光外差干涉光路:
    双频激光器(1)拍频信号输出端输出的拍频信号作为参考信号,双频激光器(1)输出光束经第一普通分光镜(2)透射后入射到消偏振分光镜(6)上,经消偏振分光镜(6)的透射和反射后分为消偏振分光镜透射光束和消偏振分光镜反射光束,消偏振分光镜反射光束入射到第一偏振分光镜(7)分别经透射和 反射分为频率为f1的透射光束和频率为f2的反射光束,消偏振分光镜(6)的透射光束入射到渥拉斯顿棱镜(8)上分光,分为频率为f1和频率为f2的光束;渥拉斯顿棱镜(8)分光后的两束光束经反射棱镜(9)反射后叠加有被测对象运动导致的多普勒频移,反射叠加后的两束光束的频率分别变为f1±Δf1和f2±Δf2,两束反射光束入射回到渥拉斯顿棱镜(8)合成一束光出射;渥拉斯顿棱镜(8)的合成出射光经过第三普通分光镜(13)透射后入射到第一偏振分光镜(7),经第一偏振分光镜(7)的透射和反射后分为透射光束和反射光束:合成出射光入射到第一偏振分光镜(7)输出频率为f1±Δf1的透射光束与消偏振分光镜反射光束入射到第一偏振分光镜(7)输出频率为f2的反射光束合成一束射向第一检偏器(17),经第一检偏器(17)入射到第一光电探测器(18)接收,产生第一路测量信号;合成出射光入射到第一偏振分光镜(7)输出频率为f2±Δf2的反射光束与消偏振分光镜反射光束入射到第一偏振分光镜(7)输出频率为f1的透射光束合成一束射向第二检偏器(19),经第二检偏器(19)入射到第二光电探测器(20)接收,产生第二路测量信号;
    1.2)误差检测与补偿光路:
    1.2.1)双频激光器(1)输出光束经第一普通分光镜(2)透射外还反射有一路反射光束,该反射光束入射到第二普通分光镜(5)上,经其反射后入射到平面反射镜(10)再次反射,平面反射镜(10)反射后的光束依次经第二普通分光镜(5)透射、凸透镜(4)聚焦后形成光斑,投射到位置敏感探测器(3);
    1.2.2)渥拉斯顿棱镜(8)的合成出射光经第三普通分光镜(13)透射外还反射有一路反射光束,该反射光束入射到第二偏振分光镜(14)中,第二偏振分光镜(14)将来自于反射棱镜(9)的上直角棱镜的光束反射到第一四象限探测器(15)形成光斑,并将来自于反射棱镜(9)的下直角棱镜的光束透射到第二四象限探测器(16)形成光斑;
    2)将移动平台(11)移动至被测对象的一端作为测量初始位置,并测量相关常数,包括反射棱镜(9)上下直角棱镜的直角棱边交点与移动平台(11)之间的距离H、测量镜支架(12)与反射棱镜(9)上下直角棱镜的直角棱边交点的距离B以及测量镜支架(12)与渥拉斯顿棱镜(8)之间的距离s0
    测量前,调节位置敏感探测器(3)以及两个四象限探测器(15)和(16),使激光光斑能入射到各自的中心;测量中,被测对象的移动平台(11)从初始位置向另一端运动,各个探测器的探测信号经处理后得到被测对象的各个自由度参数;
    3)激光外差干涉光路根据几何关系采用以下公式得到被测对象在运动过程 中的垂直直线度误差及其直线度误差位置:
    垂直直线度误差:
    Figure PCTCN2015072460-appb-100001
    直线度误差位置:
    Figure PCTCN2015072460-appb-100002
    其中,θ为渥拉斯顿棱镜分束角的一半,L1为第一路位移测量值,L2为第二路位移测量值;
    4)误差检测与补偿光路分别采用偏摆角和俯仰角检测方法、滚转角和水平直线度检测方法同时测量得到被测对象的偏摆角、俯仰角、滚转角和水平直线度的四个自由度,并采用误差补偿方法对激光外差干涉光路测量的垂直直线度及其位置的误差进行补偿,从而完成被测对象的六自由度检测,实现对外差干涉直线度的测量。
  7. 根据权利要求6所述装置的一种具有六自由度检测的激光外差干涉直线度测量方法,其特征在于:所述的第一路位移测量值L1和第二路位移测量值L2分别采用以下方式计算得到:
    3.1)由双频激光器(1)输出的参考信号和第一光电探测器(18)输出的第一路测量信号采用以下公式计算得到第一路位移测量值L1
    Figure PCTCN2015072460-appb-100003
    其中,Δf1为频率为f1的光束由于被测对象运动导致的多普勒频移,λ1为频率为f1的光束波长,f1为第一偏振分光镜(7)输出的透射光束的频率,t为时间;
    3.2)由双频激光器(1)输出的参考信号和第二光电探测器(20)输出的第二路测量信号采用以下公式计算得到第二路位移测量值L2
    Figure PCTCN2015072460-appb-100004
    其中,Δf2为频率为f2的光束由于被测对象运动导致的多普勒频移,λ2为频率为f2的光束波长,f2为第一偏振分光镜(7)输出的反射光束的频率。
  8. 根据权利要求6所述装置的一种具有六自由度检测的激光外差干涉直线度测量方法,其特征在于:所述步骤4)中的偏摆角和俯仰角检测方法具体包括:测量开始前,调节位置敏感探测器(3)的位置,使位置敏感探测器(3)上的光斑位于其中心;测量过程中,根据位置敏感探测器(3)探测的光斑位置偏移量,采用以下公式计算得到被测对象运动过程中的偏摆角误差和俯仰角误差:
    偏摆角误差:
    Figure PCTCN2015072460-appb-100005
    俯仰角误差:
    Figure PCTCN2015072460-appb-100006
    其中,ΔxPSD为位置敏感探测器水平方向上的光斑位置偏移量,ΔyPSD为位置敏感探测器垂直方向上的光斑位置偏移量,f为凸透镜的焦距。
  9. 根据权利要求6所述装置的一种具有六自由度检测的激光外差干涉直线度测量方法,其特征在于:所述步骤4)中的滚转角和水平直线度检测方法具体包括:测量开始前,调节两个四象限探测器(15)和(16)的位置,使两个四象限探测器上的光斑分别位于各自的中心;测量过程中,根据两个四象限探测器探测的光斑位置偏移量与被测对象运动过程中各个自由度的映射关系,采用以下公式计算得到被测对象运动过程中的滚转角误差和水平直线度误差:
    滚转角误差:
    Figure PCTCN2015072460-appb-100007
    水平直线度误差:
    Figure PCTCN2015072460-appb-100008
    其中,ΔxQD1为第一四象限探测器(15)水平方向上的光斑位置偏移量,ΔxQD2为第二四象限探测器(16)水平方向上的光斑位置偏移量,B为测量镜支架(12)与上下直角棱镜的直角棱边交点的距离,L为直角棱镜斜边的长度,H为上下直角棱镜的直角棱边交点与移动平台之间的距离,n为直角棱镜材料的折射率,s0为测量开始前被测对象的移动平台在初始位置时测量镜支架与渥拉斯顿棱镜之间的距离,α为偏摆角误差,γ为滚转角误差,s为直线度误差的位置,θ为渥拉斯顿棱镜分束角的一半。
  10. 根据权利要求6所述装置的一种具有六自由度检测的激光外差干涉直线度测量方法,其特征在于:所述步骤4)中的误差补偿方法具体包括:测量过程中,被测对象转动会影响垂直直线度误差及其位置的测量结果,采用以下公式计算得到对激光外差干涉法测得的垂直直线度误差及其位置的补偿:
    补偿后的垂直直线度误差:Δh′=Δh-(s0+s-B)β
    补偿后的直线度误差位置:
    Figure PCTCN2015072460-appb-100009
    其中,B为测量镜支架(12)与上下直角棱镜的直角棱边交点的距离,L为直角棱镜斜边的长度,H为上下直角棱镜的直角棱边交点与移动平台之间的距离,n为直角棱镜材料的折射率,s0为测量开始前被测对象的移动平台在初始位置时测量镜支架与渥拉斯顿棱镜之间的距离,α为偏摆角误差,β为俯仰角误差,Δh为垂直直线度误差,s为直线度误差的位置。
PCT/CN2015/072460 2015-02-06 2015-02-06 具有六自由度检测的激光外差干涉直线度测量装置及方法 WO2016123812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/112,193 US9863753B2 (en) 2015-02-06 2015-02-06 Laser heterodyne interferometric straightness measurement apparatus and method with six DOFs determination
PCT/CN2015/072460 WO2016123812A1 (zh) 2015-02-06 2015-02-06 具有六自由度检测的激光外差干涉直线度测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072460 WO2016123812A1 (zh) 2015-02-06 2015-02-06 具有六自由度检测的激光外差干涉直线度测量装置及方法

Publications (1)

Publication Number Publication Date
WO2016123812A1 true WO2016123812A1 (zh) 2016-08-11

Family

ID=56563351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072460 WO2016123812A1 (zh) 2015-02-06 2015-02-06 具有六自由度检测的激光外差干涉直线度测量装置及方法

Country Status (2)

Country Link
US (1) US9863753B2 (zh)
WO (1) WO2016123812A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102337A (zh) * 2017-05-18 2017-08-29 哈尔滨工业大学 随动式激光半主动方位测量装置的视场补偿测量方法
CN108407116A (zh) * 2018-03-30 2018-08-17 青岛高测科技股份有限公司 并线检测装置、方法及包括该并线检测装置的金刚线切片机
CN108801146A (zh) * 2018-08-30 2018-11-13 天津大学 一种机床五自由度误差测量装置及误差模型建立方法
CN110007310A (zh) * 2019-03-13 2019-07-12 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量***及方法
CN113566745A (zh) * 2021-07-30 2021-10-29 上海无线电设备研究所 一种基于激光准直技术的高精度滚转角测量装置及方法
CN113917761A (zh) * 2021-09-23 2022-01-11 之江实验室 一种基于角度无惯性反馈校正的光束稳定装置
CN114719787A (zh) * 2022-04-24 2022-07-08 合肥工业大学 一种基于平行光路的多自由度检测装置
CN116772750A (zh) * 2023-08-28 2023-09-19 南京英田光学工程股份有限公司 基于干涉测量的滚转角测试装置及测试方法
CN117053751A (zh) * 2023-10-12 2023-11-14 歌尔股份有限公司 补偿***、方法、设备及介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614513B (zh) * 2016-12-22 2018-02-11 量測移動平台之多自由度誤差之方法及裝置
CN108469531B (zh) * 2018-07-02 2023-11-10 北方民族大学 基于多普勒效应的双重修正式测速传感器及标定与测量方法
CN109781034B (zh) * 2019-01-22 2020-11-10 上海理工大学 微小滚转角与直线度同步高精度测量干涉仪以及测量方法
CN110849293B (zh) * 2019-11-13 2020-10-27 西安交通大学 一种四光束结构激光外差干涉滚转角测量装置及方法
CN111426266B (zh) * 2019-12-16 2022-04-22 成都大亦科技有限公司 一种激光光斑中心的测量装置及方法
CN113804147B (zh) * 2021-08-19 2024-05-03 东风柳州汽车有限公司 一种汽车纵梁板料直线度自动检测装置
CN114046732B (zh) * 2021-11-12 2024-01-26 北京交通大学 一种利用激光同时测量多自由度几何误差的方法与***
CN114152186B (zh) * 2021-11-19 2024-05-28 天津市英贝特航天科技有限公司 圆轴测量装置、辊轴及应用该辊轴的纳米压印设备
TWI836633B (zh) * 2022-09-28 2024-03-21 致茂電子股份有限公司 多自由度誤差校正方法及設備
CN116032374A (zh) * 2022-12-30 2023-04-28 东南大学 一种基于旋转双棱镜的光线接收***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2884141Y (zh) * 2005-12-30 2007-03-28 北京交通大学 一种激光六自由度同时测量装置
CN101581577A (zh) * 2009-06-22 2009-11-18 浙江理工大学 基于双频干涉原理的直线度及其位置的测量装置
CN101581576A (zh) * 2009-06-22 2009-11-18 浙江理工大学 基于双频干涉原理的直线度及其位置的测量方法
WO2010030179A1 (en) * 2008-09-11 2010-03-18 Technische Universiteit Delft Laser interferometer
CN102901447A (zh) * 2012-10-10 2013-01-30 华中科技大学 一种工作台运动直线度实时测量装置
CN104180776A (zh) * 2014-08-21 2014-12-03 西安交通大学 基于外差干涉相位法的高分辨率滚转角测量方法及装置
CN104634283A (zh) * 2015-02-06 2015-05-20 浙江理工大学 具有六自由度检测的激光外差干涉直线度测量装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787747A (en) * 1987-11-13 1988-11-29 Zygo Corporation Straightness of travel interferometer
DE19522262C2 (de) * 1995-06-20 1997-05-22 Zeiss Carl Jena Gmbh Heterodyn-Interferometer-Anordnung
US6519042B1 (en) * 2000-08-25 2003-02-11 Industrial Technology Research Institute Interferometer system for displacement and straightness measurements
CN101650166B (zh) * 2008-08-15 2012-04-11 上海理工大学 用于测量微滚转角的激光干涉***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2884141Y (zh) * 2005-12-30 2007-03-28 北京交通大学 一种激光六自由度同时测量装置
WO2010030179A1 (en) * 2008-09-11 2010-03-18 Technische Universiteit Delft Laser interferometer
CN101581577A (zh) * 2009-06-22 2009-11-18 浙江理工大学 基于双频干涉原理的直线度及其位置的测量装置
CN101581576A (zh) * 2009-06-22 2009-11-18 浙江理工大学 基于双频干涉原理的直线度及其位置的测量方法
CN102901447A (zh) * 2012-10-10 2013-01-30 华中科技大学 一种工作台运动直线度实时测量装置
CN104180776A (zh) * 2014-08-21 2014-12-03 西安交通大学 基于外差干涉相位法的高分辨率滚转角测量方法及装置
CN104634283A (zh) * 2015-02-06 2015-05-20 浙江理工大学 具有六自由度检测的激光外差干涉直线度测量装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG, QIB O ET AL.: "Development of a Simple System for Simultaneously Measuring 6DOF Geometric Motion Errors of a Linear Guide", OPTICS EXPRESS, vol. 21, no. 22, 22 October 2013 (2013-10-22), pages 25805 - 25819 *
ZHANG, ENZHENG ET AL.: "Laser Heterodyne Interferometer for Simultaneous Measuring Displacement and Angle Based on the Faraday effect", OPTICS EXPRESS, vol. 22, no. 21, 13 October 2014 (2014-10-13), pages 25587 - 25598 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102337A (zh) * 2017-05-18 2017-08-29 哈尔滨工业大学 随动式激光半主动方位测量装置的视场补偿测量方法
CN107102337B (zh) * 2017-05-18 2020-02-11 哈尔滨工业大学 随动式激光半主动方位测量装置的视场补偿测量方法
CN108407116A (zh) * 2018-03-30 2018-08-17 青岛高测科技股份有限公司 并线检测装置、方法及包括该并线检测装置的金刚线切片机
CN108801146A (zh) * 2018-08-30 2018-11-13 天津大学 一种机床五自由度误差测量装置及误差模型建立方法
CN110007310A (zh) * 2019-03-13 2019-07-12 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量***及方法
CN110007310B (zh) * 2019-03-13 2020-10-23 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量***及方法
CN113566745A (zh) * 2021-07-30 2021-10-29 上海无线电设备研究所 一种基于激光准直技术的高精度滚转角测量装置及方法
CN113566745B (zh) * 2021-07-30 2024-02-20 上海无线电设备研究所 一种基于激光准直技术的高精度滚转角测量装置及方法
CN113917761A (zh) * 2021-09-23 2022-01-11 之江实验室 一种基于角度无惯性反馈校正的光束稳定装置
CN113917761B (zh) * 2021-09-23 2024-01-02 之江实验室 一种基于角度无惯性反馈校正的光束稳定装置
CN114719787A (zh) * 2022-04-24 2022-07-08 合肥工业大学 一种基于平行光路的多自由度检测装置
CN114719787B (zh) * 2022-04-24 2024-01-30 合肥工业大学 一种基于平行光路的多自由度检测装置
CN116772750A (zh) * 2023-08-28 2023-09-19 南京英田光学工程股份有限公司 基于干涉测量的滚转角测试装置及测试方法
CN116772750B (zh) * 2023-08-28 2023-12-01 南京英田光学工程股份有限公司 基于干涉测量的滚转角测试装置及测试方法
CN117053751A (zh) * 2023-10-12 2023-11-14 歌尔股份有限公司 补偿***、方法、设备及介质

Also Published As

Publication number Publication date
US20160370170A1 (en) 2016-12-22
US9863753B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2016123812A1 (zh) 具有六自由度检测的激光外差干涉直线度测量装置及方法
CN104634283B (zh) 具有六自由度检测的激光外差干涉直线度测量装置及方法
WO2016033766A1 (zh) 单根光纤耦合双频激光六自由度误差同时测量***
CN207180607U (zh) 一种角度补偿式激光外差干涉位移测量装置
US9036154B2 (en) Four-axis four-subdividing interferometer
US7158236B2 (en) Heterodyne laser interferometer for measuring wafer stage translation
CN107806821B (zh) 用集成四光电探测器的差分单频干涉信号处理装置及方法
CN104864822B (zh) 基于激光干涉的法线跟踪式非球面测量方法与***
WO2015085694A1 (zh) 一种双频激光位移和角度干涉仪
CN110514147B (zh) 一种可同时测量滚转角和直线度的双频激光干涉仪
CN205942120U (zh) 一种带有偏振分束元件的自准光路***
CN106767395A (zh) 一种用于直线导轨六项几何误差高分辨力高效测量***及方法
CN112781529A (zh) 一种对入射角不敏感的直线度干涉测量装置
JPH0455243B2 (zh)
JP3751928B2 (ja) レーザ干渉計、及びそれを用いた測定装置
CN110449993A (zh) 一种运动台直线位移测量及偏转检测装置
CN104613902B (zh) 用于位移直线度测量的激光干涉***
WO2009090771A1 (ja) レーザ干渉計、及びそれを用いた測定装置
CN113483726B (zh) 一种小型化、高精度三维角度运动误差测量方法与***
CN111551114B (zh) 一种直线导轨六自由度几何误差测量装置及方法
TW200804756A (en) A system for detecting errors of a one-dimensional five degrees of freedom(DOF) system
JP3045567B2 (ja) 移動***置測定装置
US20240191986A1 (en) Systems and methods for measuring height properties of surfaces
US9417050B2 (en) Tracking type laser interferometer for objects with rotational degrees of freedom
US8913250B2 (en) Grazing incidence interferometer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15112193

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880768

Country of ref document: EP

Kind code of ref document: A1