WO2016122056A1 - Optical waveguide-type saturable absorber using interaction with evanescent field, manufacturing method therefor, pulse laser device using same and pulse laser using same - Google Patents

Optical waveguide-type saturable absorber using interaction with evanescent field, manufacturing method therefor, pulse laser device using same and pulse laser using same Download PDF

Info

Publication number
WO2016122056A1
WO2016122056A1 PCT/KR2015/006342 KR2015006342W WO2016122056A1 WO 2016122056 A1 WO2016122056 A1 WO 2016122056A1 KR 2015006342 W KR2015006342 W KR 2015006342W WO 2016122056 A1 WO2016122056 A1 WO 2016122056A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
attenuation field
field interaction
absorber
saturated absorber
Prior art date
Application number
PCT/KR2015/006342
Other languages
French (fr)
Korean (ko)
Inventor
김정원
김철
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2016122056A1 publication Critical patent/WO2016122056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3523Non-linear absorption changing by light, e.g. bleaching

Definitions

  • the present invention relates to an optical waveguide saturable absorber, and more particularly, to an optical waveguide saturable absorber using attenuation field interaction, which is installed and used for realizing mode-locking in a pulse laser cavity.
  • the present invention relates to a manufacturing method, a pulse laser device using the same, and a pulse laser using the same.
  • Ultra-fine processing using lasers is gaining popularity in the major industries that drive economic growth in Korea such as semiconductors, next-generation displays, LEDs, and solar cells.
  • the micro-machining using the conventional laser reaches the limit due to the heat generated by the mutual reaction between the laser light and the material, the processing technology using the ultra-short pulse laser has been developed since 1990.
  • Ultra-short pulse laser processing technology is a non-thermal ultra-fine green processing technology that can be processed and repaired by the ultra-fine shape, there is an advantage that can be formed not only on the surface of the material but also inside the transparent material. Therefore, the field of application has expanded to include not only in the semiconductor industry but also in the field of vision correction and biotherapy, two-photon absorption-based three-dimensional shape processing, and photonic crystal processing.
  • Ultra-short pulse laser processing technology has been made easy to use through miniaturization based on its advantages. With the development of miniaturized pulse laser, there is a growing interest to apply it as a portable device in outdoor environment. The need for a pulse laser that is robust against disturbance and capable of long-term stabilization is increasing. Fields that can be utilized as portable devices include various portable sensors, remote sensors, absolute distance measuring devices, terahertz wave oscillators, and the like.
  • Ultra-short optical pulses are typically generated by methods such as gain switching, Q-switching, photolimiting, self-oscillating laser or mode locking.
  • a mode-locking method is mainly used to generate ultra-high coherent ultra-short femtosecond optical pulses.
  • a laser oscillator is composed of a cavity and a gain medium.
  • the laser oscillator operates in a single mode or a resonance mode by changing the amplification band and the resonator length of the gain medium corresponding to the optical amplifier. Can be controlled.
  • Ultra-short femtosecond lasers included in the pulsed laser have a resonance mode of approximately 100,000 to 1,000,000, and generate ultra-short pulses by constructive interference at a constant moment when the phase is matched according to the change of the surrounding environment.
  • the mode lock is classified into an active mode lock and a passive mode lock according to whether an external modulated signal is applied.
  • passive mode locks are used for ultra-short pulse lasers because passive mode locks can generate shorter pulses than active mode locks.
  • Saturable absorption material is an optical medium inserted into the resonator in order to realize such passive mode locking and mainly uses a semi-conductor saturable absorber mirror (SESAM).
  • SESAM semi-conductor saturable absorber mirror
  • CNTs carbon nanotubes
  • graphene graphene
  • topological insulators to compensate for the inability to change the wavelength-lockable wavelength band.
  • 1 to 2 are conventional optical fiber based transmission type saturated absorbers.
  • the attenuation field of light guided along the optical fiber inner core 2 is heated to leak to the portion where the saturable absorbent material is to be coated.
  • FIG. 2 is a side polished fiber based saturable absorber which inserts an optical fiber 5 into the optical fiber holder 8 and then polishes the side 7 and the saturated absorbent material 6 thereon. Is coated to allow the light attenuated at the polished side of the optical fiber 5 to interact with the saturated absorbent material 6.
  • the surface of the optical fiber 5 is polished so that the attenuation field of light guided along the inner core of the optical fiber 5 leaks to the area to be coated with the saturated absorbent material, and thus changes from the original circle to the D shape. Since the saturated absorbent material 6 is coated on the polished surface, a saturated absorber is manufactured by using the interaction between the attenuation field of light guiding the inner core of the optical fiber and the saturated absorbent material coated in the range of the attenuation field.
  • the present invention has been made to solve the above problems, an optical waveguide saturable absorber using attenuation field interaction that can produce a large amount of the optical waveguide saturable absorber using a substrate processing technology, and a method of manufacturing the same It is an object of the present invention to provide a pulsed laser device, and a pulsed laser using the same.
  • a method of manufacturing an optical waveguide type saturated absorber interacting with an attenuation field comprising: (a) fabricating an arrayed optical waveguide on a wafer; (b) selectively removing the upper portion of the arrayed optical waveguide at regular intervals so that the attenuation field of the light traveling through the arrayed optical waveguide fabricated in step (a) is exposed on the surface; Manufacturing a saturable absorber having a constant spacing of a rectangular pattern by coating a saturated absorbent material on an arrayed optical waveguide having a rectangular pattern; And (c) dicing the rectangular saturated array of saturated absorbers produced in step (b) to separate them separately.
  • step (a) comprises (I) preparing a wafer; (II) depositing a core layer having a refractive index higher than that of the wafer on the wafer prepared in step (I); (III) fabricating an arrayed optical waveguide core by photolithography and etching the core layer deposited in step (II); And (IV) depositing a cladding layer having a lower refractive index than the core layer on the wafer including the arrayed optical waveguide core fabricated in step (III).
  • the refractive index of the wafer prepared in the step (I) is higher than the refractive index of the core layer in the step (II)
  • depositing a cladding layer having a refractive index lower than the refractive index of the core layer on the wafer is higher than the refractive index of the core layer in the step (II)
  • the saturable absorbing material is characterized in that the material having a non-linear loss in which the loss rate of light decreases as the intensity of light input to the material increases.
  • the non-linear loss material is characterized in that either carbon nanostructure or topological insulator.
  • the carbon nanostructures are characterized in that either graphene or carbon nanotubes.
  • the topological insulator is It is characterized in that any one of.
  • the wafer is characterized in that either silicon or silica.
  • Another aspect of the present invention for achieving the above object is an optical waveguide type saturated absorber interacting with the attenuation field, the substrate; A core layer formed in a rectangular waveguide shape on one surface of the substrate; A cladding layer formed on the substrate including the core layer, the cladding layer formed such that light attenuating the core layer is exposed on a surface thereof; And a saturated absorber layer formed on the cladding layer.
  • the substrate is characterized in that the lower than the refractive index of the core layer.
  • the substrate when the substrate is higher than the refractive index of the core layer, characterized in that it further comprises a cladding layer lower than the refractive index of the core layer.
  • the saturable absorption layer is characterized in that the material having a non-linear loss in which the loss rate of light decreases as the intensity of light input to the material increases.
  • the non-linear loss material is characterized in that either carbon nanostructure or topological insulator.
  • the carbon nanostructures are characterized in that either graphene or carbon nanotubes.
  • the topological insulator is It is characterized in that any one of.
  • optical waveguide type saturated absorber using the attenuation field interaction described in claim 9 or 15 is composed of a rectangular array having a constant interval in the substrate processing to separate It is a fabricated saturated saturated absorber.
  • Another aspect of the present invention for achieving the above object is a pulsed laser device fabricated on the basis of an optical waveguide type saturable absorber using the attenuation field interaction described in claim 9 or 15.
  • Another aspect of the present invention for achieving the above object is a pulsed laser device manufactured based on an optical waveguide using an optical waveguide-type saturated absorber using the attenuation field interaction described in claim 9 or 15.
  • Another aspect of the present invention for achieving the above object is a pulse laser using the pulse laser device according to claim 17 or 18.
  • FIG. 1 illustrates a typical optical fiber based saturable absorber
  • FIG. 2 is a diagram showing a general optical fiber based saturated absorber
  • FIG. 3 is a view showing an optical waveguide-type saturated absorber using attenuation field interaction according to the present invention.
  • FIG. 4 is a view illustrating a state in which an optical waveguide-type saturated absorber using attenuation field interaction according to the present invention is arranged in a rectangular shape at regular intervals on a substrate;
  • 5 to 11 are views showing an embodiment of the optical waveguide type saturated absorber manufacturing process using the attenuation field interaction according to the present invention
  • FIG. 3 is a diagram illustrating an optical waveguide type saturated absorber using attenuation field interaction according to the present invention
  • FIG. 4 is a view illustrating a state in which the saturated absorber according to the present invention is arranged in a rectangular form at regular intervals on a substrate.
  • 5 to 11 are views illustrating a manufacturing process of the saturated absorber according to the present invention.
  • the optical waveguide-type saturated absorber using attenuation field interaction includes a substrate 10, a core layer 20 formed in a rectangular waveguide shape on one surface of the substrate 10, and the core layer ( 20, a cladding layer 40 formed on the substrate 10 including the cladding layer 40 and a saturated absorbing layer 50 formed on the cladding layer 40 to expose the attenuation field of light guiding the core layer. do.
  • the substrate 10 is a silicon (Si) or silica (SiO 2) wafer required for the wafer process, and the wafer process using silicon (Si) starts from the growth of silicon ingots, and the process of making the silicon rods into wafers. Is as follows.
  • the silicon rods are thinly cut into thin disk-shaped wafers. Then edge contouring or chamfering is performed, chamfering the circumferential edges of the wafer.
  • Lapping or polishing is then performed to achieve a high level of wafer planarity and parallelism. And chemically removes the damage caused by slicing or planarization without further mechanical damage, and then obtains the mirror surface through polishing.
  • the growth of the silicon ingot is a single crystal growth, while growing the single crystal silicon rod (INGOT) while contacting and rotating the SPEED crystals to the solution for high-temperature purified silicon, and the grown silicon rods have a uniform thickness Cut into thin wafers. Wafer sizes are made of 3 ", 4", 6 “, and 8" according to the size of the silicon rods, and the size of the wafer is gradually increased to increase productivity.
  • wafer surface polishing polishes one side of the wafer to make it look like a mirror surface, and draws a circuit pattern on the polished surface, and a circuit to be drawn on the electronic circuit and the actual wafer using a computer aided design (CAD) system.
  • CAD computer aided design
  • SiO2 silicon oxide film
  • a photoresist a light sensitive material, is evenly applied to the wafer surface.
  • a light is passed through a circuit pattern drawn on a mask using a stamper to pass a circuit pattern on the wafer on which the photoresist film is formed, and a portion that is not required using chemicals or reactive gases to form the circuit pattern. Etch selectively. This pattern formation process is repeated for each pattern layer continuously.
  • the impurities connected to the circuit pattern are accelerated in the form of fine gas particles to penetrate the inside of the wafer, thereby making the characteristics of the electronic device formed through chemical reaction between gases through a chemical vapor deposition (CVD) process.
  • the particles are deposited on the wafer surface to form an insulating film or a conductive film.
  • a process of connecting each circuit formed on the wafer surface with aluminum wire and automatically sorting the wafer, cutting the wafer, and polishing the wafer surface is performed.
  • the core layer 20 is a layer having a higher refractive index than the wafer 10 and is a rectangular waveguide in which light is guided while causing total reflection.
  • a cladding layer having a refractive index lower than the refractive index of the core layer 20 is deposited on the substrate 10, and then the core layer 20 is cladding layer. It is formed on the top.
  • the cladding layer 40 includes a rectangular core layer 20 and overclad the upper portion of the wafer 10.
  • the cladding layer 40 has a refractive index lower than the refractive index of the core layer 20, and the upper portion of the core layer 20 ( A portion of 30 is formed such that the attenuation field of light guiding the core layer 20 is exposed on the surface. That is, the cladding layer 40 is thinly formed on the upper portion of the core layer 20, which is a portion where the light attenuation field is exposed on the surface.
  • the optical waveguide having a rectangular shape including the core layer 20 and the cladding layer 40 stacked on the wafer 10 as described above is referred to, and the light propagating through the optical waveguide is totally reflected inside the core layer 20.
  • the attenuation field is a near field of light formed at the interface between the wafer 10, the core layer 20, and the cladding layer 40 with different refractive indices or optical characteristics in the optical waveguide, but the intensity is exponentially increased with distance. It is said to decrease.
  • the saturable absorbing layer 50 is a layer formed on the cladding layer 40 and is a material having a non-linear loss in which the loss rate of light decreases as the intensity of light input to the material increases.
  • Nonlinear loss materials include carbon nanostructures or topological insulators, and carbon nanostructures include graphene or carbon nanotubes. And topological insulators Etc.
  • FIG. 4 illustrates a state in which the saturated absorbers of FIG. 3 are arranged in a rectangular pattern at regular intervals on the wafer 10.
  • the saturated absorbers of FIG. 3 are arranged in a rectangular shape on the wafer 10 as shown in FIG. Saturated absorbers were separated separately using a dicing process.
  • the core layer 20 of FIG. 4 should be marked on all the plurality of saturated absorbers arranged in a rectangular shape.
  • the wafer 10 is prepared.
  • the wafer uses silicon (Si) or silica (SiO 2), and the wafer process using silicon (Si) begins with the growth of silicon ingots, and the process of making the silicon rods as described above is described above.
  • FIG. 6 is a layer in which the core layer 20 is deposited on the wafer 10 prepared in FIG.
  • the core layer 20 has a higher refractive index than the wafer 10, and when the prepared wafer 10 has a higher refractive index than the core layer 20, the core layer 20 has a cladding layer having a lower refractive index than the core layer 20.
  • the core layer 20 is deposited after the first deposition on the wafer 10.
  • FIG. 7 illustrates an optical waveguide in which the core layer 20 deposited in FIG. 6 is arranged in a rectangular shape using photolithogrphy and etching processes
  • FIG. 8 illustrates the optical waveguide manufactured in FIG. 7.
  • the cladding layer 40 is deposited on the containing wafer 10.
  • the cladding layer 40 has a refractive index lower than that of the core layer 20.
  • FIG. 9 etches the cladding layer 40 deposited in FIG. 8 at regular intervals so that the attenuation field of light guiding the core layer 20 is exposed on the surface.
  • the etching is to expose the surface of the attenuation field of the light traveling through the optical waveguide above the optical waveguide.
  • a saturated absorbing layer 50 may be deposited, which may interact with an attenuation field of light traveling through the optical waveguide shown in FIG. 9.
  • the saturated absorbing layer 50 is deposited on the cladding layer 40 including the optical waveguide top.
  • the saturated absorbing layer 50 is a material having a nonlinear loss in which the loss rate of light decreases as the intensity of light input to the material increases, and uses a carbon nanostructure or topological insulator such as graphene or carbon nanotubes. As a topological insulator Etc., but is not limited to the listed materials.
  • FIG. 11 illustrates dicing of optical waveguide based saturated absorbers arranged at regular intervals in FIG.
  • the attenuated field interaction-based optical waveguide saturable absorber fabricated as described above is bonded to the optical fiber array block used in the planar lightwave circuit-based passive optical splitter and bonded to the optical fiber coupled saturation. It is applied to optical fiber pulse laser as absorber and also to optical waveguide pulse laser.
  • Fiber-optic pulsed lasers are optical fiber-based pulsed lasers in which the medium constituting the laser is an optical fiber, the saturable absorber of the present invention bonded with optical fiber components, ie isolators, 90:10 output couplers, optical fiber array blocks, and 980 / 1550 WDM couplers are fabricated by splicing.
  • optical waveguide-type pulse lasers are composed of optical waveguides instead of optical fibers, and silica or silicon is used as a material of optical waveguides.
  • the optical fiber-based pulsed laser described above can be fabricated by fusion splicing of individual optical fiber components, but the optical waveguide-based pulsed laser is engraved when the components constituting the pulse laser are initially used in the photolithography process of engraving a photo mask, or core pattern. Produce at once.
  • Optical fiber-based and optical waveguide-based pulse lasers are divided into picoseconds and femtoseconds by pulse widths.
  • femtoseconds have characteristics such as ultra-short pulse widths of less than picoseconds and high peak power.
  • Optical pulse trains with very low timing jitter output from femtosecond lasers are also used for instrumentation that requires ultra-precision clocks by converting to RF / microwaves, next-generation ICT systems or defense-related high-performance radar systems.
  • femtosecond lasers have a very large market in the world, and the field of femtosecond lasers continues to expand as academics are conducting various studies using femtosecond lasers.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

The present invention relates to an optical waveguide-type saturable absorber and, more specifically, to: an optical waveguide-type saturable absorber, which uses an interaction with an evanescent field, provided and used to implement mode-locking in a femtosecond laser cavity; a manufacturing method therefor; and a femtosecond laser using the same. To this end, the method for manufacturing an optical waveguide-type saturable absorber using an evanescent field interaction, according to the present invention, comprises the steps of: (a) forming arrayed optical waveguides on a wafer; (b) forming rectangular-pattern arrayed saturable absorbers having predetermined intervals therebetween by selectively removing upper parts of the arrayed optical waveguides having predetermined intervals therebetween such that an evanescent field of light traveling through the arrayed optical waveguides prepared in step (a) is exposed to the surface, and by coating a saturable absorption material on the removed parts and the upper parts of the arrayed optical waveguides having predetermined intervals therebetween; and (c) dicing the rectangular-pattern arrayed saturable absorbers formed in step (b) so as to be individually separated.

Description

[규칙 제26조에 의한 보정 10.07.2015] 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 및 그 제조 방법, 그리고 이를 이용한 펄스 레이저 장치, 그리고 이를 이용한 펄스 레이저[Correction according to Rule 26.10.07.2015] 광 Optical waveguide type saturated absorber using attenuation field interaction, its manufacturing method, pulse laser device using the same, and pulse laser using the same
본 발명은 광도파로형 포화 흡수체에 관한 것으로서, 더욱 상세하게는 펄스 레이저 공진기(cavity)내에 모드 잠금(mode-locking) 구현을 위해 설치되어 사용되는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 및 그 제조 방법 그리고 이를 이용한 펄스 레이저 장치 그리고 이를 이용한 펄스 레이저에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide saturable absorber, and more particularly, to an optical waveguide saturable absorber using attenuation field interaction, which is installed and used for realizing mode-locking in a pulse laser cavity. The present invention relates to a manufacturing method, a pulse laser device using the same, and a pulse laser using the same.
반도체, 차세대 디스플레이, LED, 태양전지 등 우리나라의 경제 성장을 견인하는 주축 산업분야에서 레이저를 이용한 초미세 가공이 날로 각광을 받고 있다. 그러나 기존 레이저를 이용한 마이크로 가공이 레이저 광과 재료 사이의 상호 반응에 의한 발열로 인해 한계에 도달한 바, 1990년 이후로 극초단 펄스 레이저를 이용하는 가공기술이 개발되기 시작하였다. Ultra-fine processing using lasers is gaining popularity in the major industries that drive economic growth in Korea such as semiconductors, next-generation displays, LEDs, and solar cells. However, since the micro-machining using the conventional laser reaches the limit due to the heat generated by the mutual reaction between the laser light and the material, the processing technology using the ultra-short pulse laser has been developed since 1990.
극초단 펄스 레이저 가공 기술은 비열 초미세 녹색 가공기술로서 초미세 형상 가공 및 리페어링이 가능하여 재료의 표면뿐만 아니라 투명 재료의 내부에도 초미세 형상을 형성할 수 있다는 장점이 있다. 따라서 그 응용분야는 날로 확대되어 반도체 산업분야에서 뿐만 아니라 시각 교정 및 생체 치료분야, 이광자 흡수 기반 삼차원 형상 가공 분야 및 광결정 가공분야에까지 이르게 되었다. Ultra-short pulse laser processing technology is a non-thermal ultra-fine green processing technology that can be processed and repaired by the ultra-fine shape, there is an advantage that can be formed not only on the surface of the material but also inside the transparent material. Therefore, the field of application has expanded to include not only in the semiconductor industry but also in the field of vision correction and biotherapy, two-photon absorption-based three-dimensional shape processing, and photonic crystal processing.
극초단 펄스 레이저 가공 기술은 그 장점을 바탕으로 소형화를 통한 사용 편리성까지 갖추게 되었는데, 소형화된 펄스 레이저의 발전과 더불어 이를 실외 환경에서 휴대용(portable) 기기로 응용하고자 하는 관심이 크게 증가하고 있는 추세이며, 왜란에 강인하며 장기간 안정화가 가능한 펄스 레이저의 필요성이 증대되고 있다. 휴대용 장치로 활용할 수 있는 분야로는 다양한 휴대용 센서(portable sensor), 원거리 센서(remote sensor), 절대거리 측정 장치, 테라헤르츠파 발진기 등이 있다. Ultra-short pulse laser processing technology has been made easy to use through miniaturization based on its advantages. With the development of miniaturized pulse laser, there is a growing interest to apply it as a portable device in outdoor environment. The need for a pulse laser that is robust against disturbance and capable of long-term stabilization is increasing. Fields that can be utilized as portable devices include various portable sensors, remote sensors, absolute distance measuring devices, terahertz wave oscillators, and the like.
통상적으로 극초단 광펄스는 이득 스위칭, Q-스위칭, 광전궤한법, 자기 발진 레이저 또는 모드 잠금 등의 방법을 통해 생성된다. 산업계에서는 이 중 가간섭성이 큰 극초단 펨토초 광펄스를 생성하기 위하여 모드 잠금 방식(mode-locking method)을 주로 사용하고 있다. Ultra-short optical pulses are typically generated by methods such as gain switching, Q-switching, photolimiting, self-oscillating laser or mode locking. In the industry, a mode-locking method is mainly used to generate ultra-high coherent ultra-short femtosecond optical pulses.
일반적으로 레이저 발진기는 공진기(cavity)와 이득 매질(gain medium)로 이루어지는데, 광학적 증폭기에 해당하는 이득 매질의 증폭 대역과 공진기 길이를 변화시킴으로서 레이저가 단일모드 또는 공진모드(resonance mode)로 작동하도록 제어할 수 있다. 펄스 레이저에 포함되는 극초단의 펨토초 레이저는 대략 100,000∼1,000,000개의 공진모드를 가지는데, 주변 환경 변화에 따라 위상이 일치되는 일정한 순간에 보강간섭을 일으켜 극초단 펄스를 생성하게 된다. Generally, a laser oscillator is composed of a cavity and a gain medium. The laser oscillator operates in a single mode or a resonance mode by changing the amplification band and the resonator length of the gain medium corresponding to the optical amplifier. Can be controlled. Ultra-short femtosecond lasers included in the pulsed laser have a resonance mode of approximately 100,000 to 1,000,000, and generate ultra-short pulses by constructive interference at a constant moment when the phase is matched according to the change of the surrounding environment.
모드 잠금은 외부 변조신호의 인가 여부에 따라 능동 모드 잠금과 수동 모드 잠금으로 분류한다. 일반적으로 수동 모드 잠금이 능동 모드 잠금에 비하여 짧은 펄스를 생성할 수 있으므로 극초단 펄스 레이저에는 수동 모드 잠금이 많이 이용된다. The mode lock is classified into an active mode lock and a passive mode lock according to whether an external modulated signal is applied. In general, passive mode locks are used for ultra-short pulse lasers because passive mode locks can generate shorter pulses than active mode locks.
포화 흡수체(saturable absorption material)는 이러한 수동 모드 잠금을 구현하기 위하여 공진기 내에 삽입되는 광학적 매질이며 주로 포화 흡수 거울(Semi-conductor Saturable Absorber Mirror, SESAM)을 많이 이용한다. 이 외에 모드 잠금 가능한 파장 대역의 가변이 불가능하다는 단점을 보완하기 위하여 탄소나노튜브(CNTs)나 그래핀(graphene) 또는 위상학적 절연체(topological insulator)를 이용한 포화 흡수체 개발에 대한 연구도 많이 수행되고 있다. Saturable absorption material is an optical medium inserted into the resonator in order to realize such passive mode locking and mainly uses a semi-conductor saturable absorber mirror (SESAM). In addition, many researches have been conducted on the development of saturated absorbers using carbon nanotubes (CNTs), graphene, or topological insulators to compensate for the inability to change the wavelength-lockable wavelength band. .
도 1 내지 도 2는 종래의 광섬유 기반 투과형 포화 흡수체이다. 1 to 2 are conventional optical fiber based transmission type saturated absorbers.
도 1은 테이퍼드 광섬유(tapered-fiber) 기반 포화 흡수체로, 광섬유 내부 코어(2)를 따라 도파하는 빛의 감쇠장이 포화 흡수 물질이 코팅될 부분 까지 새어나오도록 열을 가하며, 열을 가한 광섬유(1)를 양쪽에서 잡아당기어 광섬유(1) 가운데 부분을 가늘게 만들고, 이 가늘어진 부분(3) 주위에 포화 흡수 물질(4)을 감싸는 형태로 코팅하므로 광섬유(1)의 가늘어진 부분(3)에서 감쇠되어 나오는 빛과 포화 흡수 물질(3)이 상호 작용하도록 한다. 1 is a tapered-fiber based saturable absorber, in which the attenuation field of light guided along the optical fiber inner core 2 is heated to leak to the portion where the saturable absorbent material is to be coated. 1) pull the taper from both sides to taper the center of the optical fiber 1, and to coat the saturated absorbent material 4 around the tapered portion 3 so that the tapered portion 3 of the optical fiber 1 Allow the light attenuated at to interact with the saturated absorbent material (3).
도 2는 측면이 연마된 광섬유(Side polished fiber)기반 포화 흡수체로 광섬유(5)를 광섬유 홀더(8)에 삽입시킨 후, 측면(7)을 연마(polishing)하고 그 위에 포화 흡수 물질(6)을 코팅하여 광섬유(5)의 연마된 면에서 감쇠되어 나오는 빛과 포화 흡수 물질(6)이 상호 작용하도록 하고 있다. 즉 광섬유(5) 내부 코어를 따라 도파하는 빛의 감쇠장이 포화 흡수 물질이 코팅될 영역까지 새어나오도록 광섬유(5) 표면을 연마하므로 원래 원형에서 D형태로 바뀌게 된다. 이 연마된 표면에 포화 흡수 물질(6)을 코팅하므로 광섬유 내부 코어를 도파하는 빛의 감쇠장과 그 감쇠장이 미치는 범위에 코팅된 포화 흡수 물질간의 상호 작용을 이용하여 포화 흡수체를 제작한다. FIG. 2 is a side polished fiber based saturable absorber which inserts an optical fiber 5 into the optical fiber holder 8 and then polishes the side 7 and the saturated absorbent material 6 thereon. Is coated to allow the light attenuated at the polished side of the optical fiber 5 to interact with the saturated absorbent material 6. In other words, the surface of the optical fiber 5 is polished so that the attenuation field of light guided along the inner core of the optical fiber 5 leaks to the area to be coated with the saturated absorbent material, and thus changes from the original circle to the D shape. Since the saturated absorbent material 6 is coated on the polished surface, a saturated absorber is manufactured by using the interaction between the attenuation field of light guiding the inner core of the optical fiber and the saturated absorbent material coated in the range of the attenuation field.
그러나 이와 같은 포화 흡수체는 개별 광섬유를 일일이 가공해야 하므로 생산성 측면에서 비효율적인 단점이 있다. However, such a saturated absorber has to be processed individually, each fiber has an inefficient disadvantage in terms of productivity.
또한, 광섬유를 포화 흡수체 소자로 가공하기 위한 별도의 공정 장비와 인력을 필요로 한다. In addition, separate process equipment and manpower are required to process the optical fiber into a saturated absorber element.
<선행기술문헌><Preceding technical literature>
(특허문헌 0001) US 8384991 (Patent Document 0001) US 8384991
(비특허문헌)(Non-patent literature)
[1] K. Kieu, M. Mansuripur, Opt. Lett. 32(15), 2242-2244 (2007)[1] K. Kieu, M. Mansuripur, Opt. Lett. 32 (15), 2242-2244 (2007)
[2] Y. -W. Song, S. Yamashita, C. S. Goh, S.Y. Set, Opt. Lett. 32(2), 148-150 (2007)[2] Y. -W. Song, S. Yamashita, C. S. Goh, S.Y. Set, Opt. Lett. 32 (2), 148-150 (2007)
[3] H. Jeong, S.Y. Choi, E. I. Jeong, S. J. Cha, F. Rotermund, D.-1. Yeom, Appl. Phys. Express 6, 052750 (2013)[3] H. Jeong, S.Y. Choi, E. I. Jeong, S. J. Cha, F. Rotermund, D.-1. Yeom, Appl. Phys. Express 6, 052750 (2013)
본 발명은 이와 같은 문제점을 해결하기 위하여 창안된 것으로서, 기판 공정기술을 활용하여 광도파로형 포화 흡수체를 대량으로 생산해 낼 수 있는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 및 그 제조 방법, 그리고 이를 이용한 펄스 레이저 장치, 그리고 이를 이용한 펄스 레이저 제공을 그 목적으로 한다. The present invention has been made to solve the above problems, an optical waveguide saturable absorber using attenuation field interaction that can produce a large amount of the optical waveguide saturable absorber using a substrate processing technology, and a method of manufacturing the same It is an object of the present invention to provide a pulsed laser device, and a pulsed laser using the same.
이와 같은 목적을 달성하기 위한 본 발명은 감쇠장과 상호 작용하는 광도파로형 포화 흡수체를 제조하는 방법으로서, (a) 웨이퍼 상에 배열식 광도파로를 제작하는 단계; (b) 단계 (a)에서 제작된 배열식 광도파로를 진행하는 빛의 감쇠장이 표면에 드러나도록 상기 배열식 광도파로의 상부를 일정한 간격을 두고 선택적으로 제거하고, 상기 제거된 부분을 포함한 일정한 간격을 가지는 배열식 광도파로 상부에 포화 흡수 물질을 코팅하여 직사각형 패턴의 일정한 간격을 가지는 배열식 포화 흡수체를 제작하는 단계; 및 (c) 단계 (b)에서 제작된 직사각형 패턴의 배열식 포화 흡수체를 다이싱하여 개별 분리시키는 단계를 포함한다. According to an aspect of the present invention, there is provided a method of manufacturing an optical waveguide type saturated absorber interacting with an attenuation field, the method comprising: (a) fabricating an arrayed optical waveguide on a wafer; (b) selectively removing the upper portion of the arrayed optical waveguide at regular intervals so that the attenuation field of the light traveling through the arrayed optical waveguide fabricated in step (a) is exposed on the surface; Manufacturing a saturable absorber having a constant spacing of a rectangular pattern by coating a saturated absorbent material on an arrayed optical waveguide having a rectangular pattern; And (c) dicing the rectangular saturated array of saturated absorbers produced in step (b) to separate them separately.
바람직하게는 상기 단계 (a)는 (Ⅰ) 웨이퍼를 준비하는 단계; (Ⅱ) 단계 (Ⅰ)에서 준비된 웨이퍼 상에 상기 웨이퍼의 굴절률보다 높은 굴절률을 갖는 코어층을 증착하는 단계; (Ⅲ) 단계 (Ⅱ)에서 증착된 코어층을 포토리소그래피(photolithography) 및 에칭(etching) 공정을 통해 배열식 광도파로 코어를 제작하는 단계; 및 (Ⅳ) 단계 (Ⅲ)에서 제작된 배열식 광도파로 코어를 포함한 웨이퍼 상에 상기 코어층보다 낮은 굴절률을 갖는 클래딩층을 증착하는 단계;Preferably step (a) comprises (I) preparing a wafer; (II) depositing a core layer having a refractive index higher than that of the wafer on the wafer prepared in step (I); (III) fabricating an arrayed optical waveguide core by photolithography and etching the core layer deposited in step (II); And (IV) depositing a cladding layer having a lower refractive index than the core layer on the wafer including the arrayed optical waveguide core fabricated in step (III).
를 포함하는 것을 특징으로 한다. Characterized in that it comprises a.
바람직하게는 상기 단계 (Ⅱ)에서 상기 단계 (Ⅰ)에서 준비된 웨이퍼의 굴절률이 상기 코어층의 굴절률보다 높을 경우, 상기 웨이퍼 상에 상기 코어층의 굴절률보다 낮은 굴절률을 갖는 클래딩층을 증착하는 단계를 더 포함하는 것을 특징으로 한다. Preferably, when the refractive index of the wafer prepared in the step (I) is higher than the refractive index of the core layer in the step (II), depositing a cladding layer having a refractive index lower than the refractive index of the core layer on the wafer. It further comprises.
바람직하게는 상기 포화 흡수 물질은 물질에 입력되는 빛의 세기가 증가함에 따라 빛이 겪는 손실률이 감소하는 비선형 손실을 갖는 물질인 것을 특징으로 한다. Preferably, the saturable absorbing material is characterized in that the material having a non-linear loss in which the loss rate of light decreases as the intensity of light input to the material increases.
바람직하게는 상기 비선형 손실을 갖는 물질은 탄소 나노 구조물 또는 위상학적 절연체 중 어느 하나인 것을 특징으로 한다. Preferably, the non-linear loss material is characterized in that either carbon nanostructure or topological insulator.
바람직하게는 상기 탄소 나노 구조물은 그래핀 또는 탄소 나노관 중 어느 하나인 것을 특징으로 한다. Preferably, the carbon nanostructures are characterized in that either graphene or carbon nanotubes.
바람직하게는 상기 위상학적 절연체는
Figure PCTKR2015006342-appb-I000001
중 어느 하나인 것을 특징으로 한다.
Preferably the topological insulator is
Figure PCTKR2015006342-appb-I000001
It is characterized in that any one of.
바람직하게는 상기 웨이퍼는 실리콘 또는 실리카 중 어느 하나인 것을 특징으로 한다. Preferably, the wafer is characterized in that either silicon or silica.
이와 같은 목적을 달성하기 위한 본 발명의 다른 측면은 감쇠장과 상호 작용하는 광도파로형 포화 흡수체로서, 기판; 상기 기판 상의 일면에 직사각형의 도파로 형태로 형성된 코어층; 상기 코어층을 포함한 기판 상에 형성되며 상기 코어층을 도파하는 빛이 감쇠장이 표면에 드러나도록 형성된 클래딩층; 및 상기 클래딩층에 형성된 포화 흡수층;을 포함한다. Another aspect of the present invention for achieving the above object is an optical waveguide type saturated absorber interacting with the attenuation field, the substrate; A core layer formed in a rectangular waveguide shape on one surface of the substrate; A cladding layer formed on the substrate including the core layer, the cladding layer formed such that light attenuating the core layer is exposed on a surface thereof; And a saturated absorber layer formed on the cladding layer.
바람직하게는 상기 기판은 상기 코어층의 굴절률보다 낮은 것을 특징으로 한다. Preferably, the substrate is characterized in that the lower than the refractive index of the core layer.
바람직하게는 상기 기판이 상기 코어층의 굴절률보다 높을 경우, 상기 코어층의 굴절률보다 낮은 클래딩층을 더 포함하는 것을 특징으로 한다. Preferably, when the substrate is higher than the refractive index of the core layer, characterized in that it further comprises a cladding layer lower than the refractive index of the core layer.
바람직하게는 상기 포화 흡수층은 물질에 입력되는 빛의 세기가 증가함에 따라 빛이 겪는 손실률이 감소하는 비선형 손실을 갖는 물질인 것을 특징으로 한다. Preferably, the saturable absorption layer is characterized in that the material having a non-linear loss in which the loss rate of light decreases as the intensity of light input to the material increases.
바람직하게는 상기 비선형 손실을 갖는 물질은 탄소 나노 구조물 또는 위상학적 절연체 중 어느 하나인 것을 특징으로 한다.Preferably, the non-linear loss material is characterized in that either carbon nanostructure or topological insulator.
바람직하게는 상기 탄소 나노 구조물은 그래핀 또는 탄소 나노관 중 어느 하나인 것을 특징으로 한다. Preferably, the carbon nanostructures are characterized in that either graphene or carbon nanotubes.
바람직하게는 상기 위상학적 절연체는
Figure PCTKR2015006342-appb-I000002
중 어느 하나인 것을 특징으로 한다.
Preferably the topological insulator is
Figure PCTKR2015006342-appb-I000002
It is characterized in that any one of.
이와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면은 청구항 9 또는 15에 기재된 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체는 기판 공정시 일정한 간격을 가지는 직사각형 형태의 배열식으로 구성되어 개별 분리하도록 제작된 배열식 포화 흡수체이다. Another aspect of the present invention for achieving the above object is that the optical waveguide type saturated absorber using the attenuation field interaction described in claim 9 or 15 is composed of a rectangular array having a constant interval in the substrate processing to separate It is a fabricated saturated saturated absorber.
이와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면은 청구항 9 또는 15에 기재된 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체를 이용하여 광섬유 기반으로 제작된 펄스 레이저 장치이다. Another aspect of the present invention for achieving the above object is a pulsed laser device fabricated on the basis of an optical waveguide type saturable absorber using the attenuation field interaction described in claim 9 or 15.
이와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면은 청구항 9 또는 15에 기재된 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체를 이용하여 광도파로 기반으로 제작된 펄스 레이저 장치이다.Another aspect of the present invention for achieving the above object is a pulsed laser device manufactured based on an optical waveguide using an optical waveguide-type saturated absorber using the attenuation field interaction described in claim 9 or 15.
이와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면은 청구항 17 또는 18에 기재된 펄스 레이저 장치를 이용한 펄스 레이저이다. Another aspect of the present invention for achieving the above object is a pulse laser using the pulse laser device according to claim 17 or 18.
본 발명에 의하면, 기판 공정 기술을 활용하여 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체의 대량 생산이 가능해지는 효과가 있다. According to the present invention, it is possible to mass-produce an optical waveguide-type saturated absorber using attenuation field interaction by utilizing a substrate processing technology.
또한 대량 생산이 가능해짐으로써, 초단 펄스 폭, 높은 첨두 출력의 우수한 특성을 가지는 펄스 레이저에 적용시키므로 높은 가격 때문에 발전시키지 못한 펄스 레이저 중에서도 펨토초 레이저 시장을 개척할 수 있는 효과가 있다. In addition, by enabling mass production, it is applied to a pulse laser having excellent characteristics of ultra short pulse width and high peak output, thereby pioneering the femtosecond laser market among pulse lasers that have not been developed due to high price.
도 1은 일반적인 광섬유 기반 포화 흡수체를 도시한 도면1 illustrates a typical optical fiber based saturable absorber
도 2는 일반적인 광섬유 기반 포화 흡수체를 도시한 도면2 is a diagram showing a general optical fiber based saturated absorber
도 3은 본 발명에 따른 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체를 도시한 도면3 is a view showing an optical waveguide-type saturated absorber using attenuation field interaction according to the present invention.
도 4는 본 발명에 따른 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체가 기판에 일정한 간격을 가지고 직사각형 형태로 배열된 상태를 도시한 도면4 is a view illustrating a state in which an optical waveguide-type saturated absorber using attenuation field interaction according to the present invention is arranged in a rectangular shape at regular intervals on a substrate;
도 5 내지 도 11은 본 발명에 따른 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 과정의 실시예를 도시한 도면5 to 11 are views showing an embodiment of the optical waveguide type saturated absorber manufacturing process using the attenuation field interaction according to the present invention
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
도 3은 본 발명에 따른 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체를 도시한 도면이고, 도 4는 본 발명에 따른 포화 흡수체가 기판에 일정한 간격을 두고 직사각형 형태로 배열된 상태를 도시한 도면이며, 도 5 내지 도 11은 본 발명에 따른 포화 흡수체의 제조 과정을 도시한 도면이다. 3 is a diagram illustrating an optical waveguide type saturated absorber using attenuation field interaction according to the present invention, and FIG. 4 is a view illustrating a state in which the saturated absorber according to the present invention is arranged in a rectangular form at regular intervals on a substrate. 5 to 11 are views illustrating a manufacturing process of the saturated absorber according to the present invention.
도 3에 도시된 바와 같이 감쇠장 상호작용을 이용한 광도파로형 포화 흡수체는 기판(10)과, 상기 기판(10) 상의 일면에 직사각형의 도파로 형태로 형성된 코어층(20)과, 상기 코어층(20)을 포함한 기판(10) 상에 형성되고 상기 코어층을 도파하는 빛의 감쇠장이 표면에 드러나도록 형성된 클래딩층(40)과, 상기 클래딩층(40) 상에 형성된 포화 흡수층(50)을 포함한다. As shown in FIG. 3, the optical waveguide-type saturated absorber using attenuation field interaction includes a substrate 10, a core layer 20 formed in a rectangular waveguide shape on one surface of the substrate 10, and the core layer ( 20, a cladding layer 40 formed on the substrate 10 including the cladding layer 40 and a saturated absorbing layer 50 formed on the cladding layer 40 to expose the attenuation field of light guiding the core layer. do.
기판(10)은 웨이퍼 공정에 필요한 실리콘(Si) 또는 실리카(SiO2) 웨이퍼로, 실리콘(Si)을 이용한 웨이퍼 공정은 실리콘 봉(silicon ingot)의 성장으로부터 시작되며, 이 실리콘 봉을 웨이퍼로 만드는 과정은 다음과 같다. The substrate 10 is a silicon (Si) or silica (SiO 2) wafer required for the wafer process, and the wafer process using silicon (Si) starts from the growth of silicon ingots, and the process of making the silicon rods into wafers. Is as follows.
우선, 실리콘 봉을 얇게 잘라내어 얇은 디스크 형상의 웨이퍼로 만든다. 그런 다음 모서리 윤곽 작업 혹은 모떼기를 실시하는데, 웨이퍼의 원주 모서리 부분에 대한 모떼기(chamfering) 작업을 한다. First, the silicon rods are thinly cut into thin disk-shaped wafers. Then edge contouring or chamfering is performed, chamfering the circumferential edges of the wafer.
이후, 높은 수준의 웨이퍼 평면도와 평행도를 달성하기 위하여 래핑 또는 연마 작업을 수행한다. 그리고 더 이상의 기계적 손상 없이 슬라이싱이나 평탄화에 의해 야기된 손상을 화학적으로 제거한 뒤, 폴리싱을 통하여 거울면을 얻어내는 것이다. Lapping or polishing is then performed to achieve a high level of wafer planarity and parallelism. And chemically removes the damage caused by slicing or planarization without further mechanical damage, and then obtains the mirror surface through polishing.
여기서, 상기 실리콘 봉(silicon ingot)의 성장은 단결정 성장으로 고속도로 정제된 실리콘용 용액에 스피드(SPEED) 결정을 접촉, 회전시키면서 단결정 규소봉(INGOT)을 성장시키며, 성장된 규소봉을 균일한 두께의 얇은 웨이퍼로 잘라낸다. 웨이퍼의 크기는 규소봉의 구경에 따라 3", 4", 6", 8"로 만들어지며 생산성 향상을 위해 점점 대구경화 경향을 보이고 있다. Here, the growth of the silicon ingot (silicon ingot) is a single crystal growth, while growing the single crystal silicon rod (INGOT) while contacting and rotating the SPEED crystals to the solution for high-temperature purified silicon, and the grown silicon rods have a uniform thickness Cut into thin wafers. Wafer sizes are made of 3 ", 4", 6 ", and 8" according to the size of the silicon rods, and the size of the wafer is gradually increased to increase productivity.
이후, 웨이퍼 표면 연마는 웨이퍼의 한쪽 면을 연마하여 거울 면처럼 만들어 주며, 이 연마된 면에 회로 패턴을 그려 넣게 되고, CAD(Computer Aided Design)시스템을 사용하여 전자회로와 실제 웨이퍼 위에 그려질 회로패턴을 설계하는 것이다. 이때 설계된 회로패턴을 E-beam 서리로 유리판 위에 그려 마스크를 만들고, 고온(800~1200℃)에서 산소나 수증기를 실리콘 웨이퍼 표면과 화학 반응시켜 얇고 균일한 실리콘 산화막(SiO2)을 형성 시키며, 그런 다음 빛에 민감한 물질인 포토레지스트를 웨이퍼 표면에 고르게 도포시킨다. Subsequently, wafer surface polishing polishes one side of the wafer to make it look like a mirror surface, and draws a circuit pattern on the polished surface, and a circuit to be drawn on the electronic circuit and the actual wafer using a computer aided design (CAD) system. To design a pattern. At this time, draw the designed circuit pattern on the glass plate with E-beam frost to make a mask, and chemically react oxygen or water vapor with the surface of silicon wafer at high temperature (800 ~ 1200 ℃) to form a thin and uniform silicon oxide film (SiO2). A photoresist, a light sensitive material, is evenly applied to the wafer surface.
이어서, 스템퍼를 사용하여 마스크에 그려진 회로패턴에 빛을 통과시켜 포토레지스트막이 형성된 웨이퍼위에 회로 패턴을 찍는 노광 단계를 거치며, 회로패턴을 형성시켜 주기 위해 화학물질이나 반응성 가스를 사용하여 필요 없는 부분을 선택적으로 식각한다. 이러한 패턴형성과정은 각 패턴 층에 대해 계속적으로 반복된다.Subsequently, a light is passed through a circuit pattern drawn on a mask using a stamper to pass a circuit pattern on the wafer on which the photoresist film is formed, and a portion that is not required using chemicals or reactive gases to form the circuit pattern. Etch selectively. This pattern formation process is repeated for each pattern layer continuously.
이후, 회로패턴과 연결된 부분에 불순물을 미세한 가스 입자 형태로 가속하여 웨이퍼의 내부에 침투시킴으로써 전자소자의 특성이 만들어지고, 화학기상증착(CVD; Chemical Vapor Deposition)공정을 통하여 가스간의 화학반응으로 형성된 입자들을 웨이퍼 표면에 증착하여 절연막이나 전도성 막을 형성시킨다. 이어서, 웨이퍼 표면에 형성된 각 회로를 알루미늄 선으로 연결시키고 웨이퍼를 자동 선별하여, 웨이퍼를 절단하고, 웨이퍼 표면을 연마하는 과정이 이루어진다. Thereafter, the impurities connected to the circuit pattern are accelerated in the form of fine gas particles to penetrate the inside of the wafer, thereby making the characteristics of the electronic device formed through chemical reaction between gases through a chemical vapor deposition (CVD) process. The particles are deposited on the wafer surface to form an insulating film or a conductive film. Subsequently, a process of connecting each circuit formed on the wafer surface with aluminum wire and automatically sorting the wafer, cutting the wafer, and polishing the wafer surface is performed.
코어층(20)은 웨이퍼(10)보다 높은 굴절률을 갖는 층으로 빛이 전반사를 일으키며 도파되는 직사각형 형태의 도파로이다. 웨이퍼(10)의 굴절률이 코어층(20)의 굴절률 보다 높을 경우 코어층(20)의 굴절률보다 낮은 굴절률을 갖는 클래딩층을 기판(10) 상에 증착시킨 후, 코어층(20)이 클래딩층 위에 형성된다. The core layer 20 is a layer having a higher refractive index than the wafer 10 and is a rectangular waveguide in which light is guided while causing total reflection. When the refractive index of the wafer 10 is higher than the refractive index of the core layer 20, a cladding layer having a refractive index lower than the refractive index of the core layer 20 is deposited on the substrate 10, and then the core layer 20 is cladding layer. It is formed on the top.
클래딩층(40)은 직사각형 형태의 코어층(20)을 포함하여 웨이퍼(10) 상부를 오버 클래딩 한 층으로, 코어층(20)의 굴절률보다 낮을 굴절률을 갖으며, 코어층(20) 상부(30)의 일부는 코어층(20)을 도파하는 빛의 감쇠장이 표면에 드러나도록 형성된다. 즉 빛의 감쇠장이 표면에 드러나는 부분인 코어층(20) 상부는 클래딩층(40)이 얇게 형성된다. The cladding layer 40 includes a rectangular core layer 20 and overclad the upper portion of the wafer 10. The cladding layer 40 has a refractive index lower than the refractive index of the core layer 20, and the upper portion of the core layer 20 ( A portion of 30 is formed such that the attenuation field of light guiding the core layer 20 is exposed on the surface. That is, the cladding layer 40 is thinly formed on the upper portion of the core layer 20, which is a portion where the light attenuation field is exposed on the surface.
여기서 상기와 같이 웨이퍼(10) 위에 적층된 코어층(20) 및 클래딩층(40)을 포함하여 직사각형 형태의 광도파로라 하며, 이 광도파로를 진행하는 빛이 전반사되어 코어층(20) 내부에 국한되어 도파되며 감쇠장이 나타난다. 감쇠장은 광도파로에서 굴절률 또는 광학적 특성이 서로 다른 웨이퍼(10) 및 코어층(20), 클래딩층(40)의 경계면에서 형성되는 빛의 근접 장으로 손실은 없으나 거리에 따라 그 세기가 지수적으로 감소하는 것을 말한다. In this case, the optical waveguide having a rectangular shape including the core layer 20 and the cladding layer 40 stacked on the wafer 10 as described above is referred to, and the light propagating through the optical waveguide is totally reflected inside the core layer 20. Localized, guided and attenuated. The attenuation field is a near field of light formed at the interface between the wafer 10, the core layer 20, and the cladding layer 40 with different refractive indices or optical characteristics in the optical waveguide, but the intensity is exponentially increased with distance. It is said to decrease.
포화 흡수층(50)은 클래딩층(40) 상부에 형성된 층이며, 물질에 입력되는 빛의 세기가 증가함에 따라 빛이 겪는 손실률이 감소하는 비선형 손실을 갖는 물질이다. 비선형 손실을 갖는 물질로는 탄소 나노 구조물 또는 위상학적 절연체 등이 있고, 탄소 나노 구조물은 그래핀 또는 탄소 나노관 등이 있다. 그리고 위상학적 절연체는
Figure PCTKR2015006342-appb-I000003
등이 있다.
The saturable absorbing layer 50 is a layer formed on the cladding layer 40 and is a material having a non-linear loss in which the loss rate of light decreases as the intensity of light input to the material increases. Nonlinear loss materials include carbon nanostructures or topological insulators, and carbon nanostructures include graphene or carbon nanotubes. And topological insulators
Figure PCTKR2015006342-appb-I000003
Etc.
도 4는 도 3의 포화 흡수체가 웨이퍼(10)에 일정한 간격을 가지고 직사각형 패턴으로 배열된 상태를 나타낸 것으로 도 3의 포화 흡수체는 도 4와 같이 웨이퍼(10) 상에 직사각형 형태로 배열된 다수개의 포화 흡수체를 다이싱 공정을 이용하여 개별적으로 분리시킨 것이다. 참고로 도 4의 코어층(20)은 직사각형 형태로 배열된 다수개의 포화 흡수체에 모두 표시되어야 한다.  4 illustrates a state in which the saturated absorbers of FIG. 3 are arranged in a rectangular pattern at regular intervals on the wafer 10. The saturated absorbers of FIG. 3 are arranged in a rectangular shape on the wafer 10 as shown in FIG. Saturated absorbers were separated separately using a dicing process. For reference, the core layer 20 of FIG. 4 should be marked on all the plurality of saturated absorbers arranged in a rectangular shape.
이와 같이 구성되는 본 발명의 포화 흡수체 제조 과정의 실시예를 도 5 내지 도 11를 참고하여 설명하면 다음과 같다. An embodiment of the saturated absorber manufacturing process of the present invention configured as described above will be described with reference to FIGS. 5 to 11.
도 5에 도시된 바와 같이 웨이퍼(10)를 준비한다. 웨이퍼는 실리콘(Si)이나 실리카(SiO2)를 이용하며 실리콘(Si)을 이용한 웨이퍼 공정은 실리콘 봉(silicon ingot)의 성장으로부터 시작되며, 이 실리콘 봉을 웨이퍼로 만드는 과정은 앞에서 설명한 바와 같다. As shown in FIG. 5, the wafer 10 is prepared. The wafer uses silicon (Si) or silica (SiO 2), and the wafer process using silicon (Si) begins with the growth of silicon ingots, and the process of making the silicon rods as described above is described above.
도 6은 도 5에서 준비한 웨이퍼(10) 상에 코어층(20)을 증착한 것으로 빛이 전반사되어 일으키며 도파되는 층이다. 코어층(20)은 웨이퍼(10)보다 높은 굴절률을 갖으며, 준비한 웨이퍼(10)가 코어층(20)보다 굴절률이 높을 경우, 코어층(20)보다 낮은 굴절률을 갖는 클래딩 역할을 하는 층을 웨이퍼(10) 상에 먼저 증착 한 후 코어층(20)을 증착한다. FIG. 6 is a layer in which the core layer 20 is deposited on the wafer 10 prepared in FIG. The core layer 20 has a higher refractive index than the wafer 10, and when the prepared wafer 10 has a higher refractive index than the core layer 20, the core layer 20 has a cladding layer having a lower refractive index than the core layer 20. The core layer 20 is deposited after the first deposition on the wafer 10.
도 7은 도 6에서 증착된 코어층(20)을 포토리소그래피(photolithogrphy) 및 에칭(etching) 공정을 이용하여 직사각형 형태로 배열된 광도파로를 제작하고, 도 8에서는 도 7에서 제작된 광도파로를 포함한 웨이퍼(10) 상에 클래딩층(40)을 증착한다. 클래딩층(40)은 코어층(20)의 굴절률보다 낮은 굴절률을 갖는다. FIG. 7 illustrates an optical waveguide in which the core layer 20 deposited in FIG. 6 is arranged in a rectangular shape using photolithogrphy and etching processes, and FIG. 8 illustrates the optical waveguide manufactured in FIG. 7. The cladding layer 40 is deposited on the containing wafer 10. The cladding layer 40 has a refractive index lower than that of the core layer 20.
도 9는 도 8에서 증착된 클래딩층(40)을 상기 코어층(20)을 도파하는 빛의 감쇠장이 표면에 드러나도록 일정한 간격을 두고 식각한다. 여기서 식각은 광도파로 상부로 광도파로를 진행하는 빛의 감쇠장이 표면이 드러나도록 하기 위한 것이다.FIG. 9 etches the cladding layer 40 deposited in FIG. 8 at regular intervals so that the attenuation field of light guiding the core layer 20 is exposed on the surface. The etching is to expose the surface of the attenuation field of the light traveling through the optical waveguide above the optical waveguide.
도 10에서는 도 9에서 드러난 광도파로를 진행하는 빛의 감쇠장과 상호 작용할 수 있는 포화 흡수층(50)을 증착한다. 포화 흡수층(50)은 광도파로 상부를 포함하여 클래딩층(40)에 증착한다. 포화 흡수층(50)은 물질에 입력되는 빛의 세기가 증가함에 따라 빛이 겪는 손실률이 감소하는 비선형 손실을 갖는 물질로서, 그래핀이나 탄소 나노관과 같은 탄소 나노 구조물 또는 위상학적 절연체를 이용하며, 위상학적 절연체로는
Figure PCTKR2015006342-appb-I000004
등이 있을 수 있지만, 나열된 물질로 한정하는 것은 아니다.
In FIG. 10, a saturated absorbing layer 50 may be deposited, which may interact with an attenuation field of light traveling through the optical waveguide shown in FIG. 9. The saturated absorbing layer 50 is deposited on the cladding layer 40 including the optical waveguide top. The saturated absorbing layer 50 is a material having a nonlinear loss in which the loss rate of light decreases as the intensity of light input to the material increases, and uses a carbon nanostructure or topological insulator such as graphene or carbon nanotubes. As a topological insulator
Figure PCTKR2015006342-appb-I000004
Etc., but is not limited to the listed materials.
도 11은 도 9에서 일정한 간격을 두고 배열된 광도파로 기반 포화 흡수체를 다이싱하여 개별 분리시킨 것이다. FIG. 11 illustrates dicing of optical waveguide based saturated absorbers arranged at regular intervals in FIG.
이와 같이 제작된 감쇠장 상호 작용 기반 광도파로형 포화 흡수체는 평판형 광도파로(planar lightwave circuit) 기반 수동 광분배기에서 사용되고 있는 광섬유 배열 블록(fiber array block)과 본딩(bonding)하여 광섬유 커플링 된 포화 흡수체로 광섬유 펄스 레이저에 적용되며 광도파로형 펄스 레이저에도 적용된다. The attenuated field interaction-based optical waveguide saturable absorber fabricated as described above is bonded to the optical fiber array block used in the planar lightwave circuit-based passive optical splitter and bonded to the optical fiber coupled saturation. It is applied to optical fiber pulse laser as absorber and also to optical waveguide pulse laser.
광섬유 펄스 레이저는 광섬유를 기반으로 하는 펄스 레이저로서, 레이저를 구성하는 매질이 광섬유이며, 광섬유 컴포넌트들 즉, 아이솔레이터나, 90:10 출력 커플러, 광섬유 배열 블록과 본딩된 본 발명의 포화 흡수체, 그리고 980/1550 WDM 커플러들을 융착접속(splicing)하여 제작한다. Fiber-optic pulsed lasers are optical fiber-based pulsed lasers in which the medium constituting the laser is an optical fiber, the saturable absorber of the present invention bonded with optical fiber components, ie isolators, 90:10 output couplers, optical fiber array blocks, and 980 / 1550 WDM couplers are fabricated by splicing.
그리고 광도파로형 펄스 레이저는 광섬유 기반 펄스 레이저와 달리 레이저를 구성하는 매질이 광섬유가 아닌 광도파로로 이루어지며, 광도파로의 재료로는 실리카 또는 실리콘이 사용된다. 앞에서 설명한 광섬유 기반 펄스 레이저는 개별 광섬유 컴포넌트들을 융착접속하여 제작이 가능하지만, 광도파로 기반 펄스 레이저는 펄스 레이저를 구성하는 여러 컴포넌트들이 초기에 포토 마스크 즉 코어 패턴을 새기는 포토리소그래피 공정에 사용될 때 새겨진 체로 한 번에 제작한다. Unlike optical fiber-based pulsed lasers, optical waveguide-type pulse lasers are composed of optical waveguides instead of optical fibers, and silica or silicon is used as a material of optical waveguides. The optical fiber-based pulsed laser described above can be fabricated by fusion splicing of individual optical fiber components, but the optical waveguide-based pulsed laser is engraved when the components constituting the pulse laser are initially used in the photolithography process of engraving a photo mask, or core pattern. Produce at once.
광섬유 기반 및 광도파로 기반의 펄스 레이저는 펄스폭에 의하여 피코초, 펨토초 등으로 나뉘어지며, 예를 들어 펨토초란 피코초(picosecond) 미만의 초단 펄스폭, 높은 첨두 출력(peak power) 등의 특성을 가지고 있으며, 마이크로미터 크기 구조물의 초정밀 미세 가공, 유리 접합(glass welding), 레이저 각인(direct laser writing), 나노 입자 생성, 비선형 광학 현상을 이용한 바이오 이미징, 의료 시술용 등 다양한 과학 및 산업 기술 분야에 사용된다. 그리고 펨토초 레이저에서 출력되는 매우 낮은 타이밍 지터의 광펄스형(optical pulse train)은 RF/마이크로파로 변환하여 초정밀 클럭을 요하는 계측장치, 차세대 ICT 시스템이나 국방 관련 고성능 레이더 시스템에도 활용된다. 또한 펨토초 레이저는 세계적으로 매우 큰 시장 규모를 가지고 있으며 현재에도 학계에서는 펨토초 레이저를 활용한 여러 연구들을 진행 중에 있어 펨토초 레이저의 활용 분야는 계속해서 확대되고 있다.Optical fiber-based and optical waveguide-based pulse lasers are divided into picoseconds and femtoseconds by pulse widths. For example, femtoseconds have characteristics such as ultra-short pulse widths of less than picoseconds and high peak power. In a wide range of scientific and industrial technologies, including ultra-precise micromachining of micrometer-sized structures, glass welding, direct laser writing, nanoparticle generation, bio-imaging using nonlinear optical phenomena, and medical procedures Used. Optical pulse trains with very low timing jitter output from femtosecond lasers are also used for instrumentation that requires ultra-precision clocks by converting to RF / microwaves, next-generation ICT systems or defense-related high-performance radar systems. In addition, femtosecond lasers have a very large market in the world, and the field of femtosecond lasers continues to expand as academics are conducting various studies using femtosecond lasers.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.
<부호의 설명><Description of the code>
10: 웨이퍼 10: wafer
20: 코어층20: core layer
30: 코어층 상부 30: upper core layer
40: 클래딩층40: cladding layer
50: 포화 흡수층 50: saturated absorbent layer

Claims (19)

  1. 감쇠장과 상호 작용하는 광도파로형 포화 흡수체를 제조하는 방법으로서,A method of manufacturing an optical waveguide type saturated absorber that interacts with an attenuation field,
    (a) 웨이퍼 상에 배열식 광도파로를 제작하는 단계;(a) fabricating an arrayed optical waveguide on the wafer;
    (b) 단계 (a)에서 제작된 배열식 광도파로를 진행하는 빛의 감쇠장이 표면에 드러나도록 상기 배열식 광도파로의 상부를 일정한 간격을 두고 선택적으로 제거하고, 상기 제거된 부분을 포함한 배열식 광도파로 상부에 포화 흡수 물질을 코팅하여 일정한 간격을 가지는 직사각형 패턴의 배열식 포화 흡수체를 제작하는 단계; 및(b) selectively removing an upper portion of the arrayed optical waveguide at regular intervals so that the attenuation field of the light traveling through the arrayed optical waveguide produced in step (a) is exposed on the surface, and including the removed portion. Coating a saturated absorbent material on the optical waveguide to form a rectangular saturated array of saturated absorbers having a predetermined interval; And
    (c) 단계 (b)에서 제작된 일정한 간격을 가지는 직사각형 패턴의 배열식 포화 흡수체를 다이싱하여 개별 분리시키는 단계;(c) dicing the discretely arranged rectangular saturable absorbers of uniformly spaced intervals produced in step (b) to separate them;
    를 포함하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.Optical waveguide type saturated absorber manufacturing method using attenuation field interaction comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 (a)는Step (a) is
    (Ⅰ) 웨이퍼를 준비하는 단계;(I) preparing a wafer;
    (Ⅱ) 단계 (Ⅰ)에서 준비된 웨이퍼 상에 상기 웨이퍼의 굴절률보다 높은 굴절률을 갖는 코어층을 증착하는 단계;(II) depositing a core layer having a refractive index higher than that of the wafer on the wafer prepared in step (I);
    (Ⅲ) 단계 (Ⅱ)에서 증착된 코어층을 포토리소그래피(photolithography) 및 에칭(etching) 공정을 통해 배열식 광도파로 코어를 제작하는 단계; 및(III) fabricating an arrayed optical waveguide core by photolithography and etching the core layer deposited in step (II); And
    (Ⅳ) 단계 (Ⅲ)에서 제작된 배열식 광도파로 코어를 포함한 웨이퍼 상에 상기 코어층보다 낮은 굴절률을 갖는 클래딩층을 증착하는 단계;(IV) depositing a cladding layer having a lower refractive index than the core layer on a wafer including the arrayed optical waveguide core fabricated in step (III);
    를 포함하는 것을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.Optical waveguide type saturated absorber manufacturing method using attenuation field interaction, characterized in that it comprises a.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 단계 (Ⅱ)에서 상기 단계 (Ⅰ)에서 준비된 웨이퍼의 굴절률이 상기 코어층의 굴절률보다 높을 경우, 상기 웨이퍼 상에 상기 코어층의 굴절률보다 낮은 굴절률을 갖는 클래딩층을 증착하는 단계;Depositing a cladding layer having a refractive index lower than the refractive index of the core layer on the wafer when the refractive index of the wafer prepared in the step (I) is higher than that of the core layer in the step (II);
    를 더 포함하는 것을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법. Optical waveguide type saturated absorber manufacturing method using attenuation field interaction, characterized in that it further comprises.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 포화 흡수 물질은 물질에 입력되는 빛의 세기가 증가함에 따라 빛이 겪는 손실률이 감소하는 비선형 손실을 갖는 물질인 것The saturated absorbent material is a material having a nonlinear loss in which the loss ratio of light decreases as the intensity of light input to the material increases.
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.Method for producing an optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 비선형 손실을 갖는 물질은 탄소 나노 구조물 또는 위상학적 절연체 중 어느 하나인 것The non-linear loss material is either carbon nanostructure or topological insulator
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.Method for producing an optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 탄소 나노 구조물은 그래핀 또는 탄소 나노관 중 어느 하나인 것The carbon nanostructure is one of graphene or carbon nanotubes
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.Method for producing an optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 위상학적 절연체는
    Figure PCTKR2015006342-appb-I000005
    중 어느 하나인 것
    The topological insulator is
    Figure PCTKR2015006342-appb-I000005
    Any one of
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.Method for producing an optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 웨이퍼는 실리콘 또는 실리카 중 어느 하나인 것을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체 제조 방법.The wafer is an optical waveguide type saturated absorber manufacturing method using attenuation field interaction, characterized in that any one of silicon or silica.
  9. 감쇠장과 상호 작용하는 광도파로형 포화 흡수체로서,An optical waveguide-type saturated absorber that interacts with an attenuation field,
    기판;Board;
    상기 기판 상의 일면에 직사각형의 도파로 형태로 형성된 코어층;A core layer formed in a rectangular waveguide shape on one surface of the substrate;
    상기 코어층을 포함한 기판 상에 형성되며 상기 코어층을 도파하는 빛의 감쇠장이 표면에 드러나도록 형성된 클래딩층; 및A cladding layer formed on a substrate including the core layer, the cladding layer formed to expose attenuation of light guiding the core layer on a surface thereof; And
    상기 클래딩층에 형성된 포화 흡수층;A saturated absorber layer formed on the cladding layer;
    을 포함하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction comprising a.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 기판은 상기 코어층의 굴절률보다 낮은 것The substrate is lower than the refractive index of the core layer
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 기판이 상기 코어층의 굴절률보다 높을 경우, 상기 코어층의 굴절률보다 낮은 클래딩층;A cladding layer lower than the refractive index of the core layer when the substrate is higher than the refractive index of the core layer;
    을 더 포함하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction further comprising.
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 포화 흡수층은 물질에 입력되는 빛의 세기가 증가함에 따라 빛이 겪는 손실률이 감소하는 비선형 손실을 갖는 물질인 것The saturated absorber layer is a material having a nonlinear loss in which the loss rate of light decreases as the intensity of light input to the material increases.
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 비선형 손실을 갖는 물질은 탄소 나노 구조물 또는 위상학적 절연체 중 어느 하나인 것The non-linear loss material is either carbon nanostructure or topological insulator
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 탄소 나노 구조물은 그래핀 또는 탄소 나노관 중 어느 하나인 것The carbon nanostructure is one of graphene or carbon nanotubes
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 위상학적 절연체는
    Figure PCTKR2015006342-appb-I000006
    중 어느 하나인 것
    The topological insulator is
    Figure PCTKR2015006342-appb-I000006
    Any one of
    을 특징으로 하는 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체.Optical waveguide type saturated absorber using attenuation field interaction characterized in that.
  16. 청구항 9 또는 15에 기재된 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체는 기판 공정시 일정한 간격을 가지는 직사각형 형태의 배열식으로 구성되어 개별 분리하도록 제작된 배열식 포화 흡수체.The optical waveguide type saturable absorber using the attenuation field interaction according to claim 9 or 15 is an array type saturable absorber that is configured to be separated separately by being arranged in a rectangular array having a predetermined interval during substrate processing.
  17. 청구항 9 또는 15에 기재된 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체를 이용하여 광섬유 기반으로 제작된 펄스 레이저 장치.A pulse laser device fabricated on an optical fiber basis using an optical waveguide-type saturated absorber using the attenuation field interaction according to claim 9 or 15.
  18. 청구항 9 또는 15에 기재된 감쇠장 상호 작용을 이용한 광도파로형 포화 흡수체를 이용하여 광도파로 기반으로 제작된 펄스 레이저 장치.A pulsed laser device manufactured based on an optical waveguide using the optical waveguide-type saturated absorber using the attenuation field interaction according to claim 9 or 15.
  19. 청구항 17 또는 18에 기재된 펄스 레이저 장치를 이용한 펄스 레이저.The pulse laser using the pulse laser apparatus of Claim 17 or 18.
PCT/KR2015/006342 2015-01-30 2015-06-23 Optical waveguide-type saturable absorber using interaction with evanescent field, manufacturing method therefor, pulse laser device using same and pulse laser using same WO2016122056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0015043 2015-01-30
KR20150015043 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016122056A1 true WO2016122056A1 (en) 2016-08-04

Family

ID=56543649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006342 WO2016122056A1 (en) 2015-01-30 2015-06-23 Optical waveguide-type saturable absorber using interaction with evanescent field, manufacturing method therefor, pulse laser device using same and pulse laser using same

Country Status (2)

Country Link
KR (2) KR20160094247A (en)
WO (1) WO2016122056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350389A (en) * 2019-07-10 2019-10-18 浙江大学 A kind of saturable absorber and preparation method thereof based on planar optical waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019206B1 (en) * 2017-07-20 2019-11-04 한국과학기술연구원 Method for synthesis of graphene along waveguides in situ, photonics device including graphene obtained using the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020003193A (en) * 1999-02-12 2002-01-10 앤더슨 데릭 제이. Laser ablation of waveguide structures
JP2007010692A (en) * 2003-11-05 2007-01-18 Hitachi Chem Co Ltd Optical waveguide and method of manufacturing the same
US20080069498A1 (en) * 2006-09-18 2008-03-20 Sergey Frolov Tapered composite waveguide for athermalization
JP2009031582A (en) * 2007-07-27 2009-02-12 Fuji Xerox Co Ltd Method for manufacturing optical waveguide
JP2011114005A (en) * 2009-11-24 2011-06-09 Central Glass Co Ltd Laser light source device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174385A (en) 1998-07-15 2000-06-23 Sony Corp Semiconductor laser
JP2002217484A (en) 2001-01-18 2002-08-02 Fujitsu Ltd Optical semiconductor device
WO2010039310A1 (en) 2008-06-26 2010-04-08 Cornell University Skin securable drug delivery device with a shock absorbing protective shield
JP2011077471A (en) 2009-10-02 2011-04-14 Sharp Corp Semiconductor laser element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020003193A (en) * 1999-02-12 2002-01-10 앤더슨 데릭 제이. Laser ablation of waveguide structures
JP2007010692A (en) * 2003-11-05 2007-01-18 Hitachi Chem Co Ltd Optical waveguide and method of manufacturing the same
US20080069498A1 (en) * 2006-09-18 2008-03-20 Sergey Frolov Tapered composite waveguide for athermalization
JP2009031582A (en) * 2007-07-27 2009-02-12 Fuji Xerox Co Ltd Method for manufacturing optical waveguide
JP2011114005A (en) * 2009-11-24 2011-06-09 Central Glass Co Ltd Laser light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350389A (en) * 2019-07-10 2019-10-18 浙江大学 A kind of saturable absorber and preparation method thereof based on planar optical waveguide

Also Published As

Publication number Publication date
KR20160094247A (en) 2016-08-09
KR101787209B1 (en) 2017-10-18
KR20160094269A (en) 2016-08-09

Similar Documents

Publication Publication Date Title
Müller et al. Structuring of macroporous silicon for applications as photonic crystals
US5613995A (en) Method for making planar optical waveguides
CN111965761B (en) Grating coupler based on lithium niobate thin film material and manufacturing method thereof
CN109324372B (en) Silicon optical waveguide end face coupler
CN102515507B (en) Metal core microstructure fiber and preparation method thereof
CN109613632A (en) Tunable cavity and preparation method thereof based on flexible surface phasmon coupler
WO2016122056A1 (en) Optical waveguide-type saturable absorber using interaction with evanescent field, manufacturing method therefor, pulse laser device using same and pulse laser using same
CN101083511A (en) Cone fiber microball type optical add-drop multiplexer and method of manufacture
CN103926648A (en) SOI-based waveguide coupler and production method thereof
Wu et al. Infrared tubular microcavity based on rolled-up GeSn/Ge nanomembranes
CN100489579C (en) Production method of ionic exchange glass light waveguide device
CN104317071B (en) Graphene-based planar optical waveguide polarization beam splitter
Tee et al. Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator
WO2021068606A1 (en) Optical modulator
CN110426772A (en) A kind of photon crystal heterojunction structure of achievable elliptically polarized light one-way transmission
CN115774300A (en) Hetero-integrated silicon-based thin film lithium niobate modulator and manufacturing method thereof
Lin et al. Two-and three-dimensional photonic crystals built with VLSI tools
CN112612078A (en) High-efficiency coupling waveguide based on GOI or SOI and preparation method thereof
CN216696749U (en) Fast optical waveguide device based on photonic crystal material heterostructure
CN111367013B (en) Lithium niobate micro-ring and waveguide integrated device and preparation method thereof
Lin et al. Ultracompact AWG using air-trench bends with perfluorocyclobutyl polymer waveguides
Hashida et al. GaN microring waveguide bonded to Si substrate by polymer
Sun et al. High silica waveguides on alumina substrates for hybrid optoelectronic integration
Xin et al. Vertical SiC taper with a small angle fabricated by slope transfer method
Chu et al. Buried sol-gel/SiON waveguide structure for passive alignment to single-mode fiber on Si substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880236

Country of ref document: EP

Kind code of ref document: A1