WO2016121596A1 - 水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョンの製造方法 - Google Patents

水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョンの製造方法 Download PDF

Info

Publication number
WO2016121596A1
WO2016121596A1 PCT/JP2016/051562 JP2016051562W WO2016121596A1 WO 2016121596 A1 WO2016121596 A1 WO 2016121596A1 JP 2016051562 W JP2016051562 W JP 2016051562W WO 2016121596 A1 WO2016121596 A1 WO 2016121596A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous emulsion
liquid
stirring
dispersibility
tank
Prior art date
Application number
PCT/JP2016/051562
Other languages
English (en)
French (fr)
Inventor
皆川 光雄
Original Assignee
皆川 光雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 皆川 光雄 filed Critical 皆川 光雄
Publication of WO2016121596A1 publication Critical patent/WO2016121596A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a method for improving the dispersibility of an aqueous emulsion, and more particularly, to separate agglomerates of fine particles formed by agglomeration of fine particles in an aqueous emulsion into individual fine particles by efficient physical treatment.
  • This relates to a method for improving the dispersibility of an aqueous emulsion carried out by the above method.
  • this invention relates to the water-based emulsion which improved the dispersibility by this method, and the water-based coating material containing the same.
  • An aqueous emulsion which is an emulsion in which resin fine particles are dispersed in water, is widely used for applications such as paints, adhesives, inks, and surface treatment agents.
  • Water-based paints using water-based emulsions are used for various applications such as rust prevention, antifouling, mold prevention, insulation, heat insulation or snow prevention.
  • Water-based paints that use water-based emulsions form a coating film with the resin as the main component after the water evaporates, but when the coating film is formed, the coating properties and adhesion Insulation properties are a problem.
  • the resin fine particles in the aqueous emulsion are present not only in the form of single resin fine particles but also in the form of aggregates of various sizes in which a plurality of resin fine particles are aggregated.
  • the agglomerates are important properties as a paint and cause a decrease in coating properties, adhesion, and the like. Therefore, in an aqueous emulsion used as a paint, the agglomerates are divided into individual fine particles or a larger size. It is desirable to separate even small agglomerates, that is, to make the dispersibility of the aqueous emulsion good.
  • Patent Document 1 reports a dispersion method of a mixture in which a dispersoid such as an aqueous emulsion and a solvent are mixed using a supercritical fluid such as carbon dioxide.
  • Patent Document 2 a high speed is imparted by pressurizing an aqueous mixture obtained by low-pressure stirring, and the aqueous mixture imparted with a high speed is jetted and collided so as to face each other.
  • a method for dispersing agglomerates of resin fine particles has been reported.
  • the step of stirring the aqueous mixed solution in a reduced pressure state and the step of jetting and colliding the pressurized aqueous mixed liquids are performed in separate reactors. It is completely separated.
  • Patent Document 1 requires a large-scale apparatus in the method of bringing the entire liquid in the reactor into a supercritical state, and the method described in Patent Document 1 is not practical from the viewpoint of cost.
  • Water-based paints are widespread in a wide range of technical fields, and in addition to the desire for water-based emulsions that achieve higher levels of dispersion, agglomerates in the water-based emulsions can be efficiently produced at low cost. Therefore, it has been desired to develop a method that can be separated into a large amount and capable of mass processing.
  • the present invention has been made in view of the above-described background art, and its object is to provide a method capable of efficiently separating and refining agglomerates in an aqueous emulsion and capable of mass processing at low cost.
  • another object is to provide an aqueous emulsion in which agglomerates are sufficiently separated and refined and is excellent when used as a paint or the like.
  • a part of the aqueous emulsion in the stirring and mixing tank in a reduced pressure state is continuously collected and pressurized, and sprayed into the stirring and mixing tank to cause collision between the aqueous emulsions, thereby agglomerating.
  • the mass can be separated.
  • the present inventor in such a method, once collected aqueous emulsion returns to the original stirring and mixing tank (the aqueous emulsion circulates), so that a high level of dispersion is caused by repeated collisions. It becomes possible, and continuous processing is possible without repeated charging and removal of raw materials, enabling mass processing, and finding that it can efficiently separate agglomerates and improve dispersibility, The present invention has been completed.
  • the present invention reduces the pressure in the stirring and mixing tank into which the aqueous emulsion is charged to a pressure at which dissolved air contained in the aqueous emulsion is removed, and dispersibility of the aqueous emulsion that causes the aqueous emulsions after the decompression treatment to collide with each other
  • An improved method A part of the liquid in the tank, which is an aqueous emulsion present in the stirring and mixing tank, is continuously collected in the liquid pressurizing mechanism, and the pressurized liquid that is the aqueous emulsion pressurized by the liquid pressurizing mechanism is stirred.
  • a water-based emulsion is circulated by spraying into the mixing tank, Dispersibility of an aqueous emulsion characterized by improving the dispersibility of fine particles in the aqueous emulsion by colliding with the liquid in the tank when the pressurized liquid is jetted into the stirring and mixing tank An improved method is provided.
  • the present invention also provides a method for producing an aqueous emulsion, characterized by using the above-described method for improving the dispersibility of an aqueous emulsion.
  • the present invention also provides an apparatus for improving the dispersibility of an aqueous emulsion, characterized by being used for the above-described method for improving the dispersibility of an aqueous emulsion.
  • the present invention also provides an aqueous emulsion characterized in that the dispersibility is improved by the above-described method for improving the dispersibility of an aqueous emulsion.
  • the present invention also provides an aqueous paint characterized by containing the above aqueous emulsion.
  • agglomerates of fine particles in an aqueous emulsion can be sufficiently separated and refined, and the dispersibility of the aqueous emulsion can be improved to a higher level. That is, by reducing the pressure in the stirring and mixing tank into which the aqueous emulsion is charged and removing the “dissolved air containing dissolved oxygen” in the aqueous emulsion, the separation of agglomerates due to the collision between the aqueous emulsions can be promoted. As a result, the dispersibility of the aqueous emulsion can be improved to a level higher than conventional levels. Moreover, since the atmospheric pressure is not applied to the aqueous emulsion in the stirring and mixing tank, it can be dispersed well and can be maintained even after the good dispersion state is returned to normal pressure.
  • the aqueous emulsion whose dispersibility has been improved by the method of the present invention is used for rust prevention, antifouling, antifungal, insulation, heat insulation, adhesion when used in applications such as paints, adhesives, inks, and surface treatment agents. It shows excellent properties that are not available in the past for various performances such as snow prevention.
  • the fine particles are uniformly distributed on the surface of the substrate as compared with the case where a conventional aqueous emulsion is used. It becomes easy to align. As a result, deterioration due to ultraviolet rays, contact with rainwater, and generation of rust due to high humidity are reduced, so that the water-based paint obtained by the method of the present invention has high weather resistance.
  • the use of the aqueous coating material obtained by the method of the present invention can provide insulation resistance, heat resistance, flame resistance, etc. An excellent, strong and strong coating film can be obtained. Furthermore, if the aqueous emulsion obtained by the method of the present invention is prepared in a state where impurities are removed, the above performance is further improved.
  • a pressurized aqueous solution is collided with an aqueous emulsion from which "dissolved air containing dissolved oxygen" is removed under reduced pressure, and agglomerates of fine particles are separated and finely divided by the energy of the collision.
  • a supercritical fluid the same effect is obtained without requiring a large-scale apparatus, and the cost, safety and productivity are excellent.
  • the method of the present invention is a method in which a part of the aqueous emulsion is collected from the stirred and mixed tank in a reduced pressure state, pressurized, and sprayed toward the original stirred and mixed tank. Circulates, the number of collisions can be increased and continuous processing is possible. Therefore, as in the batch method of Patent Document 2, if the number of collisions is to be increased, the raw material must be repeatedly charged and taken out many times, and the agglomerates can be efficiently separated and refined. It can proceed and productivity is greatly improved.
  • the method of the present invention increases the production capacity by 2 times or more (6 times or more depending on the type of water-based emulsion, type of apparatus, injection pressure, processing time, etc.). It is possible. In addition, there is no separate special collision device, so it is difficult to use the device for nuclear weapon development.
  • re-aggregation of the fine particles may occur during or after the dispersion treatment.
  • the dispersed state of the fine particles can be well maintained over a long period of time. Further, when water evaporates after being applied to the substrate, fine particles having the same charge are easily aligned on the substrate in the emulsion.
  • FIG. 1 It is a schematic diagram which shows the outline of an example (embodiment in which a pressurized liquid injection part exists in the side surface of a stirring and mixing tank) used for the dispersibility improvement method of the aqueous emulsion of this invention.
  • An example of an apparatus used in the method for improving the dispersibility of an aqueous emulsion of the present invention (embodiment in which a pressurized liquid injection part is present in a hollow part of a stirring and mixing tank and the pressurized liquids injected from two directions collide with each other)
  • FIG. 1 It is a schematic diagram which shows the outline of an example (embodiment which charges a collection liquid using a charging mechanism) used for the dispersibility improvement method of the aqueous
  • A Conventional water-based emulsion or water-based paint in which agglomerates of fine particles are present
  • A Conventional particle size distribution before treatment by the method of the present invention
  • FIGS. 1-10 ⁇ Overview of overall device configuration> The method for improving the dispersibility of the aqueous emulsion of the present invention will be described while showing the constitution of the apparatus. Examples of “an apparatus for improving the dispersibility of an aqueous emulsion” used in the method for improving the dispersibility of an aqueous emulsion of the present invention are shown in FIGS.
  • the aqueous emulsion dispersibility improving apparatus of the present invention (hereinafter sometimes simply referred to as “dispersibility improving apparatus”) includes a stirring / mixing tank 10 to which a decompression mechanism 30 is connected, a liquid pressurizing mechanism 20 and a pressurizing mechanism 20.
  • a pressure fluid injection unit 14 is provided.
  • the aqueous emulsion E which is the object to be treated, circulates through the stirring / mixing tank 10 and the liquid pressurizing mechanism 20 via the pressurized liquid ejecting section 14, and aggregates in the aqueous emulsion are separated into individual fine particles or small size.
  • the process of separating into agglomerates (hereinafter sometimes simply referred to as “process”) is performed continuously.
  • the stirring / mixing tank 10 has a stirring mechanism 11 so that the liquid charged therein can be stirred, and the aqueous emulsion E is charged into the stirring / mixing tank 10.
  • the stirring / mixing tank 10 is connected to a decompression mechanism 30, and the inside of the stirring / mixing tank 10 is decompressed by the decompression mechanism 30 during processing.
  • the pressure in the stirring and mixing vessel 10 is reduced to a pressure at which dissolved air contained in the aqueous emulsion is removed.
  • the force acting between the fine particles in the aqueous emulsion becomes weak, and water, a surfactant, etc. enter between the fine particles, and the binding force between the fine particles becomes weak. Is difficult to form agglomerates, and the agglomerates are easily separated and refined.
  • dissolved air oxygen
  • dissolved air oxygen
  • the stirring and mixing tank 10 By depressurizing the inside of the stirring and mixing tank 10, such dissolved air (oxygen) can be removed, and the fine particles can be easily separated and refined. That is, when the dissolved air (oxygen) is removed, the energy of collision between the aqueous emulsions directly (effectively) acts to separate and refine the fine particles.
  • a part of the aqueous emulsion that has undergone the pressure reduction treatment is collected from the stirring and mixing tank 10, enters the liquid pressurizing mechanism 20, and is jetted toward the stirring and mixing tank 10 while being pressurized there. That is, in the present invention, the aqueous emulsions after the pressure reduction treatment collide with each other in the stirring and mixing tank 10. In this way, by colliding the aqueous emulsions after the decompression treatment, the fine particles whose binding force has been weakened by the decompression treatment are suitably separated and refined by the energy of the impact (aggregates are separated and refined). Further, the dissolved air (oxygen) that hinders dispersion is removed by reducing the pressure, and the dispersibility of the fine particles in the aqueous emulsion is improved.
  • the pressure reduction in the stirring and mixing tank 10, the collection of the aqueous emulsion into the liquid pressurizing mechanism 20, and the injection collision of the pressurized aqueous emulsion are continuously performed in the dispersibility improving apparatus 1, that is, aqueous While the emulsion E is circulated inside the dispersibility improving apparatus 1, the agglomerates are separated.
  • aqueous emulsions E those present in the stirring and mixing tank 10 are “liquid in the tank (E1)”, and those once taken out of the stirring and mixing tank 10 are referred to as “collected liquid (E2)”.
  • “A pressurized liquid (E3)” is a state in which the agglomerates are pressurized to a pressure sufficient to suitably separate and refine the agglomerates by collision.
  • Valves open / close valves
  • these valves are appropriately provided in the piping between the stirring and mixing tank 10 and the pressure reducing mechanism 30 and between the stirring and mixing tank 10 and the liquid pressurizing mechanism 20, and in principle, these valves are connected during processing. When opened, continuous processing is performed, and these valves are closed when the raw material is charged or when the material is taken out after the processing is completed.
  • the aqueous emulsion E is put into the stirring and mixing tank 10 at the start of operation.
  • the charging portion of the aqueous emulsion E is not shown, the position and shape thereof are not particularly limited, and the position is preferably present in the upper portion of the stirring and mixing tank 10 for ease of charging (see FIG. Not shown).
  • the stirring / mixing tank 10 may be stirred by spraying the pressurized liquid E3 into the stirring / mixing tank as described later (for example, as shown in FIG. 7). It is preferable to have the mechanism 11. There is no limitation in particular about the kind of stirring mechanism 11, and what can stir the inside of the tank of the stirring mixing tank 10 uniformly can be selected suitably. In the drawing, a form having a stirring blade in the central axis portion is illustrated, but for example, a stirring mechanism 11 having a stirring blade outside the central axis (near the inner wall of the stirring and mixing tank 10) may be used. A stirring mechanism 11 having both (double) stirring blades is also preferred.
  • the operating conditions such as the number of revolutions
  • conditions that allow uniform stirring in the tank are selected as appropriate.
  • the stirring mechanism 11 not only can the composition and temperature of the liquid E1 in the tank be made uniform, but excessive liquid level rise due to bumping of the liquid E1 in the tank and generation of bubbles during the decompression process can be avoided.
  • Volume of the stirring mixing tank 10 is not particularly limited, 300L (liter) or more 5 m 3 or less, more 2m 3 and particularly preferably 500L.
  • the volume is not less than the above lower limit, a sufficient throughput can be achieved, and mass production and cost reduction, which are the effects of the present invention, can be achieved more (synergistically).
  • the amount is not more than the above upper limit, the apparatus is not too large and advantageous in terms of cost, the workability is good, and the inside of the tank is easily stirred sufficiently uniformly.
  • the filling rate of the liquid E1 in the tank inside the stirring and mixing tank 10 (value obtained by dividing the volume of the liquid E1 in the tank existing in the stirring and mixing tank 10 by the volume of the stirring and mixing tank 10) is usually It is 20% or more and 90% or less, and preferably 40% or more and 80% or less.
  • the filling rate is within the above range, the inside of the agitation and mixing tank 10 can be easily and stably decompressed, and the inside of the tank can be uniformly stirred with little scattering of the liquid E1 in the tank. Will improve.
  • the volume of the liquid E1 in the tank may decrease due to the reduced pressure, it is preferable to maintain the above range even in that case.
  • the stirring and mixing tank 10 is connected to the decompression mechanism 30 in the exhaust part 12.
  • the position of the exhaust part 12 is not particularly limited as long as it is above the liquid level of the in-tank liquid E1.
  • a preferable pressure in the stirring and mixing tank 10 is a pressure at which dissolved air or the like can be removed and the amount of the (circulating) aqueous emulsion E is less likely to decrease, that is, a level equivalent to or slightly higher than the saturated vapor pressure of water (for example, saturated vapor of water).
  • the pressure is about 1 to 1.5 times the pressure.
  • the pressure in the stirring and mixing tank 10 is preferably equal to or higher than the saturated vapor pressure at the temperature of the aqueous emulsion (liquid E1 in the tank).
  • the inside of the stirring and mixing tank 10 is exhausted by the pressure reducing mechanism 30, and even if water in the aqueous emulsion (liquid E1 in the tank) evaporates to some extent, a “preferable pressure (decompression degree) that maintains the effect of the present invention, Set pressure reduction time, temperature, etc.
  • “preferred” means that when water evaporates, the particle concentration and viscosity of the aqueous emulsion increase. Even at the increased fine particle concentration and viscosity, the pressurized liquid E3 is injected into the in-tank liquid E1. That is, there is no problem in separating and refining the agglomerates by colliding with each other, and the amount of the liquid E1 in the tank is reduced so that the circulation of the aqueous emulsion E is not hindered.
  • the temperature of the bath liquid E1 in the stirring and mixing bath 10 during operation is not particularly limited, but is preferably 0 ° C. or higher and 60 ° C. or lower, more preferably 1 ° C. or higher and 40 ° C. or lower, and particularly preferably 2 ° C. or higher and 30 ° C. or lower. It is preferably 4 ° C. or higher and 20 ° C. or lower.
  • the temperature of the liquid E1 in the tank in the dissolved air removal stage before circulation is higher by 0 ° C. or more and 20 ° C. or less than the above upper and lower limit temperatures.
  • the apparatus used for temperature adjustment is not particularly limited, but a known apparatus such as a cooler provided mainly in contact with the outside of the stirring and mixing tank 10 such as a jacket type or a cooling pipe type may be used.
  • the pressure for preventing the liquid E1 in the tank from boiling (that is, the saturated vapor pressure of the aqueous emulsion) can be kept low, so Since no pressure (external pressure) is applied from the surroundings, the separation and refinement of the agglomerates proceeds suitably. Further, the evaporation of water is suppressed, the amount of the liquid E in the tank is kept constant, and the rate of increase in the particle concentration and viscosity of the aqueous emulsion (tank liquid E1) is suppressed.
  • the decompression time is not particularly limited as long as the dissolved air contained in the aqueous emulsion is sufficiently removed, and the volume of the stirring and mixing tank 10, the amount of exhaust, the method of adjusting the exhaust speed, the degree of decompression, etc. 2 minutes to 60 minutes, preferably 5 minutes to 40 minutes, more preferably 10 minutes to 20 minutes, in particular, from the start of decompression (exhaust) to the circulation and injection of the aqueous emulsion. preferable.
  • the pressure reduction may be started and the injection / circulation may be started preferably after the above time has elapsed, but the pressure reduction and the injection / circulation may be started simultaneously.
  • the pressure in the stirring and mixing tank 10 is equal to or higher than the saturated vapor pressure at the temperature of the liquid E1 in the tank in order to prevent boiling, but “(described above) water at the temperature of the liquid E1 in the tank.
  • the temperature of the in-bath liquid E1 is 20 ° C.
  • it is preferably 2.3 kPa (18 Torr) or more and 9.3 kPa or less, and particularly preferably 2.3 kPa or more and 3.5 kPa or less.
  • the stirring / mixing tank 10 preferably includes means for measuring pressure and temperature (not shown), and preferably includes means for uniformly controlling the temperature in the stirring / mixing tank 10 (FIG. Not shown). Furthermore, it is preferable that the position and state (whether it is not boiling) of the liquid E1 in the tank E1 in the stirring and mixing tank 10 can be visually monitored.
  • the stirring and mixing tank 10 has an in-tank liquid collection part 13 for collecting the in-tank liquid E1.
  • a part of the liquid E1 in the tank, which is the aqueous emulsion E present in the stirring and mixing tank 10, is continuously collected in the liquid pressurizing mechanism 20 and pressurized there.
  • the position of the liquid collection unit 13 in the tank is not particularly limited as long as it is always below the liquid level of the liquid E1 in the tank, but the liquid level of the liquid E1 in the tank may drop due to the decompression process.
  • the tank liquid collection part 13 needs to be below the liquid level of the tank liquid E1.
  • only one in-vessel liquid collection unit 13 may exist in the stirring and mixing vessel 10, or a plurality of in-vessel liquid collection units 13 may exist as shown in FIGS. 2 and 4.
  • the some liquid collection part 13 in a tank may exist in the different height in the stirring mixing tank 10, and in such a case, the quantity of the liquid E1 in a tank, etc.
  • the in-bath liquid collection unit 13 used for collection can be changed by opening and closing a valve or the like.
  • the stirring and mixing tank 10 has a pressurized liquid ejecting unit 14 for ejecting the pressurized liquid E3 pressurized by the liquid pressurizing mechanism 20.
  • the pressurized liquid E3 that is the aqueous emulsion E pressurized by the liquid pressurizing mechanism 20 is ejected from the pressurized liquid ejecting unit 14 into the stirring and mixing tank 10.
  • the aqueous emulsion E is returned to the stirring and mixing vessel 10 so that the aqueous emulsion E circulates in the apparatus.
  • the dispersibility of the fine particles in the aqueous emulsion is improved by causing the pressurized solution E3 to collide with the in-vessel solution E1, that is, Separation and refinement of fine particle agglomerates into finer ones. Since the pressurized liquid E3 is sprayed toward the stirring and mixing tank 10 and the pressurized liquid E3 collides with the liquid E1 in the tank at a high speed, the separation and refinement of the agglomerates proceeds.
  • the nozzle shape is preferable.
  • the inner diameter of the nozzle tip is not particularly limited, but is preferably 0.03 mm or more and 0.3 mm or less, and 0.05 mm or more in order to obtain a “speed of pressurized liquid” sufficient for separation and refinement of agglomerates. 0.15 mm or less is particularly preferable.
  • the position of the pressurized liquid injection unit 14 is not particularly limited as long as it is below the liquid level of the in-tank liquid E1 (if the injected pressurized liquid E3 can collide with the in-tank liquid E1).
  • the vertical position of the pressurized liquid injection unit 14 is upward from the vertical position of the stirring blades of the stirring mechanism 11. Alternatively, it is preferable to shift it downward because the impact of injection is less likely to be applied to the stirring blade.
  • the vertical position of the pressurized liquid ejecting section 14 is provided substantially at the center of the two agitating blades as shown in FIG. It is particularly preferable because it is not given.
  • the number of the pressurized liquid ejecting units 14 is not particularly limited. As illustrated in FIGS. 1 and 4, one pressurized liquid ejecting unit 14 may exist in the stirring and mixing tank 10. As shown in FIG. 2, two pressurized liquid ejecting units 14 may exist in the stirring and mixing tank 10, or three or more pressurized liquid ejecting units 14 may exist.
  • FIG. 1 shows an example of a relatively simple embodiment of the present invention.
  • One in-vessel liquid collecting section 13 and one pressurized liquid are provided on the wall surface of a substantially cylindrical stirring and mixing tank 10.
  • the injection part 14 exists.
  • the in-tank liquid E1 is collected in the liquid pressurizing mechanism 20 from the in-tank liquid collecting unit 13, and the pressurized liquid E3 pressurized by the liquid pressurizing mechanism 20 is ejected from the pressurized liquid ejecting unit 14.
  • the mixture returns to the agitation / mixing tank 10 and collides with the in-vessel liquid E1 in the agitation / mixing tank 10, whereby separation and refinement of the agglomerates of fine particles proceed.
  • the stirring and mixing tank 10 has a hollow portion 15, and the pressurized liquid E ⁇ b> 3 is injected into the hollow portion 15.
  • the hollow part 15 may exist in the lower part and side surface of the stirring and mixing tank 10, it is preferable to exist in the lower part of the stirring and mixing tank 10 as shown in FIG.2 and FIG.4.
  • the pressurized liquid E ⁇ b> 3 may be injected from one direction into the recessed portion 15 (the pressurized liquid injection unit 14 is 1).
  • the pressurized liquid injection unit 14 is 1).
  • the number of directions in which the pressurized liquid E3 is ejected is one direction (one), two directions (two), three directions (three), or four directions (four).
  • one direction (one) or two directions (two) is more preferable, and two directions (two) are particularly preferable. If there are too many directions to spray, the apparatus becomes complicated, leading only to an increase in cost, and the efficiency of processing is not improved.
  • the aggregates of the aggregates can be separated more efficiently by causing the pressurized liquids E ⁇ b> 3 ejected from the pressurized liquid ejecting units 14 to collide with each other. Can proceed.
  • the stirring / mixing tank 10 has the recessed portion 15, the distance between the pressurized liquid ejecting portions 14 can be shortened by providing the pressurized liquid ejecting portion 14 in the recessed portion 15. Demonstrate.
  • two pressurized liquid ejecting units 14 are installed in the recessed portion 15 as shown in FIG.
  • the distance between the pressurized liquid ejecting units 14 is preferably It is 1 mm or more and 100 mm or less, and particularly preferably 2 mm or more and 50 mm or less.
  • the pressurized liquids E3 collide with each other, if the distance between the pressurized liquid ejecting portions 14 from which the pressurized liquids E3 are ejected is short (less than the above upper limit), the pressurized liquid E3 is applied with a large velocity energy.
  • the pressure fluids E3 can collide with each other, and the efficiency of separation and refinement of the agglomerates is improved.
  • the pressurized liquid E3 when sprayed from the side surface of the stirring and mixing tank 10 as shown in FIG. 1, it is added while being shifted in the horizontal direction from the direction of the rotation axis of the stirring mechanism 11, that is, the central axis direction of the stirring and mixing tank 10. It is preferable to inject the pressure fluid E3.
  • an impact may be applied to the rotating shaft of the stirring mechanism 11.
  • spraying in such a direction from two (or more) side surfaces of the stirring / mixing tank 10 is preferable because it is easy to achieve the target.
  • the injection direction of the pressurized liquid E3 is indicated by an arrow in the schematic cross-sectional view of the stirring and mixing vessel 10.
  • the angle shifted from the central axis direction to the horizontal direction is not particularly limited as long as the above effect is obtained, but ⁇ is preferably 20 ° or more and 80 ° or less, and 35 ° or more and 75 ° or less. Is more preferable, and 50 ° to 70 ° is particularly preferable. If the angle ⁇ is in this range, it is possible to stir the liquid E1 in the tank without giving an impact to the rotating shaft of the stirring mechanism 11, and when the pressurized liquid injection unit 14 is installed in the stirring and mixing tank 10. Processing such as drilling of the stirring and mixing tank 10 is easy.
  • the spraying direction is preferably a substantially horizontal direction or obliquely downward with respect to a horizontal plane.
  • the angle in the horizontal direction or obliquely downward is not particularly limited, but is preferably 0 ° or more and 60 ° or less, more preferably 5 ° or more and 45 ° or less, and more preferably 10 ° or more and 30 ° or less. Is particularly preferred.
  • the pressurized liquid E3 may be ejected from the surface of the liquid E1 in the tank.
  • the spraying direction is a substantially horizontal direction or is obliquely upward with respect to the horizontal plane.
  • the angle in the horizontal direction or obliquely downward is not particularly limited, but is preferably 0 ° or more and 60 ° or less, more preferably 5 ° or more and 45 ° or less, and more preferably 10 ° or more and 30 ° or less. Is particularly preferred.
  • the liquid flow may hit the bottom of the recessed portion 15 or the ejection port 16 may be impacted.
  • the stirring mechanism 11 is not easily damaged by the jet, and the pressurized liquid E3 It is particularly preferable that the jetting direction is obliquely upward with respect to the horizontal plane, since the pressurized liquid E3 collides with the collision plate, and the separation / miniaturization of the agglomerates is promoted.
  • the take-out port 16 for taking out the aqueous emulsion E in the stirring / mixing tank 10 may be present anywhere in the stirring / mixing tank 10, but is present in the lower part of the stirring / mixing tank 10 for easy removal. It is preferable.
  • ⁇ Decompression mechanism 30> There is no limitation in particular in the kind of pressure reduction mechanism 30, What is necessary is just to be able to depressurize the inside of the stirring mixing tank 10 to the above-mentioned appropriate pressure, and a well-known vacuum pump etc. can be used. It is preferable to provide a mechanism (not shown) for trapping water or the like before the decompression mechanism 30 (between the decompression mechanism 30 and the stirring and mixing tank 10).
  • the pressure reduction in the stirring and mixing vessel 10 is performed in order to remove the dissolved air contained in the aqueous emulsion and to reduce the external pressure applied around the agglomerates at the time of collision.
  • the degree of pressure (pressure in the stirring and mixing tank 10), the pressure reduction time, etc. are as described above.
  • the liquid pressurizing mechanism 20 pressurizes the collected liquid E2 collected from the in-tank liquid collecting unit 13, and “provides the kinetic energy necessary to promote the separation and refinement of the fine particles when colliding with the in-tank liquid E1.
  • the pressurized pressurized liquid E3 is jetted from the pressurized liquid jetting unit 14 of the stirred and mixed tank 10 into the stirred and mixed tank 10.
  • the liquid pressurizing mechanism 20 may be anything as long as it can pressurize the collected liquid E2, but as an example, the structure of the pressurizing chamber as shown in FIG. Is mentioned.
  • the sample liquid E2 is pressurized in the cylinder 21 by pressing the piston, and is ejected from the pressurized liquid ejecting section 14 having a nozzle shape or the like as the pressurized liquid E3.
  • the pressure of the pressurized liquid E3 when ejected from the pressurized liquid ejecting section 14 is preferably 3 MPa (30 atm) or more and 250 MPa (2500 atm) or less, although it depends on the type of aqueous emulsion to be treated. 100 MPa) to 50 MPa (500 atmospheres) is more preferable, and 20 MPa (200 atmospheres) to 25 MPa (250 atmospheres) is particularly preferable. If the pressure of the pressurized liquid E3 is within the above range, the kinetic energy at the time of collision is sufficient, so the efficiency of separation and refinement of the agglomerates is good.
  • the pressure of the pressurized liquid is set to a relatively small pressure immediately after the start of circulation (injection), and is gradually increased to a steady state.
  • the speed of the pressurized liquid E3 immediately after being ejected from the pressurized liquid ejecting section 14 is not particularly limited, but is preferably 50 m / s or more and 1500 m / s or less, more preferably 200 m / s or more and 500 m / s or less, and 100 m. / S to 800 m / s is particularly preferable. If the speed immediately after jetting is in the above range, the kinetic energy is sufficient, so the efficiency of separation and refinement of the agglomerates is good. On the other hand, the stirring / mixing tank 10 and the pressurized liquid jetting unit 14 are excessively large. Hard to load. When a collision occurs under the above-mentioned conditions, the location of the collision becomes locally high, but the liquid E1 in the tank is kept constant as a whole by a temperature adjusting mechanism (not shown) installed in the stirring and mixing tank 10.
  • the pipe from the in-tank liquid collection unit 13 to the liquid pressurizing mechanism 20 is not branched, but for example, the collection from one common in-tank liquid collection unit 13
  • the liquid E2 may be divided into two in the middle, and the liquid E2 may be divided into two liquid pressurization mechanisms 20 and pressurized separately. Further, the pressurized liquid that has passed through one pressurizing mechanism 20 may be divided into two and ejected from the two pressurized liquid ejecting units 14.
  • the temperature at which the pressurized liquid E3 is jetted and circulated into the stirring and mixing vessel 10 is not particularly limited as long as the agglomerates are sufficiently separated and refined, but the preferred temperature range is as described above. Street.
  • the time for which the pressurized liquid E3 obtained by continuously collecting the liquid E1 in the tank into the liquid pressurizing mechanism 20 after being decompressed or during the decompression is sprayed and circulated into the stirring and mixing tank 10 is as follows. There is no particular limitation as long as the agglomerates are sufficiently separated and refined, and depending on the amount of treatment, it is preferably 10 minutes to 5 hours, more preferably 20 minutes to 3 hours, more preferably 30 minutes to 2 hours.
  • the time is equal to or more than the above lower limit, there are many injection opportunities, the injection is advantageous for a single batch, and the agglomerates are sufficiently separated and refined.
  • it is not more than the above upper limit, it is advantageous in terms of productivity and cost.
  • ⁇ Charging mechanism 40> As shown in FIG. 4, an aqueous emulsion E collected when a charging mechanism 40 is provided between the in-tank liquid collection unit 13 and the liquid pressurizing mechanism 20 to continuously collect a part of the in-tank liquid E1. It is preferable to charge the collected liquid E2 using the charging mechanism 40.
  • the charging mechanism 40 By using the charging mechanism 40 to charge the fine particles in the aqueous emulsion E (collected liquid E2) and the surrounding surfactant, the aggregation of the fine particles can be suppressed by the electric repulsive force acting between the fine particles. it can. As a result, the dispersion state of the fine particles can be favorably maintained over a long period.
  • the dissolved air (oxygen) is exhausted by reducing the pressure, the bonds between water molecules are weakened, the above phenomenon is likely to occur, and the dispersibility is further improved.
  • the charging mechanism 40 is not provided between the in-vessel liquid collecting unit 13 and the liquid pressurizing mechanism 20.
  • the aqueous emulsion obtained after the completion of the treatment may be charged.
  • the charging mechanism 40 is provided between the liquid pressurizing mechanism 20 and charging is performed, charging is performed while the aqueous emulsion E is circulated, so that the above-described effect due to charging is easily achieved.
  • aqueous emulsion in the present invention is not limited to a liquid dispersed in a liquid (water) but refers to a liquid or solid dispersed in water as a dispersion medium. There is no limitation in particular in the kind of aqueous emulsion applied to this invention, According to the intended purpose, it selects suitably.
  • aqueous emulsion in the present invention examples include, for example, acrylic emulsion, methacrylic emulsion, styrene emulsion, vinyl acetate emulsion, (anhydrous) maleic acid emulsion, alkylene emulsion, urethane emulsion and the like.
  • polymer particles (resin fine particles) obtained by mixing at least a hydrophobic polymerizable monomer and an emulsifier (surfactant), blending a water-soluble polymerization initiator, and emulsion polymerization are water.
  • emulsifier surfactant
  • a polymerization initiator any of a cationic surfactant, an anionic surfactant, and a nonionic surfactant can be used.
  • a polymerization initiator a radical polymerization initiator is preferable and a thermal polymerization initiator is preferable.
  • aqueous emulsion in the present invention is not limited to a simple emulsion polymerized one, but may be a polymer obtained by suspension polymerization, seed polymerization or the like. Moreover, what dispersed the microparticles
  • the aqueous emulsion whose dispersibility is improved by the method for improving dispersibility of the aqueous emulsion of the present invention exhibits excellent properties as described above when used as an aqueous paint for the reasons described above.
  • the application target is not limited to paint.
  • the method of the present invention which can separate agglomerates in an aqueous emulsion and remove impurities, can be applied to uses such as inks, adhesives, cosmetics, and surface treatment agents.
  • the aqueous emulsion of the present invention When the aqueous emulsion of the present invention is used for the above-mentioned use, substances necessary for the use can be further added as appropriate. Since the aqueous emulsion whose dispersibility is improved by the method for improving dispersibility of the aqueous emulsion of the present invention is preferably used for the above-mentioned applications, it is preferable that a pigment is blended.
  • the aqueous emulsion containing no pigment may be subjected to the treatment of the present invention, the pigment may be added to the aqueous emulsion obtained after the completion of the treatment, and the pigment may be dispersed by a known method.
  • An aqueous emulsion to which a pigment has been added in advance may be added as a raw material and subjected to the treatment of the present invention.
  • the pigment is treated during the treatment of the present invention (for example, when dissolved air is removed by low-pressure stirring). May be added.
  • the above (A) is preferable in order to make the pigment finer by subjecting it to the method of the present invention, and the above (B) is preferable in order to improve the dispersibility of the pigment in the finally obtained aqueous emulsion. .
  • the aqueous emulsion whose dispersibility is improved by the method for improving dispersibility of the aqueous emulsion of the present invention is superior to conventional aqueous emulsions in terms of adhesion, toughness, weather resistance, heat resistance, odor and the like. Yes.
  • the water-based emulsion of the present invention is useful for applications such as water-based paints, adhesives, inks, cosmetics, and surface treatment agents.
  • Aqueous paints containing the aqueous emulsions of the invention are particularly useful. Since the water-based paint containing the water-based emulsion of the present invention exhibits excellent properties as described above, specifically, for rust prevention, antifouling, mildew prevention, insulation, heat insulation, snow prevention, etc. used.
  • the present invention makes it possible to make individual agglomerates (or small agglomerates) by causing the agglomerates of fine particles contained in the aqueous emulsion to collide with the aqueous emulsion in the stirred and mixed tank under reduced pressure. It is separated and refined. At that time, “aggregates” or “aggregates and individual fine particles” collide, and the aggregates are separated and refined. In the aqueous emulsion in the stirring and mixing tank, the dissolved air is removed and the bonding force between the fine particles is weakened. Small agglomerates) are separated and refined. In fact, it has been confirmed by the present inventor that an aqueous emulsion from which dissolved air has been removed has a low expansion rate. Since the expansion rate is low, it is easy to pressurize, and it is considered that the collision energy of the pressurized aqueous emulsion contributed to separation and refinement efficiently.
  • the inside of the stirring and mixing tank is in a reduced pressure state, the dissolved air (oxygen) contained in the aqueous emulsion is removed from the aqueous emulsion, so that the binding force between the fine particles is reduced and the aqueous emulsion is added.
  • the collision energy is efficiently used for separation / miniaturization, and no external air pressure is applied from around the agglomerates, so separation / miniaturization is suitably performed.
  • the temperature at the location where the pressurized liquid is injected into the stirring and mixing tank and collided with the liquid in the tank is extremely high locally (although not limited, for example, 100 ° C. or more and 400 ° C. or less).
  • a particularly preferable pressure of the pressurized liquid ejected from the pressurized liquid ejecting unit is 20.3 MPa (200 atm) or more and 25.3 MPa (250 atm).
  • the critical temperature and critical pressure of water are 374 ° C. and 22 MPa (218 atm), respectively, the location of the collision may be locally supercritical.
  • a part of the aqueous emulsion (liquid in the tank) in the stirred and mixed tank in a reduced pressure state is continuously collected, and the collected aqueous emulsion (collected liquid) is pressurized and directed into the stirred and mixed tank. Since the jetting is performed, the aqueous emulsion is circulated in the apparatus, so that the collision can be repeated many times and the processing can be continuously performed.
  • the ease of formation and separation of agglomerates and the degree of aggregation depend on the type of resin fine particles, the type of additives such as polymerization initiators and surfactants; the processing conditions during stirring, pressurization, and jetting, etc.
  • the agglomerates may not be sufficiently separated in a single process, and it may be necessary to repeat the process over and over. To do.
  • the processing can be performed continuously, the input and extraction of the raw material can be performed only once, and therefore the agglomerates can be sufficiently separated by extending the processing time. As a result, it is possible to efficiently perform a large amount of processing.
  • the kind of the water-based paint containing the water-based emulsion of the present invention is not particularly limited, and a substance to be blended in the water-based emulsion when the water-based paint is used is appropriately selected and blended according to the water-based paint.
  • the type of the water-based paint is not particularly limited, but is used for applications such as rust prevention, antifouling, antifungal, insulation, heat insulation, and prevention of snow accretion in order to exert the above-described effects of the aqueous emulsion of the present invention. It is preferable that the water-based paint is used.
  • Water-based paints containing aqueous emulsions with improved dispersibility (separated and refined agglomerates) by the method of the present invention exhibit excellent adhesion and toughness (coating film hardness), but this is because fine particles are aggregated When a lump is formed, it contacts the coating material surface in the form of large agglomerates (FIG. 5 (a)), whereas when separated into individual particles, the coating material surface is in the form of individual particles. This is probably because the contact area is large.
  • the water-based paint of the present invention is excellent in terms of heat resistance and odor. This is presumably because unnecessary substances such as dissolved air (especially oxygen) and impurities in the water-based emulsion were removed by the reduced pressure treatment. Such unnecessary materials are preferably removed to separate and refine the agglomerates in order to strengthen the bonding force between the fine particles. However, if they remain in the coating film, the paint tends to burn. And cause odor. Moreover, such an unnecessary thing raises the electrical conductivity of a coating film and reduces rust prevention property. The point that such unnecessary materials are removed from the coating film is also an excellent point of the method of the present invention.
  • Example 1 As shown in FIG. 2, an aqueous emulsion is used by using an apparatus of a type in which a pressurized liquid injection unit 14 exists in the hollow portion 15 of the stirring and mixing tank 10 and makes the pressurized liquid E3 injected from two directions collide with each other.
  • the liquid pressurizing mechanism 20 was a cylinder 21 having a piston 22 as shown in FIG.
  • the volume of the stirring and mixing tank 10 was 1 m 3 .
  • 800 L of an acrylic emulsion made by Nippon NS Co., Ltd., AD157, which is an aqueous emulsion, was charged.
  • the decompression mechanism 30 is started by using a vacuum pump to depressurize the stirring and mixing tank 10 so as to keep the stirring and mixing tank 10 at about 20 Torr (2.6 kPa). Stirring in the stirring and mixing tank 10 was started after maintaining the temperature uniformly at ° C. Since the saturated vapor pressure of water at 20 ° C. is 17.5 Torr (2.3 kPa), the pressure in the stirring and mixing vessel 10 is maintained at a level slightly higher than the saturated vapor pressure of water.
  • the valve of the pipe connecting the stirring and mixing tank 10 and the liquid pressurizing mechanism 20 was opened, and a part of the liquid E1 in the tank was sent into the two liquid pressurizing mechanisms 20 respectively.
  • the charging mechanism 40 was activated, and the collected liquid fed into the liquid pressurizing mechanism 20 was charged.
  • the pressure of the pressurizing liquid E3 is set to 25.3 MPa (250 atm), and the pressurizing liquid E3 is substantially omitted from the two pressurizing liquid ejecting units 14 provided in the hollow portion 15 in the stirring and mixing tank 10. Sprayed in the horizontal direction, the pressurized liquids E3 collided with each other, and continuous processing was started.
  • the particle size (FIG. 6 (b)) is significantly smaller than the particle size of the fine particles of the acrylic emulsion before the treatment (FIG. 6 (a)).
  • the fine particles of the acrylic emulsion after the treatment by the method of the present invention It was a small agglomerate with fine particles and particle sizes not reaching 1 ⁇ m.
  • the volume of the vacuum tank (corresponding to “stirring and mixing tank 10” in the apparatus of the present invention) was made substantially the same as in Example 1.
  • the pressure in the vacuum tank was kept at about 20 Torr (2.6 kPa), the temperature in the vacuum tank was kept uniform at 20 ° C., and stirring in the vacuum tank was started.
  • the acrylic emulsion is fed from the vacuum tank to the pressurizing chamber (corresponding to “liquid pressurizing mechanism 20” in the apparatus of the present invention), and the pressurizing pressure is set to 25.3 MPa (250 atm).
  • the acrylic emulsions collided with each other.
  • the collided acrylic emulsion was stored in a storage container. It took 25 hours to accommodate all of the charged acrylic emulsion in the container.
  • the particle size of the fine particles of the acrylic emulsion after the treatment was smaller than the particle size of the fine particles of the acrylic emulsion before the treatment.
  • the agglomerates were separated and refined to some extent, but were larger than the particle diameter of the fine particles of the acrylic emulsion after the treatment in Example 1 (FIG. 6B).
  • the method for improving the dispersibility of the aqueous emulsion of the present invention when used, continuous treatment is possible by circulating the aqueous emulsion. Compared to the above, the dispersibility of the aqueous emulsion could be improved efficiently. Specifically, the time from when the raw acrylic emulsion was charged into the apparatus until the treated acrylic emulsion was taken out could be reduced to 1/25. Further, the particle diameter of the fine particles in the acrylic emulsion after the treatment could be made smaller (good dispersibility) when treated by the method of the present invention.
  • the water-based emulsion improved in dispersibility using the method for improving dispersibility of the aqueous emulsion of the present invention has an adhesive property, toughness, weather resistance, heat resistance, odor property, etc. Excellent in terms, it is widely used in applications such as water-based paints, adhesives, inks, cosmetics, etc. Especially as water-based paints, rust prevention, antifouling, mold prevention, insulation, heat insulation, snow prevention For example, it is widely used for application to an object to be coated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Colloid Chemistry (AREA)

Abstract

 水性エマルジョン中の凝集塊を、効率的に分離・微細化することができ、低コストで大量処理が可能な方法を提供することを課題とし、水性エマルジョンEを投入した攪拌混合槽10内を該水性エマルジョン中に含有される溶存空気が除去される圧力に減圧し、該減圧処理後の水性エマルジョン同士を衝突させる水性エマルジョンの分散性改良方法であって、該攪拌混合槽10内に存在する水性エマルジョンである槽内液E1の一部を連続的に液加圧機構20内に採取し、該液加圧機構20で加圧した水性エマルジョンである加圧液E3を該攪拌混合槽10内に向けて噴射することで水性エマルジョンEを循環させ、該加圧液E3を該攪拌混合槽10内に向けて噴射する際に該槽内液E1と衝突させることにより、該水性エマルジョン中の微粒子の分散性を改良することを特徴とする水性エマルジョンの分散性改良方法により上記課題を解決した。

Description

水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョンの製造方法
 本発明は、水性エマルジョンの分散性改良方法に関し、更に詳しくは、水性エマルジョン中において微粒子が凝集して形成されている微粒子の凝集塊を、効率的な物理的処理により個々の微粒子に分離することにより行われる水性エマルジョンの分散性改良方法に関する。
 また、本発明は、該方法によって分散性を改良した水性エマルジョン及びそれを含有する水性塗料に関する。
 水の中に樹脂微粒子等が分散されているエマルジョンである水性エマルジョンは、塗料、接着剤、インク、表面処理剤等の用途に広く利用されている。
 水性エマルジョンを利用した水性塗料は、防錆、防汚、防カビ、絶縁、遮熱又は着雪防止等の様々な用途に使用される。
 水性エマルジョンを利用した水性塗料は、塗装された後、水が蒸発することにより、樹脂が主成分となって塗膜を形成するが、塗膜が形成される際に、塗膜性、密着性、絶縁性等が問題となる。
 通常、水性エマルジョン中の樹脂微粒子は、単一の樹脂微粒子の形だけで存在しているものだけではなく、複数の樹脂微粒子が凝集した様々な大きさの凝集塊の形で存在している。
 凝集塊は、塗料として重要な性質である、塗膜性、密着性等を低下させる原因となるため、塗料として利用される水性エマルジョンでは、凝集塊を個々の微粒子にまで、又は、よりサイズの小さな凝集塊にまで分離しておく、すなわち、水性エマルジョンの分散性を良好なものとしておくことが望まれる。
 特許文献1では、二酸化炭素等の超臨界流体を利用した、水性エマルジョン等の分散質と溶媒が混合された混合物の分散方法が報告されている。
 特許文献2では、低圧攪拌により得られた水性混合液を加圧することにより高速度を付与し、高速度を付与した水性混合液同士を互いに向かい合うように噴射し衝突させることにより、水性混合液中の樹脂微粒子の凝集塊を分散させる方法が報告されている。特許文献2の方法に使用される装置では、減圧状態で水性混合液を攪拌する工程と、加圧した水性混合液同士を噴射し衝突させる工程は、別々の反応器で行われ、両工程は完全に分離されたものである。
 しかしながら、特許文献1のような、反応器の中の液全体を超臨界状態にする方法では大掛かりな装置が必要となり、コスト面から特許文献1に記載の方法は現実的ではない。
 また、凝集塊の生成・分離のしやすさや凝集度は、樹脂微粒子の種類の他、重合開始剤や界面活性剤等の添加剤の種類、攪拌・加圧・噴射時の処理条件にも依存するため、1度の処理では凝集塊の分離が不十分な場合がある。特許文献2に記載の方法は、回分式であり、十分に凝集塊を分離させるためには、処理が済んだ収容液を再度装置に投入し、数度の処理の繰り返しを要する場合があり、原料の投入・取り出しの手間がかかり、コストや処理能力の点で限界があった。
 水性塗料は、幅広い技術分野において普及しているものであり、より高いレベルの分散が達成された水性エマルジョンが望まれていることに加え、該水性エマルジョン中の凝集塊を、低コストで効率的に分離でき、また大量処理が可能な方法の開発が望まれていた。
特開平10-192670号公報 特許第4568792号公報
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、水性エマルジョン中の凝集塊を効率的に分離・微細化することができ、低コストで大量処理が可能な方法を提供することにあり、また、凝集塊が十分に分離・微細化され、塗料等として使用する際に優れた水性エマルジョンを提供することにある。
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、特許文献2に記載のように、減圧処理がなされた槽内液を加圧して得られた加圧液同士を、別途独立して存在する特殊な装置内で衝突させなくても、「減圧処理がなされた槽内液を加圧して得られた加圧液」を、攪拌混合槽内で槽内液に衝突させれば、意外にも凝集塊を十分に分離させることができ、個々の微粒子にまで又はより小さい微粒子にまで分散させ得ることを見出した。
 また、該加圧液を、減圧状態にある(例えば、大気圧(1気圧)が加わっていない)槽内液に衝突させることによって、凝集塊をより好適に分離させることができることを見出した。
 その結果、減圧状態にした攪拌混合槽内の水性エマルジョンの一部を連続的に採取して加圧し、それを攪拌混合槽内に向けて噴射し、水性エマルジョン同士の衝突を起こすことによって、凝集塊を分離することができる。
 更に、本発明者は、このような方法であれば、一旦採取した水性エマルジョンは元の攪拌混合槽内に戻る(水性エマルジョンが循環する)ことになるため、繰り返しの衝突により高レベルの分散が可能になると共に、原料の仕込み・取り出しを何度も行うことなく連続的な処理が可能となって大量処理も可能となり、効率よく凝集塊を分離でき分散性を向上させ得ることを見出して、本発明を完成するに至った。
 すなわち本発明は、水性エマルジョンを投入した攪拌混合槽内を該水性エマルジョン中に含有される溶存空気が除去される圧力に減圧し、該減圧処理後の水性エマルジョン同士を衝突させる水性エマルジョンの分散性改良方法であって、
 該攪拌混合槽内に存在する水性エマルジョンである槽内液の一部を連続的に液加圧機構内に採取し、該液加圧機構で加圧した水性エマルジョンである加圧液を該攪拌混合槽内に向けて噴射することで水性エマルジョンを循環させ、
 該加圧液を該攪拌混合槽内に向けて噴射する際に、該槽内液と衝突させることにより、該水性エマルジョン中の微粒子の分散性を改良することを特徴とする水性エマルジョンの分散性改良方法を提供するものである。
 また本発明は、上記の水性エマルジョンの分散性改良方法を使用することを特徴とする水性エマルジョンの製造方法を提供するものである。
 また本発明は、上記の水性エマルジョンの分散性改良方法に使用するためのものであることを特徴とする水性エマルジョンの分散性改良装置を提供するものである。
 また本発明は、上記の水性エマルジョンの分散性改良方法によって分散性を改良したことを特徴とする水性エマルジョンを提供するものである。
 また本発明は、上記の水性エマルジョンを含有することを特徴とする水性塗料を提供するものである。
 本発明によれば、水性エマルジョン中の微粒子の凝集塊を十分に分離・微細化することができ、水性エマルジョンの分散性を更に高いレベルにまで向上させることができる。
 すなわち、水性エマルジョンを投入した攪拌混合槽内を減圧にして、水性エマルジョン中の「溶存酸素等を含む溶存空気」を除去することによって、水性エマルジョン同士の衝突による凝集塊の分離を促進させることが可能となり、その結果として、従来のレベルより高いレベルにまで水性エマルジョンの分散性を改良することができる。
 また、攪拌混合槽内の水性エマルジョンには大気圧がかかっていないため、良好な分散が可能であり、その良好な分散状態が常圧に戻した後も維持できる。
 そのため、本発明の方法によって分散性を改良した水性エマルジョンは、塗料、接着剤、インク、表面処理剤等の用途に使用した際に、防錆、防汚、防カビ、絶縁、遮熱、着雪防止等の様々な性能に関して従来にない優れた性質を示すようになる。
 具体的には、例えば、本発明の方法により分散性を改良した水性エマルジョンを水性塗料として使用した場合、従来の水性エマルジョンを使用した場合と比較して、微粒子同士が基材の表面に均一に整列しやすくなる。
 その結果、紫外線等による劣化や、雨水との接触や高湿度による錆の発生も少なくなることから、本発明の方法により得られた水性塗料は対候性が高くなる。
 また、水性エマルジョン中の微粒子が基材の表面に均一に整列して塗膜を形成できることから、本発明の方法により得られた水性塗料を用いれば、耐絶縁性、耐熱性、耐燃性等に優れ、接着力が強く強靭な塗膜が得られる。
 更に、本発明の方法により得られた水性エマルジョンを、不純物を除去した状態で作製すれば、更に上記性能が向上する。
 本発明の方法は、減圧状態にして「溶存酸素等を含む溶存空気」が除かれた水性エマルジョンに、加圧した同様の水性エマルジョンを衝突させ、衝突のエネルギーにより微粒子の凝集塊を分離・微細化する方法であり、超臨界流体を使用する方法のように、大掛かりな装置を必要とせずに同等(以上)の効果を奏し、更に、コスト面・安全面・生産性において優れている。
 また、本発明の方法は、減圧状態にした攪拌混合槽内から水性エマルジョンの一部を採取し加圧し、それを元の攪拌混合槽内に向けて噴射する方法であり、装置内を水性エマルジョンが循環するため、衝突回数を増やすことができると共に、連続的な処理が可能となる。
 そのため、特許文献2の回分式の方法のように、衝突回数を増やそうとしたら原料の仕込み・取り出しを何度も繰り返さざるを得ないということがなく、効率的に凝集塊の分離・微細化を進めることができ、生産性が大幅に向上する。例えば、特許文献2に記載の回分式の方法と比較すると、本発明の方法では、2倍以上(水性エマルジョンや装置の種類、噴射圧、処理時間等によっては6倍以上)も生産能力を上げることが可能である。また、特殊な衝突装置が別途独立で存在しないので、装置が核兵器開発に利用されにくい。
 個々の微粒子やサイズの小さい凝集塊を含有する水性エマルジョンは、分散処理中や分散後に微粒子の再凝集が起こる場合がある。本発明の方法では、水性エマルジョンに帯電処理を施すことにより、特に好ましくは、装置内を循環させる途中で帯電処理を施すことにより、微粒子の再凝集を抑制することができ、優れた分散性が得られると共に、微粒子の分散状態を長期間に亘って良好に維持できる。
 また、基板に塗布後に水が蒸発すると、エマルジョン中では同電荷の微粒子が基板に整列しやすくなる。
本発明の水性エマルジョンの分散性改良方法に使用される装置の一例(加圧液噴射部が攪拌混合槽の側面に存在する実施形態)の概略を示す模式図である。 本発明の水性エマルジョンの分散性改良方法に使用される装置の一例(加圧液噴射部が攪拌混合槽の窪み部分に存在し二方向から噴射された加圧液同士を衝突させる実施形態)の概略を示す模式図である。 液加圧機構の一例(ピストン)の概略を示す模式図である。 本発明の水性エマルジョンの分散性改良方法に使用される装置の一例(帯電機構を使用して採取液を帯電させる実施形態)の概略を示す模式図である。 水性エマルジョン中及び水性塗料中の微粒子の状態を示す拡大説明図である。 (a)微粒子の凝集塊が多く存在する従来の水性エマルジョン又は水性塗料 (b)本発明の方法により分散性を改良(凝集塊を分離・微細化)した水性エマルジョン又は水性塗料 本発明の水性エマルジョンの分散性改良方法による処理を施す前後のアクリルエマルジョンの微粒子の粒子径分布を示すグラフである。 (a)本発明の方法による処理の前の従来の粒子径分布 (b)本発明の方法による処理の後の粒子径分布 加圧液の噴射方法の一例を示す攪拌混合槽の横断面概略模式図である。
 以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。
<装置全体の構成の概要>
 本発明の水性エマルジョンの分散性改良方法について、装置の構成を示しつつ説明する。本発明の水性エマルジョンの分散性改良方法に使用する「水性エマルジョンの分散性改良装置」の例を、図1~図4に示す。
 本発明の水性エマルジョンの分散性改良装置(以下、単に「分散性改良装置」と略記する場合がある。)は、減圧機構30が接続された攪拌混合槽10と、液加圧機構20と加圧液噴射部14を有している。
 被処理物である水性エマルジョンEは、攪拌混合槽10と液加圧機構20を、加圧液噴射部14を介して循環しており、水性エマルジョン中の凝集塊を個々の微粒子又はサイズの小さな凝集塊に分離する処理(以下、単に「処理」と書く場合がある。)は、連続的に行われる。
 攪拌混合槽10は、攪拌機構11を有し、内部に投入した液体を攪拌できるようになっており、攪拌混合槽10内には水性エマルジョンEが投入される。
 攪拌混合槽10は、減圧機構30に接続されており、攪拌混合槽10内は、処理の間、減圧機構30により減圧にされる。処理の間、攪拌混合槽10内の圧力は、水性エマルジョン中に含有される溶存空気が除去される圧力に減圧される。
 攪拌混合槽10内を減圧することにより、水性エマルジョン中の微粒子間に作用する力が弱くなり、微粒子間に水や界面活性剤等が浸入し、微粒子間の結合力が弱くなることから、微粒子は凝集塊を形成しにくく、凝集塊は分離・微細化しやすくなる。
 また、処理前の水性エマルジョン中には、溶存空気(酸素)が溶け込んでおり、微粒子の分離・微細化の妨げとなる。攪拌混合槽10内を減圧することにより、このような溶存空気(酸素)等を除去することができ、微粒子を分離・微細化しやすくなる。すなわち、溶存空気(酸素)が除去されると、水性エマルジョン同士の衝突のエネルギーが、微粒子を分離・微細化することに、直接的(効率的)に働くようになる。
 上記減圧処理を経験した水性エマルジョンの一部は、攪拌混合槽10から採取され、液加圧機構20内に入り、そこで加圧された状態で、攪拌混合槽10内に向けて噴射される。すなわち、本発明では、攪拌混合槽10内で、減圧処理後の水性エマルジョン同士を衝突させる。
 このように、減圧処理後の水性エマルジョン同士を衝突させることにより、該衝突のエネルギーにより、減圧処理により結合力が弱くなった微粒子同士が好適に分離・微細化し(凝集塊が分離・微細化し)、また減圧により分散の障害となる溶存空気(酸素)が除去され、該水性エマルジョン中の微粒子の分散性が改良される。
 本発明では、攪拌混合槽10内の減圧、水性エマルジョンの液加圧機構20への採取、加圧した水性エマルジョンの噴射衝突を、分散性改良装置1の中で連続して行う、すなわち、水性エマルジョンEを、分散性改良装置1の内部で循環させながら凝集塊の分離を行うものである。
 本発明においては、水性エマルジョンEのうち、攪拌混合槽10内に存在するものを「槽内液(E1)」、一旦採取され攪拌混合槽10の外に出たものを「採取液(E2)」、衝突により凝集塊を好適に分離・微細化するに十分な圧力に加圧された状態のものを「加圧液(E3)」という。
 攪拌混合槽10と減圧機構30との間、攪拌混合槽10と液加圧機構20の間の配管には、適宜、バルブ(開閉弁)が設けられ、処理中は、原則としてこれらのバルブを開くことで連続的な処理が行われ、原料投入時や、処理完了後の取り出し時には、これらのバルブは閉じられる。
<攪拌混合槽10>
 攪拌混合槽10内には、操作開始時に、水性エマルジョンEが投入される。水性エマルジョンEの投入部は、図示していないが、その位置や形状に特に限定はなく、位置については、投入のしやすさから攪拌混合槽10の上部に存在していることが好ましい(図示せず)。
 攪拌混合槽10は、加圧液E3を後述するように(例えば図7のように)、該攪拌混合槽内に向けて噴射することで攪拌してもよく、必須ではないがその内部に攪拌機構11を有することが好ましい。攪拌機構11の種類について特に限定はなく、攪拌混合槽10の槽内を均一に攪拌できるものを適宜選択する。図では、中心軸部分に攪拌翼を有する形態を例示したが、例えば、中心軸より外側に(攪拌混合槽10の内壁近傍に)攪拌翼が存在する攪拌機構11を用いてもよい。両方の(二重の)攪拌翼を有する攪拌機構11も好ましい。
 攪拌機構11の作動条件(回転数等)についても、特に限定はなく、槽内を均一に攪拌できる条件を適宜選択する。攪拌機構11があると、槽内液E1の組成や温度を均一にできるだけではなく、減圧処理時に槽内液E1の突沸や泡の発生による過度の液面上昇を避けることができる。
 攪拌混合槽10の容積は、特に限定はないが、300L(リットル)以上5m以下が好ましく、500L以上2m以下が特に好ましい。
 容積が上記の下限以上であると、十分な処理量を達成することができ、本発明の効果である大量生産、コストダウン等がより(相乗的に)図れる。また、上記の上限以下であると、装置が大きすぎずコスト的に有利であり、作業性がよく、槽内を十分均一に攪拌しやすい。
 処理の間、攪拌混合槽10の内部の槽内液E1の充填率(攪拌混合槽10の内部に存在する槽内液E1の体積を、攪拌混合槽10の容積で除した値)は、通常20%以上90%以下であり、40%以上80%以下が好ましい。
 充填率が上記範囲内にあることにより、攪拌混合槽10の内部を十分に安定的に減圧させやすく、また槽内液E1の飛び散りも少なく槽内を均一に攪拌することができ、処理の効率が向上する。減圧によって槽内液E1の体積は減少する場合があるが、その場合でも上記範囲を保持することが好ましい。
 攪拌混合槽10は、排気部12において減圧機構30と接続されている。排気部12の位置は、槽内液E1の液面より上であれば特に限定はない。排気部12の形状、大きさ等についても、特に限定はなく、槽内を後述する適切な圧力、すなわち水性エマルジョン(槽内液E1)の分散媒である水の飽和蒸気圧以上の圧力であり、かつ、水性エマルジョン(槽内液E1)中の溶存空気を十分に除去できる圧力に安定的に保持できるようになっていればよい。
 攪拌混合槽10内の好ましい圧力は、溶存空気等を除去でき、かつ(循環する)水性エマルジョンEの量が減りにくい圧力、すなわち水の飽和蒸気圧と同等か若干高い程度(例えば水の飽和蒸気圧の1~1.5倍程度)の圧力である。槽内液E1の温度が後記範囲の場合、その温度での水の蒸気圧より若干高い圧力に攪拌混合槽10内を減圧するとよい。
 減圧により攪拌混合槽10内の圧力が、水の飽和蒸気圧よりも低くなると、水性エマルジョンEは沸騰し、水性エマルジョンEを攪拌混合槽10と液加圧機構20の間で循環させるという本発明の目的の達成の妨げになる場合があるので、攪拌混合槽10内の圧力は、水性エマルジョン(槽内液E1)の温度における飽和蒸気圧以上であることが好ましい。
 水の蒸気圧を以下に示す。
 水の温度(℃)  蒸気圧(kPa)
    0       0.611
    4       0.841
    5       0.873
   10       1.23
   20       2.33
   30       4.24
   40       7.37
   50      12.3
   60      19.9
   70      31.2
   80      47.5
  100     101.3
 攪拌混合槽10内は、減圧機構30によって排気し、水性エマルジョン(槽内液E1)中の水が幾らか蒸発したとしても、本発明の前記効果を維持する「好適な圧力(減圧度)、減圧時間、温度等」に設定する。
 ここで、「好適な」とは、水が蒸発すると水性エマルジョンの粒子濃度や粘度が上昇するが、上昇した該微粒子濃度や該粘度においても、加圧液E3を噴射して槽内液E1に衝突させて凝集塊を分離・微細化することに支障がないことであり、また、槽内液E1の液量が少なくなって水性エマルジョンEの循環に支障をきたさないことである。
 運転中の攪拌混合槽10中の槽内液E1の温度は、特に限定はないが、0℃以上60℃以下が好ましく、1℃以上40℃以下がより好ましく、2℃以上30℃以下が特に好ましく、4℃以上20℃以下が更に好ましい。
 ただし、まず一旦、攪拌混合槽10内を減圧し溶存空気を除去した後、次の段階として加圧液E3を攪拌混合槽10内に噴射させ循環運転をする場合には、前段階(噴射・循環前の溶存空気除去段階)における槽内液E1の温度は、上記の上限と下限温度より0℃以上20℃以下だけ高いことも好ましい。
 温度調節に用いられる装置は、特に限定はないが、ジャケット型、クーリングパイプ型等の攪拌混合槽10の外側に接するように具備される主に冷却器等、公知の装置が用いられる。
 槽内液E1の温度の上限が上記以下であると、槽内液E1を沸騰させないための圧力(すなわち、水性エマルジョンの飽和蒸気圧)が低く抑えられ、そのため分散された凝集塊等の粒子に周りから圧力(外圧)がかからないので、凝集塊の分離・微細化が好適に進行する。また、水の蒸発が抑制されて槽内液Eの液量を一定に保て、水性エマルジョン(槽内液E1)の粒子濃度や粘度の上昇速度が抑えられる。
 一方、槽内液E1の温度の下限が上記以上であると、蒸発熱で更に温度低下して固体(氷)になるおそれがなく、また溶存空気(溶存酸素)が除去され易くなる。
 減圧時間に関しては、水性エマルジョン中に含有される溶存空気が十分に除去される時間であれば特に限定はなく、また、攪拌混合槽10の容積、排気量、排気速度の調節方法、減圧度等に依存するが、減圧(排気)開始から水性エマルジョンを循環させ噴射させるまでの時間は、2分以上60分以下が好ましく、5分以上40分以下がより好ましく、10分以上20分以下が特に好ましい。
 減圧を開始して、好ましくは上記時間経過してから噴射・循環を開始してもよいが、減圧と噴射・循環を同時に開始してもよい。
 攪拌混合槽10内の圧力は、前記した通り、槽内液E1の温度における飽和蒸気圧以上であることが、沸騰をさせないために好ましいが、槽内液E1の温度における「(前記した)水の(各)蒸気圧」の1倍以上で4倍以下が好ましく、1倍以上で2倍以下がより好ましく、1倍以上で1.5倍以下が特に好ましく、1.1倍以上で1.2倍以下が更に好ましい。
 すなわち、例えば、槽内液E1の温度が4℃の場合は、0.8kPa(6Torr)以上3.4kPa以下が好ましく、0.8kPa以上1.2kPa以下が特に好ましい。また、例えば、槽内液E1の温度が20℃の場合は、2.3kPa(18Torr)以上9.3kPa以下が好ましく、2.3kPa以上3.5kPa以下が特に好ましい。
 攪拌混合槽10は、圧力や温度を計測する手段を備えていることが好ましく(図示せず)、また、攪拌混合槽10内の温度を均一に制御する手段を備えていることが好ましい(図示せず)。更に、攪拌混合槽10内の槽内液E1の液面の位置や状態(沸騰していないかどうか)等を目視で監視できるようになっていることが好ましい。
 処理の間は、攪拌混合槽10内の圧力や温度を計測し、減圧機構30による排気速度を調整する等の手段で、攪拌混合槽10内を適正な圧力に調整する必要があり、また、槽内液E1が沸騰しないように注意を払う必要がある。
 攪拌混合槽10内の減圧を開始すると、槽内液E1の液面が一旦上昇すると共に、槽内液E1に溶け込んでいた空気が膨張し泡が発生し、空気が水蒸気と共に排気部12から除去される。
 この状態で、攪拌混合槽10内をなおも排気し続けると、槽内液E1の液面が下降し、一定時間だけ静止状態となり、その後、槽内液E1が沸騰を開始することがある。その際、作業者が液面の位置をチェックし、沸騰を開始する直前又は沸騰を開始した直後には、排気部12と減圧機構30の間のバルブを閉める等して圧力を調整することが好ましい。
 ただし、水性エマルジョンEの量が多少減少したとしても、本発明の前記効果を奏するのに支障がなければ、このようなケースが本発明の範囲外となるものではない。
 また、攪拌混合槽10は、槽内液E1を循環させるために採取する槽内液採取部13を有する。攪拌混合槽10内に存在する水性エマルジョンEである槽内液E1の一部は、連続的に液加圧機構20内に採取され、そこで加圧される。
 槽内液採取部13は、槽内液E1の液面より常に下であれば、その位置に特に限定はないが、減圧処理によって槽内液E1の液面は下降する場合があり、その場合でも槽内液採取部13は、槽内液E1の液面より下にある必要がある。
 図1に示すように、攪拌混合槽10内に槽内液採取部13は1個だけ存在していてもよいし、図2及び図4に示すように、複数個存在していてもよい。
 また、図2及び図4に示すように、攪拌混合槽10内の異なる高さに複数の槽内液採取部13が存在してもよく、このような場合、槽内液E1の量等の条件に応じて、バルブ等の開閉により、採取のために使用する槽内液採取部13を変更することができる。
 攪拌混合槽10は、液加圧機構20で加圧された加圧液E3を噴射するための加圧液噴射部14を有する。
 液加圧機構20で加圧した水性エマルジョンEである加圧液E3は、加圧液噴射部14から攪拌混合槽10内に向けて噴射される。同時に水性エマルジョンEは攪拌混合槽10内に戻されることで水性エマルジョンEは装置内を循環する。
 本発明では、加圧液E3を攪拌混合槽10内に向けて噴射する際に、加圧液E3を槽内液E1と衝突させることにより、水性エマルジョン中の微粒子の分散性を改良する、すなわち微粒子の凝集塊をより細かいものに分離・微細化する。
 加圧液E3を攪拌混合槽10内に向けて噴射し、加圧液E3を槽内液E1に高速で衝突させることで凝集塊の分離・微細化が進むので、加圧液噴射部14は、ノズル形状になっていることが好ましい。
 ノズルの先端の内径は、特に限定はないが、凝集塊の分離・微細化に十分な「加圧液の速度」を得るために、0.03mm以上0.3mm以下が好ましく、0.05mm以上0.15mm以下が特に好ましい。
 加圧液噴射部14の位置については、槽内液E1の液面より下であれば(噴射した加圧液E3を槽内液E1と衝突させることができれば)、特に限定はない。図1に示すように、加圧液噴射部14が攪拌混合槽10の側面に設けられている場合、加圧液噴射部14の縦位置は、攪拌機構11の攪拌翼の縦位置から上方向又は下方向にずらすと、攪拌翼に噴射の衝撃が加わりにくいために好ましい。図1のように攪拌翼が2枚(以上)ある場合、加圧液噴射部14の縦位置は、図1のように2枚の攪拌翼の略中央に設けることが、攪拌翼に衝撃を与えないために特に好ましい。
 また、加圧液噴射部14の個数については特に限定はなく、図1及び図4に示すように、攪拌混合槽10内に加圧液噴射部14が1個存在していてもよいし、図2に示すように、攪拌混合槽10内に加圧液噴射部14が2個存在していてもよいし、3個以上の加圧液噴射部14が存在していてもよい。
 図1は、比較的単純な本発明の実施形態の一例を示したものであり、略円筒形状の攪拌混合槽10の壁面に、1個の槽内液採取部13と1個の加圧液噴射部14が存在する。
 槽内液E1は、槽内液採取部13より、液加圧機構20内に採取され、液加圧機構20で加圧された加圧液E3は、加圧液噴射部14から噴射されることで攪拌混合槽10内に戻り、攪拌混合槽10内の槽内液E1と衝突することで微粒子の凝集塊の分離・微細化が進む。
 図2及び図4は、本発明の実施形態の別の一例を示したものであり、より好ましい実施形態である。すなわち、攪拌混合槽10は窪み部分15を有し、窪み部分15の中に加圧液E3が噴射される。
 窪み部分15は、攪拌混合槽10の下部、側面のどこに存在していてもよいが、図2及び図4に示したように攪拌混合槽10の下部に存在していることが好ましい。
 攪拌混合槽10は、窪み部分15を有する場合、図4に示す通り、加圧液E3を一方向から窪み部分15の中に向けて噴射してもよいが(加圧液噴射部14は1個でもよいが)、図2に示す通り、加圧液E3を少なくとも二方向から窪み部分15の中に向けて噴射し、異なる方向から噴射された加圧液E3同士を衝突させることが、凝集塊の分離・微細化のためには好ましい。
 加圧液E3を噴射する方向の数(加圧液噴射部14の数)は、一方向(1個)、二方向(2個)、三方向(3個)又は四方向(4個)が好ましく、一方向(1個)又は二方向(2個)がより好ましく、二方向(2個)が特に好ましい。噴射する方向が多すぎると、装置が複雑になり、コストの上昇につながるだけであり、処理の効率が向上するわけではない。
 加圧液噴射部14が複数個存在する場合、図2のように、それぞれの加圧液噴射部14から噴射された加圧液E3同士を衝突させることで、より効率的に凝集塊の分離を進めることができる。攪拌混合槽10が窪み部分15を有する場合、窪み部分15に加圧液噴射部14を設けることによって、加圧液噴射部14の間の距離を短くすることができ、上記本発明の効果を発揮する。
 図2のように加圧液噴射部14が窪み部分15に2個設置されている場合、該加圧液噴射部14の間の距離(2個のノズルの先端間の距離)は、好ましくは1mm以上100mm以下、特に好ましくは2mm以上50mm以下である。加圧液E3同士を衝突させる場合、それぞれの加圧液E3が噴射される加圧液噴射部14の間の距離が短いと(上記上限以下であると)、大きい速度エネルギーを持ったまま加圧液E3同士を衝突させることができ、凝集塊の分離・微細化の効率が向上する。
 また、図1に示したように加圧液E3を攪拌混合槽10の側面から噴射させる場合、攪拌機構11の回転軸の方向、すなわち攪拌混合槽10の中心軸方向から水平方向にずらして加圧液E3を噴射することが好ましい。攪拌混合槽10の中心軸方向に向けて噴射すると、攪拌機構11の回転軸に衝撃を与える場合がある。
 特に攪拌混合槽10の側面の2か所(以上)からこのような方向に噴射することが、対象性がとり易く好ましい。
 図7に、攪拌混合槽10の横断面概略模式図において、加圧液E3の噴射方向を矢印で示した。中心軸方向から水平方向にずらす角度、すなわち図7に示した角度αは、上記効果を奏すれば特に限定はないが、αは、20°以上80°以下が好ましく、35°以上75°以下がより好ましく、50°以上70°以下が特に好ましい。
 角度αがこの範囲であれば、攪拌機構11の回転軸に衝撃を与えず、槽内液E1を攪拌することも可能であり、攪拌混合槽10に加圧液噴射部14を設置する際の攪拌混合槽10の穴開け等の加工が容易である。
 図1に示したように、加圧液E3を攪拌混合槽10の側面から噴射させるときには、噴射方向は、略水平方向であるか、又は、水平面に対して斜め下方向であることが好ましい。
 水平方向又は斜め下方向の角度(水平面と噴射方向のなす角度)は、特に限定はないが、0°以上60°以下が好ましく、5°以上45°以下がより好ましく、10°以上30°以下が特に好ましい。上に噴射すると槽内液E1の液面から加圧液E3が飛び出る場合がある。
 図4に示したように、加圧液E3を攪拌混合槽10の窪み部分15に一方向から噴射させるときには、噴射方向は、略水平方向であるか、又は、水平面に対して斜め上方向であることが好ましい。
 水平方向又は斜め下方向の角度(水平面と噴射方向のなす角度)は、特に限定はないが、0°以上60°以下が好ましく、5°以上45°以下がより好ましく、10°以上30°以下が特に好ましい。下に噴射すると窪み部分15の底に当たり液流が乱れたり、取り出し口16に衝撃を与えたりする場合がある。
 図2に示したように、窪み部分15において異なる二方向から噴射された加圧液E3同士を衝突させる場合も、窪み部分15における加圧液E3の噴射方向は、略水平方向であるか、又は、水平面に対して斜め上方向であることが好ましいが、一方、二方向から同じ高さで略水平方向に加圧液を噴射すると(すなわち上記角度が0°であると)、加圧液E3同士の衝突効率が高くなり好ましい。
 また、攪拌機構11の底部に、衝突板(好ましくは、下に凸に湾曲した衝突板)(図示せず)を設けると、噴射によって攪拌機構11が損傷を受けにくく、また、加圧液E3の噴射方向が水平面に対して斜め上方向であると、加圧液E3が衝突板に衝突して、凝集塊の分離・微細化が促進するために特に好ましい。
 処理完了後に、攪拌混合槽10内の水性エマルジョンEを取り出すための取り出し口16は、攪拌混合槽10のどこに存在していてもよいが、取り出しのしやすさから攪拌混合槽10の下部に存在していることが好ましい。
<減圧機構30>
 減圧機構30の種類に特に限定はなく、攪拌混合槽10内を前記した適正な圧力に減圧できればよく、公知の真空ポンプ等が使用できる。減圧機構30の前に(減圧機構30と攪拌混合槽10との間に)、水等をトラップする機構(図示せず)を設けることが好ましい。
 本発明では、攪拌混合槽10内の減圧は、水性エマルジョン中に含有される溶存空気を除去するため、また、衝突の際の凝集塊の周りにかかる外圧を下げるために行うものであり、減圧の程度(攪拌混合槽10内の圧力)、減圧時間等は前述した通りである。
<液加圧機構20>
 液加圧機構20は、槽内液採取部13から採取された採取液E2を加圧し、「槽内液E1に衝突させた際に微粒子の分離・微細化を進めるために必要な運動エネルギーを持った加圧液E3」とするための機構であり、加圧された加圧液E3は、攪拌混合槽10の加圧液噴射部14から攪拌混合槽10内に噴射される。
 液加圧機構20は、採取液E2を加圧できれば、どのようなものでもよいが、一例として、図3に示すような、加圧室の構造が、ピストン22を備えたシリンダ21であるものが挙げられる。
 図3のような場合、ピストンを押圧運動させることにより、シリンダ21内で採取液E2は加圧され、加圧液E3として、ノズル形状等を持った加圧液噴射部14から噴射される。
 加圧液噴射部14から噴射される際の加圧液E3の圧力は、処理される水性エマルジョンの種類等にもよるが、3MPa(30気圧)以上250MPa(2500気圧)以下が好ましく、10MPa(100気圧)以上50MPa(500気圧)以下がより好ましく、20MPa(200気圧)以上25MPa(250気圧)以下が特に好ましい。
 加圧液E3の圧力が上記範囲であると、衝突時の運動エネルギーが十分であるため凝集塊の分離・微細化の効率がよく、また、攪拌混合槽10、加圧液噴射部14等に過大な負荷がかからないので、装置の故障が発生しにくい。
 また、加圧液の圧力は、循環(噴射)開始直後は比較的小さな圧力に設定し、徐々に上げて定常状態にすることが好ましい。
 加圧液噴射部14から噴射された直後の加圧液E3の速度は、特に限定はないが、50m/s以上1500m/s以下が好ましく、200m/s以上500m/s以下がより好ましく、100m/s以上800m/s以下が特に好ましい。
 噴射された直後の速度が上記範囲であると、運動エネルギーが十分であるため凝集塊の分離・微細化の効率がよく、一方で、攪拌混合槽10、加圧液噴射部14等に過大な負荷がかかりにくい。
 上記条件で衝突が起こると衝突箇所が局部的に高温になるが、攪拌混合槽10に設置された温度調節機構(図示せず)によって、槽内液E1は全体として一定に保たれる。
 図1、図2、図4では、槽内液採取部13から液加圧機構20に至る配管は分岐していないが、例えば、共通した1個の槽内液採取部13から採取された採取液E2を途中で2本に分岐させて、2つの液加圧機構20に分けて別々に加圧してもよい。また、1つの加圧機構20を通過した加圧液を2つに分けて、2個の加圧液噴射部14から噴射させてもよい。
 減圧後、加圧液E3を攪拌混合槽10内に向けて噴射し循環させる際の温度は、凝集塊の分離・微細化が十分に行われれば特に限定はないが、好ましい温度範囲は前記した通りである。
 減圧後又は減圧中に、槽内液E1を連続的に液加圧機構20内に採取して得られた加圧液E3を攪拌混合槽10内に向けて噴射し循環させておく時間は、凝集塊の分離・微細化が十分に行われれば特に限定はなく、処理量にも依存するが、10分以上5時間以下が好ましく、20分以上3時間以下がより好ましく、30分以上2時間以下が特に好ましい。
 時間が上記下限以上であると、噴射の機会が何度もあり、噴射が一回の回分式に対して有利となり、凝集塊の分離・微細化が十分に行われる。一方、上記上限以下であると、生産性、コスト面等で有利である。
 十分な時間、攪拌混合槽10内を減圧してから、減圧下に噴射・循環してもよく、減圧開始と同時に噴射・循環を開始してもよいが、減圧にして溶存空気を除去してから、好ましくは上記時間、噴射・循環することが望ましい。
<帯電機構40>
 図4に示すように、槽内液採取部13と液加圧機構20の間に、帯電機構40を設けて、槽内液E1の一部を連続的に採取する際に採取した水性エマルジョンEである採取液E2を、帯電機構40を使用して帯電させることが好ましい。
 帯電機構40を使用して、水性エマルジョンE(採取液E2)中の微粒子やその周りの界面活性剤を帯電させることにより、微粒子間に作用する電気的反発力により微粒子の凝集を抑制することができる。その結果、微粒子の分散状態を長期間に亘って良好に維持できるようになる。減圧して溶存空気(酸素)がなくなると、水分子同士の結合が弱まり、上記現象が起こり易くなり、分散性がより向上する。
 帯電機構40を、槽内液採取部13と液加圧機構20の間に設けるのではなく、例えば、処理完了後に得られた水性エマルジョンに帯電を施してもよいが、槽内液採取部13と液加圧機構20の間に帯電機構40を設けて帯電を施す場合、水性エマルジョンEを循環させながら帯電を施すことになるので、帯電による上記効果を奏しやすくなる。
[水性エマルジョン]
 本発明における「水性エマルジョン」とは、液体が液体(水)中に分散したものに限らず、分散媒である水の中に液体又は固体が微粒子状となって分散したものをいう。
 本発明に適用される水性エマルジョンの種類には特に限定はなく、使用目的に応じて、適宜選択される。
 本発明における水性エマルジョンの一例として、例えば、アクリル系エマルジョン、メタクリル系エマルジョン、スチレン系エマルジョン、酢酸ビニル系エマルジョン、(無水)マレイン酸系エマルジョン、アルキレン系エマルジョン、ウレタン系エマルジョン等が挙げられる。これらは、少なくとも、疎水性の重合性のモノマーと乳化剤(界面活性剤)を混合し、水に可溶な重合開始剤を配合し、乳化重合することにより得られるポリマー粒子(樹脂微粒子)が水に分散した水性エマルジョンである。
 乳化剤(界面活性剤)や重合開始剤の種類について特に限定はなく、公知のものが使用できる。
 乳化剤(界面活性剤)については、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤の何れも使用することができる。
 重合開始剤については、ラジカル重合開始剤が好ましく、熱重合開始剤が好ましい。
 また、本発明における水性エマルジョンとしては、単純に乳化重合されたものに限らず、懸濁重合、シード重合等により重合されたものが挙げられる。また、予め調製した微粒子を水に分散させたものも挙げられる。
 本発明の水性エマルジョンの分散性改良方法により分散性を改良した水性エマルジョンは、前記した理由から、水性塗料として使用する場合に、前記したような優れた性質を発揮するものであるが、本発明の適用対象は、塗料に限られるものではない。水性エマルジョン中の凝集塊を分離でき、不純物を除去することができる本発明の方法は、例えば、インク、接着剤、化粧品、表面処理剤等の用途にも適用することができる。
 本発明の水性エマルジョンを上記用途に使用するときは、該用途に必要な物質を適宜更に配合させることができる。
 本発明の水性エマルジョンの分散性改良方法により分散性を改良した水性エマルジョンには、上記のような用途等に使用されることが好適のため、顔料が配合されていることが好ましい。
 顔料を配合させる場合、(A)顔料を含まない水性エマルジョンに本発明の処理を施し、処理完了後に得られた水性エマルジョンに顔料を添加し、公知の方法で顔料を分散させてもよく、(B)予め顔料を添加した水性エマルジョンを原料として投入し、本発明の処理を施してもよく、(C)本発明の処理の途中(例えば、低圧攪拌により溶存空気が除去された段階)で顔料を添加してもよい。
 顔料も本発明の方法に供して微細化するためには上記(A)が好ましく、最終的に得られる水性エマルジョン中における顔料の分散性を良好なものとするためには上記(B)が好ましい。
[水性エマルジョンの特性、効果、作用・原理]
 本発明の水性エマルジョンの分散性改良方法によって分散性を改良した水性エマルジョンは、接着性、強靭性、対候性、耐熱性、臭気性等の点において、従来の水性エマルジョンと比較して優れている。
 本発明の水性エマルジョンは、前記した通り、水性塗料、接着剤、インク、化粧品、表面処理剤等の用途として有用であるが、長期間経過してもその性質に変化が生じにくいことから、本発明の水性エマルジョンを含有する水性塗料は特に有用である。
 本発明の水性エマルジョンを含有する水性塗料は、上記のような優れた特性を示すことから、具体的には、防錆、防汚、防カビ、絶縁、遮熱、着雪防止等のために使用される。
 本発明の作用・原理に関しては、以下の記載内容の及ぶ範囲に限定されるものではないが、本発明の作用・原理については以下が考えられる。
 本発明は、水性エマルジョン中に含有される微粒子の凝集塊を、加圧した水性エマルジョンを減圧状態の攪拌混合槽内の水性エマルジョンに衝突させることによって、個々の微粒子(又はサイズの小さい凝集塊)に分離・微細化するものである。そのとき、「凝集塊同士」又は「凝集塊と個々の微粒子」が衝突し、凝集塊が分離・微細化する。
 攪拌混合槽内の水性エマルジョンは、溶存空気が除去され微粒子間の結合力が弱くなっているため、加圧した水性エマルジョンの大きな衝突エネルギーを受けることにより、凝集塊が個々の微粒子(又はサイズの小さい凝集塊)に分離・微細化される。
 実際、溶存空気を除去した水性エマルジョンは膨張率が低くなることが本発明者によって確かめられている。膨張率が低いため加圧し易くなり、該加圧された水性エマルジョンの衝突エネルギーが効率的に分離・微細化に寄与したと考えられる。
 すなわち、攪拌混合槽内は、減圧状態であるため、水性エマルジョンに含有されていた溶存空気(酸素)が、水性エマルジョン中から除去されているため、微粒子間の結合力の低下や水性エマルジョンの加圧効果の増大によって、上記衝突エネルギーが効率的に分離・微細化に使用されると共に、凝集塊の周りから外気圧がかからないため、分離・微細化が好適に行われる。
 加圧液を攪拌混合槽内に向けて噴射して該槽内液と衝突させた箇所の温度は局部的に極めて高温(限定はされないが、例えば100℃以上400℃以下)になると考えられる。また、加圧液噴射部から噴射される加圧液の特に好ましい圧力は上記した通り、20.3MPa(200気圧)以上25.3MPa(250気圧)である。一方、水の臨界温度と臨界圧力は、それぞれ374℃と22MPa(218気圧)であるから、衝突の箇所は局部的に超臨界になっている可能性がある。
 超臨界に近くなるため、1つの水のクラスターを形成する水の分子数が減少し(小クラスター水が生成し)、凝集塊が分離・微細化された微粒子が該水の分子間に入って、良好に微粒子の分散が行われたと考えられる。
 更に、減圧をして溶存空気を除去すると、水の臨界温度が低くなることが本発明者によって確かめられている。そのため、本発明における「一旦減圧処理された加圧液」では、より容易に上記現象が起こったと考えらえる。
 本発明では、減圧状態にした攪拌混合槽内の水性エマルジョン(槽内液)の一部を連続的に採取し、採取した水性エマルジョン(採取液)を、加圧して攪拌混合槽内に向けて噴射するため、装置内で水性エマルジョンの循環が起き、何度も衝突を繰り返すことができると共に、連続的に処理を行うことができる。
 凝集塊の生成・分離のしやすさや凝集度は、樹脂微粒子の種類、重合開始剤、界面活性剤等の添加剤の種類;攪拌・加圧・噴射時の処理条件等にも依存するため、特許文献2のような方法では、条件によっては1度の処理では十分に凝集塊が分離せず、何度も処理を繰り返す必要がある場合があり、原料の投入と液の取り出しに手間が発生する。この点、本発明の方法では、連続的に処理を行うことができるため、原料の投入と取り出しは1度だけで、従って処理時間を延ばすことにより、十分に凝集塊が分離させることができ、この結果、効率よく大量処理を行うことが可能となる。
[水性塗料]
 本発明の水性エマルジョンを含有する水性塗料の種類は特に限定されず、水性塗料とする際に該水性エマルジョンに配合する物質も、該水性塗料に応じて適宜選択して配合される。
 該水性塗料の種類としては、特に限定はないが、本発明の水性エマルジョンの前記効果を発揮するために、防錆、防汚、防カビ、絶縁、遮熱、着雪防止等の用途に用いられる水性塗料であることが好ましい。
[水性塗料の特性、効果、作用・原理]
 本発明の方法により分散性を改良(凝集塊を分離・微細化)した水性エマルジョンを含有する水性塗料は、優れた接着性や強靭性(塗膜硬度)を示すが、これは、微粒子が凝集塊を形成している場合、大きな凝集塊の形で塗布素材面と接触するのに対し(図5(a))、個々の微粒子に分離している場合、個々の微粒子の形で塗布素材面と接触する(図5(b))ため、接触面積が大きいためと考えられる。
 また、微粒子が凝集塊を形成している場合(図5(a))は、紫外線等により塗装表面の劣化が進むと、凝集塊の下部(塗布素材面)まで劣化が連鎖するのに対して、個々の微粒子に分離している場合(図5(b))は、塗装表面の微粒子が劣化したとしても、凝集塊を形成していない(又は凝集塊のサイズが小さい)ため、劣化は連鎖しにくく、凝集塊の下部(塗布素材面)は劣化しないと考えられ、このため、本発明の水性塗料は、対候性に優れる。
 本発明の水性塗料は、耐熱性、臭気性の点においても優れるが、これは、減圧処理により、水性エマルジョン中の溶存空気(特に酸素)、不純物等の不要物が除去されたためと考えられる。このような不要物は、微粒子同士の結合力を強めるため、凝集塊を分離・微細化するために除去することが好ましいものであるが、塗膜中に残存していると、塗料が燃えやすくなり、臭気の原因ともなる。また、このような不要物は、塗膜の電気伝導度を上昇させ、防錆性を低下させる。塗膜からこのような不要物が除去される点も、本発明の方法の優れた点である。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例及び比較例に限定されるものではない。
[実施例1]
 図2に示すような、加圧液噴射部14が攪拌混合槽10の窪み部分15に存在し、二方向から噴射された加圧液E3同士を衝突させるタイプの装置を使用して、水性エマルジョンに処理を施した。液加圧機構20は、図3に示すようなピストン22を備えたシリンダ21状のものを使用した。
 攪拌混合槽10の容積は、1mとした。攪拌混合槽の中に、水性エマルジョンであるアクリルエマルジョン(日本エヌエスシー株式会社製、AD157)を、800L投入した。
 減圧機構30として、真空ポンプを用いて、攪拌混合槽10内の減圧を開始し、攪拌混合槽10内が約20Torr(2.6kPa)になるように保ち、攪拌混合槽10内の温度は20℃で均一に保った上で、攪拌混合槽10内の攪拌を開始した。
 20℃における水の飽和蒸気圧は17.5Torr(2.3kPa)であるから、攪拌混合槽10内の圧力は、水の飽和蒸気圧より少し高い程度に保たれている。
 減圧に伴い、水性エマルジョン(槽内液E1)の液面が一旦上昇し、溶存空気(酸素)が泡となって除去される様子を確認したが、水性エマルジョン(槽内液E1)の沸騰は起こらなかった。
 減圧状態のまま、攪拌混合槽10と液加圧機構20とをつなぐ配管のバルブを開き、槽内液E1の一部を2つの液加圧機構20内にそれぞれ送り込んだ。
 その際、帯電機構40を作動させ、液加圧機構20内に送り込まれる採取液に帯電を施した。
 加圧液E3の圧力を25.3MPa(250気圧)に設定し、攪拌混合槽10内の窪み部分15に設けられた2か所の加圧液噴射部14から、それぞれ加圧液E3を略水平方向に噴射し、加圧液E3同士を衝突させ、連続処理を開始した。
 1時間後、装置内の全てのバルブを閉じ、真空ポンプ、液加圧機構20、帯電機構40を停止して、処理を完了し、攪拌混合槽10内の窪み部分15の下部にある取り出し口16から、処理後の水性エマルジョンを採取した。
 レーザ回折/散乱式粒度分布測定装置(日機装株式会社製、MT3300型)を使用して、処理の前後の粒子径分布を測定したところ、図6に示すように、処理後のアクリルエマルジョンの微粒子の粒子径(図6(b))は、処理前のアクリルエマルジョンの微粒子の粒子径(図6(a))に比べて著しく小さく、本発明の方法による処理後のアクリルエマルジョンの微粒子は、個々の微粒子や粒子径が1μmに達しないサイズの小さい凝集塊となっていた。
[比較例1]
 特許文献2の図1に記載の装置を使用して、実施例1と同一のアクリルエマルジョン800Lに対して、凝集塊を個々の微粒子又はサイズの小さな凝集塊に分離する処理を施した。
 特許文献2の装置は、(a)減圧状態で水性混合液を攪拌する工程と、(b)加圧した水性混合液同士を噴射し衝突させる工程が別々の機構(装置)で行われ、両工程は完全に分離されている回分式の装置である。従って、(b)工程を終えた水性混合液を、(a)工程に戻すことで連続的に処理を行う事はできない。
 真空タンク(本発明の装置では、「攪拌混合槽10」に相当する。)の容積は、実施例1とほぼ同じにした。
 真空タンクの圧力を約20Torr(2.6kPa)になるように保ち、真空タンク内の温度は20℃で均一に保った上で、真空タンク内の攪拌を開始した。
 真空タンクから加圧室(本発明の装置では、「液加圧機構20」に相当する。)にアクリルエマルジョンを送り込み、加圧圧力を25.3MPa(250気圧)に設定し、衝突室の中で、アクリルエマルジョン同士を相互に衝突させた。
 衝突させたアクリルエマルジョンは収容容器に収容した。投入したアクリルエマルジョンを全て収容容器に収容するのに、25時間の時間を要した。
 処理の前後のアクリルエマルジョンの微粒子の粒子径分布を実施例1と同じ方法で測定したところ、処理後のアクリルエマルジョンの微粒子の粒子径は、処理前のアクリルエマルジョンの微粒子の粒子径に比べて小さく、凝集塊はある程度分離・微細化されていたが、実施例1における処理後のアクリルエマルジョンの微粒子の粒子径(図6(b))よりは大きかった。
 上記の結果から明らかなように、本発明の水性エマルジョンの分散性改良方法を用いた場合、水性エマルジョンを循環させることで連続的な処理が可能であり、特許文献2のような回分式の方法に比べて、効率よく水性エマルジョンの分散性を改良することができた。具体的には、原料のアクリルエマルジョンを装置に投入してから、処理後のアクリルエマルジョンを取り出すまでの時間を、1/25にすることができた。
 また、処理後のアクリルエマルジョン中の微粒子の粒子径も、本発明の方法で処理した方が、粒子径を小さく(分散性を良好に)することができた。
 本発明の水性エマルジョンの分散性改良方法を用いて分散性を改良した(凝集塊を分離・微細化された)水性エマルジョンは、接着性、強靭性、対候性、耐熱性、臭気性等の点において優れているため、水性塗料、接着剤、インク、化粧品等の用途に広く利用されるものであり、特に水性塗料として、防錆、防汚、防カビ、絶縁、遮熱、着雪防止等が要求される被塗工物に塗布するために広く利用されるものである。
 1  分散性改良装置
10  攪拌混合槽
11  攪拌機構
12  排気部
13  槽内液採取部
14  加圧液噴射部
15  窪み部分
16  取り出し口
20  液加圧機構
21  シリンダ
22  ピストン
30  減圧機構
40  帯電機構
E   水性エマルジョン
E1  槽内液
E2  採取液
E3  加圧液
α   水平面上での加圧液の噴射方向

Claims (9)

  1.  水性エマルジョンを投入した攪拌混合槽内を該水性エマルジョン中に含有される溶存空気が除去される圧力に減圧し、該減圧処理後の水性エマルジョン同士を衝突させる水性エマルジョンの分散性改良方法であって、
     該攪拌混合槽内に存在する水性エマルジョンである槽内液の一部を連続的に液加圧機構内に採取し、該液加圧機構で加圧した水性エマルジョンである加圧液を、先端の内径が0.03mm以上0.3mm以下のノズル形状の加圧液噴射部から、該攪拌混合槽に向けて噴射することで水性エマルジョンを循環させ、
     該加圧液を該攪拌混合槽内に向けて噴射する際に、該槽内液と衝突させることにより、該水性エマルジョン中の微粒子の分散性を改良することを特徴とする水性エマルジョンの分散性改良方法。
  2.  上記加圧液噴射部から噴射された直後の加圧液の速度は、50m/s以上1500m/s以下である請求項1に記載の水性エマルジョンの分散性改良方法。
  3.  上記加圧液噴射部から噴射される際の加圧液の圧力は、3MPa以上250MPa以下である請求項1又は請求項2に記載の水性エマルジョンの分散性改良方法。
  4.  上記攪拌混合槽は、窪み部分を有し、該窪み部分の中に上記加圧液を噴射する請求項1ないし請求項3の何れかの請求項に記載の水性エマルジョンの分散性改良方法。
  5.  上記窪み部分は上記攪拌混合槽の下部に存在する請求項4に記載の水性エマルジョンの分散性改良方法。
  6.  上記加圧液を少なくとも二方向から上記窪み部分の中に向けて噴射し、異なる方向から噴射された加圧液同士を衝突させる請求項4又は請求項5に記載の水性エマルジョンの分散性改良方法。
  7.  上記窪み部分における加圧液の噴射方向は、略水平方向であるか、又は、水平面に対して斜め上方向である請求項6に記載の水性エマルジョンの分散性改良方法。
  8.  上記槽内液の一部を連続的に採取する際に採取した水性エマルジョンである採取液を、帯電機構を使用して帯電させる請求項1ないし請求項7の何れかの請求項に記載の水性エマルジョンの分散性改良方法。
  9.  請求項1ないし請求項8の何れかの請求項に記載の水性エマルジョンの分散性改良方法を使用することを特徴とする水性エマルジョンの製造方法。
PCT/JP2016/051562 2015-01-27 2016-01-20 水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョンの製造方法 WO2016121596A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-013506 2015-01-27
JP2015013506A JP5813259B1 (ja) 2015-01-27 2015-01-27 水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョン

Publications (1)

Publication Number Publication Date
WO2016121596A1 true WO2016121596A1 (ja) 2016-08-04

Family

ID=54595851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051562 WO2016121596A1 (ja) 2015-01-27 2016-01-20 水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョンの製造方法

Country Status (2)

Country Link
JP (1) JP5813259B1 (ja)
WO (1) WO2016121596A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118904A (ja) * 2018-01-11 2019-07-22 三菱重工機械システム株式会社 バッチ式混合装置およびバッチ式混合方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759620A (en) * 1980-09-26 1982-04-10 Fuji Photo Film Co Ltd Manufacture of emulsion
JPS61291036A (ja) * 1985-06-19 1986-12-20 Konishiroku Photo Ind Co Ltd 乳化物の製造方法
JPH0445168A (ja) * 1990-06-12 1992-02-14 Asahi Glass Co Ltd 着氷・着雪防止用塗料組成物
JP2003301134A (ja) * 2002-04-09 2003-10-21 Mitsubishi Kagaku Sanshi Corp 塗料型絶縁組成物および絶縁膜の形成方法
JP2004189765A (ja) * 2002-12-06 2004-07-08 Fuji Xerox Co Ltd 超微粒子樹脂エマルジョン及びその製造方法並びに製造装置
JP2004285139A (ja) * 2003-03-20 2004-10-14 Toyo Ink Mfg Co Ltd 水性樹脂分散体の製造方法及びその利用
JP2014122252A (ja) * 2010-01-29 2014-07-03 Mitsuo Minagawa 水性樹脂微粒子混合液の製造方法及び製造装置
JP2014198333A (ja) * 2013-03-12 2014-10-23 哲雄 野村 液体の微細化方法及び微細化ミキシング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759620A (en) * 1980-09-26 1982-04-10 Fuji Photo Film Co Ltd Manufacture of emulsion
JPS61291036A (ja) * 1985-06-19 1986-12-20 Konishiroku Photo Ind Co Ltd 乳化物の製造方法
JPH0445168A (ja) * 1990-06-12 1992-02-14 Asahi Glass Co Ltd 着氷・着雪防止用塗料組成物
JP2003301134A (ja) * 2002-04-09 2003-10-21 Mitsubishi Kagaku Sanshi Corp 塗料型絶縁組成物および絶縁膜の形成方法
JP2004189765A (ja) * 2002-12-06 2004-07-08 Fuji Xerox Co Ltd 超微粒子樹脂エマルジョン及びその製造方法並びに製造装置
JP2004285139A (ja) * 2003-03-20 2004-10-14 Toyo Ink Mfg Co Ltd 水性樹脂分散体の製造方法及びその利用
JP2014122252A (ja) * 2010-01-29 2014-07-03 Mitsuo Minagawa 水性樹脂微粒子混合液の製造方法及び製造装置
JP2014198333A (ja) * 2013-03-12 2014-10-23 哲雄 野村 液体の微細化方法及び微細化ミキシング装置

Also Published As

Publication number Publication date
JP5813259B1 (ja) 2015-11-17
JP2016138185A (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
CN1854210B (zh) 微囊化金属粒子及制造方法、水性分散液、及喷墨用油墨
US5921478A (en) Dispersion method and dispersing apparatus using supercritical state
WO2016153043A1 (ja) 小クラスター水の製造方法
US6828363B2 (en) Process for the preparation of powder coating compositions
JP2004522579A (ja) 高圧媒体、および超微細粉末の作成方法
CN111153426A (zh) 一种利用撞击流生产超细硫酸钡的方法
JP5813259B1 (ja) 水性エマルジョンの分散性改良方法及び分散性を改良した水性エマルジョン
JP6798881B2 (ja) フレーク状金属顔料、それを含むメタリック組成物および塗布物、ならびにフレーク状金属顔料の製造方法
Zhang et al. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content
JP5679640B2 (ja) 無機微粒子分散溶液の製造方法及び有機光学素子の製造方法
US7618181B2 (en) Method for dispersing pigment in liquid medium
CN109152994A (zh) 生产具有限定颗粒尺寸的分散体的方法
JP2000210546A (ja) ロジン系化合物の水性エマルジョンの製造方法
JP6898113B2 (ja) 微粒子製造装置
JP4568792B1 (ja) 水性樹脂微粒子混合液の製造方法及び製造装置
JP5040878B2 (ja) スラリーの製造方法及び製造装置
JP4254287B2 (ja) 水性樹脂分散体の製造方法
Schuchmann et al. High‐Pressure Homogenization for the Production of Emulsions
JPH10137618A (ja) 微細粒子製造方法
US9181443B2 (en) Resin for aqueous pigment dispersion, aqueous pigment dispersion, ink jet recording ink, and method for producing aqueous pigment dispersion
JP3930036B1 (ja) 微粒化方法、微粒化装置及び微粒化システム
JPH11147714A (ja) 微粒子分散体の製法および微粒子分散体
Özcan‐Taşkın Dispersion of fine powders in liquids: Particle incorporation and size reduction
EP3055337B1 (en) Process for coagulating sulfonated block copolymers
JP4228357B2 (ja) 分散液の製造方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743200

Country of ref document: EP

Kind code of ref document: A1