WO2016121436A1 - Acidic gas separation module - Google Patents

Acidic gas separation module Download PDF

Info

Publication number
WO2016121436A1
WO2016121436A1 PCT/JP2016/050329 JP2016050329W WO2016121436A1 WO 2016121436 A1 WO2016121436 A1 WO 2016121436A1 JP 2016050329 W JP2016050329 W JP 2016050329W WO 2016121436 A1 WO2016121436 A1 WO 2016121436A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
gas separation
facilitated transport
membrane
acidic gas
Prior art date
Application number
PCT/JP2016/050329
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 真
大介 平木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016571890A priority Critical patent/JP6419850B2/en
Publication of WO2016121436A1 publication Critical patent/WO2016121436A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment

Definitions

  • the present invention relates to an acid gas separation module that separates an acid gas from a raw material gas using a facilitated transport membrane. Specifically, the present invention relates to an acidic gas separation module having good durability.
  • an acidic gas separation module that separates an acidic gas from a raw material gas using an acidic gas separation membrane that selectively permeates the acidic gas has been developed.
  • Patent Document 1 includes a carbon dioxide carrier on a carbon dioxide permeable support as an acidic gas separation membrane (carbon dioxide separation gel membrane) for separating carbon dioxide (carbon dioxide) from a raw material gas.
  • An acidic gas separation membrane having a hydrogel membrane formed by absorbing an aqueous solution into a vinyl alcohol-acrylate copolymer having a crosslinked structure is disclosed.
  • Patent Document 1 as a method for producing this acidic gas separation membrane, an uncrosslinked vinyl alcohol-acrylate copolymer aqueous solution is coated on a carbon dioxide permeable support in the form of a membrane, A method for producing an acidic gas separation membrane is also disclosed in which an aqueous solution is heated and cross-linked to insolubilize water, and the water-insolubilized material absorbs a carbon dioxide carrier aqueous solution and gels.
  • the acid gas separation membrane shown in Patent Document 1 is an acid gas separation membrane using a so-called facilitated transport membrane.
  • the facilitated transport membrane has a carrier that reacts with an acidic gas such as the above-mentioned carbon dioxide carrier in the membrane, and the acidic gas is separated from the source gas by transporting the acidic gas to the opposite side of the membrane by this carrier. .
  • Such an acid gas separation membrane usually has a configuration in which a facilitated transport membrane is formed on a porous support such as a nonwoven fabric or a porous membrane.
  • the facilitated transport film needs to retain a large amount of moisture in the film in order to sufficiently function the carrier. Therefore, a polymer having extremely high water absorption and water retention is used for the facilitated transport film.
  • a polymer having extremely high water absorption and water retention is used for the facilitated transport film.
  • the facilitated transport membrane As the content of a carrier such as a metal carbonate increases, the water absorption increases and the separation performance of the acid gas improves. That is, the facilitated transport film is often a very soft (low viscosity), gel film.
  • a raw material gas having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa when the acidic gas is separated.
  • the carrier gradually reaches the support from the facilitated transport membrane and permeates the support. If the carrier flows out from the facilitated transport film, the acid gas separation performance is lowered accordingly. Therefore, the acid gas module using the facilitated transport membrane cannot be said to have sufficient durability.
  • Patent Document 2 discloses that a facilitated transport film (polymer compound layer) is formed on a hydrophobic support (porous film) having a heat resistance of 100 ° C. or higher.
  • a carrier diffusion suppression layer is provided between the support and the facilitated transport membrane.
  • siloxane, silicone rubber, polybutadiene, ethylcellulose, polyvinylidene fluoride, polypropylene, polysulfone, polyetherimide, polyethersulfite, polyacrylic acid, polyvinyl alcohol, etc. are exemplified as the material for forming the carrier diffusion suppressing layer.
  • the thickness of the carrier diffusion suppressing layer is exemplified as 0.01 to 100 ⁇ m.
  • Patent Document 2 by providing a carrier diffusion suppression layer on the surface of the support, it is possible to suppress carriers that have escaped from the facilitated transport film from reaching the support and permeating the support.
  • the source gas having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa.
  • the facilitated transport film has insufficient adhesion, and the facilitated transport film may drop off during the acid gas separation operation. Some are not good enough.
  • durability required for the acid gas separation module has become stricter, and it is desired to more suitably reduce the carriers that pass through the support through the facilitated transport membrane.
  • An object of the present invention is to solve such problems of the prior art, and is an acidic gas separation module using an acidic gas separation membrane having a facilitated transport membrane, which is an enhanced transport membrane at the time of acid gas separation operation. It is an object of the present invention to provide an acidic gas separation module with excellent durability, which can suppress the falling off of the carrier and also prevent the carrier from passing through the facilitated transport membrane and the support.
  • the acidic gas separation module of the present invention comprises a porous support, a carrier diffusion suppression layer formed at least partially in the porous support, and the porous support and carrier diffusion.
  • An acidic gas separation membrane having a facilitated transport membrane containing a carrier reacting with an acidic gas and a hydrophilic compound for supporting the carrier, formed on the suppression layer, and a supply gas flow channel serving as a raw material gas flow channel A member for
  • the projected area ratio (Ps) of the porous support on the surface of the porous support is 50% or more
  • the carrier in the cross section in the thickness direction of the porous support Provided is an acidic gas separation module characterized in that the projected area ratio (Pc) of the diffusion suppression layer is 30% or more.
  • the thickness of the porous support is preferably 200 ⁇ m or less.
  • the product of the projected area ratio (Ps) of the porous support and the projected area ratio (Pc) of the carrier diffusion suppression layer is preferably 2000 or more.
  • a carrier diffusion suppression layer has as a main component the compound which has at least 1 of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group.
  • the carrier diffusion suppressing layer is preferably a polydimethylsiloxane derivative.
  • the facilitated transport membrane is prevented from falling off, and carriers are prevented from exiting the facilitated transport membrane and further from the porous support, thereby being durable. It is possible to obtain an acidic gas separation module excellent in the above.
  • FIG. 3A is a schematic cross-sectional view of a part of the acidic gas separation membrane of the acidic gas separation module shown in FIG. 1
  • FIG. 3B is the surface of the facilitated transport membrane forming surface of the acidic gas separation module shown in FIG.
  • 4 (A) and 4 (B) are conceptual diagrams for explaining a method for producing the acidic gas separation module shown in FIG. It is a conceptual diagram for demonstrating the production method of the acidic gas separation module shown in FIG.
  • 6 (A) and 6 (B) are conceptual diagrams for explaining a method for producing the acidic gas separation module shown in FIG. It is a conceptual diagram for demonstrating the production method of the acidic gas separation module shown in FIG. It is a conceptual diagram for demonstrating the production method of the acidic gas separation module shown in FIG.
  • FIG. 1 is a partially cutaway schematic perspective view of an example of the acid gas separation module of the present invention.
  • the acid gas separation module is also simply referred to as a separation module.
  • the separation module 10 basically includes a central cylinder 12, a laminate wound product 14 obtained by winding a laminate 14 a having an acidic gas separation membrane 20, a telescope prevention plate 16, and the like. It is comprised.
  • the laminated body 14 a is a laminated body including the acidic gas separation membrane 20, the supply gas flow path member 24, and the permeate gas flow path member 26.
  • the acidic gas separation membrane 20 is composed of a facilitated transport membrane 20a, a porous support 20b, and a carrier diffusion suppression layer 20c.
  • the separation module 10 separates carbon dioxide as an acidic gas Gc from a raw material gas G containing carbon monoxide, carbon dioxide (CO 2 ), water (water vapor), and hydrogen.
  • the separation module 10 in the illustrated example is a so-called spiral type separation module. Therefore, the separation module 10 stacks a plurality of sheet-like laminates 14a to be described later, and winds the laminate around the central cylinder 12 to form the laminate wound product 14.
  • the telescoping prevention plate 16 is provided through the central tube 12 on both end surfaces of the lens. That is, the laminate wound product 14 is a substantially cylindrical product formed by the laminate 14a that is laminated and wound. The outermost peripheral surface of the wound laminate 14 a is covered with a gas impermeable coating layer 18.
  • the separation module of the present invention is not limited to the spiral type as shown in the drawings, and may be a so-called flat plate type in which the sheet-like laminate 14a is maintained in a flat plate shape.
  • the raw material gas G from which the acidic gas is separated passes through the opening 16 d of the telescope prevention plate 16 on the back side in FIG. It is supplied inside the body 14a.
  • the source gas G supplied to the stacked body 14a is separated from the acidic gas Gc while flowing in the stacked body 14a.
  • the acidic gas Gc separated from the raw material gas G by the laminated body 14a is discharged from the central cylinder 12, and the raw material gas G from which the acidic gas has been separated (hereinafter referred to as residual gas Gr for convenience) It is discharged from the end surface opposite to the supply side of the roll 14, and is discharged to the outside of the separation module 10 through the opening 16 d of the telescope prevention plate 16.
  • the central tube (permeate gas collecting tube) 12 is a cylindrical tube whose end surface on the source gas G supply side is closed, and a plurality of through holes 12a are formed on the peripheral surface (tube wall).
  • the acidic gas Gc separated from the raw material gas G passes through a permeating gas passage member 26 described later, reaches the inside of the central cylinder 12 from the through hole 12a, and is discharged from the open end 12b of the central cylinder 12.
  • the aperture ratio is preferably 1 to 80%, more preferably 1 to 75%, and further preferably 1.5 to 70%.
  • the opening ratio of the center tube 12 is particularly preferably 1.5 to 25%.
  • the opening ratio of the central cylinder 12 is an area ratio of the through-holes 12 a occupying the outer peripheral surface of the central cylinder 12 in the formation region of the through-holes 12 a in the length direction of the central cylinder 12.
  • the through hole 12a is preferably a circular hole having a diameter of 0.5 to 20 mm. Furthermore, it is preferable that the through holes 12 a are formed uniformly on the peripheral surface of the central cylinder 12.
  • the center tube 12 may be provided with a supply port (supply unit) for supplying a gas (sweep gas) for flowing the separated acidic gas Gc to the open end 12b side as necessary. Furthermore, it is preferable that a slit (not shown) is provided in the tube wall of the central cylinder 12 along the axial direction. This slit will be described in detail later.
  • the laminate 14a is formed by laminating the acidic gas separation membrane 20, the supply gas flow path member 24, and the permeate gas flow path member 26.
  • Reference numeral 30 in FIG. 1 denotes an adhesive layer 30 that bonds the acidic gas separation membrane 20 and the permeate gas flow path member 26 and bonds the stacked bodies 14a together.
  • This adhesive layer 30 also acts as a wall portion constituting the flow path, in which the flow path of the acidic gas Gc in the permeating gas flow path member 26 is formed in an envelope shape opened on the central tube 12 side.
  • the separation module 10 in the illustrated example is formed by stacking a plurality of the laminates 14 a and winding the laminate of the laminates 14 a around the central cylinder 12.
  • a direction corresponding to the winding of the laminated body 14a indicated by an arrow y in the drawing is a winding direction
  • a direction orthogonal to the winding direction indicated by an arrow x in the drawing is a width direction.
  • the laminate 14a constituting the laminate wound product 14 may be one. However, by laminating and winding a plurality of laminated bodies 14a, the membrane area of the acidic gas separation membrane 20 can be increased, and the amount of acidic gas Gc separated by one separation module can be improved.
  • the number of stacked layers 14a may be appropriately set according to the processing speed and processing amount required for the separation module 10, the size of the separation module 10, and the like.
  • the number of laminated bodies 14a to be laminated is preferably 50 or less, more preferably 45 or less, and particularly preferably 40 or less. By setting the number of laminated bodies 14a to be this number, winding of the laminated body 14a around the central cylinder 12 becomes easy, and the workability can be improved.
  • the laminated body 14a includes a supply gas flow path member 24 sandwiched between two folded acid gas separation membranes 20 to form a sandwiching body 36.
  • the permeate gas flow path member 26 is laminated. This configuration will be described in detail later.
  • the raw material gas G is supplied from one end face of the stacked body roll 14 through the opening 16 d of the telescope prevention plate 16. That is, the source gas G is supplied to the end portion (end surface) in the width direction (arrow x direction) of each stacked body 14a.
  • the source gas G supplied to the end face in the width direction of the stacked body 14 a flows in the width direction through the supply gas flow path member 24.
  • the acidic gas Gc in contact with the acidic gas separation membrane 20 (facilitated transport membrane 20a) is separated from the source gas G by the carrier of the facilitated transport membrane 20a and transported in the stacking direction, and the acidic gas separation membrane.
  • the acidic gas Gc that has flowed into the permeate gas flow path member 26 flows in the permeate gas flow path member 26 in the winding direction (the direction of the arrow y), reaches the central cylinder 12, and is centered from the through hole 12 a of the central cylinder 12. It flows into the cylinder 12.
  • the acidic gas Gc that has flowed into the center tube 12 flows through the center tube 12 in the width direction and is discharged from the open end 12b.
  • the residual gas Gr from which the acidic gas Gc has been removed flows in the width direction of the supply gas flow path member 24 and is discharged from the opposite end face of the laminate wound body 14. It is discharged to the outside of the separation module 10 through the part 16d.
  • the supply gas flow path member 24 is supplied with the source gas G from the end in the width direction, and brings the source gas G flowing in the member into contact with the acidic gas separation membrane 20.
  • a supply gas flow path member 24 functions as a spacer of the acid gas separation membrane 20 folded in half as described above, and constitutes a flow path for the source gas G.
  • the supply gas flow path member 24 preferably makes the source gas G turbulent.
  • the supply gas flow path member 24 is preferably a member having a net shape (mesh shape / mesh structure), a woven fabric shape, a nonwoven fabric shape, a porous shape, or the like.
  • Various materials can be used as the material for forming the supply gas flow path member 24 as long as it has sufficient heat resistance and moisture resistance.
  • Examples include paper materials such as paper, fine paper, coated paper, cast coated paper, and synthetic paper, resin materials such as cellulose, polyester, polyolefin, polyamide, polyimide, polysulfone, aramid, and polycarbonate, and inorganic materials such as metal, glass, and ceramics. A material etc. are illustrated suitably.
  • the resin material examples include polyethylene, polystyrene (PS), polyethylene terephthalate, polytetrafluoroethylene (PTFE), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), and polypropylene (PP).
  • PS polystyrene
  • PTFE polytetrafluoroethylene
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • PSF polysulfone
  • PP polypropylene
  • Polyimide, polyetherimide, polyetheretherketone, polyvinylidene fluoride and the like are preferably exemplified.
  • a plurality of materials may be used in combination as the material for forming such a supply gas flow path member 24.
  • the thickness of the supply gas flow path member 24 may be appropriately determined according to the supply amount of the source gas G, the required processing capacity, and the like. Specifically, 100 to 1000 ⁇ m is preferable, 150 to 950 ⁇ m is more preferable, and 200 to 900 ⁇ m is particularly preferable.
  • the acidic gas separation membrane 20 has a facilitated transport membrane 20a and a porous support 20b that supports the facilitated transport membrane 20a. Moreover, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has a carrier diffusion suppression layer 20c at least partially located in the porous support 20b. In other words, at least a part of the carrier diffusion suppressing layer 20c is infiltrated into the porous support 20b.
  • the facilitated transport film 20a contains at least a carrier that reacts with the acidic gas Gc contained in the source gas G flowing through the supply gas flow path member 24, and a hydrophilic compound that supports the carrier. Such a facilitated transport film 20a has a function of selectively allowing the acidic gas Gc to permeate from the source gas G.
  • the porous support 20b substantially supports the facilitated transport film 20a.
  • the carrier diffusion suppression layer 20c is a layer for preventing the carriers of the facilitated transport film 20a from being removed from the facilitated transport film 20a and further from the porous support 20b.
  • the acidic gas separation membrane 20 including the facilitated transport membrane 20a, the porous support 20b, and the carrier diffusion suppression layer 20c will be described in detail later.
  • the permeating gas channel member 26 is a member for allowing the acidic gas Gc that has reacted with the carrier and permeated through the acidic gas separation membrane 20 to flow through the through hole 12a of the central cylinder 12.
  • the stacked body 14a has the sandwiching body 36 in which the acidic gas separation membrane 20 is folded in half with the facilitated transport membrane 20a inside, and the supply gas flow path member 24 is sandwiched. By laminating the permeating gas flow path member 26 on the sandwiching body 36 and bonding them with the adhesive layer 30, one laminated body 14a is formed.
  • the permeating gas flow path member 26 functions as a spacer between the acidic gas separation membranes 20 and from the source gas G that reaches the through hole 12a of the central cylinder 12 toward the winding center (inner side) of the stacked body 14a. A flow path of the separated acid gas Gc is formed. Further, in order to properly form the flow path of the acidic gas Gc, the adhesive layer 30 described later needs to penetrate.
  • the permeating gas channel member 26 is preferably a net-like (mesh / net-like), woven fabric, non-woven fabric, porous material or the like, similar to the supply gas channel member 24. .
  • the laminated body 14a is not limited to the configuration using the sandwiching body 36 in which the supply gas flow path member 24 is sandwiched between the folded acidic gas separation membrane 20.
  • the laminated body may be configured in the same manner as the sandwiching body 36 by using the supply gas flow path member 24 attached to the surface of the acidic gas separation membrane 20.
  • polyester-based materials such as epoxy-impregnated polyester, polyolefin-based materials such as polypropylene, fluorine-based materials such as polytetrafluoroethylene, inorganic materials such as metal, glass, and ceramics are preferably exemplified.
  • a plurality of materials may be used in combination as the material for forming such a permeating gas channel member 26. Further, a plurality of the same materials may be used.
  • the thickness of the permeating gas channel member 26 may be appropriately determined according to the supply amount of the raw material gas G, the required processing capacity, and the like. Specifically, 100 to 1000 ⁇ m is preferable, 150 to 950 ⁇ m is more preferable, and 200 to 900 ⁇ m is particularly preferable.
  • the permeating gas channel member 26 is a channel for the acidic gas Gc that is separated from the source gas G and permeates the acidic gas separation membrane 20. Therefore, it is preferable that the permeating gas channel member 26 has a low resistance to the flowing gas. Specifically, it is preferable that the porosity is high, the deformation is small when pressure is applied, and the pressure loss is small.
  • the porosity of the permeating gas channel member 26 is preferably 30 to 99%, more preferably 35 to 97.5%, and particularly preferably 40 to 95%. Deformation when pressure is applied can be approximated by elongation when a tensile test is performed.
  • the permeating gas channel member 26 preferably has an elongation of 5% or less and more preferably 4% or less when a load of 10 N / 10 mm width is applied.
  • the pressure loss can be approximated by a flow rate loss of compressed air that flows at a constant flow rate.
  • the permeate gas channel member 26 has a flow rate loss of 7.5 L / min or less when air of 15 L (liter) / min is passed through the 15 cm square permeate gas channel member 26 at room temperature. Preferably, it is within 7 L / min.
  • the laminated body 14a is formed by laminating a supply gas flow path member 24, an acidic gas separation membrane 20, and a permeate gas flow path member 26.
  • the acidic gas separation membrane 20 includes the facilitated transport membrane 20a, the porous support 20b that substantially supports the facilitated transport membrane 20a, and the carrier diffusion suppression layer 20c.
  • the acidic gas separation membrane 20 has a projected area ratio (Ps) of the porous support 20b on the surface of the porous support 20b in a state excluding the facilitated transport membrane 20a.
  • the projected area ratio (Pc) of the carrier diffusion suppression layer 20c is 30% in the cross section in the thickness direction of the porous support 20b (the laminating direction of each film and layer and the flow path member). That's it.
  • 3A is a schematic sectional view of the acid gas separation membrane 20 in the thickness direction.
  • FIG. 3B is a schematic top view of the porous support 20b in a state in which the facilitated transport membrane 20a is removed from the acid gas separation membrane 20.
  • 3B is a schematic diagram of the facilitated transport film 20a formation surface (surface) of the porous support 20b in the state where the carrier diffusion suppressing layer 20c is formed and the facilitated transport film 20a is not present.
  • the facilitated transport film 20a has a function of selectively allowing the acidic gas Gc to permeate from the source gas G.
  • the facilitated transport film 20a has a function of selectively transporting the acidic gas Gc.
  • Such a facilitated transport film 20a contains at least a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like.
  • the hydrophilic compound functions as a binder, retains moisture in the facilitated transport film 20a, and exhibits a function of separating an acidic gas such as carbon dioxide by a carrier. Moreover, it is preferable that a hydrophilic compound has a crosslinked structure from a heat resistant viewpoint.
  • the hydrophilic compound can be dissolved in water to form a coating composition, and the facilitated transport film 20a preferably has high hydrophilicity (moisturizing property), those having high hydrophilicity are preferable.
  • the hydrophilic compound preferably has a hydrophilicity of 0.5 g / g or more in physiological saline, and has a hydrophilicity of 1 g / g or more in physiological saline. More preferably, the physiological saline has a hydrophilicity of 5 g / g or more, more preferably, the physiological saline has a hydrophilicity of 10 g / g or more, and the physiological saline has a hydrophilicity. Most preferably, the amount has a hydrophilicity of 20 g / g or more.
  • the weight average molecular weight of a hydrophilic compound suitably in the range which can form a stable film
  • the hydrophilic compound has a hydroxy group (—OH) as a crosslinkable group
  • the hydrophilic compound preferably has a weight average molecular weight of 30,000 or more. In this case, the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more.
  • the weight average molecular weight is preferably 6,000,000 or less from the viewpoint of production suitability.
  • the hydrophilic compound preferably has a weight average molecular weight of 10,000 or more.
  • the weight average molecular weight of the hydrophilic compound is more preferably 15,000 or more, and particularly preferably 20,000 or more.
  • a weight average molecular weight is 1,000,000 or less from a viewpoint of manufacture aptitude.
  • the weight average molecular weight of various polymer materials may be measured as a molecular weight in terms of PS by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a commercial item can also be used for a hydrophilic compound, and when using a commercial item, the molecular weight nominally mentioned by a catalog, a specification, etc. should just be used.
  • crosslinkable group forming the hydrophilic compound those capable of forming a hydrolysis-resistant crosslinked structure are preferably selected.
  • Specific examples include a hydroxy group, an amino group, a chlorine atom, a cyano group, a carboxy group, and an epoxy group.
  • an amino group and a hydroxy group are preferably exemplified.
  • a hydroxy group is illustrated from the viewpoint of affinity with a carrier and a carrier carrying effect.
  • hydrophilic compounds include those having a single crosslinkable group such as polyallylamine, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethyleneimine, polyvinylamine, polyornithine, polylysine, Examples include polyethylene oxide, water-soluble cellulose, starch, alginic acid, chitin, polysulfonic acid, polyhydroxymethacrylate, poly-N-vinylacetamide and the like. Most preferred is polyvinyl alcohol. Moreover, as a hydrophilic compound, these copolymers are also illustrated.
  • Examples of the hydrophilic compound having a plurality of crosslinkable groups include polyvinyl alcohol-polyacrylic acid copolymers.
  • a polyvinyl alcohol-polyacrylic salt copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
  • the content of polyacrylic acid in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, particularly preferably 5 to 50 mol%. It is.
  • the content of acrylic acid can be controlled by a known synthesis method.
  • the polyacrylic acid may be a salt.
  • Examples of the polyacrylic acid salt in this case include ammonium salts and organic ammonium salts in addition to alkali metal salts such as sodium salts and potassium salts.
  • Polyvinyl alcohol is also available as a commercial product. Specific examples include PVA117 (manufactured by Kuraray Co., Ltd.), Poval (manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (manufactured by Aldrich Co., Ltd.), J-Poval (manufactured by Nippon Vinebaum Poval Co., Ltd.) and the like. Various grades of molecular weight exist, but those having a weight average molecular weight of 130,000 to 300,000 are preferred.
  • a polyvinyl alcohol-polyacrylate copolymer (sodium salt) is also available as a commercial product. For example, Crustomer AP20 (made by Kuraray Co., Ltd.) is exemplified.
  • two or more hydrophilic compounds of the facilitated transport film 20a may be mixed and used.
  • the content of the hydrophilic compound is appropriately determined depending on the type of the hydrophilic composition, the carrier, and the like so that the hydrophilic compound functions as a binder and can sufficiently retain moisture. , You can set.
  • the content of the hydrophilic compound in the facilitated transport film 20a is preferably 0.5 to 50% by mass, more preferably 0.75 to 30% by mass, and particularly preferably 1 to 15% by mass.
  • the crosslinked structure of the hydrophilic compound can be formed by a known method such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, or photocrosslinking. Photocrosslinking or thermal crosslinking is preferred, and thermal crosslinking is most preferred.
  • the coating composition for forming the facilitated transport film 20a preferably contains a crosslinking agent.
  • the crosslinking agent one containing a crosslinking agent that reacts with a hydrophilic compound and has two or more functional groups capable of crosslinking such as thermal crosslinking or photocrosslinking is selected.
  • the formed crosslinked structure is preferably a hydrolysis-resistant crosslinked structure.
  • an epoxy crosslinking agent a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine, An organic metal type crosslinking agent etc. are illustrated suitably. More preferred are polyvalent aldehydes, organometallic crosslinking agents and epoxy crosslinking agents, and among them, polyvalent aldehydes such as glutaraldehyde and formaldehyde having two or more aldehyde groups are preferred.
  • Epoxy crosslinking agent the compound which has 2 or more of epoxy groups is illustrated, and the compound which has 4 or more is also preferable.
  • Epoxy crosslinking agents are also commercially available, for example, trimethylolpropane triglycidyl ether (manufactured by Kyoeisha Chemical Co., Epolite 100MF, etc.), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, EX -810, EX-811, EX-821, EX-830, Epiol E400 manufactured by NOF Corporation, and the like.
  • an oxetane compound having a cyclic ether is also preferably used.
  • the oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups.
  • Examples of commercially available products include EX-411, EX-313, EX-614B, EX-810, EX-811, EX manufactured by Nagase ChemteX Corporation. -821, EX-830, etc.
  • polyvalent glycidyl ether examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples include glycol glycidyl ether and polypropylene glycol diglycidyl ether.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, oxyethyleneoxypropylene block copolymer , Pentaerythritol, sorbitol and the like.
  • Examples of the polyvalent isocyanate include 2,4-tolylene diisocyanate and hexamethylene diisocyanate.
  • Examples of the polyvalent aziridine include 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′-N, N Examples include '-diethylene urea.
  • Examples of the haloepoxy compound include epichlorohydrin and ⁇ -methylchlorohydrin.
  • Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
  • Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
  • examples of the organometallic crosslinking agent include organic titanium crosslinking agents and organic zirconia crosslinking agents.
  • an epoxy crosslinking agent or glutaraldehyde is preferably used as the crosslinking agent.
  • an epoxy crosslinking agent or glutaraldehyde is preferably used as the crosslinking agent.
  • the hydrophilic compound When a polyallylamine having a weight average molecular weight of 10,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance.
  • the crosslinking agent an epoxy crosslinking agent, glutaraldehyde, and an organometallic crosslinking agent are preferably used.
  • an epoxy crosslinking agent is preferably used as the crosslinking agent.
  • the amount of a crosslinking agent is preferably 0.001 to 80 parts by mass, more preferably 0.01 to 60 parts by mass, and particularly preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable group possessed by the hydrophilic compound. preferable.
  • the content of the cross-linking agent in the above range, a facilitated transport film having good cross-linking structure formation and excellent shape maintainability can be obtained.
  • the crosslinked structure is preferably formed by reacting 0.001 to 80 mol of a crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound.
  • the facilitated transport film 20a preferably contains a metal element.
  • One preferred embodiment of the facilitated transport film 20a includes an embodiment in which the facilitated transport film contains at least one metal element selected from the group consisting of Ti, Zr, Al, Si, and Zn.
  • the strength of the facilitated transport film 20a is improved.
  • the strength of the facilitated transport film 20a is further improved by forming a cross-linked structure containing the metal element, and as a result, the facilitated transport film 20a is deteriorated when wound in a spiral shape, for example. Is more suppressed.
  • the form of the facilitated transport film 20a containing such a metal element is not particularly limited, but a facilitated transport film containing a structural unit represented by the following formula (1) is preferable.
  • * represents a bonding position.
  • M- (O-*) m M represents a metal element selected from the group consisting of Ti (titanium), Zr (zirconium), Al (aluminum), Si (silicon), and Zn (zinc).
  • m represents the valence of the metal element represented by M. For example, as shown below, m represents 2 when M is Zn, m represents 3 when M is Al, and m represents 4 when M is Ti, Zr, and Si. . More specifically, structural formulas (formula (2) to formula (4)) where m is 2 to 4 are shown below.
  • the structural unit represented by the above formula (1) is, for example, by using a hydrolyzable compound in combination with a hydrophilic compound having a crosslinkable group (for example, a hydroxy group) as described below. It can be introduced into the facilitated transport film 20a. In that case, the structural unit functions as a so-called cross-linked site (cross-linked structure).
  • membrane 20a it can confirm by detecting a specific peak by IR measurement, for example. If necessary, after removing the carriers in the facilitated transport film 20a, IR measurement may be performed on the remaining film.
  • the total mass of the metal elements in the facilitated transport film 20a is not particularly limited, but the content of the metal element is 0.1 to 0.1% with respect to the total mass of the hydrophilic compound in that the strength of the facilitated transport film 20a is more excellent.
  • the content is preferably 50% by mass, more preferably 0.3 to 20% by mass, and still more preferably 0.5 to 10% by mass.
  • the measuring method of content of the said metal element is not restrict
  • Formula (5) M (X) m
  • M represents a metal element selected from the group consisting of Ti (titanium), Zr (zirconium), Al (aluminum), Si (silicon), and Zn (zinc).
  • X represents a hydrolyzable group.
  • hydrolyzable group examples include an alkoxyl group, an isocyanate group, a halogen atom such as a chlorine atom, an oxyhalogen group, an acetylacetonate group, and a hydroxy group.
  • a plurality of X may be the same or different.
  • m represents the valence of the metal element represented by M.
  • the carrier reacts with an acid gas (for example, carbon dioxide gas (CO 2 )) to transport the acid gas.
  • an acid gas for example, carbon dioxide gas (CO 2 )
  • the carrier is a water-soluble compound having affinity with acidic gas and showing basicity. Specific examples include alkali metal compounds, nitrogen-containing compounds, and sulfur oxides.
  • the carrier may react indirectly with the acid gas, or the carrier itself may react directly with the acid gas.
  • the former reacts with other gas contained in the supply gas, shows basicity, and the basic compound reacts with acidic gas. More specifically, OH react with steam (water) - was released, the OH - that reacts with CO 2, a compound can be incorporated selectively CO 2 in facilitated transport membrane 20a
  • an alkali metal compound is such that the carrier itself is basic, for example, a nitrogen-containing compound or a sulfur oxide.
  • alkali metal compound examples include alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide.
  • alkali metal an alkali metal element selected from cesium, rubidium, potassium, lithium, and sodium is preferably used.
  • an alkali metal compound contains the salt and its ion other than alkali metal itself.
  • Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • Examples of the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, an alkali metal carbonate is preferable, and a compound containing potassium, rubidium, and cesium having high solubility in water is preferable from the viewpoint of good affinity with acidic gas.
  • two or more kinds of carriers may be used in combination.
  • two or more types of carriers are present in the facilitated transport film 20a, different carriers can be separated from each other in the film. Thereby, due to the difference in deliquescence of a plurality of carriers, due to the water absorption of the facilitated transport film 20a, the facilitated transport films 20a or the facilitated transport film 20a and other members are adhered to each other during production. (Blocking) can be suitably suppressed.
  • the first compound having deliquescence and the specific gravity having lower deliquescence than the first compound It is preferable to contain the 2nd compound with small.
  • the first compound is exemplified by cesium carbonate
  • the second compound is exemplified by potassium carbonate.
  • Nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, triazine, monoethanolamine, diethanolamine, triethanolamine , Alkanolamines such as monopropanolamine, dipropanolamine and tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] and cryptand [ And bicyclic polyetheramines such as 2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like.
  • sulfur compounds include amino acids such as cystine and cysteine, polythiophene, dodecyl thiol and the like.
  • the amount of carriers in the facilitated transport film 20a is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and 1 to 20% by mass. Is particularly preferred.
  • the weight ratio of the hydrophilic compound to the carrier in the coating composition is preferably 1: 9 to 2: 3, more preferably 1: 4 to 2: 3, and more preferably 3: 7 to 2 in terms of the weight ratio of the hydrophilic compound to the carrier. : 3 is particularly preferable.
  • the facilitated transport film 20a may contain a thickener as necessary. That is, the coating composition for forming the facilitated-transport film
  • membrane 20a may contain a thickener as needed.
  • the thickener for example, thickening polysaccharides such as agar, carboxymethylcellulose, carrageenan, chitansan gum, guar gum and pectin are preferable.
  • carboxymethylcellulose is preferable from the viewpoints of film forming property, availability, and cost.
  • the content of the thickener is preferably as small as possible as long as it can be adjusted to the target viscosity.
  • a general index 10% by mass or less is preferable, 0.1 to 5% by mass is more preferable, and 0.1 to 2% by mass or less is more preferable.
  • the facilitated transport film 20a that is, the coating composition for forming the facilitated transport film 20a contains various components as necessary in addition to such a hydrophilic compound, a crosslinking agent and a carrier, or a thickener. May be.
  • antioxidants such as dibutylhydroxytoluene (BHT), compounds having 3 to 20 carbon atoms or fluorinated alkyl groups having 3 to 20 carbon atoms and hydrophilic groups, and siloxane structures.
  • BHT dibutylhydroxytoluene
  • Specific compounds such as compounds having a surfactant, surfactants such as sodium octoate and sodium 1-hexasulfonate, polymer particles such as polyolefin particles and polymethyl methacrylate particles, and the like.
  • a catalyst, a humectant, a hygroscopic agent, an auxiliary solvent, a film strength modifier, a defect detector, and the like may be used as necessary.
  • the thickness of the facilitated transport membrane 20a may be set as appropriate so that the desired performance can be obtained according to the composition of the facilitated transport membrane 20a. Specifically, it is preferably 3 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and particularly preferably 5 to 100 ⁇ m.
  • membrane 20a can be measured by cross-sectional observation using a scanning electron microscope or the like.
  • the facilitated transport film 20a is shown on the porous support 20b for the sake of brevity, but in actuality, the facilitated transport film 20a is shown in FIGS. 3 (A) and 3 (B).
  • the film thickness of the facilitated transport film 20a is obtained by taking an image of a cross section with a scanning electron microscope (SEM), and taking the average of any 10 cross sections with the interface between the facilitated transport film 20a and the layer located therebelow as the lower end Calculate as The layer located under the facilitated transport film 20a is the porous support 20b or the carrier diffusion suppression layer 20c.
  • SEM scanning electron microscope
  • the porous support 20b supports the facilitated transport film 20a and the carrier diffusion suppression layer 20c, and has a permeability to an acidic gas such as carbon dioxide.
  • the porous support 20b is also referred to as the support 20b.
  • As the support 20b various known materials can be used as long as they have this function.
  • the support 20b may be a single layer.
  • the support 20b preferably has a two-layer structure in which a porous film and an auxiliary support film are stacked.
  • the porous membrane is on the facilitated transport membrane 20a side.
  • the porous membrane is preferably made of a material having heat resistance and low hydrolyzability.
  • a porous membrane include membrane filter membranes such as polysulfone (PSF), polyethersulfone, polypropylene (PP) and cellulose, interfacially polymerized thin films of polyamide and polyimide, polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • a stretched porous membrane of high molecular weight polyethylene a porous film containing one or more materials selected from fluorine-containing polymers such as PTFE, high molecular weight polyethylene, PP and PSF is preferably exemplified.
  • stretched porous membranes of PTFE, high molecular weight polyethylene, and PP are preferable from the viewpoints of high porosity, small diffusion inhibition of acidic gas (especially carbon dioxide gas), and strength and manufacturability.
  • a stretched porous membrane of PTFE is preferably used in terms of heat resistance and low hydrolyzability.
  • an inorganic material or an organic-inorganic hybrid material may be used.
  • the inorganic porous support include a porous substrate mainly composed of ceramics. By using ceramics as a main component, it is excellent in heat resistance, corrosion resistance, etc., and mechanical strength can be increased. There are no particular limitations on the type of ceramic, and various commonly used ceramics can be used. Examples of the ceramic include alumina, silica, silica-alumina, mullite, cordierite, zirconia and the like. Further, a combination of two or more kinds of ceramics, a composite of ceramic and metal, or a composite of ceramic and organic compound may be used.
  • the auxiliary support membrane is provided for reinforcing the porous membrane.
  • various materials can be used as long as they satisfy the required strength, stretch resistance and gas permeability.
  • a nonwoven fabric, a woven fabric, a net, and a mesh can be appropriately selected and used.
  • the auxiliary support membrane is also preferably made of a material having heat resistance and low hydrolyzability, like the porous membrane described above.
  • the fibers constituting the nonwoven fabric, woven fabric, and knitted fabric are excellent in durability and heat resistance, polyolefin such as PP, modified polyamide such as aramid (trade name), PTFE, polyvinylidene fluoride, etc.
  • a fiber made of a fluorine-containing resin is preferable. It is preferable to use the same material as the resin material constituting the mesh.
  • a non-woven fabric made of PP that is inexpensive and has high mechanical strength is particularly preferably exemplified.
  • the support 20b has an auxiliary support film
  • the mechanical strength can be improved. Therefore, as will be described later, even when the acid gas separation membrane 20 is formed using so-called RtoR (roll-to-roll), it is possible to prevent wrinkles from being generated on the support 20b, and to improve productivity. Can also be increased.
  • RtoR roll-to-roll
  • the thickness of the support 20b is preferably 200 ⁇ m or less. Further, if the support 20b is too thin, the strength is difficult. Considering this point, the thickness of the support 20b is preferably 10 to 200 ⁇ m, more preferably 10 to 120 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
  • the film thickness of the porous film is preferably 5 to 100 ⁇ m, and the film thickness of the auxiliary support film is preferably 50 to 200 ⁇ m.
  • the maximum pore diameter of the porous membrane is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.3 ⁇ m or less.
  • the average pore diameter of the pores of the porous membrane is preferably 0.001 to 1 ⁇ m, and more preferably 0.001 to 0.3 ⁇ m.
  • the maximum pore size and the average pore size of the porous film are set within this range, it is possible to improve the controllability of the penetration of the carrier diffusion suppression layer 20c (coating composition to be the carrier diffusion suppression layer 20c) described later, It is possible to suitably prevent the film from obstructing the passage of the acidic gas, and when applying the coating composition that becomes the carrier diffusion suppressing layer 20c described later, the film surface becomes non-uniform due to capillary action or the like. I can prevent it.
  • the acidic gas separation membrane 20 is at least partially infiltrated into the support 20b (soaked in).
  • the carrier diffusion suppression layer 20c is formed.
  • the carrier diffusion suppression layer 20c prevents the carrier from escaping from the facilitated transport film 20a and further from the support 20b.
  • the carrier diffusion suppressing layer 20c has an effect of supporting the facilitated transport film 20a together with the support 20b.
  • the carrier diffusion suppressing layer 20c is formed entirely without gaps corresponding to the formation region of the facilitated transport film 20a, as in the case of a normal acidic gas separation module using the facilitated transport film.
  • the acidic gas separation membrane 20 is a support in a state where the facilitated transport membrane 20a is removed as conceptually shown in FIGS. 3 (A) and 3 (B).
  • the projected area ratio (Ps) of the support 20b on the surface of 20b is 50% or more.
  • the carrier diffusion suppression layer 20c is in a so-called sea island state in which it partially protrudes from the surface of the support 20b.
  • the acidic gas separation membrane 20 has a projected area of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b, as conceptually shown in FIG.
  • the rate (Pc) is 30% or more.
  • the carrier diffusion suppression layer 20c may be formed only in the porous film or formed only in the auxiliary support film. Alternatively, it may be formed across both the porous membrane and the auxiliary support membrane.
  • the carrier diffusion suppression layer 20c is usually formed on the porous film side. Therefore, in this case, the porous film on which the carrier diffusion suppressing layer 20c is formed becomes the porous support in the present invention.
  • the present invention prevents the facilitated transport film 20a from dropping off during the acidic gas separation operation, and the carrier escapes from the facilitated transport film 20a and further escapes from the support 20b. This prevents the acid gas separation module 10 having excellent durability.
  • a porous support is used to prevent carriers that have escaped from the facilitated transport membrane from exiting the porous support.
  • a carrier diffusion layer is provided on the surface, and a facilitated transport film is formed thereon.
  • the facilitated transport film is in a gel form.
  • the raw material gas G having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa. For this reason, in the conventional configuration in which the facilitated transport film is formed on the carrier diffusion suppressing layer, the facilitated transport film has insufficient adhesion, and the facilitated transport film may fall off during the acid gas separation operation.
  • the acidic gas separation membrane using the facilitated transport membrane gradually loses the carrier from the facilitated transport membrane and further escapes from the support as a result of use, and the acid gas separation ability is reduced. Therefore, it cannot be said that the acid gas module using the conventional facilitated transport membrane has sufficient durability.
  • the acidic gas separation membrane 20 has a projected area ratio (Ps) of the support 20b on the surface of the support 20b of 50, excluding the facilitated transport membrane 20a. % Or more. That is, the carrier diffusion suppression layer 20c is formed in a state in which at least a part is infiltrated into the support 20b, and 50% or more of the projected area ratio is covered with the carrier diffusion suppression layer 20c on the surface of the support 20b.
  • the support 20b is bare. Therefore, as shown in FIGS. 3 (A) and 3 (B), in the separation module 10 of the present invention, the facilitated transport film 20a has 50% or more of the projected area ratio on the surface of the support 20b.
  • the acidic gas separation membrane 20 has a projected area of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b, as conceptually shown in FIG.
  • the rate (Pc) is 30% or more.
  • the acidic gas separation membrane 20 has the carrier diffusion suppression layer 20c having a sufficient thickness with respect to the thickness of the support 20b. Furthermore, it is possible to prevent the support 20b from coming off. Therefore, according to the present invention, the separation module 10 having excellent durability can be obtained.
  • the acid gas separation membrane 20 has a projected area ratio (Ps) of the support 20b of 50% or more on the surface of the support 20b in a state where the facilitated transport membrane 20a is excluded.
  • the acid gas separation membrane 20 has an area ratio of 50% or more where the support 20b is exposed on the surface of the support 20b excluding the facilitated transport membrane 20a, and the carrier diffusion suppression layer 20c is exposed.
  • the area ratio is less than 50%.
  • the projected area ratio (Ps) is less than 50%, the anchor effect due to the facilitated transport film 20a soaking into the support 20b cannot be sufficiently obtained, and the facilitated transport film 20a cannot be sufficiently prevented from falling off during the separation operation.
  • the higher the projected area ratio (Ps) the better the anchor effect.
  • the projected area ratio (Ps) is preferably 80% or more, and more preferably 85% or more.
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b excluding the facilitated transport film 20a is, for example, that the facilitated transport film 20a is not present and the carrier diffusion suppression layer 20c is formed.
  • What is necessary is just to image
  • SEM scanning electron microscope
  • the obtained SEM image is binarized between the exposed portion of the carrier diffusion suppression layer 20c and the exposed portion of the support 20b by discriminant analysis using commercially available image processing software (such as “Winroof” manufactured by Mitani Corporation). Processing is performed, and the area ratio is calculated as an average of arbitrary 10 cross sections. At this time, if there are different elements in the chemical composition of the carrier diffusion suppressing layer 20c and the support 20b, the area ratio may be calculated from SEM-EDX mapping targeting the element. Further, the projected area ratio (Ps) may be measured as it is after the formation of the carrier diffusion suppressing layer 20c and before the formation of the facilitated transport film 20a. Even after the facilitated transport film 20a is formed, the surface of the support 20b may be exposed and measured by dissolving the facilitated transport film 20a with hot water and washing it away.
  • image processing such as “Winroof” manufactured by Mitani Corporation.
  • the acidic gas separation membrane 20 has a projected area ratio (Pc) of the carrier diffusion suppression layer 20c of 30% or more in the cross section of the support 20b in the thickness direction.
  • the support 20b of the acidic gas separation membrane 20 has an area ratio at which the carrier diffusion suppression layer 20c is exposed in a cross section in the thickness direction of 30% or more, and an area ratio at which the support 20b is exposed. Is less than 70%.
  • the projected area ratio (Pc) is less than 30%, the carrier diffusion suppressing layer 20c having a sufficient thickness cannot be formed, and it is not possible to sufficiently suppress the carriers from passing through the facilitated transport film and further from the support 20b.
  • the projected area ratio (Pc) is preferably 50% or more.
  • the projected area ratio (Pc) is preferably 50 to 80%, more preferably 55 to 70%.
  • the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section of the support 20b in the thickness direction is the same as the projected area ratio (Ps), and the cross section in the thickness direction of the support 20b is measured with a scanning electron microscope. Photographing and image analysis to obtain the area ratio of the carrier diffusion suppression layer 20c in this cross section may be performed in any 10 cross sections, and the average value may be set as the projected area ratio (Pc). At this time, the facilitated transport film 20a may be removed as necessary in the same manner as the projected area ratio (Ps).
  • the product “(Ps) ⁇ (Pc)” of the projected area ratio (Ps) and the projected area ratio (Pc) is preferably 2000 or more, and more preferably 2500 or more. It is particularly preferably 5000 or more.
  • the product “(Ps) ⁇ (Pc)” is basically larger, the facilitated transport film 20a is prevented from falling off and the carrier is prevented from leaving the facilitated transport film 20a and the support 20b in a well-balanced manner. Can do. Therefore, by setting the product “(Ps) ⁇ (Pc)” to 2000 or more, it is possible to obtain the separation module 10 with more excellent durability.
  • the carrier diffusion suppression layer 20c is formed above the support 20b in a so-called sea-island state in which a part protrudes from the surface of the support 20b.
  • the present invention is not limited to this. That is, the carrier diffusion suppression layer 20c may not be exposed on the surface of the support 20b, and may be entirely present inside the support 20b (projected area ratio (Ps) is 100%). May be formed at the bottom (the side opposite to the side on which the facilitated transport film 20a is formed).
  • the carrier diffusion suppression layer 20c can be formed of various materials. Specifically, the carrier diffusion suppression layer 20c preferably has a functional group that reacts with a hydroxyl group and / or a carboxyl group. More specifically, the carrier diffusion suppression layer 20c preferably contains a compound having at least one of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group as a main component.
  • the carrier diffusion suppressing layer 20c a layer made of a compound having a silicone bond or a silicone-containing compound having a non-crosslinkable or crosslinked structure is exemplified.
  • silicone-containing polyacetylene such as organopolysiloxane (silicone resin) or polytrimethylsilylpropyne having non-crosslinkable or crosslinked structure can be used.
  • organopolysiloxane include those represented by the following general formula.
  • the carrier diffusion suppressing layer 20c can also be used in a configuration obtained by crosslinking one represented by the following general formula. In the above general formula, n represents an integer of 1 or more.
  • n is preferably in the range of 10 to 1000000, and more preferably in the range of 100 to 100,000.
  • R 1n , R 2n , R 3 and R 4 are each selected from the group consisting of a hydrogen atom, alkyl group, vinyl group, aralkyl group, aryl group, hydroxyl group, amino group, carboxyl group and epoxy group. Indicates either. Note that n R 1n and R 2n may be the same or different. Further, the alkyl group, aralkyl group and aryl group may have a ring structure.
  • alkyl group, vinyl group, aralkyl group and aryl group may have a substituent, and the substituent in this case is, for example, an alkyl group, vinyl group, aryl group, hydroxyl group, amino group, carboxyl group. , An epoxy group and a fluorine atom. These substituents may further have a substituent, if possible.
  • the alkyl group, vinyl group, aralkyl group and aryl group selected from R 1n , R 2n , R 3 and R 4 are alkyl groups having 1 to 20 carbon atoms, vinyl groups, More preferred are an aralkyl group having 7 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
  • R 1n , R 2n , R 3 and R 4 are preferably methyl groups or epoxy-substituted alkyl groups.
  • PDMS derivatives such as epoxy-modified polydimethylsiloxane (PDMS) can be suitably used.
  • a silicone material such as poly [1- (trimethylsilyl) -1-propyne] (PTMSP), a butadiene-based / isoprene-based rubber material, a low density A layer made of polymethylpentene or the like can also be used.
  • the acidic gas separation membrane 20 preferably has a protective layer on the surface, that is, the facilitated transport membrane 20a.
  • the facilitated transport membrane 20a As described above, when the separation module 10 winds the laminate 14a in which the sandwiched body 36 formed by the acidic gas separation membrane 20 and the supply gas flow path member 24 and the permeate gas flow path member 26 are wound, The facilitated transport film 20a may be damaged by the sliding contact between the facilitated transport film 20a and the supply gas flow path member 24.
  • the facilitated transport membrane 20a is prevented by the sliding contact between the facilitated transport membrane 20a and the supply gas flow path member 24, and more acidic.
  • a separation module 10 having excellent gas separation performance can be obtained.
  • the material for forming the protective layer can be used as the material for forming the protective layer, and various compounds exemplified in the carrier diffusion suppression layer 20c described above are preferably used.
  • the PDMS derivative is preferably exemplified.
  • a protective layer suitably according to the characteristic of the facilitated-transport film
  • Such an acidic gas separation membrane 20 may be produced by various known methods. Preferably, it is produced by a coating method using RtoR.
  • RtoR means that a substrate is delivered from a roll formed by winding a long substrate (object to be processed) and conveyed in the longitudinal direction, and the coating composition is applied and dried. It is a manufacturing method which winds up the board
  • a roll formed by winding a long support 20b is loaded into a carrier diffusion suppression layer 20c forming apparatus, and the support is sent out from the roll. While transporting 20b in the longitudinal direction, a coating composition to be the carrier diffusion suppression layer 20c is applied.
  • the conveyance speed of the support 20b is preferably faster from the viewpoint of productivity.
  • the coating composition uniformly it is preferably 3 to 200 m / min, more preferably 5 to 150 m / min, and particularly preferably 10 to 120 m / min.
  • the coating composition that becomes the carrier diffusion suppressing layer 20c is composed of the monomer, dimer, trimer, oligomer, prepolymer, mixture of these compounds, the curing agent, and the curing acceleration.
  • a resin layer resin film
  • a coating method in which an agent, a crosslinking agent, a thickener, a reinforcing agent, and a filler are dissolved and / or dispersed in an organic solvent, It is a general coating composition (coating liquid / paint).
  • Such a coating composition may be prepared by a known method.
  • the support 20b is a porous body. Therefore, when the coating composition to be the carrier diffusion suppressing layer 20c is applied to the support 20b, the coating composition gradually permeates the support 20b (porous film).
  • the viscosity of the coating composition to be the carrier diffusion suppressing layer 20c, the solid content concentration of the coating composition, the coating amount of the coating composition (coating film thickness), the time from applying the coating composition to drying or curing By adjusting the maximum pore size and average pore size of the support 20b (porous membrane) over time, the penetration of the coating composition into the support 20b is controlled, and the projected area ratio of the porous support 20b on the surface ( Ps) is 50% or more, and the acidic gas separation membrane 20 in which the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the porous support 20b is 30% or more can be produced.
  • the projected area ratio (Ps) and / or the projected area ratio (Pc) can be adjusted.
  • the acidic gas separation membrane 20 having a projected area ratio (Ps) of 50% or more and a projected area ratio (Pc) of 30% or more is first coated with a low-viscosity coating composition, and then has a certain degree of high viscosity. It can also be produced by applying the coating composition to be the carrier diffusion suppressing layer 20c a plurality of times, such as by applying a coating composition. The order of applying the low-viscosity coating composition and the order of applying the high-viscosity coating composition may be reversed. Furthermore, using a coating composition that is very easily impregnated into the support 20b, a coating layer is formed on the lower surface of the support 20b (the surface opposite to the surface on which the facilitated transport film is formed) to form a coating composition.
  • the acidic gas separation membrane 20 having a projected area ratio (Ps) of 50% or more and a projected area ratio (Pc) of 30% or more may be formed by applying an object.
  • the coating composition to be the carrier diffusion suppression layer 20c has a viscosity at 25 ° C. of preferably 50 to 10,000 cp, more preferably 50 to 8000 cp, and particularly preferably 50 to 5000 cp.
  • the coating composition used as the carrier diffusion suppressing layer 20c has an acid gas separation membrane having a projected area ratio (Ps) of 50% or more and a projected area ratio (Pc) of 30% or more by setting the viscosity at 25 ° C. to 50 to 10,000 cp. 20 is preferable in that it can be stably produced.
  • the coating device for the coating composition to be the carrier diffusion suppression layer 20c various known devices corresponding to the coating composition can be used. Specifically, roll coater, direct gravure coater, offset gravure coater, 1 roll kiss coater, 3 reverse roll coater, forward rotation roll coater, curtain flow coater, extrusion die coater, air doctor coater, blade coater, rod coater And knife coaters, squeeze coaters, reverse roll coaters, bar coaters and the like.
  • a roll coater in consideration of the control of the coating composition, the coating amount of the coating composition, the penetration amount of the coating composition, etc., a roll coater, a direct gravure coater, an offset gravure coater, a single roll kiss coater, a three reverse roll coater, A rotary roll coater, a squeeze coater, a reverse roll coater and the like are preferably exemplified.
  • the coating composition to be the carrier diffusion suppressing layer 20c is applied, the coating composition is then dried.
  • the drying may be performed by a known method such as hot air drying or drying with a heater.
  • the coating composition to be the carrier diffusion suppression layer 20c is dried, the coating composition is then cured to form the carrier diffusion suppression layer 20c.
  • a method capable of curing such as heat curing, ultraviolet irradiation, electron beam irradiation, or the like, may be appropriately selected according to the material for forming the carrier diffusion suppression layer 20c.
  • curing of the coating composition by ultraviolet irradiation or short heating is preferably used. Is done.
  • curing by ultraviolet irradiation is most preferably used. That is, in the present invention, it is preferable to form the carrier diffusion suppression layer 20c with a coating composition using a monomer or the like that can be cured by irradiation with ultraviolet rays.
  • the coating composition may be dried and cured at the same time. Moreover, you may perform drying and / or hardening of a coating composition in inert atmosphere, such as nitrogen atmosphere, as needed.
  • the support 20b on which the carrier diffusion suppression layer 20c is formed is wound into a roll.
  • the protective layer formed on the facilitated transport film 20a can be basically formed in the same manner as the carrier diffusion suppression layer 20c.
  • the roll of the support 20b on which the carrier diffusion suppressing layer 20c is formed is loaded into the apparatus for forming the facilitated transport film 20a, and the composite is sent out from the roll and transported in the longitudinal direction to become the facilitated transport film 20a.
  • a coating composition is applied.
  • the support 20b on which the carrier diffusion suppression layer 20c is formed is also referred to as a composite.
  • complex at the time of forming the facilitated-transport film
  • the conveyance speed of the composite is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.
  • the facilitated transport film 20a contains a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like.
  • the coating composition (coating liquid / paint) for forming such a facilitated transport film 20a includes the above-described hydrophilic compound, carrier and water, or further a necessary composition such as a crosslinking agent. It is a thing.
  • the water may be room temperature water or warm water.
  • the hydrophilic compound may be crosslinked, partially crosslinked, or uncrosslinked, or a mixture of these.
  • This coating composition may also be prepared by a known method.
  • the coating composition to be the facilitated transport film 20a preferably has a viscosity at 25 ° C. of 100 cp or more.
  • a viscosity at 25 ° C. of the coating composition By setting the viscosity at 25 ° C. of the coating composition to 100 cp or more, it is preferable from the standpoint that repelling at the time of applying the coating composition can be suppressed, and uniformity of coating of the coating composition can be improved.
  • what is necessary is just to measure a viscosity similarly to the coating composition used as the carrier diffusion suppression layer 20c.
  • the coating composition to be the facilitated transport film 20a various known materials can be used, and the same materials as those of the carrier diffusion suppression layer 20c described above are exemplified.
  • a roll coater, a bar coater, a positive rotation roll coater, a knife coater, and the like are preferably used.
  • membrane 20a is apply
  • Various known methods for drying by removing water such as warm air drying or drying by heating the support 20b, can be used as the drying method.
  • the speed of the warm air may be set as appropriate so that the coating composition can be dried quickly and the coating film (gel film) of the coating composition does not collapse. Specifically, 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
  • the temperature of the hot air may be appropriately set at a temperature at which the support 20b is not deformed and the coating composition can be dried quickly.
  • the film surface temperature is preferably 1 to 120 ° C., more preferably 2 to 115 ° C., and particularly preferably 3 to 110 ° C.
  • drying of the facilitated transport film 20a by heating the support 20b is preferably performed at a temperature of the support 20b of 60 to 120 ° C, more preferably 60 to 90 ° C, and more preferably 70 to 80 ° C. It is particularly preferable to carry out as In this case, the film surface temperature is preferably 15 to 80 ° C., more preferably 30 to 70 ° C.
  • the coating composition is dried to produce the facilitated transport membrane 20a, that is, the acidic gas separation membrane 20, the acidic gas separation membrane 20 is wound into a roll.
  • the support 20b on which the carrier diffusion suppression layer 20c is formed is temporarily wound, and the support 20b on which the carrier diffusion suppression layer 20c is formed is sent out from this roll to form the facilitated transport film 20a. is doing.
  • the support 20b on which the carrier diffusion suppressing layer 20c is formed is not wound up, but is transported in the longitudinal direction as it is to form the facilitated transport film 20a to produce the acidic gas separation film 20, May be.
  • the facilitated transport membrane 2a is formed on the support 20b on which the carrier diffusion suppressing layer 20c is formed.
  • the acid gas separation membrane has various configurations other than this. Is possible.
  • a structure in which a part or all of the facilitated transport film 20a is impregnated with a nonwoven fabric or the like can be used for the purpose of reinforcing mechanical strength such as pressure resistance.
  • a configuration in which part or all of the facilitated transport film 20a is formed inside a nonwoven fabric or the like can be used.
  • the acidic gas separation membrane has a configuration in which a nonwoven fabric impregnated with the facilitated transport membrane 20a is laminated on the support 20b on which the carrier diffusion suppression layer 20c is formed.
  • a nonwoven fabric the nonwoven fabric which consists of materials, such as PP, PPS, PET, PVA, is illustrated as an example.
  • the nonwoven fabric which consists of PP and PPS is used suitably at points, such as the decomposition
  • the support 20b a support having a two-layer structure in which a porous film and an auxiliary support film are stacked can be suitably used.
  • Such an acidic gas separation membrane having a structure in which the nonwoven fabric is impregnated with the facilitated transport film 20a produces a support 20b on which the carrier diffusion suppressing layer 20c is formed and a nonwoven fabric impregnated with the facilitated transport film 20a. And what is necessary is just to manufacture by laminating
  • the facilitated transport film 20a may be formed by laminating a nonwoven fabric on the support 20b on which the carrier diffusion suppressing layer 20c is formed and impregnating the nonwoven fabric.
  • the separation module 10 a method for producing the laminated body 14 a including the acidic gas separation membrane 20, the supply gas flow path member 24 and the permeate gas flow path member 26, and a winding method of the laminated body 14 a, that is, lamination A method for producing the wound body 14 will be described.
  • the supply gas flow path member 24 and the permeate gas flow path member 26 have end faces (end portions) in order to simplify the drawings and clearly show the configuration. Only the net is shown.
  • the extending direction of the central cylinder 12 and the short direction coincide with each other, and the fixing means 34 such as an adhesive is attached to the central cylinder 12.
  • the fixing means 34 such as an adhesive is attached to the central cylinder 12.
  • the tube wall of the center tube 12 is provided with a slit (not shown) along the axial direction.
  • a distal end portion of a permeating gas channel member 26 to be described later is inserted into the slit, and is fixed to the inner peripheral surface of the center tube 12 by fixing means.
  • the inner peripheral surface of the central tube 12 and the permeating gas channel Friction with the member 26 can prevent the permeate gas flow path member 26 from coming out of the slit, that is, the permeate gas flow path member 26 is fixed.
  • the acidic gas separation membrane 20 produced as described above is folded in half with the facilitated transport membrane 20a inside, and the supply gas flow path member 24 is sandwiched therebetween. That is, the holding body 36 is manufactured in which the supply gas flow path member 24 is held between the acidic gas separation membranes 20 folded in half.
  • the acidic gas separation membrane 20 is not equally folded in half, but is folded in half so that one is slightly longer as shown in FIG.
  • a sheet-like protective member for example, Kapton tape
  • Etc. are preferably arranged.
  • an adhesive 30a to be the adhesive layer 30 is applied to the shorter surface of the acid gas separation membrane 20 folded in half (the surface of the support 20b).
  • the adhesive 30 a extends in the vicinity of both ends in the width direction (arrow x direction) and extends in the entire winding direction (arrow y direction). Furthermore, it is applied to the entire region in the width direction in the vicinity of the end portion opposite to the folded portion, and is applied in a band shape.
  • the surface coated with the adhesive 30a is directed to the permeating gas flow path member 26, and the folded side is directed to the central cylinder 12.
  • the sandwiching body 36 is laminated on the permeate gas flow path member 26 fixed to the central cylinder 12, and the permeate gas flow path member 26 and the acidic gas separation membrane 20 (support 20b) are bonded.
  • an adhesive 30a to be the adhesive layer 30 is applied to the upper surface (the surface of the longer support 20b) of the sandwiched sandwich 36.
  • the direction opposite to the permeating gas flow path member 26 first fixed to the central cylinder 12 by the fixing means 34 is also referred to as the upper side.
  • the adhesive 30a on this surface also extends in the vicinity of both ends in the width direction and is applied in a strip shape in the vicinity of both ends in the width direction. Furthermore, it extends in the entire region in the width direction in the vicinity of the end opposite to the folded portion and is applied in a band shape.
  • the permeate gas flow path member 26 is laminated on the sandwich 36 applied with the adhesive 30a, and the acidic gas separation membrane 20 (support 20b) and the permeate gas flow are laminated.
  • the road member 26 is bonded to form the laminated body 14a. Note that a plurality of permeate gas channel members 26 may be used as necessary.
  • a sandwiching body 36 in which the supply gas flow path member 24 is sandwiched between the acidic gas separation membranes 20 is produced, and an adhesive 30 a to be the adhesive layer 30 is applied.
  • the permeated gas flow path member 26 and the sandwiching body 36 that are finally stacked are stacked and bonded with the side to which the adhesive is applied facing down.
  • an adhesive 30a is applied to the upper surface of the laminated sandwiching body 36 as shown in FIGS. 6A and 6B, and then, as shown in FIG. Then, the permeating gas flow path member 26 is laminated and bonded, and the second laminated body 14a is laminated.
  • the laminated body 14a is laminated so as to be gradually separated from the central tube 12 in the winding direction as it goes upward. Thereby, the laminated body 14a is easily wound around the central cylinder 12, and the end of the permeate gas flow path member 26 on the central cylinder 12 side or the vicinity of the end is preferably in contact with the central cylinder 12. it can.
  • the laminated body 14 a is wound around the central cylinder 12 so as to wind the laminated body 14 a.
  • the permeate gas passage member 26 on the outermost periphery is maintained for a predetermined time in a state where tension is applied in the pulling-out direction, that is, the direction of squeezing and the adhesive 30a and the like are dried.
  • the outermost permeating gas channel member 26 is the lowermost permeating gas channel member 26 fixed to the central cylinder 12 first.
  • the outermost permeate gas channel member 26 is fixed by ultrasonic welding or the like at a position where it has made one round, and the excess permeate gas channel member 26 outside the fixed position is cut.
  • the laminated body 14 is obtained by winding the laminated body 14a around the central cylinder.
  • the raw material gas G is supplied from the end of the supply gas flow path member 24, and the acidic gas Gc passes through the acidic gas separation membrane 20 by being transported in the stacking direction, and passes through the permeated gas flow. It flows into the road member 26, flows through the permeate gas flow path member 26, and reaches the central cylinder 12.
  • the adhesive 30a is applied to the support 20b, which is a porous body, and the net-like permeating gas channel member 26 is bonded to the adhesive 30a. Therefore, the adhesive 30a penetrates (impregnates) the support 20b and the permeating gas flow path member 26, and the adhesive layer 30 is formed inside of both. Further, as described above, the adhesive layer 30 (adhesive 30a) is formed in a strip shape extending in the entire vicinity in the winding direction in the vicinity of both ends in the width direction. Further, the adhesive layer 30 extends across the entire width direction in the vicinity of the end portion on the side opposite to the folded portion on the central tube 12 side so as to cross the adhesive layer 30 in the vicinity of both ends in the width direction in the width direction.
  • the adhesive layer 30 is formed so as to surround the outer peripheries of the permeating gas flow path member 26 and the support 20b by opening the central tube 12 side.
  • the permeating gas channel member 26 is sandwiched between the facilitated transport films 20a.
  • an envelope-like flow path that opens on the side of the central tube 12 is formed in the permeating gas flow path member 26 of the laminate 14a. Therefore, the acidic gas Gc that has passed through the acidic gas separation membrane 20 and has flowed into the permeate gas flow path member 26 flows through the permeate gas flow path member 26 toward the central cylinder 12 without flowing out, It flows into the center tube 12 from the through hole 12a. That is, the adhesive layer 30 acts not only for bonding but also as a sealing portion for sealing the acidic gas Gc to a predetermined channel in the permeating gas channel member 26 and the like.
  • various known adhesives can be used as long as the adhesive layer 30 (adhesive 30a) has sufficient adhesive strength, heat resistance, and moisture resistance.
  • adhesives include epoxy resins, vinyl chloride copolymers, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, butadiene-acrylonitrile copolymers, polyamide resins, polyvinyl butyral.
  • Preferred examples include polyesters, cellulose derivatives (nitrocellulose, etc.), styrene-butadiene copolymers, various synthetic rubber resins, phenol resins, urea resins, melamine resins, phenoxy resins, silicone resins, urea formamide resins, and the like. .
  • the adhesive 30a to be the adhesive layer 30 may be applied once, but preferably, an adhesive diluted with an organic solvent such as acetone is applied first, and only the adhesive is applied thereon.
  • the adhesive diluted with an organic solvent is preferably applied in a wide width, and the adhesive is preferably applied in a narrower width.
  • a telescope prevention plate (telescope prevention member) 16 is disposed at both ends of the laminated body 14 produced in this way.
  • the telescope prevention plate 16 is so-called that the laminated body 14 is pressed by the raw material gas G, the supply-side end surface is pushed in a nested manner, and the opposite-side end surface protrudes in a nested manner. It is a member for preventing the telescope phenomenon.
  • the telescope prevention plate 16 various known types used for spiral type separation modules can be used.
  • the telescope prevention plate includes an annular outer ring portion 16a, an annular inner ring portion 16b arranged in the outer ring portion 16a so as to coincide with the center, an outer ring portion 16a and an inner ring. And a rib (spoke) 16c for connecting and fixing the portion 16b.
  • the central cylinder 12 around which the laminate in which the laminate 14a is laminated is wound passes through the inner ring portion 16b.
  • the ribs 16c are provided radially at equal angular intervals from the center of the outer ring part 16a and the inner ring part 16b, and between the outer ring part 16a and the inner ring part 16b and each rib 16c. Is an opening 16d through which the source gas G or the residual gas Gr passes.
  • the telescoping prevention plate 16 may be disposed in contact with the end face of the laminated body 14. However, the telescope prevention plate 16 and the end face of the laminated body 14 have a slight gap in order to use the entire end face of the laminated body 14 for supplying the source gas and discharging the residual gas Gr. Are preferably arranged.
  • a metal material a resin material, ceramics, etc. are illustrated suitably.
  • the metal material include stainless steel (SUS), aluminum, aluminum alloy, tin, and tin alloy.
  • Examples of the resin material include polyethylene resin, polypropylene resin, aromatic polyamide resin, nylon 12, nylon 66, polysulfin resin, polytetrafluoroethylene resin, polycarbonate resin, acrylic / butadiene / styrene resin, acrylic / ethylene / styrene resin, Examples include epoxy resins, nitrile resins, polyether ether ketone resins (PEEK), polyacetal resins (POM), polyphenylene sulfide (PPS), and the like.
  • Examples of the resin material include fiber reinforced plastics of these resins. Examples of the fibers include glass fibers, carbon fibers, stainless steel fibers, and aramid fibers, and long fibers are particularly preferable. More specifically, examples of the fiber reinforced plastic include long glass fiber reinforced polypropylene and long glass fiber reinforced polyphenylene sulfide. Examples of ceramics include zeolite and alumina.
  • the covering layer 18 covers the peripheral surface of the laminated body 14 and blocks the discharge of the raw material gas G and the residual gas Gr from outside the peripheral surface, that is, the end surface of the laminated body 14. It is.
  • the covering layer 18 may be provided to cover not only the peripheral surface of the laminated body 14 but also the telescope prevention plate as necessary.
  • the covering layer 18 may be a cylindrical member or may be configured by winding a wire or a sheet-like member.
  • the FRP wire is impregnated with the adhesive used for the adhesive layer 30 described above, and the wire impregnated with the adhesive is laminated in multiple layers as necessary without gaps.
  • the coating layer 18 wound around is illustrated.
  • the fiber or matrix resin used in FRP examples include glass fiber, carbon fiber, Kevlar, Dyneema, etc. Among them, glass fiber is particularly preferable.
  • the matrix resin examples include an epoxy resin, a polyamide resin, an acrylate resin, and an unsaturated polyester resin, and an epoxy resin is preferable from the viewpoint of heat resistance and hydrolysis resistance.
  • a sheet shape such as a Kapton tape for preventing penetration of the adhesive into the laminated body 14 between the coating layer 18 and the laminated body 14.
  • a member may be provided.
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid copolymer
  • a support roll formed by winding a long support 20b was prepared.
  • This support 20b is a laminate in which a porous film (porous PTFE, average pore diameter of 0.15 ⁇ m) having a thickness of 10 ⁇ m is laminated on the surface of a PP nonwoven fabric having a thickness of 200 ⁇ m.
  • a general-purpose film forming apparatus having a coating apparatus (roll coater), a drying apparatus, and an ultraviolet irradiation apparatus, which forms a film by a coating method using RtoR, is loaded with a support roll so that the porous film side becomes a surface to be coated.
  • the support 20b was inserted (paper passed) through a predetermined conveyance path, and the tip was wound around the winding shaft.
  • the coating composition used as the carrier diffusion suppression layer 20c prepared previously was filled in the material tank of the coating apparatus.
  • the coating composition that becomes the carrier diffusion suppression layer 20c is applied by the coating apparatus while the support 20b is transported in the longitudinal direction, the coating composition is dried by the drying apparatus, and the coating composition is dried by the ultraviolet irradiation apparatus.
  • coating of the coating composition was performed at normal temperature.
  • the coating amount of the coating composition was adjusted to 2.5 g / m 2 in a cured state when coated on a PET support.
  • the conveyance speed of the support 20b was 30 m / min. Irradiation with ultraviolet rays was performed so that the coating composition was cured in 10 seconds after the coating composition was applied (curing time 10 seconds).
  • the relationship between the curing time of the coating composition and the ultraviolet irradiation conditions was previously examined by experiments.
  • the surface of the support 20b (coating surface of the coating composition) is photographed with a scanning electron microscope, and image analysis is performed with commercially available image analysis software.
  • the projected area ratio (Ps) of the support 20b on the surface of the body 20b was measured. As a result, the projected area ratio (Ps) was 80%.
  • the support 20b is cut in the thickness direction, the cross section is photographed with a scanning operation type electron microscope, image analysis is performed with commercially available image analysis software, and the projected area ratio of the carrier diffusion suppression layer 20c in the cross section is determined. It was measured.
  • the measurement of the projected area ratio of the carrier diffusion suppression layer 20c in this cross section is performed in 10 arbitrary cross sections, and the average value is calculated, whereby the projected area ratio of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b. (Pc) was calculated. As a result, the projected area ratio (Pc) was 35%. Therefore, the projected area ratio (Ps) ⁇ the projected area ratio (Pc) is 2800.
  • a roll formed by winding the support roll and the support 20b on which the carrier diffusion suppression layer 20c was formed was removed from the film forming apparatus in which the carrier diffusion suppression layer 20c was formed on the support 20b.
  • a general film forming apparatus having a coating apparatus (roll coater) and a drying apparatus that forms a film by a coating method using RtoR is loaded with a roll formed by winding the support 20b on which the carrier diffusion suppression layer 20c is formed. Then, the support 20b on which the carrier diffusion suppression layer 20c was formed was inserted through a predetermined conveyance path, and the tip was wound around the winding shaft.
  • membrane 20a prepared previously was filled in the material tank of the coating device.
  • the film forming apparatus applies the coating composition by the coating apparatus while transporting the support 20b in the longitudinal direction, and the coating composition is dried by the drying apparatus, thereby promoting the carrier diffusion suppressing layer 20c.
  • an acid gas separation membrane 20 having a support 20b, a carrier diffusion suppression layer 20c, and a facilitated transport membrane 20a as shown in FIGS. 3 (A) and 3 (B) is prepared. And wound into a roll.
  • coating of the coating composition was performed so that the thickness of the facilitated-transport film
  • the relationship between the coating amount (coating film thickness) of the coating composition and the thickness of the facilitated transport film 20a to be formed was examined in advance by experiments.
  • the permeating gas flow path member 26 was fixed to the center tube 12 made of SUS.
  • a 100-mesh stainless steel wire mesh (wire diameter: 0.1 mm, aperture: 0.154 mm) was used.
  • the fixing means 34 an adhesive capable of adhering SUS was used.
  • the produced acidic gas separation membrane 20 was cut into a predetermined length and folded in half with the facilitated transport membrane 20a inside. As shown in FIG. 5, the half-folding was performed so that one acidic gas separation membrane 20 was slightly longer. Kapton tape was attached to the valley of the acid gas separation membrane 20 folded in half, and the end of the supply gas flow path member 24 was reinforced so as not to damage the valley of the facilitated transport membrane 20a. Subsequently, the supply gas flow path member 24 was sandwiched between the folded acidic gas separation membranes 20 to produce a sandwiching body 36. As the supply gas flow path member 24, a PP net having a thickness of 0.5 mm was used.
  • the entire region in the winding direction (arrow y direction) is disposed on the side of the support 20b on which the acidic gas separation membrane 20 of the sandwich 36 is shorter.
  • the adhesive 30a was applied to the entire region in the width direction in the vicinity of the end portion on the side opposite to the folded portion in the winding direction.
  • an adhesive made of an epoxy resin (E120HP manufactured by Henkel Japan) was used.
  • the sandwiching body 36 and the permeating gas flow path member 26 fixed to the central cylinder 12 are provided. Laminated and glued.
  • winding is performed on the upper surface of the acidic gas separation membrane 20 of the sandwiching body 36 laminated on the permeating gas flow path member 26 in the vicinity of both ends in the width direction.
  • the adhesive 30a was applied so as to extend over the entire region in the width direction and in the vicinity of the end portion on the opposite side of the folded portion in the winding direction.
  • a permeate gas flow path member 26 is laminated on the acidic gas separation membrane 20 coated with the adhesive 30a and bonded to form the first layered product 14a. did.
  • an adhesive 38a is applied to the peripheral surface of the central cylinder 12, as shown in FIG.
  • the adhesive 38b was applied on the permeating gas flow path member 26 between the central cylinder 12 and the lowermost layered laminate 14a.
  • the adhesives 38a and 38b were the same as the adhesive 30a.
  • the laminated body 14 a having three layers was wound around the central cylinder 12 in a multiple manner so as to be a laminated body 14.
  • the center tube 12 is inserted into the inner ring portion 16b at both ends of the laminated body 14 and shown in FIG.
  • a telescoping prevention plate 16 having a thickness of 2 cm was attached.
  • the telescope prevention plate 16 was made of PPS containing 40% by mass of glass fiber.
  • the distance between the telescope prevention plate 16 and the laminate wound product 14 was 1 mm.
  • the coating layer 18 was formed by winding the FRP resin tape around the peripheral surface of the telescope prevention plate 16 and the peripheral surface of the laminated body 14 to produce the separation module 10.
  • the membrane area of the prepared separation module 10 was 1.2 m 2 (design value) in total.
  • Example 2 As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 ⁇ m) having a thickness of 15 ⁇ m is laminated on the surface of a 200 ⁇ m-thick PP nonwoven fabric, and the carrier diffusion suppressing layer 20c is used.
  • the acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the coating amount of the coating composition to be the carrier diffusion suppressing layer 20c was 1.5 times. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • Example 1 the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 90%, and the projected area ratio (Pc) was 45%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 4050.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 3 As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 ⁇ m) having a thickness of 15 ⁇ m is laminated on the surface of a PP nonwoven fabric having a thickness of 200 ⁇ m, and the carrier diffusion suppressing layer 20c is used.
  • the acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the coating amount of the coating composition to be the carrier diffusion suppressing layer 20c was doubled. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • Example 1 the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 65%, and the projected area ratio (Pc) was 60%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 3900.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 4 As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 ⁇ m) having a thickness of 15 ⁇ m is laminated on the surface of a 200 ⁇ m-thick PP nonwoven fabric, and further, the carrier diffusion suppression layer 20c is used.
  • a porous film porous PTFE, average pore diameter 0.15 ⁇ m
  • the polymerizable polydimethylsiloxane added to the coating composition to be the carrier diffusion suppression layer 20c was changed to KF-102 manufactured by Shin-Etsu Silicone, and
  • the acid gas separation membrane 20 was prepared in the same manner as in Example 1 except that the hexane solution A was diluted to 20% by mass with hexane and the curing time of the coating composition to be the carrier diffusion suppression layer 20c was changed to 5 seconds. Produced. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • Example 1 the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 55%, and the projected area ratio (Pc) was 35%. Therefore, the projected area ratio (Ps) ⁇ the projected area ratio (Pc) is 1925.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 5 In the formation of the carrier diffusion suppression layer 20c, the hexane solution A was diluted to 30% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and the coating amount of the coating composition to be the carrier diffusion suppression layer 20c was 2
  • the acidic gas separation membrane 20 was prepared in the same manner as in Example 4 except that the curing time of the coating composition to be the carrier diffusion suppressing layer 20c was changed to 7 seconds. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • Example 1 the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 65%, and the projected area ratio (Pc) was 55%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 3575.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 6 In the formation of the carrier diffusion suppression layer 20c, the hexane solution A was diluted to 35% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and the coating amount of the coating composition to be the carrier diffusion suppression layer 20c was 3
  • the acidic gas separation membrane 20 was produced in the same manner as in Example 4 except that the curing time of the coating composition to be the carrier diffusion suppression layer 20c was changed to 10 seconds. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • Example 1 the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 85%, and the projected area ratio (Pc) was 70%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 5950.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 7 As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter of 0.15 ⁇ m) having a thickness of 100 ⁇ m is laminated on the surface of a PP nonwoven fabric having a thickness of 200 ⁇ m, and further, the carrier diffusion suppressing layer 20c is used.
  • the coating composition to be the carrier diffusion suppression layer 20c was prepared by diluting the hexane solution A to 3% by mass with hexane to double the coating amount of the coating composition to be the carrier diffusion suppression layer 20c.
  • an acidic gas separation membrane 20 was produced.
  • the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did.
  • the projected area ratio (Ps) was 90%, and the projected area ratio (Pc) was 40%. Therefore, the projected area ratio (Ps) ⁇ the projected area ratio (Pc) is 3600.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid copolymer
  • ORGATICS TC-100 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • a Ti-based cross-linking agent was added so as to have a ratio of 10% by mass with respect to the PVA-PAA copolymer, and the mixture was stirred and degassed to obtain a coating composition A product was prepared.
  • the PVA-PAA copolymer was synthesized in the same manner as in Example 1.
  • An acidic gas separation membrane 20 was produced in the same manner as in Example 6 except that the facilitated transport membrane 20a was formed using this coating composition. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 85%, and the projected area ratio (Pc) was 70%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 5950.
  • a separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 9 ⁇ Formation of carrier diffusion suppression layer>
  • the support 20b is a laminate in which a porous membrane (porous PTFE, average pore diameter of 0.15 ⁇ m) having a thickness of 15 ⁇ m is laminated on the surface of a PP nonwoven fabric having a thickness of 200 ⁇ m. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • a porous membrane porous PTFE, average pore diameter of 0.15 ⁇ m
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 85%, and the projected area ratio (Pc) was 70%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 5950.
  • a roll formed by winding a long nonwoven fabric was prepared.
  • This non-woven fabric is a PP non-woven fabric (OL-30, manufactured by Nippon Vilene Co., Ltd.) having a fiber diameter of 30 ⁇ m, a basis weight of 30 g / m 2 , and an ISO air permeability of 3.1 ⁇ m / (Pa ⁇ sec).
  • a general film forming device that has a coating device (roll coater) and a drying device and forms a film by a coating method using RtoR is loaded with a roll formed by winding this nonwoven fabric, and the nonwoven fabric is inserted into a predetermined transport path. Then, the tip was wound around the winding shaft.
  • membrane 20a same as Example 8 was filled into the material tank of the coating device.
  • the transporting film 20a is formed in a roll by applying the coating composition with a coating apparatus while drying the nonwoven fabric in the longitudinal direction with this film forming apparatus and drying the coating composition with a drying apparatus. Wound around.
  • coating of the coating composition was performed so that the thickness of the facilitated-transport film
  • the relationship between the coating amount (coating film thickness) of the coating composition and the thickness of the facilitated transport film 20a to be formed has been examined in advance by experiments. When confirmed with a cross-sectional observation image of an electron microscope, the facilitated transport film 20a was formed in a layer form in the nonwoven fabric in the entire area in the plane direction.
  • the support 20b a laminate in which a porous film (porous PTFE, average pore diameter 0.15 ⁇ m) having a thickness of 15 ⁇ m is laminated on the surface of a 200 ⁇ m-thick PP nonwoven fabric, and further, the carrier diffusion suppression layer 20c is used.
  • the coating composition to be the carrier diffusion suppression layer 20c is prepared by diluting the hexane solution A to 20% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and setting the transport speed of the support 20b to 60 m / min.
  • the acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the coating amount of the product was increased to 4 times and the curing time of the coating composition to be the carrier diffusion suppression layer 20c was changed to 3 seconds. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did.
  • the projected area ratio (Ps) was 4%
  • the projected area ratio (Pc) was 90%. Therefore, the projected area ratio (Ps) ⁇ projected area ratio (Pc) is 360.
  • a separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • Example 2 As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 ⁇ m) having a thickness of 15 ⁇ m is laminated on the surface of a 200 ⁇ m-thick PP nonwoven fabric, and further, the carrier diffusion suppression layer 20c is used.
  • the hexane solution A was diluted to 80% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppressing layer 20c
  • the conveying speed of the support 20b was 10 m / min
  • the coating composition to be the carrier diffusion suppressing layer 20c An acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the amount of the product applied was halved.
  • the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did.
  • the projected area ratio (Ps) was 92%, and the projected area ratio (Pc) was 5%. Therefore, the projected area ratio (Ps) ⁇ the projected area ratio (Pc) is 460.
  • a separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • the hexane solution A was diluted to 3% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and the conveyance speed of the support 20b was set to 60 m / min.
  • the acidic gas separation membrane 20 is produced in the same manner as in Example 4 except that the coating amount of the coating composition to be the layer 20c is halved and the curing time of the coating composition to be the carrier diffusion suppression layer 20c is changed to 3 seconds. did. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
  • Example 1 the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 32%, and the projected area ratio (Pc) was 31%. Therefore, the projected area ratio (Ps) ⁇ the projected area ratio (Pc) is 992.
  • a separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
  • the source gas G was supplied to each separation module 10 under the conditions of a flow rate of 2.2 L / min, a temperature of 120 ° C., and a total pressure of 301.3 kPa.
  • a through hole for supplying a sweep gas was formed at the end of the central cylinder 12 on the raw material gas permeation side, and Ar gas having a flow rate of 0.6 L / min was supplied as a sweep gas from here.
  • Rate of change [(Value at 1 hour elapsed time-Value at 100 hour elapsed time) / Value at 1 hour elapsed time] ⁇ 100
  • the evaluation is as follows. A: Change rate between 1 hour and 100 hours is less than 5%
  • the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are as follows.
  • the examples that are both within the scope of the present invention are excellent in wet heat adhesion and separation performance durability, can prevent the facilitated transport film from falling off during the acidic gas separation operation, and the carrier is the facilitated transport film 20a and the support. It is a separation module excellent in durability, which is prevented from passing through 20b.
  • Examples 1 to 3 and Examples 5 and 7 in which the projected area ratio (Ps) ⁇ projected area ratio (Pc) exceeds 2500 are excellent in either wet heat adhesion or separation performance durability.
  • SYMBOLS 10 (Acid gas) separation module 12 Center tube 14 Laminated body roll 14a Laminate body 16 Telescope prevention board 16a Outer ring part 16b Inner ring part 16c Rib 16d Opening part 18 Covering layer 20 Acid gas separation membrane 20R Separation membrane roll 20A Separator Membrane Adherent 20AR Adherent Roll 20a Accelerated Transport Membrane 20b (Porous) Support 20c Carrier Diffusion Suppressing Layer 24 Supply Gas Channel Member 26 Permeate Gas Channel Member 30 Adhesive Layer 30a Adhesive 34 Fixing Means

Abstract

An acidic gas separation module which comprises: an acidic gas separation membrane that comprises a porous supporting body, a carrier diffusion suppression layer at least a part of which is formed within the porous supporting body, and a facilitated transport membrane which contains a hydrophilic compound and a carrier that is reactive with an acidic gas; and a member for supply gas channels, which serves as a channel for a starting material gas. The projected area ratio of the porous supporting body in the surface excluding the facilitated transport membrane is 50% or more, and the projected area ratio of the carrier diffusion suppression layer in a cross-section in the thickness direction of the porous supporting body is 30% or more. Consequently, the present invention provides an acidic gas separation module which exhibits excellent adhesion of a facilitated transport membrane, while having good durability.

Description

酸性ガス分離モジュールAcid gas separation module
 本発明は、促進輸送膜を用いて原料ガスから酸性ガスを分離する酸性ガス分離モジュールに関する。詳しくは、耐久性が良好な酸性ガス分離モジュールに関する。 The present invention relates to an acid gas separation module that separates an acid gas from a raw material gas using a facilitated transport membrane. Specifically, the present invention relates to an acidic gas separation module having good durability.
 近年、原料ガス(被処理ガス)から、酸性ガスを選択的に分離する技術の開発が進んでいる。例えば、酸性ガスを選択的に透過する酸性ガス分離膜を用いて、原料ガスから酸性ガスを分離する酸性ガス分離モジュールが開発されている。 In recent years, development of technology for selectively separating acid gas from source gas (treated gas) has been progressing. For example, an acidic gas separation module that separates an acidic gas from a raw material gas using an acidic gas separation membrane that selectively permeates the acidic gas has been developed.
 一例として、特許文献1には、原料ガスから炭酸ガス(二酸化炭素)を分離する酸性ガス分離膜(二酸化炭素分離ゲル膜)として、二酸化炭素透過性の支持体の上に、二酸化炭素キャリアを含む水溶液を、架橋構造を有するビニルアルコール-アクリル酸塩共重合体に吸収させて形成したハイドロゲル膜を形成した酸性ガス分離膜が開示されている。
 また、特許文献1には、この酸性ガス分離膜の製造方法として、未架橋のビニルアルコール-アクリル酸塩共重合体水溶液を、二酸化炭素透過性の支持体上へ膜状に塗布した後、この水溶液を加熱し架橋させて水不溶化し、この水不溶化物に二酸化炭素キャリア水溶液を吸収させてゲル化する、酸性ガス分離膜の製造方法も開示されている。
As an example, Patent Document 1 includes a carbon dioxide carrier on a carbon dioxide permeable support as an acidic gas separation membrane (carbon dioxide separation gel membrane) for separating carbon dioxide (carbon dioxide) from a raw material gas. An acidic gas separation membrane having a hydrogel membrane formed by absorbing an aqueous solution into a vinyl alcohol-acrylate copolymer having a crosslinked structure is disclosed.
Further, in Patent Document 1, as a method for producing this acidic gas separation membrane, an uncrosslinked vinyl alcohol-acrylate copolymer aqueous solution is coated on a carbon dioxide permeable support in the form of a membrane, A method for producing an acidic gas separation membrane is also disclosed in which an aqueous solution is heated and cross-linked to insolubilize water, and the water-insolubilized material absorbs a carbon dioxide carrier aqueous solution and gels.
 特許文献1に示される酸性ガス分離膜は、いわゆる促進輸送膜を用いる酸性ガス分離膜である。促進輸送膜は、前述の二酸化炭素キャリアのような酸性ガスと反応するキャリアを膜中に有し、このキャリアによって酸性ガスを膜の反対側に輸送することで、原料ガスから酸性ガスを分離する。 The acid gas separation membrane shown in Patent Document 1 is an acid gas separation membrane using a so-called facilitated transport membrane. The facilitated transport membrane has a carrier that reacts with an acidic gas such as the above-mentioned carbon dioxide carrier in the membrane, and the acidic gas is separated from the source gas by transporting the acidic gas to the opposite side of the membrane by this carrier. .
 このような酸性ガス分離膜は、通常、不織布や多孔質膜などの多孔質の支持体の上に、促進輸送膜を形成した構成を有する。 Such an acid gas separation membrane usually has a configuration in which a facilitated transport membrane is formed on a porous support such as a nonwoven fabric or a porous membrane.
 ここで、促進輸送膜は、キャリアを十分に機能させるために、膜中に多量の水分を保持させる必要がある。そのため、促進輸送膜には、非常に吸水性および保水性が高いポリマーが用いられる。加えて、促進輸送膜は、金属炭酸塩などのキャリアの含有量が多い程、吸水量が増えて、酸性ガスの分離性能が向上する。すなわち、促進輸送膜は、非常に柔らかい(粘性が低い)、ゲル膜である場合が多い。
 加えて、促進輸送膜を利用する酸性ガス分離膜では、酸性ガスの分離時には、温度100~130℃、湿度90%程度の原料ガスを、1.5MPa程度の圧力で供給される。
Here, the facilitated transport film needs to retain a large amount of moisture in the film in order to sufficiently function the carrier. Therefore, a polymer having extremely high water absorption and water retention is used for the facilitated transport film. In addition, in the facilitated transport membrane, as the content of a carrier such as a metal carbonate increases, the water absorption increases and the separation performance of the acid gas improves. That is, the facilitated transport film is often a very soft (low viscosity), gel film.
In addition, in an acidic gas separation membrane using a facilitated transport membrane, a raw material gas having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa when the acidic gas is separated.
 そのため、促進輸送膜を利用する酸性ガス分離膜は、使用すると、次第に、キャリアが促進輸送膜から支持体に至り、支持体を透過してしまう。
 促進輸送膜からキャリアが流出すれば、それに応じて、酸性ガスの分離性能が低下する。そのため、促進輸送膜を利用する酸性ガスモジュールは、耐久性が十分とは言えない。
Therefore, when an acid gas separation membrane using a facilitated transport membrane is used, the carrier gradually reaches the support from the facilitated transport membrane and permeates the support.
If the carrier flows out from the facilitated transport film, the acid gas separation performance is lowered accordingly. Therefore, the acid gas module using the facilitated transport membrane cannot be said to have sufficient durability.
 このような問題点を解決するために、特許文献2には、100℃以上の耐熱性を有する疎水性の支持体(多孔膜)の上に、促進輸送膜(高分子化合物層)を形成してなる酸性ガス分離膜において、支持体と促進輸送膜との間に、キャリア拡散抑制層を設けることが記載されている。
 特許文献2においては、キャリア拡散抑制層の形成材料として、シロキサン、シリコーンゴム、ポリブタジエン、エチルセルロース、ポリフッ化ビニリデン、ポリプロピレン、ポリスルホン、ポリエーテルイミド、ポリエーテルサルファイ、ポリアクリル酸、ポリビニルアルコール等が例示されている。また、キャリア拡散抑制層の厚さは、0.01~100μmが例示されている。
In order to solve such problems, Patent Document 2 discloses that a facilitated transport film (polymer compound layer) is formed on a hydrophobic support (porous film) having a heat resistance of 100 ° C. or higher. In the acidic gas separation membrane, a carrier diffusion suppression layer is provided between the support and the facilitated transport membrane.
In Patent Document 2, siloxane, silicone rubber, polybutadiene, ethylcellulose, polyvinylidene fluoride, polypropylene, polysulfone, polyetherimide, polyethersulfite, polyacrylic acid, polyvinyl alcohol, etc. are exemplified as the material for forming the carrier diffusion suppressing layer. Has been. The thickness of the carrier diffusion suppressing layer is exemplified as 0.01 to 100 μm.
特公平7-102310号公報Japanese Patent Publication No. 7-102310 特開2013-27841号公報JP 2013-27841 A
 特許文献2に示されるように、支持体の表面にキャリア拡散抑制層を設けることにより、促進輸送膜から抜けたキャリアが支持体に至り、支持体を透過することを抑制できる。 As shown in Patent Document 2, by providing a carrier diffusion suppression layer on the surface of the support, it is possible to suppress carriers that have escaped from the facilitated transport film from reaching the support and permeating the support.
 ここで、前述のように、促進輸送膜を利用する酸性ガス分離膜では、酸性ガスの分離時には、温度100~130℃、湿度90%程度の原料ガスを、1.5MPa程度の圧力で供給される。
 そのため、キャリア拡散抑制層の上に促進輸送膜を形成する従来の構成では、促進輸送膜の密着性が不十分で、酸性ガスの分離運転時に促進輸送膜の脱落等が生じる場合が有り、耐久性が十分とは言えないものもある。
 加えて、近年では、酸性ガス分離モジュールに要求される耐久性は、より厳しくなっており、促進輸送膜から抜けて支持体を通過するキャリアを、より好適に低減することが望まれている。
Here, as described above, in the acidic gas separation membrane using the facilitated transport membrane, at the time of separation of the acidic gas, the source gas having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa. The
Therefore, with the conventional configuration in which the facilitated transport film is formed on the carrier diffusion suppressing layer, the facilitated transport film has insufficient adhesion, and the facilitated transport film may drop off during the acid gas separation operation. Some are not good enough.
In addition, in recent years, durability required for the acid gas separation module has become stricter, and it is desired to more suitably reduce the carriers that pass through the support through the facilitated transport membrane.
 本発明の目的は、このような従来技術の問題点を解決することにあり、促進輸送膜を有する酸性ガス分離膜を用いる酸性ガス分離モジュールであって、酸性ガスの分離運転時の促進輸送膜の脱落を抑制でき、かつ、キャリアが促進輸送膜および支持体を抜けてしまうことも抑制できる、耐久性に優れる酸性ガス分離モジュールを提供することにある。 An object of the present invention is to solve such problems of the prior art, and is an acidic gas separation module using an acidic gas separation membrane having a facilitated transport membrane, which is an enhanced transport membrane at the time of acid gas separation operation. It is an object of the present invention to provide an acidic gas separation module with excellent durability, which can suppress the falling off of the carrier and also prevent the carrier from passing through the facilitated transport membrane and the support.
 この目的を達成するために、本発明の酸性ガス分離モジュールは、多孔質支持体、少なくとも一部が多孔質支持体の中に形成されるキャリア拡散抑制層、ならびに、多孔質支持体およびキャリア拡散抑制層の上に形成される、酸性ガスと反応するキャリアおよびキャリアを担持するための親水性化合物を含有する促進輸送膜を有する酸性ガス分離膜と、原料ガスの流路となる供給ガス流路用部材とを有し、
 かつ、促進輸送膜を除いた状態において、多孔質支持体の表面における多孔質支持体の投影面積率(Ps)が50%以上であり、さらに、多孔質支持体の厚さ方向の断面におけるキャリア拡散抑制層の投影面積率(Pc)が30%以上であることを特徴とする酸性ガス分離モジュールを提供する。
In order to achieve this object, the acidic gas separation module of the present invention comprises a porous support, a carrier diffusion suppression layer formed at least partially in the porous support, and the porous support and carrier diffusion. An acidic gas separation membrane having a facilitated transport membrane containing a carrier reacting with an acidic gas and a hydrophilic compound for supporting the carrier, formed on the suppression layer, and a supply gas flow channel serving as a raw material gas flow channel A member for
In addition, in the state excluding the facilitated transport film, the projected area ratio (Ps) of the porous support on the surface of the porous support is 50% or more, and the carrier in the cross section in the thickness direction of the porous support Provided is an acidic gas separation module characterized in that the projected area ratio (Pc) of the diffusion suppression layer is 30% or more.
 このような本発明の酸性ガス分離モジュールにおいて、多孔質支持体の厚さが200μm以下であるのが好ましい。
 また、多孔質支持体の投影面積率(Ps)とキャリア拡散抑制層の投影面積率(Pc)との積が2000以上であるのが好ましい。
 また、酸性ガス分離膜と供給ガス流路用部材とを含む積層体を巻回してなるスパイラル型であるのが好ましい。
 また、酸性ガス分離膜と供給ガス流路用部材とを含む積層体を、平板状に維持してなる平板型であるのが好ましい。
 また、キャリア拡散抑制層が、エポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基の少なくとも1つを有する化合物を主成分とするのが好ましい。
 また、キャリア拡散抑制層がポリジメチルシロキサン誘導体であるのが好ましい。
 また、促進輸送膜の上に、保護層を有するのが好ましい。
 さらに、保護層がポリジメチルシロキサン誘導体であるのが好ましい。
In such an acidic gas separation module of the present invention, the thickness of the porous support is preferably 200 μm or less.
In addition, the product of the projected area ratio (Ps) of the porous support and the projected area ratio (Pc) of the carrier diffusion suppression layer is preferably 2000 or more.
Moreover, it is preferable that it is a spiral type formed by winding the laminated body containing an acidic gas separation membrane and the member for supply gas flow paths.
Moreover, it is preferable that it is a flat plate type which maintains the laminated body containing an acidic gas separation membrane and the member for supply gas flow paths in flat plate shape.
Moreover, it is preferable that a carrier diffusion suppression layer has as a main component the compound which has at least 1 of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group.
The carrier diffusion suppressing layer is preferably a polydimethylsiloxane derivative.
Moreover, it is preferable to have a protective layer on the facilitated-transport film | membrane.
Further, the protective layer is preferably a polydimethylsiloxane derivative.
 このような本発明によれば、促進輸送膜を用いる酸性ガス分離膜において、促進輸送膜の脱落や、キャリアが促進輸送膜を抜け、さらに多孔質支持体を抜けることを抑制して、耐久性に優れた酸性ガス分離モジュールを得ることができる。 According to the present invention, in an acidic gas separation membrane using a facilitated transport membrane, the facilitated transport membrane is prevented from falling off, and carriers are prevented from exiting the facilitated transport membrane and further from the porous support, thereby being durable. It is possible to obtain an acidic gas separation module excellent in the above.
本発明の酸性ガス分離モジュールの一例を一部切り欠いて示す概略斜視図である。It is a schematic perspective view which partially cuts off and shows an example of the acidic gas separation module of this invention. 図1に示す酸性ガス分離モジュールの積層体の一部の概略断面図である。It is a schematic sectional drawing of a part of laminated body of the acidic gas separation module shown in FIG. 図3(A)は、図1に示す酸性ガス分離モジュールの酸性ガス分離膜の一部の概略断面図、図3(B)は、図1に示す酸性ガス分離モジュールの促進輸送膜形成面の一部の概略上面図である。3A is a schematic cross-sectional view of a part of the acidic gas separation membrane of the acidic gas separation module shown in FIG. 1, and FIG. 3B is the surface of the facilitated transport membrane forming surface of the acidic gas separation module shown in FIG. It is a one part schematic top view. 図4(A)および図4(B)は、図1に示す酸性ガス分離モジュールの作製方法を説明するための概念図である。4 (A) and 4 (B) are conceptual diagrams for explaining a method for producing the acidic gas separation module shown in FIG. 図1に示す酸性ガス分離モジュールの作製方法を説明するための概念図である。It is a conceptual diagram for demonstrating the production method of the acidic gas separation module shown in FIG. 図6(A)および図6(B)は、図1に示す酸性ガス分離モジュールの作製方法を説明するための概念図である。6 (A) and 6 (B) are conceptual diagrams for explaining a method for producing the acidic gas separation module shown in FIG. 図1に示す酸性ガス分離モジュールの作製方法を説明するための概念図である。It is a conceptual diagram for demonstrating the production method of the acidic gas separation module shown in FIG. 図1に示す酸性ガス分離モジュールの作製方法を説明するための概念図である。It is a conceptual diagram for demonstrating the production method of the acidic gas separation module shown in FIG.
 以下、本発明の酸性ガス分離モジュールについて、添付の図面に示される好適実施例を基に、詳細に説明する。 Hereinafter, the acidic gas separation module of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
 図1に本発明の酸性ガス分離モジュールの一例の一部切欠き概略斜視図を示す。なお、以下の説明では、酸性ガス分離モジュールを、単に、分離モジュールとも言う。
 図1に示すように、分離モジュール10は、基本的に、中心筒12と、酸性ガス分離膜20を有する積層体14aを巻回してなる積層体巻回物14と、テレスコープ防止板16とを有して構成される。また、積層体14aは、酸性ガス分離膜20と、供給ガス流路用部材24と、透過ガス流路用部材26とからなる積層体である。さらに、酸性ガス分離膜20は、促進輸送膜20aと、多孔質支持体20bと、キャリア拡散抑制層20cとからなるものである。
 分離モジュール10は、一例として、一酸化炭素、炭酸ガス(CO2)、水(水蒸気)および水素を含有する原料ガスGから、酸性ガスGcとして炭酸ガスを分離する。
FIG. 1 is a partially cutaway schematic perspective view of an example of the acid gas separation module of the present invention. In the following description, the acid gas separation module is also simply referred to as a separation module.
As shown in FIG. 1, the separation module 10 basically includes a central cylinder 12, a laminate wound product 14 obtained by winding a laminate 14 a having an acidic gas separation membrane 20, a telescope prevention plate 16, and the like. It is comprised. The laminated body 14 a is a laminated body including the acidic gas separation membrane 20, the supply gas flow path member 24, and the permeate gas flow path member 26. Furthermore, the acidic gas separation membrane 20 is composed of a facilitated transport membrane 20a, a porous support 20b, and a carrier diffusion suppression layer 20c.
As an example, the separation module 10 separates carbon dioxide as an acidic gas Gc from a raw material gas G containing carbon monoxide, carbon dioxide (CO 2 ), water (water vapor), and hydrogen.
 図示例の分離モジュール10は、いわゆるスパイラル型の分離モジュールである。従って、分離モジュール10は、後述するシート状の積層体14aを、複数、積層して、この積層物を中心筒12に巻回して積層体巻回物14を形成し、積層体巻回物14の両端面に、中心筒12を挿通してテレスコープ防止板16を設けてなる構成を有する。すなわち、積層体巻回物14とは、積層されて巻回された積層体14aによる略円筒状物である。
 巻回した積層体14aの最外周面は、ガス非透過性の被覆層18で覆われている。
The separation module 10 in the illustrated example is a so-called spiral type separation module. Therefore, the separation module 10 stacks a plurality of sheet-like laminates 14a to be described later, and winds the laminate around the central cylinder 12 to form the laminate wound product 14. The telescoping prevention plate 16 is provided through the central tube 12 on both end surfaces of the lens. That is, the laminate wound product 14 is a substantially cylindrical product formed by the laminate 14a that is laminated and wound.
The outermost peripheral surface of the wound laminate 14 a is covered with a gas impermeable coating layer 18.
 なお、本発明の分離モジュールは、図示例のようなスパイラル型に限定はされず、シート状の積層体14aを、平板状に維持してなる、いわゆる平板型であってもよい。 Note that the separation module of the present invention is not limited to the spiral type as shown in the drawings, and may be a so-called flat plate type in which the sheet-like laminate 14a is maintained in a flat plate shape.
 このような分離モジュール10において、酸性ガスを分離される原料ガスGは、例えば図1中奥手側のテレスコープ防止板16の開口部16dを通って、積層体巻回物14の端面から各積層体14aの内部に供給される。
 積層体14aに供給された原料ガスGは、積層体14a内を流れつつ、酸性ガスGcを分離される。
 また、積層体14aによって原料ガスGから分離された酸性ガスGcは、中心筒12から排出され、酸性ガスを分離された原料ガスG(以下、便宜的に残余ガスGrとする)は、積層体巻回物14の供給側とは逆側の端面から排出され、テレスコープ防止板16の開口部16dを通って分離モジュール10の外部に排出される。
In such a separation module 10, the raw material gas G from which the acidic gas is separated passes through the opening 16 d of the telescope prevention plate 16 on the back side in FIG. It is supplied inside the body 14a.
The source gas G supplied to the stacked body 14a is separated from the acidic gas Gc while flowing in the stacked body 14a.
The acidic gas Gc separated from the raw material gas G by the laminated body 14a is discharged from the central cylinder 12, and the raw material gas G from which the acidic gas has been separated (hereinafter referred to as residual gas Gr for convenience) It is discharged from the end surface opposite to the supply side of the roll 14, and is discharged to the outside of the separation module 10 through the opening 16 d of the telescope prevention plate 16.
 中心筒(透過ガス集合管)12は、原料ガスG供給側の端面が閉塞する円筒状の管で、周面(管壁)には複数の貫通孔12aが形成される。
 原料ガスGから分離された酸性ガスGcは、後述する透過ガス流路用部材26を通って、貫通孔12aから中心筒12内に至り、中心筒12の開放端12bから排出される。
The central tube (permeate gas collecting tube) 12 is a cylindrical tube whose end surface on the source gas G supply side is closed, and a plurality of through holes 12a are formed on the peripheral surface (tube wall).
The acidic gas Gc separated from the raw material gas G passes through a permeating gas passage member 26 described later, reaches the inside of the central cylinder 12 from the through hole 12a, and is discharged from the open end 12b of the central cylinder 12.
 中心筒12において、開口率は、1~80%が好ましく、1~75%がより好ましく、1.5~70%がさらに好ましい。中でも、実用的な観点から、中心筒12の開口率は、1.5~25%が、特に好ましい。中心筒12の開口率とは、具体的には、中心筒12の長さ方向の貫通孔12aの形成領域における、中心筒12の外周面に占める貫通孔12aの面積率である。
 中心筒12の開口率を上記範囲とすることにより、効率的に酸性ガスGcを収集することができ、また、中心筒12の強度を高め、加工適性を十分に確保できる。
In the center tube 12, the aperture ratio is preferably 1 to 80%, more preferably 1 to 75%, and further preferably 1.5 to 70%. Among these, from the practical viewpoint, the opening ratio of the center tube 12 is particularly preferably 1.5 to 25%. Specifically, the opening ratio of the central cylinder 12 is an area ratio of the through-holes 12 a occupying the outer peripheral surface of the central cylinder 12 in the formation region of the through-holes 12 a in the length direction of the central cylinder 12.
By setting the aperture ratio of the center tube 12 within the above range, the acid gas Gc can be efficiently collected, and the strength of the center tube 12 can be increased to ensure sufficient processability.
 貫通孔12aは、直径0.5~20mmの円形の孔であるのが好ましい。さらに、貫通孔12aは、中心筒12の周面に、均一に形成されるのが好ましい。 The through hole 12a is preferably a circular hole having a diameter of 0.5 to 20 mm. Furthermore, it is preferable that the through holes 12 a are formed uniformly on the peripheral surface of the central cylinder 12.
 なお、中心筒12には、必要に応じて、分離した酸性ガスGcを開放端12b側に流すためのガス(スイープガス)を供給する供給口(供給部)を設けてもよい。
 さらに、中心筒12の管壁には、軸方向に沿ってスリット(図示省略)が設けられているのが好ましい。このスリットに関しては、後に詳述する。
The center tube 12 may be provided with a supply port (supply unit) for supplying a gas (sweep gas) for flowing the separated acidic gas Gc to the open end 12b side as necessary.
Furthermore, it is preferable that a slit (not shown) is provided in the tube wall of the central cylinder 12 along the axial direction. This slit will be described in detail later.
 前述のように、積層体14aは、酸性ガス分離膜20と、供給ガス流路用部材24と、透過ガス流路用部材26とを積層してなるものである。
 なお、図1の符号30は、酸性ガス分離膜20と透過ガス流路用部材26とを接着し、かつ、積層体14a同士を接着する接着剤層30である。この接着剤層30は、透過ガス流路用部材26における酸性ガスGcの流路を、中心筒12側が開口するエンベロープ状にする、流路を構成する壁部としても作用する。
As described above, the laminate 14a is formed by laminating the acidic gas separation membrane 20, the supply gas flow path member 24, and the permeate gas flow path member 26.
Reference numeral 30 in FIG. 1 denotes an adhesive layer 30 that bonds the acidic gas separation membrane 20 and the permeate gas flow path member 26 and bonds the stacked bodies 14a together. This adhesive layer 30 also acts as a wall portion constituting the flow path, in which the flow path of the acidic gas Gc in the permeating gas flow path member 26 is formed in an envelope shape opened on the central tube 12 side.
 前述のように、図示例の分離モジュール10は、この積層体14aを、複数、積層して、この積層体14aの積層物を中心筒12に巻き付けてなる、略円筒状の積層体巻回物14を有する。
 以下、便宜的に、図中に矢印yで示す、積層体14aの巻回に対応する方向を巻回方向、図中に矢印xで示す、巻回方向と直交する方向を幅方向とする。
As described above, the separation module 10 in the illustrated example is formed by stacking a plurality of the laminates 14 a and winding the laminate of the laminates 14 a around the central cylinder 12. 14
Hereinafter, for convenience, a direction corresponding to the winding of the laminated body 14a indicated by an arrow y in the drawing is a winding direction, and a direction orthogonal to the winding direction indicated by an arrow x in the drawing is a width direction.
 分離モジュール10において、積層体巻回物14を構成する積層体14aは1枚でもよい。しかしながら、複数の積層体14aを積層して巻回することにより、酸性ガス分離膜20の膜面積を大きくして、1つの分離モジュールで分離する酸性ガスGcの量を向上できる。
 積層体14aの積層数は、分離モジュール10に要求される処理速度や処理量、分離モジュール10の大きさ等に応じて、適宜、設定すればよい。ここで、積層する積層体14aの数は、50以下が好ましく、45以下がより好ましく、40以下が特に好ましい。積層体14aの積層数を、この数とすることで、中心筒12への積層体14aの巻回が容易になり、加工性を向上できる。
In the separation module 10, the laminate 14a constituting the laminate wound product 14 may be one. However, by laminating and winding a plurality of laminated bodies 14a, the membrane area of the acidic gas separation membrane 20 can be increased, and the amount of acidic gas Gc separated by one separation module can be improved.
The number of stacked layers 14a may be appropriately set according to the processing speed and processing amount required for the separation module 10, the size of the separation module 10, and the like. Here, the number of laminated bodies 14a to be laminated is preferably 50 or less, more preferably 45 or less, and particularly preferably 40 or less. By setting the number of laminated bodies 14a to be this number, winding of the laminated body 14a around the central cylinder 12 becomes easy, and the workability can be improved.
 図2に、積層体14aの部分断面図を示す。前述のように、矢印xは幅方向、矢印yは巻回方向である。
 図示例において、積層体14aは、後述する図5に示すように、二つ折りにした酸性ガス分離膜20の間に供給ガス流路用部材24を挟み込んで挟持体36とし、この挟持体36に、透過ガス流路用部材26を積層してなる構成を有する。この構成については、後に詳述する。
In FIG. 2, the fragmentary sectional view of the laminated body 14a is shown. As described above, the arrow x is the width direction, and the arrow y is the winding direction.
In the illustrated example, as shown in FIG. 5 to be described later, the laminated body 14a includes a supply gas flow path member 24 sandwiched between two folded acid gas separation membranes 20 to form a sandwiching body 36. In addition, the permeate gas flow path member 26 is laminated. This configuration will be described in detail later.
 前述のように、分離モジュール10において、原料ガスGは、テレスコープ防止板16の開口部16dを通って、積層体巻回物14の一方の端面から供給される。すなわち、原料ガスGは、各積層体14aの幅方向(矢印x方向)の端部(端面)に供給される。
 図2に概念的に示すように、積層体14aの幅方向の端面に供給された原料ガスGは、供給ガス流路用部材24を幅方向に流れる。この流れの中で、酸性ガス分離膜20(促進輸送膜20a)に接触した酸性ガスGcは、促進輸送膜20aのキャリアによって、原料ガスGから分離され積層方向に輸送されて、酸性ガス分離膜20を積層体14aの積層方向に通過して、透過ガス流路用部材26に流入する。
 透過ガス流路用部材26に流入した酸性ガスGcは、透過ガス流路用部材26を巻回方向(矢印y方向)に流れて、中心筒12に至り、中心筒12の貫通孔12aから中心筒12内に流入する。中心筒12内に流入した酸性ガスGcは、中心筒12を幅方向に流れて、開放端12bから排出される。
 また、酸性ガスGcを除去された残余ガスGrは、供給ガス流路用部材24を幅方向に流れて、積層体巻回物14の逆側の端面から排出され、テレスコープ防止板16の開口部16dを通って、分離モジュール10の外部に排出される。
As described above, in the separation module 10, the raw material gas G is supplied from one end face of the stacked body roll 14 through the opening 16 d of the telescope prevention plate 16. That is, the source gas G is supplied to the end portion (end surface) in the width direction (arrow x direction) of each stacked body 14a.
As conceptually shown in FIG. 2, the source gas G supplied to the end face in the width direction of the stacked body 14 a flows in the width direction through the supply gas flow path member 24. In this flow, the acidic gas Gc in contact with the acidic gas separation membrane 20 (facilitated transport membrane 20a) is separated from the source gas G by the carrier of the facilitated transport membrane 20a and transported in the stacking direction, and the acidic gas separation membrane. 20 passes in the stacking direction of the stacked body 14 a and flows into the permeating gas flow path member 26.
The acidic gas Gc that has flowed into the permeate gas flow path member 26 flows in the permeate gas flow path member 26 in the winding direction (the direction of the arrow y), reaches the central cylinder 12, and is centered from the through hole 12 a of the central cylinder 12. It flows into the cylinder 12. The acidic gas Gc that has flowed into the center tube 12 flows through the center tube 12 in the width direction and is discharged from the open end 12b.
Further, the residual gas Gr from which the acidic gas Gc has been removed flows in the width direction of the supply gas flow path member 24 and is discharged from the opposite end face of the laminate wound body 14. It is discharged to the outside of the separation module 10 through the part 16d.
 供給ガス流路用部材24は、その幅方向の端部から、原料ガスGを供給され、部材内を流れる原料ガスGと、酸性ガス分離膜20とを接触させる。
 このような供給ガス流路用部材24は、前述のように二つ折りされた酸性ガス分離膜20のスペーサとして機能して、原料ガスGの流路を構成する。また、供給ガス流路用部材24は、原料ガスGを乱流にするのが好ましい。この点を考慮すると、供給ガス流路用部材24は、ネット状(メッシュ状/網目構造)、織布状、不織布状、多孔質状等の部材が好ましい。
The supply gas flow path member 24 is supplied with the source gas G from the end in the width direction, and brings the source gas G flowing in the member into contact with the acidic gas separation membrane 20.
Such a supply gas flow path member 24 functions as a spacer of the acid gas separation membrane 20 folded in half as described above, and constitutes a flow path for the source gas G. Further, the supply gas flow path member 24 preferably makes the source gas G turbulent. Considering this point, the supply gas flow path member 24 is preferably a member having a net shape (mesh shape / mesh structure), a woven fabric shape, a nonwoven fabric shape, a porous shape, or the like.
 供給ガス流路用部材24の形成材料としては、十分な耐熱性および耐湿性を有するものであれば、各種の材料が利用可能である。
 一例として、紙、上質紙、コート紙、キャストコート紙、合成紙などの紙材料、セルロース、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネートなどの樹脂材料、金属、ガラス、セラミックスなどの無機材料等が、好適に例示される。
 樹脂材料としては、具体的には、ポリエチレン、ポリスチレン(PS)、ポリエチレンテレフタレート、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトンおよびポリフッ化ビニリデン等が、好適に例示される。このような供給ガス流路用部材24の形成材料は、複数の材料を併用してもよい。
Various materials can be used as the material for forming the supply gas flow path member 24 as long as it has sufficient heat resistance and moisture resistance.
Examples include paper materials such as paper, fine paper, coated paper, cast coated paper, and synthetic paper, resin materials such as cellulose, polyester, polyolefin, polyamide, polyimide, polysulfone, aramid, and polycarbonate, and inorganic materials such as metal, glass, and ceramics. A material etc. are illustrated suitably.
Specific examples of the resin material include polyethylene, polystyrene (PS), polyethylene terephthalate, polytetrafluoroethylene (PTFE), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), and polypropylene (PP). , Polyimide, polyetherimide, polyetheretherketone, polyvinylidene fluoride and the like are preferably exemplified. A plurality of materials may be used in combination as the material for forming such a supply gas flow path member 24.
 供給ガス流路用部材24の厚さは、原料ガスGの供給量や要求される処理能力等に応じて、適宜、決定すれば良い。
 具体的には、100~1000μmが好ましく、150~950μmがより好ましく、200~900μmが特に好ましい。
The thickness of the supply gas flow path member 24 may be appropriately determined according to the supply amount of the source gas G, the required processing capacity, and the like.
Specifically, 100 to 1000 μm is preferable, 150 to 950 μm is more preferable, and 200 to 900 μm is particularly preferable.
 本発明の分離モジュール10において、酸性ガス分離膜20は、促進輸送膜20aと、促進輸送膜20aを支持する多孔質支持体20bとを有する。また、本発明の分離モジュール10においては、酸性ガス分離膜20は、少なくとも一部を多孔質支持体20b内に位置して、キャリア拡散抑制層20cを有する。言い換えると、キャリア拡散抑制層20cは、少なくとも一部が多孔質支持体20b内に染み込んだ状態になっている。 In the separation module 10 of the present invention, the acidic gas separation membrane 20 has a facilitated transport membrane 20a and a porous support 20b that supports the facilitated transport membrane 20a. Moreover, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has a carrier diffusion suppression layer 20c at least partially located in the porous support 20b. In other words, at least a part of the carrier diffusion suppressing layer 20c is infiltrated into the porous support 20b.
 促進輸送膜20aは、少なくとも、供給ガス流路用部材24を流れる原料ガスGに含有される酸性ガスGcと反応するキャリア、および、このキャリアを担持する親水性化合物を含有する。このような促進輸送膜20aは、原料ガスGから酸性ガスGcを選択的に透過させる機能を有している。
 多孔質支持体20bは、この促進輸送膜20aを実質的に支持するものである。
 キャリア拡散抑制層20cは、促進輸送膜20aのキャリアが、促進輸送膜20aから抜け、さらに、多孔質支持体20bを抜けてしまうことを防止するための層である。
 このような、促進輸送膜20a、多孔質支持体20bおよびキャリア拡散抑制層20cからなる酸性ガス分離膜20に関しては、後に詳述する。
The facilitated transport film 20a contains at least a carrier that reacts with the acidic gas Gc contained in the source gas G flowing through the supply gas flow path member 24, and a hydrophilic compound that supports the carrier. Such a facilitated transport film 20a has a function of selectively allowing the acidic gas Gc to permeate from the source gas G.
The porous support 20b substantially supports the facilitated transport film 20a.
The carrier diffusion suppression layer 20c is a layer for preventing the carriers of the facilitated transport film 20a from being removed from the facilitated transport film 20a and further from the porous support 20b.
The acidic gas separation membrane 20 including the facilitated transport membrane 20a, the porous support 20b, and the carrier diffusion suppression layer 20c will be described in detail later.
 透過ガス流路用部材26は、キャリアと反応して酸性ガス分離膜20を透過した酸性ガスGcを、中心筒12の貫通孔12aに流すための部材である。
 前述のように、積層体14aは、酸性ガス分離膜20を促進輸送膜20aを内側にして二つ折りにして、供給ガス流路用部材24を挟み込んだ挟持体36を有する。
 この挟持体36に、透過ガス流路用部材26を積層して、接着剤層30で接着することにより、1つの積層体14aが構成される。
 透過ガス流路用部材26は、酸性ガス分離膜20の間でスペーサとして機能して、積層体14aの巻回中心(内側)に向かって中心筒12の貫通孔12aに至る、原料ガスGから分離した酸性ガスGcの流路を構成する。また、この酸性ガスGcの流路を適正に形成するために、後述する接着剤層30が浸透する必要が有る。この点を考慮すると、透過ガス流路用部材26は、供給ガス流路用部材24と同様、ネット状(メッシュ状/ネット状)、織布状、不織布状、多孔質状等の部材が好ましい。
The permeating gas channel member 26 is a member for allowing the acidic gas Gc that has reacted with the carrier and permeated through the acidic gas separation membrane 20 to flow through the through hole 12a of the central cylinder 12.
As described above, the stacked body 14a has the sandwiching body 36 in which the acidic gas separation membrane 20 is folded in half with the facilitated transport membrane 20a inside, and the supply gas flow path member 24 is sandwiched.
By laminating the permeating gas flow path member 26 on the sandwiching body 36 and bonding them with the adhesive layer 30, one laminated body 14a is formed.
The permeating gas flow path member 26 functions as a spacer between the acidic gas separation membranes 20 and from the source gas G that reaches the through hole 12a of the central cylinder 12 toward the winding center (inner side) of the stacked body 14a. A flow path of the separated acid gas Gc is formed. Further, in order to properly form the flow path of the acidic gas Gc, the adhesive layer 30 described later needs to penetrate. In consideration of this point, the permeating gas channel member 26 is preferably a net-like (mesh / net-like), woven fabric, non-woven fabric, porous material or the like, similar to the supply gas channel member 24. .
 なお、本発明において、積層体14aは、折り返した酸性ガス分離膜20に供給ガス流路用部材24を挟み込んだ挟持体36を用いる構成に限定はされない。例えば、酸性ガス分離膜20の表面に供給ガス流路用部材24を貼着したものを用いて、挟持体36と同様に積層体を構成してもよい。 In the present invention, the laminated body 14a is not limited to the configuration using the sandwiching body 36 in which the supply gas flow path member 24 is sandwiched between the folded acidic gas separation membrane 20. For example, the laminated body may be configured in the same manner as the sandwiching body 36 by using the supply gas flow path member 24 attached to the surface of the acidic gas separation membrane 20.
 透過ガス流路用部材26の形成材料は、十分な強度や耐熱性を有するものであれば、各種の材料が利用可能である。具体的には、エポキシ含浸ポリエステルなどのポリエステル系の材料、ポリプロピレンなどのポリオレフィン系材料、ポリテトラフルオロエチレンなどのフッ素系の材料、金属、ガラス、セラミックスなどの無機材料等が、好適に例示される。このような透過ガス流路用部材26の形成材料は、複数の材料を併用してもよい。また、同一材料のものを、複数、重ねて用いてもよい。 Various materials can be used as the material for forming the permeating gas channel member 26 as long as it has sufficient strength and heat resistance. Specifically, polyester-based materials such as epoxy-impregnated polyester, polyolefin-based materials such as polypropylene, fluorine-based materials such as polytetrafluoroethylene, inorganic materials such as metal, glass, and ceramics are preferably exemplified. . A plurality of materials may be used in combination as the material for forming such a permeating gas channel member 26. Further, a plurality of the same materials may be used.
 透過ガス流路用部材26の厚さは、原料ガスGの供給量や要求される処理能力等に応じて、適宜、決定すれば良い。
 具体的には、100~1000μmが好ましく、150~950μmがより好ましく、200~900μmが特に好ましい。
The thickness of the permeating gas channel member 26 may be appropriately determined according to the supply amount of the raw material gas G, the required processing capacity, and the like.
Specifically, 100 to 1000 μm is preferable, 150 to 950 μm is more preferable, and 200 to 900 μm is particularly preferable.
 前述のように、透過ガス流路用部材26は、原料ガスGから分離されて酸性ガス分離膜20を透過した酸性ガスGcの流路となる。
 そのため、透過ガス流路用部材26は、流れるガスに対しての抵抗が少ないのが好ましい。具体的には、空隙率が高く、圧をかけたときの変形が少なく、かつ、圧損が少ないのが好ましい。
As described above, the permeating gas channel member 26 is a channel for the acidic gas Gc that is separated from the source gas G and permeates the acidic gas separation membrane 20.
Therefore, it is preferable that the permeating gas channel member 26 has a low resistance to the flowing gas. Specifically, it is preferable that the porosity is high, the deformation is small when pressure is applied, and the pressure loss is small.
 透過ガス流路用部材26の空隙率は、30~99%が好ましく、35~97.5%がより好ましく、40~95%が特に好ましい。
 圧をかけたときの変形は、引張試験を行ったときの伸度で近似できる。透過ガス流路用部材26は、10N/10mm幅の荷重をかけたときの伸度が5%以内であることが好ましく、4%以内であることがより好ましい。
 圧損は、一定の流量で流した圧縮空気の流量損失で近似できる。透過ガス流路用部材26は、15cm角の透過ガス流路用部材26に、室温で15L(リットル)/minの空気を流した際に、流量損失が7.5L/min以内であるのが好ましく、7L/min以内であるのがより好ましい。
The porosity of the permeating gas channel member 26 is preferably 30 to 99%, more preferably 35 to 97.5%, and particularly preferably 40 to 95%.
Deformation when pressure is applied can be approximated by elongation when a tensile test is performed. The permeating gas channel member 26 preferably has an elongation of 5% or less and more preferably 4% or less when a load of 10 N / 10 mm width is applied.
The pressure loss can be approximated by a flow rate loss of compressed air that flows at a constant flow rate. The permeate gas channel member 26 has a flow rate loss of 7.5 L / min or less when air of 15 L (liter) / min is passed through the 15 cm square permeate gas channel member 26 at room temperature. Preferably, it is within 7 L / min.
 積層体14aは、供給ガス流路用部材24、酸性ガス分離膜20、および、透過ガス流路用部材26を積層してなるものである。
 また、前述のように、酸性ガス分離膜20は、促進輸送膜20aと、この促進輸送膜20aを実質的に支持する多孔質支持体20bと、キャリア拡散抑制層20cとを有する。
 ここで、本発明の分離モジュール10においては、酸性ガス分離膜20は、促進輸送膜20aを除いた状態において、多孔質支持体20bの表面における、多孔質支持体20bの投影面積率(Ps)が50%以上であり、かつ、多孔質支持体20bの厚さ方向(各膜および層、流路部材の積層方向)の断面において、キャリア拡散抑制層20cの投影面積率(Pc)が30%以上である。
The laminated body 14a is formed by laminating a supply gas flow path member 24, an acidic gas separation membrane 20, and a permeate gas flow path member 26.
As described above, the acidic gas separation membrane 20 includes the facilitated transport membrane 20a, the porous support 20b that substantially supports the facilitated transport membrane 20a, and the carrier diffusion suppression layer 20c.
Here, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has a projected area ratio (Ps) of the porous support 20b on the surface of the porous support 20b in a state excluding the facilitated transport membrane 20a. And the projected area ratio (Pc) of the carrier diffusion suppression layer 20c is 30% in the cross section in the thickness direction of the porous support 20b (the laminating direction of each film and layer and the flow path member). That's it.
 以下、図3(A)および図3(B)を参照して、本発明の分離モジュール10における酸性ガス分離膜20について、詳細に説明する。
 なお、図3(A)は、酸性ガス分離膜20の厚さ方向の概略断面図である。また、図3(B)は、酸性ガス分離膜20から促進輸送膜20aを除いた状態の多孔質支持体20bの概略上面図である。すなわち、図3(B)は、キャリア拡散抑制層20cを形成し、かつ、促進輸送膜20aが無い状態における、多孔質支持体20bの促進輸送膜20a形成面(表面)の概略図である。
Hereinafter, the acidic gas separation membrane 20 in the separation module 10 of the present invention will be described in detail with reference to FIGS. 3 (A) and 3 (B).
3A is a schematic sectional view of the acid gas separation membrane 20 in the thickness direction. FIG. 3B is a schematic top view of the porous support 20b in a state in which the facilitated transport membrane 20a is removed from the acid gas separation membrane 20. 3B is a schematic diagram of the facilitated transport film 20a formation surface (surface) of the porous support 20b in the state where the carrier diffusion suppressing layer 20c is formed and the facilitated transport film 20a is not present.
 前述のように、促進輸送膜20aは、原料ガスGから酸性ガスGcを選択的に透過させる機能を有している。言い換えると、促進輸送膜20aは、酸性ガスGcを選択的に輸送する機能を有している。
 このような促進輸送膜20aは、少なくとも親水性ポリマー等の親水性化合物、酸性ガスと反応するキャリアおよび水等を含有する。
As described above, the facilitated transport film 20a has a function of selectively allowing the acidic gas Gc to permeate from the source gas G. In other words, the facilitated transport film 20a has a function of selectively transporting the acidic gas Gc.
Such a facilitated transport film 20a contains at least a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like.
 親水性化合物はバインダーとして機能するものであり、促進輸送膜20aにおいて、水分を保持して、キャリアによる二酸化炭素等の酸性ガスの分離機能を発揮させる。また、親水性化合物は、耐熱性の観点から、架橋構造を有するのが好ましい。 The hydrophilic compound functions as a binder, retains moisture in the facilitated transport film 20a, and exhibits a function of separating an acidic gas such as carbon dioxide by a carrier. Moreover, it is preferable that a hydrophilic compound has a crosslinked structure from a heat resistant viewpoint.
 親水性化合物は、水に溶けて塗布組成物を形成できると共に、促進輸送膜20aが高い親水性(保湿性)を有するのが好ましいという観点から、親水性が高いものが好ましい。
 具体的には、親水性化合物は、生理食塩液の吸水量が0.5g/g以上の親水性を有することが好ましく、生理食塩液の吸水量が1g/g以上の親水性を有することがより好ましく、生理食塩液の吸水量が5g/g以上の親水性を有することがさらに好ましく、生理食塩液の吸水量が10g/g以上の親水性を有することが特に好ましく、生理食塩液の吸水量が20g/g以上の親水性を有することが最も好ましい。
From the viewpoint that the hydrophilic compound can be dissolved in water to form a coating composition, and the facilitated transport film 20a preferably has high hydrophilicity (moisturizing property), those having high hydrophilicity are preferable.
Specifically, the hydrophilic compound preferably has a hydrophilicity of 0.5 g / g or more in physiological saline, and has a hydrophilicity of 1 g / g or more in physiological saline. More preferably, the physiological saline has a hydrophilicity of 5 g / g or more, more preferably, the physiological saline has a hydrophilicity of 10 g / g or more, and the physiological saline has a hydrophilicity. Most preferably, the amount has a hydrophilicity of 20 g / g or more.
 親水性化合物の重量平均分子量は、安定な膜を形成し得る範囲で、適宜、選択すればよい。具体的には、20,000~2,000,000が好ましく、25,000~2,000,000がより好ましく、30,000~2,000,000が特に好ましい。
 親水性化合物の重量平均分子量を20,000以上とすることで、安定して十分な膜強度を有する促進輸送膜20aを得ることができる。
 親水性化合物が架橋可能基としてヒドロキシ基(-OH)を有する場合には、親水性化合物は、重量平均分子量が30,000以上であるのが好ましい。この際には、重量平均分子量は更に好ましくは40,000以上であり、より好ましくは、50,000以上である。また、親水性化合物が架橋可能基としてヒドロキシ基を有する場合には、製造適性の観点から、重量平均分子量は、6,000,000以下であることが好ましい。
 架橋可能基としてアミノ基(-NH2)を有する場合には、親水性化合物は、重量平均分子量が10,000以上であるものが好ましい。この際には、親水性化合物の重量平均分子量は、15,000以上であるのがより好ましく、20,000以上であるのが特に好ましい。また、親水性化合物が、架橋可能基としてアミノ基を有する場合には、製造適性の観点から、重量平均分子量は、1,000,000以下であるのが好ましい。
 なお、本発明において、各種の高分子材料の重量平均分子量は、ゲル浸透クロマトグラフィ(GPC)によって、PS換算の分子量として測定すればよい。
 また、親水性化合物は、市販品も利用可能であり、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いればよい。
What is necessary is just to select the weight average molecular weight of a hydrophilic compound suitably in the range which can form a stable film | membrane. Specifically, 20,000 to 2,000,000 is preferable, 25,000 to 2,000,000 is more preferable, and 30,000 to 2,000,000 is particularly preferable.
By setting the weight average molecular weight of the hydrophilic compound to 20,000 or more, the facilitated transport film 20a having a stable and sufficient film strength can be obtained.
When the hydrophilic compound has a hydroxy group (—OH) as a crosslinkable group, the hydrophilic compound preferably has a weight average molecular weight of 30,000 or more. In this case, the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more. When the hydrophilic compound has a hydroxy group as a crosslinkable group, the weight average molecular weight is preferably 6,000,000 or less from the viewpoint of production suitability.
When having an amino group (—NH 2 ) as a crosslinkable group, the hydrophilic compound preferably has a weight average molecular weight of 10,000 or more. In this case, the weight average molecular weight of the hydrophilic compound is more preferably 15,000 or more, and particularly preferably 20,000 or more. Moreover, when a hydrophilic compound has an amino group as a crosslinkable group, it is preferable that a weight average molecular weight is 1,000,000 or less from a viewpoint of manufacture aptitude.
In the present invention, the weight average molecular weight of various polymer materials may be measured as a molecular weight in terms of PS by gel permeation chromatography (GPC).
Moreover, a commercial item can also be used for a hydrophilic compound, and when using a commercial item, the molecular weight nominally mentioned by a catalog, a specification, etc. should just be used.
 親水性化合物を形成する架橋可能基としては、耐加水分解性の架橋構造を形成し得るものが、好ましく選択される。
 具体的には、ヒドロキシ基、アミノ基、塩素原子、シアノ基、カルボキシ基、および、エポキシ基等が例示される。これらの中でも、アミノ基およびヒドロキシ基が好ましく例示される。さらに、最も好ましくは、キャリアとの親和性およびキャリア担持効果の観点から、ヒドロキシ基が例示される。
As the crosslinkable group forming the hydrophilic compound, those capable of forming a hydrolysis-resistant crosslinked structure are preferably selected.
Specific examples include a hydroxy group, an amino group, a chlorine atom, a cyano group, a carboxy group, and an epoxy group. Among these, an amino group and a hydroxy group are preferably exemplified. Furthermore, most preferably, a hydroxy group is illustrated from the viewpoint of affinity with a carrier and a carrier carrying effect.
 親水性化合物としては、具体的には、単一の架橋可能基を有するものとしては、ポリアリルアミン、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジン、ポリエチレンオキサイド、水溶性セルロース、デンプン、アルギン酸、キチン、ポリスルホン酸、ポリヒドロキシメタクリレート、ポリ-N-ビニルアセトアミドなどが例示される。最も好ましくはポリビニルアルコールである。また、親水性化合物としては、これらの共重合体も例示される。 Specific examples of hydrophilic compounds include those having a single crosslinkable group such as polyallylamine, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethyleneimine, polyvinylamine, polyornithine, polylysine, Examples include polyethylene oxide, water-soluble cellulose, starch, alginic acid, chitin, polysulfonic acid, polyhydroxymethacrylate, poly-N-vinylacetamide and the like. Most preferred is polyvinyl alcohol. Moreover, as a hydrophilic compound, these copolymers are also illustrated.
 複数の架橋可能基を有する親水性化合物としては、ポリビニルアルコール-ポリアクリル酸共重合体が例示される。ポリビニルアルコール-ポリアクリル塩共重合体は、吸水能が高い上に、高吸水時においてもハイドロゲルの強度が大きいため好ましい。
 ポリビニルアルコール-ポリアクリル酸共重合体におけるポリアクリル酸の含有率は、例えば1~95モル%、好ましくは2~70モル%、より好ましくは3~60モル%、特に好ましくは5~50モル%である。なお、アクリル酸の含有率は、公知の合成方法で制御することができる。
 なお、ポリビニルアルコール-ポリアクリル酸共重合体において、ポリアクリル酸は、塩であってもよい。この際におけるポリアクリル酸塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩の他、アンモニウム塩や有機アンモニウム塩等が例示される。
Examples of the hydrophilic compound having a plurality of crosslinkable groups include polyvinyl alcohol-polyacrylic acid copolymers. A polyvinyl alcohol-polyacrylic salt copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
The content of polyacrylic acid in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, particularly preferably 5 to 50 mol%. It is. The content of acrylic acid can be controlled by a known synthesis method.
In the polyvinyl alcohol-polyacrylic acid copolymer, the polyacrylic acid may be a salt. Examples of the polyacrylic acid salt in this case include ammonium salts and organic ammonium salts in addition to alkali metal salts such as sodium salts and potassium salts.
 ポリビニルアルコールは市販品としても入手可能である。具体的には、PVA117(クラレ社製)、ポバール(クラレ社製)、ポリビニルアルコール(アルドリッチ社製)、J-ポバール(日本酢ビ・ポバール社製)等が例示される。分子量のグレードは種々存在するが、重量平均分子量が130,000~300,000のものが好ましい。
 ポリビニルアルコール-ポリアクリル酸塩共重合体(ナトリウム塩)も、市販品として入手可能である。例えば、クラストマーAP20(クラレ社製)が例示される。
Polyvinyl alcohol is also available as a commercial product. Specific examples include PVA117 (manufactured by Kuraray Co., Ltd.), Poval (manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (manufactured by Aldrich Co., Ltd.), J-Poval (manufactured by Nippon Vinegarten Poval Co., Ltd.) and the like. Various grades of molecular weight exist, but those having a weight average molecular weight of 130,000 to 300,000 are preferred.
A polyvinyl alcohol-polyacrylate copolymer (sodium salt) is also available as a commercial product. For example, Crustomer AP20 (made by Kuraray Co., Ltd.) is exemplified.
 なお、本発明の製造方法において、促進輸送膜20aの親水性化合物は、2種以上を混合して使用してもよい。 In the production method of the present invention, two or more hydrophilic compounds of the facilitated transport film 20a may be mixed and used.
 親水性化合物の含有量は、形成した促進輸送膜20aにおいて、親水性化合物がバインダーとして機能し、かつ、水分を十分に保持できる量を、親水性組成物やキャリアの種類等に応じて、適宜、設定すればよい。
 具体的には、促進輸送膜20aにおける親水性化合物の含有量は、0.5~50質量%が好ましく、0.75~30質量%がより好ましく、1~15質量%が特に好ましい。親水性化合物の含有量を、この範囲とすることにより、上述のバインダーとしての機能および水分保持機能を、安定して、好適に発現できる。
In the formed facilitated transport film 20a, the content of the hydrophilic compound is appropriately determined depending on the type of the hydrophilic composition, the carrier, and the like so that the hydrophilic compound functions as a binder and can sufficiently retain moisture. , You can set.
Specifically, the content of the hydrophilic compound in the facilitated transport film 20a is preferably 0.5 to 50% by mass, more preferably 0.75 to 30% by mass, and particularly preferably 1 to 15% by mass. By setting the content of the hydrophilic compound within this range, the above-described function as a binder and moisture retention function can be stably and suitably expressed.
 親水性化合物の架橋構造は、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等、公知の手法により形成できる。
 好ましくは光架橋もしくは熱架橋であり、最も好ましくは熱架橋である。
The crosslinked structure of the hydrophilic compound can be formed by a known method such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, or photocrosslinking.
Photocrosslinking or thermal crosslinking is preferred, and thermal crosslinking is most preferred.
 促進輸送膜20aの形成には、親水性組成物と共に、架橋剤を用いるのが好ましい。すなわち、促進輸送膜20aを形成するための塗布組成物は、架橋剤を含有するのが好ましい。
 架橋剤としては、親水性化合物と反応し、熱架橋や光架橋等の架橋し得る官能基を2以上有する架橋剤を含むものが選択される。また、形成された架橋構造は、耐加水分解性の架橋構造となるのが好ましい。
 このような観点から、塗布組成物に添加される架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが好適に例示される。より好ましくは多価アルデヒド、有機金属系架橋剤およびエポキシ架橋剤であり、中でも、アルデヒド基を2以上有するグルタルアルデヒドやホルムアルデヒドなどの多価アルデヒドが好ましい。
For the formation of the facilitated transport film 20a, it is preferable to use a crosslinking agent together with the hydrophilic composition. That is, the coating composition for forming the facilitated transport film 20a preferably contains a crosslinking agent.
As the crosslinking agent, one containing a crosslinking agent that reacts with a hydrophilic compound and has two or more functional groups capable of crosslinking such as thermal crosslinking or photocrosslinking is selected. The formed crosslinked structure is preferably a hydrolysis-resistant crosslinked structure.
From such a viewpoint, as a crosslinking agent added to the coating composition, an epoxy crosslinking agent, a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine, An organic metal type crosslinking agent etc. are illustrated suitably. More preferred are polyvalent aldehydes, organometallic crosslinking agents and epoxy crosslinking agents, and among them, polyvalent aldehydes such as glutaraldehyde and formaldehyde having two or more aldehyde groups are preferred.
 エポキシ架橋剤としては、エポキシ基を2以上有する化合物が例示され、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、トリメチロールプロパントリグリシジルエーテル(共栄社化学社製、エポライト100MF等)、ナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、日油社製エピオールE400などが例示される。
 エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物も、好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、などが例示される。
As an epoxy crosslinking agent, the compound which has 2 or more of epoxy groups is illustrated, and the compound which has 4 or more is also preferable. Epoxy crosslinking agents are also commercially available, for example, trimethylolpropane triglycidyl ether (manufactured by Kyoeisha Chemical Co., Epolite 100MF, etc.), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, EX -810, EX-811, EX-821, EX-830, Epiol E400 manufactured by NOF Corporation, and the like.
As a compound similar to an epoxy crosslinking agent, an oxetane compound having a cyclic ether is also preferably used. The oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups. Examples of commercially available products include EX-411, EX-313, EX-614B, EX-810, EX-811, EX manufactured by Nagase ChemteX Corporation. -821, EX-830, etc.
 多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が例示される。 Examples of the polyvalent glycidyl ether include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples include glycol glycidyl ether and polypropylene glycol diglycidyl ether.
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチレンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等が例示される。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, oxyethyleneoxypropylene block copolymer , Pentaerythritol, sorbitol and the like.
 多価イソシアネートとしては、例えば、2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等が例示される。
 多価アジリジンとしては、例えば、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等が例示される。
Examples of the polyvalent isocyanate include 2,4-tolylene diisocyanate and hexamethylene diisocyanate.
Examples of the polyvalent aziridine include 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′-N, N Examples include '-diethylene urea.
 ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α-メチルクロルヒドリン等が例示される。
 多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が例示される。
 多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が例示される。
 さらに、有機金属系架橋剤としては、例えば、有機チタン架橋剤、有機ジルコニア架橋剤等が例示される。
Examples of the haloepoxy compound include epichlorohydrin and α-methylchlorohydrin.
Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
Furthermore, examples of the organometallic crosslinking agent include organic titanium crosslinking agents and organic zirconia crosslinking agents.
 例えば、親水性化合物として、重量平均分子量が130,000以上のポリビニルアルコールを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、架橋剤として、エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 親水性化合物として、ポリビニルアルコール-ポリアクリル酸共重合体を用いる場合は、架橋剤として、エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 親水性化合物として、重量平均分子量が10,000以上のポリアリルアミンを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、架橋剤として、エポキシ架橋剤、グルタルアルデヒド、および、有機金属架橋剤が好ましく利用される。
 親水性化合物として、ポリエチレンイミンやポリアリルアミンを用いる場合には、架橋剤として、エポキシ架橋剤が好ましく利用される。
For example, when polyvinyl alcohol having a weight average molecular weight of 130,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance. Therefore, an epoxy crosslinking agent or glutaraldehyde is preferably used as the crosslinking agent.
When a polyvinyl alcohol-polyacrylic acid copolymer is used as the hydrophilic compound, an epoxy crosslinking agent or glutaraldehyde is preferably used as the crosslinking agent.
When a polyallylamine having a weight average molecular weight of 10,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance. As the crosslinking agent, an epoxy crosslinking agent, glutaraldehyde, and an organometallic crosslinking agent are preferably used.
When polyethyleneimine or polyallylamine is used as the hydrophilic compound, an epoxy crosslinking agent is preferably used as the crosslinking agent.
 架橋剤の量は、親水性化合物や架橋剤の種類に応じて、適宜、設定すればよい。
 具体的には、親水性化合物が有する架橋可能基量100質量部に対して0.001~80質量部が好ましく、0.01~60質量部がより好ましく、0.1~50質量部が特に好ましい。架橋剤の含有量を上記範囲とすることにより、架橋構造の形成性が良好であり、かつ、形状維持性に優れる促進輸送膜を得ることができる。
 親水性化合物が有する架橋可能基に着目すれば、架橋構造は、親水性化合物が有する架橋可能基100molに対し、架橋剤0.001~80molを反応させて形成されたものであるのが好ましい。
What is necessary is just to set the quantity of a crosslinking agent suitably according to the kind of hydrophilic compound and crosslinking agent.
Specifically, the amount is preferably 0.001 to 80 parts by mass, more preferably 0.01 to 60 parts by mass, and particularly preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable group possessed by the hydrophilic compound. preferable. By setting the content of the cross-linking agent in the above range, a facilitated transport film having good cross-linking structure formation and excellent shape maintainability can be obtained.
Focusing on the crosslinkable group possessed by the hydrophilic compound, the crosslinked structure is preferably formed by reacting 0.001 to 80 mol of a crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound.
 促進輸送膜20aは、金属元素を含有するのが好ましい。促進輸送膜20aの好適態様の一つとしては、促進輸送膜が、Ti、Zr、Al、Si、およびZnからなる群から選択される少なくとも1種以上の金属元素を含有する態様が挙げられる。このような金属元素が含まれることにより、促進輸送膜20aの強度が向上する。特に、後述するように、上記金属元素を含む架橋構造が形成されることにより、促進輸送膜20aの強度がより向上し、結果として、例えばスパイラル状に巻回する際における促進輸送膜20aの劣化がより抑制される。 The facilitated transport film 20a preferably contains a metal element. One preferred embodiment of the facilitated transport film 20a includes an embodiment in which the facilitated transport film contains at least one metal element selected from the group consisting of Ti, Zr, Al, Si, and Zn. By including such a metal element, the strength of the facilitated transport film 20a is improved. In particular, as described later, the strength of the facilitated transport film 20a is further improved by forming a cross-linked structure containing the metal element, and as a result, the facilitated transport film 20a is deteriorated when wound in a spiral shape, for example. Is more suppressed.
 このような金属元素を含む促進輸送膜20aの形態は、特に制限はされないが、以下の式(1)で表される構造単位を含む促進輸送膜が好ましい。なお、以下式(1)中、*は結合位置を表す。
 式(1)  M-(O-*)m
 上記式中、Mは、Ti(チタン)、Zr(ジルコニウム)、Al(アルミニウム)、Si(珪素)、およびZn(亜鉛)からなる群から選択される金属元素を表す。
 mは、Mで表される金属元素の価数を表す。例えば、以下に示すように、MがZnの場合にはmは2を表し、MがAlの場合にはmは3を表し、MがTi、ZrおよびSiの場合にはmは4を表す。
 より具体的に、以下にmが2~4の場合の構造式(式(2)~式(4))を示す。
The form of the facilitated transport film 20a containing such a metal element is not particularly limited, but a facilitated transport film containing a structural unit represented by the following formula (1) is preferable. In the following formula (1), * represents a bonding position.
Formula (1) M- (O-*) m
In the above formula, M represents a metal element selected from the group consisting of Ti (titanium), Zr (zirconium), Al (aluminum), Si (silicon), and Zn (zinc).
m represents the valence of the metal element represented by M. For example, as shown below, m represents 2 when M is Zn, m represents 3 when M is Al, and m represents 4 when M is Ti, Zr, and Si. .
More specifically, structural formulas (formula (2) to formula (4)) where m is 2 to 4 are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)で表される構造単位は、例えば、後述するように、加水分解性の化合物と、上述した架橋可能基(例えば、ヒドロキシ基)を有する親水性化合物とを併用することにより、促進輸送膜20a中に導入することができる。その場合、上記構造単位は、いわゆる架橋部位(架橋構造)として機能する。
 なお、促進輸送膜20a中における上記式(1)で表される構造単位の検出方法としては、例えば、IR測定により特定のピークを検出することにより確認できる。必要に応じて、促進輸送膜20a中のキャリアを除去した後、残存する膜に対してIR測定を実施してもよい。
The structural unit represented by the above formula (1) is, for example, by using a hydrolyzable compound in combination with a hydrophilic compound having a crosslinkable group (for example, a hydroxy group) as described below. It can be introduced into the facilitated transport film 20a. In that case, the structural unit functions as a so-called cross-linked site (cross-linked structure).
In addition, as a detection method of the structural unit represented by the said Formula (1) in the facilitated-transport film | membrane 20a, it can confirm by detecting a specific peak by IR measurement, for example. If necessary, after removing the carriers in the facilitated transport film 20a, IR measurement may be performed on the remaining film.
 促進輸送膜20a中における上記金属元素の合計質量は特に制限されないが、促進輸送膜20aの強度がより優れる点で、親水性化合物全質量に対して、上記金属元素の含有量が0.1~50質量%であることが好ましく、0.3~20質量%であることがより好ましく、0.5~10質量%であることがさらに好ましい。
 上記金属元素の含有量の測定方法は特に制限されないが、例えば、蛍光X線分析法によって測定可能である。
The total mass of the metal elements in the facilitated transport film 20a is not particularly limited, but the content of the metal element is 0.1 to 0.1% with respect to the total mass of the hydrophilic compound in that the strength of the facilitated transport film 20a is more excellent. The content is preferably 50% by mass, more preferably 0.3 to 20% by mass, and still more preferably 0.5 to 10% by mass.
Although the measuring method of content of the said metal element is not restrict | limited in particular, For example, it can measure by a fluorescent X ray analysis method.
 上述したように、上記式(1)で表される構造単位を促進輸送膜20a中に導入する際には、上述した金属元素を含む加水分解性の化合物を使用することが好ましい。具体的には、式(5)で表される加水分解性金属化合物が挙げられる。これら化合物は、いわゆる有機金属系架橋剤として機能する。
 式(5)   M(X)m
 式(5)中、Mは、Ti(チタン)、Zr(ジルコニウム)、Al(アルミニウム)、Si(珪素)、およびZn(亜鉛)からなる群から選択される金属元素を表す。
 Xは、加水分解性基を表す。加水分解性基としては、アルコキシル基、イソシアネート基、塩素原子などのハロゲン原子、オキシハロゲン基、アセチルアセトネート基、ヒドロキシ基などが挙げられる。複数のXは、同一であっても、異なっていてもよい。
 mは、Mで表される金属元素の価数を表す。
As described above, when the structural unit represented by the above formula (1) is introduced into the facilitated transport film 20a, it is preferable to use a hydrolyzable compound containing the metal element described above. Specifically, the hydrolyzable metal compound represented by Formula (5) is mentioned. These compounds function as so-called organometallic crosslinking agents.
Formula (5) M (X) m
In formula (5), M represents a metal element selected from the group consisting of Ti (titanium), Zr (zirconium), Al (aluminum), Si (silicon), and Zn (zinc).
X represents a hydrolyzable group. Examples of the hydrolyzable group include an alkoxyl group, an isocyanate group, a halogen atom such as a chlorine atom, an oxyhalogen group, an acetylacetonate group, and a hydroxy group. A plurality of X may be the same or different.
m represents the valence of the metal element represented by M.
 促進輸送膜20aにおいて、キャリア(酸性ガスキャリア)は、酸性ガス(例えば、炭酸ガス(CO2))と反応して、酸性ガスを輸送するものである。 In the facilitated transport film 20a, the carrier (acid gas carrier) reacts with an acid gas (for example, carbon dioxide gas (CO 2 )) to transport the acid gas.
 キャリアは、酸性ガスと親和性を有し、かつ、塩基性を示す水溶性の化合物である。具体的には、アルカリ金属化合物、窒素含有化合物および硫黄酸化物等が例示される。
 なお、キャリアは、間接的に酸性ガスと反応するものでも、キャリア自体が、直接、酸性ガスと反応するものでもよい。
 前者は、供給ガス中に含まれる他のガスと反応し、塩基性を示し、その塩基性化合物と酸性ガスが反応するものなどが例示される。より具体的には、スチーム(水分)と反応してOH-を放出し、そのOH-がCO2と反応することで、促進輸送膜20a中に選択的にCO2を取り込むことができる化合物であり、例えば、アルカリ金属化合物である。
 後者は、キャリア自体が塩基性であるようなもので、例えば、窒素含有化合物や硫黄酸化物である。
The carrier is a water-soluble compound having affinity with acidic gas and showing basicity. Specific examples include alkali metal compounds, nitrogen-containing compounds, and sulfur oxides.
The carrier may react indirectly with the acid gas, or the carrier itself may react directly with the acid gas.
The former reacts with other gas contained in the supply gas, shows basicity, and the basic compound reacts with acidic gas. More specifically, OH react with steam (water) - was released, the OH - that reacts with CO 2, a compound can be incorporated selectively CO 2 in facilitated transport membrane 20a For example, an alkali metal compound.
The latter is such that the carrier itself is basic, for example, a nitrogen-containing compound or a sulfur oxide.
 アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、および、アルカリ金属水酸化物等が例示される。ここで、アルカリ金属としては、セシウム、ルビジウム、カリウム、リチウム、および、ナトリウムから選ばれたアルカリ金属元素が好ましく用いられる。なお、本発明において、アルカリ金属化合物とは、アルカリ金属そのもののほか、その塩およびそのイオンも含む。 Examples of the alkali metal compound include alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide. Here, as the alkali metal, an alkali metal element selected from cesium, rubidium, potassium, lithium, and sodium is preferably used. In addition, in this invention, an alkali metal compound contains the salt and its ion other than alkali metal itself.
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウム等が例示される。
 アルカリ金属重炭酸塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、および、炭酸水素セシウム等が例示される。
 アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、および、水酸化セシウム等が例示される。
 これらの中でも、アルカリ金属炭酸塩が好ましく、また、酸性ガスとの親和性が良いという観点から、水に対する溶解度の高いカリウム、ルビジウム、および、セシウムを含む化合物が好ましい。
Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
Examples of the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
Among these, an alkali metal carbonate is preferable, and a compound containing potassium, rubidium, and cesium having high solubility in water is preferable from the viewpoint of good affinity with acidic gas.
 キャリアとしてアルカリ金属化合物を用いる際には、2種以上のキャリアを併用してもよい。
 促進輸送膜20a中に2種以上のキャリアが存在することにより、膜中で異なるキャリアを距離的に離間させることができる。これにより、複数のキャリアの潮解性の違いによって、促進輸送膜20aの吸水性に起因して、製造時等に促進輸送膜20a同士や、促進輸送膜20aと他の部材とが貼着すること(ブロッキング)を、好適に抑制できる。
 ブロッキングの抑制効果を、より好適に得られる等の点で、2種以上のアルカリ金属化合物をキャリアとして用いる場合には、潮解性を有する第1化合物と、第1化合物よりも潮解性が低く比重が小さい第2化合物を含むのが好ましい。一例として、第1化合物としては炭酸セシウムが、第2化合物としては炭酸カリウムが、例示される。
When using an alkali metal compound as a carrier, two or more kinds of carriers may be used in combination.
When two or more types of carriers are present in the facilitated transport film 20a, different carriers can be separated from each other in the film. Thereby, due to the difference in deliquescence of a plurality of carriers, due to the water absorption of the facilitated transport film 20a, the facilitated transport films 20a or the facilitated transport film 20a and other members are adhered to each other during production. (Blocking) can be suitably suppressed.
In the case where two or more alkali metal compounds are used as a carrier in terms of more suitably obtaining a blocking inhibitory effect, the first compound having deliquescence and the specific gravity having lower deliquescence than the first compound It is preferable to contain the 2nd compound with small. As an example, the first compound is exemplified by cesium carbonate, and the second compound is exemplified by potassium carbonate.
 窒素含有化合物としては、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類、クリプタンド[2.1]、クリプタンド[2.2]などの環状ポリエーテルアミン類、クリプタンド[2.2.1]、クリプタンド[2.2.2]などの双環式ポリエーテルアミン類、ポルフィリン、フタロシアニン、エチレンジアミン四酢酸等が例示される。
 硫黄化合物としては、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオール等が例示される。
Nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, triazine, monoethanolamine, diethanolamine, triethanolamine , Alkanolamines such as monopropanolamine, dipropanolamine and tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] and cryptand [ And bicyclic polyetheramines such as 2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like.
Examples of sulfur compounds include amino acids such as cystine and cysteine, polythiophene, dodecyl thiol and the like.
 促進輸送膜20aにおけるキャリアの含有量は、キャリアや親水性化合物の種類等に応じて、適宜、設定すればよい。具体的には、促進輸送膜20aにおけるキャリアの量が、0.3~30質量%となる量が好ましく、0.5~25質量%となる量がより好ましく、1~20質量%となる量が特に好ましい。
 塗布組成物におけるキャリアの含有量を、上記範囲とすることにより、塗布前の塩析を好適に防ぐことができ、さらに、形成した促進輸送膜20aが、酸性ガスの分離機能を確実に発揮できる。
 塗布組成物における親水性化合物とキャリアとの量比は、親水性化合物:キャリアの質量比で1:9~2:3が好ましく、1:4~2:3がより好ましく、3:7~2:3が特に好ましい。
What is necessary is just to set suitably content of the carrier in the facilitated-transport film | membrane 20a according to the kind etc. of a carrier or a hydrophilic compound. Specifically, the amount of carriers in the facilitated transport film 20a is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and 1 to 20% by mass. Is particularly preferred.
By setting the content of the carrier in the coating composition in the above range, salting out before coating can be suitably prevented, and the facilitated transport film 20a formed can reliably exhibit the function of separating acidic gas. .
The weight ratio of the hydrophilic compound to the carrier in the coating composition is preferably 1: 9 to 2: 3, more preferably 1: 4 to 2: 3, and more preferably 3: 7 to 2 in terms of the weight ratio of the hydrophilic compound to the carrier. : 3 is particularly preferable.
 促進輸送膜20aは、必要に応じて、増粘剤を含有してもよい。すなわち、促進輸送膜20aを形成するための塗布組成物は、必要に応じて、増粘剤を含有してもよい。
 増粘剤としては、例えば、寒天、カルボキシメチルセルロース、カラギナン、キタンサンガム、グァーガム、ペクチン等の増粘多糖類が好ましい。中でも、製膜性、入手の容易性、コストの点から、カルボキシメチセルロースが好ましい。
 カルボキシメチルセルロースを用いることにより、少量の含有量で、所望粘度の塗布組成物が容易に得られるうえ、塗布組成物に含まれる溶媒以外の成分の少なくとも一部が塗布組成物中で溶解できずに析出してしまう恐れも少ない。
The facilitated transport film 20a may contain a thickener as necessary. That is, the coating composition for forming the facilitated-transport film | membrane 20a may contain a thickener as needed.
As the thickener, for example, thickening polysaccharides such as agar, carboxymethylcellulose, carrageenan, chitansan gum, guar gum and pectin are preferable. Among these, carboxymethylcellulose is preferable from the viewpoints of film forming property, availability, and cost.
By using carboxymethyl cellulose, a coating composition having a desired viscosity can be easily obtained with a small amount of content, and at least a part of components other than the solvent contained in the coating composition cannot be dissolved in the coating composition. There is little risk of precipitation.
 増粘剤の含有量は、目的とする粘度に調節可能であれば、できるだけ少ないほうが好ましい。
 一般的な指標としては、10質量%以下が好ましく、0.1~5質量%がより好ましく、0.1~2質量%以下がより好ましい。
The content of the thickener is preferably as small as possible as long as it can be adjusted to the target viscosity.
As a general index, 10% by mass or less is preferable, 0.1 to 5% by mass is more preferable, and 0.1 to 2% by mass or less is more preferable.
 促進輸送膜20a、すなわち促進輸送膜20aを形成するための塗布組成物は、このような親水性化合物、架橋剤およびキャリア、あるいはさらに増粘剤に加え、必要に応じて、各種の成分を含有してもよい。 The facilitated transport film 20a, that is, the coating composition for forming the facilitated transport film 20a contains various components as necessary in addition to such a hydrophilic compound, a crosslinking agent and a carrier, or a thickener. May be.
 このような成分としては、ジブチルヒドロキシトルエン(BHT)等の酸化防止剤、炭素数3~20のアルキル基または炭素数3~20のフッ化アルキル基と親水性基とを有する化合物やシロキサン構造を有する化合物等の特定化合物、オクタン酸ナトリウムや1-ヘキサスルホン酸ナトリウム等の界面活性剤、ポリオレフィン粒子やポリメタクリル酸メチル粒子等のポリマー粒子等が例示される。
 その他、必要に応じて、触媒、保湿剤、吸湿剤、補助溶剤、膜強度調節剤、欠陥検出剤等を用いてもよい。
Examples of such components include antioxidants such as dibutylhydroxytoluene (BHT), compounds having 3 to 20 carbon atoms or fluorinated alkyl groups having 3 to 20 carbon atoms and hydrophilic groups, and siloxane structures. Specific compounds such as compounds having a surfactant, surfactants such as sodium octoate and sodium 1-hexasulfonate, polymer particles such as polyolefin particles and polymethyl methacrylate particles, and the like.
In addition, a catalyst, a humectant, a hygroscopic agent, an auxiliary solvent, a film strength modifier, a defect detector, and the like may be used as necessary.
 また、本発明の分離モジュールにおいて、促進輸送膜20aの厚さは、促進輸送膜20aの組成等に応じて、目的とする性能を得られる膜厚を、適宜、設定すればよい。具体的には、3~1000μmが好ましく、5~500μmがより好ましく、5~100μmが特に好ましい。
 促進輸送膜20aの膜厚を、上記範囲とすることにより、ガス透過性能を向上できる、欠陥の発生を抑制できる等の点で好ましい。なお、促進輸送膜20aの膜厚は、走査型電子顕微鏡等を用いた断面観察によって測定できる。
Further, in the separation module of the present invention, the thickness of the facilitated transport membrane 20a may be set as appropriate so that the desired performance can be obtained according to the composition of the facilitated transport membrane 20a. Specifically, it is preferably 3 to 1000 μm, more preferably 5 to 500 μm, and particularly preferably 5 to 100 μm.
By making the film thickness of the facilitated-transport film | membrane 20a into the said range, it is preferable at points, such as being able to improve gas-permeation performance and suppressing generation | occurrence | production of a defect. The film thickness of the facilitated transport film 20a can be measured by cross-sectional observation using a scanning electron microscope or the like.
 図2では、図面を簡潔にするために促進輸送膜20aを多孔質支持体20bの上に示しているが、実際には、促進輸送膜20aは、図3(A)および図3(B)に示すように、少なくとも一部が多孔質支持体20bに染み込んでいる。
 そのため、促進輸送膜20aの膜厚は、断面を走査型電子顕微鏡(SEM)によって撮影して、促進輸送膜20aと、その下に位置する層との界面を下端として、任意の10断面の平均として算出する。なお、促進輸送膜20aの下に位置する層とは、多孔質支持体20bもしくはキャリア拡散抑制層20cである。
In FIG. 2, the facilitated transport film 20a is shown on the porous support 20b for the sake of brevity, but in actuality, the facilitated transport film 20a is shown in FIGS. 3 (A) and 3 (B). As shown in FIG. 4, at least a part of the porous support 20b is infiltrated.
Therefore, the film thickness of the facilitated transport film 20a is obtained by taking an image of a cross section with a scanning electron microscope (SEM), and taking the average of any 10 cross sections with the interface between the facilitated transport film 20a and the layer located therebelow as the lower end Calculate as The layer located under the facilitated transport film 20a is the porous support 20b or the carrier diffusion suppression layer 20c.
 多孔質支持体20bは、促進輸送膜20aおよびキャリア拡散抑制層20cを支持するもので、炭酸ガス等の酸性ガスの透過性を有する。以下の説明では、多孔質支持体20bを支持体20bとも言う。
 支持体20bは、この機能を有する物であれば、公知の各種の物が利用可能である。
The porous support 20b supports the facilitated transport film 20a and the carrier diffusion suppression layer 20c, and has a permeability to an acidic gas such as carbon dioxide. In the following description, the porous support 20b is also referred to as the support 20b.
As the support 20b, various known materials can be used as long as they have this function.
 本発明の製造方法において、支持体20bは、単層であってもよい。しかしながら、支持体20bは、多孔質膜と補助支持膜とを積層した2層構成であるのが好ましい。このような2層構成を有することにより、上記の酸性ガス透過性や、促進輸送膜20aの支持という機能を、より確実に発現する。
 2層構成の支持体20bでは、多孔質膜が促進輸送膜20a側となる。
 なお、多孔質支持体が単層である場合には、形成材料としては、以下に多孔質膜および補助支持膜で例示する各種の材料が利用可能である。
In the production method of the present invention, the support 20b may be a single layer. However, the support 20b preferably has a two-layer structure in which a porous film and an auxiliary support film are stacked. By having such a two-layer configuration, the above-described acidic gas permeability and the function of supporting the facilitated transport film 20a are more reliably expressed.
In the two-layer support 20b, the porous membrane is on the facilitated transport membrane 20a side.
When the porous support is a single layer, various materials exemplified below as the porous film and the auxiliary support film can be used as the forming material.
 多孔質膜は、耐熱性を有し、また加水分解性の少ない材料からなることが好ましい。このような多孔質膜としては、具体的には、ポリスルホン(PSF)、ポリエーテルスルホン、ポリプロピレン(PP)およびセルロースなどのメンブレンフィルター膜、ポリアミドやポリイミドの界面重合薄膜、ポリテトラフルオロエチレン(PTFE)や高分子量ポリエチレンの延伸多孔膜等が例示される。
 中でも、PTFE等の含フッ素ポリマー、高分子量ポリエチレン、PPおよびPSFから選択される1以上の材料を含む多孔質膜は好ましく例示される。その中でも、PTFE、高分子量ポリエチレン、PPの延伸多孔膜は、高い空隙率を有し、酸性ガス(特に炭酸ガス)の拡散阻害が小さく、さらに、強度、製造適性などの観点から好ましい。特に、耐熱性を有し、また加水分解性の少ない等の点で、PTFEの延伸多孔膜が、好適に利用される。
The porous membrane is preferably made of a material having heat resistance and low hydrolyzability. Specific examples of such a porous membrane include membrane filter membranes such as polysulfone (PSF), polyethersulfone, polypropylene (PP) and cellulose, interfacially polymerized thin films of polyamide and polyimide, polytetrafluoroethylene (PTFE). And a stretched porous membrane of high molecular weight polyethylene.
Among them, a porous film containing one or more materials selected from fluorine-containing polymers such as PTFE, high molecular weight polyethylene, PP and PSF is preferably exemplified. Among these, stretched porous membranes of PTFE, high molecular weight polyethylene, and PP are preferable from the viewpoints of high porosity, small diffusion inhibition of acidic gas (especially carbon dioxide gas), and strength and manufacturability. In particular, a stretched porous membrane of PTFE is preferably used in terms of heat resistance and low hydrolyzability.
 多孔質膜としては、このような有機系の材料以外にも、無機系の材料あるいは有機-無機ハイブリッド材料を用いてもよい。
 無機系の多孔質支持体としては、セラミックスを主成分とする多孔質基体が挙げられる。セラミックスを主成分とすることにより、耐熱性、耐食性等に優れ、機械的強度を高めることができる。セラミックスの種類には、特に限定は無く、一般的に使用されるセラミックスが、各種、利用可能である。セラミックとしては、一例として、アルミナ、シリカ、シリカ-アルミナ、ムライト、コージェライト、ジルコニア等が例示される。
 また、2種類以上のセラミックスの併用、セラミックスと金属との複合化、セラミックスと有機化合物とを複合化した構成でもよい。
As the porous film, in addition to such an organic material, an inorganic material or an organic-inorganic hybrid material may be used.
Examples of the inorganic porous support include a porous substrate mainly composed of ceramics. By using ceramics as a main component, it is excellent in heat resistance, corrosion resistance, etc., and mechanical strength can be increased. There are no particular limitations on the type of ceramic, and various commonly used ceramics can be used. Examples of the ceramic include alumina, silica, silica-alumina, mullite, cordierite, zirconia and the like.
Further, a combination of two or more kinds of ceramics, a composite of ceramic and metal, or a composite of ceramic and organic compound may be used.
 支持体20bにおいて、補助支持膜は、多孔質膜の補強用に備えられるものである。
 補助支持膜は、要求される強度、耐延伸性および気体透過性を満たすものであれば、各種の物が利用可能である。例えば、不織布、織布、ネット、および、メッシュなどを、適宜、選択して用いることができる。
In the support 20b, the auxiliary support membrane is provided for reinforcing the porous membrane.
As the auxiliary support membrane, various materials can be used as long as they satisfy the required strength, stretch resistance and gas permeability. For example, a nonwoven fabric, a woven fabric, a net, and a mesh can be appropriately selected and used.
 補助支持膜も、前述の多孔質膜と同様、耐熱性を有し、また加水分解性の少ない素材からなることが好ましい。
 この点を考慮すると、不織布、織布、編布を構成する繊維としては、耐久性や耐熱性に優れる、PPなどのポリオレフィン、アラミド(商品名)などの改質ポリアミド、PTFE、ポリフッ化ビニリデンなどのフッ素含有樹脂などからなる繊維が好ましい。メッシュを構成する樹脂材料も同様の素材を用いるのが好ましい。これらの材料のうち、安価で力学的強度の強いPPからなる不織布は、特に好適に例示される。
The auxiliary support membrane is also preferably made of a material having heat resistance and low hydrolyzability, like the porous membrane described above.
Considering this point, the fibers constituting the nonwoven fabric, woven fabric, and knitted fabric are excellent in durability and heat resistance, polyolefin such as PP, modified polyamide such as aramid (trade name), PTFE, polyvinylidene fluoride, etc. A fiber made of a fluorine-containing resin is preferable. It is preferable to use the same material as the resin material constituting the mesh. Among these materials, a non-woven fabric made of PP that is inexpensive and has high mechanical strength is particularly preferably exemplified.
 支持体20bが補助支持膜を有することにより、力学的強度を向上できる。そのため、後述するように、いわゆるRtoR(ロール・トゥ・ロール(roll to roll))を利用して酸性ガス分離膜20を作成する場合でも、支持体20bに皺がよることを防止でき、生産性を高めることもできる。 When the support 20b has an auxiliary support film, the mechanical strength can be improved. Therefore, as will be described later, even when the acid gas separation membrane 20 is formed using so-called RtoR (roll-to-roll), it is possible to prevent wrinkles from being generated on the support 20b, and to improve productivity. Can also be increased.
 本発明においては、支持体20bが厚すぎると、後述するキャリア拡散抑制層20cが厚くなり過ぎてしまい、酸性ガスの透過性が悪くなる場合がある。
 この点を考慮すると、支持体20bの厚さは、200μm以下であるのが好ましい。
 また、支持体20bは、薄すぎると強度に難がある。この点を考慮すると、支持体20bの厚さは10~200μmであるのが好ましく、10~120μmであるのがより好ましく、15~100μmであるのが特に好ましい。
 また、支持体20bが、多孔質膜と補助支持膜とからなる2層構成を有する場合には、多孔質膜の膜厚は5~100μm、補助支持膜の膜厚は50~200μmが好ましい。
In the present invention, if the support 20b is too thick, the carrier diffusion suppression layer 20c described later becomes too thick, and the permeability of the acid gas may deteriorate.
Considering this point, the thickness of the support 20b is preferably 200 μm or less.
Further, if the support 20b is too thin, the strength is difficult. Considering this point, the thickness of the support 20b is preferably 10 to 200 μm, more preferably 10 to 120 μm, and particularly preferably 15 to 100 μm.
When the support 20b has a two-layer structure composed of a porous film and an auxiliary support film, the film thickness of the porous film is preferably 5 to 100 μm, and the film thickness of the auxiliary support film is preferably 50 to 200 μm.
 支持体20bが、多孔質膜と補助支持膜とからなる2層構成である場合、多孔質膜の最大孔径は、5μm以下が好ましく、1μm以下がより好ましく、0.3μm以下が特に好ましい。なお、多孔質膜の最大孔径は、例えば、パームポロメータで測定すればよい。
 多孔質膜の孔の平均孔径は、0.001~1μmが好ましく、0.001~0.3μmがより好ましい。
 多孔質膜の最大孔径や平均孔径を、この範囲とすることにより、後述するキャリア拡散抑制層20c(キャリア拡散抑制層20cとなる塗布組成物)の染み込みの制御性を向上でき、また、多孔質膜が酸性ガスの通過の妨げとなることを好適に防止でき、かつ、後述するキャリア拡散抑制層20cとなる塗布組成物を塗布する際に、毛管現象などにより膜面が不均一になることを防げる。
When the support 20b has a two-layer structure composed of a porous membrane and an auxiliary support membrane, the maximum pore diameter of the porous membrane is preferably 5 μm or less, more preferably 1 μm or less, and particularly preferably 0.3 μm or less. In addition, what is necessary is just to measure the largest hole diameter of a porous membrane with a palm porometer, for example.
The average pore diameter of the pores of the porous membrane is preferably 0.001 to 1 μm, and more preferably 0.001 to 0.3 μm.
By setting the maximum pore size and the average pore size of the porous film within this range, it is possible to improve the controllability of the penetration of the carrier diffusion suppression layer 20c (coating composition to be the carrier diffusion suppression layer 20c) described later, It is possible to suitably prevent the film from obstructing the passage of the acidic gas, and when applying the coating composition that becomes the carrier diffusion suppressing layer 20c described later, the film surface becomes non-uniform due to capillary action or the like. I can prevent it.
 図3(A)および図3(B)に概念的に示すように、本発明の分離モジュール10においては、酸性ガス分離膜20には、少なくとも一部が支持体20bに侵入した状態(染み込んだ状態)で、キャリア拡散抑制層20cが形成される。
 キャリア拡散抑制層20cは、キャリアが促進輸送膜20aから抜けて、さらに支持体20bを抜けてしまうことを防止するものである。また、キャリア拡散抑制層20cは、支持体20bと共に、促進輸送膜20aを支持する作用も有する。
 なお、本発明において、キャリア拡散抑制層20cは、促進輸送膜を用いる通常の酸性ガス分離モジュールと同様、促進輸送膜20aの形成領域に対応して、全面的に隙間なく形成される。
As conceptually shown in FIGS. 3 (A) and 3 (B), in the separation module 10 of the present invention, the acidic gas separation membrane 20 is at least partially infiltrated into the support 20b (soaked in). In the state), the carrier diffusion suppression layer 20c is formed.
The carrier diffusion suppression layer 20c prevents the carrier from escaping from the facilitated transport film 20a and further from the support 20b. Further, the carrier diffusion suppressing layer 20c has an effect of supporting the facilitated transport film 20a together with the support 20b.
In the present invention, the carrier diffusion suppressing layer 20c is formed entirely without gaps corresponding to the formation region of the facilitated transport film 20a, as in the case of a normal acidic gas separation module using the facilitated transport film.
 ここで、本発明の分離モジュール10においては、酸性ガス分離膜20は、図3(A)および図3(B)に概念的に示すように、促進輸送膜20aを除いた状態において、支持体20bの表面における、支持体20bの投影面積率(Ps)が50%以上である。図示例においては、一例として、キャリア拡散抑制層20cが、部分的に支持体20bの表面から突出する、いわゆる海島状態となっている。
 さらに、本発明の分離モジュール10においては、酸性ガス分離膜20は、図3(A)に概念的に示すように、支持体20bの厚さ方向の断面において、キャリア拡散抑制層20cの投影面積率(Pc)が30%以上である。
Here, in the separation module 10 of the present invention, the acidic gas separation membrane 20 is a support in a state where the facilitated transport membrane 20a is removed as conceptually shown in FIGS. 3 (A) and 3 (B). The projected area ratio (Ps) of the support 20b on the surface of 20b is 50% or more. In the illustrated example, as an example, the carrier diffusion suppression layer 20c is in a so-called sea island state in which it partially protrudes from the surface of the support 20b.
Furthermore, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has a projected area of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b, as conceptually shown in FIG. The rate (Pc) is 30% or more.
 なお、支持体20bが多孔質膜と補助支持膜との積層体である場合には、キャリア拡散抑制層20cは、多孔質膜内のみに形成されてもよく、補助支持膜内のみに形成されてもよく、多孔質膜内および補助支持膜の両方に跨がって形成されてもよい。
 しかしながら、支持体20bが多孔質膜と補助支持膜との積層体である場合には、通常、キャリア拡散抑制層20cは多孔質膜側に形成される。従って、この場合には、キャリア拡散抑制層20cが形成される多孔質膜が本発明における多孔質支持体となる。
When the support 20b is a laminated body of a porous film and an auxiliary support film, the carrier diffusion suppression layer 20c may be formed only in the porous film or formed only in the auxiliary support film. Alternatively, it may be formed across both the porous membrane and the auxiliary support membrane.
However, when the support 20b is a laminate of a porous film and an auxiliary support film, the carrier diffusion suppression layer 20c is usually formed on the porous film side. Therefore, in this case, the porous film on which the carrier diffusion suppressing layer 20c is formed becomes the porous support in the present invention.
 本発明は、このような構成を有することにより、酸性ガスの分離操業時における促進輸送膜20aの脱落を防止し、かつ、キャリアが促進輸送膜20aから抜けて、さらに支持体20bを抜けてしまうことを防止して、耐久性に優れた酸性ガス分離モジュール10が得られる。 By having such a configuration, the present invention prevents the facilitated transport film 20a from dropping off during the acidic gas separation operation, and the carrier escapes from the facilitated transport film 20a and further escapes from the support 20b. This prevents the acid gas separation module 10 having excellent durability.
 特許文献2にも示されるように、促進輸送膜を利用する酸性ガス分離モジュールにおいては、促進輸送膜から抜けたキャリアが多孔質支持体を抜けてしまうことを防止するために、多孔質支持体の表面にキャリア拡散層を設け、その上に促進輸送膜を形成している。
 ここで、前述のように、促進輸送膜はゲル状である。また、酸性ガスの分離運転時には、温度100~130℃、湿度90%程度の原料ガスGを、1.5MPa程度の圧力で供給される。
 そのため、キャリア拡散抑制層の上に促進輸送膜を形成する従来の構成では、促進輸送膜の密着性が不十分で、酸性ガスの分離運転時に促進輸送膜の脱落等が生じる場合が有る。また、促進輸送膜を利用する酸性ガス分離膜は、使用によって、次第に、キャリアが促進輸送膜から抜け、さらに支持体を抜けてしまい、酸性ガス分離能力が低下する。そのため、従来の促進輸送膜を利用する酸性ガスモジュールは、耐久性が十分とは言えない。
As shown in Patent Document 2, in an acidic gas separation module using a facilitated transport membrane, a porous support is used to prevent carriers that have escaped from the facilitated transport membrane from exiting the porous support. A carrier diffusion layer is provided on the surface, and a facilitated transport film is formed thereon.
Here, as described above, the facilitated transport film is in a gel form. Further, during the separation operation of the acidic gas, the raw material gas G having a temperature of 100 to 130 ° C. and a humidity of about 90% is supplied at a pressure of about 1.5 MPa.
For this reason, in the conventional configuration in which the facilitated transport film is formed on the carrier diffusion suppressing layer, the facilitated transport film has insufficient adhesion, and the facilitated transport film may fall off during the acid gas separation operation. In addition, the acidic gas separation membrane using the facilitated transport membrane gradually loses the carrier from the facilitated transport membrane and further escapes from the support as a result of use, and the acid gas separation ability is reduced. Therefore, it cannot be said that the acid gas module using the conventional facilitated transport membrane has sufficient durability.
 これに対して、本発明の分離モジュール10においては、酸性ガス分離膜20は、促進輸送膜20aを除いた状態で、支持体20bの表面における、支持体20bの投影面積率(Ps)が50%以上である。すなわち、キャリア拡散抑制層20cは、少なくとも一部が支持体20bに染み込んだ状態で形成されており、支持体20bの表面において、投影面積率で50%以上が、キャリア拡散抑制層20cに覆われず、支持体20bが剥き出しになっている。
 従って、図3(A)および図3(B)に示すように、本発明の分離モジュール10においては、促進輸送膜20aは、支持体20bの表面における投影面積率の50%以上が、支持体20bの上に直接形成され、支持体20bに染み込んだ状態になっている。そのため、促進輸送膜20aが支持体20bの微細な凹凸に入り込むことによるアンカー効果(保持効果)によって、支持体20bへの促進輸送膜20aの密着力が高くなり、酸性ガスの分離運転時に促進輸送膜20aが脱落することを阻止できる。
 さらに、本発明の分離モジュール10においては、酸性ガス分離膜20は、図3(A)に概念的に示すように、支持体20bの厚さ方向の断面において、キャリア拡散抑制層20cの投影面積率(Pc)が30%以上である。そのため、本発明の分離モジュール10は、酸性ガス分離膜20が、支持体20bの厚さに対して、十分な厚さのキャリア拡散抑制層20cを有するので、キャリアが促進輸送膜20aから抜け、さらに、支持体20bを抜けてしまうことを防止できる。
 そのため、本発明によれば、耐久性に優れた分離モジュール10を得られる。
On the other hand, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has a projected area ratio (Ps) of the support 20b on the surface of the support 20b of 50, excluding the facilitated transport membrane 20a. % Or more. That is, the carrier diffusion suppression layer 20c is formed in a state in which at least a part is infiltrated into the support 20b, and 50% or more of the projected area ratio is covered with the carrier diffusion suppression layer 20c on the surface of the support 20b. The support 20b is bare.
Therefore, as shown in FIGS. 3 (A) and 3 (B), in the separation module 10 of the present invention, the facilitated transport film 20a has 50% or more of the projected area ratio on the surface of the support 20b. It is formed directly on 20b and is in a state of being soaked into the support 20b. Therefore, the anchoring effect (holding effect) due to the facilitated transport film 20a entering into the fine irregularities of the support 20b increases the adhesion of the facilitated transport film 20a to the support 20b, and facilitates transport during the acidic gas separation operation. It is possible to prevent the film 20a from falling off.
Furthermore, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has a projected area of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b, as conceptually shown in FIG. The rate (Pc) is 30% or more. Therefore, in the separation module 10 of the present invention, the acidic gas separation membrane 20 has the carrier diffusion suppression layer 20c having a sufficient thickness with respect to the thickness of the support 20b. Furthermore, it is possible to prevent the support 20b from coming off.
Therefore, according to the present invention, the separation module 10 having excellent durability can be obtained.
 前述のように、酸性ガス分離膜20は、促進輸送膜20aを除いた状態において、支持体20bの表面における、支持体20bの投影面積率(Ps)が50%以上である。言い換えると、酸性ガス分離膜20は、促進輸送膜20aを除いた状態の支持体20bの表面において、支持体20bが露出している面積率が50%以上であり、キャリア拡散抑制層20cが露出している面積率が50%未満である。
 投影面積率(Ps)が50%未満では、促進輸送膜20aが支持体20bに染み込むことによるアンカー効果を十分に得られず、分離操作時における促進輸送膜20aの脱落を十分に阻止できない。
 ここで、投影面積率(Ps)は、基本的に、高いほど良好なアンカー効果が得られる。この点を考慮すると、投影面積率(Ps)は、80%以上が好ましく、85%以上がより好ましい。
As described above, the acid gas separation membrane 20 has a projected area ratio (Ps) of the support 20b of 50% or more on the surface of the support 20b in a state where the facilitated transport membrane 20a is excluded. In other words, the acid gas separation membrane 20 has an area ratio of 50% or more where the support 20b is exposed on the surface of the support 20b excluding the facilitated transport membrane 20a, and the carrier diffusion suppression layer 20c is exposed. The area ratio is less than 50%.
When the projected area ratio (Ps) is less than 50%, the anchor effect due to the facilitated transport film 20a soaking into the support 20b cannot be sufficiently obtained, and the facilitated transport film 20a cannot be sufficiently prevented from falling off during the separation operation.
Here, basically, the higher the projected area ratio (Ps), the better the anchor effect. Considering this point, the projected area ratio (Ps) is preferably 80% or more, and more preferably 85% or more.
 促進輸送膜20aを除いた状態での支持体20bの表面における支持体20bの投影面積率(Ps)は、一例として、促進輸送膜20aが無く、かつ、キャリア拡散抑制層20cを形成した状態の支持体20bの表面を、走査型電子顕微鏡で撮影して、画像解析を行って、支持体20bの表面における支持体20bの面積率を求めればよい。
 具体的には、走査型電子顕微鏡(SEM;日立ハイテクノロジーズ社の「SU-8030」)にて倍率10000倍で観察し、300×300dpiの解像度にてSEM画像を取得する。得られたSEM画像を市販の画像処理ソフト(三谷商事株式会社製の「Winroof」等)を用いて、判別分析法によりキャリア拡散抑制層20cの露出部分と支持体20bの露出部分の二値化処理を行い、任意の10断面の平均として面積率を算出する。このとき、キャリア拡散抑制層20cと支持体20bの化学組成に異なる元素があれば、その元素をターゲットとしたSEM-EDXマッピングから面積率を算出してもよい。
 また、投影面積率(Ps)は、キャリア拡散抑制層20cの形成後で促進輸送膜20aの形成前であれば、そのまま支持体20bの表面を測定すればよい。促進輸送膜20aを形成した後でも、熱水で促進輸送膜20aを溶解して、洗い流すことで、支持体20bの表面を露出して測定すればよい。
The projected area ratio (Ps) of the support 20b on the surface of the support 20b excluding the facilitated transport film 20a is, for example, that the facilitated transport film 20a is not present and the carrier diffusion suppression layer 20c is formed. What is necessary is just to image | photograph the surface of the support body 20b with a scanning electron microscope, perform image analysis, and obtain | require the area ratio of the support body 20b in the surface of the support body 20b.
Specifically, observation is performed at a magnification of 10000 with a scanning electron microscope (SEM; “SU-8030” manufactured by Hitachi High-Technologies Corporation), and an SEM image is acquired at a resolution of 300 × 300 dpi. The obtained SEM image is binarized between the exposed portion of the carrier diffusion suppression layer 20c and the exposed portion of the support 20b by discriminant analysis using commercially available image processing software (such as “Winroof” manufactured by Mitani Corporation). Processing is performed, and the area ratio is calculated as an average of arbitrary 10 cross sections. At this time, if there are different elements in the chemical composition of the carrier diffusion suppressing layer 20c and the support 20b, the area ratio may be calculated from SEM-EDX mapping targeting the element.
Further, the projected area ratio (Ps) may be measured as it is after the formation of the carrier diffusion suppressing layer 20c and before the formation of the facilitated transport film 20a. Even after the facilitated transport film 20a is formed, the surface of the support 20b may be exposed and measured by dissolving the facilitated transport film 20a with hot water and washing it away.
 また、本発明の分離モジュール10においては、酸性ガス分離膜20は、厚さ方向の支持体20bの断面において、キャリア拡散抑制層20cの投影面積率(Pc)が30%以上である。言い換えると、酸性ガス分離膜20の支持体20bは、厚さ方向の断面において、キャリア拡散抑制層20cが露出している面積率が30%以上であり、支持体20bが露出している面積率が70%未満である。
 投影面積率(Pc)が30%未満では、十分な厚さのキャリア拡散抑制層20cを形成できず、キャリアが促進輸送膜を抜け、さらに支持体20bを抜けてしまうことを十分に抑制できない。
 投影面積率(Pc)は、基本的に、高いほどキャリアの抜けを抑制できる。この点を考慮すると、投影面積率(Pc)は50%以上が好ましい。その反面、投影面積率(Pc)が高すぎると、酸性ガスの透過性が悪くなる場合もある。この点を考慮すると、投影面積率(Pc)は、50~80%が好ましく、55~70%がより好ましい。
In the separation module 10 of the present invention, the acidic gas separation membrane 20 has a projected area ratio (Pc) of the carrier diffusion suppression layer 20c of 30% or more in the cross section of the support 20b in the thickness direction. In other words, the support 20b of the acidic gas separation membrane 20 has an area ratio at which the carrier diffusion suppression layer 20c is exposed in a cross section in the thickness direction of 30% or more, and an area ratio at which the support 20b is exposed. Is less than 70%.
When the projected area ratio (Pc) is less than 30%, the carrier diffusion suppressing layer 20c having a sufficient thickness cannot be formed, and it is not possible to sufficiently suppress the carriers from passing through the facilitated transport film and further from the support 20b.
Basically, the higher the projected area ratio (Pc), the more the carrier can be prevented from falling out. Considering this point, the projected area ratio (Pc) is preferably 50% or more. On the other hand, if the projected area ratio (Pc) is too high, the acid gas permeability may be deteriorated. Considering this point, the projected area ratio (Pc) is preferably 50 to 80%, more preferably 55 to 70%.
 厚さ方向の支持体20bの断面におけるキャリア拡散抑制層20cの投影面積率(Pc)は、投影面積率(Ps)と同様にして、支持体20bの厚さ方向の断面を走査型電子顕微鏡で撮影して、画像解析を行って、この断面におけるキャリア拡散抑制層20cの面積率を求めることを、任意の10断面で行い、その平均値を投影面積率(Pc)とすればよい。
 この際には、必要に応じて、投影面積率(Ps)と同様にして促進輸送膜20aを除去してもよい。
The projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section of the support 20b in the thickness direction is the same as the projected area ratio (Ps), and the cross section in the thickness direction of the support 20b is measured with a scanning electron microscope. Photographing and image analysis to obtain the area ratio of the carrier diffusion suppression layer 20c in this cross section may be performed in any 10 cross sections, and the average value may be set as the projected area ratio (Pc).
At this time, the facilitated transport film 20a may be removed as necessary in the same manner as the projected area ratio (Ps).
 本発明の分離モジュール10では、投影面積率(Ps)と投影面積率(Pc)との積『(Ps)×(Pc)』が2000以上であるのが好ましく、2500以上であるのがより好ましく、5000以上であるのが特に好ましい。
 積『(Ps)×(Pc)』は、基本的に、大きい方ほど、促進輸送膜20aの脱落およびキャリアが促進輸送膜20aと支持体20bとを抜けることの防止効果を、バランスよく得ることができる。そのため、積『(Ps)×(Pc)』を2000以上とすることにより、より耐久性に優れる分離モジュール10を得ることができる。
In the separation module 10 of the present invention, the product “(Ps) × (Pc)” of the projected area ratio (Ps) and the projected area ratio (Pc) is preferably 2000 or more, and more preferably 2500 or more. It is particularly preferably 5000 or more.
As the product “(Ps) × (Pc)” is basically larger, the facilitated transport film 20a is prevented from falling off and the carrier is prevented from leaving the facilitated transport film 20a and the support 20b in a well-balanced manner. Can do. Therefore, by setting the product “(Ps) × (Pc)” to 2000 or more, it is possible to obtain the separation module 10 with more excellent durability.
 図3(A)および図3(B)に示す例おいては、キャリア拡散抑制層20cは、一部が支持体20bの表面から突出する、いわゆる海島状態で支持体20bの上方に形成されているが、本発明は、これに限定はされない。
 すなわち、キャリア拡散抑制層20cは、支持体20bの表面には露出されず、全量が支持体20bの内部に存在する状態(投影面積率(Ps)が100%)でもよく、さらに、支持体20bの底部(促進輸送膜20aの形成側とは逆側)に形成されてもよい。
In the example shown in FIGS. 3A and 3B, the carrier diffusion suppression layer 20c is formed above the support 20b in a so-called sea-island state in which a part protrudes from the surface of the support 20b. However, the present invention is not limited to this.
That is, the carrier diffusion suppression layer 20c may not be exposed on the surface of the support 20b, and may be entirely present inside the support 20b (projected area ratio (Ps) is 100%). May be formed at the bottom (the side opposite to the side on which the facilitated transport film 20a is formed).
 キャリア拡散抑制層20cは、各種の材料で形成可能である。
 具体的には、キャリア拡散抑制層20cは、水酸基および/またはカルボキシル基と反応する官能基を有するのが好ましい。より具体的には、キャリア拡散抑制層20cは、エポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基の少なくとも1つを有する化合物を主成分とするのが好ましい。
The carrier diffusion suppression layer 20c can be formed of various materials.
Specifically, the carrier diffusion suppression layer 20c preferably has a functional group that reacts with a hydroxyl group and / or a carboxyl group. More specifically, the carrier diffusion suppression layer 20c preferably contains a compound having at least one of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group as a main component.
 キャリア拡散抑制層20cの一例として、非架橋性または架橋構造を有する、シリコーン結合を有する化合物やシリコーン含有化合物からなる層が例示される。具体的には、非架橋性または架橋構造を有する、オルガノポリシロキサン(シリコーン樹脂)やポリトリメチルシリルプロピンなどシリコーン含有ポリアセチレン等が利用できる。オルガノポリシロキサンの具体例としては、下記の一般式で示されるものが例示される。キャリア拡散抑制層20cは、下記の一般式で示されるものを架橋してなる構成も、利用可能である。
Figure JPOXMLDOC01-appb-C000002

 なお、上記一般式中、nは1以上の整数を表す。ここで、入手容易性、揮発性、粘度等の観点から、nの平均値は10~1000000の範囲が好ましく、100~100000の範囲がより好ましい。
 また、R1n、R2n、R3およびR4は、それぞれ、水素原子、アルキル基、ビニル基、アラルキル基、アリール基、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基からなる群より選択されるいずれかを示す。なお、n個存在するR1nおよびR2nは、それぞれ、同じであっても異なっても良い。また、アルキル基、アラルキル基およびアリール基は環構造を有していても良い。さらに、アルキル基、ビニル基、アラルキル基およびアリール基は置換基を有していても良く、この際における置換基は、例えば、アルキル基、ビニル基、アリール基、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基およびフッ素原子から選ばれる。これらの置換基は、可能であれば、さらに置換基を有することもできる。
 R1n、R2n、R3およびR4に選択されるアルキル基、ビニル基、アラルキル基およびアリール基は、入手容易性などの観点から、炭素数1~20のアルキル基、ビニル基、炭素数7~20のアラルキル基、炭素数6~20のアリール基がより好ましい。
As an example of the carrier diffusion suppressing layer 20c, a layer made of a compound having a silicone bond or a silicone-containing compound having a non-crosslinkable or crosslinked structure is exemplified. Specifically, silicone-containing polyacetylene such as organopolysiloxane (silicone resin) or polytrimethylsilylpropyne having non-crosslinkable or crosslinked structure can be used. Specific examples of the organopolysiloxane include those represented by the following general formula. The carrier diffusion suppressing layer 20c can also be used in a configuration obtained by crosslinking one represented by the following general formula.
Figure JPOXMLDOC01-appb-C000002

In the above general formula, n represents an integer of 1 or more. Here, from the viewpoint of availability, volatility, viscosity, etc., the average value of n is preferably in the range of 10 to 1000000, and more preferably in the range of 100 to 100,000.
R 1n , R 2n , R 3 and R 4 are each selected from the group consisting of a hydrogen atom, alkyl group, vinyl group, aralkyl group, aryl group, hydroxyl group, amino group, carboxyl group and epoxy group. Indicates either. Note that n R 1n and R 2n may be the same or different. Further, the alkyl group, aralkyl group and aryl group may have a ring structure. Furthermore, the alkyl group, vinyl group, aralkyl group and aryl group may have a substituent, and the substituent in this case is, for example, an alkyl group, vinyl group, aryl group, hydroxyl group, amino group, carboxyl group. , An epoxy group and a fluorine atom. These substituents may further have a substituent, if possible.
The alkyl group, vinyl group, aralkyl group and aryl group selected from R 1n , R 2n , R 3 and R 4 are alkyl groups having 1 to 20 carbon atoms, vinyl groups, More preferred are an aralkyl group having 7 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
 R1n、R2n、R3およびR4は、メチル基またはエポキシ置換アルキル基が好ましく、例えば、エポキシ変性のポリジメチルシロキサン(PDMS)など、PDMS誘導体が好適に利用できる。 R 1n , R 2n , R 3 and R 4 are preferably methyl groups or epoxy-substituted alkyl groups. For example, PDMS derivatives such as epoxy-modified polydimethylsiloxane (PDMS) can be suitably used.
 また、キャリア拡散抑制層20cとしては、上記のオルガノポリシロキサン以外にも、ポリ[1-(トリメチルシリル)-1-プロピン](PTMSP)等のシリコーン材料、ブタジエン系・イソプレン系ゴム材料、低密度なポリメチルペンテン等からなる層も利用可能である。 Further, as the carrier diffusion suppression layer 20c, in addition to the above organopolysiloxane, a silicone material such as poly [1- (trimethylsilyl) -1-propyne] (PTMSP), a butadiene-based / isoprene-based rubber material, a low density A layer made of polymethylpentene or the like can also be used.
 本発明の分離モジュール10において酸性ガス分離膜20は、表面すなわち促進輸送膜20aの上に、保護層を有するのが好ましい。
 前述のように、分離モジュール10は、酸性ガス分離膜20および供給ガス流路用部材24による挟持体36と、透過ガス流路用部材26とを積層した積層体14aを巻回する際に、促進輸送膜20aと供給ガス流路用部材24との摺接によって、促進輸送膜20aが損傷する場合がある。
 これに対し、酸性ガス分離膜20の表面に、保護層を有することにより、この促進輸送膜20aと供給ガス流路用部材24との摺接によって、促進輸送膜20aを防止して、より酸性ガス分離性能に優れた分離モジュール10が得られる。
In the separation module 10 of the present invention, the acidic gas separation membrane 20 preferably has a protective layer on the surface, that is, the facilitated transport membrane 20a.
As described above, when the separation module 10 winds the laminate 14a in which the sandwiched body 36 formed by the acidic gas separation membrane 20 and the supply gas flow path member 24 and the permeate gas flow path member 26 are wound, The facilitated transport film 20a may be damaged by the sliding contact between the facilitated transport film 20a and the supply gas flow path member 24.
On the other hand, by having a protective layer on the surface of the acidic gas separation membrane 20, the facilitated transport membrane 20a is prevented by the sliding contact between the facilitated transport membrane 20a and the supply gas flow path member 24, and more acidic. A separation module 10 having excellent gas separation performance can be obtained.
 保護層の形成材料としては、各種のものが利用可能であるが、前述のキャリア拡散抑制層20cにおいて例示した各種の化合物が、好適に利用される。特に、キャリア拡散抑制層20cと同様に、PDMS誘導体は、好適に例示される。 Various materials can be used as the material for forming the protective layer, and various compounds exemplified in the carrier diffusion suppression layer 20c described above are preferably used. In particular, like the carrier diffusion suppression layer 20c, the PDMS derivative is preferably exemplified.
 保護層の厚さは、促進輸送膜20aの特性や、供給ガス流路用部材24の特性等に応じて、適宜、設定すればよい。具体的には、0.1~500μmが好ましく、0.5~100μmがより好ましい。
 保護層の厚さを、上記範囲とすることにより、保護層を有することによるガス透過性の低下を抑制しながら、促進輸送膜20aを好適に保護できる等の点で好ましい。
What is necessary is just to set the thickness of a protective layer suitably according to the characteristic of the facilitated-transport film | membrane 20a, the characteristic of the member 24 for supply gas flow paths, etc. Specifically, it is preferably 0.1 to 500 μm, more preferably 0.5 to 100 μm.
Setting the thickness of the protective layer in the above range is preferable in that the facilitated transport film 20a can be suitably protected while suppressing a decrease in gas permeability due to the presence of the protective layer.
 このような酸性ガス分離膜20は、公知の各種の方法で作製すればよい。好ましくは、RtoRを利用する塗布法によって作製する。
 周知のように、RtoRとは、長尺な基板(被処理物)を巻回してなるロールから、基板を送り出し、長手方向に搬送しつつ、塗布組成物の塗布や乾燥等を行い、処理済の基板をロール状に巻き取る製造方法である。
Such an acidic gas separation membrane 20 may be produced by various known methods. Preferably, it is produced by a coating method using RtoR.
As is well known, RtoR means that a substrate is delivered from a roll formed by winding a long substrate (object to be processed) and conveyed in the longitudinal direction, and the coating composition is applied and dried. It is a manufacturing method which winds up the board | substrate in roll shape.
 酸性ガス分離膜20を作製する際には、長尺な支持体20bを巻回してなるロールを、キャリア拡散抑制層20cの形成装置に装填して、このロールから支持体を送り出して、支持体20bを長手方向に搬送しつつ、キャリア拡散抑制層20cとなる塗布組成物を塗布する。
 ここで、支持体20bの搬送速度は、生産性の観点から速い方が好ましい。しかしながら、塗布組成物を均一に塗布するために、3~200m/minが好ましく、5~150m/minがより好ましく、10~120m/minが特に好ましい。
When the acidic gas separation membrane 20 is produced, a roll formed by winding a long support 20b is loaded into a carrier diffusion suppression layer 20c forming apparatus, and the support is sent out from the roll. While transporting 20b in the longitudinal direction, a coating composition to be the carrier diffusion suppression layer 20c is applied.
Here, the conveyance speed of the support 20b is preferably faster from the viewpoint of productivity. However, in order to apply the coating composition uniformly, it is preferably 3 to 200 m / min, more preferably 5 to 150 m / min, and particularly preferably 10 to 120 m / min.
 キャリア拡散抑制層20cとなる塗布組成物は、前述のPDMS誘導体等のキャリア拡散抑制層20cとなる化合物のモノマー、ダイマー、トリマー、オリゴマー、プレポリマー、および、これらの混合物や、硬化剤、硬化促進剤、架橋剤、増粘剤、補強剤、および、フィラー等を、有機溶剤に溶解および/または分散してなる、塗布法によって樹脂層(樹脂製の膜)等を形成する際に用いられる、一般的な塗布組成物(塗布液/塗料)である。このような塗布組成物は、公知の方法で調製すればよい。 The coating composition that becomes the carrier diffusion suppressing layer 20c is composed of the monomer, dimer, trimer, oligomer, prepolymer, mixture of these compounds, the curing agent, and the curing acceleration. Used when forming a resin layer (resin film) or the like by a coating method in which an agent, a crosslinking agent, a thickener, a reinforcing agent, and a filler are dissolved and / or dispersed in an organic solvent, It is a general coating composition (coating liquid / paint). Such a coating composition may be prepared by a known method.
 前述のように支持体20bは、多孔質体である。従って、キャリア拡散抑制層20cとなる塗布組成物を支持体20bに塗布すると、塗布組成物は、次第に支持体20b(多孔質膜)に染み込む。
 ここで、キャリア拡散抑制層20cとなる塗布組成物の粘度、塗布組成物の固形分濃度、塗布組成物の塗布量(塗膜厚)、塗布組成物を塗布してから乾燥または硬化するまでの時間、支持体20b(多孔質膜)の最大孔径や平均孔径等を調節することにより、塗布組成物の支持体20bへの染み込みを制御して、表面における多孔質支持体20bの投影面積率(Ps)が50%以上で、かつ、多孔質支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)が30%以上である酸性ガス分離膜20が作製でき、かつ、投影面積率(Ps)および/または投影面積率(Pc)を調節できる。
As described above, the support 20b is a porous body. Therefore, when the coating composition to be the carrier diffusion suppressing layer 20c is applied to the support 20b, the coating composition gradually permeates the support 20b (porous film).
Here, the viscosity of the coating composition to be the carrier diffusion suppressing layer 20c, the solid content concentration of the coating composition, the coating amount of the coating composition (coating film thickness), the time from applying the coating composition to drying or curing By adjusting the maximum pore size and average pore size of the support 20b (porous membrane) over time, the penetration of the coating composition into the support 20b is controlled, and the projected area ratio of the porous support 20b on the surface ( Ps) is 50% or more, and the acidic gas separation membrane 20 in which the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the porous support 20b is 30% or more can be produced. The projected area ratio (Ps) and / or the projected area ratio (Pc) can be adjusted.
 また、投影面積率(Ps)が50%以上で、投影面積率(Pc)が30%以上の酸性ガス分離膜20は、最初に低粘度の塗布組成物を塗り、次いで、ある程度、高粘度の塗布組成物を塗る等、キャリア拡散抑制層20cとなる塗布組成物を複数回塗布することでも、作製できる。なお、低粘度の塗布組成物を塗る順番と、高粘度の塗布組成物を塗る順番とは、逆でも良い。
 さらに、支持体20bに非常に含浸し易い塗布組成物を用い、支持体20bの下面(促進輸送膜の形成面と逆側の面)に目止め層のようなものを形成して、塗布組成物を塗布することにより、投影面積率(Ps)が50%以上で、投影面積率(Pc)が30%以上の酸性ガス分離膜20を形成してもよい。
The acidic gas separation membrane 20 having a projected area ratio (Ps) of 50% or more and a projected area ratio (Pc) of 30% or more is first coated with a low-viscosity coating composition, and then has a certain degree of high viscosity. It can also be produced by applying the coating composition to be the carrier diffusion suppressing layer 20c a plurality of times, such as by applying a coating composition. The order of applying the low-viscosity coating composition and the order of applying the high-viscosity coating composition may be reversed.
Furthermore, using a coating composition that is very easily impregnated into the support 20b, a coating layer is formed on the lower surface of the support 20b (the surface opposite to the surface on which the facilitated transport film is formed) to form a coating composition. The acidic gas separation membrane 20 having a projected area ratio (Ps) of 50% or more and a projected area ratio (Pc) of 30% or more may be formed by applying an object.
 ここで、キャリア拡散抑制層20cとなる塗布組成物は、25℃における粘度が50~10000cpであるのが好ましく、50~8000cpであるのがより好ましく、50~5000cpであるのが特に好ましい。
 キャリア拡散抑制層20cとなる塗布組成物は25℃における粘度を50~10000cpとすることにより、投影面積率(Ps)が50%以上で投影面積率(Pc)が30%以上の酸性ガス分離膜20を安定して作製できる等の点で好ましい。
Here, the coating composition to be the carrier diffusion suppression layer 20c has a viscosity at 25 ° C. of preferably 50 to 10,000 cp, more preferably 50 to 8000 cp, and particularly preferably 50 to 5000 cp.
The coating composition used as the carrier diffusion suppressing layer 20c has an acid gas separation membrane having a projected area ratio (Ps) of 50% or more and a projected area ratio (Pc) of 30% or more by setting the viscosity at 25 ° C. to 50 to 10,000 cp. 20 is preferable in that it can be stably produced.
 なお、キャリア拡散抑制層20cとなる塗布組成物の粘度は、JIS Z8803に準じて、B型粘度計による回転数60rpmにおける粘度を、25℃で測定すればよい。 In addition, what is necessary is just to measure the viscosity of the coating composition used as the carrier diffusion suppression layer 20c at 25 degreeC in accordance with JIS Z8803 at the rotation speed of 60 rpm by a B type viscometer.
 キャリア拡散抑制層20cとなる塗布組成物の塗布装置は、塗布組成物に応じた公知のものが、各種、利用可能である。
 具体的には、ロールコータ、ダイレクトグラビアコータ、オフセットグラビアコータ、1本ロールキスコータ、3本リバースロールコータ、正回転ロールコータ、カーテンフローコータ、エクストルージョンダイコータ、エアードクターコータ、ブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、リバースロールコータ、バーコータ等が例示される。
 中でも、塗布組成物、塗布組成物の塗布量、塗布組成物の染み込み量の制御等を考慮すると、ロールコータ、ダイレクトグラビアコータ、オフセットグラビアコータ、1本ロールキスコータ、3本リバースロールコータ、正回転ロールコータ、スクイズコータ、リバースロールコータ等は好適に例示される。
As the coating device for the coating composition to be the carrier diffusion suppression layer 20c, various known devices corresponding to the coating composition can be used.
Specifically, roll coater, direct gravure coater, offset gravure coater, 1 roll kiss coater, 3 reverse roll coater, forward rotation roll coater, curtain flow coater, extrusion die coater, air doctor coater, blade coater, rod coater And knife coaters, squeeze coaters, reverse roll coaters, bar coaters and the like.
Among these, in consideration of the control of the coating composition, the coating amount of the coating composition, the penetration amount of the coating composition, etc., a roll coater, a direct gravure coater, an offset gravure coater, a single roll kiss coater, a three reverse roll coater, A rotary roll coater, a squeeze coater, a reverse roll coater and the like are preferably exemplified.
 キャリア拡散抑制層20cとなる塗布組成物を塗布したら、次いで、この塗布組成物を乾燥する。乾燥も、温風乾燥やヒータによる乾燥等、公知の方法で行えばよい。 Once the coating composition to be the carrier diffusion suppressing layer 20c is applied, the coating composition is then dried. The drying may be performed by a known method such as hot air drying or drying with a heater.
 キャリア拡散抑制層20cとなる塗布組成物を乾燥したら、次いで、塗布組成物を硬化して、キャリア拡散抑制層20cを形成する。
 硬化は、加熱硬化、紫外線照射、電子線照射等、キャリア拡散抑制層20cの形成材料に応じて、硬化が可能な方法を、適宜、選択すればよい。ここで、支持体20bのカールや変形を抑制できる、支持体20bを構成する樹脂などの劣化を防止できる等の理由により、紫外線照射や短時間の加熱による塗布組成物の硬化は、好適に利用される。特に、紫外線照射による硬化は、最も好ましく利用される。すなわち、本発明においては、紫外線の照射による硬化が可能なモノマー等を用いた塗布組成物によって、キャリア拡散抑制層20cを形成するのが好ましい。
After the coating composition to be the carrier diffusion suppression layer 20c is dried, the coating composition is then cured to form the carrier diffusion suppression layer 20c.
For curing, a method capable of curing, such as heat curing, ultraviolet irradiation, electron beam irradiation, or the like, may be appropriately selected according to the material for forming the carrier diffusion suppression layer 20c. Here, for the reason that curling and deformation of the support 20b can be suppressed and deterioration of the resin constituting the support 20b can be prevented, curing of the coating composition by ultraviolet irradiation or short heating is preferably used. Is done. In particular, curing by ultraviolet irradiation is most preferably used. That is, in the present invention, it is preferable to form the carrier diffusion suppression layer 20c with a coating composition using a monomer or the like that can be cured by irradiation with ultraviolet rays.
 キャリア拡散抑制層20cとなる塗布組成物の組成によっては、塗布組成物の乾燥および硬化を、同時に行ってもよい。
 また、塗布組成物の乾燥および/または硬化は、必要に応じて、窒素雰囲気等の不活性雰囲気で行ってもよい。
Depending on the composition of the coating composition to be the carrier diffusion suppressing layer 20c, the coating composition may be dried and cured at the same time.
Moreover, you may perform drying and / or hardening of a coating composition in inert atmosphere, such as nitrogen atmosphere, as needed.
 このようにして支持体20bにキャリア拡散抑制層20cを形成したら、キャリア拡散抑制層20cを形成した支持体20bをロール状に巻き取る。 When the carrier diffusion suppression layer 20c is formed on the support 20b in this way, the support 20b on which the carrier diffusion suppression layer 20c is formed is wound into a roll.
 なお、促進輸送膜20aの上に形成する保護層も、基本的に、キャリア拡散抑制層20cと同様に形成できる。 The protective layer formed on the facilitated transport film 20a can be basically formed in the same manner as the carrier diffusion suppression layer 20c.
 次いで、キャリア拡散抑制層20cを形成した支持体20bのロールを促進輸送膜20aの形成装置に装填して、このロールから複合体を送り出して、長手方向に搬送しつつ、促進輸送膜20aとなる塗布組成物を塗布する。以下の説明では、キャリア拡散抑制層20cを形成した支持体20bを複合体とも言う。 Next, the roll of the support 20b on which the carrier diffusion suppressing layer 20c is formed is loaded into the apparatus for forming the facilitated transport film 20a, and the composite is sent out from the roll and transported in the longitudinal direction to become the facilitated transport film 20a. A coating composition is applied. In the following description, the support 20b on which the carrier diffusion suppression layer 20c is formed is also referred to as a composite.
 促進輸送膜20aを形成する際の複合体の搬送速度は、塗布組成物の組成や粘度等に応じて、適宜、設定すればよい。
 ここで、複合体の搬送速度が速すぎると、塗布組成物の塗膜の膜厚均一性の低下や塗布組成物の乾燥が不十分になるおそれがあり、遅過ぎると生産性が低下する。この点を考慮すると、複合体の搬送速度は、0.5m/min以上が好ましく、0.75~200m/minがより好ましく、1~200m/minが特に好ましい。
What is necessary is just to set suitably the conveyance speed of the composite_body | complex at the time of forming the facilitated-transport film | membrane 20a according to a composition, a viscosity, etc. of a coating composition.
Here, when the conveyance speed of the composite is too fast, there is a fear that the coating film thickness uniformity of the coating composition is lowered and drying of the coating composition is insufficient, and when it is too slow, the productivity is lowered. Considering this point, the conveyance speed of the composite is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.
 前述のように、促進輸送膜20aは、親水性ポリマー等の親水性化合物、酸性ガスと反応するキャリアおよび水等を含有する。
 従って、このような促進輸送膜20aを形成するための塗布組成物(塗布液/塗料)は、前述の親水性化合物、キャリアおよび水、あるいはさらに、架橋剤等の必要となる成分を含む塗布組成物である。水は、常温水でも加温水でもよい。
 親水性化合物は、架橋、一部架橋および未架橋のいずれでも良く、また、これらが混合されたものでもよい。この塗布組成物も、公知の方法で調製すればよい。
As described above, the facilitated transport film 20a contains a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like.
Accordingly, the coating composition (coating liquid / paint) for forming such a facilitated transport film 20a includes the above-described hydrophilic compound, carrier and water, or further a necessary composition such as a crosslinking agent. It is a thing. The water may be room temperature water or warm water.
The hydrophilic compound may be crosslinked, partially crosslinked, or uncrosslinked, or a mixture of these. This coating composition may also be prepared by a known method.
 促進輸送膜20aとなる塗布組成物は、25℃における粘度が100cp以上であるのが好ましい。
 塗布組成物の25℃における粘度を、100cp以上とすることにより、塗布組成物を塗布する際のハジキを抑制できる、塗布組成物の塗布の均一性を良くできる等の点で好ましい。
 なお、粘度は、キャリア拡散抑制層20cとなる塗布組成物と同様に測定すればよい。
The coating composition to be the facilitated transport film 20a preferably has a viscosity at 25 ° C. of 100 cp or more.
By setting the viscosity at 25 ° C. of the coating composition to 100 cp or more, it is preferable from the standpoint that repelling at the time of applying the coating composition can be suppressed, and uniformity of coating of the coating composition can be improved.
In addition, what is necessary is just to measure a viscosity similarly to the coating composition used as the carrier diffusion suppression layer 20c.
 促進輸送膜20aとなる塗布組成物の塗布は、公知の物が各種、利用可能であり、前述のキャリア拡散抑制層20cと同様の物が例示される。また、促進輸送膜20aとなる塗布組成物の好ましい粘度や塗布組成物の塗布量等を考慮すると、ロールコータ、バーコータ、正回転ロールコータ、ナイフコータ等は好適に利用される。 For the application of the coating composition to be the facilitated transport film 20a, various known materials can be used, and the same materials as those of the carrier diffusion suppression layer 20c described above are exemplified. In consideration of the preferable viscosity of the coating composition to be the facilitated transport film 20a, the coating amount of the coating composition, and the like, a roll coater, a bar coater, a positive rotation roll coater, a knife coater, and the like are preferably used.
 促進輸送膜20aとなる塗布組成物を塗布したら、次いで、この塗布組成物を乾燥して、促進輸送膜20aを形成する。
 乾燥方法は、温風乾燥や支持体20bの加熱による乾燥方法等、水の除去による乾燥を行う公知の方法が、各種、利用可能である。
 温風乾燥を行う場合には、温風の風速は、塗布組成物を迅速に乾燥できると共に、塗布組成物の塗膜(ゲル膜)が崩れない速度を、適宜、設定すればよい。具体的には、0.5~200m/minが好ましく、0.75~200m/minがより好ましく、1~200m/minが特に好ましい。
 また、温風の温度は、支持体20bの変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。具体的には、膜面温度で、1~120℃が好ましく、2~115℃がより好ましく、3~110℃が特に好ましい。
If the coating composition used as the facilitated-transport film | membrane 20a is apply | coated, then this applied composition is dried and the facilitated-transport film | membrane 20a is formed.
Various known methods for drying by removing water, such as warm air drying or drying by heating the support 20b, can be used as the drying method.
When performing warm air drying, the speed of the warm air may be set as appropriate so that the coating composition can be dried quickly and the coating film (gel film) of the coating composition does not collapse. Specifically, 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
Further, the temperature of the hot air may be appropriately set at a temperature at which the support 20b is not deformed and the coating composition can be dried quickly. Specifically, the film surface temperature is preferably 1 to 120 ° C., more preferably 2 to 115 ° C., and particularly preferably 3 to 110 ° C.
 支持体20bの加熱による促進輸送膜20aの乾燥を行う場合には、支持体20bの変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。また、支持体20bの加熱に、乾燥風の吹き付けを併用してもよい。
 具体的には、支持体20bの加熱による促進輸送膜20aの乾燥は、支持体20bの温度を60~120℃として行うのが好ましく、60~90℃として行うのがより好ましく、70~80℃として行うのが特に好ましい。また、この際において、膜面温度は、15~80℃が好ましく、30~70℃がより好ましい。
When drying the facilitated transport film 20a by heating the support 20b, the temperature at which the support 20b is not deformed and the coating composition can be quickly dried may be appropriately set. Moreover, you may use blowing of dry air together with the heating of the support body 20b.
Specifically, drying of the facilitated transport film 20a by heating the support 20b is preferably performed at a temperature of the support 20b of 60 to 120 ° C, more preferably 60 to 90 ° C, and more preferably 70 to 80 ° C. It is particularly preferable to carry out as In this case, the film surface temperature is preferably 15 to 80 ° C., more preferably 30 to 70 ° C.
 塗布組成物を乾燥して、促進輸送膜20aすなわち酸性ガス分離膜20を作製したら、酸性ガス分離膜20をロール状に巻き取る。 When the coating composition is dried to produce the facilitated transport membrane 20a, that is, the acidic gas separation membrane 20, the acidic gas separation membrane 20 is wound into a roll.
 なお、以上の例では、キャリア拡散抑制層20cを形成した支持体20bを、一旦、巻取り、このロールから、キャリア拡散抑制層20cを形成した支持体20bを送り出して、促進輸送膜20aを形成している。
 しかしながら、これ以外にもキャリア拡散抑制層20cを形成した支持体20bを巻き取らず、そのまま長手方向に搬送して、促進輸送膜20aを形成して酸性ガス分離膜20を作製して、巻き取ってもよい。
In the above example, the support 20b on which the carrier diffusion suppression layer 20c is formed is temporarily wound, and the support 20b on which the carrier diffusion suppression layer 20c is formed is sent out from this roll to form the facilitated transport film 20a. is doing.
However, in addition to this, the support 20b on which the carrier diffusion suppressing layer 20c is formed is not wound up, but is transported in the longitudinal direction as it is to form the facilitated transport film 20a to produce the acidic gas separation film 20, May be.
 以上の例では、キャリア拡散抑制層20cを形成した支持体20bの上に促進輸送膜2aを形成しているが、本発明において、酸性ガス分離膜は、これ以外にも、各種の構成が利用可能である。
 一例として、耐圧性等、力学強度を補強する目的で、促進輸送膜20aの一部もしくは全部を不織布等に含浸させた構成も利用可能である。言い換えれば、促進輸送膜20aの一部もしくは全部を不織布等の内部に形成した構成も利用可能である。この場合には、酸性ガス分離膜は、キャリア拡散抑制層20cを形成した支持体20bの上に、促進輸送膜20aを含浸した不織布が積層される構成となる。
 不織布としては、一例として、PP、PPS、PET、PVA等の材料からなる不織布が例示される。中でも、酸性やアルカリ性条件下の分解耐性等の点で、PPやPPSからなる不織布は、好適に用いられる。
 なお、この場合でも、支持体20bは、多孔質膜と補助支持膜とを積層した2層構成の支持体は好適に利用可能である。
In the above example, the facilitated transport membrane 2a is formed on the support 20b on which the carrier diffusion suppressing layer 20c is formed. However, in the present invention, the acid gas separation membrane has various configurations other than this. Is possible.
As an example, a structure in which a part or all of the facilitated transport film 20a is impregnated with a nonwoven fabric or the like can be used for the purpose of reinforcing mechanical strength such as pressure resistance. In other words, a configuration in which part or all of the facilitated transport film 20a is formed inside a nonwoven fabric or the like can be used. In this case, the acidic gas separation membrane has a configuration in which a nonwoven fabric impregnated with the facilitated transport membrane 20a is laminated on the support 20b on which the carrier diffusion suppression layer 20c is formed.
As a nonwoven fabric, the nonwoven fabric which consists of materials, such as PP, PPS, PET, PVA, is illustrated as an example. Especially, the nonwoven fabric which consists of PP and PPS is used suitably at points, such as the decomposition | disassembly tolerance under acidic or alkaline conditions.
Even in this case, as the support 20b, a support having a two-layer structure in which a porous film and an auxiliary support film are stacked can be suitably used.
 このような、促進輸送膜20aを不織布に含浸させた構成の酸性ガス分離膜は、一例として、キャリア拡散抑制層20cを形成した支持体20bと、促進輸送膜20aを含浸させた不織布とを作製し、両者を積層、貼着することで製造すればよい。この際において、支持体20bと不織布との貼着は、一例として、ゲル状である促進輸送膜の粘性を利用して行えばよい。
 あるいは、キャリア拡散抑制層20cを形成した支持体20bに不織布を積層し、この不織布に含浸させて、促進輸送膜20aを形成してもよい。
Such an acidic gas separation membrane having a structure in which the nonwoven fabric is impregnated with the facilitated transport film 20a, as an example, produces a support 20b on which the carrier diffusion suppressing layer 20c is formed and a nonwoven fabric impregnated with the facilitated transport film 20a. And what is necessary is just to manufacture by laminating | stacking and sticking both together. Under the present circumstances, what is necessary is just to perform sticking of the support body 20b and a nonwoven fabric using the viscosity of the facilitated-transport film | membrane which is a gel form as an example.
Alternatively, the facilitated transport film 20a may be formed by laminating a nonwoven fabric on the support 20b on which the carrier diffusion suppressing layer 20c is formed and impregnating the nonwoven fabric.
 以下、分離モジュール10における、酸性ガス分離膜20、供給ガス流路用部材24および透過ガス流路用部材26からなる積層体14aの作製方法、および、積層した積層体14aの巻回方法すなわち積層体巻回物14の作製方法を説明する。
 以下の説明に用いる図4(A)~図8では、図面を簡潔にして構成を明確に示すために、供給ガス流路用部材24および透過ガス流路用部材26は、端面(端部)のみをネット状で示す。
Hereinafter, in the separation module 10, a method for producing the laminated body 14 a including the acidic gas separation membrane 20, the supply gas flow path member 24 and the permeate gas flow path member 26, and a winding method of the laminated body 14 a, that is, lamination A method for producing the wound body 14 will be described.
In FIGS. 4A to 8 used in the following description, the supply gas flow path member 24 and the permeate gas flow path member 26 have end faces (end portions) in order to simplify the drawings and clearly show the configuration. Only the net is shown.
 まず、図4(A)および図4(B)に概念的に示すように、中心筒12の延在方向と短手方向とを一致して、中心筒12に、接着剤等の固定手段34を用いて、透過ガス流路用部材26の端部を固定する。
 ここで、前述のように、中心筒12の管壁には、軸方向に沿ってスリット(図示省略)が設けられているのが好ましい。この場合、スリットに、後述する透過ガス流路用部材26の先端部を入れ込み、中心筒12の内周面に固定手段で固定するようにする。この構成によれば、透過ガス流路用部材26を含んだ積層体を中心筒12に巻き付ける際に、テンションをかけながら巻き付けるようにしても、中心筒12の内周面と透過ガス流路用部材26との摩擦で、透過ガス流路用部材26がスリットから抜けることを防止でき、すなわち、透過ガス流路用部材26の固定が維持される。
First, as conceptually shown in FIGS. 4 (A) and 4 (B), the extending direction of the central cylinder 12 and the short direction coincide with each other, and the fixing means 34 such as an adhesive is attached to the central cylinder 12. Is used to fix the end of the permeating gas flow path member 26.
Here, as described above, it is preferable that the tube wall of the center tube 12 is provided with a slit (not shown) along the axial direction. In this case, a distal end portion of a permeating gas channel member 26 to be described later is inserted into the slit, and is fixed to the inner peripheral surface of the center tube 12 by fixing means. According to this configuration, when the laminated body including the permeating gas channel member 26 is wound around the central tube 12, the inner peripheral surface of the central tube 12 and the permeating gas channel Friction with the member 26 can prevent the permeate gas flow path member 26 from coming out of the slit, that is, the permeate gas flow path member 26 is fixed.
 一方で、図5に概念的に示すように、前述のよう作製した酸性ガス分離膜20を、促進輸送膜20aを内側にして二つ折りにし、間に供給ガス流路用部材24を挟み込む。すなわち、供給ガス流路用部材24を、二つ折りにした酸性ガス分離膜20で挟持した挟持体36を作製する。なお、この際には、酸性ガス分離膜20は均等に二つ折りにするのではなく、図5に示すように、一方が、若干、長くなるように、二つ折りする。
 また、供給ガス流路用部材24による促進輸送膜20aの損傷を防止するために、酸性ガス分離膜20を二つ折りにした谷部に、二つ折りにしたシート状の保護部材(例えば、カプトンテープなど)を配置するのが好ましい。
On the other hand, as conceptually shown in FIG. 5, the acidic gas separation membrane 20 produced as described above is folded in half with the facilitated transport membrane 20a inside, and the supply gas flow path member 24 is sandwiched therebetween. That is, the holding body 36 is manufactured in which the supply gas flow path member 24 is held between the acidic gas separation membranes 20 folded in half. In this case, the acidic gas separation membrane 20 is not equally folded in half, but is folded in half so that one is slightly longer as shown in FIG.
Further, in order to prevent the facilitated transport membrane 20a from being damaged by the supply gas flow path member 24, a sheet-like protective member (for example, Kapton tape) folded in half at the trough portion where the acidic gas separation membrane 20 is folded in half. Etc.) are preferably arranged.
 さらに、二つ折りにした酸性ガス分離膜20の短い方の表面(支持体20bの表面)に、接着剤層30となる接着剤30aを塗布する。
 ここで、接着剤30a(接着剤層30)は、図5に示すように、幅方向(矢印x方向)の両端部近傍で、巻回方向(矢印y方向)の全域に延在して帯状に塗布し、さらに、折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に塗布する。
Further, an adhesive 30a to be the adhesive layer 30 is applied to the shorter surface of the acid gas separation membrane 20 folded in half (the surface of the support 20b).
Here, as shown in FIG. 5, the adhesive 30 a (adhesive layer 30) extends in the vicinity of both ends in the width direction (arrow x direction) and extends in the entire winding direction (arrow y direction). Furthermore, it is applied to the entire region in the width direction in the vicinity of the end portion opposite to the folded portion, and is applied in a band shape.
 次いで、図6(A)および図6(B)に概念的に示すように、接着剤30aを塗布した面を透過ガス流路用部材26に向け、かつ、折り返し側を中心筒12に向けて、挟持体36を、中心筒12に固定した透過ガス流路用部材26に積層し、透過ガス流路用部材26と酸性ガス分離膜20(支持体20b)とを接着する。 Next, as conceptually shown in FIGS. 6 (A) and 6 (B), the surface coated with the adhesive 30a is directed to the permeating gas flow path member 26, and the folded side is directed to the central cylinder 12. The sandwiching body 36 is laminated on the permeate gas flow path member 26 fixed to the central cylinder 12, and the permeate gas flow path member 26 and the acidic gas separation membrane 20 (support 20b) are bonded.
 さらに、図6(A)および図6(B)に示すように、積層した挟持体36の上面(長い側の支持体20b表面)に、接着剤層30となる接着剤30aを塗布する。なお、以下の説明では、最初に固定手段34で中心筒12に固定された透過ガス流路用部材26と逆側の方向(図中上側)を、上側とも言う。
 図6(A)および図6(B)に示すように、この面の接着剤30aも、先と同様、幅方向の両端部近傍で、巻回方向の全域に延在して帯状に塗布し、さらに、折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に塗布する。
Further, as shown in FIGS. 6A and 6B, an adhesive 30a to be the adhesive layer 30 is applied to the upper surface (the surface of the longer support 20b) of the sandwiched sandwich 36. In the following description, the direction opposite to the permeating gas flow path member 26 first fixed to the central cylinder 12 by the fixing means 34 (upper side in the drawing) is also referred to as the upper side.
As shown in FIGS. 6 (A) and 6 (B), the adhesive 30a on this surface also extends in the vicinity of both ends in the width direction and is applied in a strip shape in the vicinity of both ends in the width direction. Furthermore, it extends in the entire region in the width direction in the vicinity of the end opposite to the folded portion and is applied in a band shape.
 次いで、図7に概念的に示すように、接着剤30aを塗布した挟持体36の上に、透過ガス流路用部材26を積層し、酸性ガス分離膜20(支持体20b)と透過ガス流路用部材26とを接着し、積層体14aが形成される。
 なお、透過ガス流路用部材26は、必要に応じて、複数枚を重ねて用いてもよい。
Next, as conceptually shown in FIG. 7, the permeate gas flow path member 26 is laminated on the sandwich 36 applied with the adhesive 30a, and the acidic gas separation membrane 20 (support 20b) and the permeate gas flow are laminated. The road member 26 is bonded to form the laminated body 14a.
Note that a plurality of permeate gas channel members 26 may be used as necessary.
 次いで、先と同様、図5に示すように、酸性ガス分離膜20で供給ガス流路用部材24を挟み込んだ挟持体36を作製して、接着剤層30となる接着剤30aを塗布して、接着剤を塗布した側を下に向けて、最後に積層した透過ガス流路用部材26と挟持体36とを積層して、接着する。
 さらに、先と同様、積層した挟持体36の上面に、図6(A)および図6(B)に示すように接着剤30aを塗布して、次いで、図7に示すように、その上に、透過ガス流路用部材26を積層して、接着し、2層目の積層体14aを積層する。
Next, as shown in FIG. 5, as shown in FIG. 5, a sandwiching body 36 in which the supply gas flow path member 24 is sandwiched between the acidic gas separation membranes 20 is produced, and an adhesive 30 a to be the adhesive layer 30 is applied. The permeated gas flow path member 26 and the sandwiching body 36 that are finally stacked are stacked and bonded with the side to which the adhesive is applied facing down.
Further, similarly to the above, an adhesive 30a is applied to the upper surface of the laminated sandwiching body 36 as shown in FIGS. 6A and 6B, and then, as shown in FIG. Then, the permeating gas flow path member 26 is laminated and bonded, and the second laminated body 14a is laminated.
 以下の図5~図7の工程を繰り返して、図8に概念的に示すように、所定数の積層体14aを積層する。
 この積層は、図8に示すように、積層体14aは、上方に行くにしたがって、次第に、巻回方向に中心筒12から離間するように積層するのが好ましい。これにより、中心筒12への積層体14aの巻き付けを容易に行い、かつ、各透過ガス流路用部材26の中心筒12側の端部もしくは端部近傍が、好適に中心筒12に当接できる。
The following steps of FIGS. 5 to 7 are repeated, and a predetermined number of laminated bodies 14a are laminated as conceptually shown in FIG.
As shown in FIG. 8, it is preferable that the laminated body 14a is laminated so as to be gradually separated from the central tube 12 in the winding direction as it goes upward. Thereby, the laminated body 14a is easily wound around the central cylinder 12, and the end of the permeate gas flow path member 26 on the central cylinder 12 side or the vicinity of the end is preferably in contact with the central cylinder 12. it can.
 所定数の積層体14aを積層したら、図8に示すように、中心筒12の外周面に接着剤38aを、最初に中心筒12に固定した透過ガス流路用部材26の上面の中心筒12と挟持体36との間に接着剤38bを、それぞれ、塗布する。
 次いで、図8に矢印ywで示すように、積層した積層体14aを巻き込むようにして、積層体14aを中心筒12に巻き付ける。
 巻き終わったら、最外周の透過ガス流路用部材26に、ひき出す方向すなわち巻き絞める方向の張力を掛けた状態で、所定時間、維持して、接着剤30a等を乾燥させる。最外周の透過ガス流路用部材26とは、最初に中心筒12に固定した最下層の透過ガス流路用部材26である。
 所定時間が経過したら、最外周の透過ガス流路用部材26を1周した位置で超音波融着等によって固定し、固定位置よりも外方の余分な透過ガス流路用部材26を切断して、積層した積層体14aを中心筒に巻回してなる積層体巻回物14を完成する。
When a predetermined number of the laminated bodies 14a are laminated, as shown in FIG. The adhesive 38b is applied between the sandwiching body 36 and the adhesive 36b.
Next, as shown by an arrow yw in FIG. 8, the laminated body 14 a is wound around the central cylinder 12 so as to wind the laminated body 14 a.
When the winding is completed, the permeate gas passage member 26 on the outermost periphery is maintained for a predetermined time in a state where tension is applied in the pulling-out direction, that is, the direction of squeezing and the adhesive 30a and the like are dried. The outermost permeating gas channel member 26 is the lowermost permeating gas channel member 26 fixed to the central cylinder 12 first.
When a predetermined time has elapsed, the outermost permeate gas channel member 26 is fixed by ultrasonic welding or the like at a position where it has made one round, and the excess permeate gas channel member 26 outside the fixed position is cut. Thus, the laminated body 14 is obtained by winding the laminated body 14a around the central cylinder.
 前述のように、原料ガスGは、供給ガス流路用部材24の端部から供給され、酸性ガスGcは、酸性ガス分離膜20を積層方向に輸送されることで通過して、透過ガス流路用部材26に流入し、透過ガス流路用部材26内を流れて、中心筒12に至る。 As described above, the raw material gas G is supplied from the end of the supply gas flow path member 24, and the acidic gas Gc passes through the acidic gas separation membrane 20 by being transported in the stacking direction, and passes through the permeated gas flow. It flows into the road member 26, flows through the permeate gas flow path member 26, and reaches the central cylinder 12.
 ここで、接着剤30aを塗布されるのは、多孔質体である支持体20bであり、また、接着剤30aによって接着されるのは、ネット状の透過ガス流路用部材26である。従って、接着剤30aは、支持体20bおよび透過ガス流路用部材26内に浸透(含浸)し、両者の内部に接着剤層30が形成される。
 また、接着剤層30(接着剤30a)は、前述のように、幅方向の両端部近傍で、巻回方向の全域に延在して帯状に形成される。さらに、接着剤層30は、この幅方向両端部近傍の接着剤層30を幅方向に横切るように、中心筒12側となる折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に形成される。すなわち、接着剤層30は、中心筒12側を開放して、透過ガス流路用部材26および支持体20bの外周を囲むように形成される。加えて、透過ガス流路用部材26は、促進輸送膜20aによって挟まれた状態となっている。
 これにより、積層体14aの透過ガス流路用部材26には、中心筒12側が開放するエンベロープ状の流路が形成される。従って、酸性ガス分離膜20を透過して透過ガス流路用部材26に流入した酸性ガスGcは、外部に流出することなく、透過ガス流路用部材26内を中心筒12に向かって流れ、貫通孔12aから中心筒12内に流入する。
 すなわち、接着剤層30は、接着のみならず、透過ガス流路用部材26等において、酸性ガスGcを所定の流路に封止するための封止部としても作用する。
Here, the adhesive 30a is applied to the support 20b, which is a porous body, and the net-like permeating gas channel member 26 is bonded to the adhesive 30a. Therefore, the adhesive 30a penetrates (impregnates) the support 20b and the permeating gas flow path member 26, and the adhesive layer 30 is formed inside of both.
Further, as described above, the adhesive layer 30 (adhesive 30a) is formed in a strip shape extending in the entire vicinity in the winding direction in the vicinity of both ends in the width direction. Further, the adhesive layer 30 extends across the entire width direction in the vicinity of the end portion on the side opposite to the folded portion on the central tube 12 side so as to cross the adhesive layer 30 in the vicinity of both ends in the width direction in the width direction. Then, it is formed in a band shape. That is, the adhesive layer 30 is formed so as to surround the outer peripheries of the permeating gas flow path member 26 and the support 20b by opening the central tube 12 side. In addition, the permeating gas channel member 26 is sandwiched between the facilitated transport films 20a.
As a result, an envelope-like flow path that opens on the side of the central tube 12 is formed in the permeating gas flow path member 26 of the laminate 14a. Therefore, the acidic gas Gc that has passed through the acidic gas separation membrane 20 and has flowed into the permeate gas flow path member 26 flows through the permeate gas flow path member 26 toward the central cylinder 12 without flowing out, It flows into the center tube 12 from the through hole 12a.
That is, the adhesive layer 30 acts not only for bonding but also as a sealing portion for sealing the acidic gas Gc to a predetermined channel in the permeating gas channel member 26 and the like.
 本発明の分離モジュール10において、接着剤層30(接着剤30a)は、十分な接着力、耐熱性および耐湿性を有するものであれば、各種の公知の接着剤が利用可能である。
 一例として、エポキシ樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコーン樹脂、尿素ホルムアミド樹脂等が好適に例示される。
In the separation module 10 of the present invention, various known adhesives can be used as long as the adhesive layer 30 (adhesive 30a) has sufficient adhesive strength, heat resistance, and moisture resistance.
Examples include epoxy resins, vinyl chloride copolymers, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, butadiene-acrylonitrile copolymers, polyamide resins, polyvinyl butyral. Preferred examples include polyesters, cellulose derivatives (nitrocellulose, etc.), styrene-butadiene copolymers, various synthetic rubber resins, phenol resins, urea resins, melamine resins, phenoxy resins, silicone resins, urea formamide resins, and the like. .
 なお、接着剤層30となる接着剤30aは、一度塗りでもよいが、好ましくは、最初はアセトン等の有機溶剤で希釈した接着剤を塗布し、その上に、接着剤のみを塗布するのが好ましい。この際には、有機溶剤で希釈した接着剤は幅広に塗布し、接着剤は、これよりも狭い幅で塗布するのが好ましい。 The adhesive 30a to be the adhesive layer 30 may be applied once, but preferably, an adhesive diluted with an organic solvent such as acetone is applied first, and only the adhesive is applied thereon. preferable. In this case, the adhesive diluted with an organic solvent is preferably applied in a wide width, and the adhesive is preferably applied in a narrower width.
 本発明の分離モジュール10において、このようにして作製される積層体巻回物14の両端部には、テレスコープ防止板(テレスコープ防止部材)16が配置される。
 前述のように、テレスコープ防止板16は、積層体巻回物14が原料ガスGによって押圧されて、供給側の端面が入れ子状に押し込まれ、逆側の端面が入れ子状に突出する、いわゆるテレスコープ現象を防止するための部材である。
In the separation module 10 of the present invention, a telescope prevention plate (telescope prevention member) 16 is disposed at both ends of the laminated body 14 produced in this way.
As described above, the telescope prevention plate 16 is so-called that the laminated body 14 is pressed by the raw material gas G, the supply-side end surface is pushed in a nested manner, and the opposite-side end surface protrudes in a nested manner. It is a member for preventing the telescope phenomenon.
 本発明において、テレスコープ防止板16は、スパイラル型の分離モジュールに用いられる公知のものが、各種、利用可能である。
 図示例において、テレスコープ防止板は、円環状の外環部16aと、外環部16aの中に中心を一致して配置される円環状の内環部16bと、外環部16aおよび内環部16bを連結して固定するリブ(スポーク)16cとを有して構成される。積層体14aを積層した積層物が巻回される中心筒12は、内環部16bを挿通する。
 図示例において、リブ16cは、外環部16aおよび内環部16bの中心から、等角度間隔で放射状に設けられおり、外環部16aと内環部16bとの間で、かつ、各リブ16cの間隙が、原料ガスGもしくは残余ガスGrが通過する開口部16dとなっている。
In the present invention, as the telescoping prevention plate 16, various known types used for spiral type separation modules can be used.
In the illustrated example, the telescope prevention plate includes an annular outer ring portion 16a, an annular inner ring portion 16b arranged in the outer ring portion 16a so as to coincide with the center, an outer ring portion 16a and an inner ring. And a rib (spoke) 16c for connecting and fixing the portion 16b. The central cylinder 12 around which the laminate in which the laminate 14a is laminated is wound passes through the inner ring portion 16b.
In the illustrated example, the ribs 16c are provided radially at equal angular intervals from the center of the outer ring part 16a and the inner ring part 16b, and between the outer ring part 16a and the inner ring part 16b and each rib 16c. Is an opening 16d through which the source gas G or the residual gas Gr passes.
 テレスコープ防止板16は、積層体巻回物14の端面に接触して配置しても良い。
 しかしながら、積層体巻回物14の端面全域を原料ガスの供給や残余ガスGrの排出に使用するために、テレスコープ防止板16と積層体巻回物14の端面とは、若干の間隙を有して配置するのが好ましい。
The telescoping prevention plate 16 may be disposed in contact with the end face of the laminated body 14.
However, the telescope prevention plate 16 and the end face of the laminated body 14 have a slight gap in order to use the entire end face of the laminated body 14 for supplying the source gas and discharging the residual gas Gr. Are preferably arranged.
 テレスコープ防止板16の形成材料は、十分な強度と、耐熱性および耐湿性を有する、各種の材料が利用可能である。
 具体的には、金属材料、樹脂材料、セラミックス等が好適に例示される。
 金属材料としては、例えば、ステンレス(SUS)、アルミニウム、アルミニウム合金、錫、錫合金等が例示される。
 樹脂材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、芳香族ポリアミド樹脂、ナイロン12、ナイロン66、ポリサルフィン樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、アクリル・ブタジエン・スチレン樹脂、アクリル・エチレン・スチレン樹脂、エポキシ樹脂、ニトリル樹脂、ポリエーテルエーテルケトン樹脂(PEEK)、ポリアセタール樹脂(POM)、ポリフェニレンサルファイド(PPS)等が例示される。樹脂材料としては、これらの樹脂の繊維強化プラスチックも例示される。繊維としては、例えば、ガラス繊維、カーボン繊維、ステンレス繊維、アラミド繊維などが例示され、特に長繊維が好ましい。繊維強化プラスチックとしては、より具体的には、ガラス長繊維強化ポリプロピレン、ガラス長繊維強化ポリフェニレンサルファイドなどが例示される。
 セラミックスとしては、例えば、ゼオライト、アルミナ等が例示される。
Various materials having sufficient strength, heat resistance and moisture resistance can be used as the material for forming the telescope prevention plate 16.
Specifically, a metal material, a resin material, ceramics, etc. are illustrated suitably.
Examples of the metal material include stainless steel (SUS), aluminum, aluminum alloy, tin, and tin alloy.
Examples of the resin material include polyethylene resin, polypropylene resin, aromatic polyamide resin, nylon 12, nylon 66, polysulfin resin, polytetrafluoroethylene resin, polycarbonate resin, acrylic / butadiene / styrene resin, acrylic / ethylene / styrene resin, Examples include epoxy resins, nitrile resins, polyether ether ketone resins (PEEK), polyacetal resins (POM), polyphenylene sulfide (PPS), and the like. Examples of the resin material include fiber reinforced plastics of these resins. Examples of the fibers include glass fibers, carbon fibers, stainless steel fibers, and aramid fibers, and long fibers are particularly preferable. More specifically, examples of the fiber reinforced plastic include long glass fiber reinforced polypropylene and long glass fiber reinforced polyphenylene sulfide.
Examples of ceramics include zeolite and alumina.
 被覆層18は、積層体巻回物14の周面を覆って、この周面すなわち積層体巻回物14の端面以外から外部への原料ガスGや残余ガスGrの排出を遮断するためのものである。
 被覆層18は、積層体巻回物14の周面のみならず、必要に応じて、さらに、テレスコープ防止板を覆って設けてもよい。
The covering layer 18 covers the peripheral surface of the laminated body 14 and blocks the discharge of the raw material gas G and the residual gas Gr from outside the peripheral surface, that is, the end surface of the laminated body 14. It is.
The covering layer 18 may be provided to cover not only the peripheral surface of the laminated body 14 but also the telescope prevention plate as necessary.
 被覆層18は、原料ガスG等を遮蔽できる物が、各種、利用可能である。また、被覆層18は、筒状の部材であってもよく、線材やシート状の部材を巻回して構成してもよい。
 一例として、FRP製の線材に、前述の接着剤層30に利用される接着剤を含浸して、接着剤を含浸した線材を、隙間無く、必要に応じて多重に、積層体巻回物14に巻き付けてなる被覆層18が例示される。FRPで使用するファイバーやマトリックス樹脂には、限定は無い。一例として、ファイバーとしては、ガラスファイバー、炭素繊維、ケブラー、ダイニーマなどが例示されるが、この中でもガラスファイバーが特に好ましい。また、マトリックス樹脂としては、エポキシ樹脂、ポリアミド樹脂、アクリレート樹脂、不飽和ポリエステル樹脂などが例示されるが、耐熱性、耐加水分解性の観点から、エポキシ樹脂が好ましい。
 なお、この際においては、必要に応じて、被覆層18と積層体巻回物14との間に、積層体巻回物14への接着剤の染み込みを防止するためのカプトンテープ等のシート状部材を設けてもよい。
As the coating layer 18, various materials that can shield the raw material gas G and the like can be used. The covering layer 18 may be a cylindrical member or may be configured by winding a wire or a sheet-like member.
As an example, the FRP wire is impregnated with the adhesive used for the adhesive layer 30 described above, and the wire impregnated with the adhesive is laminated in multiple layers as necessary without gaps. The coating layer 18 wound around is illustrated. There are no limitations on the fiber or matrix resin used in FRP. As an example, examples of the fiber include glass fiber, carbon fiber, Kevlar, Dyneema, etc. Among them, glass fiber is particularly preferable. Examples of the matrix resin include an epoxy resin, a polyamide resin, an acrylate resin, and an unsaturated polyester resin, and an epoxy resin is preferable from the viewpoint of heat resistance and hydrolysis resistance.
In this case, if necessary, a sheet shape such as a Kapton tape for preventing penetration of the adhesive into the laminated body 14 between the coating layer 18 and the laminated body 14. A member may be provided.
 以上、本発明の酸性ガス分離モジュールについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 The acid gas separation module of the present invention has been described in detail above. However, the present invention is not limited to the above-described example, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.
 以下、本発明の具体的実施例を挙げ、本発明の酸性ガス分離モジュールについて、より詳細に説明する。 Hereinafter, specific examples of the present invention will be given and the acid gas separation module of the present invention will be described in more detail.
 [実施例1]
 <促進輸送膜となる塗布組成物の調整>
 ポリビニルアルコール(PVA)-ポリアクリル酸共重合体(PAA)(モル比:PVA/PAA=3/7)を含む水溶液(共重合体濃度:4.3質量%)に、25%グルタルアルデヒド水溶液(和光純薬社製)を0.016質量%、1M塩酸をpHが1.7になるまで添加して、架橋した後、40質量%炭酸セシウム(稀産金属社製)水溶液を炭酸セシウム濃度が6.0質量%になるように添加した。この、水溶液を40℃に昇温した後、攪拌して脱泡して、促進輸送膜20aとなる塗布組成物を調製した。
 なお、PVA-PAA共重合体は、「T.Sato,et al. (1993). Synthesis of poly(vinyl alcohol) having a thiol group at one end and new block copolymers containing poly(vinyl alcohol) as one cinsistent. Macromolecular Chemistry and Physics,194,175-185」に記載の方法を参考に合成したものである。
[Example 1]
<Adjustment of coating composition to be facilitated transport film>
An aqueous solution (copolymer concentration: 4.3% by mass) containing a polyvinyl alcohol (PVA) -polyacrylic acid copolymer (PAA) (molar ratio: PVA / PAA = 3/7) was added to a 25% aqueous solution of glutaraldehyde ( Wako Pure Chemical Industries, Ltd.) was added at 0.016% by mass and 1M hydrochloric acid was added until the pH reached 1.7, and after crosslinking, an aqueous 40% by mass cesium carbonate (manufactured by Rare Metal Co., Ltd.) It added so that it might become 6.0 mass%. After heating up this aqueous solution to 40 degreeC, it stirred and defoamed and the coating composition used as the facilitated-transport film | membrane 20a was prepared.
The PVA-PAA copolymer is described in “T. Sato, et al. (1993). Synthesis of poly (vinyl alcohol) having a thiol group at one end and new block copolymers containing poly (vinyl alcohol) as one cinsistent. Macromolecular Chemistry and Physics, 194, 175-185 ”.
 <キャリア拡散抑制層20cとなる塗布組成物の調製>
 重合性ポリジメチルシロキサン(UV9300、モメンティブパフォーマンス社製)を8質量%、および、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート(I0591、東京化成工業社製)0.1質量%を含むヘキサン溶液Aを調製した。
 このヘキサン溶液Aを、さらにヘキサンで50質量%に希釈して、キャリア拡散抑制層20cとなる塗布組成物を調製した。
<Preparation of the coating composition used as the carrier diffusion suppression layer 20c>
8% by mass of polymerizable polydimethylsiloxane (UV9300, manufactured by Momentive Performance) and 0.1% by mass of 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate (I0591, manufactured by Tokyo Chemical Industry Co., Ltd.) % Hexane solution A was prepared.
This hexane solution A was further diluted to 50% by mass with hexane to prepare a coating composition to be the carrier diffusion suppression layer 20c.
 <酸性ガス分離膜の作製>
  <<キャリア拡散抑制層20cの形成>>
 長尺な支持体20bを巻回してなる支持体ロールを用意した。この支持体20bは、厚さ200μmのPP不織布の表面に、厚さ10μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体である。
 塗布装置(ロールコータ)、乾燥装置および紫外線照射装置を有する、RtoRによって塗布法で成膜を行う一般的な成膜装置に、多孔質膜側が被塗布面となるように支持体ロールを装填し、所定の搬送経路に支持体20bを挿通(通紙)して、先端を巻取り軸に巻回した。また、先に調製した、キャリア拡散抑制層20cとなる塗布組成物を、塗布装置の材料槽に充填した。
 この成膜装置によって、支持体20bを長手方向に搬送しつつ、塗布装置によってキャリア拡散抑制層20cとなる塗布組成物を塗布し、乾燥装置によって塗布組成物を乾燥し、紫外線照射装置によって塗布組を硬化して、支持体20bにキャリア拡散抑制層20cを形成して、ロール状に巻回した。従って、本例においては、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 塗布組成物の塗布は、常温で行った。塗布組成物の塗布量は、PET支持体に塗布した際に、硬化した状態で2.5g/m2となる量に調節した。支持体20bの搬送速度は、30m/minとした。紫外線の照射は、塗布組成物を塗布した後、10秒で塗布組成物が硬化するように行った(硬化時間10秒)。塗布組成物の硬化時間と紫外線照射条件(照射時間および紫外線強度)との関係は、予め、実験によって調べておいた。
<Production of acid gas separation membrane>
<< Formation of Carrier Diffusion Suppression Layer 20c >>
A support roll formed by winding a long support 20b was prepared. This support 20b is a laminate in which a porous film (porous PTFE, average pore diameter of 0.15 μm) having a thickness of 10 μm is laminated on the surface of a PP nonwoven fabric having a thickness of 200 μm.
A general-purpose film forming apparatus having a coating apparatus (roll coater), a drying apparatus, and an ultraviolet irradiation apparatus, which forms a film by a coating method using RtoR, is loaded with a support roll so that the porous film side becomes a surface to be coated. Then, the support 20b was inserted (paper passed) through a predetermined conveyance path, and the tip was wound around the winding shaft. Moreover, the coating composition used as the carrier diffusion suppression layer 20c prepared previously was filled in the material tank of the coating apparatus.
With this film forming apparatus, the coating composition that becomes the carrier diffusion suppression layer 20c is applied by the coating apparatus while the support 20b is transported in the longitudinal direction, the coating composition is dried by the drying apparatus, and the coating composition is dried by the ultraviolet irradiation apparatus. Was cured to form a carrier diffusion suppression layer 20c on the support 20b and wound into a roll. Therefore, in this example, the porous film of the laminate that is the support 20b is the porous support in the present invention.
Application | coating of the coating composition was performed at normal temperature. The coating amount of the coating composition was adjusted to 2.5 g / m 2 in a cured state when coated on a PET support. The conveyance speed of the support 20b was 30 m / min. Irradiation with ultraviolet rays was performed so that the coating composition was cured in 10 seconds after the coating composition was applied (curing time 10 seconds). The relationship between the curing time of the coating composition and the ultraviolet irradiation conditions (irradiation time and ultraviolet intensity) was previously examined by experiments.
 このようにしてキャリア拡散抑制層20cを形成した後、支持体20bの表面(塗布組成物の塗布面)を走査型電子顕微鏡で撮影して、市販の画像解析ソフトウエアで画像解析を行い、支持体20bの表面における、支持体20bの投影面積率(Ps)を測定した。その結果、投影面積率(Ps)は、80%であった。
 また、支持体20bを厚さ方向に切断して、断面を走査操作型電子顕微鏡で撮影して、市販の画像解析ソフトウエアで画像解析を行い、断面におけるキャリア拡散抑制層20cの投影面積率を測定した。この断面におけるキャリア拡散抑制層20cの投影面積率の測定を、任意の10断面で行い、平均値を算出することで、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を算出した。その結果、投影面積率(Pc)は、35%であった。
 従って、投影面積率(Ps)×投影面積率(Pc)は2800である。
After forming the carrier diffusion suppressing layer 20c in this way, the surface of the support 20b (coating surface of the coating composition) is photographed with a scanning electron microscope, and image analysis is performed with commercially available image analysis software. The projected area ratio (Ps) of the support 20b on the surface of the body 20b was measured. As a result, the projected area ratio (Ps) was 80%.
Further, the support 20b is cut in the thickness direction, the cross section is photographed with a scanning operation type electron microscope, image analysis is performed with commercially available image analysis software, and the projected area ratio of the carrier diffusion suppression layer 20c in the cross section is determined. It was measured. The measurement of the projected area ratio of the carrier diffusion suppression layer 20c in this cross section is performed in 10 arbitrary cross sections, and the average value is calculated, whereby the projected area ratio of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b. (Pc) was calculated. As a result, the projected area ratio (Pc) was 35%.
Therefore, the projected area ratio (Ps) × the projected area ratio (Pc) is 2800.
  <<促進輸送膜20aの形成>>
 支持体20bにキャリア拡散抑制層20cを形成した成膜装置から、支持体ロール、キャリア拡散抑制層20cを形成した支持体20bを巻回してなるロールを取り外した。
 塗布装置(ロールコータ)および乾燥装置を有する、RtoRによって塗布法で成膜を行う一般的な成膜装置に、このキャリア拡散抑制層20cを形成した支持体20bを巻回してなるロールを装填して、所定の搬送経路にキャリア拡散抑制層20cを形成した支持体20bを挿通して、先端を巻取り軸に巻回した。また、先に調製した、促進輸送膜20aとなる塗布組成物を、塗布装置の材料槽に充填した。
 次いで、この成膜装置によって、支持体20bを長手方向に搬送しつつ、塗布装置によって塗布組成物を塗布し、乾燥装置によって塗布組成物を乾燥することで、キャリア拡散抑制層20cの上に促進輸送膜20aを形成することで、図3(A)および図3(B)に示すような、支持体20b、キャリア拡散抑制層20cおよび促進輸送膜20aを有する酸性ガス分離膜20を作成して、ロール状に巻回した。
 塗布組成物の塗布は、乾燥によって形成される促進輸送膜20aの厚さが30μmとなるように行った。なお、塗布組成物の塗布量(塗膜厚)と、形成される促進輸送膜20aの厚さとの関係は、予め、実験によって調べておいた。
<< Formation of facilitated transport film 20a >>
A roll formed by winding the support roll and the support 20b on which the carrier diffusion suppression layer 20c was formed was removed from the film forming apparatus in which the carrier diffusion suppression layer 20c was formed on the support 20b.
A general film forming apparatus having a coating apparatus (roll coater) and a drying apparatus that forms a film by a coating method using RtoR is loaded with a roll formed by winding the support 20b on which the carrier diffusion suppression layer 20c is formed. Then, the support 20b on which the carrier diffusion suppression layer 20c was formed was inserted through a predetermined conveyance path, and the tip was wound around the winding shaft. Moreover, the coating composition which becomes the facilitated-transport film | membrane 20a prepared previously was filled in the material tank of the coating device.
Next, the film forming apparatus applies the coating composition by the coating apparatus while transporting the support 20b in the longitudinal direction, and the coating composition is dried by the drying apparatus, thereby promoting the carrier diffusion suppressing layer 20c. By forming the transport membrane 20a, an acid gas separation membrane 20 having a support 20b, a carrier diffusion suppression layer 20c, and a facilitated transport membrane 20a as shown in FIGS. 3 (A) and 3 (B) is prepared. And wound into a roll.
Application | coating of the coating composition was performed so that the thickness of the facilitated-transport film | membrane 20a formed by drying might be set to 30 micrometers. In addition, the relationship between the coating amount (coating film thickness) of the coating composition and the thickness of the facilitated transport film 20a to be formed was examined in advance by experiments.
 <分離モジュールの作製>
 まず、図4(A)および図4(B)に示すように、SUS製の中心筒12に、透過ガス流路用部材26を固定した。透過ガス流路用部材26は、100メッシュのステンレス製の金網(線径0.1mm、目開き0.154mm)を用いた。固定手段34は、SUSを接着可能な接着剤を用いた。
<Production of separation module>
First, as shown in FIGS. 4A and 4B, the permeating gas flow path member 26 was fixed to the center tube 12 made of SUS. As the permeating gas channel member 26, a 100-mesh stainless steel wire mesh (wire diameter: 0.1 mm, aperture: 0.154 mm) was used. As the fixing means 34, an adhesive capable of adhering SUS was used.
 一方、作製した酸性ガス分離膜20を、所定の長さに切断して、促進輸送膜20aを内側にして二つ折りした。二つ折りは、図5に示すように、一方の酸性ガス分離膜20が、若干、長くなるように行った。二つ折りした酸性ガス分離膜20の谷部にカプトンテープを貼り、供給ガス流路用部材24の端部が促進輸送膜20aの膜谷部を傷つけないように補強した。
 次いで、二つ折りした酸性ガス分離膜20に、供給ガス流路用部材24を挟み込んで、挟持体36を作製した。供給ガス流路用部材24は、厚さ0.5mmのPP製ネットを用いた。
On the other hand, the produced acidic gas separation membrane 20 was cut into a predetermined length and folded in half with the facilitated transport membrane 20a inside. As shown in FIG. 5, the half-folding was performed so that one acidic gas separation membrane 20 was slightly longer. Kapton tape was attached to the valley of the acid gas separation membrane 20 folded in half, and the end of the supply gas flow path member 24 was reinforced so as not to damage the valley of the facilitated transport membrane 20a.
Subsequently, the supply gas flow path member 24 was sandwiched between the folded acidic gas separation membranes 20 to produce a sandwiching body 36. As the supply gas flow path member 24, a PP net having a thickness of 0.5 mm was used.
 この挟持体36の酸性ガス分離膜20が短い方の支持体20b側に、図5に示すように、幅方向(矢印x方向)の両端部近傍に、巻回方向(矢印y方向)の全域に延在し、かつ、巻回方向の折り返し部と逆側の端部近傍に、幅方向の全域に延在して、接着剤30aを塗布した。接着剤30aは、エポキシ系樹脂からなる接着剤(ヘンケルジャパン社製 E120HP)を用いた。
 次いで、接着剤30aを塗布した側を下方に向けて、図6(A)および図6(B)に示すように、挟持体36と中心筒12に固定した透過ガス流路用部材26とを積層し、接着した。
 次いで、透過ガス流路用部材26に積層した挟持体36の酸性ガス分離膜20の上面に、図6(A)および図6(B)に示すように、幅方向の両端部近傍に、巻回方向の全域に延在し、かつ、巻回方向の折り返し部と逆側の端部近傍に、幅方向の全域に延在して、接着剤30aを塗布した。さらに、接着剤30aを塗布した酸性ガス分離膜20の上に、図7に示すように、透過ガス流路用部材26を積層して、接着することにより、1層目の積層体14aを形成した。
As shown in FIG. 5, in the vicinity of both ends in the width direction (arrow x direction), the entire region in the winding direction (arrow y direction) is disposed on the side of the support 20b on which the acidic gas separation membrane 20 of the sandwich 36 is shorter. The adhesive 30a was applied to the entire region in the width direction in the vicinity of the end portion on the side opposite to the folded portion in the winding direction. As the adhesive 30a, an adhesive made of an epoxy resin (E120HP manufactured by Henkel Japan) was used.
Next, with the side to which the adhesive 30a is applied facing downward, as shown in FIGS. 6A and 6B, the sandwiching body 36 and the permeating gas flow path member 26 fixed to the central cylinder 12 are provided. Laminated and glued.
Next, as shown in FIGS. 6 (A) and 6 (B), winding is performed on the upper surface of the acidic gas separation membrane 20 of the sandwiching body 36 laminated on the permeating gas flow path member 26 in the vicinity of both ends in the width direction. The adhesive 30a was applied so as to extend over the entire region in the width direction and in the vicinity of the end portion on the opposite side of the folded portion in the winding direction. Further, as shown in FIG. 7, a permeate gas flow path member 26 is laminated on the acidic gas separation membrane 20 coated with the adhesive 30a and bonded to form the first layered product 14a. did.
 先と同様にして、図5に示す挟持体36を、もう一つ作製し、同様に、短い側の酸性ガス分離膜20の支持体20b側に、同様に接着剤30aを塗布した。次いで、図6(A)および図6(B)と同様に、接着剤30aを塗布した側を先に形成した1層目の積層体14a(その透過ガス流路用部材26)に向けて、挟持体36を、1層目の積層体14a(透過ガス流路用部材26)の上に積層し、接着した。さらに、この挟持体36の上面に、図6(A)および図6(B)と同様に接着剤30aを塗布し、その上に、図7と同様に透過ガス流路用部材26を積層して、接着することにより、2層目の積層体14aを形成した。
 さらに、上記2層目と同様にして、2層目の積層体14aの上に、3層目の積層体14aを形成した。
In the same manner as described above, another sandwich member 36 shown in FIG. 5 was produced, and similarly, the adhesive 30a was similarly applied to the support 20b side of the short acid gas separation membrane 20. Next, in the same manner as in FIGS. 6A and 6B, the side to which the adhesive 30 a is applied is directed toward the first layered body 14 a (the permeated gas flow path member 26) formed first, The sandwiching body 36 was laminated on the first layered body 14a (permeating gas flow path member 26) and adhered. Further, an adhesive 30a is applied to the upper surface of the sandwiching body 36 in the same manner as in FIGS. 6A and 6B, and a permeating gas channel member 26 is laminated thereon, as in FIG. Then, the second layered product 14a was formed by bonding.
Further, in the same manner as the second layer, the third layered body 14a was formed on the second layered body 14a.
 中心筒12に固定した透過ガス流路用部材26の上に、3層の積層体14aを積層した後、図8に示すように、中心筒12の周面に接着剤38aを塗布し、さらに、中心筒12と最下層の積層体14aとの間の透過ガス流路用部材26上に、接着剤38bを塗布した。接着剤38aおよび38bは、接着剤30aと同じ物を用いた。
 次いで、図8の矢印yw方向に中心筒12を回転することで、積層した3層の積層体14aを巻き込むようにして中心筒12に多重に巻き付け、積層体巻回物14とした。
After laminating the three-layer laminate 14a on the permeate gas flow path member 26 fixed to the central cylinder 12, an adhesive 38a is applied to the peripheral surface of the central cylinder 12, as shown in FIG. The adhesive 38b was applied on the permeating gas flow path member 26 between the central cylinder 12 and the lowermost layered laminate 14a. The adhesives 38a and 38b were the same as the adhesive 30a.
Next, by rotating the central cylinder 12 in the direction of the arrow yw in FIG. 8, the laminated body 14 a having three layers was wound around the central cylinder 12 in a multiple manner so as to be a laminated body 14.
 作製した積層体巻回物14の両端部を切断して、端面を揃えた後、積層体巻回物14の両端部に、内環部16bに中心筒12を挿通して、図1に示される形状の、厚さ2cmのテレスコープ防止板16を取り付けた。テレスコープ防止板16は、ガラス繊維が40質量%入った、PPS製のものを用いた。テレスコープ防止板16と積層体巻回物14との距離は、1mmとした。
 さらに、テレスコープ防止板16の周面および積層体巻回物14の周面に、FRP樹脂テープを巻き付けて封止することで、被覆層18を形成して、分離モジュール10を作製した。作成した分離モジュール10の膜面積は、合計で1.2m2(設計値)であった。
After cutting the both ends of the produced laminated body 14 and aligning the end faces, the center tube 12 is inserted into the inner ring portion 16b at both ends of the laminated body 14 and shown in FIG. A telescoping prevention plate 16 having a thickness of 2 cm was attached. The telescope prevention plate 16 was made of PPS containing 40% by mass of glass fiber. The distance between the telescope prevention plate 16 and the laminate wound product 14 was 1 mm.
Furthermore, the coating layer 18 was formed by winding the FRP resin tape around the peripheral surface of the telescope prevention plate 16 and the peripheral surface of the laminated body 14 to produce the separation module 10. The membrane area of the prepared separation module 10 was 1.2 m 2 (design value) in total.
 [実施例2]
 支持体20bとして、厚さ200μmのPP不織布の表面に、厚さ15μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体を用い、かつ、キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の塗布量を1.5倍にした以外は、実施例1と同様に酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は90%、投影面積率(Pc)は45%であった。従って、投影面積率(Ps)×投影面積率(Pc)は4050である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
[Example 2]
As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 μm) having a thickness of 15 μm is laminated on the surface of a 200 μm-thick PP nonwoven fabric, and the carrier diffusion suppressing layer 20c is used. In the formation, the acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the coating amount of the coating composition to be the carrier diffusion suppressing layer 20c was 1.5 times. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 90%, and the projected area ratio (Pc) was 45%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 4050.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例3]
 支持体20bとして、厚さ200μmのPP不織布の表面に、厚さ15μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体を用い、かつ、キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の塗布量を2倍にした以外は、実施例1と同様に酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は65%、投影面積率(Pc)は60%であった。従って、投影面積率(Ps)×投影面積率(Pc)は3900である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
[Example 3]
As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 μm) having a thickness of 15 μm is laminated on the surface of a PP nonwoven fabric having a thickness of 200 μm, and the carrier diffusion suppressing layer 20c is used. In the formation, the acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the coating amount of the coating composition to be the carrier diffusion suppressing layer 20c was doubled. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 65%, and the projected area ratio (Pc) was 60%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 3900.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例4]
 支持体20bとして、厚さ200μmのPP不織布の表面に、厚さ15μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体を用い、さらに、キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製で、キャリア拡散抑制層20cとなる塗布組成物に添加する重合性ポリジメチルシロキサンを信越シリコーン社製のKF-102に変更し、かつ、ヘキサン溶液Aをヘキサンで20質量%に希釈し、また、キャリア拡散抑制層20cとなる塗布組成物の硬化時間を5秒に変更した以外は、実施例1と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は55%、投影面積率(Pc)は35%であった。従って、投影面積率(Ps)×投影面積率(Pc)は1925である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
[Example 4]
As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 μm) having a thickness of 15 μm is laminated on the surface of a 200 μm-thick PP nonwoven fabric, and further, the carrier diffusion suppression layer 20c is used. In the formation, in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, the polymerizable polydimethylsiloxane added to the coating composition to be the carrier diffusion suppression layer 20c was changed to KF-102 manufactured by Shin-Etsu Silicone, and The acid gas separation membrane 20 was prepared in the same manner as in Example 1 except that the hexane solution A was diluted to 20% by mass with hexane and the curing time of the coating composition to be the carrier diffusion suppression layer 20c was changed to 5 seconds. Produced. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 55%, and the projected area ratio (Pc) was 35%. Therefore, the projected area ratio (Ps) × the projected area ratio (Pc) is 1925.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例5]
 キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製でヘキサン溶液Aをヘキサンで30質量%に希釈し、キャリア拡散抑制層20cとなる塗布組成物の塗布量を2倍とし、キャリア拡散抑制層20cとなる塗布組成物の硬化時間を7秒に変更した以外は、実施例4と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は65%、投影面積率(Pc)は55%であった。従って、投影面積率(Ps)×投影面積率(Pc)は3575である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
[Example 5]
In the formation of the carrier diffusion suppression layer 20c, the hexane solution A was diluted to 30% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and the coating amount of the coating composition to be the carrier diffusion suppression layer 20c was 2 The acidic gas separation membrane 20 was prepared in the same manner as in Example 4 except that the curing time of the coating composition to be the carrier diffusion suppressing layer 20c was changed to 7 seconds. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 65%, and the projected area ratio (Pc) was 55%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 3575.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例6]
 キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製でヘキサン溶液Aをヘキサンで35質量%に希釈し、キャリア拡散抑制層20cとなる塗布組成物の塗布量を3倍とし、キャリア拡散抑制層20cとなる塗布組成物の硬化時間を10秒に変更した以外は、実施例4と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は85%、投影面積率(Pc)は70%であった。従って、投影面積率(Ps)×投影面積率(Pc)は5950である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
[Example 6]
In the formation of the carrier diffusion suppression layer 20c, the hexane solution A was diluted to 35% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and the coating amount of the coating composition to be the carrier diffusion suppression layer 20c was 3 The acidic gas separation membrane 20 was produced in the same manner as in Example 4 except that the curing time of the coating composition to be the carrier diffusion suppression layer 20c was changed to 10 seconds. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 85%, and the projected area ratio (Pc) was 70%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 5950.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例7]
 支持体20bとして、厚さ200μmのPP不織布の表面に、厚さ100μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体を用い、さらに、キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製でヘキサン溶液Aをヘキサンで3質量%に希釈し、キャリア拡散抑制層20cとなる塗布組成物の塗布量を2倍とした以外は、実施例4と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は90%、投影面積率(Pc)は40%であった。従って、投影面積率(Ps)×投影面積率(Pc)は3600である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
[Example 7]
As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter of 0.15 μm) having a thickness of 100 μm is laminated on the surface of a PP nonwoven fabric having a thickness of 200 μm, and further, the carrier diffusion suppressing layer 20c is used. In the formation, except that the coating composition to be the carrier diffusion suppression layer 20c was prepared by diluting the hexane solution A to 3% by mass with hexane to double the coating amount of the coating composition to be the carrier diffusion suppression layer 20c. In the same manner as in Example 4, an acidic gas separation membrane 20 was produced. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 90%, and the projected area ratio (Pc) was 40%. Therefore, the projected area ratio (Ps) × the projected area ratio (Pc) is 3600.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例8]
 <促進輸送膜となる塗布組成物の調製>
 ポリビニルアルコール(PVA)-ポリアクリル酸共重合体(PAA)(モル比:PVA/PAA=3/7)を含む水溶液(共重合体濃度:4.3質量%)に、40質量%炭酸セシウム(稀産金属社製)水溶液を炭酸セシウム濃度が6.0質量%になるように添加した。さらに、Ti系架橋剤であるオルガチックスTC-100(松本ファインケミカル社製)がPVA-PAA共重合体に対して10質量%の比率になるように添加し、攪拌し脱泡して、塗布組成物を調製した。なお、PVA-PAA共重合体は、実施例1と同様に合成した。
[Example 8]
<Preparation of coating composition to be facilitated transport film>
An aqueous solution (copolymer concentration: 4.3% by mass) containing polyvinyl alcohol (PVA) -polyacrylic acid copolymer (PAA) (molar ratio: PVA / PAA = 3/7) was mixed with 40% by mass cesium carbonate ( A rare aqueous metal) aqueous solution was added so that the concentration of cesium carbonate was 6.0% by mass. Further, ORGATICS TC-100 (manufactured by Matsumoto Fine Chemical Co., Ltd.), a Ti-based cross-linking agent, was added so as to have a ratio of 10% by mass with respect to the PVA-PAA copolymer, and the mixture was stirred and degassed to obtain a coating composition A product was prepared. The PVA-PAA copolymer was synthesized in the same manner as in Example 1.
 この塗布組成物を用いて促進輸送膜20aを形成した以外は、実施例6と同様にして酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は85%、投影面積率(Pc)は70%であった。従って、投影面積率(Ps)×投影面積率(Pc)は5950である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュール10を作製した。
An acidic gas separation membrane 20 was produced in the same manner as in Example 6 except that the facilitated transport membrane 20a was formed using this coating composition. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 85%, and the projected area ratio (Pc) was 70%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 5950.
A separation module 10 was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [実施例9]
 <キャリア拡散抑制層の形成>
 実施例6と同様にして、支持体20bにキャリア拡散抑制層20cを作製した。支持体20bは、厚さ200μmのPP不織布の表面に、厚さ15μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体である。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は85%、投影面積率(Pc)は70%であった。従って、投影面積率(Ps)×投影面積率(Pc)は5950である。
[Example 9]
<Formation of carrier diffusion suppression layer>
In the same manner as in Example 6, a carrier diffusion suppression layer 20c was produced on the support 20b. The support 20b is a laminate in which a porous membrane (porous PTFE, average pore diameter of 0.15 μm) having a thickness of 15 μm is laminated on the surface of a PP nonwoven fabric having a thickness of 200 μm. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 85%, and the projected area ratio (Pc) was 70%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 5950.
 <促進輸送膜の形成>
 長尺な不織布を巻回してなるロールを用意した。この不織布は、繊維径30μm、目付量30g/m2、ISO透気度3.1μm/(Pa・sec)のPP製の不織布(日本バイリーン社製、OL-30)である。
 塗布装置(ロールコータ)および乾燥装置を有する、RtoRによって塗布法で成膜を行う一般的な成膜装置に、この不織布を巻回してなるロールを装填して、所定の搬送経路に不織布を挿通して、先端を巻取り軸に巻回した。また、実施例8と同じ促進輸送膜20aとなる塗布組成物を、塗布装置の材料槽に充填した。
 次いで、この成膜装置によって、不織布を長手方向に搬送しつつ、塗布装置によって塗布組成物を塗布し、乾燥装置によって塗布組成物を乾燥することで、促進輸送膜20aを形成して、ロール状に巻回した。
 塗布組成物の塗布は、乾燥によって形成される促進輸送膜20aの厚さが30μmとなるように行った。塗布組成物の塗布量(塗膜厚)と、形成される促進輸送膜20aの厚さとの関係は、予め、実験によって調べておいた。
 電子顕微鏡の断面観察像によって確認したところ、促進輸送膜20aは、面方向の全域において、不織布の中に層状に形成されていた。
<Formation of facilitated transport film>
A roll formed by winding a long nonwoven fabric was prepared. This non-woven fabric is a PP non-woven fabric (OL-30, manufactured by Nippon Vilene Co., Ltd.) having a fiber diameter of 30 μm, a basis weight of 30 g / m 2 , and an ISO air permeability of 3.1 μm / (Pa · sec).
A general film forming device that has a coating device (roll coater) and a drying device and forms a film by a coating method using RtoR is loaded with a roll formed by winding this nonwoven fabric, and the nonwoven fabric is inserted into a predetermined transport path. Then, the tip was wound around the winding shaft. Moreover, the coating composition used as the facilitated-transport film | membrane 20a same as Example 8 was filled into the material tank of the coating device.
Next, the transporting film 20a is formed in a roll by applying the coating composition with a coating apparatus while drying the nonwoven fabric in the longitudinal direction with this film forming apparatus and drying the coating composition with a drying apparatus. Wound around.
Application | coating of the coating composition was performed so that the thickness of the facilitated-transport film | membrane 20a formed by drying might be set to 30 micrometers. The relationship between the coating amount (coating film thickness) of the coating composition and the thickness of the facilitated transport film 20a to be formed has been examined in advance by experiments.
When confirmed with a cross-sectional observation image of an electron microscope, the facilitated transport film 20a was formed in a layer form in the nonwoven fabric in the entire area in the plane direction.
 <酸性ガス分離膜および分離モジュールの作製>
 促進輸送膜20aを形成した不織布と、キャリア拡散抑制層20cを形成した支持体20bとを、所定の長さに切断して貼り合わせ、酸性ガス分離膜を作製した。不織布20bと支持体との貼り合わせは、キャリア拡散抑制層20cと、不織布20bの促進輸送膜20aの形成面(塗布面)とを対面させて行った。また、貼着は、ゲル状である促進輸送膜20aの粘性を利用して行った。
 この酸性ガス分離膜を用いた以外は、実施例1と同様に分離モジュールを作製した。
<Production of acid gas separation membrane and separation module>
The nonwoven fabric on which the facilitated transport film 20a was formed and the support 20b on which the carrier diffusion suppressing layer 20c was formed were cut into a predetermined length and bonded to produce an acid gas separation membrane. The nonwoven fabric 20b and the support were bonded to each other with the carrier diffusion suppression layer 20c and the formation surface (application surface) of the facilitated transport film 20a of the nonwoven fabric 20b facing each other. Further, the sticking was performed using the viscosity of the facilitated transport film 20a which is in a gel form.
A separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane was used.
 [比較例1]
 支持体20bとして、厚さ200μmのPP不織布の表面に、厚さ15μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体を用い、さらに、キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製でヘキサン溶液Aをヘキサンで20質量%に希釈し、支持体20bの搬送速度を60m/minとし、キャリア拡散抑制層20cとなる塗布組成物の塗布量を4倍とし、キャリア拡散抑制層20cとなる塗布組成物の硬化時間を3秒に変更した以外は、実施例1と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は4%、投影面積率(Pc)は90%であった。従って、投影面積率(Ps)×投影面積率(Pc)は360である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュールを作製した。
[Comparative Example 1]
As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 μm) having a thickness of 15 μm is laminated on the surface of a 200 μm-thick PP nonwoven fabric, and further, the carrier diffusion suppression layer 20c is used. In the formation, the coating composition to be the carrier diffusion suppression layer 20c is prepared by diluting the hexane solution A to 20% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and setting the transport speed of the support 20b to 60 m / min. The acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the coating amount of the product was increased to 4 times and the curing time of the coating composition to be the carrier diffusion suppression layer 20c was changed to 3 seconds. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 4%, and the projected area ratio (Pc) was 90%. Therefore, the projected area ratio (Ps) × projected area ratio (Pc) is 360.
A separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [比較例2]
 支持体20bとして、厚さ200μmのPP不織布の表面に、厚さ15μmの多孔質膜(多孔質のPTFE、平均孔径0.15μm)を積層した積層体を用い、さらに、キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製でヘキサン溶液Aをヘキサンで80質量%に希釈し、支持体20bの搬送速度を10m/minとし、キャリア拡散抑制層20cとなる塗布組成物の塗布量を半分とした以外は、実施例1と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は92%、投影面積率(Pc)は5%であった。従って、投影面積率(Ps)×投影面積率(Pc)は460である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュールを作製した。
[Comparative Example 2]
As the support 20b, a laminate in which a porous film (porous PTFE, average pore diameter 0.15 μm) having a thickness of 15 μm is laminated on the surface of a 200 μm-thick PP nonwoven fabric, and further, the carrier diffusion suppression layer 20c is used. In the formation, the hexane solution A was diluted to 80% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppressing layer 20c, the conveying speed of the support 20b was 10 m / min, and the coating composition to be the carrier diffusion suppressing layer 20c. An acidic gas separation membrane 20 was produced in the same manner as in Example 1 except that the amount of the product applied was halved. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 92%, and the projected area ratio (Pc) was 5%. Therefore, the projected area ratio (Ps) × the projected area ratio (Pc) is 460.
A separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 [比較例3]
 キャリア拡散抑制層20cの形成において、キャリア拡散抑制層20cとなる塗布組成物の調製でヘキサン溶液Aをヘキサンで3質量%に希釈し、支持体20bの搬送速度を60m/minとし、キャリア拡散抑制層20cとなる塗布組成物の塗布量を半分とし、キャリア拡散抑制層20cとなる塗布組成物の硬化時間を3秒に変更した以外は、実施例4と同様に、酸性ガス分離膜20を作製した。従って、本例においても、支持体20bである積層体の多孔質膜が本発明における多孔質支持体となる。
 実施例1と同様に、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)を測定した。その結果、投影面積率(Ps)は32%、投影面積率(Pc)は31%であった。従って、投影面積率(Ps)×投影面積率(Pc)は992である。
 この酸性ガス分離膜20を用いた以外は、実施例1と同様にして分離モジュールを作製した。
[Comparative Example 3]
In the formation of the carrier diffusion suppression layer 20c, the hexane solution A was diluted to 3% by mass with hexane in the preparation of the coating composition to be the carrier diffusion suppression layer 20c, and the conveyance speed of the support 20b was set to 60 m / min. The acidic gas separation membrane 20 is produced in the same manner as in Example 4 except that the coating amount of the coating composition to be the layer 20c is halved and the curing time of the coating composition to be the carrier diffusion suppression layer 20c is changed to 3 seconds. did. Therefore, also in this example, the porous film of the laminated body which is the support 20b becomes the porous support in the present invention.
Similarly to Example 1, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are measured. did. As a result, the projected area ratio (Ps) was 32%, and the projected area ratio (Pc) was 31%. Therefore, the projected area ratio (Ps) × the projected area ratio (Pc) is 992.
A separation module was produced in the same manner as in Example 1 except that this acidic gas separation membrane 20 was used.
 作製した分離モジュールについて、促進輸送膜の脱落を評価するために湿熱密着性を測定し、さらに、キャリアの抜けを評価するために分離性能耐久性を測定した。
 [湿熱密着性]
 温度120℃、相対湿度70%RHの条件下で、分離モジュールにプレッシャークッカー処理を10時間実施した。その後、分離モジュールを解体して、酸性ガス分離膜20を1枚、取り出し、15mm幅のカプトンテープを、接着長さ5cmで、1kgの荷重ローラーで貼り付けたあと、引き上げ速度300mm/minでの90°剥離試験を行った。
 評価は以下のとおりである。
 A: 促進輸送膜の剥離面積が10%未満だったもの
 B: 促進輸送膜の剥離面積が10%以上80%未満だったもの
 C: 促進輸送膜の剥離面積が80%以上だったもの
With respect to the produced separation module, wet heat adhesion was measured in order to evaluate the fall off of the facilitated transport film, and further, separation performance durability was measured in order to evaluate the escape of the carrier.
[Moist heat adhesion]
Under the conditions of a temperature of 120 ° C. and a relative humidity of 70% RH, a pressure cooker treatment was performed on the separation module for 10 hours. Thereafter, the separation module is disassembled, one acid gas separation membrane 20 is taken out, and a 15 mm wide Kapton tape is attached with a 1 kg load roller with an adhesion length of 5 cm, and then at a lifting speed of 300 mm / min. A 90 ° peel test was performed.
The evaluation is as follows.
A: The peeled area of the facilitated transport film was less than 10% B: The peeled area of the facilitated transport film was 10% or more and less than 80% C: The peeled area of the facilitated transport film was 80% or more
 [分離性能耐久性]
 原料ガスGを、流量2.2L/min、温度120℃、全圧301.3kPaの条件で、各分離モジュール10に供給した。原料ガスGは、H2:CO2:H2O=45:5:50の混合ガス(分圧比)を用いた。なお、中心筒12の原料ガス透過側の端部に、スイープガス供給用の貫通孔を形成して、此処から、スイープガスとして流量0.6L/minのArガスを供給した。
 原料ガスGの供給を開始した後、1時間経過した時点と、100時間経過した時点とで、分離モジュール10を透過したガス(酸性ガスGcおよび残余ガスGr)をガスクロマトグラフで分析し、CO2/N2分離係数(α)を測定した。
[Separation performance durability]
The source gas G was supplied to each separation module 10 under the conditions of a flow rate of 2.2 L / min, a temperature of 120 ° C., and a total pressure of 301.3 kPa. As the source gas G, a mixed gas (partial pressure ratio) of H 2 : CO 2 : H 2 O = 45: 5: 50 was used. A through hole for supplying a sweep gas was formed at the end of the central cylinder 12 on the raw material gas permeation side, and Ar gas having a flow rate of 0.6 L / min was supplied as a sweep gas from here.
After starting the supply of the raw material gas G, and after the lapse of 1 hour, at the time of the lapse of 100 hours, gas which has passed through the separation module 10 and (acidic gas Gc and residual gas Gr) and analyzed by gas chromatography, CO 2 / N 2 separation factor (α) was measured.
 1時間経過時点と、100時間経過時点とで、CO2/N2分離係数(α)の変化率を算出して、分離性能耐久性を評価した。
 変化率=
 [(1時間経過時点の値-100時間経過時点の値)/1時間経過時点の値]×100
 評価は、以下のとおりである。
 A: 1時間経過後と100時間経過後との変化率が5%未満
 B: 1時間経過後と100時間経過後との変化率が5%以上10%未満
 C: 1時間経過後と100時間経過後との変化率が10%以上
The rate of change of the CO 2 / N 2 separation factor (α) was calculated at the time of 1 hour and at the time of 100 hours, and the separation performance durability was evaluated.
Rate of change =
[(Value at 1 hour elapsed time-Value at 100 hour elapsed time) / Value at 1 hour elapsed time] × 100
The evaluation is as follows.
A: Change rate between 1 hour and 100 hours is less than 5% B: Change rate after 1 hour and after 100 hours is 5% or more and less than 10% C: After 1 hour and 100 hours 10% or more change rate from after
 [総合評価]
 各分離モジュールの性能を、下記のように総合評価した。
 A: 湿質熱密着および分離性能耐久性が共にAの場合
 B: 湿質熱密着および分離性能耐久性の一方がAで他方がBの場合
 C: 湿質熱密着および分離性能耐久性が共にBの場合
 D: 湿質熱密着および分離性能耐久性のいずれかがCの場合
 結果を下記表に示す。
[Comprehensive evaluation]
The performance of each separation module was comprehensively evaluated as follows.
A: When both wet heat adhesion and separation performance durability are A. B: When either wet heat adhesion and separation performance durability is A and the other is B. C: Both wet heat adhesion and separation performance durability are both. In the case of B D: When either wet heat adhesion or separation performance durability is C The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表に示されるように、支持体20bの表面における支持体20bの投影面積率(Ps)、および、支持体20bの厚さ方向の断面におけるキャリア拡散抑制層20cの投影面積率(Pc)が、共に本発明の範囲である実施例は、湿熱密着性と分離性能耐久性に優れ、酸性ガスの分離運転時における促進輸送膜の脱落を抑制でき、かつ、キャリアが促進輸送膜20aおよび支持体20bを抜けることも抑制した、耐久性に優れる分離モジュールである。中でも、投影面積率(Ps)×投影面積率(Pc)が2500を超える実施例1~3、実施例5および7は、湿熱密着性および分離性能耐久性の一方が非常に優れており、投影面積率(Ps)×投影面積率(Pc)が5000を超える実施例6、8および9は、湿熱密着性および分離性能耐久性が、共に、非常に優れている。
 これに対し、投影面積率(Ps)が本発明の範囲を下回る比較例1および比較例3は、支持体20bによるアンカー効果が不十分であるため、湿熱密着性が低く、すなわち、促進輸送膜の密着力が不十分である。また、投影面積率(Pc)が本発明の範囲を下回る比較例2は、キャリア拡散抑制層の厚さが不十分であるため、分離性能耐久性が低く、キャリアが促進輸送膜20aおよび支持体20bを抜けが生じている。
 以上の結果より、本発明の効果は明らかである。
As shown in the above table, the projected area ratio (Ps) of the support 20b on the surface of the support 20b and the projected area ratio (Pc) of the carrier diffusion suppression layer 20c in the cross section in the thickness direction of the support 20b are as follows. The examples that are both within the scope of the present invention are excellent in wet heat adhesion and separation performance durability, can prevent the facilitated transport film from falling off during the acidic gas separation operation, and the carrier is the facilitated transport film 20a and the support. It is a separation module excellent in durability, which is prevented from passing through 20b. Among them, Examples 1 to 3 and Examples 5 and 7 in which the projected area ratio (Ps) × projected area ratio (Pc) exceeds 2500 are excellent in either wet heat adhesion or separation performance durability. In Examples 6, 8 and 9, in which the area ratio (Ps) × projected area ratio (Pc) exceeds 5000, both wet heat adhesion and separation performance durability are extremely excellent.
On the other hand, Comparative Example 1 and Comparative Example 3 in which the projected area ratio (Ps) is lower than the range of the present invention has insufficient anchoring effect by the support 20b, so that the wet heat adhesion is low, that is, the facilitated transport film The adhesive strength of is insufficient. Further, in Comparative Example 2 in which the projected area ratio (Pc) is lower than the range of the present invention, since the carrier diffusion suppression layer is insufficient in thickness, the separation performance durability is low, and the carrier facilitates the transport film 20a and the support. There is a break through 20b.
From the above results, the effects of the present invention are clear.
 水素ガスの製造や天然ガスの精製等に好適に利用可能である。 It can be suitably used for hydrogen gas production and natural gas purification.
 10 (酸性ガス)分離モジュール
 12 中心筒
 14 積層体巻回物
 14a 積層体
 16 テレスコープ防止板
 16a 外環部
 16b 内環部
 16c リブ
 16d 開口部
 18 被覆層
 20 酸性ガス分離膜
 20R 分離膜ロール
 20A 分離膜貼着体
 20AR 貼着体ロール
 20a 促進輸送膜
 20b (多孔質)支持体
 20c キャリア拡散抑制層
 24 供給ガス流路用部材
 26 透過ガス流路用部材
 30 接着剤層
 30a 接着剤
 34 固定手段
DESCRIPTION OF SYMBOLS 10 (Acid gas) separation module 12 Center tube 14 Laminated body roll 14a Laminate body 16 Telescope prevention board 16a Outer ring part 16b Inner ring part 16c Rib 16d Opening part 18 Covering layer 20 Acid gas separation membrane 20R Separation membrane roll 20A Separator Membrane Adherent 20AR Adherent Roll 20a Accelerated Transport Membrane 20b (Porous) Support 20c Carrier Diffusion Suppressing Layer 24 Supply Gas Channel Member 26 Permeate Gas Channel Member 30 Adhesive Layer 30a Adhesive 34 Fixing Means

Claims (9)

  1.  多孔質支持体、少なくとも一部が前記多孔質支持体の中に形成されるキャリア拡散抑制層、ならびに、前記多孔質支持体およびキャリア拡散抑制層の上に形成される、酸性ガスと反応するキャリアおよび前記キャリアを担持するための親水性化合物を含有する促進輸送膜を有する酸性ガス分離膜と、原料ガスの流路となる供給ガス流路用部材とを有し、
     かつ、前記促進輸送膜を除いた状態において、前記多孔質支持体の表面における多孔質支持体の投影面積率(Ps)が50%以上であり、さらに、前記多孔質支持体の厚さ方向の断面における前記キャリア拡散抑制層の投影面積率(Pc)が30%以上であることを特徴とする酸性ガス分離モジュール。
    A porous support, a carrier diffusion suppression layer formed at least partially in the porous support, and a carrier that reacts with an acidic gas formed on the porous support and the carrier diffusion suppression layer And an acidic gas separation membrane having a facilitated transport membrane containing a hydrophilic compound for supporting the carrier, and a supply gas channel member serving as a source gas channel,
    And, in the state excluding the facilitated transport film, the projected area ratio (Ps) of the porous support on the surface of the porous support is 50% or more, and further in the thickness direction of the porous support. The acidic gas separation module, wherein a projected area ratio (Pc) of the carrier diffusion suppressing layer in a cross section is 30% or more.
  2.  前記多孔質支持体の厚さが200μm以下である請求項1に記載の酸性ガス分離モジュール。 The acid gas separation module according to claim 1, wherein the porous support has a thickness of 200 μm or less.
  3.  前記多孔質支持体の投影面積率(Ps)とキャリア拡散抑制層の投影面積率(Pc)との積が2000以上である請求項1または2に記載の酸性ガス分離モジュール。 The acidic gas separation module according to claim 1 or 2, wherein a product of a projected area ratio (Ps) of the porous support and a projected area ratio (Pc) of the carrier diffusion suppression layer is 2000 or more.
  4.  前記酸性ガス分離膜と前記供給ガス流路用部材とを含む積層体を巻回してなるスパイラル型である請求項1~3のいずれか1項に記載の酸性ガス分離モジュール。 The acidic gas separation module according to any one of claims 1 to 3, wherein the acidic gas separation module is a spiral type formed by winding a laminate including the acidic gas separation membrane and the supply gas flow path member.
  5.  前記酸性ガス分離膜と前記供給ガス流路用部材とを含む積層体を、平板状に維持してなる平板型である請求項1~3のいずれか1項に記載の酸性ガス分離モジュール。 The acid gas separation module according to any one of claims 1 to 3, wherein the acid gas separation module has a flat plate shape in which a laminate including the acid gas separation membrane and the supply gas flow path member is maintained in a flat plate shape.
  6.  前記キャリア拡散抑制層が、エポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基の少なくとも1つを有する化合物を主成分とする請求項1~5のいずれか1項に記載の酸性ガス分離モジュール。 The carrier diffusion suppression layer according to any one of claims 1 to 5, wherein the carrier diffusion suppression layer is mainly composed of a compound having at least one of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group. Acid gas separation module.
  7.  前記キャリア拡散抑制層がポリジメチルシロキサン誘導体である請求項1~6のいずれか1項に記載の酸性ガス分離モジュール。 The acidic gas separation module according to any one of claims 1 to 6, wherein the carrier diffusion suppressing layer is a polydimethylsiloxane derivative.
  8.  前記促進輸送膜の上に、保護層を有する請求項1~7のいずれか1項に記載の酸性ガス分離モジュール。 The acid gas separation module according to any one of claims 1 to 7, further comprising a protective layer on the facilitated transport membrane.
  9.  前記保護層がポリジメチルシロキサン誘導体である請求項8に記載の酸性ガス分離モジュール。 The acid gas separation module according to claim 8, wherein the protective layer is a polydimethylsiloxane derivative.
PCT/JP2016/050329 2015-01-26 2016-01-07 Acidic gas separation module WO2016121436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571890A JP6419850B2 (en) 2015-01-26 2016-01-07 Acid gas separation module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-012691 2015-01-26
JP2015012691 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016121436A1 true WO2016121436A1 (en) 2016-08-04

Family

ID=56543056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050329 WO2016121436A1 (en) 2015-01-26 2016-01-07 Acidic gas separation module

Country Status (2)

Country Link
JP (1) JP6419850B2 (en)
WO (1) WO2016121436A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019065493A1 (en) * 2017-09-29 2019-11-14 住友化学株式会社 Spiral gas separation membrane element, gas separation membrane module, and gas separation device
CN110545896A (en) * 2017-04-07 2019-12-06 住友化学株式会社 Spiral gas separation membrane element, gas separation membrane module, and gas separation device
CN110694462A (en) * 2019-09-30 2020-01-17 北京工业大学 PDMS and foamed ceramic composite filler and preparation method thereof
JP7421379B2 (en) 2019-03-26 2024-01-24 日東電工株式会社 separation membrane
WO2024058082A1 (en) * 2022-09-15 2024-03-21 日東電工株式会社 Spiral membrane element and edge part for spiral membrane element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195900A (en) * 2008-01-24 2009-09-03 Renaissance Energy Research:Kk Carbon dioxide separation apparatus
JP2012210589A (en) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp Gas separation membrane
JP2013027841A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Carbon dioxide separation member, method for manufacturing the same, and carbon dioxide separation module
JP2014208327A (en) * 2013-03-29 2014-11-06 富士フイルム株式会社 Method of manufacturing acidic gas separation composite membrane, and acidic gas separation membrane module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195900A (en) * 2008-01-24 2009-09-03 Renaissance Energy Research:Kk Carbon dioxide separation apparatus
JP2012210589A (en) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp Gas separation membrane
JP2013027841A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Carbon dioxide separation member, method for manufacturing the same, and carbon dioxide separation module
JP2014208327A (en) * 2013-03-29 2014-11-06 富士フイルム株式会社 Method of manufacturing acidic gas separation composite membrane, and acidic gas separation membrane module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545896A (en) * 2017-04-07 2019-12-06 住友化学株式会社 Spiral gas separation membrane element, gas separation membrane module, and gas separation device
EP3608011A4 (en) * 2017-04-07 2021-01-27 Sumitomo Chemical Company, Limited Spiral-type gas-separation membrane element, gas-separation membrane module, and gas-separation device
CN110545896B (en) * 2017-04-07 2022-01-11 住友化学株式会社 Spiral gas separation membrane element, gas separation membrane module, and gas separation device
US11358101B2 (en) 2017-04-07 2022-06-14 Sumitomo Chemical Company, Limited Spiral-wound gas separation membrane element, gas separation membrane module, and gas separation apparatus
JPWO2019065493A1 (en) * 2017-09-29 2019-11-14 住友化学株式会社 Spiral gas separation membrane element, gas separation membrane module, and gas separation device
JP7421379B2 (en) 2019-03-26 2024-01-24 日東電工株式会社 separation membrane
CN110694462A (en) * 2019-09-30 2020-01-17 北京工业大学 PDMS and foamed ceramic composite filler and preparation method thereof
CN110694462B (en) * 2019-09-30 2021-09-10 北京工业大学 PDMS and foamed ceramic composite filler and preparation method thereof
WO2024058082A1 (en) * 2022-09-15 2024-03-21 日東電工株式会社 Spiral membrane element and edge part for spiral membrane element

Also Published As

Publication number Publication date
JP6419850B2 (en) 2018-11-07
JPWO2016121436A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6067649B2 (en) Acid gas separation module
JP6071004B2 (en) Method for producing acid gas separation composite membrane and acid gas separation membrane module
JP6419850B2 (en) Acid gas separation module
WO2015025811A1 (en) Acidic-gas separation module
JP6001013B2 (en) Spiral module for acid gas separation
JP2016137462A (en) Spiral type module for acidic gas separation
WO2015025812A1 (en) Spiral-shaped module for acidic-gas separation
JP6276598B2 (en) Acid gas separation module
JP6177115B2 (en) Method for producing composite
WO2015107803A1 (en) Method for producing acidic-gas-separating laminate, acidic-gas-separating laminate, and acidic-gas-separating module
JP6145349B2 (en) Acid gas separation module
WO2016117349A1 (en) Acidic gas separation module
JP6145431B2 (en) Acid gas separation module manufacturing method and acid gas separation module
JP2015061721A (en) Acidic gas separation layer, acidic gas separation layer manufacturing method, and acidic gas separation module
JP6037965B2 (en) Acid gas separation module
WO2015107820A1 (en) Spiral module for separating acidic gas and manufacturing method
WO2016117360A1 (en) Acidic gas separation module
JP5972232B2 (en) Acid gas separation module
JP6005003B2 (en) Spiral module for acid gas separation
WO2015098839A1 (en) Process for producing composite, and composite
JP2015020147A (en) Spiral type module for acid gas separation
JP2016064384A (en) Acidic gas separation module
JP2015029959A (en) Acidic gas separation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743040

Country of ref document: EP

Kind code of ref document: A1