WO2016117490A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2016117490A1
WO2016117490A1 PCT/JP2016/051234 JP2016051234W WO2016117490A1 WO 2016117490 A1 WO2016117490 A1 WO 2016117490A1 JP 2016051234 W JP2016051234 W JP 2016051234W WO 2016117490 A1 WO2016117490 A1 WO 2016117490A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
engine
motor
gate lock
unit
Prior art date
Application number
PCT/JP2016/051234
Other languages
French (fr)
Japanese (ja)
Inventor
守田 雄一朗
柴田 浩一
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2016117490A1 publication Critical patent/WO2016117490A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators

Definitions

  • the present invention relates to a construction machine capable of driving a hydraulic pump using an electric motor.
  • a construction machine such as a hydraulic excavator has an engine as a power source using gasoline, light oil or the like as a fuel, a hydraulic pump driven by the engine, a hydraulic motor driven by pressure oil discharged from the hydraulic pump, and hydraulic pressure And a hydraulic actuator such as a cylinder.
  • a hydraulic actuator such as a cylinder.
  • a hybrid construction machine that uses both an engine and a generator motor (see Patent Documents 1 and 2).
  • Such a construction machine temporarily stores regenerative energy during turning braking by, for example, electrifying a turning actuator, and uses it for the next turning power running or the like.
  • the construction machine temporarily converts the electric rotating motor, the assist power generation motor that converts the engine power into electric energy and assists the driving of the hydraulic pump, and the regenerative energy of the electric rotating motor and the electric power generation energy of the assist power generation motor.
  • a power storage device that supplies energy to the turning power running and the drive of the hydraulic pump.
  • construction machines having an idling stop function that automatically stops the engine when the work is stopped and restarts the engine when the work is resumed are also known.
  • a construction machine for example, when the operator does not operate the operation lever for a certain period of time, it is determined that the operation is stopped and the engine is automatically stopped.
  • Patent Document 1 discloses a restart method at the time of resuming work, in which when an operator operates an engine restart switch, an engine is started by a starter and an assist power generation motor is driven to assist engine start.
  • Patent Document 2 discloses a method of restarting an engine by driving an assist power generation motor when an operator operates an operation lever at the time of resuming work as a restart method at the time of resuming work.
  • Patent Document 1 discloses that when restarting the engine, the restart is permitted on condition that the lock lever is in a locked state. At this time, the lock lever disables the operation of the operation lever in the hydraulic circuit to prevent the machine from operating. For this reason, if the lock lever is in the locked state, the machine will not operate even if the operation lever is operated when the engine is started.
  • the control device that controls the idling stop function erroneously recognizes the state of the lock lever, the engine is allowed to start even in the unlocked state.
  • the operation lever is operated when the engine is started, the machine may be activated.
  • the engine and the hydraulic pump are driven even when the lock lever is unlocked. If the operating lever is operated in this state, the machine may be activated.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a construction machine that can maintain a stopped state even if erroneous recognition of a locked state or malfunction of motor control occurs. There is to do.
  • the present invention provides a hydraulic pump that supplies hydraulic oil to an actuator, an electric motor that can drive the hydraulic pump, an unlocked state that permits driving of the actuator,
  • a construction machine including a lock device that switches between a lock state that prohibits driving, a state determination unit that determines whether the construction machine is in a dormant state, a determination result of the state determination unit, and a state of the lock device
  • An electric drive shut-off means for shutting off the drive of the electric motor on the basis of the electric drive cut-off means, wherein the electric drive cut-off means determines that the state determination means is in a rest state and the lock device is in an unlocked state. The drive of the electric motor is cut off.
  • the electric drive cut-off means cuts off the drive of the electric motor when the state determination means determines that the construction machine is in a dormant state and the lock device is in the unlocked state. For this reason, even if erroneous recognition of the locked state or malfunction of the motor control occurs, it is possible to avoid activation of the motor by the electric drive cutoff means.
  • FIG. 3 is a block diagram showing a configuration of a main controller in FIG. 2. It is a time chart which shows time changes, such as a motor drive interruption
  • 1 to 5 show a hybrid hydraulic excavator according to a first embodiment of the present invention.
  • a hybrid hydraulic excavator 1 (hereinafter referred to as a hydraulic excavator 1) includes a self-propelled crawler-type lower traveling body 2, a slewing bearing device 3 provided on the lower traveling body 2, and a slewing bearing device. 3 is mounted on the lower traveling body 2 so as to be able to turn, and the upper swinging body 4 constituting the vehicle body (base body) together with the lower traveling body 2 is attached to the front side of the upper swinging body 4 so as to be able to move up and down. It is comprised including the working device 5 which performs etc.
  • the undercarriage 2 is provided on the opposite side of the track frame 2A, the drive wheels 2B provided on both the left and right sides of the track frame 2A, and the drive wheels 2B on the left and right sides of the track frame 2A.
  • the left and right drive wheels 2B are rotationally driven by left and right traveling hydraulic motors 2E as actuators.
  • the slewing bearing device 3 is attached to the upper side of the center portion of the track frame 2A.
  • the working device 5 includes a boom 5A attached to the front side of the revolving frame 6, an arm 5B attached to the distal end portion of the boom 5A, and an arm 5B attached to the distal end portion of the arm 5B. And a boom cylinder 5D, an arm cylinder 5E, and a bucket cylinder 5F, which are hydraulic cylinders (actuators) that drive the bucket 5C.
  • the upper revolving structure 4 includes a revolving frame 6 that forms a support structure.
  • the swivel frame 6 is mounted on the lower traveling body 2 via the swivel bearing device 3 so as to be swivelable.
  • a slewing bearing device 3 is attached to the lower surface side of the slewing frame 6.
  • a cab 7, a counterweight 8, an engine 9, an assist power generation motor 10, a hydraulic pump 11, a power storage device 19, a turning device 20, a power control device 23, and the like are provided on the turning frame 6.
  • the cab 7 is provided on the left front side of the revolving frame 6, and a driver seat (not shown) in which an operator is seated is provided in the cab 7.
  • a driver seat (not shown) in which an operator is seated is provided in the cab 7.
  • an operation device 14 Around the driver's seat, an operation device 14, a key switch 29, a restart switch 30, a gate lock lever 17, and the like, which will be described later, are arranged.
  • the counterweight 8 is attached to the rear end side of the revolving frame 6 and balances the weight with the work device 5.
  • the engine 9 is located between the cab 7 and the counterweight 8 and is provided on the turning frame 6.
  • the engine 9 is configured using an internal combustion engine such as a diesel engine.
  • An assist generator motor 10 and a hydraulic pump 11 described later are mechanically connected to the output side of the engine 9.
  • the engine 9 is a power source for the hydraulic pump 11.
  • the operation of the engine 9 is controlled by an engine control unit 9A (hereinafter referred to as ECU 9A), and for example, the amount of fuel supply is variably controlled by a fuel injection device (not shown). That is, the ECU 9A variably controls the injection amount (fuel injection amount) of fuel injected into a cylinder (not shown) of the engine 9 based on a command output from the main controller 32 described later. Further, the ECU 9A stops the fuel injection of the fuel injection device by the command of the main controller 32 when the key switch 29 described later is stopped or the idling stop function of the main controller 32 is operated, and the engine 9 is stopped.
  • the engine 9 is provided with a rotation sensor 9B as power source drive state detection means.
  • the rotation sensor 9 ⁇ / b> B detects the engine speed as the driving state of the engine 9 and outputs the detection result to the main controller 32.
  • the electric power generated by the assist power generation motor 10 is supplied to the second inverter 25 via the first inverter 24 described later, and the swing electric motor 22 is driven. Further, the power generated by the assist power generation motor 10 is supplied to the chopper 27 via the first inverter 24, and the power storage device 19 is charged (power storage). On the other hand, when assisting driving of the engine 9, the assist power generation motor 10 is driven by electric power charged in the power storage device 19 or regenerative electric power of the swing electric motor 22.
  • the hydraulic pump 11 is mechanically connected to the engine 9, the assist generator motor 10, and the pilot pump 12.
  • the hydraulic pump 11 constitutes a hydraulic pressure source together with the pilot pump 12 and the hydraulic oil tank 13.
  • the hydraulic pump 11 is constituted by various hydraulic pumps such as a swash plate type, an oblique axis type, and a radial piston type, and is driven by the engine 9 and the assist power generation motor 10. As shown in FIG. 2, the hydraulic pump 11 pressurizes the hydraulic oil in the hydraulic oil tank 13 to drive a traveling hydraulic motor 2E, cylinders 5D to 5F, a swing hydraulic motor 21 described later, and the like. Supply toward the valve 16.
  • the pilot pump 12 is connected to the hydraulic pump 11.
  • the pilot pump 12 supplies pressure oil for pilot (pilot pressure) to the control valve 16 when an operation device 14 described later is operated.
  • the operating device 14 is located in the cab 7 and is connected to the pilot valve 15.
  • the operation device 14 is configured by an operation lever / pedal for traveling, an operation lever for work, and the like (both not shown).
  • the pilot valve 15 By operating the pilot valve 15 using the operating device 14, the flow rate and direction of the pressure oil discharged from the pilot pump 12 are controlled, and the pilot pressure is supplied to the control valve 16.
  • the control valve 16 switches and controls the direction of the pressure oil with respect to the hydraulic motors 2E and 21 and the cylinders 5D to 5F. That is, the operating device 14 outputs a pilot pressure for the control valve 16 as a drive command to the hydraulic motors 2E and 21 and the cylinders 5D to 5F.
  • the control valve 16 is provided on the revolving frame 6 and includes a plurality of directional control valves for controlling the hydraulic motors 2E and 21 and the cylinders 5D to 5F.
  • the control valve 16 switches supply and discharge of the pressure oil supplied from the hydraulic pump 11 according to a drive command (pilot pressure) based on the operation of the operation device 14 (controls the discharge amount and discharge direction of the pressure oil). .
  • the pressure oil supplied from the hydraulic pump 11 to the control valve 16 is appropriately distributed to actuators such as the hydraulic motors 2E and 21, cylinders 5D to 5F, and drives (rotates, expands and contracts) them.
  • the gate lock lever 17 constitutes a lock device, and switches between a lock release state that allows the actuators (hydraulic motors 2E and 21 and cylinders 5D to 5F) to be driven and a lock state that prohibits the actuators from being driven.
  • the gate lock lever 17 is located in the cab 7 and connected to the pilot cut valve 18.
  • the gate lock lever 17 cuts off the pilot pressure applied to the pilot valve 15, thereby switching between enabling and disabling the drive command to the hydraulic motors 2 E and 21 and the cylinders 5 D to 5 F by the operating device 14.
  • the gate lock lever 17 includes two switches (not shown), and the first and second gate lock signals Sga and Sgb according to the “lock state” and the “unlock state” from the respective switches. Is output. These gate lock signals Sga and Sgb are input to the engine start control unit 33 and the motor drive cutoff unit 34 of the main controller 32, respectively. The first and second gate lock signals Sga and Sgb are signals according to the state of the gate lock lever 17 and have the same waveform when normal.
  • the gate lock lever 17 includes two switches, the gate lock signals Sga and Sgb may be output by a single switch. Further, the locking device is not limited to the lever-type gate lock lever 17 that rotates in the upward and downward directions, and may be constituted by, for example, various switches, pedals, and the like.
  • the power storage device 19 is provided in the upper swing body 4 and is electrically connected to the assist power generation motor 10 and the swing electric motor 22 via a chopper 27, a first inverter 24, and a second inverter 25 described later. .
  • the power storage device 19 stores electric power, and is configured using, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery, or an electric double layer capacitor. That is, the power storage device 19 is charged (accumulated) by the generated power by the assist power generation motor 10 and the generated power (regenerative power) at the time of turning deceleration by the swing electric motor 22, or the charged power is supplied to the assist power generation motor 10, Discharge (power feeding) toward the electric motor 22.
  • the power storage device 19 is provided with a battery control unit 19A (hereinafter referred to as BCU 19A), and the charging operation and the discharging operation are controlled by the BCU 19A.
  • BCU 19A battery control unit 19A
  • the turning device 20 is provided on the upper turning body 4 (the turning frame 6), and includes a speed reducer (not shown), a turning hydraulic motor 21, a turning electric motor 22, and the like.
  • the turning device 20 causes the upper turning body 4 to turn with respect to the lower traveling body 2 by transmitting a rotational force to the turning bearing device 3.
  • the turning device 20 is configured as a so-called hybrid turning device in which the turning hydraulic motor 21 and the turning electric motor 22 cooperate to drive the upper turning body 4 to turn.
  • the turning electric motor 22 is attached to the speed reducer together with the turning hydraulic motor 21.
  • the swing electric motor 22 is configured by using, for example, a permanent magnet type synchronous motor, and is driven by power generated by the assist power generation motor 10 and power from the power storage device 19. Moreover, the turning electric motor 22 generates electric power by converting energy generated when the turning operation is decelerated into electric energy.
  • the turning electric motor 22 has an action of turning the upper turning body 4 by turning the upper turning body 4 by assisting (assisting) the turning hydraulic motor 21 when electric power is supplied via a power control device 23 described later (turning assist action); It has the effect
  • the generated power (regenerative power) of the swing electric motor 22 is supplied to the first inverter 24 via a second inverter 25 and DC buses 28A and 28B described later, and the assist generator motor 10 is driven.
  • the generated electric power (regenerative electric power) of the swing electric motor 22 is supplied to the chopper 27 via the second inverter 25 and the DC buses 28A and 28B, and the power storage device 19 is charged (power storage).
  • the electric system of the hydraulic excavator 1 includes a first inverter 24, a second inverter 25, an inverter controller, which will be described later, in addition to the assist power generation motor 10, the power storage device 19, and the swing electric motor 22 described above. 26, a chopper 27, a key switch 29, a restart switch 30, a main controller 32, and the like.
  • the first and second inverters 24, 25, the inverter controller 26, and the chopper 27 constitute a power control unit (PCU: power control unit) 23.
  • the power control device 23 is mounted on the upper swing body 4.
  • the first inverter 24 is electrically connected to the assist power generation motor 10 and controls driving of the assist power generation motor 10.
  • the first inverter 24 is configured by using a plurality of (for example, six) switching elements made of, for example, a transistor, an insulated gate bipolar transistor (IGBT), and the like, and is connected to the pair of DC buses 28A and 28B.
  • the switching element of the first inverter 24 is controlled by a three-phase (U phase, V phase, W phase) PWM signal output from the inverter controller 26 in an on state (ON) and an off state (OFF).
  • the main controller 32 outputs the motor drive cutoff request signal S3
  • the switching element of the first inverter 24 is turned off regardless of the output from the inverter controller 26.
  • the second inverter 25 is electrically connected to the swing electric motor 22 and controls the drive of the swing electric motor 22.
  • the second inverter 25 is configured using a plurality of (for example, six) switching elements in substantially the same manner as the first inverter 24, and is connected to the pair of DC buses 28A and 28B.
  • the switching element of the second inverter 25 is controlled by a three-phase PWM signal output from the inverter controller 26 in an on state and an off state.
  • the inverter controller 26 has an input side connected to the main controller 32 and an output side connected to the first and second inverters 24 and 25.
  • the inverter controller 26 controls the switching element of the first inverter 24 based on a command from the main controller 32.
  • the first inverter 24 converts the power generated by the assist power generation motor 10 into DC power and supplies it to the DC buses 28A and 28B.
  • the assist generator motor 10 operates as an electric motor
  • the first inverter 24 generates three-phase AC power from the DC power of the DC buses 28 ⁇ / b> A and 28 ⁇ / b> B and supplies it to the assist generator motor 10.
  • the assist power generation motor 10 is driven with the commanded torque.
  • the inverter controller 26 controls the switching element of the second inverter 25 based on a command from the main controller 32.
  • the second inverter 25 generates three-phase AC power from the DC power of the DC buses 28 ⁇ / b> A and 28 ⁇ / b> B and supplies it to the swing electric motor 22.
  • the swing electric motor 22 is decelerated (regeneration)
  • the second inverter 25 converts the regenerative power generated by the swing electric motor 22 into DC power and supplies it to the DC buses 28A and 28B. Thereby, the turning electric motor 22 is driven with the commanded torque.
  • the chopper 27 has one end connected to the power storage device 19 and the other end connected to the DC buses 28A and 28B.
  • the chopper 27 and the first and second inverters 24 and 25 are electrically connected to each other via a pair of DC buses 28A and 28B.
  • the chopper 27 includes a plurality of (for example, two) switching elements made of, for example, an IGBT and a reactor. In the chopper 27, the ON state and the OFF state of the switching element are controlled by a chopper control unit 27A (hereinafter referred to as CCU 27A).
  • CCU 27A chopper control unit
  • the chopper 27 When the power storage device 19 is charged, the chopper 27 functions as a step-down circuit (step-down chopper), and for example, steps down a DC voltage supplied from the DC buses 28A and 28B and supplies the voltage to the power storage device 19. On the other hand, when the power storage device 19 is discharged, the chopper 27 functions as a booster circuit (boost chopper), boosts the DC voltage supplied from the power storage device 19 and supplies it to, for example, the DC buses 28A and 28B.
  • step-down chopper step-down chopper
  • boost chopper boosts the DC voltage supplied from the power storage device 19 and supplies it to, for example, the DC buses 28A and 28B.
  • the first and second inverters 24 and 25 and the chopper 27 are connected to each other through a pair of DC buses 28A and 28B on the positive electrode side (plus side) and the negative electrode side (minus side).
  • a smoothing capacitor (not shown) is connected to the DC buses 28A and 28B in order to stabilize the voltage of the DC buses 28A and 28B. For example, a predetermined direct current voltage of about several hundred volts is applied to the direct current buses 28A and 28B.
  • the key switch 29 is provided near the driver's seat in the cab 7.
  • the key switch 29 is connected to the main controller 32 and switches between starting and stopping the engine 9.
  • the key switch 29 When the key switch 29 is operated to the START position, for example, the key switch 29 outputs an engine start request signal S0 to the main controller 32.
  • the main controller 32 outputs a control command for starting the engine to the ECU 9A, the BCU 19A, the inverter controller 26, the CCU 27A, and the like, and starts the engine 9 using the assist power generation motor 10 serving as a starter.
  • the main controller 32 When the key switch 29 is operated to the stop position, the main controller 32 outputs a stop signal to the ECU 9A, the inverter controller 26, and the like to stop the engine 9 and stop the driving of the assist power generation motor 10.
  • the restart switch 30 constitutes, together with the key switch 29, start request means for requesting start of the excavator 1.
  • the restart switch 30 is provided near the driver's seat in the cab 7.
  • the restart switch 30 is connected to the main controller 32 and restarts the engine 9 in the idling stop state. Specifically, when the restart switch 30 is operated in the idling stop state, the restart switch 30 outputs an engine restart request signal S1 to the main controller 32.
  • the main controller 32 outputs a control command for starting the engine to the ECU 9A, the BCU 19A, the inverter controller 26, the CCU 27A, and the like, and restarts the engine 9 using the assist power generation motor 10 serving as a starter.
  • the display device 31 is provided in front of the driver's seat in the cab 7 and connected to the main controller 32.
  • the display device 31 is composed of, for example, a liquid crystal monitor, and displays various types of information related to the vehicle body such as the remaining amount of fuel, the temperature of the engine coolant, the operating time, the vehicle interior temperature, and the like.
  • the main controller 32 constitutes a control device that controls the engine 9, the assist power generation motor 10, the hydraulic pump 11, and the like.
  • the main controller 32 is connected to an ECU 9A, a BCU 19A, an inverter controller 26, a CCU 27A, a CAN (Controller Area Network) 35, and the like.
  • the main controller 32 is composed of, for example, a microcomputer and has an energy management function, an abnormality monitoring / abnormality processing function, an idling stop function, and the like.
  • the main controller 32 generates a control command for the power control device 23 and the like, and performs control such as energy management for the electric system.
  • the main controller 32 controls the energy of the entire electric system by the energy management function. For example, the amount of power stored in the power storage device 19 increases or decreases due to the difference between the energy consumed by the swing electric motor 22 during acceleration and the energy regenerated during deceleration. It is the energy management function that controls this.
  • the main controller 32 controls to keep the amount of power stored in the power storage device 19 within a predetermined range by outputting a power generation command or an assist command to the assist power generation motor 10.
  • the main controller 32 determines whether an abnormal state such as a failure, abnormality, warning, or the like has occurred in the electric system such as the assist power generation motor 10, the power storage device 19, the swing electric motor 22, and the power control device 23 by the abnormality monitoring / abnormality processing function. Monitoring. When an abnormal state of the electric system is detected, the main controller 32 performs an abnormal process such as stopping the electric system.
  • the main controller 32 monitors whether or not it is in a work pause state by an idling stop function. For example, when the operating device 14 is not operated for a predetermined time, the main controller 32 determines that the traveling operation, turning operation, excavation operation, etc. of the excavator 1 are stopped. In such a work pause state, the main controller 32 outputs a command for stopping fuel injection to the ECU 9A of the engine 9 or the like. As a result, the main controller 32 automatically stops the engine 9 and also stops driving the assist power generation motor 10 (generator drive and motor drive). When the engine 9 is stopped by the idling stop function, the main controller 32 recognizes that idling is stopped, for example, by setting a flag or outputting a signal.
  • the operating conditions of the idling stop function are not limited to those described above.
  • the idling stop function may operate, or the idling stop function may operate based on other conditions.
  • the main controller 32 has an engine start function for starting the engine 9. As shown in FIG. 3, the main controller 32 includes an engine start control unit 33 and a motor drive cutoff unit 34 in order to execute the engine start function.
  • the engine start control unit 33 has an input side connected to the gate lock lever 17, key switch 29, restart switch 30, and the like, and an output side connected to the power control device 23.
  • the engine start control unit 33 includes a machine state determination unit 33A and a drive command unit 33B.
  • the engine start control unit 33 outputs an assist generator motor drive command S2 for starting the engine to the power control device 23 in accordance with the first gate lock signal Sga from the gate lock lever 17, the operation of the switches 29 and 30, and the like. To do.
  • the machine state determination unit 33A constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state.
  • a state determination unit that determines whether or not the excavator 1 is in a resting state.
  • the engine 9 that is a power source of the hydraulic pump 11 is in a stopped state.
  • Various types of information related to the drive state of the excavator 1 such as the operation state of the operation device 14, the position of the key switch 29, the engine speed, and the like are input to the machine state determination unit 33A via the CAN 35. .
  • the machine state determination unit 33A determines a machine state (state of the hydraulic excavator 1) such as machine stop, engine start, machine operation, and idling stop.
  • the machine state determination unit 33A outputs the machine state determination result MC to the drive command unit 33B.
  • the drive command unit 33B assists power generation based on the determination result MC of the machine state determination unit 33A, the state of the gate lock lever 17, and the activation request (signals S0 and S1) from the key switch 29 or the restart switch 30.
  • Electric motor drive control means for controlling the drive of the motor 10 is configured.
  • the input side of the drive command unit 33B is connected to the machine state determination unit 33A, the gate lock lever 17, the key switch 29, and the restart switch 30.
  • the drive command unit 33B receives the first gate lock signal Sga (first lock device state signal) from the gate lock lever 17.
  • the output side of the drive command unit 33 ⁇ / b> B is connected to the inverter controller 26 of the power control device 23.
  • the drive command unit 33B assists the inverter controller 26 in accordance with the determination result MC of the machine state determination unit 33A, the first gate lock signal Sga from the gate lock lever 17, and the operation of the switches 29 and 30.
  • the generator motor drive command S2 is output.
  • the drive command unit 33B operates the key switch 29 (engine start) when the machine state determination unit 33A determines that the machine is stopped and the first gate lock signal Sga is “locked state”.
  • engine start is requested by the request signal S0
  • an assist generator motor drive command S2 for engine start is output to the inverter controller 26 of the power control device 23.
  • the drive command unit 33B determines that the machine state determination unit 33A is idling stop in a rest state, and operates the restart switch 30 (engine restart) when the gate lock signal Sga is in the “lock state”.
  • the restart switch 30 engine restart
  • an assist generator motor drive command S2 for starting the engine is output to the inverter controller 26 of the power control device 23.
  • the motor drive cutoff unit 34 has an input side connected to the gate lock lever 17 and the like, and an output side connected to the power control device 23.
  • the motor drive cutoff unit 34 includes an engine stop determination unit 34A and a motor drive cutoff request unit 34B.
  • the motor drive shut-off unit 34 requests the power control device 23 to shut off the assist power generation motor 10 according to the determination result ES whether or not the engine 9 is stopped and the gate lock signal Sgb from the gate lock lever 17.
  • a drive cutoff request signal S3 is output.
  • the engine stop determination unit 34A together with the machine state determination unit 33A, constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state.
  • Various information related to the driving state of the engine 9 such as the engine speed is input to the engine stop determination unit 34A via the CAN 35. Based on these pieces of information, the engine stop determination unit 34A determines whether or not the engine 9 as the power source of the excavator 1 is in a stopped state, that is, whether or not the excavator 1 is in a resting state.
  • the engine stop determination unit 34A outputs a determination result ES as to whether or not the engine 9 is stopped to the motor drive cutoff request unit 34B.
  • the motor drive cutoff request unit 34B together with the first inverter 24, constitutes an electric drive cutoff means. Therefore, the motor drive cutoff request unit 34B and the first inverter 24 shut off the drive of the assist power generation motor 10 based on the determination result ES of the engine stop determination unit 34A and the state of the gate lock lever 17.
  • the input side of the motor drive cutoff request unit 34B is connected to the engine stop determination unit 34A and the gate lock lever 17.
  • the motor drive cutoff request unit 34B receives the second gate lock signal Sgb (second lock device state signal) from the gate lock lever 17.
  • the output side of the motor drive cutoff request unit 34 ⁇ / b> B is connected to the first inverter 24 of the power control device 23.
  • the motor drive cutoff request unit 34B sends a motor drive cutoff request signal to the first inverter 24 in accordance with the determination result ES of the engine stop determination unit 34A and the second gate lock signal Sgb from the gate lock lever 17.
  • S3 is output.
  • the motor drive cut-off request unit 34B determines that the engine stop determination unit 34A is in the stop state, that is, the engine stop state (power source stop state), and the second gate lock signal Sgb is “lock release state”. , The motor drive cutoff request signal S3 is output.
  • the first inverter 24 receives the motor drive cut-off request signal S3, the first inverter 24 turns off all the switching elements to electrically cut off the assist generator motor 10 and the DC buses 28A and 28B.
  • the assist generator motor 10 is not driven regardless of the assist generator motor drive command S2 from the drive command unit 33B or the output of the PWM signal from the inverter controller 26.
  • the hydraulic excavator 1 according to the first embodiment has the above-described configuration, and the operation thereof will be described next.
  • the operator gets on the cab 7 and sits in the driver's seat, and operates the key switch 29 to the START position with the gate lock lever 17 fixed at the lock position.
  • the assist power generation motor 10 is driven to rotate and fuel is supplied to the engine 9 to start the engine 9.
  • a predetermined speed for example, idle speed
  • the operator switches the gate lock lever 17 from the locked position to the unlocked position.
  • the pressure oil from the hydraulic pump 11 is supplied to the traveling hydraulic motor 2 ⁇ / b> E of the lower traveling body 2 through the control valve 16.
  • the excavator 1 performs a traveling operation such as advancing and retreating. Further, when the operator operates the operation lever of the operation device 14, the pressure oil from the hydraulic pump 11 is supplied to the swing hydraulic motor 21 and the cylinders 5D to 5F through the control valve 16. As a result, the excavator 1 performs a turning operation, an excavation operation by the up-and-down movement of the work device 5, and the like.
  • the main controller 32 determines that the operation of the excavator 1 such as traveling, turning, excavation, etc. is suspended. In such a work pause state, the main controller 32 outputs a command for stopping fuel injection to the ECU 9A of the engine 9 or the like in order to place the engine 9 in an idling stop state. As a result, the engine 9 automatically stops.
  • the operator operates the restart switch 30 after switching the gate lock lever 17 to the lock position. Accordingly, the main controller 32 outputs an engine restart command to the ECU 9A, the power control device 23, and the like, rotationally drives the engine 9 using the assist power generation motor 10, and supplies fuel to the engine 9. As a result, the engine 9 restarts in a state where the work device 5 and the like are locked.
  • the excavator 1 has a function of prohibiting the restart of the engine 9 under a predetermined condition in order to increase the reliability of the engine restart. Therefore, the restart process of the engine 9 executed by the main controller 32 will be described using the timing charts of FIGS. 4 and 5.
  • FIG. 4 shows a case where the first gate lock signal Sga indicating the “lock state” is erroneously output in a state where the gate lock lever 17 is fixed at the unlock position.
  • the main controller 32 determines the work suspension state of the excavator 1 and stops the engine 9. Thereby, the excavator 1 enters an idling stop state that is a resting state.
  • the drive command unit 33B recognizes the “lock state” in the idling stop state and the gate lock signal Sga. For this reason, when engine restart is requested by operating the restart switch 30, the drive command unit 33B causes the power control device 23 to start the engine even though the gate lock lever 17 is fixed at the unlocked position. Assist generator motor drive command S2 is output (time c to time d).
  • the motor drive cut-off request unit 34B recognizes that the hydraulic excavator 1 is in the engine stop state, which is a stop state, and the “unlocked state” based on the second gate lock signal Sgb. Is output.
  • the first inverter 24 receives the motor drive cut-off request signal S3
  • the first inverter 24 turns off all the switching elements to cut off between the assist generator motor 10 and the DC buses 28A and 28B. Thereby, even if the assist power generation motor drive command S2 is output from the drive command unit 33B, the assist power generation motor 10 is not driven.
  • FIG. 5 shows a case where the drive command unit 33B erroneously outputs the assist power generation motor drive command S2 while the gate lock lever 17 is fixed at the unlock position.
  • the main controller 32 determines the work suspension state of the excavator 1 and stops the engine 9. Thereby, the excavator 1 enters an idling stop state.
  • the motor drive cut-off request unit 34B recognizes the “unlocked state” by the second gate lock signal Sgb while the engine is stopped, and outputs a motor drive cut-off request signal S3.
  • the first inverter 24 receives the motor drive cut-off request signal S3, the first inverter 24 turns off all the switching elements to cut off between the assist generator motor 10 and the DC buses 28A and 28B. Thereby, even if the assist power generation motor drive command S2 is output from the drive command unit 33B, the assist power generation motor 10 is not driven.
  • the processing after time point e is the same as in FIG.
  • the motor drive cutoff request unit 34B (electric drive cutoff unit) is provided, and the motor drive cutoff request unit 34B is in a stopped state (pause) by the engine stop determination unit (state determination unit).
  • the assist generator motor 10 (electric motor) and the DC buses 28A and 28B are disconnected.
  • the motor drive cutoff request unit 34B causes the assist power generation motor 10 to operate. It is possible to block between the (electric motor) and the DC buses 28 ⁇ / b> A and 28 ⁇ / b> B, thereby avoiding activation of the assist power generation motor 10.
  • the drive command unit 33B May output the assist power generation motor drive command S2 to the assist power generation motor 10 even though the gate lock lever 17 is in the “unlocked state”. Further, there is a possibility that an unnecessary assist generator motor drive command S2 is output to the assist generator motor 10 due to a malfunction of the drive command unit 33B.
  • the drive command unit 33B (motor drive control means) receives the first gate lock signal Sga (first lock device state signal) from the gate lock lever 17, and receives the motor drive cutoff request unit 34B (electric drive).
  • the drive cutoff means receives the second gate lock signal Sgb (second lock device state signal) from the gate lock lever 17.
  • FIGS. 1, 2, 6 and 7 show a hybrid excavator according to a second embodiment of the present invention.
  • a feature of the second embodiment is that it includes a gate lock signal diagnosis unit that determines that an abnormality occurs when the first gate lock signal and the second gate lock signal do not coincide with each other.
  • the gate lock signal diagnostic unit determines that there is an abnormality, the drive of the assist generator motor is cut off.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the hybrid excavator 41 according to the second embodiment is substantially the same as the hybrid excavator 1 according to the first embodiment.
  • the lower traveling body 2, the upper swing body 4, the work device 5, the engine 9, and the assist power generation The motor 10, the hydraulic pump 11, the gate lock lever 17, the restart switch 30, the main controller 42 and the like are configured.
  • the main controller 42 is configured in substantially the same manner as the main controller 32 according to the first embodiment. For this reason, the main controller 42 includes an engine start control unit 43 and a motor drive cut-off unit 44 similar to the engine start control unit 33 and motor drive cut-off unit 34 according to the first embodiment. The main controller 42 further includes a gate lock signal diagnostic unit 45 as a lock device state signal diagnostic unit.
  • the gate lock signal diagnosis unit 45 compares the first gate lock signal Sga and the second gate lock signal Sgb, and outputs a gate lock state signal GL corresponding to the comparison result. More specifically, when the first gate lock signal Sga and the second gate lock signal Sgb do not match, the gate lock signal diagnostic unit 45 determines that the first and second gate lock signals Sga and Sgb are “signals”. A gate lock state signal GL indicating "abnormal" is output. On the other hand, when the first gate lock signal Sga and the second gate lock signal Sgb match, the gate lock signal diagnostic unit 45 is normal in the first and second gate lock signals Sga and Sgb. The same gate lock state signal GL as the first and second gate lock signals Sga and Sgb is output.
  • the engine start control unit 43 has an input side connected to the key switch 29, the restart switch 30, the gate lock signal diagnosis unit 45, and the like, and an output side connected to the power control device 23.
  • the engine start control unit 43 includes a machine state determination unit 43A and a drive command unit 43B.
  • the machine state determination unit 43A is configured in substantially the same manner as the machine state determination unit 33A according to the first embodiment, and constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state.
  • the machine state determination unit 43A determines the machine state (the state of the hydraulic excavator 1) based on various types of information, and outputs the machine state determination result MC to the drive command unit 43B.
  • the drive command unit 43B is configured in substantially the same manner as the drive command unit 33B according to the first embodiment, and also constitutes a motor drive control means. However, in place of the first gate lock signal Sga from the gate lock lever 17, the gate lock state signal GL from the gate lock signal diagnosis unit 45 is input to the drive command unit 43B.
  • the gate lock state signal GL is the same signal as the first and second gate lock signals Sga and Sgb in a normal state where the first gate lock signal Sga and the second gate lock signal Sgb match. It has become.
  • the drive command unit 43B operates in substantially the same manner as the drive command unit 33B according to the first embodiment, and the determination result MC of the machine state determination unit 43A and the gate lock signal diagnosis unit 45 In response to the gate lock state signal GL and the operation of the switches 29 and 30, an assist generator motor drive command S2 is output to the inverter controller 26.
  • the motor drive cutoff unit 44 has an input side connected to the gate lock signal diagnosis unit 45 and the like, and an output side connected to the power control device 23.
  • the motor drive cutoff unit 44 includes an engine stop determination unit 44A and a motor drive cutoff request unit 44B.
  • the engine stop determination unit 44A is configured in substantially the same manner as the engine stop determination unit 34A according to the first embodiment. For this reason, the engine stop determination unit 44A, together with the machine state determination unit 43A, constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state. The engine stop determination unit 44A determines whether or not the engine 9 is stopped based on various information related to the driving state of the engine 9 such as the engine speed, and determines whether or not the engine 9 is stopped. The determination result ES is output to the motor drive cutoff request unit 44B.
  • the motor drive cutoff request unit 44B is configured in substantially the same manner as the motor drive cutoff request unit 34B according to the first embodiment. For this reason, the motor drive cutoff requesting part 44 ⁇ / b> B constitutes an electric drive cutoff means together with the first inverter 24. However, in place of the second gate lock signal Sgb from the gate lock lever 17, the gate lock state signal GL from the gate lock signal diagnostic unit 45 is input to the motor drive cutoff request unit 44B.
  • the gate lock state signal GL is the same signal as the first and second gate lock signals Sga and Sgb in a normal state where the first gate lock signal Sga and the second gate lock signal Sgb match. It has become.
  • the motor drive cutoff request unit 44B operates in substantially the same manner as the motor drive cutoff request unit 34B according to the first embodiment, and the determination result ES of the engine stop determination unit 44A and the gate lock signal diagnosis In response to the gate lock state signal GL from the unit 45, the motor drive cutoff request signal S3 is output to the first inverter 24.
  • the gate lock state signal GL indicates “signal abnormality”.
  • the motor drive cutoff request unit 44B outputs a motor drive cutoff request signal S3 regardless of the determination result ES of the engine stop determination unit 44A.
  • FIG. 7 shows a case where the gate lock signal Sga in the “lock state” is erroneously output in a state where the gate lock lever 17 is fixed at the unlock position.
  • the main controller 42 determines the work suspension state of the excavator 1 and stops the engine 9. Thereby, the excavator 1 enters an idling stop state.
  • the first gate lock signal Sga erroneously outputs the “lock state” at the time point b in such an idling stop state.
  • the first and second gate lock signals Sga and Sgb are “signal abnormal”.
  • a gate lock state signal GL indicating the presence is output (time point b to time point e).
  • the drive command unit 43B stops the output of the assist power generation motor drive command S2 based on the gate lock state signal GL indicating “signal abnormality”.
  • the motor drive cutoff request unit 44B outputs a motor drive cutoff request signal S3 to the first inverter 24 based on the gate lock state signal GL indicating “signal abnormality”. For this reason, even if the operator operates the restart switch 30 and requests restart of the engine 9, the assist power generation motor 10 is not driven.
  • the gate lock signal diagnosis unit 45 outputs a gate lock state signal GL corresponding to the same lock state as the first and second gate lock signals Sga and Sgb.
  • the motor drive shut-off request unit 44B stops the output of the motor drive shut-off request signal S3 since the gate lock lever 17 recognizes the “lock state” by the gate lock state signal GL while the engine is stopped.
  • the drive interruption of the assist generator motor 10 in the first inverter 24 is released. Therefore, when the engine restart is requested by the operation of the restart switch 30, the assist generator motor 10 is driven and the engine 9 is It is restarted (time point f to time point g).
  • the drive command unit 43B (electrical drive interruption means) drives the assist power generation motor 10 when the gate lock signal diagnosis unit 45 (lock device state signal diagnosis means) determines that an abnormality has occurred. Shut off. For this reason, when the state of the gate lock lever 17 cannot be determined, the assist power generation motor 10 is not driven. As a result, even when the first gate lock signal Sga corresponding to the “lock state” is input to the main controller 42, the restart of the engine 9 by the assist power generation motor 10 can be avoided.
  • the engine 9 is started by the assist power generation motor 10.
  • a starter motor for starting the engine may be provided in addition to the assist power generation motor, and the engine may be started using both the starter motor and the assist power generation motor.
  • the chopper 27 that boosts or lowers the DC voltage is provided.
  • the power storage device 19 is configured by a secondary battery, the chopper 27 may be omitted and the power storage device 19 may be directly connected to the DC buses 28A and 28B.
  • the restart switch 30 is provided separately from the key switch 29.
  • the present invention is not limited to this, and the restart switch may be omitted, and the engine restart operation may be performed using the key switch.
  • the crawler-type hydraulic excavators 1 and 41 capable of self-propelling have been described as examples of the construction machine.
  • the present invention is not limited to this, and is applicable to a self-propelled wheel-type hydraulic excavator, a mobile crane, and an installation-type excavator, a crane, etc. in which a swivel is mounted on a base that does not travel. May be.
  • the construction machine can be widely applied to various work vehicles, work machines, and the like that do not include a turning body, such as a wheel loader and a forklift.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A main controller (32) is equipped with an engine start control unit (33) and a motor drive cutoff unit (34). When a machine-state determination unit (33A) determines the machine is inactive, and a first gate lock signal (Sga) is in a "locked state," a drive command unit (33B) of the engine start control unit (33) outputs an assist generation motor drive command (S2) for starting the engine when an engine start is requested by operation of a restart switch (30). When an engine-state determination unit (34A) determines the engine is stopped, and a second gate lock signal (Sgb) is in a "lock-removed state," a motor drive cutoff request unit (34B) of the motor drive cutoff unit (34) outputs a motor drive cutoff request signal (S3).

Description

建設機械Construction machinery
 本発明は、電動機を用いて油圧ポンプを駆動可能な建設機械に関する。 The present invention relates to a construction machine capable of driving a hydraulic pump using an electric motor.
 一般的に、油圧ショベルのような建設機械は、ガソリン、軽油等を燃料とする動力源としてのエンジンと、エンジンによって駆動する油圧ポンプと、油圧ポンプから吐出した圧油によって駆動する油圧モータ、油圧シリンダ等の油圧アクチュエータとを備えている。オペレータがレバーやペダルを操作すると、これらの操作に応じた圧油が油圧モータ、油圧シリンダ等に分配して供給される。これにより、油圧ショベルは、走行、旋回、掘削等の動作を行う。 In general, a construction machine such as a hydraulic excavator has an engine as a power source using gasoline, light oil or the like as a fuel, a hydraulic pump driven by the engine, a hydraulic motor driven by pressure oil discharged from the hydraulic pump, and hydraulic pressure And a hydraulic actuator such as a cylinder. When an operator operates a lever or a pedal, pressure oil corresponding to these operations is distributed and supplied to a hydraulic motor, a hydraulic cylinder, and the like. Thereby, the excavator performs operations such as traveling, turning, and excavation.
 また、エンジンと発電電動機とを併用したハイブリッド式建設機械も知られている(特許文献1,2参照)。このような建設機械は、例えば旋回アクチュエータを電動化することによって、旋回制動時の回生エネルギを一時的に蓄電し、次の旋回力行等に活用している。このとき、建設機械は、旋回電動モータと、エンジンの動力を電気エネルギに変換すると共に油圧ポンプの駆動をアシストするアシスト発電モータと、旋回電動モータの回生エネルギやアシスト発電モータの発電エネルギを一時的に蓄電し、旋回力行や油圧ポンプの駆動に対してエネルギを供給する蓄電装置とを備えている。 Also known is a hybrid construction machine that uses both an engine and a generator motor (see Patent Documents 1 and 2). Such a construction machine temporarily stores regenerative energy during turning braking by, for example, electrifying a turning actuator, and uses it for the next turning power running or the like. At this time, the construction machine temporarily converts the electric rotating motor, the assist power generation motor that converts the engine power into electric energy and assists the driving of the hydraulic pump, and the regenerative energy of the electric rotating motor and the electric power generation energy of the assist power generation motor. And a power storage device that supplies energy to the turning power running and the drive of the hydraulic pump.
 上述に加えて、建設機械として、作業休止時に自動的にエンジンを停止し、作業再開時にエンジンを再始動するアイドリングストップ機能を備えたものも知られている。このような建設機械では、例えばオペレータが操作レバーを一定時間に亘って操作しなかったときに、作業休止時と判断して、自動的にエンジンを停止する。 In addition to the above, construction machines having an idling stop function that automatically stops the engine when the work is stopped and restarts the engine when the work is resumed are also known. In such a construction machine, for example, when the operator does not operate the operation lever for a certain period of time, it is determined that the operation is stopped and the engine is automatically stopped.
 また、特許文献1には、作業再開時の再始動方法として、オペレータがエンジン再始動スイッチを操作すると、スタータによってエンジンが始動すると共に、アシスト発電モータが駆動してエンジン始動をアシストするものが開示されている。特許文献2には、作業再開時の再始動方法として、作業再開時にオペレータが操作レバーを操作すると、アシスト発電モータを駆動して、エンジンを再始動する方法が開示されている。 Patent Document 1 discloses a restart method at the time of resuming work, in which when an operator operates an engine restart switch, an engine is started by a starter and an assist power generation motor is driven to assist engine start. Has been. Patent Document 2 discloses a method of restarting an engine by driving an assist power generation motor when an operator operates an operation lever at the time of resuming work as a restart method at the time of resuming work.
 さらに、特許文献1には、エンジンを再始動するときに、ロックレバーがロック状態であることを条件に再始動を許可することが開示されている。このとき、ロックレバーは、油圧回路において、操作レバーの操作を無効化することで、機械が作動しないようにするものである。このため、ロックレバーがロック状態であれば、エンジン始動時に操作レバーが操作されても、機械が作動することはない。 Further, Patent Document 1 discloses that when restarting the engine, the restart is permitted on condition that the lock lever is in a locked state. At this time, the lock lever disables the operation of the operation lever in the hydraulic circuit to prevent the machine from operating. For this reason, if the lock lever is in the locked state, the machine will not operate even if the operation lever is operated when the engine is started.
特開2008-255840号公報JP 2008-255840 A 特開2013-28962号公報JP 2013-28962 A
 ところで、アイドリングストップ機能を制御する制御装置がロックレバーの状態を誤認識すると、ロック解除状態であってもエンジン始動を許可することになる。この場合、エンジン始動時に操作レバーが操作されると、機械が作動する虞れがある。これに加え、アイドリングストップ中にアシスト発電モータ制御に誤作動が生じると、ロックレバーがロック解除状態であっても、エンジンおよび油圧ポンプが駆動される。この状態で、操作レバーが操作されると、機械が作動する虞れもある。 By the way, if the control device that controls the idling stop function erroneously recognizes the state of the lock lever, the engine is allowed to start even in the unlocked state. In this case, if the operation lever is operated when the engine is started, the machine may be activated. In addition to this, if a malfunction occurs in the assist generator motor control during idling stop, the engine and the hydraulic pump are driven even when the lock lever is unlocked. If the operating lever is operated in this state, the machine may be activated.
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、ロック状態の誤認識や電動機制御の誤作動が生じても、停止状態を維持することができる建設機械を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a construction machine that can maintain a stopped state even if erroneous recognition of a locked state or malfunction of motor control occurs. There is to do.
 上述した課題を解決するために、本発明は、アクチュエータに作動油を供給する油圧ポンプと、前記油圧ポンプの駆動が可能な電動機と、前記アクチュエータの駆動を許可するロック解除状態と、前記アクチュエータの駆動を禁止するロック状態とを切り換えるロック装置とを備えた建設機械において、前記建設機械が休止状態か否かを判定する状態判定手段と、前記状態判定手段の判定結果と前記ロック装置の状態とに基づいて前記電動機の駆動を遮断する電動駆動遮断手段とをさらに備え、前記電動駆動遮断手段は、前記状態判定手段によって休止状態であると判定し、かつ前記ロック装置がロック解除状態のときに、前記電動機の駆動を遮断する構成としたことを特徴としている。 In order to solve the above-described problems, the present invention provides a hydraulic pump that supplies hydraulic oil to an actuator, an electric motor that can drive the hydraulic pump, an unlocked state that permits driving of the actuator, In a construction machine including a lock device that switches between a lock state that prohibits driving, a state determination unit that determines whether the construction machine is in a dormant state, a determination result of the state determination unit, and a state of the lock device An electric drive shut-off means for shutting off the drive of the electric motor on the basis of the electric drive cut-off means, wherein the electric drive cut-off means determines that the state determination means is in a rest state and the lock device is in an unlocked state. The drive of the electric motor is cut off.
 この構成によれば、電動駆動遮断手段は、状態判定手段によって建設機械が休止状態であると判定し、かつロック装置がロック解除状態のときには、電動機の駆動を遮断する。このため、ロック状態の誤認識や電動機制御の誤作動が生じても、電動駆動遮断手段によって、電動機の起動を回避することができる。 According to this configuration, the electric drive cut-off means cuts off the drive of the electric motor when the state determination means determines that the construction machine is in a dormant state and the lock device is in the unlocked state. For this reason, even if erroneous recognition of the locked state or malfunction of the motor control occurs, it is possible to avoid activation of the motor by the electric drive cutoff means.
本発明の第1および第2の実施の形態による油圧ショベルを示す正面図である。It is a front view which shows the hydraulic shovel by the 1st and 2nd embodiment of this invention. 油圧ショベルの電動システムと油圧システムの構成を示すブロック図である。It is a block diagram which shows the structure of the electric system and hydraulic system of a hydraulic shovel. 図2中のメインコントローラの構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a main controller in FIG. 2. 「ロック状態」を示す第1のゲートロック信号が誤って出力された場合において、モータ駆動遮断要求信号等の時間変化を示すタイムチャートである。It is a time chart which shows time changes, such as a motor drive interruption | blocking request | requirement signal, when the 1st gate lock signal which shows a "lock state" is output accidentally. アシスト発電モータ駆動指令が誤って出力された場合において、モータ駆動遮断要求信号等の時間変化を示すタイムチャートである。It is a time chart which shows time changes, such as a motor drive interruption | blocking request signal, when an assist electric power generation motor drive command is output accidentally. 第2の実施の形態によるメインコントローラの構成を示すブロック図である。It is a block diagram which shows the structure of the main controller by 2nd Embodiment. 「ロック状態」を示す第1のゲートロック信号が誤って出力された場合において、ゲートロック状態信号、モータ駆動遮断要求信号等の時間変化を示すタイムチャートである。6 is a time chart showing temporal changes of a gate lock state signal, a motor drive cutoff request signal, and the like when a first gate lock signal indicating “lock state” is erroneously output.
 以下、本発明の実施の形態による建設機械としてハイブリッド油圧ショベルを例に挙げて、添付図面に従って説明する。 Hereinafter, a hybrid excavator will be described as an example of a construction machine according to an embodiment of the present invention, and will be described with reference to the accompanying drawings.
 図1ないし図5は本発明の第1の実施の形態に係るハイブリッド油圧ショベルを示している。 1 to 5 show a hybrid hydraulic excavator according to a first embodiment of the present invention.
 図1において、ハイブリッド式油圧ショベル1(以下、油圧ショベル1という)は、自走可能なクローラ式の下部走行体2と、下部走行体2上に設けられた旋回軸受装置3と、旋回軸受装置3を介して下部走行体2上に旋回可能に搭載され下部走行体2と共に車体(基体)を構成する上部旋回体4と、上部旋回体4の前側に俯仰動可能に取付けられ土砂の掘削作業等を行う作業装置5とを含んで構成されている。 In FIG. 1, a hybrid hydraulic excavator 1 (hereinafter referred to as a hydraulic excavator 1) includes a self-propelled crawler-type lower traveling body 2, a slewing bearing device 3 provided on the lower traveling body 2, and a slewing bearing device. 3 is mounted on the lower traveling body 2 so as to be able to turn, and the upper swinging body 4 constituting the vehicle body (base body) together with the lower traveling body 2 is attached to the front side of the upper swinging body 4 so as to be able to move up and down. It is comprised including the working device 5 which performs etc.
 下部走行体2は、トラックフレーム2Aと、トラックフレーム2Aの左,右両側に設けられた駆動輪2Bと、トラックフレーム2Aの左,右両側で駆動輪2Bと前,後方向の反対側に設けられた遊動輪2Cと、駆動輪2Bと遊動輪2Cに巻回された履帯2D(いずれも左側のみ図示)とにより構成されている。左,右の駆動輪2Bは、アクチュエータとしての左,右の走行油圧モータ2Eによって回転駆動される。一方、トラックフレーム2Aの中央部の上側には、旋回軸受装置3が取付けられている。 The undercarriage 2 is provided on the opposite side of the track frame 2A, the drive wheels 2B provided on both the left and right sides of the track frame 2A, and the drive wheels 2B on the left and right sides of the track frame 2A. The idler wheel 2C, the drive wheel 2B, and the crawler belt 2D wound around the idler wheel 2C (only the left side is shown). The left and right drive wheels 2B are rotationally driven by left and right traveling hydraulic motors 2E as actuators. On the other hand, the slewing bearing device 3 is attached to the upper side of the center portion of the track frame 2A.
 作業装置5は、旋回フレーム6の前側に俯仰動可能に取付けられたブーム5Aと、ブーム5Aの先端部に俯仰動可能に取付けられたアーム5Bと、アーム5Bの先端部に回動可能に取付けられたバケット5Cと、これらを駆動する油圧シリンダ(アクチュエータ)からなるブームシリンダ5D、アームシリンダ5E、バケットシリンダ5Fとにより構成されている。 The working device 5 includes a boom 5A attached to the front side of the revolving frame 6, an arm 5B attached to the distal end portion of the boom 5A, and an arm 5B attached to the distal end portion of the arm 5B. And a boom cylinder 5D, an arm cylinder 5E, and a bucket cylinder 5F, which are hydraulic cylinders (actuators) that drive the bucket 5C.
 上部旋回体4は、支持構造体をなす旋回フレーム6を含んで構成されている。旋回フレーム6は、旋回軸受装置3を介して下部走行体2上に旋回可能に搭載されている。旋回フレーム6の下面側には、旋回軸受装置3が取付けられている。一方、旋回フレーム6上には、後述のキャブ7、カウンタウエイト8、エンジン9、アシスト発電モータ10、油圧ポンプ11、蓄電装置19、旋回装置20、電力制御装置23等が設けられている。 The upper revolving structure 4 includes a revolving frame 6 that forms a support structure. The swivel frame 6 is mounted on the lower traveling body 2 via the swivel bearing device 3 so as to be swivelable. A slewing bearing device 3 is attached to the lower surface side of the slewing frame 6. On the other hand, a cab 7, a counterweight 8, an engine 9, an assist power generation motor 10, a hydraulic pump 11, a power storage device 19, a turning device 20, a power control device 23, and the like are provided on the turning frame 6.
 キャブ7は、旋回フレーム6の左前側に設けられ、キャブ7内にはオペレータが着座する運転席(図示せず)が設けられている。運転席の周囲には、後述の操作装置14、キースイッチ29、再始動スイッチ30、ゲートロックレバー17等が配置されている。カウンタウエイト8は、旋回フレーム6の後端側に取付けられ、作業装置5との重量バランスをとるものである。 The cab 7 is provided on the left front side of the revolving frame 6, and a driver seat (not shown) in which an operator is seated is provided in the cab 7. Around the driver's seat, an operation device 14, a key switch 29, a restart switch 30, a gate lock lever 17, and the like, which will be described later, are arranged. The counterweight 8 is attached to the rear end side of the revolving frame 6 and balances the weight with the work device 5.
 エンジン9は、キャブ7とカウンタウエイト8との間に位置して旋回フレーム6に設けられている。このエンジン9は、例えばディーゼルエンジン等の内燃機関を用いて構成されている。エンジン9の出力側には、後述するアシスト発電モータ10と油圧ポンプ11が機械的に接続されている。これにより、エンジン9は、油圧ポンプ11の動力源となっている。 The engine 9 is located between the cab 7 and the counterweight 8 and is provided on the turning frame 6. The engine 9 is configured using an internal combustion engine such as a diesel engine. An assist generator motor 10 and a hydraulic pump 11 described later are mechanically connected to the output side of the engine 9. As a result, the engine 9 is a power source for the hydraulic pump 11.
 ここで、エンジン9の作動はエンジンコントロールユニット9A(以下、ECU9Aという)によって制御され、例えば、燃料の供給量が燃料噴射装置(図示せず)により可変に制御される。即ち、ECU9Aは、後述のメインコントローラ32から出力される指令に基づいてエンジン9のシリンダ(図示せず)内に噴射される燃料の噴射量(燃料噴射量)を可変に制御する。また、ECU9Aは、後述するキースイッチ29を停止操作したとき、または、メインコントローラ32のアイドリングストップ機能が動作したときには、メインコントローラ32の指令により燃料噴射装置の燃料噴射を停止し、エンジン9を停止させる。 Here, the operation of the engine 9 is controlled by an engine control unit 9A (hereinafter referred to as ECU 9A), and for example, the amount of fuel supply is variably controlled by a fuel injection device (not shown). That is, the ECU 9A variably controls the injection amount (fuel injection amount) of fuel injected into a cylinder (not shown) of the engine 9 based on a command output from the main controller 32 described later. Further, the ECU 9A stops the fuel injection of the fuel injection device by the command of the main controller 32 when the key switch 29 described later is stopped or the idling stop function of the main controller 32 is operated, and the engine 9 is stopped. Let
 さらに、エンジン9には、動力源駆動状態検出手段としての回転センサ9Bが設けられている。回転センサ9Bは、エンジン9の駆動状態としてエンジン回転数を検出し、その検出結果をメインコントローラ32に出力している。 Furthermore, the engine 9 is provided with a rotation sensor 9B as power source drive state detection means. The rotation sensor 9 </ b> B detects the engine speed as the driving state of the engine 9 and outputs the detection result to the main controller 32.
 アシスト発電モータ10は、エンジン9と油圧ポンプ11とに機械的に接続された電動機である。このアシスト発電モータ10は、例えば永久磁石式の同期電動機によって構成され、エンジン9によって回転駆動されることにより発電を行い、または電力が供給されることによりエンジン9の駆動を補助(アシスト)する。即ち、アシスト発電モータ10は、エンジン9によって回転駆動されることにより発電を行う作用(発電機作用)と、後述の電力制御装置23を介して電力供給されることにより電動機としてエンジン9および油圧ポンプ11を駆動する作用(電動機作用)とを有する。 The assist generator motor 10 is an electric motor that is mechanically connected to the engine 9 and the hydraulic pump 11. The assist power generation motor 10 is constituted by, for example, a permanent magnet type synchronous motor, and generates electric power by being rotationally driven by the engine 9, or assists (assists) driving of the engine 9 by being supplied with electric power. That is, the assist power generation motor 10 is driven by the engine 9 to generate electric power (generator function), and the electric power is supplied via the power control device 23 described later, so that the engine 9 and the hydraulic pump serve as an electric motor. 11 (drive motor action).
 アシスト発電モータ10の発電電力は、後述する第1のインバータ24を介して第2のインバータ25に供給され、旋回電動モータ22の駆動が行われる。また、アシスト発電モータ10の発電電力は、第1のインバータ24を介してチョッパ27に供給され、蓄電装置19の充電(蓄電)が行われる。一方、エンジン9の駆動を補助するときは、アシスト発電モータ10は、蓄電装置19に充電された電力、または旋回電動モータ22の回生電力により駆動される。 The electric power generated by the assist power generation motor 10 is supplied to the second inverter 25 via the first inverter 24 described later, and the swing electric motor 22 is driven. Further, the power generated by the assist power generation motor 10 is supplied to the chopper 27 via the first inverter 24, and the power storage device 19 is charged (power storage). On the other hand, when assisting driving of the engine 9, the assist power generation motor 10 is driven by electric power charged in the power storage device 19 or regenerative electric power of the swing electric motor 22.
 また、アシスト発電モータ10は、エンジン9の始動時にはスタータとして機能する。このため、エンジン9を始動するときには、アシスト発電モータ10は、蓄電装置19からの電力によって回転駆動し、エンジン9および油圧ポンプ11を始動させる。 The assist generator motor 10 functions as a starter when the engine 9 is started. For this reason, when starting the engine 9, the assist power generation motor 10 is rotationally driven by the electric power from the power storage device 19 to start the engine 9 and the hydraulic pump 11.
 油圧ポンプ11は、エンジン9、アシスト発電モータ10およびパイロットポンプ12に機械的に接続されている。この油圧ポンプ11は、パイロットポンプ12、作動油タンク13と共に油圧源を構成している。油圧ポンプ11は、例えば斜板式、斜軸式、ラジアルピストン式等のような各種の油圧ポンプによって構成され、エンジン9およびアシスト発電モータ10によって駆動される。図2に示すように、油圧ポンプ11は、走行油圧モータ2E、シリンダ5D~5F、後述の旋回油圧モータ21等を駆動するために、作動油タンク13内の作動油を昇圧して後述のコントロールバルブ16に向けて供給する。 The hydraulic pump 11 is mechanically connected to the engine 9, the assist generator motor 10, and the pilot pump 12. The hydraulic pump 11 constitutes a hydraulic pressure source together with the pilot pump 12 and the hydraulic oil tank 13. The hydraulic pump 11 is constituted by various hydraulic pumps such as a swash plate type, an oblique axis type, and a radial piston type, and is driven by the engine 9 and the assist power generation motor 10. As shown in FIG. 2, the hydraulic pump 11 pressurizes the hydraulic oil in the hydraulic oil tank 13 to drive a traveling hydraulic motor 2E, cylinders 5D to 5F, a swing hydraulic motor 21 described later, and the like. Supply toward the valve 16.
 パイロットポンプ12は、油圧ポンプ11に連なって設けられている。このパイロットポンプ12は、後述する操作装置14を操作したときに、パイロット用の圧油(パイロット圧)をコントロールバルブ16に供給する。 The pilot pump 12 is connected to the hydraulic pump 11. The pilot pump 12 supplies pressure oil for pilot (pilot pressure) to the control valve 16 when an operation device 14 described later is operated.
 操作装置14は、キャブ7内に位置して、パイロット弁15に接続されている。操作装置14は、走行用の操作レバー・ペダルや作業用の操作レバー等(いずれも図示せず)により構成されている。この操作装置14を用いてパイロット弁15を操作することにより、パイロットポンプ12から吐出する圧油の流量と方向を制御し、パイロット圧をコントロールバルブ16に供給する。これにより、コントロールバルブ16は、油圧モータ2E,21、シリンダ5D~5Fに対する圧油の方向が切り換え制御される。即ち、操作装置14は、油圧モータ2E,21、シリンダ5D~5Fへの駆動指令として、コントロールバルブ16に対するパイロット圧を出力する。 The operating device 14 is located in the cab 7 and is connected to the pilot valve 15. The operation device 14 is configured by an operation lever / pedal for traveling, an operation lever for work, and the like (both not shown). By operating the pilot valve 15 using the operating device 14, the flow rate and direction of the pressure oil discharged from the pilot pump 12 are controlled, and the pilot pressure is supplied to the control valve 16. As a result, the control valve 16 switches and controls the direction of the pressure oil with respect to the hydraulic motors 2E and 21 and the cylinders 5D to 5F. That is, the operating device 14 outputs a pilot pressure for the control valve 16 as a drive command to the hydraulic motors 2E and 21 and the cylinders 5D to 5F.
 コントロールバルブ16は、旋回フレーム6に設けられ、油圧モータ2E,21、シリンダ5D~5Fを制御する複数個の方向制御弁を含んで構成されている。コントロールバルブ16は、油圧ポンプ11から供給される圧油の供給と排出を、操作装置14の操作に基づく駆動指令(パイロット圧)に応じて切り換える(圧油の吐出量および吐出方向を制御する)。これにより、油圧ポンプ11からコントロールバルブ16に供給された圧油は、油圧モータ2E,21、シリンダ5D~5F等のアクチュエータに適宜分配され、これらを駆動(回転、伸長、縮小)する。 The control valve 16 is provided on the revolving frame 6 and includes a plurality of directional control valves for controlling the hydraulic motors 2E and 21 and the cylinders 5D to 5F. The control valve 16 switches supply and discharge of the pressure oil supplied from the hydraulic pump 11 according to a drive command (pilot pressure) based on the operation of the operation device 14 (controls the discharge amount and discharge direction of the pressure oil). . As a result, the pressure oil supplied from the hydraulic pump 11 to the control valve 16 is appropriately distributed to actuators such as the hydraulic motors 2E and 21, cylinders 5D to 5F, and drives (rotates, expands and contracts) them.
 ゲートロックレバー17は、ロック装置を構成し、アクチュエータ(油圧モータ2E,21、シリンダ5D~5F)の駆動を許可するロック解除状態と、アクチュエータの駆動を禁止するロック状態とを切り換える。ゲートロックレバー17は、キャブ7内に位置して、パイロットカット弁18に接続されている。このゲートロックレバー17は、パイロット弁15に付加されるパイロット圧を遮断することで、操作装置14による油圧モータ2E,21、シリンダ5D~5Fへの駆動指令の有効と無効とを切り換える。 The gate lock lever 17 constitutes a lock device, and switches between a lock release state that allows the actuators ( hydraulic motors 2E and 21 and cylinders 5D to 5F) to be driven and a lock state that prohibits the actuators from being driven. The gate lock lever 17 is located in the cab 7 and connected to the pilot cut valve 18. The gate lock lever 17 cuts off the pilot pressure applied to the pilot valve 15, thereby switching between enabling and disabling the drive command to the hydraulic motors 2 E and 21 and the cylinders 5 D to 5 F by the operating device 14.
 ゲートロックレバー17がロック位置(上げ位置)に操作されると、パイロットカット弁18がパイロットポンプ12からパイロット弁15への圧油を遮断し、操作装置14による油圧モータ2E,21、シリンダ5D~5Fの操作が不能となる。一方、ゲートロックレバー17がロック解除位置(下げ位置)に操作されると、パイロットカット弁18がパイロットポンプ12からパイロット弁15への圧油を連通し、操作装置14による油圧モータ2E,21、シリンダ5D~5Fの操作が可能になる。 When the gate lock lever 17 is operated to the locked position (raised position), the pilot cut valve 18 shuts off the pressure oil from the pilot pump 12 to the pilot valve 15, and the hydraulic motors 2E and 21 and cylinders 5D to 5F operation becomes impossible. On the other hand, when the gate lock lever 17 is operated to the unlocking position (lowering position), the pilot cut valve 18 communicates the pressure oil from the pilot pump 12 to the pilot valve 15, and the hydraulic motors 2E, 21, The cylinders 5D to 5F can be operated.
 また、ゲートロックレバー17がロック状態のときには、スタータとして機能するアシスト発電モータ10への電力供給が許可される。一方、ゲートロックレバー17がロック解除状態のときは、スタータカットリレー(図示せず)が作動し、スタータとして機能するアシスト発電モータ10への電力供給が遮断される。従って、ゲートロックレバー17がロック解除状態のときには、アシスト発電モータ10は駆動せず、エンジン9は始動されない。 In addition, when the gate lock lever 17 is in the locked state, power supply to the assist generator motor 10 that functions as a starter is permitted. On the other hand, when the gate lock lever 17 is in the unlocked state, a starter cut relay (not shown) is actuated to cut off the power supply to the assist generator motor 10 that functions as a starter. Therefore, when the gate lock lever 17 is in the unlocked state, the assist power generation motor 10 is not driven and the engine 9 is not started.
 さらに、ゲートロックレバー17は、2つのスイッチ(図示せず)を備え、それぞれのスイッチから「ロック状態」と「ロック解除状態」とに応じて、第1,第2のゲートロック信号Sga,Sgbを出力する。これらのゲートロック信号Sga,Sgbは、メインコントローラ32のエンジン始動制御部33とモータ駆動遮断部34とにそれぞれ入力される。なお、第1,第2のゲートロック信号Sga,Sgbは、ゲートロックレバー17の状態に応じた信号で、正常時には同一の波形をもった信号である。 Furthermore, the gate lock lever 17 includes two switches (not shown), and the first and second gate lock signals Sga and Sgb according to the “lock state” and the “unlock state” from the respective switches. Is output. These gate lock signals Sga and Sgb are input to the engine start control unit 33 and the motor drive cutoff unit 34 of the main controller 32, respectively. The first and second gate lock signals Sga and Sgb are signals according to the state of the gate lock lever 17 and have the same waveform when normal.
 なお、ゲートロックレバー17は、2つのスイッチを備えるものとしたが、単一のスイッチによってゲートロック信号Sga,Sgbを出力してもよい。また、ロック装置は、上,下方向に回動するレバー式のゲートロックレバー17に限らず、例えば各種のスイッチ、ペダル等によって構成してもよい。 Although the gate lock lever 17 includes two switches, the gate lock signals Sga and Sgb may be output by a single switch. Further, the locking device is not limited to the lever-type gate lock lever 17 that rotates in the upward and downward directions, and may be constituted by, for example, various switches, pedals, and the like.
 蓄電装置19は、上部旋回体4に設けられ、後述するチョッパ27、第1のインバータ24、第2のインバータ25を介して、アシスト発電モータ10、旋回電動モータ22に電気的に接続されている。蓄電装置19は、電力を蓄えるものであり、例えば、リチウムイオンバッテリ、ニッケル水素バッテリ等の二次電池、または、電気二重層のキャパシタを用いて構成されている。即ち、蓄電装置19は、アシスト発電モータ10による発電電力、旋回電動モータ22による旋回減速時の発電電力(回生電力)によって充電(蓄電)され、または、充電された電力をアシスト発電モータ10、旋回電動モータ22に向けて放電(給電)する。蓄電装置19には、バッテリコントロールユニット19A(以下、BCU19Aという)が設けられ、BCU19Aにより充電動作や放電動作が制御される。 The power storage device 19 is provided in the upper swing body 4 and is electrically connected to the assist power generation motor 10 and the swing electric motor 22 via a chopper 27, a first inverter 24, and a second inverter 25 described later. . The power storage device 19 stores electric power, and is configured using, for example, a secondary battery such as a lithium ion battery or a nickel metal hydride battery, or an electric double layer capacitor. That is, the power storage device 19 is charged (accumulated) by the generated power by the assist power generation motor 10 and the generated power (regenerative power) at the time of turning deceleration by the swing electric motor 22, or the charged power is supplied to the assist power generation motor 10, Discharge (power feeding) toward the electric motor 22. The power storage device 19 is provided with a battery control unit 19A (hereinafter referred to as BCU 19A), and the charging operation and the discharging operation are controlled by the BCU 19A.
 旋回装置20は、上部旋回体4(旋回フレーム6)に設けられ、減速機(図示せず)、旋回油圧モータ21、旋回電動モータ22等によって構成されている。旋回装置20は、旋回軸受装置3に回転力を伝達することにより、上部旋回体4を下部走行体2に対して旋回動作させる。ここで、旋回装置20は、旋回油圧モータ21と旋回電動モータ22とが協働して上部旋回体4を旋回駆動する、いわゆるハイブリッド型の旋回装置として構成されている。 The turning device 20 is provided on the upper turning body 4 (the turning frame 6), and includes a speed reducer (not shown), a turning hydraulic motor 21, a turning electric motor 22, and the like. The turning device 20 causes the upper turning body 4 to turn with respect to the lower traveling body 2 by transmitting a rotational force to the turning bearing device 3. Here, the turning device 20 is configured as a so-called hybrid turning device in which the turning hydraulic motor 21 and the turning electric motor 22 cooperate to drive the upper turning body 4 to turn.
 旋回電動モータ22は、旋回油圧モータ21と一緒に、減速機に取付けられている。旋回電動モータ22は、例えば永久磁石型同期電動機を用いて構成され、アシスト発電モータ10による発電電力と蓄電装置19からの電力により駆動される。また、旋回電動モータ22は、旋回動作を減速するときに発生するエネルギを電気エネルギに変換して発電を行う。即ち、旋回電動モータ22は、後述の電力制御装置23を介して電力が供給されることにより旋回油圧モータ21を補助(アシスト)して上部旋回体4を旋回させる作用(旋回アシスト作用)と、旋回減速時に上部旋回体4の運動エネルギ(回転エネルギ)を電気エネルギに変換(回生発電)する作用(旋回回生作用)とを有する。旋回電動モータ22の発電電力(回生電力)は、後述する第2のインバータ25および直流母線28A,28Bを介して第1のインバータ24に供給され、アシスト発電モータ10の駆動が行われる。また、旋回電動モータ22の発電電力(回生電力)は、第2のインバータ25および直流母線28A,28Bを介してチョッパ27に供給され、蓄電装置19の充電(蓄電)が行われる。 The turning electric motor 22 is attached to the speed reducer together with the turning hydraulic motor 21. The swing electric motor 22 is configured by using, for example, a permanent magnet type synchronous motor, and is driven by power generated by the assist power generation motor 10 and power from the power storage device 19. Moreover, the turning electric motor 22 generates electric power by converting energy generated when the turning operation is decelerated into electric energy. That is, the turning electric motor 22 has an action of turning the upper turning body 4 by turning the upper turning body 4 by assisting (assisting) the turning hydraulic motor 21 when electric power is supplied via a power control device 23 described later (turning assist action); It has the effect | action (swivel regeneration effect | action) which converts the kinetic energy (rotational energy) of the upper turning body 4 into electrical energy (regenerative power generation) at the time of turning deceleration. The generated power (regenerative power) of the swing electric motor 22 is supplied to the first inverter 24 via a second inverter 25 and DC buses 28A and 28B described later, and the assist generator motor 10 is driven. In addition, the generated electric power (regenerative electric power) of the swing electric motor 22 is supplied to the chopper 27 via the second inverter 25 and the DC buses 28A and 28B, and the power storage device 19 is charged (power storage).
 次に、ハイブリッド式油圧ショベル1の電動システムの構成について説明する。 Next, the configuration of the electric system of the hybrid excavator 1 will be described.
 図2に示すように、油圧ショベル1の電動システムは、上述したアシスト発電モータ10、蓄電装置19、旋回電動モータ22に加えて、後述する第1のインバータ24、第2のインバータ25、インバータコントローラ26、チョッパ27、キースイッチ29、再始動スイッチ30、メインコントローラ32等によって構成されている。この場合、例えば、第1,第2のインバータ24,25、インバータコントローラ26、およびチョッパ27は、電力制御装置(PCU:パワーコントロールユニット)23を構成している。この電力制御装置23は、上部旋回体4に搭載されている。 As shown in FIG. 2, the electric system of the hydraulic excavator 1 includes a first inverter 24, a second inverter 25, an inverter controller, which will be described later, in addition to the assist power generation motor 10, the power storage device 19, and the swing electric motor 22 described above. 26, a chopper 27, a key switch 29, a restart switch 30, a main controller 32, and the like. In this case, for example, the first and second inverters 24, 25, the inverter controller 26, and the chopper 27 constitute a power control unit (PCU: power control unit) 23. The power control device 23 is mounted on the upper swing body 4.
 第1のインバータ24は、アシスト発電モータ10に電気的に接続され、アシスト発電モータ10の駆動を制御する。第1のインバータ24は、例えばトランジスタ、絶縁ゲートバイポーラトランジスタ(IGBT)等からなる複数(例えば6個)のスイッチング素子を用いて構成され、一対の直流母線28A,28Bに接続されている。第1のインバータ24のスイッチング素子は、そのオン状態(ON)とオフ状態(OFF)がインバータコントローラ26から出力される三相(U相、V相、W相)のPWM信号によって制御される。また、メインコントローラ32がモータ駆動遮断要求信号S3を出力したときには、第1のインバータ24のスイッチング素子は、インバータコントローラ26から出力に拘らず、オフ状態になる。 The first inverter 24 is electrically connected to the assist power generation motor 10 and controls driving of the assist power generation motor 10. The first inverter 24 is configured by using a plurality of (for example, six) switching elements made of, for example, a transistor, an insulated gate bipolar transistor (IGBT), and the like, and is connected to the pair of DC buses 28A and 28B. The switching element of the first inverter 24 is controlled by a three-phase (U phase, V phase, W phase) PWM signal output from the inverter controller 26 in an on state (ON) and an off state (OFF). When the main controller 32 outputs the motor drive cutoff request signal S3, the switching element of the first inverter 24 is turned off regardless of the output from the inverter controller 26.
 第2のインバータ25は、旋回電動モータ22に電気的に接続され、旋回電動モータ22の駆動を制御する。第2のインバータ25は、第1のインバータ24とほぼ同様に、複数(例えば6個)のスイッチング素子を用いて構成され、一対の直流母線28A,28Bに接続されている。第2のインバータ25のスイッチング素子は、そのオン状態とオフ状態がインバータコントローラ26から出力される三相のPWM信号によって制御される。 The second inverter 25 is electrically connected to the swing electric motor 22 and controls the drive of the swing electric motor 22. The second inverter 25 is configured using a plurality of (for example, six) switching elements in substantially the same manner as the first inverter 24, and is connected to the pair of DC buses 28A and 28B. The switching element of the second inverter 25 is controlled by a three-phase PWM signal output from the inverter controller 26 in an on state and an off state.
 インバータコントローラ26は、入力側がメインコントローラ32に接続され、出力側が第1,第2のインバータ24,25に接続されている。インバータコントローラ26は、メインコントローラ32からの指令に基づいて、第1のインバータ24のスイッチング素子を制御する。これにより、アシスト発電モータ10の発電機作用時には、第1のインバータ24は、アシスト発電モータ10による発電電力を直流電力に変換して直流母線28A,28Bに供給する。一方、アシスト発電モータ10の電動機作用時には、第1のインバータ24は、直流母線28A,28Bの直流電力から三相の交流電力を生成し、アシスト発電モータ10に供給する。これにより、アシスト発電モータ10は、指令されたトルクで駆動する。 The inverter controller 26 has an input side connected to the main controller 32 and an output side connected to the first and second inverters 24 and 25. The inverter controller 26 controls the switching element of the first inverter 24 based on a command from the main controller 32. Thereby, at the time of the generator operation of the assist power generation motor 10, the first inverter 24 converts the power generated by the assist power generation motor 10 into DC power and supplies it to the DC buses 28A and 28B. On the other hand, when the assist generator motor 10 operates as an electric motor, the first inverter 24 generates three-phase AC power from the DC power of the DC buses 28 </ b> A and 28 </ b> B and supplies it to the assist generator motor 10. Thereby, the assist power generation motor 10 is driven with the commanded torque.
 また、インバータコントローラ26は、メインコントローラ32からの指令に基づいて、第2のインバータ25のスイッチング素子を制御する。これにより、旋回電動モータ22の旋回駆動時には、第2のインバータ25は、直流母線28A,28Bの直流電力から三相の交流電力を生成し、旋回電動モータ22に供給する。一方、旋回電動モータ22の旋回減速時(回生時)には、第2のインバータ25は、旋回電動モータ22による回生電力を直流電力に変換して直流母線28A,28Bに供給する。これにより、旋回電動モータ22は、指令されたトルクで駆動する。 The inverter controller 26 controls the switching element of the second inverter 25 based on a command from the main controller 32. As a result, when the swing electric motor 22 is driven to turn, the second inverter 25 generates three-phase AC power from the DC power of the DC buses 28 </ b> A and 28 </ b> B and supplies it to the swing electric motor 22. On the other hand, when the swing electric motor 22 is decelerated (regeneration), the second inverter 25 converts the regenerative power generated by the swing electric motor 22 into DC power and supplies it to the DC buses 28A and 28B. Thereby, the turning electric motor 22 is driven with the commanded torque.
 チョッパ27は、一端が蓄電装置19に接続され、他端が直流母線28A,28Bに接続されている。チョッパ27と第1,第2のインバータ24,25は、一対の直流母線28A,28Bを介して互いに電気的に接続されている。チョッパ27は、例えばIGBT等からなる複数(例えば2個)のスイッチング素子とリアクトルとを備える。チョッパ27は、チョッパコントロールユニット27A(以下、CCU27Aという)によってスイッチング素子のオン状態とオフ状態が制御される。そして、蓄電装置19の充電時には、チョッパ27は、降圧回路(降圧チョッパ)として機能し、例えば直流母線28A,28Bから供給される直流電圧を降圧して蓄電装置19に供給する。一方、蓄電装置19の放電時には、チョッパ27は、昇圧回路(昇圧チョッパ)として機能し、蓄電装置19から供給される直流電圧を昇圧して例えば直流母線28A,28Bに供給する。 The chopper 27 has one end connected to the power storage device 19 and the other end connected to the DC buses 28A and 28B. The chopper 27 and the first and second inverters 24 and 25 are electrically connected to each other via a pair of DC buses 28A and 28B. The chopper 27 includes a plurality of (for example, two) switching elements made of, for example, an IGBT and a reactor. In the chopper 27, the ON state and the OFF state of the switching element are controlled by a chopper control unit 27A (hereinafter referred to as CCU 27A). When the power storage device 19 is charged, the chopper 27 functions as a step-down circuit (step-down chopper), and for example, steps down a DC voltage supplied from the DC buses 28A and 28B and supplies the voltage to the power storage device 19. On the other hand, when the power storage device 19 is discharged, the chopper 27 functions as a booster circuit (boost chopper), boosts the DC voltage supplied from the power storage device 19 and supplies it to, for example, the DC buses 28A and 28B.
 第1,第2のインバータ24,25およびチョッパ27は、正極側(プラス側)と負極側(マイナス側)で一対の直流母線28A,28Bを通じて相互に接続されている。直流母線28A,28Bには、直流母線28A,28Bの電圧を安定させるために、平滑用のコンデンサ(図示せず)が接続されている。直流母線28A,28Bには、例えば数百V程度の所定の直流電圧が印加される。 The first and second inverters 24 and 25 and the chopper 27 are connected to each other through a pair of DC buses 28A and 28B on the positive electrode side (plus side) and the negative electrode side (minus side). A smoothing capacitor (not shown) is connected to the DC buses 28A and 28B in order to stabilize the voltage of the DC buses 28A and 28B. For example, a predetermined direct current voltage of about several hundred volts is applied to the direct current buses 28A and 28B.
 キースイッチ29は、キャブ7内の運転席付近に設けられている。このキースイッチ29は、メインコントローラ32に接続され、エンジン9の始動と停止とを切り換える。キースイッチ29が例えばSTART位置に操作されると、キースイッチ29は、エンジン始動要求信号S0をメインコントローラ32に出力する。これにより、メインコントローラ32は、ECU9A、BCU19A、インバータコントローラ26、CCU27A等にエンジン始動用の制御指令を出力し、スタータとなるアシスト発電モータ10を用いてエンジン9を始動する。また、キースイッチ29が停止位置に操作されると、メインコントローラ32は、ECU9A、インバータコントローラ26等に停止信号を出力し、エンジン9を停止させると共に、アシスト発電モータ10の駆動を停止させる。 The key switch 29 is provided near the driver's seat in the cab 7. The key switch 29 is connected to the main controller 32 and switches between starting and stopping the engine 9. When the key switch 29 is operated to the START position, for example, the key switch 29 outputs an engine start request signal S0 to the main controller 32. Thereby, the main controller 32 outputs a control command for starting the engine to the ECU 9A, the BCU 19A, the inverter controller 26, the CCU 27A, and the like, and starts the engine 9 using the assist power generation motor 10 serving as a starter. When the key switch 29 is operated to the stop position, the main controller 32 outputs a stop signal to the ECU 9A, the inverter controller 26, and the like to stop the engine 9 and stop the driving of the assist power generation motor 10.
 再始動スイッチ30は、キースイッチ29と共に、油圧ショベル1の起動を要求する起動要求手段を構成している。再始動スイッチ30は、キャブ7内の運転席付近に設けられている。この再始動スイッチ30は、メインコントローラ32に接続され、アイドリングストップ状態のエンジン9を再始動させる。具体的には、アイドリングストップ状態で再始動スイッチ30が操作されると、再始動スイッチ30は、エンジン再始動要求信号S1をメインコントローラ32に出力する。これにより、メインコントローラ32は、ECU9A、BCU19A、インバータコントローラ26、CCU27A等にエンジン始動用の制御指令を出力し、スタータとなるアシスト発電モータ10を用いてエンジン9を再始動する。 The restart switch 30 constitutes, together with the key switch 29, start request means for requesting start of the excavator 1. The restart switch 30 is provided near the driver's seat in the cab 7. The restart switch 30 is connected to the main controller 32 and restarts the engine 9 in the idling stop state. Specifically, when the restart switch 30 is operated in the idling stop state, the restart switch 30 outputs an engine restart request signal S1 to the main controller 32. Thereby, the main controller 32 outputs a control command for starting the engine to the ECU 9A, the BCU 19A, the inverter controller 26, the CCU 27A, and the like, and restarts the engine 9 using the assist power generation motor 10 serving as a starter.
 表示装置31は、キャブ7内で運転席の前方に設けられ、メインコントローラ32に接続されている。この表示装置31は、例えば液晶モニタにより構成され、燃料の残量、エンジン冷却水の水温、稼動時間、車内温度等のように車体に関する各種の情報を表示する。 The display device 31 is provided in front of the driver's seat in the cab 7 and connected to the main controller 32. The display device 31 is composed of, for example, a liquid crystal monitor, and displays various types of information related to the vehicle body such as the remaining amount of fuel, the temperature of the engine coolant, the operating time, the vehicle interior temperature, and the like.
 メインコントローラ32は、エンジン9、アシスト発電モータ10、油圧ポンプ11等を制御する制御装置を構成している。メインコントローラ32は、ECU9A、BCU19A、インバータコントローラ26、CCU27A、CAN(Controller Area Network)35等に接続されている。このメインコントローラ32は、例えばマイクロコンピュータ等により構成され、エネルギマネジメント機能、異常監視・異常処理機能、アイドリングストップ機能等を有している。メインコントローラ32は、電力制御装置23等に対する制御指令を生成し、電動システムに対するエネルギマネジメント等の制御を行う。 The main controller 32 constitutes a control device that controls the engine 9, the assist power generation motor 10, the hydraulic pump 11, and the like. The main controller 32 is connected to an ECU 9A, a BCU 19A, an inverter controller 26, a CCU 27A, a CAN (Controller Area Network) 35, and the like. The main controller 32 is composed of, for example, a microcomputer and has an energy management function, an abnormality monitoring / abnormality processing function, an idling stop function, and the like. The main controller 32 generates a control command for the power control device 23 and the like, and performs control such as energy management for the electric system.
 メインコントローラ32は、エネルギマネジメント機能によって、電動システム全体のエネルギを制御している。例えば、旋回電動モータ22が加速時に消費するエネルギと減速時に回生するエネルギの差によって、蓄電装置19の蓄電量が増加または減少することになる。これを制御するのがエネルギマネジメント機能である。メインコントローラ32は、アシスト発電モータ10に対して発電指令またはアシスト指令を出力することによって、蓄電装置19の蓄電量を所定の範囲に保つ制御を行う。 The main controller 32 controls the energy of the entire electric system by the energy management function. For example, the amount of power stored in the power storage device 19 increases or decreases due to the difference between the energy consumed by the swing electric motor 22 during acceleration and the energy regenerated during deceleration. It is the energy management function that controls this. The main controller 32 controls to keep the amount of power stored in the power storage device 19 within a predetermined range by outputting a power generation command or an assist command to the assist power generation motor 10.
 メインコントローラ32は、異常監視・異常処理機能によって、アシスト発電モータ10、蓄電装置19、旋回電動モータ22、電力制御装置23等の電動システムに故障、異常、警告等の異常状態が発生したか否かを監視している。電動システムの異常状態が検知されると、メインコントローラ32は、電動システムを停止する等の異常処理を行う。 The main controller 32 determines whether an abnormal state such as a failure, abnormality, warning, or the like has occurred in the electric system such as the assist power generation motor 10, the power storage device 19, the swing electric motor 22, and the power control device 23 by the abnormality monitoring / abnormality processing function. Monitoring. When an abnormal state of the electric system is detected, the main controller 32 performs an abnormal process such as stopping the electric system.
 メインコントローラ32は、アイドリングストップ機能によって、作業休止状態か否かを監視している。例えば操作装置14が所定時間に亘って操作されないときには、メインコントローラ32は、油圧ショベル1の走行動作、旋回動作、掘削動作等が停止された作業休止状態であると判定する。このような作業休止状態では、メインコントローラ32は、燃料噴射を停止するための指令をエンジン9のECU9A等に出力する。これにより、メインコントローラ32は、エンジン9を自動的に停止させると共に、アシスト発電モータ10の駆動(発電機駆動および電動機駆動)も停止させる。アイドリングストップ機能によってエンジン9が停止したときには、メインコントローラ32は、例えばフラグの設定や信号の出力によって、アイドリングストップ中であることを認識する。 The main controller 32 monitors whether or not it is in a work pause state by an idling stop function. For example, when the operating device 14 is not operated for a predetermined time, the main controller 32 determines that the traveling operation, turning operation, excavation operation, etc. of the excavator 1 are stopped. In such a work pause state, the main controller 32 outputs a command for stopping fuel injection to the ECU 9A of the engine 9 or the like. As a result, the main controller 32 automatically stops the engine 9 and also stops driving the assist power generation motor 10 (generator drive and motor drive). When the engine 9 is stopped by the idling stop function, the main controller 32 recognizes that idling is stopped, for example, by setting a flag or outputting a signal.
 なお、アイドリングストップ機能の動作条件は、上述したものに限らない。例えばゲートロックレバー17が所定時間に亘ってロック位置に固定されたときに、アイドリングストップ機能が動作してもよく、他の条件に基づいて、アイドリングストップ機能が動作してもよい。 Note that the operating conditions of the idling stop function are not limited to those described above. For example, when the gate lock lever 17 is fixed at the locked position for a predetermined time, the idling stop function may operate, or the idling stop function may operate based on other conditions.
 また、メインコントローラ32は、エンジン9を始動させるエンジン始動機能を有している。図3に示すように、メインコントローラ32は、エンジン始動機能を実行するために、メインコントローラ32は、エンジン始動制御部33、モータ駆動遮断部34を備えている。 The main controller 32 has an engine start function for starting the engine 9. As shown in FIG. 3, the main controller 32 includes an engine start control unit 33 and a motor drive cutoff unit 34 in order to execute the engine start function.
 エンジン始動制御部33は、入力側がゲートロックレバー17、キースイッチ29、再始動スイッチ30等に接続され、出力側が電力制御装置23に接続されている。エンジン始動制御部33は、機械状態判定部33A、駆動指令部33Bを備えている。エンジン始動制御部33は、ゲートロックレバー17からの第1のゲートロック信号Sga、スイッチ29,30の操作等に応じて、電力制御装置23にエンジン始動のためのアシスト発電モータ駆動指令S2を出力する。 The engine start control unit 33 has an input side connected to the gate lock lever 17, key switch 29, restart switch 30, and the like, and an output side connected to the power control device 23. The engine start control unit 33 includes a machine state determination unit 33A and a drive command unit 33B. The engine start control unit 33 outputs an assist generator motor drive command S2 for starting the engine to the power control device 23 in accordance with the first gate lock signal Sga from the gate lock lever 17, the operation of the switches 29 and 30, and the like. To do.
 機械状態判定部33Aは、油圧ショベル1が休止状態か否かを判定する状態判定手段を構成している。ここで、油圧ショベル1が休止状態となったときには、少なくとも油圧ポンプ11の動力源となるエンジン9が停止状態となる。機械状態判定部33Aには、CAN35を介して、例えば操作装置14の操作状態、キースイッチ29の位置、エンジン回転数等のような油圧ショベル1の駆動状態に関連する各種の情報が入力される。機械状態判定部33Aは、これらの情報に基づいて、機械休止、エンジン始動、機械稼動、アイドリングストップ中といった機械状態(油圧ショベル1の状態)を判定する。機械状態判定部33Aは、機械状態の判定結果MCを駆動指令部33Bに出力する。 The machine state determination unit 33A constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state. Here, when the excavator 1 is in a resting state, at least the engine 9 that is a power source of the hydraulic pump 11 is in a stopped state. Various types of information related to the drive state of the excavator 1 such as the operation state of the operation device 14, the position of the key switch 29, the engine speed, and the like are input to the machine state determination unit 33A via the CAN 35. . Based on these pieces of information, the machine state determination unit 33A determines a machine state (state of the hydraulic excavator 1) such as machine stop, engine start, machine operation, and idling stop. The machine state determination unit 33A outputs the machine state determination result MC to the drive command unit 33B.
 駆動指令部33Bは、機械状態判定部33Aの判定結果MCと、ゲートロックレバー17の状態と、キースイッチ29または再始動スイッチ30からの起動要求(信号S0,S1)とに基づいて、アシスト発電モータ10の駆動を制御する電動機駆動制御手段を構成している。駆動指令部33Bの入力側は、機械状態判定部33A、ゲートロックレバー17、キースイッチ29および再始動スイッチ30に接続されている。駆動指令部33Bは、ゲートロックレバー17からの第1のゲートロック信号Sga(第1のロック装置状態信号)を受信する。駆動指令部33Bの出力側は、電力制御装置23のインバータコントローラ26に接続されている。駆動指令部33Bは、機械状態判定部33Aの判定結果MCと、ゲートロックレバー17からの第1のゲートロック信号Sgaと、スイッチ29,30の操作とに応じて、インバータコントローラ26に対してアシスト発電モータ駆動指令S2を出力する。 The drive command unit 33B assists power generation based on the determination result MC of the machine state determination unit 33A, the state of the gate lock lever 17, and the activation request (signals S0 and S1) from the key switch 29 or the restart switch 30. Electric motor drive control means for controlling the drive of the motor 10 is configured. The input side of the drive command unit 33B is connected to the machine state determination unit 33A, the gate lock lever 17, the key switch 29, and the restart switch 30. The drive command unit 33B receives the first gate lock signal Sga (first lock device state signal) from the gate lock lever 17. The output side of the drive command unit 33 </ b> B is connected to the inverter controller 26 of the power control device 23. The drive command unit 33B assists the inverter controller 26 in accordance with the determination result MC of the machine state determination unit 33A, the first gate lock signal Sga from the gate lock lever 17, and the operation of the switches 29 and 30. The generator motor drive command S2 is output.
 具体的には、駆動指令部33Bは、機械状態判定部33Aが機械休止と判断し、かつ、第1のゲートロック信号Sgaが「ロック状態」であるときに、キースイッチ29の操作(エンジン始動要求信号S0)でエンジン始動が要求されると、電力制御装置23のインバータコントローラ26にエンジン始動のためのアシスト発電モータ駆動指令S2を出力する。 Specifically, the drive command unit 33B operates the key switch 29 (engine start) when the machine state determination unit 33A determines that the machine is stopped and the first gate lock signal Sga is “locked state”. When engine start is requested by the request signal S0), an assist generator motor drive command S2 for engine start is output to the inverter controller 26 of the power control device 23.
 また、駆動指令部33Bは、機械状態判定部33Aが休止状態であるアイドリングストップと判断し、かつ、ゲートロック信号Sgaが「ロック状態」であるときに、再始動スイッチ30の操作(エンジン再始動要求信号S1)でエンジン再始動が要求されると、電力制御装置23のインバータコントローラ26にエンジン始動のためのアシスト発電モータ駆動指令S2を出力する。 In addition, the drive command unit 33B determines that the machine state determination unit 33A is idling stop in a rest state, and operates the restart switch 30 (engine restart) when the gate lock signal Sga is in the “lock state”. When the engine restart is requested by the request signal S1), an assist generator motor drive command S2 for starting the engine is output to the inverter controller 26 of the power control device 23.
 モータ駆動遮断部34は、入力側がゲートロックレバー17等に接続され、出力側が電力制御装置23に接続されている。モータ駆動遮断部34は、エンジン停止判定部34A、モータ駆動遮断要求部34Bを備えている。モータ駆動遮断部34は、エンジン9が停止状態か否かの判定結果ESと、ゲートロックレバー17からのゲートロック信号Sgbと応じて、電力制御装置23にアシスト発電モータ10の遮断を要求するモータ駆動遮断要求信号S3を出力する。 The motor drive cutoff unit 34 has an input side connected to the gate lock lever 17 and the like, and an output side connected to the power control device 23. The motor drive cutoff unit 34 includes an engine stop determination unit 34A and a motor drive cutoff request unit 34B. The motor drive shut-off unit 34 requests the power control device 23 to shut off the assist power generation motor 10 according to the determination result ES whether or not the engine 9 is stopped and the gate lock signal Sgb from the gate lock lever 17. A drive cutoff request signal S3 is output.
 エンジン停止判定部34Aは、機械状態判定部33Aと共に、油圧ショベル1が休止状態か否かを判定する状態判定手段を構成している。エンジン停止判定部34Aには、CAN35を介して、例えばエンジン回転数等のようなエンジン9の駆動状態に関連する各種の情報が入力される。エンジン停止判定部34Aは、これらの情報に基づいて、油圧ショベル1の動力源としてのエンジン9が停止状態か否か、即ち油圧ショベル1が休止状態か否かを判定する。エンジン停止判定部34Aは、エンジン9が停止状態か否かの判定結果ESを、モータ駆動遮断要求部34Bに出力する。 The engine stop determination unit 34A, together with the machine state determination unit 33A, constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state. Various information related to the driving state of the engine 9 such as the engine speed is input to the engine stop determination unit 34A via the CAN 35. Based on these pieces of information, the engine stop determination unit 34A determines whether or not the engine 9 as the power source of the excavator 1 is in a stopped state, that is, whether or not the excavator 1 is in a resting state. The engine stop determination unit 34A outputs a determination result ES as to whether or not the engine 9 is stopped to the motor drive cutoff request unit 34B.
 モータ駆動遮断要求部34Bは、第1のインバータ24と共に、電動駆動遮断手段を構成している。このため、モータ駆動遮断要求部34Bおよび第1のインバータ24は、エンジン停止判定部34Aの判定結果ESとゲートロックレバー17の状態とに基づいて、アシスト発電モータ10の駆動を遮断する。モータ駆動遮断要求部34Bの入力側は、エンジン停止判定部34Aと、ゲートロックレバー17とに接続されている。モータ駆動遮断要求部34Bは、ゲートロックレバー17からの第2のゲートロック信号Sgb(第2のロック装置状態信号)を受信する。モータ駆動遮断要求部34Bの出力側は、電力制御装置23の第1のインバータ24に接続されている。モータ駆動遮断要求部34Bは、エンジン停止判定部34Aの判定結果ESと、ゲートロックレバー17からの第2のゲートロック信号Sgbとに応じて、第1のインバータ24に対してモータ駆動遮断要求信号S3を出力する。 The motor drive cutoff request unit 34B, together with the first inverter 24, constitutes an electric drive cutoff means. Therefore, the motor drive cutoff request unit 34B and the first inverter 24 shut off the drive of the assist power generation motor 10 based on the determination result ES of the engine stop determination unit 34A and the state of the gate lock lever 17. The input side of the motor drive cutoff request unit 34B is connected to the engine stop determination unit 34A and the gate lock lever 17. The motor drive cutoff request unit 34B receives the second gate lock signal Sgb (second lock device state signal) from the gate lock lever 17. The output side of the motor drive cutoff request unit 34 </ b> B is connected to the first inverter 24 of the power control device 23. The motor drive cutoff request unit 34B sends a motor drive cutoff request signal to the first inverter 24 in accordance with the determination result ES of the engine stop determination unit 34A and the second gate lock signal Sgb from the gate lock lever 17. S3 is output.
 具体的には、モータ駆動遮断要求部34Bは、エンジン停止判定部34Aが休止状態であるエンジン停止状態(動力源停止状態)と判断し、かつ、第2のゲートロック信号Sgbが「ロック解除状態」であるときに、モータ駆動遮断要求信号S3を出力する。第1のインバータ24は、モータ駆動遮断要求信号S3を受信すると、全てのスイッチング素子をオフ状態にすることで、アシスト発電モータ10と直流母線28A,28Bとの間を電気的に遮断する。これにより、駆動指令部33Bからのアシスト発電モータ駆動指令S2やインバータコントローラ26からのPWM信号の出力に依らず、アシスト発電モータ10は駆動されない。 Specifically, the motor drive cut-off request unit 34B determines that the engine stop determination unit 34A is in the stop state, that is, the engine stop state (power source stop state), and the second gate lock signal Sgb is “lock release state”. , The motor drive cutoff request signal S3 is output. When the first inverter 24 receives the motor drive cut-off request signal S3, the first inverter 24 turns off all the switching elements to electrically cut off the assist generator motor 10 and the DC buses 28A and 28B. Thus, the assist generator motor 10 is not driven regardless of the assist generator motor drive command S2 from the drive command unit 33B or the output of the PWM signal from the inverter controller 26.
 第1の実施の形態による油圧ショベル1は、上述のような構成を有するもので、次に、その動作について説明する。 The hydraulic excavator 1 according to the first embodiment has the above-described configuration, and the operation thereof will be described next.
 まず、オペレータは、キャブ7に搭乗して運転席に着座し、ゲートロックレバー17をロック位置に固定した状態で、キースイッチ29をSTART位置に操作する。これにより、アシスト発電モータ10が回転駆動すると共に、エンジン9に燃料が供給され、エンジン9を始動する。そして、エンジン回転数が所定の回転数(例えば、アイドル回転数)以上となり、エンジン始動完了状態になったら、オペレータは、ゲートロックレバー17をロック位置からロック解除位置に切り換える。この状態で、オペレータが操作装置14の走行用操作レバー・ペダルを操作すると、コントロールバルブ16を通じて油圧ポンプ11からの圧油が下部走行体2の走行油圧モータ2Eに供給される。これにより、油圧ショベル1は、前進、後退等のような走行動作を行う。また、オペレータが操作装置14の作業用操作レバーを操作すると、コントロールバルブ16を通じて油圧ポンプ11からの圧油が旋回油圧モータ21やシリンダ5D~5Fに供給される。これにより、油圧ショベル1は、旋回動作や作業装置5の俯仰動による掘削動作等を行う。 First, the operator gets on the cab 7 and sits in the driver's seat, and operates the key switch 29 to the START position with the gate lock lever 17 fixed at the lock position. As a result, the assist power generation motor 10 is driven to rotate and fuel is supplied to the engine 9 to start the engine 9. Then, when the engine speed becomes equal to or higher than a predetermined speed (for example, idle speed) and the engine is started, the operator switches the gate lock lever 17 from the locked position to the unlocked position. In this state, when the operator operates the traveling operation lever / pedal of the operation device 14, the pressure oil from the hydraulic pump 11 is supplied to the traveling hydraulic motor 2 </ b> E of the lower traveling body 2 through the control valve 16. As a result, the excavator 1 performs a traveling operation such as advancing and retreating. Further, when the operator operates the operation lever of the operation device 14, the pressure oil from the hydraulic pump 11 is supplied to the swing hydraulic motor 21 and the cylinders 5D to 5F through the control valve 16. As a result, the excavator 1 performs a turning operation, an excavation operation by the up-and-down movement of the work device 5, and the like.
 操作装置14が例えば予め決められた所定時間に亘って操作されないときには、メインコントローラ32は、油圧ショベル1の走行、旋回、掘削等の動作が休止された作業休止状態であると判定する。このような作業休止状態では、メインコントローラ32は、エンジン9をアイドリングストップ状態にするために、燃料噴射を停止するための指令をエンジン9のECU9A等に出力する。これにより、エンジン9は、自動的に停止する。 When the operation device 14 is not operated for a predetermined time, for example, the main controller 32 determines that the operation of the excavator 1 such as traveling, turning, excavation, etc. is suspended. In such a work pause state, the main controller 32 outputs a command for stopping fuel injection to the ECU 9A of the engine 9 or the like in order to place the engine 9 in an idling stop state. As a result, the engine 9 automatically stops.
 アイドリングストップ状態でエンジン9を再始動させるためには、オペレータは、ゲートロックレバー17をロック位置に切り換えた後に、再始動スイッチ30を操作する。これにより、メインコントローラ32は、ECU9A、電力制御装置23等にエンジン再始動の指令を出力し、アシスト発電モータ10を用いてエンジン9を回転駆動すると共に、エンジン9に燃料を供給する。この結果、作業装置5等がロックされた状態で、エンジン9は再始動する。 In order to restart the engine 9 in the idling stop state, the operator operates the restart switch 30 after switching the gate lock lever 17 to the lock position. Accordingly, the main controller 32 outputs an engine restart command to the ECU 9A, the power control device 23, and the like, rotationally drives the engine 9 using the assist power generation motor 10, and supplies fuel to the engine 9. As a result, the engine 9 restarts in a state where the work device 5 and the like are locked.
 ここで、油圧ショベル1は、エンジン再始動の信頼性を高めるために、所定条件の下でエンジン9の再始動を禁止する機能を備えている。そこで、メインコントローラ32により実行されるエンジン9の再始動処理について、図4および図5のタイミングチャートを用いて説明する。 Here, the excavator 1 has a function of prohibiting the restart of the engine 9 under a predetermined condition in order to increase the reliability of the engine restart. Therefore, the restart process of the engine 9 executed by the main controller 32 will be described using the timing charts of FIGS. 4 and 5.
 図4は、ゲートロックレバー17がロック解除位置に固定された状態で「ロック状態」を示す第1のゲートロック信号Sgaを誤って出力した場合を示している。図4に示すように、時点aでは、メインコントローラ32は、油圧ショベル1の作業休止状態を判定して、エンジン9を停止させる。これにより、油圧ショベル1は、休止状態であるアイドリングストップ状態になる。 FIG. 4 shows a case where the first gate lock signal Sga indicating the “lock state” is erroneously output in a state where the gate lock lever 17 is fixed at the unlock position. As shown in FIG. 4, at the time point a, the main controller 32 determines the work suspension state of the excavator 1 and stops the engine 9. Thereby, the excavator 1 enters an idling stop state that is a resting state.
 このようなアイドリングストップ状態の時点bで、例えばスイッチの不具合や信号線の接続不良等によって、第1のゲートロック信号Sgaが誤って「ロック状態」を出力した場合を仮定する。この場合、駆動指令部33Bは、アイドリングストップ状態で、かつ、ゲートロック信号Sgaによって「ロック状態」と認識する。このため、再始動スイッチ30の操作でエンジン再始動が要求されると、ゲートロックレバー17がロック解除位置に固定されているにも拘らず、駆動指令部33Bは、電力制御装置23にエンジン始動のためのアシスト発電モータ駆動指令S2を出力する(時点c~時点d)。 Suppose that at the time point b in such an idling stop state, the first gate lock signal Sga erroneously outputs the “lock state” due to, for example, a switch failure or a signal line connection failure. In this case, the drive command unit 33B recognizes the “lock state” in the idling stop state and the gate lock signal Sga. For this reason, when engine restart is requested by operating the restart switch 30, the drive command unit 33B causes the power control device 23 to start the engine even though the gate lock lever 17 is fixed at the unlocked position. Assist generator motor drive command S2 is output (time c to time d).
 このとき、モータ駆動遮断要求部34Bは、油圧ショベル1の休止状態であるエンジン停止状態で、かつ、第2のゲートロック信号Sgbによって「ロック解除状態」と認識するので、モータ駆動遮断要求信号S3を出力する。第1のインバータ24は、モータ駆動遮断要求信号S3を受信すると、全てのスイッチング素子をオフ状態にすることで、アシスト発電モータ10と直流母線28A,28Bとの間を遮断する。これにより、駆動指令部33Bからアシスト発電モータ駆動指令S2が出力されても、アシスト発電モータ10は駆動されない。 At this time, the motor drive cut-off request unit 34B recognizes that the hydraulic excavator 1 is in the engine stop state, which is a stop state, and the “unlocked state” based on the second gate lock signal Sgb. Is output. When the first inverter 24 receives the motor drive cut-off request signal S3, the first inverter 24 turns off all the switching elements to cut off between the assist generator motor 10 and the DC buses 28A and 28B. Thereby, even if the assist power generation motor drive command S2 is output from the drive command unit 33B, the assist power generation motor 10 is not driven.
 次に、時点eで、オペレータがゲートロックレバー17をロック位置に戻すと、モータ駆動遮断要求部34Bは、エンジン停止状態で、かつ、第2のゲートロック信号Sgbによってゲートロックレバー17が「ロック状態」と認識するので、モータ駆動遮断要求信号S3の出力を停止する。これにより、第1のインバータ24におけるアシスト発電モータ10の駆動遮断が解除されるので、再始動スイッチ30の操作でエンジン再始動が要求されると、アシスト発電モータ10が駆動して、エンジン9が再始動される(時点f~時点g)。 Next, when the operator returns the gate lock lever 17 to the locked position at the time point e, the motor drive cutoff request unit 34B is in an engine stop state and the gate lock lever 17 is “locked” by the second gate lock signal Sgb. Since the state is recognized, the output of the motor drive cutoff request signal S3 is stopped. As a result, the drive interruption of the assist generator motor 10 in the first inverter 24 is released. Therefore, when the engine restart is requested by the operation of the restart switch 30, the assist generator motor 10 is driven and the engine 9 is It is restarted (time point f to time point g).
 図5は、ゲートロックレバー17がロック解除位置に固定された状態で駆動指令部33Bがアシスト発電モータ駆動指令S2を誤った出力した場合を示している。図5に示すように、時点aでメインコントローラ32は、油圧ショベル1の作業休止状態を判定して、エンジン9を停止させる。これにより、油圧ショベル1がアイドリングストップ状態になる。 FIG. 5 shows a case where the drive command unit 33B erroneously outputs the assist power generation motor drive command S2 while the gate lock lever 17 is fixed at the unlock position. As shown in FIG. 5, at the time point a, the main controller 32 determines the work suspension state of the excavator 1 and stops the engine 9. Thereby, the excavator 1 enters an idling stop state.
 その後、時点bから時点eの間では、オペレータがゲートロックレバー17をロック解除位置に操作している。この状態で、駆動指令部33Bが誤って電力制御装置23にエンジン始動のためのアシスト発電モータ駆動指令S2を出力した場合を仮定する(時点c~時点d)。 After that, between time point b and time point e, the operator operates the gate lock lever 17 to the unlock position. In this state, it is assumed that the drive command unit 33B erroneously outputs an assist power generation motor drive command S2 for starting the engine to the power control device 23 (time point c to time point d).
 このとき、モータ駆動遮断要求部34Bは、エンジン停止状態で、かつ、第2のゲートロック信号Sgbによって「ロック解除状態」と認識するので、モータ駆動遮断要求信号S3を出力する。第1のインバータ24は、モータ駆動遮断要求信号S3を受信すると、全てのスイッチング素子をオフ状態にすることで、アシスト発電モータ10と直流母線28A,28Bとの間を遮断する。これにより、駆動指令部33Bからアシスト発電モータ駆動指令S2が出力されても、アシスト発電モータ10は駆動されない。なお、時点e以降の処理については、図4と同様である。 At this time, the motor drive cut-off request unit 34B recognizes the “unlocked state” by the second gate lock signal Sgb while the engine is stopped, and outputs a motor drive cut-off request signal S3. When the first inverter 24 receives the motor drive cut-off request signal S3, the first inverter 24 turns off all the switching elements to cut off between the assist generator motor 10 and the DC buses 28A and 28B. Thereby, even if the assist power generation motor drive command S2 is output from the drive command unit 33B, the assist power generation motor 10 is not driven. The processing after time point e is the same as in FIG.
 かくして、第1の実施の形態では、モータ駆動遮断要求部34B(電動駆動遮断手段)を備え、モータ駆動遮断要求部34Bは、エンジン停止判定部(状態判定手段)によってエンジン9が停止状態(休止状態)であると判定し、かつ、ゲートロックレバー17(ロック装置)が「ロック解除状態」のときに、アシスト発電モータ10(電動機)と直流母線28A,28Bとの間を遮断する。このため、メインコントローラ32が「ロック状態」の誤認識や誤作動に基づいて、アシスト発電モータ10にアシスト発電モータ駆動指令S2を出力するときでも、モータ駆動遮断要求部34Bによって、アシスト発電モータ10(電動機)と直流母線28A,28Bとの間を遮断し、アシスト発電モータ10の起動を回避することができる。 Thus, in the first embodiment, the motor drive cutoff request unit 34B (electric drive cutoff unit) is provided, and the motor drive cutoff request unit 34B is in a stopped state (pause) by the engine stop determination unit (state determination unit). When the gate lock lever 17 (lock device) is in the “unlocked state”, the assist generator motor 10 (electric motor) and the DC buses 28A and 28B are disconnected. For this reason, even when the main controller 32 outputs the assist power generation motor drive command S2 to the assist power generation motor 10 based on the erroneous recognition or malfunction of the “lock state”, the motor drive cutoff request unit 34B causes the assist power generation motor 10 to operate. It is possible to block between the (electric motor) and the DC buses 28 </ b> A and 28 </ b> B, thereby avoiding activation of the assist power generation motor 10.
 具体的に説明すると、例えばゲートロックレバー17や信号線等の不具合によって、誤った第1のゲートロック信号Sgaが出力され、駆動指令部33Bが「ロック状態」と誤認識すると、駆動指令部33Bは、ゲートロックレバー17が「ロック解除状態」であるにも拘らず、アシスト発電モータ10にアシスト発電モータ駆動指令S2を出力することがある。また、駆動指令部33Bの誤作動によって、アシスト発電モータ10に対して不必要なアシスト発電モータ駆動指令S2を出力する可能性がある。 More specifically, for example, when the erroneous first gate lock signal Sga is output due to problems such as the gate lock lever 17 or the signal line, and the drive command unit 33B erroneously recognizes the “lock state”, the drive command unit 33B May output the assist power generation motor drive command S2 to the assist power generation motor 10 even though the gate lock lever 17 is in the “unlocked state”. Further, there is a possibility that an unnecessary assist generator motor drive command S2 is output to the assist generator motor 10 due to a malfunction of the drive command unit 33B.
 これに対し、駆動指令部33B(電動機駆動制御手段)は、ゲートロックレバー17からの第1のゲートロック信号Sga(第1のロック装置状態信号)を受信し、モータ駆動遮断要求部34B(電動駆動遮断手段)は、ゲートロックレバー17からの第2のゲートロック信号Sgb(第2のロック装置状態信号)を受信する。このため、ゲートロックレバー17の状態を2系統で駆動指令部33Bとモータ駆動遮断要求部34Bとに伝達することができるから、駆動指令部33Bとモータ駆動遮断要求部34Bは、別個のゲートロック信号Sga,Sgbに基づいてゲートロックレバー17の状態を判断し、アシスト発電モータ10の駆動と非駆動を決定することができる。 On the other hand, the drive command unit 33B (motor drive control means) receives the first gate lock signal Sga (first lock device state signal) from the gate lock lever 17, and receives the motor drive cutoff request unit 34B (electric drive). The drive cutoff means) receives the second gate lock signal Sgb (second lock device state signal) from the gate lock lever 17. For this reason, since the state of the gate lock lever 17 can be transmitted to the drive command unit 33B and the motor drive cutoff request unit 34B in two systems, the drive command unit 33B and the motor drive cutoff request unit 34B have separate gate locks. Based on the signals Sga and Sgb, the state of the gate lock lever 17 can be determined to determine whether the assist generator motor 10 is driven or not.
 従って、第1,第2のゲートロック信号Sga,Sgbのうちいずれか一方に伝達誤りが生じたとき、駆動指令部33Bの誤作動が生じたとき、または、モータ駆動遮断要求部34Bの不作動が生じたときのうちいずれか1つが生じたときでも、「ロック解除状態」でのアシスト発電モータ10(電動機)の起動を回避することができ、信頼性を高めることができる。 Therefore, when a transmission error occurs in one of the first and second gate lock signals Sga and Sgb, when the drive command unit 33B malfunctions, or when the motor drive cutoff request unit 34B does not operate. Even when any one of these occurs, the activation of the assist generator motor 10 (electric motor) in the “unlocked state” can be avoided, and the reliability can be improved.
 次に、図1、図2、図6および図7は本発明の第2の実施の形態に係るハイブリッド油圧ショベルを示している。 Next, FIGS. 1, 2, 6 and 7 show a hybrid excavator according to a second embodiment of the present invention.
 第2の実施の形態の特徴は、第1のゲートロック信号と第2のゲートロック信号とを比較して一致しないときに異常と判定するゲートロック信号診断部を備え、モータ駆動遮断要求部は、ゲートロック信号診断部が異常と判定したときに、アシスト発電モータの駆動を遮断することにある。なお、第2の実施の形態では、上述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 A feature of the second embodiment is that it includes a gate lock signal diagnosis unit that determines that an abnormality occurs when the first gate lock signal and the second gate lock signal do not coincide with each other. When the gate lock signal diagnostic unit determines that there is an abnormality, the drive of the assist generator motor is cut off. In the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 第2の実施の形態によるハイブリッド式油圧ショベル41は、第1の実施の形態によるハイブリッド式油圧ショベル1とほぼ同様に、下部走行体2、上部旋回体4、作業装置5、エンジン9、アシスト発電モータ10、油圧ポンプ11、ゲートロックレバー17、再始動スイッチ30、メインコントローラ42等を含んで構成されている。 The hybrid excavator 41 according to the second embodiment is substantially the same as the hybrid excavator 1 according to the first embodiment. The lower traveling body 2, the upper swing body 4, the work device 5, the engine 9, and the assist power generation The motor 10, the hydraulic pump 11, the gate lock lever 17, the restart switch 30, the main controller 42 and the like are configured.
 メインコントローラ42は、第1の実施の形態によるメインコントローラ32とほぼ同様に構成されている。このため、メインコントローラ42は、第1の実施の形態によるエンジン始動制御部33、モータ駆動遮断部34と同様のエンジン始動制御部43、モータ駆動遮断部44を備えている。また、メインコントローラ42は、ロック装置状態信号診断手段としてのゲートロック信号診断部45をさらに備えている。 The main controller 42 is configured in substantially the same manner as the main controller 32 according to the first embodiment. For this reason, the main controller 42 includes an engine start control unit 43 and a motor drive cut-off unit 44 similar to the engine start control unit 33 and motor drive cut-off unit 34 according to the first embodiment. The main controller 42 further includes a gate lock signal diagnostic unit 45 as a lock device state signal diagnostic unit.
 ゲートロック信号診断部45は、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとを比較して、比較結果に応じたゲートロック状態信号GLを出力する。具体的に説明すると、ゲートロック信号診断部45は、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致しないときには、第1,第2のゲートロック信号Sga,Sgbが「信号異常」であることを示すゲートロック状態信号GLを出力する。一方、ゲートロック信号診断部45は、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致しているときには、第1,第2のゲートロック信号Sga,Sgbが正常であるので、第1,第2のゲートロック信号Sga,Sgbと同じゲートロック状態信号GLを出力する。 The gate lock signal diagnosis unit 45 compares the first gate lock signal Sga and the second gate lock signal Sgb, and outputs a gate lock state signal GL corresponding to the comparison result. More specifically, when the first gate lock signal Sga and the second gate lock signal Sgb do not match, the gate lock signal diagnostic unit 45 determines that the first and second gate lock signals Sga and Sgb are “signals”. A gate lock state signal GL indicating "abnormal" is output. On the other hand, when the first gate lock signal Sga and the second gate lock signal Sgb match, the gate lock signal diagnostic unit 45 is normal in the first and second gate lock signals Sga and Sgb. The same gate lock state signal GL as the first and second gate lock signals Sga and Sgb is output.
 エンジン始動制御部43は、入力側がキースイッチ29、再始動スイッチ30、ゲートロック信号診断部45等に接続され、出力側が電力制御装置23に接続されている。エンジン始動制御部43は、機械状態判定部43A、駆動指令部43Bを備えている。 The engine start control unit 43 has an input side connected to the key switch 29, the restart switch 30, the gate lock signal diagnosis unit 45, and the like, and an output side connected to the power control device 23. The engine start control unit 43 includes a machine state determination unit 43A and a drive command unit 43B.
 機械状態判定部43Aは、第1の実施の形態による機械状態判定部33Aとほぼ同様に構成され、油圧ショベル1が休止状態か否かを判定する状態判定手段を構成している。機械状態判定部43Aは、各種の情報に基づいて、機械状態(油圧ショベル1の状態)を判定し、機械状態の判定結果MCを駆動指令部43Bに出力する。 The machine state determination unit 43A is configured in substantially the same manner as the machine state determination unit 33A according to the first embodiment, and constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state. The machine state determination unit 43A determines the machine state (the state of the hydraulic excavator 1) based on various types of information, and outputs the machine state determination result MC to the drive command unit 43B.
 駆動指令部43Bは、第1の実施の形態による駆動指令部33Bとほぼ同様に構成されると共に、電動機駆動制御手段を構成している。但し、駆動指令部43Bには、ゲートロックレバー17からの第1のゲートロック信号Sgaに代えて、ゲートロック信号診断部45からのゲートロック状態信号GLが入力される。ここで、ゲートロック状態信号GLは、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致している正常状態では、第1,第2のゲートロック信号Sga,Sgbと同じ信号になっている。このため、正常状態では、駆動指令部43Bは、第1の実施の形態による駆動指令部33Bとほぼ同様に動作し、機械状態判定部43Aの判定結果MCと、ゲートロック信号診断部45からのゲートロック状態信号GLと、スイッチ29,30の操作とに応じて、インバータコントローラ26に対してアシスト発電モータ駆動指令S2を出力する。 The drive command unit 43B is configured in substantially the same manner as the drive command unit 33B according to the first embodiment, and also constitutes a motor drive control means. However, in place of the first gate lock signal Sga from the gate lock lever 17, the gate lock state signal GL from the gate lock signal diagnosis unit 45 is input to the drive command unit 43B. Here, the gate lock state signal GL is the same signal as the first and second gate lock signals Sga and Sgb in a normal state where the first gate lock signal Sga and the second gate lock signal Sgb match. It has become. Therefore, in a normal state, the drive command unit 43B operates in substantially the same manner as the drive command unit 33B according to the first embodiment, and the determination result MC of the machine state determination unit 43A and the gate lock signal diagnosis unit 45 In response to the gate lock state signal GL and the operation of the switches 29 and 30, an assist generator motor drive command S2 is output to the inverter controller 26.
 一方、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致していないときは、ゲートロック状態信号GLは「信号異常」を示している。このとき、駆動指令部43Bは、機械状態判定部43Aの判定結果MC、スイッチ29,30の操作に拘らず、アシスト発電モータ駆動指令S2を出力しない。このとき、アシスト発電モータ10は駆動されない。 On the other hand, when the first gate lock signal Sga and the second gate lock signal Sgb do not match, the gate lock state signal GL indicates “signal abnormality”. At this time, the drive command unit 43B does not output the assist power generation motor drive command S2 regardless of the determination result MC of the machine state determination unit 43A and the operation of the switches 29 and 30. At this time, the assist power generation motor 10 is not driven.
 モータ駆動遮断部44は、入力側がゲートロック信号診断部45等に接続され、出力側が電力制御装置23に接続されている。モータ駆動遮断部44は、エンジン停止判定部44A、モータ駆動遮断要求部44Bを備えている。 The motor drive cutoff unit 44 has an input side connected to the gate lock signal diagnosis unit 45 and the like, and an output side connected to the power control device 23. The motor drive cutoff unit 44 includes an engine stop determination unit 44A and a motor drive cutoff request unit 44B.
 エンジン停止判定部44Aは、第1の実施の形態によるエンジン停止判定部34Aとほぼ同様に構成されている。このため、エンジン停止判定部44Aは、機械状態判定部43Aと共に、油圧ショベル1が休止状態か否かを判定する状態判定手段を構成している。エンジン停止判定部44Aは、エンジン回転数等のようなエンジン9の駆動状態に関連する各種の情報に基づいて、エンジン9が停止状態か否かを判定し、エンジン9が停止状態か否かの判定結果ESを、モータ駆動遮断要求部44Bに出力する。 The engine stop determination unit 44A is configured in substantially the same manner as the engine stop determination unit 34A according to the first embodiment. For this reason, the engine stop determination unit 44A, together with the machine state determination unit 43A, constitutes a state determination unit that determines whether or not the excavator 1 is in a resting state. The engine stop determination unit 44A determines whether or not the engine 9 is stopped based on various information related to the driving state of the engine 9 such as the engine speed, and determines whether or not the engine 9 is stopped. The determination result ES is output to the motor drive cutoff request unit 44B.
 モータ駆動遮断要求部44Bは、第1の実施の形態によるモータ駆動遮断要求部34Bとほぼ同様に構成される。このため、モータ駆動遮断要求部44Bは、第1のインバータ24と共に、電動駆動遮断手段を構成している。但し、モータ駆動遮断要求部44Bには、ゲートロックレバー17からの第2のゲートロック信号Sgbに代えて、ゲートロック信号診断部45からのゲートロック状態信号GLが入力される。ここで、ゲートロック状態信号GLは、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致している正常状態では、第1,第2のゲートロック信号Sga,Sgbと同じ信号になっている。このため、正常状態では、モータ駆動遮断要求部44Bは、第1の実施の形態によるモータ駆動遮断要求部34Bとほぼ同様に動作し、エンジン停止判定部44Aの判定結果ESと、ゲートロック信号診断部45からのゲートロック状態信号GLとに応じて、第1のインバータ24に対してモータ駆動遮断要求信号S3を出力する。 The motor drive cutoff request unit 44B is configured in substantially the same manner as the motor drive cutoff request unit 34B according to the first embodiment. For this reason, the motor drive cutoff requesting part 44 </ b> B constitutes an electric drive cutoff means together with the first inverter 24. However, in place of the second gate lock signal Sgb from the gate lock lever 17, the gate lock state signal GL from the gate lock signal diagnostic unit 45 is input to the motor drive cutoff request unit 44B. Here, the gate lock state signal GL is the same signal as the first and second gate lock signals Sga and Sgb in a normal state where the first gate lock signal Sga and the second gate lock signal Sgb match. It has become. Therefore, in a normal state, the motor drive cutoff request unit 44B operates in substantially the same manner as the motor drive cutoff request unit 34B according to the first embodiment, and the determination result ES of the engine stop determination unit 44A and the gate lock signal diagnosis In response to the gate lock state signal GL from the unit 45, the motor drive cutoff request signal S3 is output to the first inverter 24.
 一方、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致していないときには、ゲートロック状態信号GLは「信号異常」を示している。このとき、モータ駆動遮断要求部44Bは、エンジン停止判定部44Aの判定結果ESに拘らず、モータ駆動遮断要求信号S3を出力する。これにより、第1のインバータ24の全てのスイッチング素子がオフ状態に切り換わるから、アシスト発電モータ10と直流母線28A,28Bとの間が遮断され、アシスト発電モータ10は駆動されない。 On the other hand, when the first gate lock signal Sga and the second gate lock signal Sgb do not coincide with each other, the gate lock state signal GL indicates “signal abnormality”. At this time, the motor drive cutoff request unit 44B outputs a motor drive cutoff request signal S3 regardless of the determination result ES of the engine stop determination unit 44A. Thereby, since all the switching elements of the first inverter 24 are switched to the OFF state, the assist generator motor 10 and the DC buses 28A and 28B are disconnected, and the assist generator motor 10 is not driven.
 次に、メインコントローラ42により実行されるエンジン9の再始動処理について、図7のタイミングチャートを用いて説明する。 Next, the restart process of the engine 9 executed by the main controller 42 will be described using the timing chart of FIG.
 図7は、ゲートロックレバー17がロック解除位置に固定された状態で「ロック状態」のゲートロック信号Sgaを誤って出力した場合を示している。図7に示すように、時点aでは、メインコントローラ42は、油圧ショベル1の作業休止状態を判定して、エンジン9を停止させる。これにより、油圧ショベル1はアイドリングストップ状態になる。このようなアイドリングストップ状態の時点bで、第1のゲートロック信号Sgaが誤って「ロック状態」を出力した場合を仮定する。 FIG. 7 shows a case where the gate lock signal Sga in the “lock state” is erroneously output in a state where the gate lock lever 17 is fixed at the unlock position. As shown in FIG. 7, at the time point a, the main controller 42 determines the work suspension state of the excavator 1 and stops the engine 9. Thereby, the excavator 1 enters an idling stop state. Assume that the first gate lock signal Sga erroneously outputs the “lock state” at the time point b in such an idling stop state.
 この場合、ゲートロック信号診断部45は、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致しないから、第1,第2のゲートロック信号Sga,Sgbが「信号異常」であることを示すゲートロック状態信号GLを出力する(時点b~時点e)。この結果、駆動指令部43Bは、「信号異常」を示すゲートロック状態信号GLに基づいて、アシスト発電モータ駆動指令S2の出力を停止する。これに加えて、モータ駆動遮断要求部44Bは、「信号異常」を示すゲートロック状態信号GLに基づいて、第1のインバータ24に対してモータ駆動遮断要求信号S3を出力する。このため、オペレータが再始動スイッチ30を操作してエンジン9の再始動を要求しても、アシスト発電モータ10は駆動されない。 In this case, since the first gate lock signal Sga and the second gate lock signal Sgb do not match, the first and second gate lock signals Sga and Sgb are “signal abnormal”. A gate lock state signal GL indicating the presence is output (time point b to time point e). As a result, the drive command unit 43B stops the output of the assist power generation motor drive command S2 based on the gate lock state signal GL indicating “signal abnormality”. In addition, the motor drive cutoff request unit 44B outputs a motor drive cutoff request signal S3 to the first inverter 24 based on the gate lock state signal GL indicating “signal abnormality”. For this reason, even if the operator operates the restart switch 30 and requests restart of the engine 9, the assist power generation motor 10 is not driven.
 次に、時点eで、オペレータがゲートロックレバー17をロック位置に戻すと、第1のゲートロック信号Sgaと第2のゲートロック信号Sgbとが一致する。このため、ゲートロック信号診断部45は、第1,第2のゲートロック信号Sga,Sgbと同じロック状態に応じたゲートロック状態信号GLを出力する。このとき、モータ駆動遮断要求部44Bは、エンジン停止状態で、かつ、ゲートロック状態信号GLによってゲートロックレバー17が「ロック状態」と認識するので、モータ駆動遮断要求信号S3の出力を停止する。これにより、第1のインバータ24におけるアシスト発電モータ10の駆動遮断が解除されるので、再始動スイッチ30の操作でエンジン再始動が要求されると、アシスト発電モータ10が駆動して、エンジン9が再始動される(時点f~時点g)。 Next, when the operator returns the gate lock lever 17 to the locked position at time e, the first gate lock signal Sga and the second gate lock signal Sgb coincide. For this reason, the gate lock signal diagnosis unit 45 outputs a gate lock state signal GL corresponding to the same lock state as the first and second gate lock signals Sga and Sgb. At this time, the motor drive shut-off request unit 44B stops the output of the motor drive shut-off request signal S3 since the gate lock lever 17 recognizes the “lock state” by the gate lock state signal GL while the engine is stopped. As a result, the drive interruption of the assist generator motor 10 in the first inverter 24 is released. Therefore, when the engine restart is requested by the operation of the restart switch 30, the assist generator motor 10 is driven and the engine 9 is It is restarted (time point f to time point g).
 かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様な作用効果を得ることができる。また、第2の実施の形態では、駆動指令部43B(電動駆動遮断手段)は、ゲートロック信号診断部45(ロック装置状態信号診断手段)が異常と判定したときに、アシスト発電モータ10の駆動を遮断する。このため、ゲートロックレバー17の状態を判別できない場合には、アシスト発電モータ10が駆動されない。この結果、「ロック状態」に応じた第1のゲートロック信号Sgaがメインコントローラ42に入力されるときでも、アシスト発電モータ10によるエンジン9の再始動を回避することができる。 Thus, in the second embodiment, it is possible to obtain substantially the same operational effects as in the first embodiment. In the second embodiment, the drive command unit 43B (electrical drive interruption means) drives the assist power generation motor 10 when the gate lock signal diagnosis unit 45 (lock device state signal diagnosis means) determines that an abnormality has occurred. Shut off. For this reason, when the state of the gate lock lever 17 cannot be determined, the assist power generation motor 10 is not driven. As a result, even when the first gate lock signal Sga corresponding to the “lock state” is input to the main controller 42, the restart of the engine 9 by the assist power generation motor 10 can be avoided.
 なお、前記各実施の形態では、アシスト発電モータ10によってエンジン9を始動する構成とした。しかし、本発明はこれに限らず、例えばアシスト発電モータに加えてエンジンを始動するためのスタータモータを設け、スタータモータとアシスト発電モータとを併用してエンジンを始動してもよい。 In each of the above embodiments, the engine 9 is started by the assist power generation motor 10. However, the present invention is not limited thereto, and for example, a starter motor for starting the engine may be provided in addition to the assist power generation motor, and the engine may be started using both the starter motor and the assist power generation motor.
 前記各実施の形態では、エンジン9を油圧ポンプ11の動力源とした建設機械に適用した場合を例に挙げて説明したが、電動機を油圧ポンプの動力源とした電動式建設機械に適用してもよい。 In each of the above embodiments, the case where the engine 9 is applied to a construction machine using the power source of the hydraulic pump 11 as an example has been described. However, the present invention is applied to an electric construction machine using the motor as a power source of the hydraulic pump. Also good.
 前記各実施の形態では、旋回油圧モータ21と旋回電動モータ22との両方を備えた場合を例に挙げて説明したが、旋回油圧モータと旋回電動モータとのうちいずれか一方を省いてもよい。 In each of the above embodiments, the case where both the swing hydraulic motor 21 and the swing electric motor 22 are provided has been described as an example, but either one of the swing hydraulic motor and the swing electric motor may be omitted. .
 前記各実施の形態では、直流電圧を昇圧または降圧するチョッパ27を備えるものとした。しかし、蓄電装置19を二次電池によって構成する場合には、チョッパ27を省いて、蓄電装置19を直流母線28A,28Bに直接的に接続してもよい。 In each of the above-described embodiments, the chopper 27 that boosts or lowers the DC voltage is provided. However, when the power storage device 19 is configured by a secondary battery, the chopper 27 may be omitted and the power storage device 19 may be directly connected to the DC buses 28A and 28B.
 前記各実施の形態では、キースイッチ29とは別個に再始動スイッチ30を備えるものとした。しかし、本発明はこれに限らず、再始動スイッチを省き、キースイッチによってエンジン再始動の操作を行う構成としてもよい。 In each of the above embodiments, the restart switch 30 is provided separately from the key switch 29. However, the present invention is not limited to this, and the restart switch may be omitted, and the engine restart operation may be performed using the key switch.
 前記各実施の形態では、建設機械として、自走可能なクローラ式の油圧ショベル1,41を例に挙げて説明した。しかし、本発明はこれに限らず、自走可能なホイール式油圧ショベル、移動式クレーン、さらには、走行しない基体上に旋回可能に旋回体が搭載された設置式のショベル、クレーン等に適用してもよい。また、建設機械として、例えばホイールローダ、フォークリフト等のように、旋回体を備えない各種の作業車両、作業機械等にも広く適用することができるものである。 In each of the above-described embodiments, the crawler-type hydraulic excavators 1 and 41 capable of self-propelling have been described as examples of the construction machine. However, the present invention is not limited to this, and is applicable to a self-propelled wheel-type hydraulic excavator, a mobile crane, and an installation-type excavator, a crane, etc. in which a swivel is mounted on a base that does not travel. May be. Further, the construction machine can be widely applied to various work vehicles, work machines, and the like that do not include a turning body, such as a wheel loader and a forklift.
 1,41 油圧ショベル(建設機械)
 2E 走行油圧モータ(アクチュエータ)
 5D ブームシリンダ(アクチュエータ)
 5E アームシリンダ(アクチュエータ)
 5F バケットシリンダ(アクチュエータ)
 9 エンジン
 10 アシスト発電モータ(電動機)
 11 油圧ポンプ
 17 ゲートロックレバー(ロック装置)
 19 蓄電装置
 21 旋回油圧モータ(アクチュエータ)
 23 電力制御装置
 24 第1のインバータ(電動駆動遮断手段)
 29 キースイッチ(起動要求手段)
 30 再始動スイッチ(起動要求手段)
 32,42 メインコントローラ
 33A,43A 機械状態判定部(状態判定手段)
 33B,43B 駆動指令部(電動機駆動制御手段)
 34A,44A エンジン停止判定部(状態判定手段)
 34B,44B モータ駆動遮断要求部(電動駆動遮断手段)
 45 ゲートロック信号診断部(ロック装置状態信号診断手段)
1,41 Hydraulic excavator (Construction machine)
2E Traveling hydraulic motor (actuator)
5D boom cylinder (actuator)
5E Arm cylinder (actuator)
5F Bucket cylinder (actuator)
9 Engine 10 Assist generator motor (electric motor)
11 Hydraulic pump 17 Gate lock lever (locking device)
19 power storage device 21 swing hydraulic motor (actuator)
23 power control device 24 first inverter (electric drive cutoff means)
29 Key switch (starting request means)
30 Restart switch (starting request means)
32, 42 Main controller 33A, 43A Machine state determination unit (state determination means)
33B, 43B Drive command section (motor drive control means)
34A, 44A Engine stop determination unit (state determination means)
34B, 44B Motor drive cutoff request section (electric drive cutoff means)
45 Gate lock signal diagnostic unit (lock device status signal diagnostic means)

Claims (4)

  1.  アクチュエータに作動油を供給する油圧ポンプと、
     前記油圧ポンプの駆動が可能な電動機と、
     前記アクチュエータの駆動を許可するロック解除状態と前記アクチュエータの駆動を禁止するロック状態とを切り換えるロック装置とを備えた建設機械において、
     前記建設機械が休止状態か否かを判定する状態判定手段と、
     前記状態判定手段の判定結果と前記ロック装置の状態とに基づいて前記電動機の駆動を遮断する電動駆動遮断手段とをさらに備え、
     前記電動駆動遮断手段は、前記状態判定手段によって休止状態であると判定し、かつ前記ロック装置がロック解除状態のときに、前記電動機の駆動を遮断する構成としたことを特徴とする建設機械。
    A hydraulic pump that supplies hydraulic oil to the actuator;
    An electric motor capable of driving the hydraulic pump;
    In a construction machine comprising a lock device that switches between a lock release state that permits driving of the actuator and a lock state that prohibits driving of the actuator,
    State determination means for determining whether or not the construction machine is in a dormant state;
    An electric drive cutoff means for cutting off the drive of the electric motor based on the determination result of the state determination means and the state of the locking device;
    The construction machine characterized in that the electric drive shut-off means is configured to shut off the drive of the electric motor when it is determined that the state determination means is in a resting state and the lock device is in an unlocked state.
  2.  前記建設機械の起動を要求する起動要求手段と、
     前記状態判定手段の判定結果と、前記ロック装置の状態と、前記起動要求手段からの起動要求とに基づいて、前記電動機の駆動を制御する電動機駆動制御手段とをさらに備え、
     前記ロック装置は、第1および第2のロック装置状態信号によって、その状態を伝達し、
     前記電動機駆動制御手段は前記第1のロック装置状態信号を受信し、
     前記電動駆動遮断手段は前記第2のロック装置状態信号を受信してなる請求項1に記載の建設機械。
    Start request means for requesting start of the construction machine;
    Electric motor drive control means for controlling the driving of the electric motor based on the determination result of the state determination means, the state of the locking device, and the start request from the start request means;
    The locking device transmits its state by means of first and second locking device status signals,
    The motor drive control means receives the first locking device state signal;
    The construction machine according to claim 1, wherein the electric drive cutoff means receives the second lock device state signal.
  3.  前記ロック装置は、第1および第2のロック装置状態信号によって、その状態を伝達し、
     前記第1のロック装置状態信号と前記第2のロック装置状態信号とを比較して一致しないときに異常と判定するロック装置状態信号診断手段をさらに備え、
     前記電動駆動遮断手段は、前記ロック装置状態信号診断手段が異常と判定したときに、前記電動機の駆動を遮断する構成とした請求項1に記載の建設機械。
    The locking device transmits its state by means of first and second locking device status signals,
    A lock device state signal diagnosis means that determines that an abnormality occurs when the first lock device state signal and the second lock device state signal do not coincide with each other;
    The construction machine according to claim 1, wherein the electric drive cutoff means is configured to cut off the drive of the electric motor when the lock device state signal diagnosis means determines that the abnormality is present.
  4.  前記電動機および前記油圧ポンプに機械的に接続されたエンジンをさらに備えてなる請求項1に記載の建設機械。 The construction machine according to claim 1, further comprising an engine mechanically connected to the electric motor and the hydraulic pump.
PCT/JP2016/051234 2015-01-22 2016-01-18 Construction machine WO2016117490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-010339 2015-01-22
JP2015010339A JP6247236B2 (en) 2015-01-22 2015-01-22 Construction machinery

Publications (1)

Publication Number Publication Date
WO2016117490A1 true WO2016117490A1 (en) 2016-07-28

Family

ID=56417036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051234 WO2016117490A1 (en) 2015-01-22 2016-01-18 Construction machine

Country Status (2)

Country Link
JP (1) JP6247236B2 (en)
WO (1) WO2016117490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198330A1 (en) * 2019-03-25 2020-10-01 Clark Equipment Company Immobilization of electrohydraulic power machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506221B2 (en) * 2016-07-28 2019-04-24 株式会社日立建機ティエラ Construction machinery
JP6966224B2 (en) * 2017-06-01 2021-11-10 株式会社日立建機ティエラ Construction machinery
JP2020159039A (en) * 2019-03-26 2020-10-01 日立建機株式会社 Work machine
JP7112996B2 (en) * 2019-09-17 2022-08-04 日立建機株式会社 working machine
WO2023189344A1 (en) * 2022-03-31 2023-10-05 株式会社クボタ Electric work machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103590A (en) * 1998-09-29 2000-04-11 Hitachi Constr Mach Co Ltd Safety device for working machine
JP2006274788A (en) * 2005-03-04 2006-10-12 Hitachi Constr Mach Co Ltd Safety device of work machine and service system of work machine
JP2008255840A (en) * 2007-04-03 2008-10-23 Komatsu Ltd Work machine
JP2012241339A (en) * 2011-05-16 2012-12-10 Kobelco Contstruction Machinery Ltd Hybrid work machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737636B1 (en) * 2010-12-24 2017-05-18 두산인프라코어 주식회사 Swing control apparatus for hybrid construction machnery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103590A (en) * 1998-09-29 2000-04-11 Hitachi Constr Mach Co Ltd Safety device for working machine
JP2006274788A (en) * 2005-03-04 2006-10-12 Hitachi Constr Mach Co Ltd Safety device of work machine and service system of work machine
JP2008255840A (en) * 2007-04-03 2008-10-23 Komatsu Ltd Work machine
JP2012241339A (en) * 2011-05-16 2012-12-10 Kobelco Contstruction Machinery Ltd Hybrid work machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198330A1 (en) * 2019-03-25 2020-10-01 Clark Equipment Company Immobilization of electrohydraulic power machine

Also Published As

Publication number Publication date
JP2016132967A (en) 2016-07-25
JP6247236B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
WO2016117490A1 (en) Construction machine
KR101897843B1 (en) Hybrid construction machinery and auxiliary control device used therein
KR102205871B1 (en) Power storage device controllers and transmission systems, and construction machinery
WO2016088827A1 (en) Construction machine
WO2017199546A1 (en) Construction machinery
KR102240562B1 (en) Construction machinery
JP5779973B2 (en) Hybrid work machine
JP5956466B2 (en) Hybrid work machine
KR20160140594A (en) Shovel
JP2016132857A (en) Hybrid work machine
WO2015125601A1 (en) Construction machine
JP2020117897A (en) Work machine
JP2014231299A (en) Hybrid working machine
JP2014231297A (en) Hybrid working machine
JP2020112235A (en) Working machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 28.09.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16740097

Country of ref document: EP

Kind code of ref document: A1