WO2016117433A1 - 電気自動車の異常対応制御装置 - Google Patents

電気自動車の異常対応制御装置 Download PDF

Info

Publication number
WO2016117433A1
WO2016117433A1 PCT/JP2016/050882 JP2016050882W WO2016117433A1 WO 2016117433 A1 WO2016117433 A1 WO 2016117433A1 JP 2016050882 W JP2016050882 W JP 2016050882W WO 2016117433 A1 WO2016117433 A1 WO 2016117433A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
inter
motor
communication means
electric vehicle
Prior art date
Application number
PCT/JP2016/050882
Other languages
English (en)
French (fr)
Inventor
明生 中島
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016117433A1 publication Critical patent/WO2016117433A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an abnormality control apparatus for an electric vehicle equipped with a motor for individually driving left and right drive wheels such as a two-motor vehicle, a four-wheel drive vehicle, and an in-wheel motor vehicle.
  • in-wheel motor vehicles having left and right drive units and electric vehicles equipped with two or four motors that individually drive left and right drive wheels.
  • ECU electronic control unit
  • Inverter device or motor failure means no output, output does not fall from the maximum value or fall beyond the maximum value, output cannot be controlled, temperature is too high, power supply is cut off, The power supply voltage is too small or too large, the battery capacity is insufficient, the rotation sensor is abnormal, the current sensor is abnormal, the motor is locked, the cooling water is abnormal, the CPU is abnormal, or the switching element is abnormal.
  • the above sequence may not work as designed due to failures due to disconnection or short-circuiting of the communication lines between the ECU itself or the ECU and the inverter device. Yes, safety is insufficient.
  • Patent Documents 3 and 4 It has also been proposed to perform abnormality handling control directly between the inverter devices without going through the ECU (for example, Patent Documents 3 and 4).
  • Patent Document 3 when abnormality is detected, the motors of the left and right wheels are controlled so as to approach the same state as the other motor where abnormality is detected. Is expected to be unable to drive the other motor.
  • Patent Document 4 when abnormality is detected, the motor of one of the left and right wheels is controlled by the inverter device of the other wheel which is the sound side, but the power transmission rate of the clutch or the like is changed. A power transmission mechanism is required.
  • the object of the present invention is to provide a vehicle equipped with a motor that individually drives the left and right drive wheels. It is an object of the present invention to provide an abnormality control device for an electric vehicle that can be safely evacuated or moved to a repair location so as not to hinder the traveling of the vehicle.
  • the abnormality control apparatus for a first electric vehicle is equipped with motors 5 that individually drive the left and right drive wheels 2, and left and right inverter devices 12 having a control unit 14 that individually controls the motors 5. And an ECU 11 that provides a drive command generated from an accelerator input to the control unit 14 of each inverter device 12.
  • An inter-inverter communication means 19 for performing communication between the left and right inverter devices 12 is provided; When any one of the motors 5 that individually drive the left and right drive wheels 2 or an inverter device 12 thereof malfunctions, the other inverter is used without the intervention of the ECU 11 using the inter-inverter communication means 19.
  • a mutual control unit 14b for limiting the output of the device 12 is provided.
  • the “output limitation” may be, for example, a limitation on the output torque command value or a limitation on the rotational speed. This “output restriction” is the same in the following description unless otherwise specified.
  • the mutual control unit 14b provided in the inverter device 12 performs communication between the inverters when any one of the motors 5 that individually drive the left and right drive wheels 2 or the inverter device 12 has a problem.
  • a means 19 is used to limit the output of the other inverter device 12 without intervention of the ECU 11.
  • the other inverter device 12 does not stop the output but continues to drive while limiting the output. Therefore, when a problem occurs in some of the motors and the inverter device 12, it is possible to safely travel such as retreating to the road shoulder or moving to a repair location so as not to hinder the traveling of other vehicles.
  • the inverter device 12 is directly performed by the inverter device 12 using the inter-inverter communication means 19 without intervention of the ECU 11, and the motor control by the healthy inverter device 12 is continued while limiting the output. Therefore, even if there is a failure due to disconnection or short-circuit of the ECU 11 itself or the communication line between the ECU 11 and the inverter device 12, the output can be limited, and since it does not go through the ECU 11, the responsiveness from malfunction detection is good. Even if the malfunction of the inverter device 12 occurs, the behavior of the vehicle can be stabilized as quickly as possible.
  • the inter-inverter communication means 19 between the left and right inverter devices 12 may be part of a LAN (local area network) that performs in-vehicle communication. If the inter-inverter communication means 19 is part of a LAN that performs communication within the vehicle 1, a general standard LAN or the like can be used, and inter-inverter communication can be performed stably without providing special equipment.
  • LAN local area network
  • the inter-inverter communication means 19 between the left and right inverter devices 12 may be configured by directly connecting a line between the two inverter devices 12.
  • the inter-inverter communication means 19 is configured to connect a line directly between the two inverter devices 12, unlike the case where it is part of a LAN that performs in-vehicle communication, communication of other information is completed. There is no need to wait and the responsiveness is further improved.
  • the electric vehicle includes a motor 5 that individually drives the left and right drive wheels 2 that are front wheels, and a left and right drive wheel 2 that is rear wheels. It is a four-wheel drive electric vehicle including a motor 5 that is individually driven and a left and right inverter device 12 on the front wheel side and a left and right inverter device 12 on the rear wheel side that includes a control unit 14 that individually controls the motors 5.
  • the inter-inverter communication means 19 for performing communication between the left and right inverter devices 12 on the front wheel side and the inter-inverter communication means 19 for performing communication between the left and right inverter devices 12 on the rear wheel side may be provided independently of each other. good. According to this configuration, in the four-wheel drive vehicle, the output restriction control can be performed between the inverter devices 12 of the left and right motors 5 on the front wheel side and the rear wheel side, respectively.
  • Another electric vehicle abnormality control apparatus is equipped with motors 5 that individually drive the front and rear drive wheels 2 and has left and right inverter devices each having a control unit 14 that individually controls the motors 5. 12 and an ECU 11 for giving a drive command generated from an accelerator input to the control unit 14 of each inverter device 12.
  • inter-inverter communication means 19 for connecting all of the inverter devices 12 to each other is provided and any one of the motors 5 and the inverter devices 12 has a problem with the motor 5 or the inverter device 12, The inter-inverter communication means 19 is used to limit the output of all the inverter devices 12 except the motor 5 or the inverter device 12 in which a problem has occurred without intervention of the ECU 11, using the inter-inverter communication means 19.
  • a mutual control unit 14b is provided.
  • Still another abnormality control apparatus for an electric vehicle includes a motor 5 that individually drives the front and rear left and right drive wheels 2 and includes a control unit 14 that individually controls the motors 5.
  • An abnormality response control device in a four-wheel drive electric vehicle having a device 12 and an ECU 11 that gives a drive command generated from an accelerator input to each control unit 14 of the inverter device 12,
  • FIG. 1A It is a block diagram which shows the conceptual structure of the control system of the electric vehicle of FIG. 1A. It is a block diagram which shows the specific example of the mutual control part in the abnormality handling control apparatus. It is explanatory drawing which shows the example made into the photocoupler system of the communication means between inverters in the same abnormality response control apparatus. It is explanatory drawing which shows the example made into the wired OR system of the communication means between inverters in the abnormality response control apparatus. It is a flowchart which shows the control action of the abnormality handling control device.
  • FIGS. 1A to 5 A first embodiment of the present invention will be described with reference to FIGS. 1A to 5.
  • the left and right rear wheels of the rear portion of the vehicle 1 are driven wheels 2 that are individually driven by respective motors 5, and the front wheels are turned by the steering device 8.
  • the motor 5 includes a wheel bearing 6 that supports the drive wheel 2 and a speed reducer 7 that reduces and transmits the rotation of the motor 5 to an inner ring that serves as a rotating wheel serving as a hub of the wheel bearing 6.
  • a wheel motor driving device 4 is configured.
  • Each drive wheel 2 and driven wheel 3 is provided with a brake 9.
  • Each motor 5 is an AC motor such as a synchronous motor.
  • the steering device 8 is operated by a steering operation means 18 such as a steering wheel.
  • the control system includes an ECU 11 that is an electric control unit that performs integrated control and cooperative control of the entire vehicle, and a plurality of inverter devices 12 that control each motor 5 in accordance with a command output from the ECU 11.
  • the ECU 11 is also referred to as “VCU (vehicle control unit)” in the case of an electric vehicle.
  • the ECU 11 has a LUT (Look Up Table) implemented by software or hardware in response to an accelerator input from an accelerator operating means 16 such as an accelerator pedal and a brake input from a brake operating means 17 such as a brake pedal.
  • a command for braking / driving torque of the entire vehicle is generated using a predetermined conversion function stored in a library of software or hardware equivalent thereto (hereinafter referred to as an “implementation model”), Instruction torque generating means 11a distributed to the inverter device 12 of each motor 5 is provided.
  • the ECU 11 includes a microcomputer having a microprocessor, a ROM (Read Only Memory) having a program executed by the microprocessor, and other electronic circuits such as a RAM (Random Access Memory) and a coprocessor (Co-Processor). (Not shown).
  • the inverter device 12 includes a power circuit unit 13 and a control unit 14 (FIG. 1B).
  • the power circuit unit 13 is composed of a plurality of power elements composed of switching elements.
  • the inverter 15 converts the DC power of the battery into three-phase AC power and supplies it to the motor 5, and outputs the inverter 15 by PWM control or the like. And a circuit to be controlled (not shown).
  • the control unit 14 is configured by the microcomputer, the ROM, the electronic circuit, and the like (not shown), similar to the ECU 11.
  • the control unit 14 of the inverter device 12 is provided with a torque control unit 14 a that outputs a current command to the power circuit unit 13 in accordance with a torque command given from the ECU 11.
  • the torque control unit 14a performs torque control by feedback that uses current control or the like. Further, control for improving efficiency, such as vector control in accordance with the rotational phase of the motor 5 or the like, is performed.
  • the torque control unit 14a receives the torque command, the feedback current value, and the like using the above-described realization model and the comparison function, the subtraction function, or equivalent hardware, and the like. It is composed of a hardware circuit or a software function on the processor that can execute control or vector control and output a torque command value or the like.
  • the abnormality control apparatus for an electric vehicle is provided with inter-inverter communication means 19 for performing communication between the individual inverter devices 12 in the control system having the above-described configuration.
  • Each control unit 14b is provided.
  • the inter-inverter communication means 19 is provided as a part of a LAN that performs communication within the vehicle 1, for example.
  • a general LAN such as CAN (Controller Area Network), FlexRay, Ethernet (registered trademark), LIN (Local Interconnect Network), or RS-485 can be used.
  • CAN Controller Area Network
  • FlexRay FlexRay
  • Ethernet registered trademark
  • LIN Local Interconnect Network
  • RS-485 RS-485
  • the inter-inverter communication means 19 may be configured to exchange signals by directly connecting lines in addition to the general LAN.
  • a method of directly connecting the lines an example (not shown) of a relay contact signal method such as a method using the photocoupler of FIG. 3 or a wired OR method of FIG. 4 can be adopted.
  • the inter-inverter communication means 19 using the photocoupler shown in FIG. 3 is connected to the photocoupler 19a provided in each of the left and right inverter devices 12 from the stop command transmitting means 19b provided in the other inverter device 12 when a malfunction occurs. In this example, a stop command is transmitted.
  • the wired OR inter-inverter communication means 19 shown in FIG. 4 is configured by providing a wired OR circuit 19c in each of the left and right inverter devices 12, and connecting them with a dedicated wiring.
  • the left and right faulty inverter devices 12 send a stop command to the other side with dedicated wiring.
  • the normal state is set to H level
  • the abnormal state is set to L level to notify the abnormality.
  • Each inverter device 12 determines that the counterpart inverter device 12 is abnormal when it detects the L level while it is outputting the H level.
  • the mutual control unit 14b in the control unit 14 of the inverter device 12 in FIG. 1B uses the inter-inverter communication means 19 when the malfunction occurs in any one of the motors 5 or the inverter device 12, and the ECU 11 This is a means for limiting the output of the other inverter device 12 which is the normal one without any intervention.
  • the output limitation by the mutual control unit 14b for example, the maximum value of the normal torque of one wheel is lowered to a value arbitrarily set between 50% and 5%.
  • the mutual control unit 14b may be stopped particularly when the degree of abnormality is high.
  • the mutual control unit 14b includes a self-diagnosis function unit 21, a torque / state determination unit 22, and an inter-inverter communication control unit 14bb.
  • the self-diagnostic function unit 21 uses the above-described implementation model and the comparison function, the subtraction function, hardware equivalent thereto, or the like that an abnormality has occurred in its own inverter device 12 or motor 5.
  • the torque / state determination unit 22 is configured by a hardware circuit or a software function on a processor (not shown) that determines detection values such as the motor rotation speed, torque (motor current), and temperature.
  • the self-diagnosis function unit 21 diagnoses an abnormality
  • the inter-inverter communication control unit 14bb transmits an abnormality occurrence signal to the other inverter device 12 via the inter-inverter communication unit 19, and determines the torque / state.
  • the determination result of the unit 22 is always transmitted.
  • the self-diagnosis function unit 21 and the torque / state determination unit 22 constitute a self-side diagnosis unit 14ba.
  • the mutual control units 14b connected by the inter-inverter communication means 19 communicate, for example, part or all of the following information with each other.
  • the mutual control part 14b compares the information from the other party, its own information, and the command information from the ECU 11, and if there is a contradiction, it limits or stops the torque. Specifically, for example, torque is limited or stopped in the following cases.
  • a stop signal is transmitted to the other party by the inter-inverter communication means 19. (1) When the result of the other party's self-diagnosis is abnormal or stopped. (2) When the other party's driving situation is far from what is expected. Estimated values can be determined in advance and used as a function of their own data. (3) When the command value from the other ECU 11 is far from the expected value. For example, when a stop command is input to the other party or the torque is significantly different. (4) When there is no communication from the other party for a certain time. Note that the mutual control unit 14b also communicates with the ECU 11 to stop or limit torque for the other party's reason.
  • FIG. 5 is a flowchart showing an example of processing of the mutual control unit 14b in the ECU 11 and the left and right inverter devices 12 in the abnormality response control device having the above configuration.
  • the ECU 11 calculates the torque value of the torque command as a drive command to be distributed to the left and right motors 5 according to the accelerator input and the brake input that are the driver's operation amounts, and distributes them to the inverter devices 12 of the left and right motors 5 (steps). S1). Thereafter, the ECU 11 performs an environmental diagnosis that is a diagnosis related to an arbitrarily set predetermined item of the vehicle 1 (step S2), and if there is an abnormality, sends a stop command to the left and right inverter devices 12 (step S3). Return to step S1. If the environmental diagnosis (step S2) is normal, the process returns to step S1.
  • each inverter device 12 When each inverter device 12 receives a torque command from the ECU 11 (step S4), a current corresponding to the torque command is given to each motor 5 (step S5), and the motor 5 gives a driving force to the drive wheels 2, and the vehicle 1 Is driven. Thereafter, the generated torque is estimated (step S6), and the abnormality of the other motor 5 or the inverter device 12 is determined (step S7).
  • the determination of the abnormality for example, a value obtained by performing torque estimation (the estimated value in step S6 ′ because it is a determination in the left inverter 12) by the other inverter device 12 is used. If an abnormality is determined, an output restriction command is output (step S9), and an output restriction process is performed (step S10). Depending on the degree of abnormality, the output is stopped instead of the output restriction (steps S9 and S10).
  • step S7 if the determination is normal, a self-diagnosis is performed (step S8). If the result of self-diagnosis is normal, the process returns to step S1, and if abnormal, an output restriction command is output (step S9), and output restriction processing is performed (step S10).
  • the self-diagnosis (step S8) uses the failure diagnosis of the inverter and the motor and the output restriction command (corresponding to step S9 or step S9 ') of the other inverter device 12.
  • step S8 if a stop command is transmitted in step S3, the process proceeds to step S9 (or step S9 ').
  • the abnormality control device for an electric vehicle having the above-described configuration, when a malfunction occurs in either the left or right motor 5 or the inverter device 12, the other inverter device 12 does not stop the output, Continue driving while limiting output. Therefore, when a problem occurs in some of the motors and the inverter device 12, it is safe to evacuate to a roadside belt or a shoulder so as not to hinder the traveling of other vehicles or move to a repair location. Yes. When an abnormality occurs on one wheel on an expressway or the like, it is safer to take a measure such as applying a slight torque and retracting the vehicle to the roadside belt, rather than stopping the other wheel.
  • inverter devices 12 communication between the inverter devices 12 is performed directly using the inter-inverter communication means 19 without intervention of the ECU 11, and the motor control by the healthy inverter device 12 is continued while limiting the output. Therefore, even if there is a failure due to disconnection or short-circuit of the ECU 11 itself or the communication line between the ECU 11 and the inverter device 12, the output can be limited, and since it does not go through the ECU 11, the responsiveness from malfunction detection is good. Even if the malfunction of the inverter device 12 occurs, the behavior of the vehicle can be stabilized as quickly and reliably as possible.
  • inter-inverter communication means 19 When the inter-inverter communication means 19 is part of a LAN that performs in-vehicle communication, a general standard LAN or the like can be used, and inter-inverter communication can be stably performed without providing special equipment. Yes. Further, when the inter-inverter communication means 19 is configured to connect a line directly between the two inverter devices 12, it is different from the case where it is a part of a LAN that performs in-vehicle communication. It is not necessary to wait for the completion of the response, and the responsiveness is further improved.
  • FIG. 6A and 6B show another embodiment of the present invention.
  • the items other than those specifically described are the same as those in the above embodiment, and the description thereof is omitted.
  • This embodiment is an example applied to a four-wheel drive electric vehicle equipped with four motors 5 that individually drive the left and right front and rear drive wheels 2.
  • the front wheel and the rear wheel are considered separately and the same control as described above is performed. That is, in this example, the left and right inverter devices 12 on the front wheel side and the left and right inverter devices 12 on the rear wheel side each having a control unit 14 for individually controlling each motor 5 are provided, and between the left and right inverter devices 12 on the front wheel side.
  • An inter-inverter communication means 19 for performing communication and an inter-inverter communication means 19 for performing communication between the left and right inverter devices 12 on the rear wheel side are provided independently of each other. However, the same LAN may be used physically and only the signal destination may be divided. Even when the lines are directly connected, two sets of inter-inverter communication means 19 are prepared for each of the front and rear.
  • the abnormality of one inverter device 12 or motor 5 is determined by the independent inter-inverter communication 19 on the front wheel side without going through the ECU 11. Communication is made with the other inverter device 12, and the other inverter 12 automatically limits or stops the torque. The same applies to the rear wheels.
  • the output restriction can be controlled between the inverter devices 12 of the left and right motors 5.
  • FIG. 7A and 7B show still another embodiment of the present invention.
  • the items other than those specifically described are the same as those in the above embodiment, and the description thereof is omitted.
  • This embodiment is an example applied to a four-wheel drive electric vehicle equipped with four motors 5 that individually drive the left and right front and rear drive wheels 2.
  • inter-inverter communication means 19 for connecting all of the inverter devices 12 is provided, and a mutual control unit 14b is provided in the control unit 14 of all the inverter devices 12.
  • Each of the mutual control units 14b uses the inter-inverter communication means 19 when the malfunction occurs in any one of the motors 5 and the inverter device 12, and the ECU 11 Without any intervention, the output of all the inverter devices 12 except the motor 5 or the inverter device 12 in which a problem has occurred is limited using the inter-inverter communication means 19 between the inverter devices 12.
  • the inter-inverter communication means 19 is configured to connect all the inverter devices 12 in the same manner as described above, and each of the mutual control units 14b
  • the output of only the other inverter device 12 of the front wheel is limited, and the trouble occurs in either the left or right motor 5 or the inverter device 12 of the rear wheel. In this case, the output of only the other inverter device 12 of the rear wheel may be limited.
  • the inter-inverter communication means 19 does not necessarily have to be configured to connect all the inverter devices 12 to each other, and at least the left and right inverter devices 12 on the front wheel side. Any configuration may be used as long as it is connected to each other and between the left and right inverter devices 12 on the rear wheel side.
  • the present invention is not limited to an in-wheel motor vehicle, and motors that individually drive left and right drive wheels.
  • the present invention can also be applied to an automobile in which the motor 5 is installed on a chassis and the rotation of the corresponding motor 5 is transmitted to wheels via a transmission component such as a drive shaft or a constant velocity joint.
  • the electric vehicle to which the speed control device of the present invention is applied can be applied to a hybrid vehicle equipped with a motor and an engine, when the vehicle is driven by a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 左右の駆動輪を個別に駆動するモータを搭載した自動車において、一部のモータやインバータ装置に不具合が発生した場合に、車両の挙動をできるだけ迅速に安定させながら、退避させたり、修理場所へ移動させたりする走行を安全に行えるようにする。左右の駆動輪(2)を個別に駆動するモータ(5)を搭載し、前記各モータ(5)を個別に制御する制御部(14a)を有する左右のインバータ装置(12)と、ECU(11)とを有する電気自動車に適用される。前記左右のインバータ装置(12)間の通信を行うインバータ間通信手段(19)を設ける。前記左右の駆動輪(2)を個別に駆動するいずれか一方のモータ(5)またはそのインバータ装置(12)に不具合が生じたときに、前記インバータ間通信手段(19)を用いて、前記ECU(11)の介入無しに他方の前記インバータ装置(12)の出力を制限する相互制御部(14b)を設ける。

Description

電気自動車の異常対応制御装置 関連出願
 本出願は、2015年1月19日出願の特願2015-007610の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、2モータ車、4輪駆動車、インホイールモータ車等の左右の駆動輪を個別に駆動するモータを搭載した電気自動車の異常対応制御装置に関する。
 左右に駆動部を有するインホイールモータ車両や、左右の駆動輪を個別に駆動する2個または4個のモータを搭載した電気自動車がある。このような車両では、モータごとにそれぞれインバータ装置を配置し、アクセルからの操作量をそれぞれのインバータ装置に送信するECU(電子制御ユニット)を配するのが一般的である。
 このような車両において、片方のインバータ装置またはモータが走行中に故障し、片側のみ停止した場合、残りのモータが大きなトルクを出し続けると車両の挙動が悪くなる。インバータ装置、またはモータの故障とは、出力が出ない、出力が最大値から落ちないあるいはそれ以上から落ちない、出力が制御できない、温度が規定よりも上がりすぎる、電源の供給が切断される、電源電圧が小さすぎるあるいは大きすぎる、電池容量が足りない、回転センサの異常、電流センサの異常、モータロック、冷却水異常、CPU異常、またはスイッチング素子の異常などが考えられる。
 このような場合には、通常ECUからの指令で、もう一方のモータも停止またはトルク制限を行う。または特別な専用回路を設けてより安全性を追求する方法も提案されている。(文献2参照)
特開2013-251973号公報 特開2008-245372号公報 特開2012-186929号公報 特開2004-175313号公報
 上記のようにECUからの指令でモータやインバータ装置の不具合に対処する場合、ECU自体や、ECUとインバータ装置との通信回線の切断やショートによる故障で、上記シーケンスが設計通りに働かないことがあり、安全性が不十分である。
 ECUを介することなく各インバータ装置間で直接に異常対応の制御を行うことも提案されている(例えば特許文献3,4)。しかし、特許文献3の技術は、異常検出された場合に、左右の一方の車輪のモータを、異常の検出された他方のモータと同じ状態に近づくように制御するため、モータの異常の状態によっては、他方のモータを駆動させることができない場合が予想される。また、特許文献4の技術は、異常検出された場合に、左右のうちの一方の車輪のモータを、健全側である他方の車輪のインバータ装置で制御するが、クラッチ等の動力伝達率を変更させる動力伝達機構が必要になる。
 この発明の目的は、左右の駆動輪を個別に駆動するモータを搭載した自動車において、一部のモータやインバータ装置に不具合が発生した場合に、車両の挙動をできるだけ迅速に安定させながら、他の車両の走行の妨げとならないように退避させたり、修理場所へ移動させたりする走行を安全に行える電気自動車の異常対応制御装置を提供することである。
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
 この発明の第1の電気自動車の異常対応制御装置は、左右の駆動輪2を個別に駆動するモータ5を搭載し、前記各モータ5を個別に制御する制御部14を有する左右のインバータ装置12と、アクセル入力から生成した駆動指令を前記各インバータ装置12の前記制御部14に与えるECU11とを有する電気自動車における異常対応制御装置であって、
 前記左右のインバータ装置12間の通信を行うインバータ間通信手段19を設け、
 前記左右の駆動輪2を個別に駆動するいずれか一方のモータ5またはそのインバータ装置12に不具合が生じたときに、前記インバータ間通信手段19を用いて、前記ECU11の介入無しに他方の前記インバータ装置12の出力を制限する相互制御部14bを設けている。
 なお、上記の「出力の制限」は、例えば出力するトルク指令値の制限、または回転速度の制限としても良い。この「出力の制限」は、特に説明がない場合、以下の説明でも同様である。
 この構成によると、インバータ装置12に設けられた相互制御部14bは、左右の駆動輪2を個別に駆動するいずれか一方のモータ5またはそのインバータ装置12に不具合が生じたときに、インバータ間通信手段19を用いて、前記ECU11の介入無しに他方の前記インバータ装置12の出力を制限する。このように左右のいずれか一方のモータ5またはインバータ装置12に不具合が生じたときに、他方のインバータ装置12は、出力を止めるのではなく、出力を制限しながら駆動を続けさせる。そのため、一部のモータやインバータ装置12に不具合が発生した場合に、他の車両の走行の妨げとならないように路肩等に退避させたり、修理場所へ移動させたりする走行を安全に行える。
 また、ECU11の介入無しにインバータ間通信手段19を用いて、インバータ装置12で直接に通信し、健全な方のインバータ装置12によるモータ制御を、出力を制限しながら続ける。そのため、ECU11自体や、ECU11とインバータ装置12間の通信回線の切断やショートによる故障等があっても出力制限が行え、かつECU11を介さないことから不具合検出からの応答性が良く、モータ5やインバータ装置12の不具合が発生しても車両の挙動をできるだけ迅速に安定させることができる。
 この発明の電気自動車の異常対応制御装置において、前記左右のインバータ装置12間のインバータ間通信手段19を、車両内の通信を行うLAN(ローカルエリアネットワーク)の一部としても良い。インバータ間通信手段19を車両1内の通信を行うLANの一部とすると、一般的な規格のLAN等を用いることができ、特別な機器を設けることなくインバータ間通信を安定して行える。
 また、この発明の電気自動車の異常対応制御装置において、前記左右のインバータ装置12間のインバータ間通信手段19を、両インバータ装置12間で直接的に回線を接続して行う構成としても良い。インバータ間通信手段19を、両インバータ装置12間で直接的に回線を接続する構成とした場合は、車両内の通信を行うLANの一部とする場合と異なり、他の情報の通信の完了を待つ必要がなく、応答性がより一層向上する。
 この発明の前記いずれかの構成の電気自動車の異常対応制御装置において、前記電気自動車が、前輪となる左右の駆動輪2を個別に駆動するモータ5、および後輪となる左右の駆動輪2を個別に駆動するモータ5と、前記各モータ5を個別に制御する制御部14を有する前輪側の左右のインバータ装置12および後輪側の左右のインバータ装置12を備える4輪駆動の電気自動車であって、前記前輪側の左右のインバータ装置12間の通信を行うインバータ間通信手段19および後輪側の左右のインバータ装置12間の通信を行うインバータ間通信手段19を、互いに独立して設けても良い。この構成によると、4輪駆動車において、前輪側と後輪側とで各々、左右のモータ5のインバータ装置12間で上記の出力制限の制御が行える。
 この発明の他の電気自動車の異常対応制御装置は、前後の左右の駆動輪2を個別に駆動するモータ5を搭載し、前記各モータ5を個別に制御する制御部14を有する左右のインバータ装置12と、アクセル入力から生成した駆動指令を前記各インバータ装置12の前記制御部14に与えるECU11とを有する4輪駆動の電気自動車における異常対応制御装置であって、
 全ての前記インバータ装置12の相互間を接続するインバータ間通信手段19を備え、前記各モータ5およびインバータ装置12のうちのいずれか1個のモータ5またはインバータ装置12に不具合が生じたときに、前記インバータ間通信手段19を用いて、前記ECU11の介入無しに、不具合の生じたモータ5またはインバータ装置12を除く全てのインバータ装置12の出力の制限を、前記インバータ間通信手段19を用いて行う相互制御部14bを設けている。
 この構成の場合、4輪駆動車において、1個のモータ5またはインバータ装置12に不具合が生じたときに、不具合の生じたモータ5またはインバータ装置12を除く全てのインバータ装置12の出力を制限する。そのため、4輪駆動車において、より一層安全に退避場所や修理場所への走行が行える。その場合にも、ECU11を介さないことから不具合検出からの応答性が良く、モータ5やインバータ装置12の不具合が発生しても車両の挙動をできるだけ迅速に安定させることができる。
 この発明のさらに他の電気自動車の異常対応制御装置は、前後の左右の駆動輪2を個別に駆動するモータ5を搭載し、前記各モータ5を個別に制御する制御部14を有する左右のインバータ装置12と、アクセル入力から生成した駆動指令を前記インバータ装置12の前記各制御部14に与えるECU11とを有する4輪駆動の電気自動車における異常対応制御装置であって、
 少なくとも前輪側の左右の前記インバータ装置12の相互間、および後輪側の左右の前記インバータ装置12の相互間を接続するインバータ間通信手段19を備え、
 前輪の左右いずれか一方のモータ5またはインバータ装置12に不具合が生じたときは、前輪の他方のインバータ装置12のみの出力を制限し、後輪の左右いずれか一方のモータ5またはインバータ装置12に不具合が生じたときは、後輪の他方のインバータ装置12のみの出力を制限する相互制御部14bを設けている。
 この構成の場合、4輪駆動車において、1個のモータ5またはインバータ装置12に不具合が生じたときに、前輪同士、および後輪同士で、左右いずれか一方のモータ5またはインバータ装置12に不具合が生じたときに、他方のインバータ装置12の出力を制限する。そのため、4輪駆動車において、出力制限の程度をできるだけ抑えて走行性を高く維持しながら、安全に退避場所や修理場所への走行が行える。その場合にも、ECU11を介さないことから不具合検出からの応答性が良く、モータ5やインバータ装置12の不具合が発生しても車両の挙動をできるだけ迅速に安定させることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る異常対応制御装置を適用した電気自動車の概念構成を示すブロック図である。 図1Aの電気自動車の制御系の概念構成を示すブロック図である。 同異常対応制御装置における相互制御部の具体例を示すブロック図である。 同異常対応制御装置におけるインバータ間通信手段のフォトカプラー方式とした例を示す説明図である。 同異常対応制御装置におけるインバータ間通信手段のワイヤードOR方式とした例を示す説明図である。 同異常対応制御装置の制御動作を示す流れ図である。 この発明の他の実施形態に係る異常対応制御装置を適用した電気自動車の概念構成を示すブロック図である。 図6Aの電気自動車の制御系の概念構成を示すブロック図である。 この発明のさらに他の実施形態に係る異常対応制御装置を適用した電気自動車の概念構成を示すブロック図である。 図7Aの電気自動車の制御系の概念構成を示すブロック図である。
 この発明の第1の実施形態を図1Aないし図5と共に説明する。図1Aに示すこの異常対応制御装置を適用する電気自動車は、車両1の後部の左右の後輪がそれぞれのモータ5により個別に駆動される駆動輪2とされ、前輪が転舵装置8によって転舵される従動輪3となる後輪2輪駆動車の例である。モータ5は、駆動輪2を支持する車輪用軸受6と、モータ5の回転を前記車輪用軸受6のハブ兼用の回転側輪となる内輪に対して減速して伝達する減速機7と共に、インホイールモータ駆動装置4を構成する。各駆動輪2および従動輪3に、ブレーキ9が設けられている。各モータ5は、同期モータ等の交流モータである。転舵装置8は、ステアリングホイール等の操舵操作手段18によって操作される。
 制御系は、車両の全体の統合制御,協調制御を行う電気制御ユニットであるECU11と、このECU11の出力する指令に従って各モータ5を制御する複数のインバータ装置12とで構成される。
 ECU11は、電気自動車の場合「VCU(車両制御ユニット)」とも称される。ECU11は、アクセルペダル等のアクセル操作手段16からのアクセル入力と、ブレーキペダル等のブレーキ操作手段17からのブレーキ入力とに応じて、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数やそれに等価のハードウエア等(以下、「具現化モデル」という。)を用いて、車両全体の制駆動トルクの指令を生成し、各モータ5のインバータ装置12へ分配する指示トルク生成手段11aを有している。ECU11は、マイクロプロセッサを有するマイクロコンピュータと、前記マイクロプロセッサで実行されるプログラムを有するROM(Read Only Memory)、およびRAM(Random Access Memory)やコプロセッサ(Co-Processor)等の他の電子回路等により構成される(不図示)。
 インバータ装置12は、パワー回路部13と制御部14とで構成される(図1B)。パワー回路部13は、スイッチング素子からなる複数のパワー素子で構成されて、バッテリーの直流電力を3相の交流電力に変換しモータ5へ与えるインバータ15と、このインバータ15の出力をPWM制御等で制御する回路(図示せず)とで構成される。制御部14は、ECU11と同様の、前記マイクロコンピュータと前記ROM、および前記電子回路等により構成される(不図示)。
 インバータ装置12の制御部14には、ECU11から与えられるトルク指令に従って電流指令をパワー回路部13に出力するトルク制御部14aが設けられている。トルク制御部14aは、トルク制御を電流制御等でフィードバックする制御で行う。さらに、モータ5の回転位相等に応じたベクトル制御等の、効率化を図る制御を行う。トルク制御部14aは、具体的には、上記の具現化モデルと、比較関数または減算関数やそれに等価のハードウエア等とを用いて、上記トルク指令やフィードバック電流値等の入力を受けて、トルク制御ないしベクトル制御の演算をして、トルク指令値等を出力しうるハードウエア回路またはプロセッサ上のソフトウエア関数で構成されている。
 この実施形態の電気自動車の異常対応制御装置は、上記構成の制御系において、個々のインバータ装置12間で通信を行うインバータ間通信手段19を設けると共に、各インバータ装置12の制御部14に、相互制御部14bを各々設けている。
 前記インバータ間通信手段19は、例えば、車両1内の通信を行うLANの一部として設けられる。このLANは、例えば、CAN(Controller Area Network),FlexRay,イーサネット(登録商標)、LIN(Local Interconnect Network)、RS-485などの一般的なLANを用いることができる。この場合、2つのインバータ装置12間に専用の回線を設置する構成であっても、他の機器も接続された回線を利用する構成であってもいずれであっても良い。
 前記インバータ間通信手段19は、前記一般的なLANの他に、直接的に回線を接続して信号のやり取りを行う形式としても良い。この直接的に回線を接続する方式としては、図3のフォトカプラーを利用した方式や、図4のワイヤードOR方式等、リレーの接点信号方式とした例(図示せず)が採用できる。
 図3のフォトカプラーを使用した方式のインバータ間通信手段19は、左右の各インバータ装置12に設けたフォトカプラー19aに、他方のインバータ装置12に設けられた停止命令送信手段19bから、不具合発生時に停止命令を送信するようにした例である。同図の例の左右のインバータ装置12,12間の各配線は専用配線とされる。
 図4のワイヤードOR方式のインバータ間通信手段19は、左右の各インバータ装置12にワイヤードOR回路19cを設け、その間を専用配線で接続して構成される。この構成の場合、左右の各不具合のインバータ装置12が、もう一方に専用配線で停止命令を送る。例えば、正常時はHレベル、異常時にはLレベルにして、異常を伝える。各インバータ装置12は、自身がHレベルを出力しているのにLレベルを検出した場合、相手側インバータ装置12が異常と判断する。
 図1Bの前記インバータ装置12の制御部14における前記相互制御部14bは、いずれか一方のモータ5またはそのインバータ装置12に不具合が生じたときに、前記インバータ間通信手段19を用いて、前記ECU11の介入無しに正常な方である他方の前記インバータ装置12の出力を制限する手段である。相互制御部14bによる出力制限としては、例えば、正常な1輪のトルクの最大値を、通常の50%から5%の間で任意に設定した値に落とすようにする。相互制御部14bは、特に異常の程度が高い場合は、停止させるようにしても良い。
 相互制御部14bは、具体例を挙げると、図2に示すように自己診断機能部21、トルク・状態判定部22、およびインバータ間通信制御部14bbにより構成される。自己診断機能部21は、具体的には、上記の具現化モデルと、比較関数または減算関数やそれに等価のハードウエア等とを用いて、自己のインバータ装置12またはモータ5に異常が発生したことを所定の診断基準と入力信号等により診断し、当該診断結果を出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。例えば、正常か、異常発生か、停止中であるか等を検出する。トルク・状態判定部22は、モータ回転数、トルク(モータ電流)、温度等の検出値を判定するハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。インバータ間通信制御部14bbは、自己診断機能部21で異常と診断された場合に、前記インバータ間通信手段19を介して他のインバータ装置12へ異常発生の信号を送信し、かつトルク・状態判定部22の判定結果を常に送信する。前記自己診断機能部21およびトルク・状態判定部22により、自己側診断部14baが構成される。
 インバータ間通信手段19で接続されたそれぞれの相互制御部14bは,例えば、互いに、以下の情報の一部あるいは全部を通信する。
(1) 自己診断の結果:「正常」、「異常発生」または「停止中」。
(2) 運転状況:回転数、トルク、温度等。
(3) ECU11からの指令値。
 また、相互制御部14bは、相手側からの情報と、自身の情報、ECU11からの指令情報を比較し、矛盾があればトルク制限または停止を行う。具体的には、例えば次の各場合に、トルク制限または停止を行う。停止あるいはトルク制限の場合は、インバータ間通信手段19で相手側に停止の信号を送信する。
(1) 相手側の自己診断の結果が、異常発生か停止中の時。
(2) 相手側の運転状況が想定よりかけ離れている時。
 想定値はあらかじめ決めておき、自身のデータの関数とすることも可能。
(3) 相手側のECU11からの指令値が想定よりかけ離れている時。
 例えば相手側に停止命令が入った場合や、トルクなどが著しく違う場合。
(4) 相手側から一定時間以上通信がない場合。
 なお、相互制御部14bは、ECU11に対しても、相手側の理由により停止あるいはトルク制限することを通信する。
 図5は、上記構成の異常対応制御装置における、ECU11および左右のインバータ装置12における相互制御部14bの処理の一例を示す流れ図である。ECU11は、運転者の操作量であるアクセル入力およびブレーキ入力に従って、左右のモータ5へ分配する駆動指令となるトルク指令のトルク値を計算し、左右のモータ5のインバータ装置12へ分配する(ステップS1)。ECU11は、この後、車両1の任意に設定された所定事項に関する診断である環境診断を行い(ステップS2)、異常があれば左右のインバータ装置12へ停止指令を送り(ステップS3)、直接、ステップS1に戻る。環境診断(ステップS2)において正常である場合はステップS1に戻る。
 左右のインバータ装置12は、互いに同様の処理を行うため、左側のインバータ装置12の処理について説明し、右側のインバータ装置12については、対応するステップの符号にダッシュを付して説明を省略する。
 各インバータ装置12は、ECU11からトルク指令を受信すると(ステップS4)、そのトルク指令に応じた電流を各モータ5に与え(ステップS5)、モータ5は駆動輪2に駆動力を与え、車両1を走行駆動させる。この後、発生トルクを推定し(ステップS6)、他方のモータ5またはインバータ装置12の異常の判断を行う(ステップS7)。この異常の判定には、例えば、他方のインバータ装置12でトルク推定(左インバータ12における判定なので、ステップS6′での推定値)を行った値を用いる。異常の判断であれば出力制限指令を出力(ステップS9)し、出力制限処理を行う(ステップS10)。異常の程度によっては、出力制限の代わりに、停止を行う(ステップS9,10)。
 上記判断ステップS7において、正常の判断である場合は自己診断を行う(ステップS8)。自己診断の結果、正常であればステップS1へ戻り、異常であれば出力制限指令を出力し(ステップS9)、出力制限処理を行う(ステップS10)。上記自己診断(ステップS8)は、インバータ、モータの故障診断および、他方のインバータ装置12の出力制限指令(ステップS9またはステップS9’の対応する方)を利用する。上記モータ、インバータの故障は、出力が出ない、出力が最大値から落ちないあるいはそれ以上から落ちない、出力が制御できない、温度が規定よりも上がりすぎる、電源の供給が切断される、電源電圧が小さすぎるあるいは大きすぎる、電池容量が足りない、回転センサの異常、電流センサの異常、モータロック、冷却水異常、CPU異常、またはスイッチング素子の異常などである。なお、ステップS8においては、ステップS3で停止指令が送信されている場合、ステップS9(またはステップS9’)へと移行する。
 上記構成の電気自動車の異常対応制御装置によると、このように左右のいずれか一方のモータ5またはインバータ装置12に不具合が生じたときに、他方のインバータ装置12は、出力を止めるのではなく、出力を制限しながら駆動を続けさせる。そのため、一部のモータやインバータ装置12に不具合が発生した場合に、他の車両の走行の妨げとならないように路側帯や路肩等に退避させたり、修理場所へ移動させたりする走行を安全に行える。高速道路などで一方の車輪に異常が発生した場合、他方の1輪は停止させるより、わずかなトルクを与え、車両を路側帯に退避させるなどの手段が取れる方がより安全である。
 また、ECU11の介入無しにインバータ間通信手段19を用いて、インバータ装置12間で直接に通信し、健全な方のインバータ装置12によるモータ制御を、出力を制限しながら続ける。そのため、ECU11自体や、ECU11とインバータ装置12間の通信回線の切断やショートによる故障等があっても出力制限が行え、かつECU11を介さないことから不具合検出からの応答性が良く、モータ5やインバータ装置12の不具合が発生しても車両の挙動をできるだけ確実かつ迅速に安定させることができる。
 前記インバータ間通信手段19を、車両内の通信を行うLANの一部とした場合は、一般的な規格のLAN等を用いることができ、特別な機器を設けることなくインバータ間通信を安定して行える。また、前記インバータ間通信手段19を、両インバータ装置12間で直接的に回線を接続する構成とした場合は、車両内の通信を行うLANの一部とする場合と異なり、他の情報の通信の完了を待つ必要がなく、応答性がより一層向上する。
 図6Aおよび図6Bは、この発明の他の実施形態を示す。この実施形態において、特に説明した事項以外については、前記実施形態と同様であり、説明を省略する。この実施形態は、左右前後の駆動輪2を個別に駆動する4台のモータ5を搭載した4輪駆動の電気自動車に適用した例である。この例では、前輪と後輪とを分けて考えて前記と同様の制御を行うようにしている。すなわち、この例では、各モータ5を個別に制御する制御部14を有する前輪側の左右のインバータ装置12および後輪側の左右のインバータ装置12を備え、前輪側の左右のインバータ装置12間の通信を行うインバータ間通信手段19および後輪側の左右のインバータ装置12間の通信を行うインバータ間通信手段19を、互いに独立して設けている。ただし、物理的には同じLANを使用し、信号の行き先のみ分ける構成としても良い。直接的に回線を接続する場合も、インバータ間通信手段19を前後のそれぞれ用に2組を準備する。
 この実施形態では、例えば、前輪の1つのインバータ装置12またはモータ5の異常時には、ECU11を介せず、独立した前輪側のインバータ間通信19により、1つのインバータ装置12またはモータ5の異常を、もう一方のインバータ装置12に通信し、他方のインバータ12が自動的にトルク制限あるいは停止を行う。なお、後輪も同様である。このように、4輪駆動車において、左右のモータ5のインバータ装置12間で上記出力制限の制御が行える。
 図7Aおよび図7Bは、この発明のさらに他の実施形態を示す。この実施形態において、特に説明した事項以外については、前記実施形態と同様であり、説明を省略する。この実施形態は、左右前後の駆動輪2を個別に駆動する4台のモータ5を搭載した4輪駆動の電気自動車に適用した例である。この例では、全ての前記インバータ装置12の相互間を接続するインバータ間通信手段19を備え、これら全てのインバータ装置12の制御部14に相互制御部14bを設ける。
 前記各相互制御部14bは、前記各モータ5およびインバータ装置12のうちのいずれか1個のモータ5またはインバータ装置12に不具合が生じたときに、前記インバータ間通信手段19を用いて、前記ECU11の介入無しに、不具合の生じたモータ5またはインバータ装置12を除く全てのインバータ装置12の出力につき、前記インバータ装置12の間の前記インバータ間通信手段19を用いて出力制限を行う。
 この構成の場合、4輪駆動車において、1台のモータ5またはインバータ装置12に不具合が生じたときに、不具合の生じたモータ5またはインバータ装置12を除く全てのインバータ装置12の出力を制限するため、より一層安全に退避場所や修理場所への走行が行える。その場合にも、ECU11を介さないことから不具合検出からの応答性が良く、モータ5やインバータ装置12の不具合が発生しても車両の挙動をできるだけ迅速に安定させることができる。
 同図の電気自動車の異常対応制御装置において、前記インバータ間通信手段19は、前記と同様に全ての前記インバータ装置12の相互間を接続する構成とし、前記各相互制御部14bは、前輪の左右いずれか一方のモータ5またはインバータ装置12に不具合が生じたときは、前輪の他方のインバータ装置12のみの出力を制限し、後輪の左右いずれか一方のモータ5またはインバータ装置12に不具合が生じたときは、後輪の他方のインバータ装置12のみの出力を制限する構成としても良い。なお、この相互制御部14bの構成の場合、前記インバータ間通信手段19は、必ずしも全てのインバータ装置12の相互間を接続する構成でなくても良く、少なくとも前輪側の左右の前記インバータ装置12の相互間、および後輪側の左右の前記インバータ装置12の相互間を接続する構成であれば良い。
 この構成の場合、4輪駆動車において、1個のモータ5またはインバータ装置12に不具合が生じたときに、例えば、前輪同士、および後輪同士で、左右のいずれか一方のモータ5またはインバータ装置12に不具合が生じたときに、他方のインバータ装置12の出力を制限する。そのため、4輪駆動車において、出力制限の程度をできるだけ抑えて走行性を高く維持しながら、安全に退避場所や修理場所への走行が行える。その場合にも、ECU11を介さないことから不具合検出からの応答性が良く、モータ5やインバータ装置12の不具合が発生しても車両の挙動をできるだけ迅速に安定させることができる。
 なお、前記各実施形態では、インホイールモータ駆動装置4を搭載した電気自動車に適用した場合につき説明したが、この発明は、インホイールモータ車に限らず、左右の駆動輪を個別に駆動するモータを搭載した電気自動車一般に適用できる。例えば、モータ5が車台に設置されて駆動シャフトや等速ジョイント等の伝達部品を介して対応するモータ5の回転を車輪に伝達する自動車にも適用できる。また、この発明の速度制御装置を適用する電気自動車は、モータとエンジンとを搭載したハイブリッド車においても、モータ駆動で走行する場合に適用することができる。
 以上、図面を参照しながら上記実施形態に基づいて本発明を実施するための好適な形態を説明したが、ここで開示した実施の形態は全ての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示される。当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内またはこれと均等の範囲内のものと解釈される。
1…車両
2…駆動輪
3…従動輪
4…インホイールモータ駆動装置
11…ECU
11a…指示トルク生成手段
12…インバータ装置
13…パワー回路部
14…制御部
14b…相互制御部
15…インバータ
19…インバータ間通信手段

Claims (6)

  1.  左右の駆動輪を個別に駆動するモータを搭載し、前記各モータを個別に制御する制御部を有する左右のインバータ装置と、アクセル入力から生成した駆動指令を前記各インバータ装置の前記制御部に与えるECUとを有する電気自動車における異常対応制御装置であって、
     前記左右のインバータ装置間の通信を行うインバータ間通信手段を設け、
     前記左右の駆動輪を個別に駆動するいずれか一方のモータまたはそのインバータ装置に不具合が生じたときに、前記インバータ間通信手段を用いて、前記ECUの介入無しに他方の前記インバータ装置の出力を制限する相互制御部を設けた電気自動車の異常対応制御装置。
  2.  請求項1に記載の電気自動車の異常対応制御装置において、前記左右のインバータ装置間のインバータ間通信手段を、車両内の通信を行うLANの一部とした電気自動車の異常対応制御装置。
  3.  請求項1に記載の電気自動車の異常対応制御装置において、前記左右のインバータ装置間のインバータ間通信手段を、両インバータ装置間で直接的に回線を接続して行う構成とした電気自動車の異常対応制御装置。
  4.  請求項1ないし請求項3のいずれかに記載の電気自動車の異常対応制御装置において、前記電気自動車が、前輪となる左右の駆動輪を個別に駆動するモータ、および後輪となる左右の駆動輪を個別に駆動するモータと、前記各モータを個別に制御する制御部を有する前輪側の左右のインバータ装置および後輪側の左右のインバータ装置を備える4輪駆動の電気自動車であって、前記前輪側の左右のインバータ装置間の通信を行うインバータ間通信手段および後輪側の左右のインバータ装置間の通信を行うインバータ間通信手段を、互いに独立して設けた電気自動車の異常対応制御装置。
  5.  前後の左右の駆動輪を個別に駆動するモータを搭載し、前記各モータを個別に制御する制御部を有する左右のインバータ装置と、アクセル入力から生成した駆動指令を前記インバータ装置の前記各制御部に与えるECUとを有する4輪駆動の電気自動車における異常対応制御装置であって、
     全ての前記インバータ装置の相互間を接続するインバータ間通信手段を備え、
     前記各モータおよびインバータ装置のうちのいずれか1個のモータまたはインバータ装置に不具合が生じたときに、前記インバータ間通信手段を用いて、前記ECUの介入無しに、不具合の生じたモータまたはインバータ装置を除く全てのインバータ装置の出力の制限を、前記インバータ間通信手段を用いて行う相互制御部を設けた電気自動車の異常対応制御装置。
  6.  前後の左右の駆動輪を個別に駆動するモータを搭載し、前記各モータを個別に制御する制御部を有する左右のインバータ装置と、アクセル入力から生成した駆動指令を前記インバータ装置の前記各制御部に与えるECUとを有する4輪駆動の電気自動車における異常対応制御装置であって、
     少なくとも前輪側の左右の前記インバータ装置の相互間、および前輪側の左右の前記インバータ装置の相互間を接続するインバータ間通信手段を備え、
     前輪の左右いずれか一方のモータまたはインバータ装置に不具合が生じたときは、前輪の他方のインバータ装置のみの出力を制限し、後輪の左右いずれか一方のモータまたはインバータ装置に不具合が生じたときは、後輪の他方のインバータ装置のみの出力を制限する相互制御部を設けた電気自動車の異常対応制御装置。
PCT/JP2016/050882 2015-01-19 2016-01-13 電気自動車の異常対応制御装置 WO2016117433A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015007610A JP6537832B2 (ja) 2015-01-19 2015-01-19 電気自動車の異常対応制御装置
JP2015-007610 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016117433A1 true WO2016117433A1 (ja) 2016-07-28

Family

ID=56416980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050882 WO2016117433A1 (ja) 2015-01-19 2016-01-13 電気自動車の異常対応制御装置

Country Status (2)

Country Link
JP (1) JP6537832B2 (ja)
WO (1) WO2016117433A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920395A (zh) * 2018-09-19 2020-03-27 株式会社斯巴鲁 电动汽车

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805896B2 (ja) * 2017-03-07 2020-12-23 株式会社豊田自動織機 全方向移動車両
EP3518050B1 (en) * 2018-01-26 2021-08-04 Danfoss Mobile Electrification Oy A method and a control system for controlling parallel operating devices
JP7263788B2 (ja) * 2019-01-17 2023-04-25 株式会社デンソー 制御装置
JP7322559B2 (ja) * 2019-07-10 2023-08-08 株式会社デンソー 退避アシスト装置
JP2021027682A (ja) * 2019-08-05 2021-02-22 三菱自動車工業株式会社 車両の駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256454A (ja) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd 車両のトルク配分制御装置
JP2013158123A (ja) * 2012-01-30 2013-08-15 Ntn Corp 電気自動車
JP2013251973A (ja) * 2012-05-31 2013-12-12 Ntn Corp 電気自動車の速度制御装置
JP2014093849A (ja) * 2012-11-02 2014-05-19 Ntn Corp 電気自動車の制御装置およびその電気自動車

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5784930B2 (ja) * 2011-03-07 2015-09-24 Ntn株式会社 電気自動車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256454A (ja) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd 車両のトルク配分制御装置
JP2013158123A (ja) * 2012-01-30 2013-08-15 Ntn Corp 電気自動車
JP2013251973A (ja) * 2012-05-31 2013-12-12 Ntn Corp 電気自動車の速度制御装置
JP2014093849A (ja) * 2012-11-02 2014-05-19 Ntn Corp 電気自動車の制御装置およびその電気自動車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920395A (zh) * 2018-09-19 2020-03-27 株式会社斯巴鲁 电动汽车

Also Published As

Publication number Publication date
JP6537832B2 (ja) 2019-07-03
JP2016134983A (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2016117433A1 (ja) 電気自動車の異常対応制御装置
JP6606780B1 (ja) 車両用電動制動装置およびその制御方法
JP2752539B2 (ja) 車両用電動機の制御装置
JP6534509B2 (ja) 車輪独立駆動式車両の駆動制御装置
US11285992B2 (en) Rotating electric machine control device
US20180056961A1 (en) Brake-by-wire system
JP6396180B2 (ja) 車輪独立駆動式車両の駆動制御装置
WO2019049731A1 (ja) パワーステアリング装置の制御装置
WO2016031663A1 (ja) 車輪独立駆動式車両の駆動制御装置
US11787293B2 (en) Electric motor control device and method of electric motor control
JP5038930B2 (ja) 電力変換回路の保護制御装置
JP6795897B2 (ja) 車輪独立駆動式車両の駆動制御装置
JP2017005899A (ja) 車輪独立駆動式車両の駆動制御装置
JP2019041171A (ja) 車両の制御装置
JP2021027682A (ja) 車両の駆動装置
JP2020120497A (ja) 電動車両
JP4483522B2 (ja) 電動パワーステアリング装置及び電力供給システム
JP2014121226A (ja) モータ駆動装置
JP2018014781A (ja) 電気自動車
JP6848806B2 (ja) ハイブリッド自動車
JP2008182843A (ja) モータ制御装置
WO2023080058A1 (ja) 電動車両の制御装置
WO2021125218A1 (ja) 車輪独立駆動式車両の駆動制御装置および駆動制御方法
JP2017041942A (ja) 電気自動車
JP2015073351A (ja) モータ制御装置および車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740040

Country of ref document: EP

Kind code of ref document: A1