WO2016115925A1 - 可逆直冷***、冰箱及制冷控制方法 - Google Patents

可逆直冷***、冰箱及制冷控制方法 Download PDF

Info

Publication number
WO2016115925A1
WO2016115925A1 PCT/CN2015/091097 CN2015091097W WO2016115925A1 WO 2016115925 A1 WO2016115925 A1 WO 2016115925A1 CN 2015091097 W CN2015091097 W CN 2015091097W WO 2016115925 A1 WO2016115925 A1 WO 2016115925A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
capillary
communication
evaporator
cooling system
Prior art date
Application number
PCT/CN2015/091097
Other languages
English (en)
French (fr)
Inventor
张奎
刘建如
吴贤栋
Original Assignee
青岛海尔股份有限公司
青岛海尔电冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司, 青岛海尔电冰箱有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2016115925A1 publication Critical patent/WO2016115925A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers

Definitions

  • the invention relates to the technical field of refrigerators, in particular to a reversible direct cooling system, a refrigerator and a refrigeration control method.
  • the evaporator area of the existing single-system direct-cooling refrigerator is fixed, and the refrigerant flow direction of the refrigerator refrigeration system is also fixed.
  • the ambient temperature is lower than 10 °C
  • the heat load of the refrigerator compartment is reduced.
  • the refrigerant flow rate is too large, and the evaporator area is also too large, thereby causing additional energy consumption; likewise, in the environment.
  • the temperature is high, the heat load of the refrigerating compartment of the refrigerator increases, and the required cooling capacity is large.
  • the refrigerant flow rate is small, and the evaporator area is also small, which causes the compressor starting frequency to increase and the energy consumption to increase.
  • the method is to set the pipeline in parallel with the evaporator, and the refrigeration medium is controlled by the solenoid valve to complete the cycle through different paths, as disclosed in Chinese patent CN202928252U.
  • a refrigeration circuit technical solution for setting a sub-evaporator and a through-line parallel to the sub-evaporator needs to increase the length of the evaporator pipe, and the manufacturing cost increases.
  • the object of the present invention is to provide a reversible direct cooling system, a refrigerator and a refrigeration control method, which can solve the problem of matching the evaporator area under different ambient temperatures of the refrigerator, and have the effect of energy saving and consumption reduction, and at the same time reduce the refrigerating compared with the prior art scheme.
  • Evaporator area reduces manufacturing costs.
  • the present invention provides a reversible direct cooling system including a press, a condenser, a drying filter, a throttling device, an evaporator, and a return air pipe, and the reversible direct cooling system further includes a four-way valve.
  • the evaporator includes a refrigerating evaporator and a refrigerating evaporator arranged in series, the four-way valve including a first port connecting the throttling device, a second port connecting the refrigerating evaporator, and a connection to the refrigerating evaporator a third port and a fourth port connected to the air return pipe, wherein the fourth port is in communication with the third port when the first port is in communication with the second port; and when the first port is connected to the third port The fourth port is in communication with the second port.
  • the reversible direct cooling system further includes a three-way valve connected to the drying filter, the throttling device being a first capillary and a second capillary disposed in parallel and having different flow rates.
  • the two outlets of the three-way valve are respectively connected to the first capillary and the second capillary, and the first capillary and the second capillary are both connected to the first port of the four-way valve.
  • the present invention also provides a refrigerator including a refrigerating compartment and a freezing compartment, the refrigerator further comprising the above-mentioned refrigerator compartment And a reversible direct cooling system for cooling in the freezer compartment.
  • the invention also provides a refrigeration control method for a reversible direct cooling system, the reversible direct cooling system further comprising an ambient temperature sensor for detecting an ambient temperature T e .
  • the control method includes detecting an ambient temperature T e and comparing the ambient temperature T e with a first preset temperature T1;
  • the first port is in communication with the second port
  • the fourth port is in communication with the third port
  • the refrigerant flows from the refrigerating evaporator to the freezing evaporator
  • the first port is in communication with the third port
  • the fourth port is in communication with the second port
  • refrigerant flows from the freezing evaporator to the refrigerating evaporator.
  • the present invention also provides a refrigeration control method for another reversible direct cooling system, wherein the throttling device is two capillary tubes having different flow rates disposed in parallel, and the flow rate of the first capillary tube is greater than the flow rate of the second capillary tube.
  • the reversible direct cooling system also includes an ambient temperature sensor for detecting the ambient temperature T e .
  • the control method includes detecting an ambient temperature T e and comparing the ambient temperature T e with a second preset temperature T2, a third preset temperature T3, and a fourth preset temperature T4 (T2 ⁇ T3 ⁇ T4);
  • the three-way valve controls the first capillary to be closed, and the second capillary is connected; meanwhile, the first port is in communication with the third port, and the fourth port is in communication with the second port, cooling a reagent flowing from the freezing evaporator to the refrigerating evaporator;
  • the three-way valve controls the first capillary to be closed, and the second capillary is connected; meanwhile, the first port is in communication with the second port, and the fourth port is in communication with the third port a refrigerant flowing from the refrigerating evaporator to the refrigerating evaporator;
  • the three-way valve controls the second capillary to be closed, the first capillary is in communication, and at the same time, the first port is in communication with the third port, and the fourth port is in communication with the second port Refrigerating agent flows from the freezing evaporator to the refrigerating evaporator;
  • the three-way valve controls the second capillary to be closed, the first capillary is in communication, and at the same time, the first port is in communication with the second port, and the fourth port is in communication with the third port, cooling
  • the agent flows from the refrigerated evaporator to the refrigerating evaporator.
  • the invention has the beneficial effects that the reversible direct cooling system, the refrigerator and the refrigeration control method provided by the invention can solve the problem of matching the evaporator area of the refrigerator under different ambient temperatures, and has the effect of energy saving and consumption reduction, and at the same time compared with the existing
  • the technical solution reduces the area of the refrigerated evaporator and reduces the manufacturing cost.
  • FIG. 1 is a schematic view showing the basic structure of a reversible direct cooling system of the present invention
  • FIG. 2 is a schematic structural view of another preferred embodiment of the reversible direct cooling system of the present invention.
  • FIG. 1 is a schematic diagram showing the basic structure of a reversible direct cooling system 100 according to the present invention.
  • the reversible direct cooling system 100 comprises a press 1, a condenser 2, a drying filter 3, a throttling device 4, a refrigerated evaporator 5 arranged in series, a refrigerating evaporator 6, a return air pipe 7, and a corresponding pipeline.
  • the phases are connected to form a closed refrigerant circuit.
  • the reversible direct cooling system 100 further includes a four-way valve 8 including a first port A connecting the throttling device 4, a second port B connecting the refrigerating evaporator 5, and a connection station
  • the third port C of the freezing evaporator 6 and the fourth port D connecting the return air pipe 7 are described.
  • the fourth port D is in communication with the third port C; when the first port A is connected to the third port C, the fourth port D is The second port B is in communication, and the first port A and the fourth port D of the four-way valve 8 are not in direct communication.
  • the present invention also provides a refrigeration control method for the above-described reversible direct cooling system 100, the reversible direct cooling system 100 further comprising an ambient temperature sensor for detecting the ambient temperature T e .
  • the control method includes detecting an ambient temperature T e and comparing the ambient temperature T e with a first preset temperature T1;
  • the first port A is in communication with the second port B
  • the fourth port D is in communication with the third port C
  • the refrigerant flows from the refrigerating evaporator 5 to the freezing evaporator 6;
  • the first port A communicates with the third port C
  • the fourth port D communicates with the second port B
  • the refrigerant flows from the freezing evaporator 6 to the refrigerating evaporator 5.
  • the refrigerant is controlled by the four-way valve 8 to flow from the refrigerating evaporator 6 to the refrigerating evaporator 5 to improve freezing during the refrigeration cycle.
  • the refrigeration efficiency of the evaporator 6 similarly, when the ambient temperature T e is high, the heat load of the refrigerating evaporator 5 is increased, and the required cooling amount is required to be large, and the refrigerant is controlled from the refrigerating evaporation by the four-way valve 8
  • the flow of the device 5 to the refrigerating evaporator 6 reduces the frequency of starting the reversible direct cooling system and effectively reduces energy consumption.
  • the reversible direct cooling system 100' further includes a three-way valve 9 connected to the drying filter 3.
  • the throttling device 4 is a first capillary 41 and a second capillary 42 which are disposed in parallel and have different flow rates, and the flow rate of the first capillary 41 is greater than the flow rate of the second capillary 42.
  • the two outlets of the three-way valve 9 are respectively connected to the first capillary 41 and the second capillary 42 , and the first capillary 41 and the second capillary 42 are both connected to the first port of the four-way valve 8 A.
  • the refrigerant when the ambient temperature is high, the refrigerant is controlled to circulate through the first capillary 41 through the three-way valve 9; when the ambient temperature is low, the refrigerant is controlled by the three-way valve 9 to pass through the second capillary 42 Loop.
  • the present invention also provides a refrigeration control method for the reversible direct cooling system 100' of the above another embodiment, the reversible direct cooling system 100' further comprising an ambient temperature sensor for detecting the ambient temperature T e .
  • the control method includes detecting an ambient temperature T e and comparing the ambient temperature T e with a second preset temperature T2, a third preset temperature T3, and a fourth preset temperature T4 (T2 ⁇ T3 ⁇ T4);
  • the three-way valve 9 controls the first capillary 41 to be closed, and the second capillary 42 to communicate; meanwhile, the first port A is in communication with the third port C, and the fourth port D is The second port B is connected, the refrigerant flows from the freezing evaporator 6 to the refrigerating evaporator 5;
  • the three-way valve 9 controls the first capillary 41 to be closed, and the second capillary 42 is in communication; meanwhile, the first port A is in communication with the second port B, and the fourth port D is in communication with the third port C, the refrigerant flows from the refrigerated evaporator 5 to the freezing evaporator 6;
  • the three-way valve 9 controls the second capillary 42 to be closed, and the first capillary 41 is in communication; meanwhile, the first port A is in communication with the third port C, and the fourth port D is in communication with the second port B, the refrigerant flows from the freezing evaporator 6 to the refrigerating evaporator 5;
  • the three-way valve 9 controls the second capillary 42 to be closed, the first capillary 41 is in communication, and at the same time, the first port A is in communication with the second port B, and the fourth port D is The third port C is in communication, and the refrigerant flows from the refrigerating evaporator 5 to the refrigerating evaporator 6.
  • the second preset temperature T2 is set to 5 to 15 ° C; the third preset temperature T3 is set to 15 to 30 ° C; and the fourth preset temperature T4 is set to 30 to 40 ° C.
  • the refrigeration cycle mode of the reversible direct cooling system 100 ′ is manually or automatically switched to achieve better matching between the evaporator and the ambient temperature T e , thereby achieving the effect of energy saving and consumption reduction.
  • the area of the refrigerating evaporator 5 can be reduced by 20-30%, which effectively reduces material and manufacturing costs.
  • the present invention also provides a refrigerator including a refrigerating compartment and a freezing compartment, the refrigerator further comprising a reversible direct cooling system 100 (100') for cooling the refrigerating compartment and the freezing compartment.
  • the reversible direct cooling system 100 (100'), the refrigerator and the refrigeration control method provided by the invention can solve the problem of matching the evaporator area under different environmental temperatures T e of the refrigerator, and have the effects of energy saving and consumption reduction.
  • the area of the refrigerating evaporator 5 is reduced compared with the prior art solution, and the manufacturing cost is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种可逆直冷***(100 )、冰箱及制冷控制方法。可逆直冷***(100 )包括压机(1)、冷凝器(2)、干燥过滤器(3)、节流装置(41,42)、蒸发器(5,6)、回气管(7)以及四通阀(8)。蒸发器(5,6)包括呈串联设置的冷藏蒸发器(5)与冷冻蒸发器(6),四通阀(8)包括连接节流装置(41,42)的第一端口(A)、连接冷藏蒸发器(5)的第二端口(B)、连接冷冻蒸发器(6)的第三端口(C)以及连接回气管(7)的第四端口(D)。采用这种结构的可逆直冷***(100 )以及制冷控制方法,能够解决冰箱在不同环境温度下的蒸发器面积匹配问题,具有节能减耗的效果,同时能降低制造成本。

Description

可逆直冷***、冰箱及制冷控制方法
本申请要求了申请日为2015年01月23日,申请号为201510037173.5,发明名称为“可逆直冷***、冰箱及制冷控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冰箱技术领域,特别涉及一种可逆直冷***、冰箱及制冷控制方法。
背景技术
现有单***直冷冰箱的蒸发器面积固定,所述冰箱制冷***的制冷剂流向也固定。在环境温度较低如低于10℃时,冰箱的冷藏间室热负荷减小,此时制冷剂流量过大,蒸发器面积也偏大,由此造成额外的能耗;同样地,在环境温度较高时,冰箱的冷藏间室热负荷增大,所需冷量要求大,此时的制冷剂流量偏小,蒸发器面积也偏小,造成压缩机开机频率增大,能耗增加。
现在业内为解决冰箱制冷***与环境的匹配问题多采用的方法为设置与蒸发器并联的管路,并通过电磁阀控制制冷介质通过不同的路径完成循环,如中国专利CN202928252U中即揭示了一种设置副蒸发器及与副蒸发器并联的直通管路的制冷回路技术方案。但上述技术方案需增设蒸发器管路的长度,制造成本增加。
因此,有必要提供一种新的可逆直冷***、冰箱及制冷控制方法。
发明内容
本发明目的在于提供一种可逆直冷***、冰箱及制冷控制方法,能够解决冰箱在不同环境温度下的蒸发器面积匹配问题,具有节能减耗的效果,同时相比较现有技术方案减小冷藏蒸发器面积,降低制造成本。
为实现上述发明目的,本发明提供一种可逆直冷***,包括压机、冷凝器、干燥过滤器、节流装置、蒸发器以及回气管,所述可逆直冷***还包括四通阀,所述蒸发器包括呈串联设置的冷藏蒸发器与冷冻蒸发器,所述四通阀包括连接所述节流装置的第一端口、连接所述冷藏蒸发器的第二端口、连接所述冷冻蒸发器的第三端口以及连接所述回气管的第四端口,当所述第一端口与第二端口连通时,所述第四端口与第三端口连通;当所述第一端口与第三端口连通时,所述第四端口与第二端口连通。
作为本发明的进一步改进,所述可逆直冷***还包括连接至所述干燥过滤器的三通阀,所述节流装置为呈并联设置且具有不同流量的第一毛细管及第二毛细管,所述三通阀的两个出口分别连接所述第一毛细管及第二毛细管,所述第一毛细管与所述第二毛细管均连接至所述四通阀的第一端口。
本发明还提供一种冰箱,包括冷藏室及冷冻室,所述冰箱还包括上述用以为所述冷藏室 及冷冻室供冷的可逆直冷***。
本发明还提供一种可逆直冷***的制冷控制方法,所述可逆直冷***还包括用以检测环境温度Te的环境温度感测器。
所述控制方法包括检测环境温度Te并将所述环境温度Te与第一预设温度T1对比;
当Te≥T1时,所述第一端口与第二端口连通,所述第四端口与第三端口连通,制冷剂自所述冷藏蒸发器流向所述冷冻蒸发器;
当Te<T1时,所述第一端口与第三端口连通,所述第四端口与第二端口连通,制冷剂自所述冷冻蒸发器流向所述冷藏蒸发器。
本发明还提供另一可逆直冷***的制冷控制方法,所述节流装置是为并联设置的两根具有不同流量的毛细管,所述第一毛细管的流量大于所述第二毛细管的流量,所述可逆直冷***还包括用以检测环境温度Te的环境温度感测器。
所述控制方法包括检测环境温度Te并将所述环境温度Te与第二预设温度T2、第三预设温度T3及第四预设温度T4比较(T2<T3<T4);
当Te<T2时,所述三通阀控制所述第一毛细管关闭,第二毛细管连通;同时,所述第一端口与第三端口连通,所述第四端口与第二端口连通,制冷剂自所述冷冻蒸发器流向所述冷藏蒸发器;
当T2≤Te<T3时,所述三通阀控制所述第一毛细管关闭,第二毛细管连通;同时,所述第一端口与第二端口连通,所述第四端口与第三端口连通,制冷剂自所述冷藏蒸发器流向所述冷冻蒸发器;
当T3≤Te<T4时,所述三通阀控制所述第二毛细管关闭,第一毛细管连通,同时,所述第一端口与第三端口连通,所述第四端口与第二端口连通,制冷剂自所述冷冻蒸发器流向所述冷藏蒸发器;
当Te≥T4时,所述三通阀控制所述第二毛细管关闭,第一毛细管连通,同时,所述第一端口与第二端口连通,所述第四端口与第三端口连通,制冷剂自所述冷藏蒸发器流向所述冷冻蒸发器。
本发明的有益效果是:采用本发明提供的可逆直冷***、冰箱及制冷控制方法,能够解决冰箱在不同环境温度下的蒸发器面积匹配问题,具有节能减耗的效果,同时相比较现有技术方案减小冷藏蒸发器面积,降低制造成本。
附图说明
图1为本发明可逆直冷***基本结构示意图;
图2为本发明可逆直冷***另一较佳实施例的结构示意图。
具体实施方式
以下将结合附图所示的实施方式对本发明进行详细描述。但该实施方式并不限制本发明,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本发 明的保护范围内。
如图1所示为本发明提供的可逆直冷***100基本结构示意图。所述可逆直冷***100包括压机1、冷凝器2、干燥过滤器3、节流装置4、呈串联设置的冷藏蒸发器5与冷冻蒸发器6、回气管7,并通过相应的管路相连接形成闭合的制冷剂循环回路。
所述可逆直冷***100还包括一个四通阀8,所述四通阀8包括连接所述节流装置4的第一端口A、连接所述冷藏蒸发器5的第二端口B、连接所述冷冻蒸发器6的第三端口C以及连接所述回气管7的第四端口D。当所述第一端口A与第二端口B连通时,所述第四端口D与第三端口C连通;当所述第一端口A与第三端口C连通时,所述第四端口D与第二端口B连通,所述四通阀8的第一端口A与第四端口D不直接连通。
本发明还提供了一种上述可逆直冷***100的制冷控制方法,所述可逆直冷***100还包括用以检测环境温度Te的环境温度感测器。
所述控制方法包括检测环境温度Te并将所述环境温度Te与第一预设温度T1对比;
当Te≥T1时,所述第一端口A与第二端口B连通,所述第四端口D与第三端口C连通,制冷剂自所述冷藏蒸发器5流向所述冷冻蒸发器6;
当Te<T1时,所述第一端口A与第三端口C连通,所述第四端口D与第二端口B连通,制冷剂自所述冷冻蒸发器6流向所述冷藏蒸发器5。
即在环境温度Te较低时,冷藏蒸发器5的热负荷较小,通过所述四通阀8控制制冷剂自所述冷冻蒸发器6流向所述冷藏蒸发器5,提高制冷循环时冷冻蒸发器6的制冷效率;同样地,在环境温度Te较高时,冷藏蒸发器5热负荷增大,所需冷量要求大,通过所述四通阀8控制制冷剂自所述冷藏蒸发器5流向所述冷冻蒸发器6,减少所述可逆直冷***的启动频次,有效降低能耗。
如图2所示为本发明的另一实施方式,所述可逆直冷***100'还包括连接至所述干燥过滤器3的三通阀9。所述节流装置4为呈并联设置且具有不同流量的第一毛细管41及第二毛细管42,所述第一毛细管41的流量大于所述第二毛细管42的流量。所述三通阀9的两个出口分别连接所述第一毛细管41及第二毛细管42,所述第一毛细管41与所述第二毛细管42均连接至所述四通阀8的第一端口A。明显地,当环境温度较高时,通过所述三通阀9控制制冷剂通过第一毛细管41进行循环;当环境温度较低时,通过所述三通阀9控制制冷剂通过第二毛细管42进行循环。
本发明还提供了上述另一实施方式的可逆直冷***100'的制冷控制方法,所述可逆直冷***100'还包括用以检测环境温度Te的环境温度感测器。
所述控制方法包括检测环境温度Te并将所述环境温度Te与第二预设温度T2、第三预设温度T3及第四预设温度T4比较(T2<T3<T4);
当Te<T2时,所述三通阀9控制所述第一毛细管41关闭,第二毛细管42连通;同时,所述第一端口A与第三端口C连通,所述第四端口D与第二端口B连通,制冷 剂自所述冷冻蒸发器6流向所述冷藏蒸发器5;
当T2≤Te<T3时,所述三通阀9控制所述第一毛细管41关闭,第二毛细管42连通;同时,所述第一端口A与第二端口B连通,所述第四端口D与第三端口C连通,制冷剂自所述冷藏蒸发器5流向所述冷冻蒸发器6;
当T3≤Te<T4时,所述三通阀9控制所述第二毛细管42关闭,第一毛细管41连通;同时,所述第一端口A与第三端口C连通,所述第四端口D与第二端口B连通,制冷剂自所述冷冻蒸发器6流向所述冷藏蒸发器5;
当Te≥T4时,所述三通阀9控制所述第二毛细管42关闭,第一毛细管41连通,同时,所述第一端口A与第二端口B连通,所述第四端口D与第三端口C连通,制冷剂自所述冷藏蒸发器5流向所述冷冻蒸发器6。
其中,第二预设温度T2设为5~15℃;第三预设温度T3设为15~30℃;第四预设温度T4设为30~40℃。根据环境温度Te的不同通过手动或者自动切换所述可逆直冷***100'的制冷循环方式以实现蒸发器与环境温度Te更好的匹配,达成节能减耗的效果。同时,相比较现有直冷***可减小冷藏蒸发器5面积20-30%,有效降低材料及制造成本。
本发明还提供一种冰箱,包括冷藏室及冷冻室,所述冰箱还包括用以为所述冷藏室及冷冻室供冷的可逆直冷***100(100')。
综上所述,采用本发明提供的可逆直冷***100(100')、冰箱及制冷控制方法,能够解决冰箱在不同环境温度Te下的蒸发器面积匹配问题,具有节能减耗的效果,同时相比较现有技术方案减小冷藏蒸发器5面积,降低制造成本。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种可逆直冷***,包括压机、冷凝器、干燥过滤器、节流装置、蒸发器以及回气管,其特征在于:所述可逆直冷***还包括四通阀,所述蒸发器包括呈串联设置的冷藏蒸发器与冷冻蒸发器,所述四通阀包括连接所述节流装置的第一端口、连接所述冷藏蒸发器的第二端口、连接所述冷冻蒸发器的第三端口以及连接所述回气管的第四端口,当所述第一端口与第二端口连通时,所述第四端口与第三端口连通;当所述第一端口与第三端口连通时,所述第四端口与第二端口连通。
  2. 根据权利要求1所述的可逆直冷***,其特征在于:所述可逆直冷***还包括连接至所述干燥过滤器的三通阀,所述节流装置为呈并联设置且具有不同流量的第一毛细管及第二毛细管,所述三通阀的两个出口分别连接所述第一毛细管及第二毛细管,所述第一毛细管与所述第二毛细管均连接至所述四通阀的第一端口。
  3. 一种冰箱,包括冷藏室及冷冻室,其特征在于:所述冰箱包括如权利要求1-2任一项所述的用以为所述冷藏室及冷冻室供冷的可逆直冷***。
  4. 一种如权利要求1所述的可逆直冷***的制冷控制方法,其特征在于:所述可逆直冷***还包括用以检测环境温度Te的环境温度感测器,
    所述控制方法包括检测环境温度Te并将所述环境温度Te与第一预设温度T1对比;
    当Te≥T1时,所述第一端口与第二端口连通,所述第四端口与第三端口连通,制冷剂自所述冷藏蒸发器流向所述冷冻蒸发器;
    当Te<T1时,所述第一端口与第三端口连通,所述第四端口与第二端口连通,制冷剂自所述冷冻蒸发器流向所述冷藏蒸发器。
  5. 一种如权利要求2述的可逆直冷***的制冷控制方法,其特征在于:所述第一毛细管的流量大于所述第二毛细管的流量,所述可逆直冷***还包括用以检测环境温度Te的环境温度感测器,
    所述控制方法包括检测环境温度Te并将所述环境温度Te与第二预设温度T2、第三预设温度T3及第四预设温度T4比较(T2<T3<T4);
    当Te<T2时,所述三通阀控制所述第一毛细管关闭,第二毛细管连通;同时,所述第一端口与第三端口连通,所述第四端口与第二端口连通,制冷剂自所述冷冻蒸发器流向所述冷藏蒸发器;
    当T2≤Te<T3时,所述三通阀控制所述第一毛细管关闭,第二毛细管连通;同时,所述第一端口与第二端口连通,所述第四端口与第三端口连通,制冷剂自所述冷藏蒸发器流向所述冷冻蒸发器;
    当T3≤Te<T4时,所述三通阀控制所述第二毛细管关闭,第一毛细管连通,同时,所述第一端口与第三端口连通,所述第四端口与第二端口连通,制冷剂自所述冷冻蒸 发器流向所述冷藏蒸发器;
    当Te≥T4时,所述三通阀控制所述第二毛细管关闭,第一毛细管连通,同时,所述第一端口与第二端口连通,所述第四端口与第三端口连通,制冷剂自所述冷藏蒸发器流向所述冷冻蒸发器。
PCT/CN2015/091097 2015-01-23 2015-09-29 可逆直冷***、冰箱及制冷控制方法 WO2016115925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510037173.5A CN104654646B (zh) 2015-01-23 2015-01-23 可逆直冷***的制冷控制方法
CN201510037173.5 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016115925A1 true WO2016115925A1 (zh) 2016-07-28

Family

ID=53246068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091097 WO2016115925A1 (zh) 2015-01-23 2015-09-29 可逆直冷***、冰箱及制冷控制方法

Country Status (2)

Country Link
CN (1) CN104654646B (zh)
WO (1) WO2016115925A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654646B (zh) * 2015-01-23 2017-04-05 青岛海尔股份有限公司 可逆直冷***的制冷控制方法
CN111306822B (zh) * 2020-03-31 2023-12-15 长虹美菱股份有限公司 一种带有冰镇蒸发器的制冷***及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824455B1 (zh) * 1969-12-29 1973-07-21
JPS5195852U (zh) * 1975-01-30 1976-07-31
CN2697535Y (zh) * 2004-04-14 2005-05-04 合肥美菱股份有限公司 机械控温双循环制冷冰箱
CN201344692Y (zh) * 2008-11-24 2009-11-11 海信(北京)电器有限公司 可自动调节制冷剂流量的电冰箱
CN202928252U (zh) * 2012-12-03 2013-05-08 合肥晶弘电器有限公司 冷藏室蒸发器面积可自动调节的单循环直冷冰箱
CN104654646A (zh) * 2015-01-23 2015-05-27 青岛海尔股份有限公司 可逆直冷***、冰箱及制冷控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294047A (ja) * 1994-04-21 1995-11-10 Mitsubishi Heavy Ind Ltd 空気調和機
DE19524840A1 (de) * 1995-07-07 1997-01-09 Bosch Siemens Hausgeraete Verdampferanordnung für Haushalts-Kältegeräte
JP3576092B2 (ja) * 2000-11-10 2004-10-13 松下冷機株式会社 冷蔵庫
JP2002162124A (ja) * 2000-11-21 2002-06-07 Saginomiya Seisakusho Inc 冷蔵庫用の冷凍サイクル装置
CN201476446U (zh) * 2009-06-03 2010-05-19 合肥晶弘电器有限公司 具有冷藏和冷冻互换功能的双间室冰柜
CN201740302U (zh) * 2010-08-20 2011-02-09 三河市同飞制冷设备有限公司 具有交替融霜功能的工业冷风机
CN104236151B (zh) * 2014-09-17 2017-09-19 合肥美的电冰箱有限公司 冰箱及其制冷***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824455B1 (zh) * 1969-12-29 1973-07-21
JPS5195852U (zh) * 1975-01-30 1976-07-31
CN2697535Y (zh) * 2004-04-14 2005-05-04 合肥美菱股份有限公司 机械控温双循环制冷冰箱
CN201344692Y (zh) * 2008-11-24 2009-11-11 海信(北京)电器有限公司 可自动调节制冷剂流量的电冰箱
CN202928252U (zh) * 2012-12-03 2013-05-08 合肥晶弘电器有限公司 冷藏室蒸发器面积可自动调节的单循环直冷冰箱
CN104654646A (zh) * 2015-01-23 2015-05-27 青岛海尔股份有限公司 可逆直冷***、冰箱及制冷控制方法

Also Published As

Publication number Publication date
CN104654646A (zh) 2015-05-27
CN104654646B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2019128516A1 (zh) 空调器***
WO2018121593A1 (zh) 冰箱节能制冷***及具有该***的冰箱运行方法
CN201852392U (zh) 冰吧
CN104061705A (zh) 双级压缩空调***及其控制方法
CN105466083B (zh) 一种可变流路的热泵空调换热器及其控制方法
US9677789B2 (en) Refrigeration appliance with two evaporators in different compartments
CN104748423A (zh) 一种双蒸发器冰箱制冷***及其运行方法
WO2016101672A1 (zh) 一种冰箱与冰箱的运行控制方法
CN104121747A (zh) 一种制冷***以及具有该制冷***的冰箱
CN104296480B (zh) 一种空调和冰箱一体机
WO2016115925A1 (zh) 可逆直冷***、冰箱及制冷控制方法
CN105135731A (zh) 制冷***、制冷装置及其制冷装置的温度控制方法
CN103528267A (zh) 带热管回路的低环境温度空气源热泵制冷***
CN108061403A (zh) 一种双向自复叠热泵***
CN107367125A (zh) 冰箱及冰箱控制方法
CN206771795U (zh) 空调***
CN110285595B (zh) 制冷***及具有其的制冷设备
CN104501439A (zh) 用于冰箱的制冷***和冰箱
CN201954882U (zh) 一种三门三温区电冰箱
CN205373132U (zh) 室内温度调控***及空调器
CN111121352A (zh) 一种减少漏热的连续融霜制冷控制***
CN104121721B (zh) 一种单双级可切换的热泵
CN103900311A (zh) 制冷***及使用该制冷***的冷冻冷藏装置
CN213237802U (zh) 冷水机组和空调设备
CN211424782U (zh) 热氟除霜装置及空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878594

Country of ref document: EP

Kind code of ref document: A1