WO2019128516A1 - 空调器*** - Google Patents

空调器*** Download PDF

Info

Publication number
WO2019128516A1
WO2019128516A1 PCT/CN2018/115747 CN2018115747W WO2019128516A1 WO 2019128516 A1 WO2019128516 A1 WO 2019128516A1 CN 2018115747 W CN2018115747 W CN 2018115747W WO 2019128516 A1 WO2019128516 A1 WO 2019128516A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air conditioner
conditioner system
refrigerant
throttle device
Prior art date
Application number
PCT/CN2018/115747
Other languages
English (en)
French (fr)
Inventor
王飞
付裕
罗荣邦
许文明
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Priority to ES18893462T priority Critical patent/ES2939186T3/es
Priority to FIEP18893462.4T priority patent/FI3734167T3/fi
Priority to JP2020535568A priority patent/JP7175985B2/ja
Priority to PL18893462.4T priority patent/PL3734167T3/pl
Priority to EP18893462.4A priority patent/EP3734167B1/en
Priority to DK18893462.4T priority patent/DK3734167T3/da
Publication of WO2019128516A1 publication Critical patent/WO2019128516A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular relates to an air conditioner system.
  • the existing air conditioner system usually forms a refrigeration/heating cycle by a condenser, a throttle device, an evaporator, and a compressor, and the high temperature and high pressure gaseous refrigerant discharged from the compressor is condensed into a low temperature and high pressure liquid in the condenser, and is throttled.
  • the device is throttled into a low temperature and low pressure liquid, and then enters the evaporator to absorb heat and evaporate to complete a refrigeration/heating cycle.
  • the high-temperature and high-pressure gaseous refrigerant forms a low-temperature and high-pressure liquid refrigerant after heat exchange through the condenser, and then throttling and depressurization through the throttling device to form a low-temperature low-pressure gas-liquid two-phase zone refrigerant to enter the evaporation.
  • Heat exchange The larger the evaporation area, the higher the relative evaporation capacity. Among them, the low temperature and high pressure liquid refrigerant will increase the degree of subcooling if it continues to exotherm, thereby increasing the cooling capacity of the system cycle.
  • the refrigerant When the refrigerant is in heat exchange, more than 95% of the heat exchange is derived from the latent heat of vaporization in the two-phase region, while the isobaric specific heat capacity of the unidirectional zone (pure liquid, pure gas) is relatively small, and the heat exchange capacity accounts for the total system.
  • the proportion of the loop is small.
  • the pressure drop of the gaseous refrigerant in the pipeline is large, which is the main source of the system cyclic pressure loss, which increases the amount of work done by the cycle, that is, increases the energy consumption of the system cycle.
  • FIG. 3 is a cycle schematic diagram of a conventional air conditioner during heating operation.
  • the actual operating temperature of the air conditioner heating operation is generally: A point high temperature gaseous 70 ° C refrigerant, enter the indoor heat exchanger and 20 ° C indoor environment for heat exchange, the temperature is reduced to 30 ° C, flow through After the line tube enters the throttling device, the temperature between point B and the throttling device (about 30 ° C) is much higher than the outdoor ambient temperature of 7 ° C, and the waste heat is wasted. If the residual heat is absorbed and utilized, the system cycle can be increased. Too cold.
  • the air conditioner system provided by the present invention includes a compressor, an indoor heat exchanger, a first throttle device, and an outdoor unit connected in series in the main circuit.
  • a heat exchanger wherein the main circuit is further provided with a heat exchanger and a first gas-liquid separator, and a bypass defrost circuit is disposed between the compressor and the outdoor heat exchanger;
  • One side is connected to a first line between the first throttling device and the indoor heat exchanger, and the other side of the heat exchanger is in heat exchange with the first throttling device and the outdoor a second line between the tubes is connected;
  • a refrigerant passing through the first line and a refrigerant passing through the second line are capable of performing heat exchange in the heat exchanger;
  • the first gas-liquid separator is located a second pipeline section between the heat exchanger and the indoor heat exchanger, and a bypass pipeline is disposed between the first gas-liquid separator and the compressor; the bypass The defrost circuit is used to perform a defrosting operation on the outdoor heat exchanger during the heating of the air conditioner.
  • a second throttle device is disposed in the bypass line, and when the air conditioner system is heated, the second throttle device is used to control the gaseous refrigerant. flow.
  • the first conduit passes through one side of the heat exchanger and/or the second conduit passes through the other side of the heat exchanger.
  • a third throttle device is further disposed in the main circuit, and the third throttle device is located between the heat exchanger and the indoor heat exchanger. In the pipeline section.
  • the third throttle device when the air conditioner system is operating in heating, the third throttle device is in a fully open state, and the first throttle device is used for refrigerant throttling.
  • the first throttle device when the air conditioner system is in a cooling operation, the first throttle device is in a fully open state, and the third throttle device is used to throttle the refrigerant.
  • a throttle valve is disposed in the bypass defrost circuit, and when the outdoor heat exchanger requires defrosting, the throttle valve is opened to enable compression from the The refrigerant flowing out of the machine performs a defrosting operation on the outdoor heat exchanger through the bypass defrosting circuit; when the outdoor heat exchanger does not require defrosting, the throttle valve is closed.
  • the compressor is provided with a second gas-liquid separator, and the refrigerant is returned to the compressor after passing through the second gas-liquid separator.
  • bypass line is connected upstream of the second gas-liquid separator.
  • the air conditioner system further includes a four-way valve for switching the air conditioner system between a cooling mode and a heating mode.
  • a heat exchanger is added to the air conditioner system, and two sides of the heat exchanger are respectively connected to the first pipeline and the second pipeline, so that the refrigerant in the first pipeline is And the refrigerant in the second pipeline can exchange heat at the heat exchanger, which not only effectively increases the degree of subcooling of the refrigerant in the first pipeline, but also promotes evaporation of the refrigerant in the second pipeline, thereby Increased system heat.
  • a bypass line is disposed between the first gas-liquid separator of the present invention and the compressor, and the gaseous refrigerant passing through the gas-liquid separator can enter the suction port of the compressor through the bypass line, thereby reducing
  • the pressure loss of this part of the gaseous refrigerant in the heating cycle is equivalent to increasing the pressure of the suction port of the compressor, thereby reducing the power consumption of the compressor and increasing the circulation of the refrigerant in the heating cycle of the air conditioner system.
  • the invention also adds a bypass defrost circuit, in the process of defrosting the air conditioner, the refrigerant will continue to enter the indoor heat exchanger for heating, that is, the air conditioner can still be maintained in the heating condition, and the air conditioner is not stopped.
  • the purpose of defrosting the air conditioner of the present invention also uses the third throttle device to replace the first throttle device when the air conditioner is switched to the cooling mode by setting the third throttle device (at this time, the first throttle device is at The fully open state is to throttle the refrigerant, thereby avoiding the phenomenon that the cooling capacity is reduced when the refrigeration cycle occurs.
  • FIG. 1 is a schematic structural view of a first embodiment of an air conditioner system of the present invention
  • Figure 2 is a schematic structural view of a second embodiment of the air conditioner system of the present invention.
  • Fig. 3 is a schematic diagram of the cycle of a conventional air conditioner during heating operation.
  • Fig. 1 is a schematic structural view of a first embodiment of an air conditioner system of the present invention.
  • the air conditioner system of the present invention includes a compressor 1 connected in series in the main circuit, an indoor heat exchanger 2, a first throttle device 3, and an outdoor heat exchanger 4, and heat is also disposed in the main circuit.
  • Switch 5 the pipeline between the first throttle device 3 and the indoor heat exchanger 2 is used as the first pipeline M, and the pipeline between the first throttle device 3 and the outdoor heat exchanger 4 is used as the second conduit.
  • the pipe N, one side of the heat exchanger 5 is connected to the first pipe M, and the other side of the heat exchanger 5 is connected to the second pipe N, as shown in FIG.
  • a first gas-liquid separator 6 is further disposed in the main circuit, and the first gas-liquid separator 6 is located in the second pipeline N section between the heat exchanger 5 and the outdoor heat exchanger 4, and the first gas A bypass line L is provided between the liquid separator 6 and the compressor 1.
  • a bypass defrosting circuit P is provided between the compressor 1 and the outdoor heat exchanger 4, and the bypass defrosting circuit P is used during the air conditioning heating cycle.
  • the outdoor heat exchanger 4 is subjected to a defrosting operation.
  • the bypass defrosting circuit P is provided with a throttle valve 9, and when the outdoor heat exchanger 4 needs defrosting, the throttle valve 9 is opened to pass the refrigerant through the bypass defrosting circuit P.
  • the outdoor heat exchanger 4 is subjected to a defrosting operation; when the outdoor heat exchanger 4 does not require defrosting, the throttle valve 9 is closed.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 flows to the indoor heat exchanger 2, and performs heat exchange in the indoor heat exchanger 2 to become a low-temperature high-pressure liquid refrigerant, and the refrigerant passes along the first pipeline.
  • M reaches point C, at which time the temperature of the refrigerant is around 20 ° C (the heat here is not fully utilized for waste heat).
  • the refrigerant enters the second line N after being throttled by the first throttle device 3, and the temperature of the refrigerant at the point D (after the throttled refrigerant) is about 5 °C.
  • the refrigerant in the first line M and the refrigerant in the second line N have a temperature difference, and both pass through the heat exchanger 5, the refrigerant in the first line M and the second line N are The heat exchange of the refrigerant at the heat exchanger 5 not only effectively increases the degree of subcooling of the refrigerant in the first line M (ie, the portion of the refrigerant from the point C to the first throttle device 3 continues to radiate and cool down), Moreover, the evaporation of the refrigerant in the second pipe N can be promoted (that is, the low-temperature refrigerant at the point D can evaporate and absorb the heat of the residual heat at the point C, which is equivalent to increasing the evaporation area and effectively improving the heat exchange capacity). Thereby increasing the heat production.
  • the refrigerant that has undergone heat exchange through the heat exchanger 5 enters the first gas-liquid separator 6, and the gaseous refrigerant separated by the first gas-liquid separator 6 is directly returned to the compressor 1 along the bypass line L.
  • the amount of refrigerant circulation at the time is used to enhance the heat production.
  • the liquid refrigerant passing through the first gas-liquid separator 6 is returned to the compressor 1 through the outdoor heat exchanger 4.
  • a second throttle device 7 is provided on the bypass line L.
  • the second throttle device 7 is used to control the flow rate of the gaseous refrigerant, that is, it can be adjusted according to actual operating conditions.
  • the opening of the second throttle device 7 facilitates flexible control of the amount of gaseous refrigerant passing.
  • the second throttle device 7 can be closed so that the bypass line L does not participate in the refrigeration cycle.
  • the heat exchanger 5 in the above may be a water tank containing water or any other suitable form as long as heat can be exchanged between the upstream and downstream refrigerants of the first throttle device 3.
  • the above design can effectively increase the heating capacity for the heating cycle and reduce the cooling capacity for the refrigeration cycle.
  • the air conditioner system of the present invention further includes a mode switching device (such as the four-way valve Q in FIG. 1) for switching the air conditioner system between the cooling mode and the heating mode.
  • a mode switching device such as the four-way valve Q in FIG. 1 for switching the air conditioner system between the cooling mode and the heating mode.
  • Fig. 2 is a structural schematic diagram of a second embodiment of the air conditioner system of the present invention.
  • a third throttle device 8 is disposed in the main circuit of the air conditioner system of the present invention, and the third throttle device 8 is located between the heat exchanger 5 and the indoor heat exchanger 2.
  • the third throttle device 8 is in a fully open state, and the first throttle device 3 is used for refrigerant throttling.
  • the principle of the air conditioner system in the first embodiment is the same.
  • the first throttle device 3 When the air conditioner system is switched to the cooling operation by the four-way valve Q, the first throttle device 3 is in the fully open state, and the third throttle device 8 is used for the refrigerant throttling while the second throttle device 7 is closed. At this time, the refrigerant on both sides of the heat exchanger 5 has almost no temperature difference, that is, the heat exchanger 5 does not function during the refrigeration cycle, and the entire refrigeration cycle is a conventional refrigeration cycle. This avoids reducing the amount of cooling during cooling operation.
  • the compressor 1 is provided with a gas-liquid separator 11, and the gaseous refrigerant entering the compressor 1 first passes through the gas-liquid separator 11, and is then sucked by the compressor 1, thereby opening the next cycle.
  • the bypass line L is connected to the upstream of the second gas-liquid separator 11.
  • a heat exchanger is added to the air conditioner system of the present invention, and two sides of the heat exchanger are respectively connected to the first pipeline and the second pipeline, so that the refrigerant in the first pipeline is obtained.
  • the refrigerant in the second pipeline can exchange heat at the heat exchanger, which not only effectively increases the degree of subcooling of the refrigerant in the first pipeline, but also promotes evaporation of the refrigerant in the second pipeline, thereby Increased system heat.
  • a bypass line is disposed between the first gas-liquid separator of the present invention and the compressor, and the gaseous refrigerant passing through the first gas-liquid separator can enter the suction port of the compressor through the bypass line, thereby The pressure loss of the part of the gaseous refrigerant in the heating cycle is reduced, which is equivalent to increasing the pressure of the compressor suction port, thereby reducing the power consumption of the compressor and increasing the refrigerant circulation of the air conditioner system during the heating cycle. Amount, to enhance the purpose of heating.
  • the invention also adds a bypass defrost circuit, in the process of defrosting the air conditioner, the refrigerant will continue to enter the indoor heat exchanger for heating, that is, the air conditioner can still be maintained in the heating condition, and the air conditioner is not stopped.
  • the purpose of defrosting the air conditioner of the present invention also uses the third throttle device to replace the first throttle device when the air conditioner is switched to the cooling mode by setting the third throttle device (at this time, the first throttle device is at The fully open state is to throttle the refrigerant, thereby avoiding the phenomenon that the cooling capacity is reduced when the refrigeration cycle occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

一种空调器***,包括串联在主回路中的压缩机(1)、室内换热器(2)、第一节流装置(3)和室外换热器(4),主回路中还设置有热交换器(5)和第一气液分离器(6),压缩机(1)和室外换热器(4)之间设置有旁通除霜回路(P);热交换器(5)的一侧与第一节流装置(3)和室内换热器(2)之间的第一管路(M)相连,热交换器(5)的另一侧与第一节流装置(3)和室外换热器(4)之间的第二管路(N)相连;通过第一管路(M)的冷媒与通过第二管路(N)的冷媒能够在热交换器(5)内进行热交换;第一气液分离器(6)与压缩机(1)之间设置有旁通管路(L)。该空调***能够增加第一管路(M)中冷媒的过冷度,同时实现不停机除霜的目的。

Description

空调器*** 技术领域
本发明属于空调器技术领域,具体涉及一种空调器***。
背景技术
现有的空调器***通常由冷凝器、节流装置、蒸发器、压缩机形成制冷/制热循环回路,压缩机排出的高温高压气态冷媒在冷凝器中凝结成低温高压液体,并经节流装置节流成低温低压液体,然后进入蒸发器吸热蒸发,完成一个制冷/制热循环。
空调器在制热运行时,高温高压的气态冷媒在经过冷凝器换热后,形成低温高压的液态冷媒,而后经过节流装置节流降压,形成低温低压气液两相区冷媒,进入蒸发器换热。蒸发面积越大,则相对蒸发能力越高。其中,低温高压的液态冷媒如果继续放热会增加过冷度,从而增加***循环的制冷制热量。制冷剂在换热时,95%以上的换热量来源于其两相区的汽化潜热量,而单向区(纯液体、纯气体)的等压比热容相对很小,换热量占总***循环的比例小。此外,气态制冷剂在管路内的压降大,是***循环压损的主要来源,会增加循环做功量,即增加了***循环的能耗。
此外,参照图3,图3是传统空调器制热运行时的循环原理图。如图3所示,空调器制热运行的实际运行温度点一般为,A点高温气态70℃冷媒,进入室内换热器和20℃的室内环境进行换热,温度降低为30℃,流经联机管后进入节流装置,其中,B点和节流装置之间的温度(30℃左右)远远高于室外环境温度7℃,余热被浪费,如果余热被吸收利用,还可以增加***循环的过冷度。
基于此,特提出本发明。
发明内容
为了解决现有技术中的上述问题,即为了提高空调器的制热循环效果,本发明提供的空调器***包括串联在主回路中的压缩机、室内换热器、第一节流装置和室外换热器,所述主回路中还设置有热交换器和第一气液分离器,并且所述压缩机和所述室外换热器之间设置有旁通除霜回路;所述热交 换器的一侧与所述第一节流装置和所述室内换热器之间的第一管路相连,所述热交换器的另一侧与所述第一节流装置和所述室外换热器之间的第二管路相连;通过所述第一管路的冷媒与通过所述第二管路的冷媒能够在所述热交换器内进行热交换;所述第一气液分离器位于所述热交换器与所述室内换热器之间的第二管路区段中,且所述第一气液分离器与所述压缩机之间设置有旁通管路;所述旁通除霜回路用于在空调制热的过程中对所述室外换热器进行除霜操作。
在上述空调器***的优选实施方式中,所述旁通管路中设置有第二节流装置,当所述空调器***制热运行时,所述第二节流装置用于控制气态冷媒的流量。
在上述空调器***的优选实施方式中,所述第一管路穿过所述热交换器的一侧,并且/或者所述第二管路穿过所述热交换器的另一侧。
在上述空调器***的优选实施方式中,所述主回路中还设置有第三节流装置,所述第三节流装置位于所述热交换器与所述室内换热器之间的第一管路区段中。
在上述空调器***的优选实施方式中,当所述空调器***制热运行时,所述第三节流装置处于全开状态,所述第一节流装置用于冷媒节流。
在上述空调器***的优选实施方式中,当所述空调器***制冷运行时,所述第一节流装置处于全开状态,所述第三节流装置用于冷媒节流。
在上述空调器***的优选实施方式中,所述旁通除霜回路中设置有节流阀,当所述室外换热器需要除霜时,所述节流阀被打开以使从所述压缩机流出的冷媒通过所述旁通除霜回路对所述室外换热器进行除霜操作;当所述室外换热器不需要除霜时,所述节流阀被关闭。
在上述空调器***的优选实施方式中,所述压缩机设置有第二气液分离器,冷媒经过所述第二气液分离器后回流到所述压缩机中。
在上述空调器***的优选实施方式中,所述旁通管路连接到所述第二气液分离器的上游。
在上述空调器***的优选实施方式中,所述空调器***还包括四通阀,所述四通阀用于在制冷模式与制热模式之间切换所述空调器***。
在本发明的技术方案中,空调器***中增加了热交换器,并且该热交换器的两侧分别与第一管路和第二管路相连,这样一来,第一管路中的冷媒和 第二管路中的冷媒能够在热交换器处进行热交换,不仅有效地增加了第一管路中的冷媒的过冷度,而且还可以促进第二管路中的冷媒的蒸发,从而提升了***的制热量。并且,本发明的第一气液分离器与压缩机之间设置有旁通管路,经过气液分离器的气态冷媒能够通过该旁通管路进入到压缩机的吸气口,从而减小了这部分气态冷媒在制热循环中的压力损失,相当于增加了压缩机吸气口的压力,进而降低了压缩机的功耗,增加了空调器***在制热循环时的冷媒的循环量,起到提升制热量的目的。本发明还增加了旁通除霜回路,在空调器除霜的过程中,冷媒会继续进入室内换热器进行制热,即可以使空调器仍然维持在制热工况,实现空调器不停机除霜的目的。此外,本发明的空调器还通过设置第三节流装置的方式,使得空调器在切换为制冷模式时,利用该第三节流装置替代第一节流装置(此时第一节流装置处于全开状态)给冷媒进行节流,从而避免了出现在制冷循环时制冷量被降低的现象。
附图说明
图1是本发明的空调器***的实施例一的结构原理图;
图2是本发明的空调器***的实施例二的结构原理图;
图3是传统空调器制热运行时的循环原理图。
具体实施方式
为使本发明的实施例、技术方案和优点更加明显,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所述的实施例是本发明的一部分实施例,而不是全部实施例。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
首先参照图1,图1是本发明的空调器***的实施例一的结构原理图。如图1所示,本发明的空调器***包括串联在主回路的压缩机1、室内换热器2、第一节流装置3和室外换热器4,在该主回路中还设置有热交换器5。为了便于说明,将第一节流装置3与室内换热器2之间的管路作为第一管路M,将第一节流装置3与室外换热器4之间的管路作为第二管路N,热交换器5的一侧与第一管路M相连,热交换器5的另一侧与第二管路N相连,如图1中所示的连接方式:第一管路M穿过热交换器5的一侧,第二管路N穿过热交换器N的另一侧。并且,通过第一管路M的冷媒与通过第二管路N的冷媒能够在热交换器5中进行热交换。此外,在主回路中还设置有第一 气液分离器6,第一气液分离器6位于热交换器5与室外换热器4之间的第二管路N区段,且第一气液分离器6与压缩机1之间设置有旁通管路L。并且,在本发明的空调空调器***中,压缩机1和室外换热器4之间还设置有旁通除霜回路P,该旁通除霜回路P用于在空调制热循环过程中,对室外换热器4进行除霜操作。
作为示例,如图1所示,旁通除霜回路P上设置有节流阀9,当室外换热器4需要除霜时,节流阀9被打开以使冷媒通过旁通除霜回路P对室外换热器4进行除霜操作;当室外换热器4不需要除霜时,节流阀9被关闭。通过增加旁通除霜回路P,在空调器除霜的过程中,冷媒会继续进入室内换热器2进行制热,即可以使空调器仍然维持在制热工况,实现空调器不停机除霜的目的。
在空调器制热循环过程中,压缩机1排出的高温高压气态冷媒流向室内换热器2,在室内换热器2进行热交换,变为低温高压的液态冷媒,冷媒通过沿第一管路M到达C点,此时冷媒温度在20℃左右(此处的热量为废热没有被充分利用)。然后,冷媒经过第一节流装置3节流后进入第二管路N,此时D点冷媒(经过节流后的冷媒)的温度作5℃左右。由于第一管路M中的冷媒和第二管路N中的冷媒存在温差,且两者都通过热交换器5,这样一来,第一管路M中的冷媒和第二管路N中的冷媒在热交换器5处进行热交换,不仅有效地增加了第一管路M中的冷媒的过冷度(即C点到第一节流装置3的那部分冷媒继续放热降温),而且还可以促进第二管路N中的冷媒的蒸发(即D点处的低温冷媒可以对C点处余热进行蒸发吸热,这也相当于增加了蒸发面积,有效提升了换热能力),从而提升了制热量。
接下来,经过热交换器5进行换热后的冷媒进入第一气液分离器6,经过第一气液分离器6分离出的气态冷媒直接沿旁通管路L回流到压缩机1中,从而减小了这部分气态冷媒在制热循环中的压力损失,也相当于增加了压缩机1吸气口的压力,进而降低了压缩机1的功耗,增加了空调器***在制热循环时的冷媒循环量,起到提升制热量的目的。经过第一气液分离器6的液态冷媒再经过室外换热器4回流至压缩机1。通过上述设计,在空调器制热运行的过程中不仅能够使废热再利用,而且可以降低***功耗,增加空调器***在制热循时的冷媒循环量,从而提升整个***的制热量。
作为示例,在旁通管路L上设置有第二节流装置7,当空调制热运行时, 该第二节流装置7用于控制气态冷媒的流量,即可以根据实际的运行工况调整第二节流装置7的开度以便于灵活地控制气态冷媒通过的量。在制冷循环时,可以关闭第二节流装置7,使得旁通管路L不参与制冷循环。
需要说明的是,上文中的热交换器5可以是一个盛有水的水箱也可以是任意其他适宜的形式,只要能够使第一节流装置3上游和下游的冷媒进行换热即可。此外,上述设计对于制热循环能有效提升制热量,而对于制冷循环时降低制冷量。
作为一种示例,本发明的空调器***还包括模式切换装置(例如图1中的四通阀Q),该模式切换装置用于在制冷模式与制热模式之间切换空调器***。
作为示例,参照图2,图2是本发明的空调器***的实施例二的结构原理图。如图2所示,本发明的空调器***的主回路中还设置有第三节流装置8,该第三节流装置8位于热交换器5与室内换热器2之间的第一管路M区段中。当空调器制热运行时,第三节流装置8处于全开状态,第一节流装置3用于冷媒节流。此时与实施例一中的空调器***的原理相同。通过四通阀Q将空调器***切换为制冷运行时,第一节流装置3处于全开状态,第三节流装置8用于冷媒节流,同时关闭第二节流装置7。此时热交换器5两侧的冷媒几乎无温差,即热交换器5在制冷循环的过程中不发挥作用,整个制冷循环为常规制冷循环。从而避免降低制冷运行时的制冷量。
优选地,参照图1和图2,压缩机1设置有气液分离器11,进入压缩机1的气态冷媒首先经过该气液分离器11后,再被压缩机1吸入,从而开启下一循环。其中,旁通管路L连接到第二气液分离器11的上游。
综上所述,本发明的空调器***中增加了热交换器,并且该热交换器的两侧分别与第一管路和第二管路相连,这样一来,第一管路中的冷媒和第二管路中的冷媒能够在热交换器处进行热交换,不仅有效地增加了第一管路中的冷媒的过冷度,而且还可以促进第二管路中的冷媒的蒸发,从而提升了***的制热量。并且,本发明的第一气液分离器与压缩机之间设置有旁通管路,经过第一气液分离器的气态冷媒能够通过该旁通管路进入到压缩机的吸气口,从而减小了这部分气态冷媒在制热循环中的压力损失,相当于增加了压缩机吸气口的压力,进而降低了压缩机的功耗,增加了空调器***在制热循环时的冷媒循环量,起到提升制热量的目的。本发明还增加了旁通除霜回路, 在空调器除霜的过程中,冷媒会继续进入室内换热器进行制热,即可以使空调器仍然维持在制热工况,实现空调器不停机除霜的目的。此外,本发明的空调器还通过设置第三节流装置的方式,使得空调器在切换为制冷模式时,利用该第三节流装置替代第一节流装置(此时第一节流装置处于全开状态)给冷媒进行节流,从而避免了出现在制冷循环时制冷量被降低的现象。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器***,包括串联在主回路中的压缩机、室内换热器、第一节流装置和室外换热器,
    其中,所述主回路中还设置有热交换器和第一气液分离器,并且所述压缩机和所述室外换热器之间设置有旁通除霜回路;
    所述热交换器的一侧与所述第一节流装置和所述室内换热器之间的第一管路相连,所述热交换器的另一侧与所述第一节流装置和所述室外换热器之间的第二管路相连,使通过所述第一管路的冷媒与通过所述第二管路的冷媒能够在所述热交换器内进行热交换;
    所述第一气液分离器位于所述热交换器与所述室内换热器之间的第二管路区段中,且所述第一气液分离器与所述压缩机之间设置有旁通管路;
    所述旁通除霜回路用于在空调制热的过程中对所述室外换热器进行除霜操作。
  2. 根据权利要求1所述的空调器***,其中,所述旁通管路中设置有第二节流装置,当所述空调器***制热运行时,所述第二节流装置用于控制气态冷媒的流量。
  3. 根据权利要求1所述的空调器***,其中,所述第一管路穿过所述热交换器的一侧,并且/或者所述第二管路穿过所述热交换器的另一侧。
  4. 根据权利要求3所述的空调器***,其中,所述主回路中还设置有第三节流装置,所述第三节流装置位于所述热交换器与所述室内换热器之间的第一管路区段中。
  5. 根据权利要求4所述的空调器***,其中,当所述空调器***制热运行时,所述第三节流装置处于全开状态,所述第一节流装置用于冷媒节流。
  6. 根据权利要求4所述的空调器***,其中,当所述空调器***制冷运行时,所述第一节流装置处于全开状态,所述第三节流装置用于冷媒节流。
  7. 根据权利要求1所述的空调器***,其中,所述旁通除霜回路中设置有节流阀,
    当所述室外换热器需要除霜时,所述节流阀被打开以使从所述压缩机流出的冷媒通过所述旁通除霜回路对所述室外换热器进行除霜操作;
    当所述室外换热器不需要除霜时,所述节流阀被关闭。
  8. 根据权利要求1至7中任一项所述的空调器***,其中,所述压缩机 设置有第二气液分离器,冷媒经过所述第二气液分离器后回流到所述压缩机中。
  9. 根据权利要求8所述的空调器***,其中,所述旁通管路连接到所述第二气液分离器的上游。
  10. 根据权利要求1至7中任一项所述的空调器***,其中,所述空调器***还包括四通阀,所述四通阀用于在制冷模式与制热模式之间切换所述空调器***。
PCT/CN2018/115747 2017-12-29 2018-11-15 空调器*** WO2019128516A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES18893462T ES2939186T3 (es) 2017-12-29 2018-11-15 Sistema de acondicionador de aire
FIEP18893462.4T FI3734167T3 (fi) 2017-12-29 2018-11-15 Ilmastointilaitejärjestelmä
JP2020535568A JP7175985B2 (ja) 2017-12-29 2018-11-15 空調機システム
PL18893462.4T PL3734167T3 (pl) 2017-12-29 2018-11-15 System klimatyzatora
EP18893462.4A EP3734167B1 (en) 2017-12-29 2018-11-15 Air conditioner system
DK18893462.4T DK3734167T3 (en) 2017-12-29 2018-11-15 Airconditionsystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711474368.1A CN108332285B (zh) 2017-12-29 2017-12-29 空调器***
CN201711474368.1 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128516A1 true WO2019128516A1 (zh) 2019-07-04

Family

ID=62924477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115747 WO2019128516A1 (zh) 2017-12-29 2018-11-15 空调器***

Country Status (8)

Country Link
EP (1) EP3734167B1 (zh)
JP (1) JP7175985B2 (zh)
CN (1) CN108332285B (zh)
DK (1) DK3734167T3 (zh)
ES (1) ES2939186T3 (zh)
FI (1) FI3734167T3 (zh)
PL (1) PL3734167T3 (zh)
WO (1) WO2019128516A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636224A (zh) * 2022-03-31 2022-06-17 青岛海尔空调电子有限公司 空调***、用于控制空调***的方法及装置、存储介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332285B (zh) * 2017-12-29 2019-12-06 青岛海尔空调器有限总公司 空调器***
CN110836480B (zh) * 2018-08-17 2021-10-29 青岛海尔空调器有限总公司 空调器除霜控制方法
CN108954920A (zh) * 2018-08-22 2018-12-07 珠海格力电器股份有限公司 空调器的换热机及空调器
CN109269017A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种不停机除霜的多联机单模块***
EP3951284A4 (en) * 2019-04-05 2022-04-06 Mitsubishi Electric Corporation REFRIGERATION CYCLE APPLIANCE
CN110736210B (zh) * 2019-09-26 2021-10-29 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736208B (zh) * 2019-09-26 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736211B (zh) * 2019-09-26 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736212B (zh) * 2019-09-27 2022-04-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN110736217B (zh) * 2019-09-27 2021-11-23 青岛海尔空调器有限总公司 用于空调除霜的控制方法、控制装置及空调
CN111578552A (zh) * 2020-05-22 2020-08-25 广东美的制冷设备有限公司 空调***、空调器和空调***的控制方法
CN112033035B (zh) * 2020-09-10 2021-07-20 珠海格力电器股份有限公司 制冷***的喷液控制方法及冷凝机组
CN112539452B (zh) * 2020-12-18 2021-12-03 珠海格力电器股份有限公司 一种多联机空调及其控制方法
CN113465021A (zh) * 2021-04-28 2021-10-01 青岛海尔空调器有限总公司 用于双压缩机空调器的控制方法
CN115200179B (zh) * 2022-06-28 2023-09-29 珠海格力电器股份有限公司 一种空调***及其节流控制方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049002A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd 空気調和機
CN103486783A (zh) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 空调器***及其化霜控制方法
WO2015122056A1 (ja) * 2014-02-13 2015-08-20 日立アプライアンス株式会社 空気調和装置
JP2016106211A (ja) * 2016-01-20 2016-06-16 三菱電機株式会社 空気調和装置
CN108332285A (zh) * 2017-12-29 2018-07-27 青岛海尔空调器有限总公司 空调器***

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012811A (ja) * 1999-06-29 2001-01-19 Bosch Automotive Systems Corp 冷房装置
JP3918421B2 (ja) 2000-09-21 2007-05-23 三菱電機株式会社 空気調和機、空気調和機の運転方法
JP2009228979A (ja) 2008-03-24 2009-10-08 Mitsubishi Electric Corp 空気調和装置
JP5318099B2 (ja) * 2008-06-13 2013-10-16 三菱電機株式会社 冷凍サイクル装置、並びにその制御方法
EP2378215B1 (en) * 2009-01-15 2022-01-12 Mitsubishi Electric Corporation Air conditioner
CN202328555U (zh) * 2011-12-07 2012-07-11 珠海格力电器股份有限公司 室外换热装置及空调***
CN202928175U (zh) * 2012-08-14 2013-05-08 苏州必信空调有限公司 一种空调***
CN103851838B (zh) * 2012-11-30 2016-06-15 苏州必信空调有限公司 板式一体化制冷剂热回收循环***
JP6080939B2 (ja) 2013-02-19 2017-02-15 三菱電機株式会社 空気調和装置
CN103486780A (zh) * 2013-09-13 2014-01-01 青岛海信日立空调***有限公司 补气增焓多联式空调***
KR20160146885A (ko) 2014-04-22 2016-12-21 미쓰비시덴키 가부시키가이샤 공기 조화 장치
CN105333599A (zh) * 2014-07-08 2016-02-17 海信(山东)空调有限公司 一种补气增焓空调***
WO2016059696A1 (ja) 2014-10-16 2016-04-21 三菱電機株式会社 冷凍サイクル装置
JP6448780B2 (ja) * 2015-05-28 2019-01-09 三菱電機株式会社 空気調和装置
CN105485767A (zh) * 2015-12-22 2016-04-13 珠海格力电器股份有限公司 多联机空调***和控制方法
JP6643630B2 (ja) 2016-02-17 2020-02-12 パナソニックIpマネジメント株式会社 空気調和装置
CN106440461B (zh) * 2016-11-03 2019-03-01 青岛海信日立空调***有限公司 一种制冷剂填充的控制方法及空调

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049002A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd 空気調和機
CN103486783A (zh) * 2013-09-26 2014-01-01 广东美的制冷设备有限公司 空调器***及其化霜控制方法
WO2015122056A1 (ja) * 2014-02-13 2015-08-20 日立アプライアンス株式会社 空気調和装置
JP2016106211A (ja) * 2016-01-20 2016-06-16 三菱電機株式会社 空気調和装置
CN108332285A (zh) * 2017-12-29 2018-07-27 青岛海尔空调器有限总公司 空调器***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734167A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636224A (zh) * 2022-03-31 2022-06-17 青岛海尔空调电子有限公司 空调***、用于控制空调***的方法及装置、存储介质
CN114636224B (zh) * 2022-03-31 2024-03-22 青岛海尔空调电子有限公司 空调***、用于控制空调***的方法及装置、存储介质

Also Published As

Publication number Publication date
CN108332285A (zh) 2018-07-27
ES2939186T3 (es) 2023-04-19
EP3734167A4 (en) 2020-12-30
JP7175985B2 (ja) 2022-11-21
FI3734167T3 (fi) 2023-03-17
EP3734167B1 (en) 2023-01-25
CN108332285B (zh) 2019-12-06
DK3734167T3 (en) 2023-02-20
PL3734167T3 (pl) 2023-04-24
JP2021509945A (ja) 2021-04-08
EP3734167A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2019128516A1 (zh) 空调器***
WO2019091241A1 (zh) 空调制冷循环***及空调器
CN211739592U (zh) 连续制热的空调***
CN104061705B (zh) 双级压缩空调***及其控制方法
WO2018054052A1 (zh) 一种空调器及其化霜***
CN107178833B (zh) 热回收外机***和空调***
WO2019091240A1 (zh) 空调制热循环***及空调器
WO2019128519A1 (zh) 空调器***
WO2020177275A1 (zh) 一种除霜不停机的燃气热泵空调***
KR101720495B1 (ko) 공기조화기
CN108224840A (zh) 一种热泵空调***和控制方法
CN207963223U (zh) 一种热泵空调***
WO2019128518A1 (zh) 空调器***
WO2019128517A1 (zh) 空调器***
CN103528136A (zh) 新风机组及其控制***
KR101872783B1 (ko) 실외 열교환기
KR20120053381A (ko) 냉동 사이클 장치
CN204115286U (zh) 一种复叠式直热高温热泵
CN207702631U (zh) 空调制冷循环***及空调器
CN207035552U (zh) 一种热泵装置
CN113405269A (zh) 一种制冷***及其控制方法
JP7474911B1 (ja) 冷凍サイクル装置
CN106642404B (zh) 一种空调热泵***
TWM644794U (zh) 熱泵設備
CN110542248A (zh) 可提高过冷度的冷凝器、冷水机组、空调及机组控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018893462

Country of ref document: EP

Effective date: 20200728