WO2016115880A1 - 处理声音信号的方法和终端设备 - Google Patents

处理声音信号的方法和终端设备 Download PDF

Info

Publication number
WO2016115880A1
WO2016115880A1 PCT/CN2015/086933 CN2015086933W WO2016115880A1 WO 2016115880 A1 WO2016115880 A1 WO 2016115880A1 CN 2015086933 W CN2015086933 W CN 2015086933W WO 2016115880 A1 WO2016115880 A1 WO 2016115880A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
processing
azimuth
signals
Prior art date
Application number
PCT/CN2015/086933
Other languages
English (en)
French (fr)
Inventor
张琦
齐娜
王提政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15878550.1A priority Critical patent/EP3249948B1/en
Publication of WO2016115880A1 publication Critical patent/WO2016115880A1/zh
Priority to US15/656,465 priority patent/US10356544B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • H04S1/005For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/07Synergistic effects of band splitting and sub-band processing

Definitions

  • the present invention relates to the field of terminal devices and, more particularly, to a method and terminal device for processing a sound signal.
  • the most common terminal playback device is a head-mounted terminal device, and a micro-microphone is placed at the ears of the head-mounted terminal device to collect the binaural sound signals, and the collected binaural sound signals are amplified, After the process of transmission, recording, etc., the earphones of the head-mounted terminal device are used for sound reproduction, thereby generating main spatial information consistent with the original sound field at the ears of the listener, thereby realizing the reproduction of the sound space information.
  • the spatial auditory effect produced by the virtual auditory playback system based on the binaural sound signal is more realistic and natural.
  • the cognitive information for judging the front and rear direction is lost, and a certain front and back sound image confusion occurs.
  • the situation of audio-visual confusion is because: among the various sources, the binaural time difference (English: Interaural Time Difference, ITD) and the binaural amplitude difference (English: Interaural Level Difference, ILD) only It can determine the chaotic cone of the sound source, but it does not determine the direction of the sound source.
  • ITD Interaural Time Difference
  • ILD Interaural Level Difference
  • the listener may judge the sound image from the front as the image from the rear, or the sound image from the rear as the sound image from the front, and misjudge the front sound image as the rear sound image.
  • the probability is much greater than the probability of misidentifying the rear image as a front image. Therefore, how to improve the problem of misidentifying the front sound image as the rear sound image when the terminal device sounds are reproduced is an urgent problem to be solved.
  • Embodiments of the present invention provide a method and a terminal device for processing a sound signal, which can improve the problem of confusing a front sound image into a rear sound image when the terminal device sounds.
  • a first aspect provides a method for processing a sound signal, comprising: receiving, by a channel located at different positions of the terminal device, at least three signals sent by the same sound source, wherein the at least three signals and the channel are in one-to-one correspondence Determining, according to three of the at least three signals, a signal delay difference between the two signals, the signal delay difference being capable of determining a position of the sound source relative to the terminal device; Determining, according to the signal delay difference, a position of the sound source relative to the terminal device; and when the sound source is located in front of the terminal device, performing azimuth enhancement processing on the target signal in the at least three signals Obtaining, according to a result of the azimuth enhancement process, a first output signal and a second output signal of the terminal device, wherein the azimuth enhancement process is used to increase a front characteristic band and a rear characteristic band of the target signal distinction.
  • the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third channel received a third signal, the first channel being closer to the front than the second channel and the third channel, the first channel being located between the second channel and the third channel; wherein, if the pair The azimuth enhancement processing of the target signal in the at least three signals is specifically: when the first signal is the target signal, performing the azimuth enhancement processing on the first signal to obtain a first processed signal; According to the result of the azimuth enhancement process, the first output signal and the second output signal of the terminal device are obtained by: obtaining the first output signal according to the first processed signal and the second signal; The first processed signal and the third signal obtain the second output signal.
  • the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third channel received by the third channel a third signal, the first channel being closer to the front than the second channel and the third channel, the first channel being located between the second channel and the third channel; wherein, if the pair The azimuth enhancement processing of the target signal in the at least three signals is specifically: when the first signal, the second signal, and the third signal are both the target signals, performing the first signal
  • the azimuth enhancement process obtains a first processed signal, performs the azimuth enhancement process on the second signal to obtain a second processed signal, and performs the azimuth enhancement process on the third signal to obtain a third processed signal;
  • the first output signal and the second output signal of the terminal device are obtained by: obtaining the first output signal according to the first processed signal and the second processed signal ; According to the first and the third processed signal to obtain
  • the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third channel received by the third channel a third signal, the first channel being closer to the front than the second channel and the third channel, the first channel being located between the second channel and the third channel; wherein, if the pair The azimuth enhancement processing of the target signal in the at least three signals is specifically: when the first signal, the second signal, and the third signal are both the target signals, performing the first signal
  • the azimuth enhancement process obtains a first processed signal, performs the azimuth enhancement process on the second signal to obtain a second processed signal, and performs the azimuth enhancement process on the third signal to obtain a third processed signal;
  • the first output signal and the second output signal of the terminal device are specifically obtained according to the first processed signal, the second processed signal, and the second signal. Said first output signal; according to the first processed signal, said third
  • the signal amplitude and the third And amplitude-adjusting each of the characteristic frequency bands corresponding to the first processed signal to obtain the first output signal and the second output signal, wherein the first processing
  • Each of the characteristic frequency bands of the signal, the second signal, and the third signal is divided in the same manner.
  • the at least three signals include a first type signal received by the first type channel, a second type signal received by the second channel, and a third channel received a third signal
  • the first type of channel includes at least two channels, the at least two channels are respectively configured to receive at least two signals, and any one of the first type channels is more than the second channel and The third channel is closer to the front, and any one of the first type channels is located between the second channel and the third channel; wherein, if the target signal in the at least three signals is performed
  • the azimuth enhancement process is specifically: when at least one of the first type of signals is the target signal, performing the azimuth enhancement process on at least one of the first types to obtain a first type of processed signal;
  • the first output signal and the second output signal of the terminal device are specifically: processing signals and devices according to the first type Said second signal to obtain a first output signal; obtaining the second output signal from said first signal and said third
  • the at least three signals include a first type signal received by the first type channel, a second type signal received by the second channel, and a third channel received a third signal
  • the first type of channel includes at least two channels, the at least two channels are respectively configured to receive at least two signals, and any one of the first type channels is more than the second channel and The third channel is closer to the front, and any one of the first type channels is located between the second channel and the third channel; wherein, if the target signal in the at least three signals is performed
  • the azimuth enhancement process is specifically: when at least one of the first type of signals, the second signal, and the third signal are the target signals, performing the performing on at least one of the first types of signals
  • the azimuth enhancement process obtains a first type of processed signal; the azimuth enhancement process is performed on the second signal to obtain a second processed signal; and the azimuth enhancement process is performed on the third signal a third processing signal; the first output signal and the second output signal of
  • the at least three signals include a first type signal received by the first type channel, a second type signal received by the second channel, and a third channel received a third signal
  • the first type of channel includes at least two channels
  • the at least two channels are respectively configured to receive at least two signals
  • any one of the first type channels is more than the second channel and The third channel is closer to the front
  • any one of the first type channels is located between the second channel and the third channel
  • the first type channel is located at the second channel and the third
  • the azimuth enhancement processing on the target signals in the at least three signals is specifically: at least one of the first type of signals, the second signal, and the third
  • the azimuth enhancement processing is performed on at least one signal of the first type to obtain a first type of processing signal
  • the azimuth enhancement processing is performed on the second signal.
  • the signal is specifically: obtaining the first output signal according to the first type processing signal, the second processing signal, and the second signal; according to the first type processing signal, the third processing signal, and The third signal is derived to obtain the second output signal.
  • the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third channel Receiving a third signal, a fourth signal received by the fourth channel, and a fifth signal received by the fifth channel, the first channel, the second channel or the third channel being compared to the fourth channel and the The fifth channel is closer to the front, the first channel, the second channel, and the third channel are located between the fourth channel and the fifth channel, and the front of the terminal device is divided into adjacent a first interval, a second interval, and a third interval, wherein the performing the azimuth enhancement processing on the target signal in the at least three signals is specifically: when the sound source is located in the first interval and the When a signal is the target signal, performing the azimuth enhancement processing on the first signal to obtain a first processed signal; when the sound source is located in the second interval and the second signal is the target signal And performing the azimuth enhancement processing on the second signal to obtain a second processing
  • the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third channel received a third signal, a fourth signal received by the fourth channel, and a fifth signal received by the fifth channel, the first channel, the second channel or the third channel being more than the fourth channel and the fifth channel
  • the performing the azimuth enhancement processing on the target signal in the at least three signals is specifically: when the sound source is located in the first interval and the first signal, When the fourth signal and the fifth signal are all the target signals, performing the azimuth enhancement processing on the first signal to obtain a first processed signal, and processing the fourth signal to obtain a fourth processed signal, Performing the fifth signal Said orientation emphasizing treatment process to obtain a fifth signal; when the
  • a signal amplitude in each of the characteristic frequency bands and a signal amplitude in each of the characteristic frequency bands of the fifth signal when the sound source is located in the first interval, according to the fourth signal a signal amplitude in each of the characteristic frequency bands and a signal amplitude in each of the characteristic frequency bands of the fifth signal, and amplitude adjustment of each of the characteristic frequency bands corresponding to the first processed signal to obtain the first output signal and the a second output signal; when the sound source is located in the second interval, according to a signal amplitude in each characteristic frequency band of the fourth signal and a signal amplitude in each characteristic frequency band of the fifth signal, Performing amplitude adjustment on each characteristic frequency band corresponding to the second processing signal to obtain the first output signal and the second output signal; when the sound source is located in the third interval, according to the fourth signal a signal amplitude in each of the characteristic frequency bands and a signal amplitude in each of the characteristic frequency bands of the fifth signal, and amplitude adjustment of each of the characteristic frequency bands corresponding to the third processed signal
  • a second aspect provides a terminal device, including: a receiving module, where the receiving module includes at least three receiving channels at different positions of the terminal device, where the at least three receiving channels are used to receive the same sound source. At least three signals, wherein the at least three signals are associated with the channel a one-to-one correspondence; a determining module, configured to determine a signal delay difference between the three signals according to three of the at least three signals received by the receiving module, where the signal delay difference can Determining a position of the sound source relative to the terminal device; a determining module, configured to determine a position of the sound source relative to the terminal device according to a signal delay difference obtained by the determining module; and a processing module, configured to: When the determining module determines that the sound source is located in front of the terminal device, performing azimuth enhancement processing on the target signal in the at least three signals, and obtaining, according to the result of the azimuth enhancement processing, the terminal device The first output signal and the second output signal, wherein the azimuth enhancement process is used to increase the
  • the receiving module includes a first channel, a second channel, and a third channel, where the at least three signals include the first channel received a first signal, a second signal received by the second channel, and a third signal received by the third channel, the first channel being closer to the front than the second channel and the third channel, the first a channel is located between the second channel and the third channel;
  • the processing module includes a first processing unit and a second processing unit, when the determining module determines that the sound source is located in the terminal device In the front direction, the first processing unit is configured to perform the azimuth enhancement processing on the first signal to obtain a first processing signal, wherein the first signal is the target signal; wherein the second processing The unit is configured to: obtain the first output signal according to the second signal and the first processing signal obtained by the first processing unit; according to the third signal and the first processing unit First place Signal to obtain the second output signal.
  • the receiving module includes a first channel, a second channel, and a third channel, where the at least three signals include the first channel received a first signal, a second signal received by the second channel, and a third signal received by the third channel, the first channel being closer to the front than the second channel and the third channel, the first a channel is located between the second channel and the third channel;
  • the processing module includes a first processing unit and a second processing unit, when the determining module determines that the sound source is located in the terminal device In the front direction, the first processing unit is configured to: perform the azimuth enhancement processing on the first signal to obtain a first processing signal, and perform the azimuth enhancement processing on the second signal to obtain a second processing signal, where Performing the azimuth enhancement process on the third signal to obtain a third processed signal, wherein the first signal, the second signal, and the third signal are all the target signals; wherein the second processing unit To: obtain a first output signal from said first processing
  • the receiving module includes a first channel, a second channel, and a third channel, where the at least three signals include the first channel received a first signal, a second signal received by the second channel, and a third signal received by the third channel, the first channel being closer to the front than the second channel and the third channel, the first a channel is located between the second channel and the third channel;
  • the processing module includes a first processing unit and a second processing unit, when the determining module determines that the sound source is located in the terminal device In the front direction, the first processing unit is configured to: perform the azimuth enhancement processing on the first signal to obtain a first processing signal, and perform the azimuth enhancement processing on the second signal to obtain a second processing signal, where Performing the azimuth enhancement process on the third signal to obtain a third processed signal, wherein the first signal, the second signal, and the third signal are all the target signals; wherein, the second processing unit is used by Obtaining, according to the second
  • the processing module further includes a third processing unit, where the third processing unit is configured to: each feature corresponding to the first processed signal obtained by the first processing unit according to a signal amplitude in each characteristic frequency band of the second signal and a signal amplitude in each characteristic frequency band of the third signal The frequency band is amplitude-adjusted to obtain the first output signal and the second output signal, wherein each of the characteristic frequency bands of the first processed signal, the second signal, and the third signal is divided the same.
  • the receiving module includes a first type channel, a second channel, and a third channel, where the at least three signals include the first channel receiving a first type of signal, a second signal received by the second channel, and a third signal received by the third channel, the first type of channel comprising at least two channels, the at least two channels respectively for receiving At least two signals, any one of the first type of channels being closer to the front than the second channel and the third channel, any one of the first type of channels being located in the first channel and the Between the second channels; wherein the processing module includes a first processing unit and a second processing unit, and when the determining module determines that the sound source is located in front of the terminal device, the first processing unit is used Transmitting the orientation to at least one of the first type of signals
  • the enhancement processing obtains a first type of processing signal, the azimuth enhancement processing is performed on the second signal to obtain a second processing signal, and the azimuth enhancement processing is performed on the third signal to obtain
  • the receiving module includes a first type channel, a second channel, and a third channel, where the at least three signals include the first channel received a first type of signal, a second signal received by the second channel, and a third signal received by the third channel, the first type of channel comprising at least two channels, the at least two channels respectively for receiving at least Two signals, any one of the first type of channels being closer to the front than the second channel and the third channel, the first type of channel being located between the first channel and the second channel
  • the processing module includes a first processing unit and a second processing unit, and when the determining module determines that the sound source is located in front of the terminal device, the first processing unit is configured to: At least one signal of a type of signal performs the azimuth enhancement process to obtain a first type of processed signal, and the azimuth enhancement process is performed on the second signal to obtain a second processed signal, for the third Performing the azimuth enhancement process to obtain a third processed signal, where
  • the receiving module includes a first type channel, a second channel, and a third channel, where the at least three signals comprise the first channel received a first type of signal, a second signal received by the second channel, and a third signal received by the third channel, the first type of channel comprising at least two channels, the at least two channels respectively for receiving at least Two signals, any one of the first type of channels being closer to the front than the second channel and the third channel, the first type of channel being located between the first channel and the second channel
  • the processing module includes a first processing unit and a second processing unit, the first processing unit is configured to: when the determining module determines that the sound source is located in front of the terminal device, At least one of a type of signal performs the azimuth enhancement process to obtain a first Type processing a signal, performing the azimuth enhancement processing on the second signal to obtain a second processed signal, and performing the azimuth enhancement processing on the third signal to obtain a third processed signal, wherein at
  • the receiving module includes a first channel, a second channel, a third channel, a fourth channel, and a fifth channel, where the at least three signals include The first signal received by the first channel, the second signal received by the second channel, the third signal received by the third channel, the fourth signal received by the fourth channel, and the fifth channel receiving a fifth signal, the first channel, the second channel or the third channel being closer to the front than the fourth channel and the fifth channel, the first channel, the second channel and The third channel is located between the fourth channel and the fifth channel, and the front of the terminal device is divided into adjacent first interval, second interval, and third interval; wherein the processing module includes a first processing unit and a second processing unit, when the determining module determines that the sound source is located in the first interval and the first signal is the target signal, the first processing unit is configured to: The first signal performs the azimuth enhancement a first processing signal is obtained; when the determining module determines that the sound source is located in the second
  • the receiving module includes a first channel, a second channel, a third channel, a fourth channel, and a fifth channel, where the at least three signals include The first signal received by the first channel, the second signal received by the second channel, the third signal received by the third channel, the fourth signal received by the fourth channel, and the fifth channel receiving a fifth signal, the first channel, the second channel or the third channel being closer to the front than the fourth channel and the fifth channel, the first channel, the second channel and The third channel is located between the fourth channel and the fifth channel, and the front of the terminal device is divided into adjacent first interval, second interval, and third interval; wherein the processing module includes a first processing unit and a second processing unit, when the determining module determines that the sound source is located in the first interval and the first signal is the target signal, the first processing unit is configured to: The first signal performs the azimuth enhancement Obtaining a first processing signal, processing the fourth signal to obtain a fourth processing signal, performing the
  • the processing unit further includes a third processing unit, where the third processing unit is specifically configured When the determining module determines that the sound source is located in the first interval, according to the signal amplitude in each characteristic frequency band of the fourth signal and the signal amplitude in each characteristic frequency band of the fifth signal, Each characteristic frequency band corresponding to the first processing signal obtained by the first processing unit is amplitude-adjusted to obtain the first output signal and the second output signal; when the determining module determines the sound source Located in the second interval, according to a signal amplitude in each characteristic frequency band of the fourth signal and a signal amplitude in each characteristic frequency band of the fifth signal, the second obtained by the first processing unit Performing amplitude adjustment on each characteristic frequency band corresponding to the processing signal to obtain the first output signal and the second output signal; when the determining module determines that the sound source is located in the third interval, the root And a signal amplitude in each characteristic
  • the target signal sent by the sound source is subjected to azimuth enhancement processing by determining the position of the sound source relative to the terminal device, and the output signal of the terminal device is obtained according to the result of the azimuth enhancement processing, so that the front signal of the output signal is obtained.
  • the degree of discrimination between the frequency band and the rear characteristic frequency band is increased, whereby the sound image orientation sense of the output signal can be enhanced, and the probability of erroneously determining the front sound image as the rear sound image can be reduced.
  • FIG. 1 is a schematic flowchart of a method for processing a sound signal according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal device according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device according to still another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method for processing a sound signal according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for processing a sound signal according to an embodiment of the present invention, and the method 100 may be performed by a terminal device.
  • Step 110 Receive at least three signals sent by the same sound source by channels located at different positions of the terminal device, wherein at least three signals are in one-to-one correspondence with the channels.
  • Step 120 Determine, according to three of the at least three signals, a signal delay difference between the two signals, the signal delay difference being capable of determining a position of the sound source relative to the terminal device.
  • Step 130 Determine a position of the sound source relative to the terminal device according to the signal delay difference.
  • Step 140 When the sound source is located in front of the terminal device, perform azimuth enhancement processing on the target signal in the at least three signals, and obtain a first output signal and a second output signal of the terminal device according to the result of the azimuth enhancement process, where The azimuth enhancement process is for increasing the degree of discrimination between the front characteristic band and the rear characteristic band of the target signal.
  • the target signal sent by the sound source is subjected to azimuth enhancement processing by determining the position of the sound source relative to the terminal device, and the output signal of the terminal device is obtained according to the result of the azimuth enhancement processing, so that the front characteristic band of the output signal is obtained.
  • the degree of discrimination with the rear characteristic band is increased, whereby the sound image orientation of the output signal can be enhanced, and the probability of erroneously determining the front sound image as the rear sound image can be reduced.
  • step 110 there are at least three channels at different locations of the multimedia terminal for collecting At least three signals from the same sound source, because the positions of the respective channels are different, and thus the received sound signals from the same sound source are different, so that the signals actually received by each channel have a one-to-one correspondence with the channel positions, so that According to the at least three signals, it can be determined that the sound source is in front of or behind the terminal device. More specifically, it can be determined that the sound source is located in a specific interval ahead.
  • a signal delay difference between the three signals is determined according to three of the at least three signals, and the signal delay difference can determine that the position of the sound source relative to the terminal device is :
  • the signal delay difference between the two signals can be determined according to any three signals included in the sound signal capable of determining the position of the sound source, thereby determining the position of the sound source relative to the terminal device. It should be understood that any three signals capable of determining the position of the sound source may mean that a triangle relationship may be formed between the positions of the channels respectively receiving the three signals to determine whether the sound source is located in front of or behind the terminal device.
  • the delay difference between any two signals can be measured by a frequency domain correlation method.
  • the m-th Fourier coefficient signal is H m (f)
  • the Fourier n-th signal lines is H n (f)
  • the header associated with the m-th and n-th signal signal is:
  • the sound source may be determined to be located in front of or behind the terminal device according to the signal delay difference, so as to perform the azimuth enhancement processing on the target signal in the at least three signals in step 140, the target signal may include at least three One or more of the signals need to be determined according to the position of the sound source relative to the terminal device, so as to perform azimuth enhancement processing on the target signal, it should be understood that the target signal may refer to a type of signal that needs to be subjected to azimuth enhancement processing. General term.
  • the azimuth enhancement process described in step 140 includes: enhancement processing of the front feature band; and/or suppression processing of the rear feature band, wherein the feature band is the root According to the relationship between the amplitude of the spectrum in front of the signal and the amplitude of the rear spectrum, the frequency band that can reflect the signal characteristics is divided according to actual needs.
  • the front characteristic frequency band refers to a characteristic frequency band in which the front spectrum amplitude is much larger than the rear spectrum amplitude in the characteristic frequency band
  • the rear characteristic frequency band refers to a characteristic frequency band in which the rear spectrum amplitude is much larger than the front spectrum amplitude
  • the at least three signals received by the terminal device include a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel, where The channel is closer to the front than the second channel and the third channel, and the first channel is located between the second channel and the third channel; wherein, if the target signal in the at least three signals is subjected to azimuth enhancement processing, the first signal is: And performing azimuth enhancement processing on the first signal to obtain a first processing signal; wherein, according to the result of the azimuth enhancement processing, obtaining the first output signal and the second output signal of the terminal device are: Processing the signal and the second signal to obtain a first output signal; obtaining a second output signal according to the first processed signal and the third signal.
  • the sound source is located in front of the terminal device, and the sound source is located in the front half plane of the user when the user normally wears or uses the terminal device.
  • the first channel refers to being closer to the front than the second channel and the third channel in the user angle, and the first channel is located between the first channel and the second channel, meaning that the three channels are The angular relationship formed between the two can determine the position of the sound source relative to the terminal device by determining the delay difference between the two of the received signals.
  • the at least three signals received by the terminal device include a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel, where The channel is closer to the front than the second channel and the third channel, and the first channel is located between the second channel and the third channel; wherein, if the target signal in the at least three signals is subjected to the azimuth enhancement processing, the first signal is: When the second signal and the third signal are both the target signal, performing azimuth enhancement processing on the first signal to obtain a first processed signal, performing azimuth enhancement processing on the second signal to obtain a second processed signal, and performing azimuth enhancement on the third signal Processing, the third processing signal is obtained; wherein, according to the result of the azimuth enhancement processing, obtaining the first output signal and the second output signal of the terminal device are: obtaining the first output signal according to the first processing signal and the second processing signal; The first processed signal and the third processed signal result in a second output signal.
  • the at least three signals received by the terminal device include a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel, where The channel is closer to the front than the second channel and the third channel, and the first channel is located between the second channel and the third channel; wherein, if the target signal in at least three signals is subjected to azimuth enhancement processing Specifically, when the first signal, the second signal, and the third signal are the target signals, performing azimuth enhancement processing on the first signal to obtain a first processed signal, and performing azimuth enhancement processing on the second signal to obtain a second processed signal, Performing azimuth enhancement processing on the third signal to obtain a third processed signal; wherein, according to the result of the azimuth enhancement processing, obtaining the first output signal and the second output signal of the terminal device are: according to the first processed signal and the second processed signal And the second signal obtains the first output signal; and the second output signal is obtained according to the first processed signal, the third
  • the first signal, the second signal, and the third signal are subjected to azimuth enhancement processing, and the first processed signal, the second processed signal, and the third processed signal are respectively obtained, based on the result of the azimuth enhancement processing, according to two
  • the two different output modes respectively obtain two kinds of first output signals and second output signals, and the processing manners of the first output signal and the second output signal obtained by performing the azimuth enhancement processing only on the first signal may be slightly different.
  • the degree of discrimination between the front characteristic band and the rear characteristic band of the output signal can be increased, thereby enhancing the sound image orientation of the output signal and reducing the confusion of the front sound image signal to the rear sound. Like the probability of a signal.
  • the azimuth enhancement processing for one or more signals to obtain the first output signal and the second output signal, as long as the sound image orientation of the enhanced output signal can be achieved, and the front sound image signal is reduced.
  • a combination of the probabilities of erroneously determining the probability of the rear sound image signal may be performed.
  • only the second signal and the third signal may be subjected to azimuth enhancement processing, and the second processed signal and the third processed signal according to the first signal and the azimuth enhancement processing may be performed. Processing the signal results in a first output signal and a second output signal, and the invention is not limited thereto.
  • the method for signal processing may further include: processing a first processed signal according to a signal amplitude in each characteristic frequency band of the second signal and a signal amplitude in each characteristic frequency band of the third signal. A corresponding amplitude adjustment is performed for each of the characteristic frequency bands to obtain a first output signal and a second output signal, wherein each of the characteristic frequency bands of the first processed signal, the second signal, and the third signal is divided in the same manner.
  • the first processed signal, the second signal, and the third signal are all divided into [3 kHz, 8 kHz], [8 kHz, 10 kHz], [10 kHz, 12 kHz], [12 kHz, 17 kHz], and [17 kHz, 20 kHz] in the same division manner.
  • the at least three signals received by the terminal device include a first type signal received by the first type channel, a second signal received by the second channel, and a third signal received by the third channel.
  • the first type of channel includes at least two channels, and at least two channels are used for respectively Receiving at least two signals, any one of the first type channels is closer to the front than the second channel and the third channel, and the first type channel is located between the second channel and the third channel; wherein, if at least three signals are The target signal is subjected to azimuth enhancement processing.
  • the first output signal and the second output signal of the terminal device are obtained as follows: the first output signal is obtained according to the first type processing signal and the second signal; and the second output signal is obtained according to the first type processing signal and the third signal.
  • the first type channel includes two channels, namely, an A channel and a B channel, and the signals received by the two channels are an A signal and a B signal, respectively, and then only the A signal may be selected as the target signal, or only The B signal is selected as the target signal, and the A and B signals are both selected as the target signals, and the first output signal and the second output signal are obtained according to the result of the azimuth enhancement processing on the target signal.
  • the at least three signals received by the terminal device include a first type signal received by the first type channel, a second signal received by the second channel, and a third signal received by the third channel, where One type of channel includes at least two channels, and at least two channels are respectively configured to receive at least two signals, respectively.
  • any one of the first type of channels is closer to the front than the second and third channels, and the first type of channel is located in the second channel and Between the third channels; wherein, if the target signal in the at least three signals is subjected to the azimuth enhancement processing, the at least one of the first type of signals, the second signal, and the third signal are the target signals, At least one signal of the type performs azimuth enhancement processing to obtain a first type of processed signal; performing azimuth enhancement processing on the second signal to obtain a second processed signal; performing azimuth enhancement processing on the third signal to obtain a third processed signal; wherein, according to the orientation
  • the first output signal and the second output signal of the terminal device are obtained as follows: according to the first type Processed signal and the second processed signal to obtain a first output signal; a first output signal to obtain a second processed signal, and a third type of signal processing.
  • the at least three signals received by the terminal device include a first type signal received by the first type channel, a second signal received by the second channel, and a third signal received by the third channel, where One type of channel includes at least two channels for respectively receiving at least two signals, any one of the first type of channels being closer to the front than the second and third channels; wherein, if at least three The azimuth enhancement processing of the target signal in the signal is specifically: when at least one of the first type of signals, the second signal, and the third signal are target signals, performing azimuth enhancement processing on at least one signal of the first type to obtain the first Type processing signal; for second And performing azimuth enhancement processing on the signal to obtain a second processing signal; performing azimuth enhancement processing on the third signal to obtain a third processing signal; wherein, according to the result of the azimuth enhancement processing, obtaining the first output signal and the second output signal of the terminal device are specifically And obtaining a first output signal according to the first type processing signal, the second processing signal, and
  • the azimuth enhancement processing is performed on at least one of the first type of signals, the second signal, and the third signal, and the first type processing signal, the second processing signal, and the third processing signal are respectively obtained, based on the azimuth enhancement.
  • two first output signals and a second output signal are respectively obtained according to two different combinations, and the first processing signal and the second output signal are obtained by performing azimuth enhancement processing only on at least one of the first type signals.
  • the effects of the output signal and the second output signal may be slightly different, but regardless of the processing method, the discrimination between the front characteristic band and the rear characteristic band of the output signal can be increased, thereby enhancing the sound image of the output signal.
  • the sense of orientation reduces the probability of confusing the front image signal with the rear sound image signal. It should be understood that there are various combinations of the azimuth enhancement processing for one or more signals to obtain the first output signal and the second output signal, as long as the sound image orientation of the enhanced output signal can be achieved, and the front sound image signal is reduced. A combination of the probability of erroneously being judged as the rear sound image signal can be carried out, and the present invention is not limited thereto.
  • the at least three signals received by the terminal device include a first signal received by the first channel, a second signal received by the second channel, a third signal received by the third channel, and a fourth The fourth signal received by the channel and the fifth signal received by the fifth channel, the first channel, the second channel or the third channel being closer to the front than the fourth channel and the fifth channel, the first channel, the second channel and the third channel Located between the fourth channel and the fifth channel, the front of the terminal device is divided into adjacent first interval, second interval, and third interval; wherein, if the target signal in the at least three signals is subjected to azimuth enhancement processing, specifically When the sound source is in the first interval and the first signal is the target signal, the first signal is subjected to azimuth enhancement processing to obtain a first processed signal; when the sound source is located in the second interval of the terminal device and the second signal is the target signal And performing azimuth enhancement processing on the second signal to obtain a second processing signal; when the sound source is located in the third
  • the at least three sub-signals received by the terminal device include a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel.
  • the channel is located between the fourth channel and the fifth channel, and the front of the terminal device is divided into adjacent first interval, second interval and third interval; wherein, if the target signal in at least three signals is subjected to azimuth enhancement processing, When the sound source is in the first interval and the first signal, the fourth signal, and the fifth signal are both target signals, the first signal is subjected to azimuth enhancement processing to obtain a first processed signal, and the fourth signal processing is subjected to a fourth processing.
  • a signal performing azimuth enhancement processing on the fifth signal to obtain a fifth processed signal; when the sound source is in the second interval and the second signal, the fourth signal, and the fifth signal are both target signals, The signal is subjected to azimuth enhancement processing to obtain a second processed signal, and the fourth signal is processed to obtain a fourth processed signal, and the fifth signal is subjected to azimuth enhancement processing to obtain a fifth processed signal; when the sound source is located in the third interval and the third signal, When the fourth signal and the fifth signal are all the target signals, the third signal is subjected to azimuth enhancement processing to obtain a third processed signal, and the fourth signal is processed to obtain a fourth processed signal, and the fifth signal is subjected to azimuth enhancement processing to obtain a fourth signal.
  • first output signal and the second output signal of the terminal device according to the result of the azimuth enhancement process, specifically: when the sound source is located in the first interval, according to the fourth processed signal and the first processed signal a first output signal, the second output signal is obtained according to the fifth processed signal and the first processed signal; when the sound source is located in the second interval, the first output signal is obtained according to the fourth processed signal and the second processed signal, according to the fifth processing
  • the signal and the second processed signal obtain a second output signal; when the sound source is located in the third interval, according to the fourth processed signal and Processed signal to obtain a first output signal; output signal to obtain a second processed signal according to the fifth and the third processed signal.
  • the first signal, the fourth signal, and the fifth signal are subjected to azimuth enhancement processing, and the first processed signal, the fourth processed signal, and the fifth processed signal are respectively obtained, and the result obtained by the azimuth enhancement processing is obtained.
  • An output signal and a second output signal may be slightly different in effect from the first output signal and the second output signal obtained by performing only azimuth enhancement processing on the first signal, but regardless of the processing method, The discrimination between the front characteristic band of the output signal and the rear characteristic band is increased, thereby enhancing the sound image orientation of the output signal and reducing The probability that the front image signal will be confused with the rear sound image signal.
  • the method for signal processing further includes: when the sound source is located in the first interval, according to a signal amplitude in each characteristic frequency band of the fourth signal and each characteristic frequency band of the fifth signal The amplitude of the signal, the amplitude adjustment of each characteristic frequency band corresponding to the first processed signal to obtain the first output signal and the second output signal; when the sound source is located in the second interval, according to the fourth signal in each characteristic frequency band The amplitude of the signal and the amplitude of the signal in each characteristic band of the fifth signal, and the amplitude adjustment of each characteristic band corresponding to the second processed signal to obtain the first output signal and the second output signal; when the sound source is located in the third interval And performing amplitude adjustment on each characteristic frequency band corresponding to the third processed signal according to the signal amplitude in each characteristic frequency band of the fourth signal and the signal amplitude in each characteristic frequency band of the fifth signal, to obtain the first output signal and the first a second output signal; wherein each of the first processed signal, the second processed signal
  • the first processed signal, the fourth signal, and the fifth signal are all divided into [3 kHz, 8 kHz], [8 kHz, 10 kHz], [10 kHz, 12 kHz], [12 kHz, 17 kHz], and [17 kHz, 20 kHz].
  • the amplitude of the first processed signal is adjusted according to the signal amplitudes of the fourth signal and the fifth signal. It should be understood that the above-described band division and setting of numerical values are exemplary, and the present invention is not limited thereto.
  • the first signal received by the first channel is a target signal, and the first channel is located in the first interval, and thus is closer to the sound source than the other channels or Is to receive the signal from the sound source first
  • the first signal is subjected to azimuth enhancement processing, which means that when the sound source is located at a specific position in front of the terminal device, the sound source is separated from the first position.
  • the signals received by the relatively close channels are subjected to azimuth enhancement processing.
  • Such a processing method can better reduce the probability of confusing the front sound image with the rear sound image; similarly, the sound source can be analogized in the second interval and the third interval.
  • the present invention is not limited to the case where the front of the user is divided into three adjacent sections, and the front can be flexibly divided into two or more adjacent sections, and the corresponding channel is selected in the section.
  • the signal is subjected to azimuth enhancement processing, and a combination of signals capable of reducing the probability of confusion of the front and rear sound images can be performed, and the present invention is not limited thereto.
  • the embodiment of the invention determines the target of the sound source by determining the position of the sound source relative to the terminal device.
  • the signal performs azimuth enhancement processing, and according to the result of the azimuth enhancement processing, an output signal of the terminal device is obtained, so that the degree of discrimination between the front characteristic band and the rear characteristic band of the output signal is increased, thereby enhancing the sound image orientation of the output signal. , reduce the probability that the front sound image is mistakenly judged as the rear sound image.
  • FIG. 2 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device is a head-mounted multimedia system, and the left channel (L channel), the right channel (R channel), and the center channel (C channel) are located at different positions of the terminal.
  • the channel is used for sound signal acquisition.
  • a simplified schematic diagram of the terminal device is shown in the right diagram of FIG.
  • the L channel, the R channel, and the C channel are received.
  • the second step is to measure the delay difference between the signals received by the L channel, the R channel, and the C channel, and measure the delay difference between the two channels by using a frequency domain correlation method, specifically, the signal received by the L channel.
  • the Fourier coefficient is H L (f)
  • the Fourier coefficient of the signal received by the R channel is H R (f)
  • HRTF head related transfer function
  • the direction of the sound source can be directly determined by the delay difference between the signals received by the L, R and C channels:
  • the relative position of the sound source to the terminal device is determined.
  • ⁇ LR , ⁇ LC , and ⁇ RC are calculated using equations (2) through (4), respectively.
  • the signals received between the L and R channels are determined according to the frequency domain correlation measurement method shown in equation (1).
  • Delay difference ITD LR the delay difference between the signals received by the L and C channels, ITD LC, and the delay difference ITD RC between the signals received by the R and C channels, and estimate the sound source orientation based on the structural delay difference described above.
  • Angle ⁇ e the delay difference between the signals received by the L and C channels, ITD LC, and the delay difference ITD RC between the signals received by the R and C channels, and estimate the sound source orientation based on the structural delay difference described above.
  • the signal received by the C channel is the target signal
  • the signal received by the C channel is subjected to azimuth enhancement processing to obtain the processed target signal, and the C is based on the azimuth enhancement processing.
  • the channel signal gets the left output signal and right input of the terminal device The signal is output; when it is determined that the sound source is located at other positions of the terminal device, the signal received by the left channel is output as the left ear output signal, and the signal received by the right channel is output as the right ear output signal.
  • the specific processing may be as follows:
  • the signal received by the R channel is R
  • the signal received by the L is L
  • the signal received by the C channel is C
  • the signal output by the right ear is R'
  • the output signal of the left ear is L'
  • H low represents a low-pass filter with a cutoff frequency of F 1
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ]
  • GA i represents the filter gain coefficient when gain adjustment is performed on the signal received by the C channel.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • Factor setting and frequency band division it should also be understood that the judgment of the sound source relative to the orientation of the terminal device may have a corresponding calculation method according to the relative position of the receiving channel, and the present invention is not limited to the above specific calculation formula.
  • the signal received by the C channel, the signal received by the L channel, and the signal received by the R channel are target signals.
  • Azimuth enhancement processing is performed on the signal received by the C channel
  • azimuth enhancement processing is performed on the signals received by the R channel and the L channel
  • the signal is obtained based on the signal of the C channel of the azimuth enhancement processing and the signal received by the L channel after the azimuth enhancement processing.
  • the left output signal of the device based on the square
  • the signal of the C channel of the bit enhancement processing and the signal received by the R channel after the azimuth enhancement processing obtain the right output signal of the terminal device; when it is determined that the sound source is located at other positions of the terminal device, the signal received by the left channel is output as the left ear. Signal output, the signal received by the right channel is output as the right ear output signal.
  • the specific processing is as follows:
  • the signal received by the R channel is R
  • the signal received by the L is L
  • the signal received by the C channel is C
  • the signal output by the right ear is R'
  • the output signal of the left ear is L'
  • H low represents a low-pass filter with a cutoff frequency of F 1
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ]
  • G i denotes a filter gain coefficient for gain adjustment of signals received by the L and R channels
  • GA i denotes a filter gain coefficient for gain adjustment of a signal received by the C channel.
  • the signals corresponding to the respective frequency bands received by the R and L channels are respectively added, thereby enhancing the difference between the front and rear amplitude spectra of the left and right channel output signals.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • Factor setting and frequency band division are not limited to the above specific gains.
  • the signal received by the C channel, the signal received by the L channel, and the signal received by the R channel are target signals.
  • Azimuth enhancement processing of signals received by the C channel, simultaneously for R channels and L The signal received by the channel is subjected to azimuth enhancement processing, and based on the original signal received by the L channel and the signal of the C channel of the azimuth enhancement processing and the signal received by the L channel after the azimuth enhancement processing, the left output signal of the terminal device is obtained, and is received based on the R channel.
  • the original signal and the azimuth enhancement processed C channel signal and the azimuth enhanced processed R channel received signal obtain the right output signal of the terminal device; when it is determined that the sound source is located at other positions of the terminal device, the left channel receives the signal As the left ear output signal output, the signal received by the right channel is output as the right ear output signal.
  • the specific processing is as follows:
  • the signal received by the R channel is R
  • the signal received by the L is L
  • the signal received by the C channel is C
  • the signal output by the right ear is R'
  • the output signal of the left ear is L'
  • H low represents a low-pass filter with a cutoff frequency of F 1
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ]
  • G i denotes a filter gain coefficient for gain adjustment of signals received by the L and R channels
  • GA i denotes a filter gain coefficient for gain adjustment of a signal received by the C channel.
  • the signals corresponding to the respective frequency bands received by the R and L channels are respectively added, thereby enhancing the difference between the front and rear amplitude spectra of the left and right channel output signals.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • Factor setting and frequency band division are not limited to the above specific gains.
  • the embodiment of the present invention performs the azimuth enhancement processing on the target signal sent by the sound source by determining the position of the sound source relative to the terminal device, and obtains the output signal of the terminal device based on the target signal after the azimuth enhancement processing, so that the output signal of the terminal device is obtained.
  • the degree of discrimination between the front characteristic band and the rear characteristic band of the output signal is increased, whereby the sound image orientation of the output signal can be enhanced, and the probability of confusing the front sound image with the rear sound image can be reduced.
  • FIG. 3 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device is a head-mounted multimedia system, and the left channel (L channel), the right channel (R channel), and the left channel (CL channel) are located at different positions of the terminal.
  • the channel is used for the acquisition of the sound signal.
  • the present invention is not limited to the left channel, but only the left channel is taken as an example, or may be located in front of the R channel and the L channel and between the R channel and the L channel. Channels in other locations.
  • a simplified schematic diagram of the terminal device is shown in the right diagram of FIG.
  • the first step is to acquire the signals received by the L channel, the R channel, and the CL channel.
  • the second step is to measure the delay difference between the signals received by the L channel, the R channel and the CL channel, and measure the delay difference between the two signals by using the frequency domain correlation method, which can be obtained by using the above formula (1).
  • the delay between signals is ITD LR . It should be understood that the method of specifically measuring the delay difference between the signals of the respective channels may also adopt other manners, and the present invention is not limited thereto.
  • the delay of the signal received by the L, R, CL channels can be used to determine the direction of incidence of the sound source:
  • the third step is to determine the relative position of the sound source and the terminal device.
  • ⁇ LR , ⁇ LCL and ⁇ RCL are calculated using equations (5) through (7).
  • ITD LCL , ITD RCL and ITD LR are determined according to the frequency domain correlation measurement method shown in equation (1);
  • the signal received by the CL channel is a target signal
  • the signal received by the CL channel is subjected to azimuth enhancement processing, and the signal of the CL channel based on the azimuth enhancement processing is obtained by the terminal device.
  • the left output signal and the right output signal when it is determined that the sound source is located at other positions of the terminal device, the signal received by the L channel can be directly output as the left ear output signal, and the signal received by the R channel can be output as the right ear output signal.
  • the filter function can be implemented;
  • H low represents a low-pass filter with a cutoff frequency of F 1 ;
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ];
  • GA i represents the signal for the C-channel gain adjustment filter gain coefficients;
  • a i, b i represents amplitude proportional control gain factor adjustment of the side channel signal;
  • amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude relationship of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors may also be derived from other forms.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • the division of the factor value and the frequency band should also be understood that the determination of the sound source relative to the orientation of the terminal device may have a corresponding calculation method according to the relative position of the receiving channel, and the present invention is not limited to the above specific calculation formula.
  • left side channel CL in the embodiment of the present invention is merely exemplary, and the side channel located at other positions between the left channel and the right channel may also be according to the square shown in the embodiment of FIG.
  • the method performs signal collection and processing, and the present invention is not limited thereto.
  • the signal received by the CL channel, the signal received by the L channel, and the signal received by the R channel are target signals.
  • Azimuth enhancement processing is performed on the signal received by the CL channel
  • azimuth enhancement processing is performed on the signals received by the R channel and the L channel
  • the signal of the C channel based on the azimuth enhancement processing and the signal of the L channel of the azimuth enhancement processing are obtained by the terminal device.
  • the left output signal while the signal of the C channel based on the azimuth enhancement processing and the signal of the R channel of the azimuth enhancement processing obtains the right output signal of the terminal device; when it is determined that the sound source is located at other positions of the terminal device, the signal received by the left channel As the left ear output signal output, the signal received by the right channel is output as the right ear output signal.
  • the specific processing is as follows:
  • the filter function can be implemented;
  • H low represents a low-pass filter with a cutoff frequency of F 1 ;
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ];
  • G i represents the filter gain coefficient for gain adjustment of the L and R channel signals, GA i represents the filter gain coefficient when the C channel signal is subjected to gain adjustment, and a i , b i represents the signal to the side channel Amplitude ratio control factor when gain adjustment;
  • amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude relationship of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors may also be derived from other forms.
  • N 5
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • GA 1 1.2
  • GA 2 -0.5
  • GA 3 1.3
  • GA 4 -0.5
  • GA 5 1.2.
  • G i 2 means that there is a gain of 6 dB in the amplitude spectrum
  • Different gain adjustments are made to different frequency bands of the signals received by the R and L channels by G i , and different gain adjustments are performed for different frequency bands of the signals received by the C channel by GA i , for H band1 , H band 3 , H band 5
  • the front and rear spectral amplitudes are significantly different, and the front response is much higher than the rear characteristic band for amplitude gain adjustment, and the two front and rear spectral amplitudes of H band2 and H band4 are significantly different and the rear response is much higher than the front response.
  • the signals corresponding to the respective frequency bands received by the R and L channels are respectively added, thereby enhancing the difference between the front and rear amplitude spectra of the left and right channel output signals.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains. Division of factors and frequency bands.
  • the signal received by the CL channel, the signal received by the L channel, and the signal received by the R channel are target signals.
  • Azimuth enhancement processing is performed on the signal received by the CL channel
  • azimuth enhancement processing is performed on the signals received by the R channel and the L channel
  • the signal of the C channel based on the azimuth enhancement processing and the signal of the L channel of the azimuth enhancement processing and the L channel receiving
  • the filter function can be implemented;
  • H low represents a low-pass filter with a cutoff frequency of F 1 ;
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ];
  • G i represents the filter gain coefficient for gain adjustment of the L and R channel signals, GA i represents the filter gain coefficient when the C channel signal is subjected to gain adjustment, and a i , b i represents the signal to the side channel Amplitude ratio control factor when gain adjustment;
  • amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude relationship of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors may also be derived from other forms.
  • N 5
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • GA 1 1.2
  • GA 2 -0.5
  • GA 3 1.3
  • GA 4 -0.5
  • GA 5 1.2.
  • G i 2 means that there is a gain of 6 dB in the amplitude spectrum
  • the signals corresponding to the respective frequency bands received by the R and L channels are respectively added, thereby enhancing the difference between the front and rear amplitude spectra of the left and right channel output signals.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains. Division of factors and frequency bands.
  • the embodiment of the present invention performs the azimuth enhancement processing on the target signal sent by the sound source by determining the position of the sound source relative to the terminal device, and obtains the output signal of the terminal device based on the target signal after the azimuth enhancement processing, so that the output signal of the terminal device is obtained.
  • the degree of discrimination between the front characteristic band and the rear characteristic band of the output signal is increased, whereby the sound image orientation of the output signal can be enhanced, and the probability of confusing the front sound image with the rear sound image can be reduced.
  • FIG. 4 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device is a head-mounted multimedia system, and uses four channels of a left channel (L channel), a right channel (R channel), a left channel (CL channel), and a right channel (CR).
  • the channel at different positions of the terminal performs sound signal acquisition, wherein the CL channel and the CR channel belong to the first type of channel, and the embodiment of the present invention can use the signal received by one or two channels of the first type channel as the target signal for the orientation.
  • the enhancement processing obtains the left ear output signal and the right ear output signal according to the result of the azimuth enhancement processing. It should be understood that the present invention is not limited to the case of increasing the CL channel and the CR channel, and other one or more channels may be added at other locations. The embodiment of the present invention is only described by taking the four channels as an example.
  • a simplified schematic diagram of the terminal device is shown in the right diagram of FIG. 4, and the R channel, the L channel, and the CL are shown.
  • the position of the channel is simplified to a circle with radius a, the origin of the coordinate is O, the angle between the incident direction and the y-axis is ⁇ , the angle between the CL channel and the y-axis is ⁇ , and the coordinate system is established in a clockwise direction.
  • the front ⁇
  • the first step is to acquire the signals received by the L channel, the R channel, and the CL channel.
  • the second step is to measure the delay difference between the signals received by the L channel, the R channel and the CL channel, and measure the delay difference between the two signals by using the frequency domain correlation method, which can be obtained by using the above formula (1).
  • the delay between signals is ITD LR . It should be understood that the difference between the two signal delays of the three received signals can be obtained according to the positional relationship between the R channel, the L channel and the RL channel, and the position of the sound source relative to the terminal device is determined, and each channel is specifically measured.
  • the method of delay difference between signals may also adopt other methods, and the present invention is not limited thereto.
  • the delay of the signal received by the L, R, CL channels can be used to determine the direction of incidence of the sound source:
  • the relative position of the sound source and the terminal device is determined.
  • ⁇ LR , ⁇ LCL and ⁇ RCL are calculated using equations (8) through (10).
  • ITD LCL , ITD RCL and ITD LR are determined according to the frequency domain correlation measurement method shown by equation (1);
  • the signal received by the CL channel is a target signal
  • the signal received by the CL channel is subjected to azimuth enhancement processing
  • the signal of the CL channel based on the azimuth enhancement processing is obtained by the terminal device.
  • the left output signal and the right output signal; the signal received by the L channel, the signal received by the R channel, and the signal received by the CL channel may be used as target signals, and the signal is subjected to azimuth enhancement processing and received by the L channel based on the azimuth enhancement processing.
  • the signal, the signal received by the R channel and the signal of the CL channel obtain the left output signal and the right output signal of the terminal device; when it is determined that the sound source is located at other positions of the terminal device, the signal received by the L channel can be directly used as the left ear output.
  • the signal is output, and the signal received by the R channel is output as a right ear output signal.
  • the filter function can be implemented;
  • H low represents a low-pass filter with a cutoff frequency of F 1 ;
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ];
  • GA i represents the signal for the C-channel gain adjustment filter gain coefficients;
  • a i, b i represents amplitude proportional control gain factor adjustment of the side channel signal;
  • amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude relationship of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors may also be derived from other forms.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • the division of the factor value and the frequency band should also be understood that the determination of the sound source relative to the orientation of the terminal device may have a corresponding calculation method according to the relative position of the receiving channel, and the present invention is not limited to the above specific calculation formula.
  • the signal received by the CL channel is a target signal, and the signal received by the CL channel is azimuthally increased. Strong processing, and based on the signal of the CL channel after the azimuth enhancement processing, the left output signal and the right output signal of the terminal device are obtained; the signal received by the L channel, the signal received by the R channel, and the signal received by the CL channel may be used as the target signal.
  • the specific processing is as follows:
  • the filter function can be implemented;
  • H low represents a low-pass filter with a cutoff frequency of F 1 ;
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ];
  • GA i represents the signal for the C-channel gain adjustment filter gain coefficients;
  • a i, b i represents amplitude proportional control gain factor adjustment of the side channel signal;
  • amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude relationship of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors may also be derived from other forms.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • the division of the factor value and the frequency band should also be understood that the determination of the sound source relative to the orientation of the terminal device may have a corresponding calculation method according to the relative position of the receiving channel, and the present invention is not limited to the above specific calculation formula.
  • the signals received by the CL and the CR channel are target signals, and the signals received by the CR channel are subjected to azimuth enhancement processing
  • the signal received by the CL channel is also subjected to azimuth enhancement processing, and the left output signal and the right output signal of the terminal device are obtained based on the signal of the CR channel after the azimuth enhancement processing and the signal of the CL channel after the azimuth enhancement processing;
  • the received signal, the signal received by the R channel, the signal received by the CR channel, and the signal received by the CL channel are target signals, the azimuth enhancement processing is performed on the above signal, and the signal received by the L channel based on the azimuth enhancement processing and the signal received by the R channel are received.
  • the signal received by the CR channel and the signal of the CL channel obtain the left output signal and the right output signal of the terminal device; when the sound source is located at other positions of the terminal device, the signal received by the L channel can be directly output as the left ear output signal.
  • the signal received by the R channel is output as a right ear output signal.
  • the filter function can be implemented;
  • H low represents a low-pass filter with a cutoff frequency of F 1 ;
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ];
  • GA i represents the signal for the C-channel gain adjustment filter gain coefficients;
  • a i, b i represents amplitude proportional control gain factor adjustment of the side channel signal;
  • amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude relationship of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors may also be derived from other forms.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains.
  • the division of the factor value and the frequency band should also be understood that the determination of the sound source relative to the orientation of the terminal device may have a corresponding calculation method according to the relative position of the receiving channel, and the present invention is not limited to the above specific calculation formula.
  • FIG. 5 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device is a head-mounted multimedia system, which adopts a left channel (L channel), a right channel (R channel), a left channel (CL channel), a right channel 1 (CR1 channel), and a right.
  • the first step is to acquire the signals received by the channel L channel, R channel, CL channel, CR1 channel, and CR2 channel.
  • the second step is to measure the delay difference between the two signals received by the L channel, the R channel, and the CL channel; or measure the delay difference between the two signals received by the L channel, the R channel, and the CR1 channel; or Measuring a delay difference between two pairs of signals received by the L channel, the R channel, and the CR2 channel; using a frequency domain correlation method to obtain a delay difference between the two signals, the specific measurement method and the embodiment of FIG. 2 to FIG. The method is similar and will not be described here.
  • the third step is to determine the relative position of the sound source and the terminal device.
  • the specific determination method is similar to the method shown in the embodiment of FIG. 2 to FIG. 4 , and details are not described herein again.
  • the CR1 channel, the CR2 channel, and the CL channel belong to the first type channel, and at least one of the signals received by the CR1 channel, the CR2 channel, and the CL channel is selected as the target signal for orientation.
  • the enhancement processing, the signal after the azimuth enhancement processing is a first type processing signal, and the left ear output signal and the right ear output signal may be obtained based on the first type processing signal and the L channel and the R channel received signal, or may be based on the first type A type of processing signal and a signal received by the L channel and the R channel subjected to the azimuth enhancement processing obtain a left ear output signal and a right ear output signal.
  • the CR1 channel, the CR2 channel, and the CL are merely exemplary channels, which belong to the same type of channel, which is located in front of the R channel and the L channel and between the R channel and the L channel, and may be used in specific applications.
  • the signal received by one or more of the channels of the type is selected as the target signal for azimuth enhancement processing, and the left ear output signal and the right ear output signal are obtained according to the result of the azimuth enhancement processing, and the present invention is not limited thereto.
  • FIG. 6 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device is a head-mounted multimedia system, which adopts a left channel (L channel), a right channel (R channel), a center channel (C channel), a left channel (CL channel), and a right side.
  • Channels (CR) which are located at different positions of the terminal, collect sound signals. It should be understood that the present invention is not limited to the case of adding C channels, CL channels, and CR channels, and other channels may be added at other locations. The example is only described by taking these five channels as an example.
  • the respective signals received by the L channel, the R channel, the C channel, the CL channel, and the CR channel are acquired.
  • the delay difference between the three signals in each of the signals received by the L channel, the R channel, the C channel, the CL channel, and the CR channel is measured, and three signals are obtained by using equation (1).
  • the delay difference between the two, the positions of the receiving channels of the three signals for judging the time difference difference can form a triangular relationship. It should be understood that the method for delay difference between the signals of the respective channels of the specific strategy may also adopt other manners, and the present invention is not limited thereto.
  • the third step is to determine the relative position of the sound source and the terminal device. This step is similar to the method for determining the relative orientation of the sound source and the terminal device in the above embodiment, and details are not described herein again.
  • the signal received by the CL channel, the CR channel or the C channel is subjected to azimuth enhancement processing, and the signal received by the CL channel, the CR channel or the C channel based on the azimuth enhancement processing is obtained.
  • the left output signal and the right output signal of the terminal device when it is determined that the sound source is located at other positions of the terminal device, the signal received by the L channel can be directly output as the left ear output signal, and the signal received by the R channel is used as the right ear output. Signal output.
  • the specific processing is as follows:
  • Ear output signal When 0° ⁇ e ⁇ 30° or 330° ⁇ e ⁇ 360°, where the azimuth of the sound source is ⁇ e , that is, when the sound source is approximately in the front direction of the terminal device, it should be understood that when 0° ⁇ e ⁇ 30° or 330° ⁇ e ⁇ 360° means that when the sound source is located in a certain section in front, the signal received by the channel C of the center channel can be processed as the target signal. Specifically, it can be obtained according to the following formula. Ear output signal:
  • the signal received by the R channel is R
  • the signal received by the L is L
  • the signal received by the C channel is C
  • the output signal of the right ear is R'
  • the output signal of the left ear is L'
  • H low represents a low-pass filter with a cutoff frequency of F 1
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ]
  • GA i denotes a filter gain coefficient for gain adjustment of the C channel signal.
  • the azimuth enhancement processing is performed on the signal received by the C channel, and the left and right ear output signals are obtained based on the signal after the azimuth enhancement processing.
  • the signal received by the R channel is R, L
  • the signal received by the L channel and the C channel are simultaneously subjected to azimuth enhancement processing, and the left and right ear output signals are obtained based on the signal after the azimuth enhancement processing.
  • N 5
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • GA 1 1.2
  • GA 2 -0.5
  • GA 3 1.3
  • GA 4 -0.5
  • GA 5 1.2.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains. Division of factors and frequency bands.
  • the signal received by the R channel is R
  • the signal received by the L is L
  • the signal received by the CR channel is CR
  • the output signal of the right ear is R'
  • the output signal of the left ear is L'
  • H low represents a low-pass filter with a cutoff frequency of F 1
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ]
  • GA i denotes a filter gain coefficient for gain adjustment of the CR channel signal
  • a i , b i denotes an amplitude proportional control factor when performing gain adjustment on the side channel signal
  • the introduction of the amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude ratio of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors can also be obtained in other forms.
  • the azimuth enhancement processing is performed on the signal received by the CR channel, and the left and right ear output signals are obtained based on the signal after the azimuth enhancement processing.
  • the signal R received by the signals R, L received by the R channel and the signal CR received by the CR channel may be simultaneously subjected to azimuth enhancement processing, and the left and right ear output signals are obtained based on the above signals after the azimuth enhancement processing.
  • N 5
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • GA 1 1.2
  • GA 2 -0.5
  • GA 3 1.3
  • GA 4 -0.5
  • GA 5 1.2.
  • Different gain adjustments are made to different frequency bands of the center channel signal by GA i , and there are significant differences between the three front and rear spectral amplitudes of H band1 , H band 3 , and H band 5 , and the front response is much higher than the rear characteristic band for amplitude adjustment.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains. Division of factors and frequency bands.
  • the left and right ear output signals can be obtained according to the following formula:
  • the signal received by the R channel is R
  • the signal received by the L is L
  • the signal received by the CL channel is CL
  • the output signal of the right ear is R'
  • the output signal of the left ear is L'
  • H low represents a low-pass filter with a cutoff frequency of F 1
  • H bandi represents a band-pass filter with a bandpass band of [F i F i+1 ]
  • GA i denotes a filter gain coefficient for gain adjustment of the CR channel signal
  • a i , b i denotes an amplitude proportional control factor when performing gain adjustment on the side channel signal
  • the introduction of the amplitude proportional control factor means that the amplitude adjustment of the different frequency bands of the side channel signals is adjusted according to the amplitude ratio of the signals in the corresponding frequency bands of the left and right channel signals. It should be understood that the proportional control factors can also be obtained in other forms.
  • the azimuth enhancement processing is performed on the signal received by the CR channel, and the left and right ear output signals are obtained based on the signal after the azimuth enhancement processing.
  • the signal R received by the signals R, L received by the R channel and the signal CR received by the CR channel may be simultaneously subjected to azimuth enhancement processing, and the left and right ear output signals are obtained based on the above signals after the azimuth enhancement processing.
  • N 5
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • GA 1 1.2
  • GA 2 -0.5
  • GA 3 1.3
  • GA 4 -0.5
  • GA 5 1.2.
  • Different gain adjustments are made to the different frequency bands of the center channel signal by GA i , and the three front and rear spectral intensities of H band1 , H band 3 and H band 5 are significantly different, and the front response is much higher than the rear characteristic band for amplitude adjustment.
  • the division of the front and rear azimuth characteristic bands and the selection of the gain factors of the respective bands are based on increasing the difference between the front and rear spectrums, and the difference is not excessively exaggerated to avoid significant distortion on the timbre, and the present invention is not limited to the above specific gains. Division of factors and frequency bands.
  • the embodiment of the present invention divides the front into three sections only by way of example.
  • the position of the actual sound source may be further divided into the front section according to the number of channels of the terminal device; and different manners may also be selected.
  • the signal received by the channel is subjected to azimuth enhancement processing as the target signal, and any combination of the probability that the sound image orientation of the enhanced output signal can be enhanced and the probability of erroneously judging the front sound image signal as the rear sound image signal can be implemented. Limited to this.
  • FIG. 7 shows a schematic flow chart of a method for processing a sound signal according to another embodiment of the present invention.
  • the whole signal processing process is as follows:
  • Step 701 collecting and reading signals received by the left and right channels and the center channel
  • Step 702 determining whether the sound source is located in front.
  • the process includes determining a delay difference between the received signals of the R channel, the L channel, and the C channel, and determining the sound according to the delay difference between the three signals.
  • the source is relative to the orientation of the terminal device. The method of determining the orientation is as shown in FIG. 2 to FIG. 6, and details are not described herein again.
  • the collected sound signal is not processed, the signal output by the left ear is the signal received by the L channel, and the signal output by the right ear is the signal received by the R channel.
  • the target signal of the received sound signal is subjected to azimuth enhancement processing.
  • the target signal is a signal received by the C channel.
  • the specific process is shown as steps 703 and 704.
  • step 703 the sound signals received by the R, L, and C channels are divided into three front characteristic bands 1, 2, and 3, and the three front characteristic bands are band-pass filtered, and no processing is performed on the other bands.
  • Step 704 performing signal enhancement processing on signals received by the C channel in each characteristic frequency band, Specifically, the gain factor of the characteristic band 1 is GA1, the gain factor GA2 for the characteristic band 2, the gain factor for the characteristic band 3 is GA3, and the signal enhancement processing for the signals received by the R and L channels in each frequency band,
  • the gain factor of the characteristic frequency band 1 is G1
  • the gain factor of the characteristic frequency band 2 is G2
  • the gain factor of the characteristic frequency band 3 is G3.
  • the signal received by the C channel based on the azimuth enhancement processing and the signal received by the R channel of the azimuth enhancement processing obtain the right ear output signal; the signal received by the C channel based on the azimuth enhancement processing and the signal received by the L channel of the azimuth enhancement processing obtain the left ear output Signal, the process of completing the entire signal processing.
  • the signal suppression processing is performed on the rear characteristic frequency band of the target signal in the sound source signal to enhance the discrimination between the front characteristic frequency band and the rear characteristic frequency band of the signal, so as to reduce the before and after sound image confusion. Enhance the effect of the sense of direction of the sound image.
  • FIG. 7 are a description of a specific implementation process of the present invention from the perspective of a method for implementing a terminal device
  • FIG. 8 to FIG. 10 describe the terminal device from the perspective of a device.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device of FIG. 8 includes a receiving module 810, a determining module 820, a determining module 830, and a processing module 840.
  • the receiving module 810 the receiving module includes at least three receiving channels at different positions of the terminal device, and the at least three receiving channels are configured to receive at least three signals sent by the same sound source, wherein the at least three signals are in one-to-one correspondence with the channel. .
  • the determining module 820 is configured to determine, according to three signals of the at least three signals received by the receiving module 810, a signal delay difference between the two signals, and the signal delay difference can determine the position of the sound source relative to the terminal device.
  • the determining module 830 is configured to determine the position of the sound source relative to the terminal device according to the signal delay difference obtained by the determining module 820.
  • the processing module 840 is configured to perform an azimuth enhancement process on the target signal in the at least three signals when the determining module 830 determines that the sound source is located in front of the terminal device, and obtain a first output signal of the terminal device according to the result of the azimuth enhancement process. a second output signal, wherein the azimuth enhancement process is for increasing the discrimination of the front characteristic band and the rear characteristic band of the target signal.
  • the target signal sent by the sound source is subjected to azimuth enhancement processing by determining the position of the sound source relative to the terminal device, and the output signal of the terminal device is obtained according to the result of the azimuth enhancement processing, so that the front characteristic band of the output signal is obtained.
  • the degree of discrimination with the rear characteristic band is increased, whereby the sound image orientation of the output signal can be enhanced, and the probability of erroneously determining the front sound image as the rear sound image can be reduced.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • the receiving module 810 includes a first channel, a second channel, and a third channel, where the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third The third channel receives the third signal, the first channel is closer to the front than the second channel and the third channel, and the first channel is located between the second channel and the third channel; wherein the processing module 840 includes the first processing unit 910 and the The second processing unit 920, when the determining module 830 determines that the sound source is located in front of the terminal device, the first processing unit 910 is configured to perform azimuth enhancement processing on the first signal to obtain a first processing signal, where the first signal is a target signal; The second processing unit 920 is configured to: obtain a first output signal according to the second signal and the first processing signal obtained by the first processing unit 910; and the first obtained by the first processing unit 910 according to the third signal Processing the signal results in the second output signal.
  • the receiving module 810 includes a first channel, a second channel, and a third channel, where the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third a third signal received by the channel, the first channel being closer to the front than the second channel and the third channel, the first channel being located between the second channel and the third channel; wherein the processing module 840 includes the first processing unit 910 and the second The processing unit 920, when the determining module 830 determines that the sound source is located in front of the terminal device, the first processing unit 910 is configured to: perform azimuth enhancement processing on the first signal to obtain a first processing signal, and the second signal Performing azimuth enhancement processing to obtain a second processing signal, and performing azimuth enhancement processing on the third signal to obtain a third processing signal, wherein the first signal, the second signal, and the third signal are both target signals; wherein, the second processing unit 920 is configured to: The first output signal is obtained according to the first processing signal
  • the receiving module 810 includes a first channel, a second channel, and a third channel, where the at least three signals include a first signal received by the first channel, a second signal received by the second channel, and a third a third signal received by the channel, the first channel being closer to the front than the second channel and the third channel, the first channel being located between the second channel and the third channel; wherein the processing module 840 includes the first processing unit 910 and the second The processing unit 920, when the determining module 830 determines that the sound source is located in front of the terminal device, the first processing unit 910 is configured to perform azimuth enhancement processing on the first signal to obtain a first processing signal, and perform orientation on the second signal.
  • the enhancement processing is performed to obtain a second processing signal, and the third signal is subjected to azimuth enhancement processing to obtain a third processing signal, wherein the first signal, the second signal, and the third signal are both target signals; wherein the second processing unit 920 is configured to: The second signal and the first processing signal obtained by the first processing unit 910 and the second processing signal obtained by the first processing unit 910 Obtaining a first output signal; obtaining a second output signal according to the third signal and the first processed signal obtained by the first processing unit 910 and the third processed signal obtained by the first processing unit 910.
  • the processing module 840 further includes a third processing unit 930, where the third processing unit 930 is configured to: according to the second signal, the signal amplitude in each characteristic frequency band and the third signal in each characteristic frequency band.
  • the amplitude of the signal is adjusted for each characteristic frequency band corresponding to the first processed signal obtained by the first processing unit 910 to obtain a first output signal and a second output signal, wherein the first processed signal, the second signal, and the third Each characteristic band of the signal is divided in the same way.
  • the receiving module 810 includes a first type channel, a second channel, and a third channel, where the at least three signals include a first type signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel, the first type of channel includes at least two channels, and at least two channels are respectively configured to receive at least two signals, and any one of the first type channels is closer to the second channel and the third channel In the front, any one of the first type of channels is located between the first channel and the second channel; wherein the processing module 840 includes a first processing unit 910 and a second processing unit 920, and when the determining module 830 determines that the sound source is located at the terminal device In the front, the first processing unit 910 is configured to: perform azimuth enhancement processing on at least one signal of the first type of signals to obtain a first type of processing signal, perform azimuth enhancement processing on the second signal to obtain a second processed signal, and obtain a second processed signal.
  • the processing unit 920 is configured to: obtain a first output signal according to the second signal and the first type processing signal obtained by the first processing unit 910; and obtain a second output according to the third signal and the first type processing signal obtained by the first processing unit 910 signal.
  • the receiving module 810 includes a first type channel, a second channel, and a third channel, where the at least three signals include a first type signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel, the first type of channel includes at least two channels, and at least two channels are respectively configured to receive at least two signals, and any one of the first type channels is closer to the second channel and the third channel In the front, the first type of channel is located between the first channel and the second channel; wherein the processing module 840 includes a first processing unit 910 and a second processing unit 920, and when the determining module 830 determines that the sound source is located in front of the terminal device, A processing unit 910 is configured to perform azimuth enhancement processing on at least one signal of the first type of signals to obtain a first type of processing signal, perform azimuth enhancement processing on the second signal to obtain a second processed signal, and perform azimuth enhancement processing on the third signal.
  • the second processing unit 920 is configured to: according to a first place The first type of processing signal obtained by the processing unit 910 and the second processing signal obtained by the first processing unit 910 obtain a first output signal; the first type of processing signal obtained by the first processing unit 910 and the first processing unit 910 The three processed signals yield a second output signal.
  • the receiving module 810 includes a first type channel, a second channel, and a third channel, where the at least three signals include a first type signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel, the first type of channel includes at least two channels, and at least two channels are respectively configured to receive at least two signals, and any one of the first type channels is closer to the second channel and the third channel In the front, the first type of channel is located between the first channel and the second channel; wherein the processing module 840 includes a first processing unit 910 and a second processing unit 920, and when the determining module 830 determines that the sound source is located in front of the terminal device, A processing unit 910 is configured to perform azimuth enhancement processing on at least one signal of the first type of signals to obtain a first type of processing signal, perform azimuth enhancement processing on the second signal to obtain a second processed signal, and perform azimuth enhancement processing on the third signal.
  • the second processing unit 920 is configured to: obtain a first output signal according to the second signal and the first type processing signal obtained by the first processing unit 910, and the second processing signal obtained by the first processing unit 910; The signal and the first type processing signal obtained by the first processing unit 910 and the third processing signal obtained by the first processing unit 910 obtain a second output signal.
  • the receiving module 810 includes a first channel, a second channel, a third channel, a fourth channel, and a fifth channel, where the at least three signals include the first signal and the second channel received by the first channel.
  • the received second signal, the third signal received by the third channel, the fourth signal received by the fourth channel, and the fifth signal received by the fifth channel, the first channel, the second channel or the third channel is compared to the fourth channel and the third channel
  • the fifth channel is closer to the front, the first channel, the second channel and the third channel are located between the fourth channel and the fifth channel, and the front of the terminal device is divided into adjacent first interval, second interval and third interval;
  • the processing module 840 includes a first processing unit 910 and a second processing unit 920.
  • the first processing unit 910 When the determining module 830 determines that the sound source is in the first interval and the first signal is the target signal, the first processing unit 910 is configured to: The signal is subjected to azimuth enhancement processing to obtain a first processed signal. When the determining module 830 determines that the sound source is located in the second interval of the terminal device and the second signal is the target signal, the first processing unit 910 is configured to use the The signal is subjected to azimuth enhancement processing to obtain a second processed signal. When the determining module 830 determines that the sound source is located in the third interval of the terminal device and the third signal is the target signal, the first processing unit 910 is configured to perform azimuth enhancement processing on the third signal.
  • the second processing unit 920 is configured to: obtain the first output signal according to the fourth signal and the first processed signal obtained by the first processing unit 910, according to the fifth The signal and the first processing signal obtained by the first processing unit 910 obtains a second output signal; when the determining module 830 determines that the sound source is located in the second interval, the second processing unit 920 is configured to: according to the fourth signal and the first processing unit 910 The obtained second processed signal obtains a first output signal, and obtains a second output signal according to the fifth signal and the second processed signal obtained by the first processing unit 910; when the determining module 830 determines that the sound source is located in the third interval, the second processing The unit 920 is specifically configured to: obtain a first output signal according to the fourth signal and the third processing signal obtained by the first processing unit 910, and obtain a second output signal according to the fifth signal and the third processing signal obtained by the first processing unit 910.
  • the receiving module 810 includes a first channel, a second channel, a third channel, a fourth channel, and a fifth channel, where the at least three signals include the first signal and the second channel received by the first channel.
  • the received second signal, the third signal received by the third channel, the fourth signal received by the fourth channel, and the fifth signal received by the fifth channel, the first channel, the second channel or the third channel is compared to the fourth channel and the third channel
  • the fifth channel is closer to the front, the first channel, the second channel and the third channel are located between the fourth channel and the fifth channel, and the front of the terminal device is divided into adjacent first interval, second interval and third interval;
  • the processing module 840 includes a first processing unit 910 and a second processing unit 920.
  • the first processing unit 910 When the determining module 830 determines that the sound source is in the first interval and the first signal is the target signal, the first processing unit 910 is configured to: perform the first signal The azimuth enhancement process obtains a first processed signal, the fourth signal is processed to obtain a fourth processed signal, and the fifth signal is subjected to azimuth enhancement processing to obtain a fifth processed signal; when the determining module 830 determines the sound source bit
  • the first processing unit 910 is configured to: perform azimuth enhancement processing on the second signal to obtain a second processing signal, and process the fourth signal to obtain a fourth processing signal, The fifth signal performs the azimuth enhancement process to obtain the fifth processed signal.
  • the first processing unit 910 is configured to: perform azimuth enhancement on the third signal. Processing, obtaining a third processing signal, processing a fourth processing signal to obtain a fourth processing signal, and performing azimuth enhancement processing on the fifth signal to obtain a fifth processing signal; wherein, when the determining module 830 determines that the sound source is located in the first interval,
  • the second processing unit 920 is configured to: obtain a first output signal according to the fourth processing signal obtained by the first processing unit 910 and the first processing signal obtained by the first processing unit 910; and the fifth signal and the first obtained by the first processing unit 910
  • the first processed signal obtained by the processing unit 910 obtains the second output signal; when the determining module 830 determines that the sound source is located in the second interval, the first The processing unit 920 is configured to: obtain a fourth processed signal 910 obtained by the first processing unit and the first processing unit 910 of the second Processing the signal to obtain
  • the processing module 840 further includes a third processing unit, where the third processing unit 930 is specifically configured to: when the determining module 830 determines that the sound source is located in the first interval, each feature according to the fourth signal The signal amplitude in the frequency band and the signal amplitude in each characteristic frequency band of the fifth signal are amplitude-adjusted for each characteristic frequency band corresponding to the first processed signal obtained by the first processing unit 910 to obtain a first output signal and the first a second output signal; when the determining module 830 determines that the sound source is located in the second interval, according to the signal amplitude in each characteristic frequency band of the fourth signal and the signal amplitude in each characteristic frequency band of the fifth signal, to the first processing unit 910 Each of the characteristic frequency bands corresponding to the obtained second processed signal is amplitude-adjusted to obtain a first output signal and a second output signal; when the determining module 830 determines that the sound source is located in the third interval, according to the fourth signal
  • the terminal device 800 of the embodiment of the present invention may implement various operations or functions related to the terminal device in the embodiments of FIG. 1 to FIG. 7. To avoid repetition, details are not described in detail.
  • the target signal sent by the sound source is subjected to azimuth enhancement processing by determining the position of the sound source relative to the terminal device, and the output signal of the terminal device is obtained according to the result of the azimuth enhancement processing, so that the front signal of the output signal is obtained.
  • the degree of discrimination between the frequency band and the rear characteristic frequency band is increased, whereby the sound image orientation sense of the output signal can be enhanced, and the probability of confusing the front and rear sound images can be reduced.
  • FIG. 10 shows a schematic block diagram of a terminal device of an embodiment of the present invention.
  • the terminal device 1000 includes a receiver 1100, a bus system 1200, a processor 1300, and a transmitter 1400.
  • the receiver 1100 and the transmitter 1400 are connected to the processor 1300 through a bus system 1200.
  • the receiver 1100 includes at least three channels at different positions of the terminal device, and the at least three channels are configured to receive at least three from the same sound source.
  • the processor 1300 is configured to determine, according to three of the at least three signals, Determining a signal delay difference between the two signals, the signal delay difference can determine the position of the sound source relative to the terminal device; determining the position of the sound source relative to the terminal device according to the signal delay difference
  • the enhancement process is for increasing the discrimination between the front characteristic band and the rear characteristic band of the target signal.
  • the transmitter 1400 is configured to transmit the first output signal and the second output signal.
  • the target signal sent by the sound source is subjected to azimuth enhancement processing by determining the position of the sound source relative to the terminal device, and the output signal of the terminal device is obtained according to the result of the azimuth enhancement processing, so that the front signal of the output signal is obtained.
  • the degree of discrimination between the frequency band and the rear characteristic frequency band is increased, whereby the sound image orientation sense of the output signal can be enhanced, and the probability of confusing the front and rear sound images can be reduced.
  • the processor 1300 may be a central processing unit (“CPU"), and the processor 1300 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the bus system 1200 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1200 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1300 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor. To avoid repetition, it will not be described in detail here.
  • the processor 1300 is further configured to: perform enhancement processing on a front characteristic frequency band of the target signal; and/or perform suppression processing on a rear characteristic frequency band of the target signal.
  • the sound signal collected by the terminal device 1000 includes a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel.
  • the second channel and the third channel are closer to the front, and the first channel is located between the second channel and the third channel; wherein, when the sound source is located in front of the terminal device, the processor 1300 is specifically configured to: perform azimuth enhancement processing on the first signal Obtaining a first processing signal; the processor 1300 is further configured to: obtain, according to a result of the azimuth enhancement process, the first output signal and the second output signal of the terminal device, comprising: obtaining a first output signal according to the first processed signal and the second signal According to the first processed signal and The third signal yields a second output signal.
  • the sound signal received by the receiver 1100 includes a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel.
  • the second channel and the third channel are closer to the front, and the first channel is located between the second channel and the third channel; when it is determined that the sound source is located in front, the processor 1300 is specifically configured to: perform azimuth enhancement processing on the first signal to obtain the first Processing the signal, performing azimuth enhancement processing on the second signal to obtain a second processed signal, performing azimuth enhancement processing on the third signal to obtain a third processed signal; the processor 1300 is further configured to: obtain the first according to the first processed signal and the second processed signal An output signal; obtaining a second output signal according to the first processed signal and the third processed signal.
  • the sound signal received by the receiver 1100 includes a first signal received by the first channel, a second signal received by the second channel, and a third signal received by the third channel.
  • the second channel and the third channel are closer to the front, and the first channel is located between the second channel and the third channel; when it is determined that the sound source is located in front, the processor 1300 is specifically configured to: perform azimuth enhancement processing on the first signal to obtain the first Processing the signal, performing azimuth enhancement processing on the second signal to obtain a second processed signal, performing azimuth enhancement processing on the third signal to obtain a third processed signal; the processor 1300 is further configured to: according to the first processed signal, the second processed signal, and the first The two signals obtain a first output signal; and the second output signal is obtained according to the first processed signal, the third processed signal, and the third signal.
  • the processor 1300 is further configured to: according to the signal amplitude in each characteristic frequency band of the second signal and the signal amplitude in each characteristic frequency band of the third signal, each corresponding to the first processed signal
  • the characteristic frequency band is amplitude-adjusted to obtain a first output signal and a second output signal, wherein each of the first processed signal, the second signal, and the third signal is divided in the same manner.
  • the signal received by the receiver 1100 includes a first type signal received by the first type channel, a second signal received by the second channel, and a third signal received by the third channel, first.
  • the type channel includes at least two channels, and at least two channels are respectively configured to receive at least two signals, any one of the first type channels is closer to the front than the second channel and the third channel, and the first type channel is located in the second channel and
  • the processor 1300 is configured to: perform azimuth enhancement processing on at least one signal in the first type to obtain a first type of processing signal; and the processor 1300 is further configured to: A type of processing signal and a second signal result in a first output signal; the second output signal is derived from the first type of processed signal and the third signal.
  • the signal received by the receiver 1100 includes a first type signal received by the first type channel, a second signal received by the second channel, and a third signal received by the third channel, the first type.
  • the channel includes at least two channels, and at least two channels are respectively configured to receive at least two signals respectively.
  • the processor 1300 is configured to: perform azimuth enhancement processing on at least one signal in the first type to obtain a first type of processing signal; perform azimuth enhancement processing on the second signal to obtain a second processing And performing azimuth enhancement processing on the third signal to obtain a third processing signal; the processor 1300 is further configured to: obtain a first output signal according to the first type processing signal and the second processing signal; and process the signal according to the first type and the third processing The signal gets a second output signal.
  • the signal received by the receiver 1100 includes a first type signal received by the first type channel, a second signal received by the second channel, and a third signal received by the third channel, the first type.
  • the channel includes at least two channels for respectively receiving at least two signals, any one of the first type channels being closer to the front than the second channel and the third channel; when determining that the sound source is located in front, processing
  • the device 1300 is configured to: perform azimuth enhancement processing on at least one signal in the first type to obtain a first type processing signal; perform azimuth enhancement processing on the second signal to obtain a second processing signal; and perform azimuth enhancement processing on the third signal to obtain a third processing Processing the signal;
  • the processor 930 is further configured to: obtain a first output signal according to the first type processing signal, the second processing signal, and the second signal; and obtain a second output according to the first type processing signal, the third processing signal, and the third signal signal.
  • the signal received by the receiver 1100 includes a first signal received by the first channel, a second signal received by the second channel, a third signal received by the third channel, and a fourth channel received.
  • the fourth signal and the fifth signal received by the fifth channel, the first channel, the second channel or the third channel is closer to the front than the fourth channel and the fifth channel, and the first channel, the second channel and the third channel are located at the Between the four channels and the fifth channel, the front of the terminal device is divided into adjacent first interval, second interval and third interval; when it is determined that the sound source is located in front, the processor 1300 is configured to: when the sound source is located at the first When the first signal is the target signal, the first signal is subjected to azimuth enhancement processing to obtain a first processed signal; when the sound source is located in the second interval of the terminal device and the second signal is the target signal, the second signal is performed.
  • the azimuth enhancement process is performed to obtain a second processing signal.
  • the third signal is subjected to azimuth enhancement processing to obtain a third processing signal.
  • the processor 1300 is further configured to: when When the sound source is located in the first interval, the first output signal is obtained according to the first processed signal and the fourth signal, and the second output signal is obtained according to the first processed signal and the fifth signal; when the sound source is located in the second interval, according to the second Processing the signal and the fourth signal to obtain a first output signal, and obtaining a second output signal according to the second processed signal and the fifth signal; when the sound source is located in the third interval, obtaining according to the third processed signal and the fourth signal The first output signal obtains the second output signal according to the third processed signal and the fifth signal.
  • the at least three sub-signals received by the receiver 1100 include a first signal received by the first channel, a second signal received by the second channel, a third signal received by the third channel, and a fourth The fourth signal received by the track and the fifth signal received by the fifth channel, the first channel, the second channel or the third channel being closer to the front than the fourth channel and the fifth channel, the first channel, the second channel and the third channel Located between the fourth channel and the fifth channel, the front of the terminal device is divided into adjacent first interval, second interval and third interval; when it is determined that the sound source is located in front, the processor 1300 is configured to: when the sound source is located When the first interval and the first signal, the fourth signal, and the fifth signal are both target signals, the first signal is subjected to azimuth enhancement processing to obtain a first processed signal, and the fourth signal is processed to obtain a fourth processed signal, and the fifth signal is obtained.
  • the second processing signal is processed to obtain a fourth processed signal for the fourth signal, and the fifth processed signal is obtained by performing azimuth enhancement processing on the fifth signal; when the sound source is located in the third interval and the third signal, the fourth signal, and the fifth When the signal is the target signal, performing azimuth enhancement processing on the third signal to obtain a third processed signal, processing a fourth processed signal on the fourth signal, and performing azimuth enhancement processing on the fifth signal to obtain a fifth processed signal;
  • the 1300 is further configured to: when the sound source is located in the first interval, obtain a first output signal according to the fourth processed signal and the first processed signal, and obtain a second output signal according to the fifth processed signal and the first processed signal; when the sound source is located In the second interval, the first output signal is obtained according to the fourth processed signal and the second processed signal, and the
  • the processor 1300 is further configured to: when the sound source is located in the first interval, according to the signal amplitude in each characteristic frequency band of the fourth signal and each characteristic frequency band of the fifth signal The amplitude of the signal, the amplitude adjustment of each characteristic frequency band corresponding to the first processed signal to obtain the first output signal and the second output signal; when the sound source is located in the second interval, according to the a signal amplitude in each characteristic frequency band of the four signals and a signal amplitude in each characteristic frequency band of the fifth signal, and amplitude adjustment of each characteristic frequency band corresponding to the second processed signal to obtain a first output signal and a second output signal; When the sound source is located in the third interval, according to the signal amplitude in each characteristic frequency band of the fourth signal and the signal amplitude in each characteristic frequency band of the fifth signal, the amplitude of each characteristic frequency band corresponding to the third processed signal is adjusted to Obtaining a first output signal and a second output signal; wherein each of the first processed signal
  • the target signal sent by the sound source is subjected to azimuth enhancement processing by determining the position of the sound source relative to the terminal device, and the output signal of the terminal device is obtained according to the result of the azimuth enhancement processing, so that the front characteristic band of the output signal is obtained.
  • the degree of discrimination with the rear characteristic band is increased, whereby the sound image orientation of the output signal can be enhanced, and the probability of erroneously determining the front sound image as the rear sound image can be reduced.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM computer-readable media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Telephone Function (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Stereophonic System (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明实施例提供一种处理声音信号的方法和终端设备。该方法包括:由位于终端设备不同位置的通道接收同一声源发出的至少三个信号,其中,至少三个信号和上述通道一一对应;根据至少三个信号中的三个信号,确定三个信号两两之间信号时延差,该信号时延差能够判断声源相对于终端设备的位置;根据信号时延差,判断声源相对于终端设备的位置;声源位于终端设备的前方时,对至少三个信号中的目标信号进行方位增强处理,根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号,其中,方位增强处理用于增大目标信号的前方特征频带与后方特征频带的区分度。本发明实施例能够增强输出信号的声像方位感,降低将前方声像误判为后方声像的概率。

Description

处理声音信号的方法和终端设备
本申请要求于2015年1月21日提交中国专利局、申请号为201510030723.0、发明名称为“处理声音信号的方法和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及终端设备领域,并且更具体地,涉及处理声音信号的方法和终端设备。
背景技术
随着音频技术的蓬勃发展,人们在追求3D视觉体验的同时也对声音的空间属性有着越来越高的要求。在终端设备中将视频与音频结合,可以产生更加真实的进入式体验效果。在目前应用中,最常见的终端重放设备为头戴式终端设备,在头戴式终端设备的双耳处放置微缩传声器进行双耳声音信号的采集,采集的双耳声音信号在经过放大、传输、记录等过程后,再利用头戴式终端设备的耳机进行声音重放,从而在倾听者双耳处产生与原声场一致的主要空间信息,实现声音空间信息的重放。采用基于双耳声音信号的虚拟听觉重放***产生的空间听觉效果更为真实、自然。
然而,在采用头戴终端设备的耳机重放双耳声音信号的时候,由于耳机放音方式与原始声场的不同,会丢失了用于判断前后方位的认知信息,出现一定的前后声像混淆问题。出现声像混淆的情况是因为:在各种声源方向定位因素中,双耳时间差(英文:Interaural Time Difference,简称:ITD)和双耳幅度差(英文:Interaural Level Difference,简称:ILD)只能决定声源所处的混乱锥,而并不能决定声源的方向。由于前后声像混淆问题,听众可能会将来自前方声像判断成来自后方的声像,或者将来自后方的声像判断成来自前方的声像,并且将前方声像误判为后方声像的概率要远大于将后方声像误判为前方声像的概率。因此,如何改善终端设备声音重放时将前方声像误判为后方声像的问题,是一个迫切需要解决的问题。
发明内容
本发明实施例提供一种处理声音信号的方法和终端设备,能够改善终端设备声音重放时将前方声像混淆为后方声像的问题。
第一方面,提供了一种处理声音信号的方法,包括:由位于终端设备不同位置的通道接收同一声源发出的至少三个信号,其中,所述至少三个信号和所述通道一一对应;根据所述至少三个信号中的三个信号,确定所述三个信号两两之间信号时延差,所述信号时延差能够判断所述声源相对于所述终端设备的位置;根据所述信号时延差,判断所述声源相对于所述终端设备的位置;所述声源位于所述终端设备的前方时,对所述至少三个信号中的目标信号进行方位增强处理,根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号,其中,所述方位增强处理用于增大所述目标信号的前方特征频带与后方特征频带的区分度。
结合第一方面,在第一方面的第一种可能的实现方式中,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:所述第一信号为所述目标信号时,对所述第一信号进行所述方位增强处理,得到第一处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:根据所述第一处理信号和所述第二信号得到所述第一输出信号;根据所述第一处理信号和所述第三信号得到所述第二输出信号。
结合第一方面,在第一方面的第二种可能的实现方式中,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:所述第一信号、所述第二信号与所述第三信号均为所述目标信号时,对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:根据所述第一处理信号和所述第二处理信号得到所述第一输出信号;根据所述第一处理信号和所述第三处理信号得到所述第二 输出信号。
结合第一方面,在第一方面的第三种可能的实现方式中,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:所述第一信号、所述第二信号与所述第三信号均为所述目标信号时,对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:根据所述第一处理信号、所述第二处理信号和所述第二信号得到所述第一输出信号;根据所述第一处理信号、所述第三处理信号和所述第三信号得到所述第二输出信号。
结合第一方面的第一种至第三种可能的实现方式,在第一方面的第四种可能的实现方式中,根据所述第二信号每个特征频带内的信号幅度与所述第三信号每个特征频带内的信号幅度,对所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号,其中,所述第一处理信号、所述第二信号与所述第三信号的所述每个特征频带划分方式相同。
结合第一方面,在第一方面的第五种可能的实现方式中,所述至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第二通道和所述第三通道之间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:所述第一类型信号中的至少一个信号为所述目标信号时,对所述第一类型中的至少一个信号进行所述方位增强处理,得到第一类型处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:根据所述第一类型处理信号和所述第二信号得到所述第一输出信号;根据所述第一类型处理信号和所述第三信号得到所述第二输出信号。
结合第一方面,在第一方面的第六种可能的实现方式中,所述至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第二通道和所述第三通道之间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:所述第一类型信号中的至少一个信号、所述第二信号和所述第三信号为所述目标信号时,对所述第一类型中的至少一个信号进行所述方位增强处理得到第一类型处理信号;对所述第二信号进行所述方位增强处理得到第二处理信号;对所述第三信号进行所述方位增强处理得到第三处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:根据所述第一类型处理信号和所述第二处理信号得到所述第一输出信号;根据所述第一类型处理信号和所述第三处理信号得到所述第二输出信号。
结合第一方面,在第一方面的第七种可能的实现方式中,所述至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第二通道和所述第三通道之间,所述第一类型通道位于所述第二通道和所述第三通道之间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:所述第一类型信号中的至少一个信号、所述的第二信号和所述第三信号为所述目标信号时,对所述第一类型中的至少一个信号进行所述方位增强处理得到第一类型处理信号;对所述第二信号进行所述方位增强处理得到第二处理信号;对所述第三信号进行所述方位增强处理得到第三处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:根据所述第一类型处理信号、所述第二处理信号和所述第二信号得到所述第一输出信号;根据所述第一类型处理信号、所述第三处理信号和所述第三信号得到所述第二输出信号。
结合第一方面,在第一方面的第八种可能的实现方式中,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接 收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:当所述声源位于所述第一区间且所述第一信号为所述目标信号时,对所述第一信号进行所述方位增强处理,得到第一处理信号;当所述声源位于所述第二区间且所述第二信号为所述目标信号时,对所述第二信号进行所述方位增强处理,得到第二处理信号;当所述声源位于所述第三区间且所述第三信号为所述目标信号时,对所述第三信号进行所述方位增强处理,得到第三处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:当所述声源位于所述第一区间时,根据所述第一处理信号和所述第四信号得到所述第一输出信号,根据所述第一处理信号和所述第五信号得到所述第二输出信号;当所述声源位于所述第二区间时,根据所述第二处理信号和所述第四信号得到所述第一输出信号,根据所述第二处理信号和所述第五信号得到所述第二输出信号;当所述声源位于所述第三区间时,根据所述第三处理信号和所述第四信号得到所述第一输出信号,根据所述第三处理信号和所述第五信号得到所述第二输出信号。
结合第一方面,在第一方面的第九种可能的实现方式中,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:当所述声源位于所述第一区间且所述第一信号、所述第四信号、所述第五信号均为所述目标信号时,对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;当所述声源位于所述第二区间且所述第二信号、所述第四信号、所述第五信号均为所述目标信号时, 对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第四信号进行所述方位增强处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;当所述声源位于所述第三区间且所述第三信号、所述第四信号、所述第五信号均为所述目标信号时,对所述第三信号进行所述方位增强处理得到第三处理信号,对所述第四信号进行所述方位增强处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:当所述声源位于所述第一区间时,根据所述第四处理信号和所述第一处理信号得到所述第一输出信号,根据所述第五处理信号和所述第一处理信号得到所述第二输出信号;当所述声源位于所述第二区间时,根据所述第四处理信号和所述第二处理信号得到所述第一输出信号,根据所述第五处理信号和所述第二处理信号得到所述第二输出信号;当所述声源位于所述第三区间时,根据所述第四处理信号和所述第三处理信号得到所述第一输出信号;根据所述第五处理信号和所述第三处理信号得到所述第二输出信号。
结合第一方面的第八种或第九种可能的实现方式,在第一方面的第十种可能的实现方式中,当所述声源位于所述第一区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;当所述声源位于所述第二区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第二处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;当所述声源位于所述第三区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第三处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;其中,所述第一处理信号、所述第二处理信号、所述第三处理信号、所述第四信号和所述第五信号的所述每个特征频带划分方式相同。
第二方面,提供了一种终端设备,包括:接收模块,所述接收模块包括位于所述终端设备不同位置的至少三个接收通道,所述至少三个接收通道用于接收同一声源发出的至少三个信号,其中,所述至少三个信号与所述通道 一一对应;确定模块,用于根据所述接收模块接收的所述至少三个信号中的三个信号,确定所述三个信号两两之间信号时延差,所述信号时延差能够判断所述声源相对于所述终端设备的位置;判断模块,用于根据所述确定模块得到的信号时延差,判断所述声源相对于所述终端设备的位置;处理模块,用于当所述判断模块判定所述声源位于所述终端设备的前方时,对所述至少三个信号中的目标信号进行方位增强处理,根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号,其中,所述方位增强处理用于增大目标信号的前方特征频带和后方特征频带的区分度。
结合第二方面,在第二方面的第一种可能的实现方式中,所述接收模块包括第一通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于;对所述第一信号进行所述方位增强处理,得到第一处理信号,其中所述第一信号为所述目标信号;其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一处理信号得到所述第二输出信号。
结合第二方面,在第二方面的第二种可能的实现方式中,所述接收模块包括第一通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中,所述第一信号、所述第二信号和所述第三信号均为所述目标信号;其中,所述第二处理单元用于:根据所述第一处理单元得到的所述第一处理信号和所述第二处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第一 处理信号和所述第三处理信号得到所述第二输出信号。
结合第二方面,在第二方面的第三种可能的实现方式中,所述接收模块包括第一通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一信号、所述第二信号和所述第三信号均为所述目标信号;其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一处理信号、所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一处理信号、所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。结合第二方面的第一种至第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述处理模块还包括第三处理单元,所述第三处理单元用于:根据所述第二信号每个特征频带内的信号幅度与所述第三信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号,其中,所述第一处理信号、所述第二信号与所述第三信号的所述每个特征频带划分方式相同。
结合第二方面,在第二方面的第五种可能的实现方式中,所述接收模块包括第一类型通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一类型信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第一通道和所述第二通道之间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一类型信号中的至少一个信号进行所述方位 增强处理得到第一类型处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一类型信号中的至少一个信号为所述目标信号;其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一类型处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一类型处理信号得到所述第二输出信号。
结合第二方面,在第二方面第六种可能的实现方式中,所述接收模块包括第一类型通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一类型信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道位于所述第一通道和所述第二通道之间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一类型信号中的至少一个信号进行所述方位增强处理得到第一类型处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一类型信号中的至少一个信号、所述第二信号和所述第三信号为所述目标信号;其中,所述第二处理单元用于:根据所述第一处理单元得到的所述第一类型处理信号和所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第一类型处理信号和所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
结合第二方面,在第二方面第七种可能的实现方式中,所述接收模块包括第一类型通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一类型信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道位于所述第一通道和所述第二通道之间;其中,所述处理模块包括第一处理单元和第二处理单元,所述第一处理单元用于:当所述判断模块判定所述声源位于所述终端设备的前方时,对所述第一类型信号中的至少一个信号进行所述方位增强处理得到第一 类型处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一类型信号中的至少一个信号、所述第二信号和所述第三信号为所述目标信号;其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一类型处理信号、所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一类型处理信号、所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
结合第二方面,在第二方面第八种可能的实现方式中,所述接收模块包括第一通道、第二通道、第三通道、第四通道和第五通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号、所述第三通道接收的第三信号、所述第四通道接收的第四信号和所述第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述第一区间且所述第一信号为所述目标信号时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理,得到第一处理信号;当所述判断模块判定所述声源位于所述终端设备的第二区间且所述第二信号为所述目标信号时,所述第一处理单元用于对所述第二信号进行所述方位增强处理,得到第二处理信号;当所述判断模块判定所述声源位于所述终端设备的第三区间且所述第三信号为所述目标信号时,所述第一处理单元用于对所述第三信号进行所述方位增强处理,得到第三处理信号;其中,当所述判断模块判定所述声源位于所述第一区间时,所述第二处理单元用于:根据所述第四信号和所述第一处理单元得到的所述第一处理信号得到所述第一输出信号,根据所述第五信号和所述第一处理单元得到的所述第一处理信号得到所述第二输出信号;当所述判断模块判定所述声源位于所述第二区间时,所述第二处理单元用于:根据所述第四信号和所述第一处理单元得到的所述第二处理信号得到所述第一输出信号,根据所述第五信号和所述第一处理单元得到的所述第二处理信号得到所述第二输出信号;当所述判断模块判定所述声源位于所述第三区间时,所述 第二处理单元具体用于:根据所述第四信号和所述第一处理单元得到的所述第三处理信号得到所述第一输出信号,根据所述第五信号和所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
结合第二方面,在第二方面第九种可能的实现方式中,所述接收模块包括第一通道、第二通道、第三通道、第四通道和第五通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号、所述第三通道接收的第三信号、所述第四通道接收的第四信号和所述第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述第一区间且所述第一信号为所述目标信号时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;当所述判断模块判定所述声源位于所述终端设备的第二区间且所述第二信号为所述目标信号时,所述第一处理单元用于:对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;当所述判断模块判定所述声源位于所述终端设备的第三区间且所述第三信号为所述目标信号时,所述第一处理单元用于:对所述第三信号进行所述方位增强处理得到第三处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;其中,当所述判断模块判定所述声源位于所述第一区间时,所述第二处理单元用于:根据所述第一处理单元得到的所述第四处理信号和所述第一处理单元得到的所述第一处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第五信号和所述第一处理单元得到的所述第一处理信号得到所述第二输出信号;当所述判断模块判定所述声源位于所述第二区间时,所述第二处理单元用于:根据所述第一处理单元得到的所述第四处理信号和所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第五处理信号和所述第一处理单元得到的所述第二处理信号得到所述第二输出信号;当所述判断模块 判定所述声源位于所述第三区间时,所述第二处理单元用于:根据所述第一处理单元得到的所述第四处理信号和所述第三处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第五处理信号和所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。结合第二方面的第八种或第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述处理单元还包括第三处理单元,所述第三处理单元具体用于:当所述判断模块判定所述声源位于所述第一区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;当所述判断模块判定所述声源位于所述第二区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第二处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;当所述判断模块判定所述声源位于所述第三区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第三处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;其中,所述第一处理信号、所述第二处理信号、所述第三处理信号、所述第四信号和所述第五信号的所述每个特征频带划分方式相同。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,并根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像误判为后方声像的概率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种处理声音信号的方法的示意性流程图;
图2是本发明一个实施例的终端设备的结构示意图;
图3是本发明另一实施例的终端设备的结构示意图;
图4是本发明又一实施例的终端设备的结构示意图;
图5是本发明另一实施例的终端设备的结构示意图;
图6是本发明又一实施例的终端设备的结构示意图;
图7是本发明另一实施例的一种处理声音信号的方法的示意性流程图;
图8是本发明实施例的一个终端设备的示意性框图;
图9是本发明实施例的一个终端设备的示意性框图;
图10是本发明实施例的一个终端设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1是本发明实施例的一种处理声音信号的方法的示意性流程图,该方法100可以由终端设备执行。
步骤110,由位于终端设备不同位置的通道接收同一声源发出的至少三个信号,其中,至少三个信号和上述通道一一对应。
步骤120,根据至少三个信号中的三个信号,确定三个信号两两之间信号时延差,该信号时延差能够判断所述声源相对于所述终端设备的位置。
步骤130,根据所述信号时延差,判断声源相对于终端设备的位置。
步骤140,声源位于终端设备的前方时,对至少三个信号中的目标信号进行方位增强处理,根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号,其中,所述方位增强处理用于增大所述目标信号的前方特征频带与后方特征频带的区分度。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像误判为后方声像的概率。
在步骤110中,多媒体终端的不同位置上存在至少三个通道,用于采集 同一声源发出的至少三个信号,由于各个通道位置不同,从而接收到的同一声源发出的声音信号也不同,因此每个通道实际接收的信号与该通道位置存在一一对应的关系,以便于根据这至少三个信号可以确定声源处于该终端设备的前方或者后方,更具体的,可以判断声源位于前方的某一具体区间。
在步骤120中,根据至少三个信号中的三个信号,确定三个信号两两之间信号时延差,该信号时延差能够判断所述声源相对于所述终端设备的位置是指:可以根据声音信号中包括的任意三个能够判定声源位置的信号,确定这三个信号两两之间的信号时延差,从而判断声源相对于终端设备的位置。应理解,能够判定声源位置的任意三个信号是指分别接收该三个信号的通道的位置之间可以构成三角形关系,以判定声源位于终端设备的前方或者后方。可选地,作为本发明一个实施例,可以通过频域相关法测量任意两个信号之间的时延差。具体地,例如第m个信号的傅里叶系数为Hm(f),第n个信号的傅里叶系为Hn(f),那么第m个信号与第n个信号的与头相关传递函数(Head Related Transfer Function,HRTF)的互相关函数Φmn(τ)为:
Figure PCTCN2015086933-appb-000001
其中*表示共轭,0≤|Φmn(τ)|≤1,因为在声像方向感的确定过程中,低频起决定性作用的定位因素,因此计算出Φmn(τ)在f≤2.24kHz且|τ|≤1ms范围内的最大值,与此对应的τ=τmax即为第m个信号与第n个信号之间的时延差,同理可以求得任意两个信号之间的时延差。应理解,上述的具体数值仅仅是示例性的,还有其它的具体数值或者计算公式可以求得任意两个信号之间的时延差,本发明不限于此。
在步骤130中,可以根据信号时延差确定声源位于所述终端设备的前方或者后方,以便于在步骤140中对至少三个信号中的目标信号进行方位增强处理,目标信号可以包括至少三个信号中的一个或多个,具体需要根据声源相对于所述终端设备的位置确定,以便于对目标信号进行方位增强处理,应理解,目标信号可以指需要进行方位增强处理的一类信号的统称。
由于在实际情况中,将声源位于前方却误判为后方的概率远远大于将声源位于后方却误判为前方的概率,因此可选地,作为本发明一个实施例,在声源位于终端设备的前方时,步骤140中所述的方位增强处理包括:前方特征频带的强化处理;和/或后方特征频带的抑制处理,其中,特征频带是指根 据信号前方频谱幅度与后方频谱幅度的大小关系,依据实际需要划分的能够体现信号特性的频带。具体地,前方特征频带是指在该特征频带内前方频谱幅度远大于后方频谱幅度的特征频带;后方特征频带是指该频带内后方频谱幅度远大于前方频谱幅度的特征频带。
可选地,作为本发明一个实施例,该终端设备接收的至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:第一信号为所述目标信号时,对第一信号进行方位增强处理,得到第一处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:根据第一处理信号和第二信号得到第一输出信号;根据第一处理信号和第三信号得到第二输出信号。
应理解,声源位于终端设备的前方,是指用户正常佩戴或使用该终端设备时,声源位于使用者的前半平面。可选地,上述第一通道是指在用户角度上与第二通道和第三通道相比较,更靠近前方,而第一通道位于第一通道和第二通道之间意味着这三个通道之间构成的角度关系可以通过确定接收信号两两之间的时延差,确定声源相对与该终端设备的位置。
可选地,作为本发明一个实施例,该终端设备接收的至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:第一信号、第二信号与第三信号均为所述目标信号时,对第一信号进行方位增强处理得到第一处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:根据第一处理信号和第二处理信号得到第一输出信号;根据第一处理信号和第三处理信号得到第二输出信号。
可选地,作为本发明一个实施例,该终端设备接收的至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,若对至少三个信号中的目标信号进行方位增强处理 具体为:第一信号、第二信号与第三信号均为所述目标信号时,对第一信号进行方位增强处理得到第一处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:根据第一处理信号、第二处理信号和第二信号得到第一输出信号;根据第一处理信号、第三处理信号和第三信号得到第二输出信号。
应理解,上述对第一信号、第二信号和第三信号进行方位增强处理,并分别得到第一处理信号、第二处理信号和第三处理信号,基于上述方位增强处理后的结果,根据两种不同的组合方式分别得到两种第一输出信号和第二输出信号,这样的处理方式与仅对第一信号进行方位增强处理得到的第一输出信号和第二输出信号的效果可能略有不同,但无论采用何种处理方式,都能够使得输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像信号混淆为后方声像信号的概率。应理解,对于一个或多个信号进行方位增强处理以得到第一输出信号和第二输出信号的组合方式有多种,只要是能够达到增强输出信号的声像方位感,降低将前方声像信号误判为后方声像信号的概率的组合形式都可以实行,例如,可以仅对第二信号和第三信号进行方位增强处理,根据第一信号和方位增强处理后的第二处理信号、第三处理信号得到第一输出信号和第二输出信号,本发明不限于此。
可选地,作为本发明一个实施例,该信号处理的方法还可以包括:根据第二信号每个特征频带内的信号幅度与第三信号每个特征频带内的信号幅度,对第一处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号,其中,第一处理信号、第二信号与第三信号的每个特征频带划分方式相同。例如,第一处理信号、第二信号和第三信号都以相同的划分方式划分为[3kHz,8kHz],[8kHz,10kHz],[10kHz,12kHz],[12kHz,17kHz]和[17kHz,20kHz]这五个特征频带,那么在某一特征频带例如在频带[3kHz,8kHz]内,要根据第二信号与第三信号的信号幅度,对第一信号进行幅度调整。
可选地,作为本发明的一个实施例,终端设备接收的至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道用于分别接 收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道位于第二通道和第三通道之间;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:第一类型信号中的至少一个信号为目标信号时,对第一类型中的至少一个信号进行方位增强处理,得到第一类型处理信号;则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:根据第一类型处理信号和第二信号得到第一输出信号;根据第一类型处理信号和第三信号得到第二输出信号。
具体地,例如,上述第一类型通道包括两个通道分别为A通道和B通道,这两个通道接收的信号分别为A信号和B信号,那么可以仅选择A信号作为目标信号,也可以仅选择B信号作为目标信号,同时还可以选择A与B信号均为目标信号,根据对目标信号进行方位增强处理的结果,得到第一输出信号和第二输出信号。
可选地,作为本发明一个实施例,终端设备接收的至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道用于分别接收至少两个信号第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道位于第二通道和第三通道之间;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:第一类型信号中的至少一个信号、第二信号和第三信号为目标信号时,对第一类型中的至少一个信号进行方位增强处理得到第一类型处理信号;对第二信号进行方位增强处理得到第二处理信号;对第三信号进行方位增强处理得到第三处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:根据第一类型处理信号和第二处理信号得到第一输出信号;根据第一类型处理信号和第三处理信号得到第二输出信号。
可选地,作为本发明一个实施例,终端设备接收的至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,该至少两个通道用于分别接收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:第一类型信号中的至少一个信号、第二信号和第三信号为目标信号时,对第一类型中的至少一个信号进行方位增强处理得到第一类型处理信号;对第二 信号进行方位增强处理得到第二处理信号;对第三信号进行方位增强处理得到第三处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:根据第一类型处理信号、第二处理信号和第二信号得到第一输出信号;根据第一类型处理信号、第三处理信号和第三信号得到第二输出信号。
应理解,上述对第一类型信号中的至少一个信号、第二信号和第三信号进行方位增强处理,并分别得到第一类型处理信号、第二处理信号和第三处理信号,基于上述方位增强处理后的结果,根据两种不同的组合方式分别得到两种第一输出信号和第二输出信号,这样的处理方式与仅对第一类型信号中的至少一个信号进行方位增强处理得到的第一输出信号和第二输出信号的效果可能略有不同,但无论采用何种处理方式,都能够使得输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像信号混淆为后方声像信号的概率。应理解,对于一个或多个信号进行方位增强处理以得到第一输出信号和第二输出信号的组合方式有多种,只要是能够达到增强输出信号的声像方位感,降低将前方声像信号误判为后方声像信号的概率的组合形式都可以实行,本发明不限于此。
可选地,作为本发明的一个实施例,终端设备接收的至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,第一通道、第二通道或第三通道比第四通道和第五通道更靠近前方,第一通道、第二通道和第三通道位于第四通道和第五通道之间,终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:当声源位于第一区间且第一信号为所目标信号时,对第一信号进行方位增强处理,得到第一处理信号;当声源位于终端设备的第二区间且第二信号为目标信号时,对第二信号进行方位增强处理,得到第二处理信号;当声源位于终端设备的第三区间且第三信号为目标信号时,对第三信号进行方位增强处理,得到第三处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:当声源位于第一区间时,根据第一处理信号和第四信号得到第一输出信号,根据第一处理信号和第五信号得到第二输出信号;当声源位于第二区间时,根据第二处理信号和第四信号得到第一输出信号,根据第二处理信号和第五信号得到第 二输出信号;当声源位于所述第三区间时,根据第三处理信号和所述第四信号得到所述第一输出信号,根据所述第三处理信号和所述第五信号得到所述第二输出信号。
可选地,作为本发明一个实施例,所述终端设备接收的至少三个子信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四道接收的第四信号和第五信道接收的第五信号,第一通道、第二通道或第三通道比第四通道和第五通道更靠近前方,第一通道、第二通道和第三通道位于第四通道和第五通道之间,终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,若对至少三个信号中的目标信号进行方位增强处理具体为:当声源位于第一区间且第一信号、第四信号、第五信号均为目标信号时,对第一信号进行方位增强处理得到第一处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;当声源位于第二区间且第二信号、第四信号、第五信号均为目标信号时,对第二信号进行方位增强处理得到第二处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;当声源位于所述第三区间且第三信号、第四信号、第五信号均为所述目标信号时,对第三信号进行方位增强处理得到第三处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;其中,则根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号具体为:当声源位于第一区间时,根据第四处理信号和第一处理信号得到第一输出信号,根据第五处理信号和第一处理信号得到第二输出信号;当声源位于第二区间时,根据第四处理信号和第二处理信号得到第一输出信号,根据第五处理信号和第二处理信号得到第二输出信号;当声源位于第三区间时,根据第四处理信号和第三处理信号得到第一输出信号;根据第五处理信号和第三处理信号得到第二输出信号。
应理解,上述对第一信号、第四信号和第五信号进行方位增强处理,并分别得到第一处理信号、第四处理信号和第五处理信号,基于上述方位增强处理后的结果,得到第一输出信号和第二输出信号,这样的处理方式与仅对第一信号进行方位增强处理得到的第一输出信号和第二输出信号可能效果略有不同,但无论采用何种处理方式,都能够使得输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低 将前方声像信号混淆为后方声像信号的概率。应理解,对于一个或多个信号进行方位增强处理以得到第一输出信号和第二输出信号的组合方式有多种,只要是能够达到增强输出信号的声像方位感,降低将前方声像信号误判为后方声像信号的概率的组合形式都可以实行,本发明不限于此。
可选地,作为本发明一个实施例,上述信号处理的方法还包括:当声源位于所述第一区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第一处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;当声源位于第二区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第二处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;当声源位于第三区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第三处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;其中,第一处理信号、第二处理信号、第三处理信号、第四信号和第五信号的每个特征频带划分方式相同。
具体地,例如,第一处理信号、第四信号和第五信号都划分为[3kHz,8kHz],[8kHz,10kHz],[10kHz,12kHz],[12kHz,17kHz]和[17kHz,20kHz]这五个特征频带,那么在某一特征频带例如在频带[3kHz,8kHz]内,要根据第四信号与第五信号的信号幅度,对第一处理信号进行幅度调整。应理解上述频带划分和数值的设定都是示例性的,本发明不局限于此。
可选地,声源位于第一区间时,第一通道接收到的第一信号为目标信号,该第一通道位于第一区间内,因此相较于用户来说比其它通道较靠近声源或者是较先接收到声源发出的信号,应理解,对第一信号进行方位增强处理,这意味着当声源位于终端设备的前方的某一具***置时,对离该第一位置的声源较为接近的通道接收的信号进行方位增强处理,这样的处理方式能够效果较好的降低将前方声像混淆为后方声像的概率;同理可以类推声源位于第二区间和第三区间的情况,还应该理解,本发明不局限于将用户的前方划分为三个相邻的区间情况,可以灵活的将前方分为两个或两个以上相邻的区间,在该区间内选择相应通道接收的信号进行方位增强处理,能够降低前后方声像混淆概率的信号的组合方式都可以实行,本发明不限于此。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标 信号进行方位增强处理,根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像误判为后方声像的概率。
图2是本发明一个实施例的终端设备的结构示意图。如图2中的左图所示,该终端设备为一个头戴式多媒体***,利用左通道(L通道)、右通道(R通道)和中置通道(C通道)这三个位于终端不同位置的通道进行声音信号的采集。该终端设备的简化示意图如图2中右图所示,将R通道、L通道和C通道所在的位置简化为一个半径为a的圆,坐标原点为O,入射方向与y轴的夹角为θ,选用顺时针方向建立坐标系,那么正前方对应的角度θ=0°,正右方对应的角度θ=90°,正左方对应角度θ=270°。
第一步,接收L通道、R通道和C通道接收到信号。
第二步,测量L通道、R通道和C通道接收的信号两两之间的时延差,测量两两通道之间的时延差采用频域相关法,具体地,L通道接收到的信号的傅里叶系数为HL(f),R通道接收到的信号的傅里叶系数为HR(f),那么R和L通道的与头相关传递函数(Head Related Transfer Function,HRTF)的互相关函数ΦLR(τ)为:
Figure PCTCN2015086933-appb-000002
其中*表示共轭,0≤|ΦLR(τ)|≤1,因为在确定声像方位的过程中,低频起决定性作用的定位因素,因此计算出ΦLR(t)在f≤2.24kHz且|τ|≤1ms范围内的最大值,与此对应的τ=τmax即为L通道的信号与R通道的信号之间的时延差ITDLR。同理可以求得L通道接收的信号与C通道接收的信号之间的时延差ITDLC,R通道接收的信号与C通道接收的信号之间的时延差ITDRC,具体测量各个通道的信号之间时延差的方法还可以采用其它方式,本发明不限于此。
在不遮挡头部的情况下,可利用L、R和C通道接收的信号两两之间的时延差直接确定声源的入射方向:
Figure PCTCN2015086933-appb-000003
同理可得:
Figure PCTCN2015086933-appb-000004
Figure PCTCN2015086933-appb-000005
实际情况中,由于头部的遮挡,当声源来自前后方45°左右范围内时利用公式(2)计算得到的声源方向较为准确,声源方位在两侧方向时利用公式(3)或(4)计算得到的结果与实际声源方位更接近。
第三步,判断声源的与终端设备的相对位置。首先,利用公式(2)至公式(4)分别计算θLR、θLC和θRC;其次,根据利用公式(1)所示的频域相关测量法确定L、R通道接收的信号之间的时延差ITDLR,L、C通道接收的信号之间的时延差ITDLC以及R与C通道接收的信号之间的时延差ITDRC,并根据上述结构时延差值估算声源方位角θe
具体地,令
Figure PCTCN2015086933-appb-000006
当m大于0时,表明声源在右半平面,则:
Figure PCTCN2015086933-appb-000007
时,声源的方位角为0°~45°或135°~180°,取θe=θLR
如果|ITDLC|>|ITDRC|,则声源在前方,如果|ITDLC|<|ITDRC|,则声源在后方;
Figure PCTCN2015086933-appb-000008
时,对应声源方位角在45°~135°,取θe=θRC
如果|ITDLC|>|ITDRC|,则声源在前方,如果|ITDLC|<|ITDRC|,则声源在后方;
当m>1时,取θe=θRC
如果|ITDLC|>|ITDRC|,则声源在前方,如果|ITDLC|<|ITDRC|,则声源在后方。
当m小于0时,表明声源在左半平面,则:
Figure PCTCN2015086933-appb-000009
时,对应的声源方位角为180°~225°,取θe=θLR
如果|ITDLC|>|ITDRC|,则声源在前方,如果|ITDLC|<|ITDRC|,则声源在后方;
Figure PCTCN2015086933-appb-000010
时,对应声源方位角在225°~315°,取θe=θLC
如果|ITDLC|>|ITDRC|,则声源在前方,如果|ITDLC|<|ITDRC|,则声源在后方;
m<-1时,取θe=θLC
如果|ITDLC|>|ITDRC|,则声源在前方,如果|ITDLC|<|ITDRC|,则声源在后方。
第四步,当确定声源位于终端设备的前方时,C通道接收的信号为目标信号,对C通道接收的信号进行方位增强处理,得到处理后的目标信号,并基于方位增强处理后的C通道的信号得到该终端设备的左输出信号和右输 出信号;当确定声源位于终端设备的其它位置时,则左通道接收的信号作为左耳输出信号输出,右通道接收的信号作为右耳输出信号输出。当确定声源位于终端设备的前方时,具体地处理过程可以如下:
Figure PCTCN2015086933-appb-000011
Figure PCTCN2015086933-appb-000012
其中,R通道接收的信号为R,L接收的信号为L,C通道接收的信号为C,右耳输出的信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000013
表示两个信号的卷积,以实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对C通道接收的信号进行增益调整时的滤波器增益系数。
在本实施例中N=5,代表将信号划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:GA1=0.5,GA2=0,GA3=0.5,GA4=0,GA5=0.5,Gi=2表示在幅度谱有6dB的增益,Gi=0.5表示在幅度谱有3dB的衰减。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱幅度具有显著差异且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子设定和频带的划分,还应理解对声源相对于终端设备方位的判断可以根据接收通道的相对位置不同有相应的计算方法,本发明不限于上述具体的计算公式。
可选地,作为本发明一个实施例,在第四步中,当确定声源位于终端设备的前方时,C通道接收的信号、L通道接收的信号和R通道接收的信号均为目标信号,对C通道接收的信号进行方位增强处理,同时对R通道和L通道接收的信号进行方位增强处理,并基于方位增强处理的C通道的信号和方位增强处理后的L通道接收的信号得到该终端设备的左输出信号,基于方 位增强处理的C通道的信号和方位增强处理后的R通道接收的信号得到该终端设备的右输出信号;当确定声源位于终端设备的其它位置时,则左通道接收的信号作为左耳输出信号输出,右通道接收的信号作为右耳输出信号输出。当确定声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000014
Figure PCTCN2015086933-appb-000015
其中,R通道接收的信号为R,L接收的信号为L,C通道接收的信号为C,右耳输出的信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000016
表示两个信号的卷积,实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];Gi表示对L、R通道接收的信号进行增益调整的滤波器增益系数,GAi表示对C通道接收的信号进行增益调整时的滤波器增益系数。
在本实施例中N=5,代表将信号划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:G1=1,G2=2,G3=0.5,G4=2,G5=0.5,G6=2,GA1=0.5,GA2=0,GA3=0.5,GA4=0,GA5=0.5,Gi=2表示在幅度谱有6dB的增益,Gi=0.5表示在幅度谱有3dB的衰减。通过Gi对R和L通道接收的信号的不同频带进行不同的增益调整,以及通过GAi对C通道接收的信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱幅度具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和R、L通道接收的相应频带调整后的信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子的设定和频带的划分。
可选地,作为本发明一个实施例,在第四步中,当确定声源位于终端设备的前方时,C通道接收的信号、L通道接收的信号和R通道接收的信号均为目标信号,对C通道接收的信号进行方位增强处理,同时对R通道和L 通道接收的信号进行方位增强处理,并基于L通道接收的原始信号和方位增强处理的C通道的信号以及方位增强处理后的L通道接收的信号得到该终端设备的左输出信号,基于R通道接收的原始信号和方位增强处理的C通道的信号以及方位增强处理后的R通道接收的信号得到该终端设备的右输出信号;当确定声源位于终端设备的其它位置时,则左通道接收的信号作为左耳输出信号输出,右通道接收的信号作为右耳输出信号输出。当确定声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000017
Figure PCTCN2015086933-appb-000018
其中,R通道接收的信号为R,L接收的信号为L,C通道接收的信号为C,右耳输出的信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000019
表示两个信号的卷积,实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];Gi表示对L、R通道接收的信号进行增益调整的滤波器增益系数,GAi表示对C通道接收的信号进行增益调整时的滤波器增益系数。
在本实施例中N=5,代表将信号划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:G1=1,G2=2,G3=0.5,G4=2,G5=0.5,G6=2,GA1=0.5,GA2=0,GA3=0.5,GA4=0,GA5=0.5,Gi=2表示在幅度谱有6dB的增益,Gi=0.5表示在幅度谱有3dB的衰减。通过Gi对R和L通道接收的信号的不同频带进行不同的增益调整,以及通过GAi对C通道接收的信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱幅度具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和R、L通道接收的相应频带调整后的信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子的设定和频带的划分。
通过上述四个步骤,本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,并基于方位增强处理后的目标信号得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像混淆为后方声像的概率。
图3是本发明另一实施例的终端设备的结构示意图。如图3中的左图所示,该终端设备为一个头戴式多媒体***,采用左通道(L通道)、右通道(R通道)和左侧通道(CL通道)这三个位于终端不同位置的通道进行声音信号的采集,应理解本发明不局限于左侧通道,仅是以左侧通道为例进行说明,还可以是位于R通道和L通道前方且位于R通道和L通道之间的其它位置的通道。该终端设备的简化示意图如图2中右图所示,将R通道、L通道和CL通道所在的位置简化为一个半径为a的圆,坐标原点为O,入射方向与y轴的夹角为θ,CL通道与y轴的夹角为α,选用顺时针方向建立坐标系,那么正前方θ=0°,正右方对应θ=90°,正左方对应θ=270°。
第一步,采集L通道、R通道和CL通道接收到的信号。
第二步,测量L通道、R通道和CL通道接收的信号两两之间的时延差,测量两两信号之间的时延差采用频域相关法,利用上述公式(1)可以求得L通道接收的信号和CL通道接收的信号之间的时延差ITDLCL和R通道接收的信号和CL通道接收的信号之间的时延差ITDRCL以及L通道接收的信号和R通道接收的信号之间的时延差ITDLR。应理解,具体测量各个通道的信号之间时延差的方法还可以采用其它方式,本发明不限于此。
在不遮挡头部的情况下,可利用L、R、CL通道接收的信号的时延差确定声源入射方向:
Figure PCTCN2015086933-appb-000020
同理有:
Figure PCTCN2015086933-appb-000021
Figure PCTCN2015086933-appb-000022
第三步,判断声源与终端设备的相对位置。首先,利用公式(5)至公式(7)计算θLR,θLCL和θRCL;其次,根据利用公式(1)所示的频域相关测量法确定 ITDLCL、ITDRCL和ITDLR
具体地,令
Figure PCTCN2015086933-appb-000023
当m大于0时,表明声源在右半平面内,则:
Figure PCTCN2015086933-appb-000024
时,声源的方位角在0°~45°或135°~180°范围内,取θe=θLR
如果|ITDLCL|/r1>|ITDRCL|,则声源在前方;如果|ITDLCL|/r1<|ITDRCL|,则声源在后方;
Figure PCTCN2015086933-appb-000025
时,对应声源方位角在45°~135°,取θe=θRCL
如果|ITDLCL|/r1>|ITDRCL|,则声源在前方;如果|ITDLCL|/r1<|ITDRCL|,则声源在后方;
当m>1时,取θe=θRCL
如果|ITDLCL|/r1>|ITDRCL|,则声源在前方;如果|ITDLCL|/r1<|ITDRCL|,则声源在后方;。
当m大于0时,表明声源在左半平面,则:
Figure PCTCN2015086933-appb-000026
时,对应声源方位角在180°~225°和315°~360°,取θe=θLR
如果|ITDLCL|>|ITDRCL|/r2,则声源在后方;如果|ITDLCL|<|ITDRCL|/r2,则声源在前方;
Figure PCTCN2015086933-appb-000027
时,对应声源方位角在225°~315°,取θe=θLCL
如果|ITDLCL|>|ITDRCL|/r2,则声源在后方;如果|ITDLCL|<|ITDRCL|/r2,则声源在前方;
m<-1时,取θe=θLCL
如果|ITDLCL|>|ITDRCL|/r2,则声源在后方;如果|ITDLCL|<|ITDRCL|/r2,则声源在前方。
第四步,当确定声源位于终端设备的前方时,CL通道接收的信号为目标信号,对CL通道接收的信号进行方位增强处理,并基于方位增强处理的CL通道的信号得到该终端设备的左输出信号和右输出信号;当确定声源位于终端设备的其它位置时,则可以直接将L道接收的信号作为左耳输出信号输出,将R道接收的信号作为右耳输出信号输出。当声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000028
Figure PCTCN2015086933-appb-000029
其中,R通道接收的信号为R,L接收的信号为L,CL通道接收的信号为CL,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000030
表示两个信号的卷积,能够实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对C通道信号进行增益调整的滤波器增益系数;ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000031
引入上述幅度比例控制因子意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度关系进行调整,应理解,其中比例控制因子也可以由其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000032
在本实施例中N=5,代表将各个通道接收的信号以相同的划分方式划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后频谱幅度方具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子数值和频带的划分,还应理解,对声源相对于终端设备方位的判断可以根据接收通道的相对位置不同有相应的计算方法,本发明不限于上述具体的计算公式。
还应理解,本发明实施例中左侧方通道CL仅仅是示例性的,位于左通道和右通道之间的其它位置的侧方通道同样可以根据图3实施例中示出的方 法进行信号的收集和处理,本发明不限于此。
可选地,作为本发明一个实施例,在第四步中,当确定声源位于终端设备的前方时,CL通道接收的信号、L通道接收的信号和R通道接收的信号均为目标信号,对CL通道接收的信号进行方位增强处理,同时对R通道和L通道接收的信号进行方位增强处理,并基于方位增强处理的C通道的信号和方位增强处理的L通道的信号得到该终端设备的左输出信号,同时基于方位增强处理的C通道的信号和方位增强处理的R通道的信号得到该终端设备的右输出信号;当确定声源位于终端设备的其它位置时,则左通道接收的信号作为左耳输出信号输出,右通道接收的信号作为右耳输出信号输出。当声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000033
Figure PCTCN2015086933-appb-000034
其中,R通道接收的信号为R,L接收的信号为L,C通道接收的信号为C,右耳输出的信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000035
表示两个信号的卷积,能够实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];Gi表示对L、R通道信号进行增益调整的滤波器增益系数,GAi表示对C通道信号进行增益调整时的滤波器增益系数,ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000036
引入上述幅度比例控制因子意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度关系进行调整,应理解,其中比例控制因子也可以由其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000037
在本实施例中N=5,F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz,G1=1,G2=2,G3=0.5,G4=2,G5=0.5,G6=2,GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。Gi=2表示在幅度谱有6dB的增益,Gi=0.5表示在幅度谱有3dB的衰减。通过Gi对R和L通道接收的信号的不同频带进行不同的增益调整,以及通过GAi对C通道接收的信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱幅度具有显著差异, 且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和R、L通道接收的相应频带调整后的信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子和频带的划分。
可选地,作为本发明一个实施例,在第四步中,当确定声源位于终端设备的前方时,CL通道接收的信号、L通道接收的信号和R通道接收的信号均为目标信号,对CL通道接收的信号进行方位增强处理,同时对R通道和L通道接收的信号进行方位增强处理,并基于方位增强处理的C通道的信号和方位增强处理的L通道的信号以及L通道接收的原始信号得到该终端设备的左输出信号,同时基于方位增强处理的C通道的信号和方位增强处理的R通道的信号以及R通道接收的原始信号得到该终端设备的右输出信号;当确定声源位于终端设备的其它位置时,则左通道接收的信号作为左耳输出信号输出,右通道接收的信号作为右耳输出信号输出。当声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000038
Figure PCTCN2015086933-appb-000039
其中,R通道接收的信号为R,L接收的信号为L,C通道接收的信号为C,右耳输出的信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000040
表示两个信号的卷积,能够实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];Gi表示对L、R通道信号进行增益调整的滤波器增益系数,GAi表示对C通道信号进行增益调整时的滤波器增益系数,ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000041
引入上述幅度比例控制因子意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度关系进行调整,应理解,其中比例控制因子也可以由其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000042
在本实施例中N=5,F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz,G1=1,G2=2,G3=0.5,G4=2,G5=0.5,G6=2,GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。Gi=2表示在幅度谱有6dB的增益,Gi=0.5表示在幅度谱有3dB的衰减。通过Gi对R和L通道接收的信号的不同频带进行不同的增益调整,以及通过GAi对C通道接收的信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱幅度具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和R、L通道接收的相应频带调整后的信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子和频带的划分。
通过上述四个步骤,本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,并基于方位增强处理后的目标信号得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像混淆为后方声像的概率。
图4是本发明另一实施例的终端设备的结构示意图。如图4所示,该终端设备为一个头戴式多媒体***,采用左通道(L通道)、右通道(R通道)、左侧通道(CL通道)和右侧通道(CR)这四个位于终端不同位置的通道进行声音信号的采集,其中,CL通道和CR通道属于第一类型通道,本发明实施例可以利用该第一类型通道中的一个或两个通道接收的信号作为目标信号进行方位增强处理,根据方位增强处理后的结果得到左耳输出信号和右耳输出信号。应理解,本发明不局限于增加CL通道和CR通道这种情况,可以在其它位置增加其它一个或多个通道,本发明实施例仅是以这四个通道为例进行说明。
该终端设备的简化示意图如图4中右图所示,将R通道、L通道和CL 通道所在的位置简化为一个半径为a的圆,坐标原点为O,入射方向与y轴的夹角为θ,CL通道与y轴的夹角为α,选用顺时针方向建立坐标系,那么正前方θ=0°,正右方对应θ=90°,正左方对应θ=270°。
第一步,采集L通道、R通道和CL通道接收到的信号。
第二步,测量L通道、R通道和CL通道接收的信号两两之间的时延差,测量两两信号之间的时延差采用频域相关法,利用上述公式(1)可以求得L通道接收的信号和CL通道接收的信号之间的时延差ITDLCL和R通道接收的信号和CL通道接收的信号之间的时延差ITDRCL以及L通道接收的信号和R通道接收的信号之间的时延差ITDLR。应理解,还可以根据R通道、L通道和RL通道之间的位置关系得到这三个通到接收的信号的两两信号时延差,确定声源相对于终端设备的位置,具体测量各个通道的信号之间时延差的方法还可以采用其它方式,本发明不限于此。
在不遮挡头部的情况下,可利用L、R、CL通道接收的信号的时延差确定声源入射方向:
Figure PCTCN2015086933-appb-000043
同理有:
Figure PCTCN2015086933-appb-000044
Figure PCTCN2015086933-appb-000045
第三步,确定声源与终端设备的相对位置。首先,利用公式(8)至公式(10)计算θLR,θLCL和θRCL;其次,根据利用公式(1)所示的频域相关测量法确定ITDLCL、ITDRCL和ITDLR
具体地,令
Figure PCTCN2015086933-appb-000046
当m大于0时,表明声源在右半平面内,则:
Figure PCTCN2015086933-appb-000047
时,声源的方位角在0°~45°或135°~180°范围内,取θe=θLR
如果|ITDLCL|/r1>|ITDRCL|,则声源在前方;如果|ITDLCL|/r1<|ITDRCL|,则声源在后方;
Figure PCTCN2015086933-appb-000048
时,对应声源方位角在45°~135°,取θe=θRCL
如果|ITDLCL|/r1>|ITDRCL|,则声源在前方;如果|ITDLCL|/r1<|ITDRCL|,则声源 在后方;
当m>1时,取θe=θRCL
如果|ITDLCL|/r1>|ITDRCL|,则声源在前方;如果|ITDLCL|/r1<|ITDRCL|,则声源在后方;。
当m大于0时,表明声源在左半平面,则:
Figure PCTCN2015086933-appb-000049
时,对应声源方位角在180°~225°和315°~360°,取θe=θLR
如果|ITDLCL|>|ITDRCL|/r2,则声源在后方;如果|ITDLCL|<|ITDRCL|/r2,则声源在前方;
Figure PCTCN2015086933-appb-000050
时,对应声源方位角在225°~315°,取θe=θLCL
如果|ITDLCL|>|ITDRCL|/r2,则声源在后方;如果|ITDLCL|<|ITDRCL|/r2,则声源在前方;
m<-1时,取θe=θLCL
如果|ITDLCL|>|ITDRCL|/r2,则声源在后方;如果|ITDLCL|<|ITDRCL|/r2,则声源在前方。
第四步,当确定声源位于终端设备的前方时,CL通道接收的信号为目标信号,对CL通道接收的信号进行方位增强处理,并基于方位增强处理的CL通道的信号得到该终端设备的左输出信号和右输出信号;也可以将L通道接收的信号、R通道接收的信号和CL通道接收的信号为目标信号,对上述信号进行方位增强处理,并基于方位增强处理的L通道接收的信号、R通道接收的信号和CL通道的信号得到该终端设备的左输出信号和右输出信号;当确定声源位于终端设备的其它位置时,则可以直接将L道接收的信号作为左耳输出信号输出,将R道接收的信号作为右耳输出信号输出。当声源位于终端设备的前方时,具体地处理过程可以按如下方式:
Figure PCTCN2015086933-appb-000051
Figure PCTCN2015086933-appb-000052
Figure PCTCN2015086933-appb-000053
其中,R通道接收的信号为R,L接收的信号为L,CL通道接收的信号为CL,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000054
表示两个信号的卷积,能够实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对C通道信号进行增益调整的滤波器增益系数;ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000055
引入上述幅度比例控制因子意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度关系进行调整,应理解,其中比例控制因子也可以由其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000056
在本实施例中N=5,代表将各个通道接收的信号以相同的划分方式划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后频谱幅度方具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子数值和频带的划分,还应理解,对声源相对于终端设备方位的判断可以根据接收通道的相对位置不同有相应的计算方法,本发明不限于上述具体的计算公式。
可选地,作为一个实施例,在第四步中,当确定声源位于终端设备的前方时,CL通道接收的信号为目标信号,对CL通道接收的信号进行方位增 强处理,并基于方位增强处理后的CL通道的信号得到该终端设备的左输出信号和右输出信号;也可以将L通道接收的信号、R通道接收的信号和CL通道接收的信号为目标信号,对上述信号进行方位增强处理,并基于方位增强处理的L通道接收的信号、R通道接收的信号和CL通道的信号得到该终端设备的左输出信号和右输出信号;当确定声源位于终端设备的其它位置时,则可以直接将L道接收的信号作为左耳输出信号输出,将R道接收的信号作为右耳输出信号输出。当声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000057
Figure PCTCN2015086933-appb-000058
Figure PCTCN2015086933-appb-000059
其中,R通道接收的信号为R,L接收的信号为L,CR通道接收的信号为CR,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000060
表示两个信号的卷积,能够实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对C通道信号进行增益调整的滤波器增益系数;ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000061
引入上述幅度比例控制因子意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度关系进行调整,应理解,其中比例控制因子也可以由其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000062
在本实施例中N=5,代表将各个通道接收的信号以相同的划分方式划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz, F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后频谱幅度方具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子数值和频带的划分,还应理解,对声源相对于终端设备方位的判断可以根据接收通道的相对位置不同有相应的计算方法,本发明不限于上述具体的计算公式。
可选地,作为一个实施例,在第四步中,当确定声源位于终端设备的前方时,CL和CR通道接收的信号均为目标信号,对CR通道接收的信号进行方位增强处理,对CL通道接收的信号也进行方位增强处理,并基于方位增强处理后的CR通道的信号和方位增强处理后的CL通道的信号得到该终端设备的左输出信号和右输出信号;也可以将L通道接收的信号、R通道接收的信号、CR通道接收的信号和CL通道接收的信号为目标信号,对上述信号进行方位增强处理,并基于方位增强处理的L通道接收的信号、R通道接收的信号、CR通道接收的信号和CL通道的信号得到该终端设备的左输出信号和右输出信号;当声源位于终端设备的其它位置时,则可以直接将L道接收的信号作为左耳输出信号输出,将R道接收的信号作为右耳输出信号输出。当声源位于终端设备的前方时,具体地处理过程如下:
Figure PCTCN2015086933-appb-000063
Figure PCTCN2015086933-appb-000064
Figure PCTCN2015086933-appb-000065
其中,R通道接收的信号为R,L接收的信号为L,CR通道接收的信号为CR,CL通道接收的信号为CL,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000066
表示两个信号的卷积,能够实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对C通道信号进行增益调整的滤波器增益系数;ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000067
引入上述幅度比例控制因子意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度关系进行调整,应理解,其中比例控制因子也可以由其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000068
在本实施例中N=5,代表将各个通道接收的信号以相同的划分方式划分为五个特征频带,具体的划分节点如下:F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz;其中,各个特在频带的增益因子如下:GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后频谱幅度方具有显著差异,且前方响应远高于后方的特征频带进行幅度增益调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子数值和频带的划分,还应理解,对声源相对于终端设备方位的判断可以根据接收通道的相对位置不同有相应的计算方法,本发明不限于上述具体的计算公式。
还应理解,上述目标信号的组合方式只是几种较为优选的方案,本发明实施例并没有穷尽各种可能的组合方式,图5是本发明另一实施例的终端设备的结构示意图。如图5所示,该终端设备为一个头戴式多媒体***,采用左通道(L通道)、右通道(R通道)、左侧通道(CL通道)、右侧通道1(CR1通道)和右侧通道2(CR2通道)这五个位于终端不同位置的通道进行声音 信号的采集,应理解本发明不局限于增加C通道、CL通道、CR1通道和CR2通道这种情况,可以在其它位置增加其它通道,本发明实施例仅是以这五个通道为例进行说明。
第一步,采集通道L通道、R通道、CL通道、CR1通道和CR2通道接收到的信号。
第二步,测量L通道、R通道和CL通道接收的信号的两两之间的时延差;或测量L通道、R通道和CR1通道接收的信号的两两之间的时延差;或测量L通道、R通道和CR2通道接收的信号的两两之间的时延差;采用频域相关法得到两两信号之间的时延差,具体测量方法与图2至图4实施例示出的方法类似,此处不再赘述。
第三步,判断声源与终端设备的相对位置,具体判断方法与图2至图4实施例示出的方法类似,此处不再赘述。
第四步,当确定声源位于终端设备的前方时,CR1通道、CR2通道和CL通道属于第一类型通道,选择CR1通道、CR2通道和CL通道接收的信号中的至少一个作为目标信号进行方位增强处理,该方位增强处理后的信号为第一类型处理信号,基于该第一类型处理信号和L通道、R通道接收的信号可以得到左耳输出信号和右耳输出信号,也可以基于该第一类型处理信号和进行方位增强处理后的L通道、R通道接收的信号得到左耳输出信号和右耳输出信号。应理解,CR1通道、CR2通道和CL仅仅是示例性的通道,它们属于同一类型的通道,该类型的通道位于R通道和L通道的前方且位于R通道和L通道之间,具体应用中可以选择该类型通道中的一个或多个通道接收的信号作为目标信号进行方位增强处理,根据方位增强处理后的结果得到左耳输出信号和右耳输出信号,本发明不限于此。
图6是本发明另一实施例的终端设备的结构示意图。如图6所示,该终端设备为一个头戴式多媒体***,采用左通道(L通道)、右通道(R通道)、中置通道(C通道)、左侧通道(CL通道)和右侧通道(CR)这五个位于终端不同位置的通道进行声音信号的采集,应理解本发明不局限于增加C通道、CL通道和CR通道这种情况,可以在其它位置增加其它通道,本发明实施例仅是以这五个通道为例进行说明。
第一步,采集L通道、R通道、C通道、CL通道和CR通道分别接收到的各个信号。
第二步,测量L通道、R通道、C通道、CL通道和CR通道分别接收到的各个信号中三个信号两两之间的时延差,并利用公式(1)求得三个信号两两之间的时延差,这三个用于判断时延差的信号的接收通道的位置之间能够构成三角形关系。应理解,具体策略各个通道的信号两两之间时延差的方法还可以采用其它方式,本发明不限与此。
第三步,判断声源与终端设备的相对位置。该步骤与上述实施例中确定声源与终端设备的相对方位的方法类似,在这里不再赘述。
第四步,当确定声源位于终端设备的前方时,对CL通道、CR通道或C通道接收的信号进行方位增强处理,并基于方位增强处理的CL通道、CR通道或C通道接收的信号得到该终端设备的左输出信号和右输出信号;当确定声源位于终端设备的其它位置时,则可以直接将L道接收的信号作为左耳输出信号输出,将R道接收的信号作为右耳输出信号输出。当设备位于终端设备的前方时,具体地处理过程如下:
当0°<θe≤30°或330°<θe≤360°,其中声源方位角为θe,即声源近似位于终端设备的正前方位时,应理解,当0°<θe≤30°或330°<θe≤360°意味着当声源位于前方的某一区间时,可以将中置通道C通道接收的信号作为目标信号进行处理,具体地,可以按照下式得到左右耳的输出信号:
Figure PCTCN2015086933-appb-000069
Figure PCTCN2015086933-appb-000070
其中,R通道接收的信号为R,L接收的信号为L,C通道接收的信号为C,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000071
表示两个信号的卷积,实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对C通道信号进行增益调整的滤波器增益系数。通过对C通道接收的信号进行方位增强处理,基于方位增强处理后的信号得到左右耳输出信号。应理解,也可以对R通道接收的信号为R、L接收的信号为L和C通道接收的信号C同时进行方位增强处理,基于方位增强处理后的上述信号得到左右耳输出信号。
在本实施例中N=5,F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz,GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个 前后方频谱强度具有显著差异,且前方响应远高于后方的特征频带进行幅度调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子和频带的划分。
当30°<θe≤90°,其中声源方位角θe,应理解,当30°<θe≤90°意味着当声源位于前方的右侧方某一区间时,可以将中置通道CR通道接收的信号作为目标信号进行处理,具体地,可以按照下式得到左右耳输出信号:
Figure PCTCN2015086933-appb-000072
Figure PCTCN2015086933-appb-000073
其中,R通道接收的信号为R,L接收的信号为L,CR通道接收的信号为CR,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000074
表示两个信号的卷积,实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对CR通道信号进行增益调整的滤波器增益系数;ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000075
引入幅度比例控制因子即意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度比例进行调整,应理解,其中比例控制因子也可以采用其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000076
本发明不做限定。
通过对CR通道接收的信号进行方位增强处理,基于方位增强处理后的信号得到左右耳输出信号。应理解,也可以对R通道接收的信号R、L接收的信号L和CR通道接收的信号CR同时进行方位增强处理,基于方位增强处理后的上述信号得到左右耳输出信号。
在本实施例中N=5,F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz,F6=20kHz,GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中 置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱幅度具有显著差异,且前方响应远高于后方的特征频带进行幅度调整后,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,分别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子和频带的划分。
当270°≤θe<330°,其中声源方位角θe,应理解,当270°≤θe<330°意味着当声源位于前方的左侧方某一区间时,可以将中置通道CR通道接收的信号作为目标信号进行处理,具体地,可以按照下式得到左右耳输出信号:
Figure PCTCN2015086933-appb-000077
Figure PCTCN2015086933-appb-000078
其中,R通道接收的信号为R,L接收的信号为L,CL通道接收的信号为CL,右耳输出信号为R',左耳输出信号为L';
Figure PCTCN2015086933-appb-000079
表示两个信号的卷积,实现滤波器功能;Hlow表示一个截止频率为F1的低通滤波器;Hbandi表示一个带通滤波器,其带通频带为[Fi Fi+1];GAi表示对CR通道信号进行增益调整的滤波器增益系数;ai、bi表示在对侧方通道信号进行增益调整时幅度比例控制因子;
其中,
Figure PCTCN2015086933-appb-000080
引入幅度比例控制因子即意味着对侧方通道信号的不同频带进行幅度调整时按照左右声道信号相应频带内信号的幅度比例进行调整,应理解,其中比例控制因子也可以采用其它形式得出,
例如:ai+bi=1,
Figure PCTCN2015086933-appb-000081
通过对CR通道接收的信号进行方位增强处理,基于方位增强处理后的信号得到左右耳输出信号。应理解,也可以对R通道接收的信号R、L接收的信号L和CR通道接收的信号CR同时进行方位增强处理,基于方位增强处理后的上述信号得到左右耳输出信号。
在本实施例中N=5,F1=3kHz,F2=8kHz,F3=10kHz,F4=12kHz,F5=17kHz, F6=20kHz,GA1=1.2,GA2=-0.5,GA3=1.3,GA4=-0.5,GA5=1.2。通过GAi对中置通道信号的不同频带进行不同的增益调整,对Hband1,Hband3,Hband5这三个前后方频谱强度具有显著差异,且前方响应远高于后方的特征频带进行幅度调整后分,以及对Hband2和Hband4这两个前后方频谱幅度具有显著差异并且后方响应远高于前方响应的特征频带进行幅度衰减(抑制)调整后,别和左右通道相应频带信号相加,从而加强左右通道输出信号的前后方幅度谱差异。
应理解,对前后方位特征频带的划分以及各频带的增益因子的选择以增大前后方频谱差异为基础,同时又不得过分夸大这个差异以免引起音色上的明显失真,本发明不限于上述具体增益因子和频带的划分。
还应理解,本发明实施例对前方划分为三个区间仅仅是示例性的,还可以根据终端设备的通道数目,实际声源的位置对前方区间进行其它方式的划分;同时也可以选择不同的通道接收的信号作为目标信号进行方位增强处理,只要是能够达到增强输出信号的声像方位感,降低将前方声像信号误判为后方声像信号的概率的组合形式都可以实行,本发明不限于此。
图7示出了本发明另一实施例的一种处理声音信号的方法的示意性流程图。
可选地,作为本发明一个实施例,以具有R通道、L通道和C通道的多媒体头戴设备为例,整个信号处理的过程如下:
步骤701,采集并读取左右通道及中置通道接收的信号;
步骤702,判断声源是否位于前方,该过程包括确定R通道、L通道和C通道的接收的信号两两之间的时延差,根据该三个信号之间两两时延差,确定声源相对与终端设备的方位。确定方位的方法如图2至图6所示出的方法,此处不再赘述。
当声源不在该终端设备的前方时,不对采集的声音信号进行处理,左耳输出的信号的为L通道接收的信号,右耳输出的信号为R通道接收的信号。
当声源位于该终端设备的前方时,对接收的声音信号的目标信号进行方位增强处理,在本发明实施例中,目标信号为C通道接收的信号。具体过程如步骤703和步骤704示出。在步骤703中,将R、L、C通道接收的声音信号划分为三个前方特征频带1、2和3,对这三个前方特征频带进行带通滤波,而对其它频带不进行任何处理。
步骤704,对各个特征频带中的C通道接收的信号进行信号增强处理, 具体地,特征频带1的增益因子为GA1,对特征频带2的增益因子GA2,对特征频带3的增益因子为GA3;以及,对各个频带中的R和L通道接收的信号进行信号增强处理,其中,特征频带1的增益因子为G1,特征频带2的增益因子为G2,特征频带3的增益因子为G3。
基于方位增强处理的C通道接收的信号和方位增强处理的R通道接收的信号得到右耳输出信号;基于方位增强处理的C通道接收的信号和方位增强处理的L通道接收的信号得到左耳输出信号,完成整个信号处理的过程。
应理解,本发明实施例还以通过对声源信号中的目标信号的后方特征频带进行信号抑制处理,以增强信号的前方特征频带和后方特征频带的区分度,以达到降低前后声像混淆,增强声像方向感的效果。
图1至图7是从终端设备实现方法的角度对本发明具体实施过程进行描述,图8至图10从装置的角度对该终端设备进行描述。
图8是本发明实施例的一个终端设备的示意性框图。图8的终端设备包括接收模块810、确定模块820、判断模块830以及处理模块840。
接收模块810,接收模块包括位于终端设备不同位置的至少三个接收通道,至少三个接收通道用于接收同一声源发出的至少三个信号,其中,该至少三个信号与上述通道一一对应。
确定模块820,用于根据接收模块810接收的至少三个信号中的三个信号,确定三个信号两两之间信号时延差,信号时延差能够判断声源相对于终端设备的位置。
判断模块830,用于根据确定模块820得到的信号时延差,判断声源相对于终端设备的位置。
处理模块840,用于当判断模块830判定声源位于终端设备的前方时,对至少三个信号中的目标信号进行方位增强处理,根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号,其中,方位增强处理用于增大目标信号的前方特征频带和后方特征频带的区分度。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像误判为后方声像的概率。
图9是本发明实施例的一个终端设备的示意性框图。
可选地,作为一个实施例,接收模块810包括第一通道、第二通道和第三通道,该至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定声源位于终端设备的前方时,第一处理单元910用于:对第一信号进行方位增强处理,得到第一处理信号,其中第一信号为目标信号;其中,所述第二处理单元920用于:根据第二信号和第一处理单元910得到的第一处理信号得到第一输出信号;根据第三信号和第一处理单元910得到的所述第一处理信号得到所述第二输出信号。
可选地,作为一个实施例,接收模块810包括第一通道、第二通道和第三通道,至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,处理模块840包括第一处理单元910和第二处理单元920,当所述判断模块830判定所述声源位于所述终端设备的前方时,第一处理单元910用于:对第一信号进行方位增强处理得到第一处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号,其中,第一信号、第二信号和第三信号均为目标信号;其中,第二处理单元920用于:根据第一处理单元910得到的第一处理信号和第二处理信号得到第一输出信号;根据第一处理单元920得到的第一处理信号和第三处理信号得到第二输出信号。
可选地,作为一个实施例,接收模块810包括第一通道、第二通道和第三通道,至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定所述声源位于所述终端设备的前方时,第一处理单元910用于:对第一信号进行方位增强处理得到第一处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号,其中第一信号、第二信号和第三信号均为目标信号;其中,第二处理单元920用于:根据第二信号和第一处理单元910得到的第一处理信号、第一处理单元910得到的第二处理信号 得到第一输出信号;根据第三信号和第一处理单元910得到的第一处理信号、第一处理单元910得到的第三处理信号得到第二输出信号。
可选地,作为一个实施例,处理模块840还包括第三处理单元930,第三处理单元930用于:根据第二信号每个特征频带内的信号幅度与第三信号每个特征频带内的信号幅度,对第一处理单元910得到的第一处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号,其中,第一处理信号、第二信号与第三信号的每个特征频带划分方式相同。
可选地,作为一个实施例,接收模块810包括第一类型通道、第二通道和第三通道,至少三个信号包括第一通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道分别用于接收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道中任意一个通道位于第一通道和第二通道之间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定声源位于终端设备的前方时,第一处理单元910用于:对第一类型信号中的至少一个信号进行方位增强处理得到第一类型处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号,其中第一类型信号中的至少一个信号为目标信号;其中,第二处理单元920用于:根据第二信号和第一处理单元910得到的第一类型处理信号得到第一输出信号;根据第三信号和第一处理单元910得到的第一类型处理信号得到第二输出信号。
可选地,作为一个实施例,接收模块810包括第一类型通道、第二通道和第三通道,至少三个信号包括第一通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道分别用于接收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道位于第一通道和第二通道之间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定声源位于终端设备的前方时,第一处理单元910用于:对第一类型信号中的至少一个信号进行方位增强处理得到第一类型处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号,其中第一类型信号中的至少一个信号、第二信号和第三信号为所述目标信号;其中,第二处理单元920用于:根据第一处 理单元910得到的第一类型处理信号和第一处理单元910得到的第二处理信号得到第一输出信号;根据第一处理单元910得到的第一类型处理信号和第一处理单元910得到的第三处理信号得到第二输出信号。
可选地,作为一个实施例,接收模块810包括第一类型通道、第二通道和第三通道,至少三个信号包括第一通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道分别用于接收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道位于第一通道和第二通道之间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定声源位于终端设备的前方时,第一处理单元910用于:对第一类型信号中的至少一个信号进行方位增强处理得到第一类型处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号,其中第一类型信号中的至少一个信号、第二信号和所述第三信号为所述目标信号;其中,第二处理单元920用于:根据第二信号和第一处理单元910得到的第一类型处理信号、第一处理单元910得到的第二处理信号得到第一输出信号;根据第三信号和第一处理单元910得到的第一类型处理信号、第一处理单元910得到的第三处理信号得到第二输出信号。
可选地,作为一个实施例,接收模块810包括第一通道、第二通道、第三通道、第四通道和第五通道,至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,第一通道、第二通道或第三通道比第四通道和第五通道更靠近前方,第一通道、第二通道和第三通道位于第四通道和第五通道之间,终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定声源位于第一区间且第一信号为所述目标信号时,第一处理单元910用于:对第一信号进行方位增强处理,得到第一处理信号;当判断模块830判定声源位于终端设备的第二区间且第二信号为所述目标信号时,第一处理单元910用于对第二信号进行方位增强处理,得到第二处理信号;当判断模块830判定声源位于终端设备的第三区间且第三信号为目标信号时,第一处理单元910用于对第三信号进行方位增强处理,得到第三处理信 号;其中,当判断模块830判定声源位于第一区间时,第二处理单元920用于:根据第四信号和第一处理单元910得到的第一处理信号得到第一输出信号,根据第五信号和第一处理单元910得到的第一处理信号得到第二输出信号;当判断模块830判定声源位于第二区间时,第二处理单元920用于:根据第四信号和第一处理单元910得到的第二处理信号得到第一输出信号,根据第五信号和第一处理单元910得到的第二处理信号得到第二输出信号;当判断模块830判定声源位于第三区间时,第二处理单元920具体用于:根据第四信号和第一处理单元910得到的第三处理信号得到第一输出信号,根据第五信号和第一处理单元910得到的第三处理信号得到第二输出信号。
可选地,作为一个实施例,接收模块810包括第一通道、第二通道、第三通道、第四通道和第五通道,至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,第一通道、第二通道或第三通道比第四通道和第五通道更靠近前方,第一通道、第二通道和第三通道位于第四通道和第五通道之间,终端设备的前方划分为相邻的第一区间、第二区间和第三区间;其中,处理模块840包括第一处理单元910和第二处理单元920,当判断模块830判定声源位于第一区间且第一信号为目标信号时,第一处理单元910用于:对第一信号进行方位增强处理得到第一处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;当判断模块830判定声源位于终端设备的第二区间且第二信号为目标信号时,第一处理单元910用于:对第二信号进行方位增强处理得到第二处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;当判断模块830判定声源位于终端设备的第三区间且第三信号为目标信号时,第一处理单元910用于:对第三信号进行方位增强处理得到第三处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;其中,当判断模块830判定声源位于所述第一区间时,第二处理单元920用于:根据第一处理单元910得到的第四处理信号和第一处理单元910得到的第一处理信号得到第一输出信号;根据第一处理单元910得到的第五信号和第一处理单元910得到的第一处理信号得到第二输出信号;当判断模块830判定声源位于第二区间时,第二处理单元920用于:根据第一处理单元910得到的第四处理信号和第一处理单元910得到的第二 处理信号得到第一输出信号;根据第一处理单元910得到的第五处理信号和第一处理单元910得到的第二处理信号得到第二输出信号;当判断模块830判定声源位于第三区间时,第二处理单元920用于:根据第一处理单元910得到的第四处理信号和第三处理信号得到第一输出信号;根据第一处理单元910得到的第五处理信号和第一处理单元910得到的第三处理信号得到第二输出信号。
可选地,作为本发明一个实施例,处理模块840还包括第三处理单元,第三处理单元930具体用于:当判断模块830判定声源位于第一区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第一处理单元910得到的第一处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和所述第二输出信号;当判断模块830判定声源位于所述第二区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第一处理单元910得到的第二处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;当判断模块830判定声源位于第三区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第一处理单元910得到的第三处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;其中,第一处理信号、第二处理信号、第三处理信号、第四信号和第五信号的每个特征频带划分方式相同。
本发明实施例的终端设备800可以实现图1至图7的实施例中的有关终端设备的各个操作或功能,为避免重复,不再详细描述。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,并根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前后声像混淆的概率。
图10示出了本发明实施例的一个终端设备的示意性框图。如图7所示,该终端设备1000包括接收器1100、总线***1200、处理器1300和发送器1400。其中接收器1100、发送器1400通过总线***1200和处理器1300相连,该接收器1100包括位于终端设备不同位置的至少三个通道,该至少三个通道用于接收同一声源发出的至少三个信号,其中,该至少三个信号与上述通道一一对应;该处理器1300用于根据至少三个信号中的三个信号,确 定三个信号两两之间信号时延差,该信号时延差能够判断所述声源相对于所述终端设备的位置;根据所述信号时延差,判断声源相对于终端设备的位置;声源位于终端设备的前方时,对至少三个信号中的目标信号进行方位增强处理,根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号,其中,所述方位增强处理用于增大所述目标信号的前方特征频带与后方特征频带的区分度。发送器1400用于发送第一输出信号和第二输出信号。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,并根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前后声像混淆的概率。
应理解,在本发明实施例中,该处理器1300可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1300还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该总线***1200除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***1200。
在实现过程中,上述方法的各步骤可以通过处理器1300中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。为避免重复,这里不再详细描述。
可选地,作为一个实施例,处理器1300还用于:对目标信号的前方特征频带进行强化处理;和/或对目标信号的后方特征频带进行抑制处理。
可选地,作为一个实施例,该终端设备1000采集的声音信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;其中,声源位于终端设备的前方时,处理器1300具体用于:对第一信号进行方位增强处理,得到第一处理信号;处理器1300还用于:根据方位增强处理的结果,得到终端设备的第一输出信号和第二输出信号包括:根据第一处理信号和第二信号得到第一输出信号;根据第一处理信号和 第三信号得到第二输出信号。
可选地,作为一个实施例,该接收器1100接收的声音信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;当判断声源位于前方时,处理器1300具体用于:对第一信号进行方位增强处理得到第一处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号;处理器1300还用于:根据第一处理信号和第二处理信号得到第一输出信号;根据第一处理信号和第三处理信号得到第二输出信号。
可选地,作为一个实施例,该接收器1100接收的声音信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,第一通道比第二通道和第三通道更靠近前方,第一通道位于第二通道和第三通道之间;当判断声源位于前方时,处理器1300具体用于:对第一信号进行方位增强处理得到第一处理信号,对第二信号进行方位增强处理得到第二处理信号,对第三信号进行方位增强处理得到第三处理信号;处理器1300还用于:根据第一处理信号、第二处理信号和第二信号得到第一输出信号;根据第一处理信号、第三处理信号和第三信号得到第二输出信号。
可选地,作为一个实施例,处理器1300还用于:根据第二信号每个特征频带内的信号幅度与第三信号每个特征频带内的信号幅度,对第一处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号,其中,第一处理信号、第二信号与第三信号的每个特征频带划分方式相同。
可选地,作为本发明的一个实施例,接收器1100接收的信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道用于分别接收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道位于第二通道和第三通道之间;当判断声源位于前方时,处理器1300用于:对第一类型中的至少一个信号进行方位增强处理,得到第一类型处理信号;处理器1300还用于:根据第一类型处理信号和第二信号得到第一输出信号;根据第一类型处理信号和第三信号得到第二输出信号。
可选地,作为本发明一个实施例,接收器1100接收的信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,至少两个通道用于分别接收至少两个信号第一类型通道中任意一个通道比第二通道和第三通道更靠近前方,第一类型通道位于第二通道和第三通道之间;当判断声源位于前方时,处理器1300用于:对第一类型中的至少一个信号进行方位增强处理得到第一类型处理信号;对第二信号进行方位增强处理得到第二处理信号;对第三信号进行方位增强处理得到第三处理信号;处理器1300还用于:根据第一类型处理信号和第二处理信号得到第一输出信号;根据第一类型处理信号和第三处理信号得到第二输出信号。
可选地,作为本发明一个实施例,接收器1100接收的信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,第一类型通道包括至少两个通道,该至少两个通道用于分别接收至少两个信号,第一类型通道中任意一个通道比第二通道和第三通道更靠近前方;当判断声源位于前方时,处理器1300用于:对第一类型中的至少一个信号进行方位增强处理得到第一类型处理信号;对第二信号进行方位增强处理得到第二处理信号;对第三信号进行方位增强处理得到第三处理信号;处理器930还用于:根据第一类型处理信号、第二处理信号和第二信号得到第一输出信号;根据第一类型处理信号、第三处理信号和第三信号得到第二输出信号。
可选地,作为本发明的一个实施例,接收器1100接收的信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,第一通道、第二通道或第三通道比第四通道和第五通道更靠近前方,第一通道、第二通道和第三通道位于第四通道和第五通道之间,终端设备的前方划分为相邻的第一区间、第二区间和第三区间;当判断声源位于前方时,处理器1300用于:当声源位于第一区间且第一信号为所目标信号时,对第一信号进行方位增强处理,得到第一处理信号;当声源位于终端设备的第二区间且第二信号为目标信号时,对第二信号进行方位增强处理,得到第二处理信号;当声源位于终端设备的第三区间且第三信号为目标信号时,对第三信号进行方位增强处理,得到第三处理信号;当判断声源位于前方时,处理器1300还用于:当 声源位于第一区间时,根据第一处理信号和第四信号得到第一输出信号,根据第一处理信号和第五信号得到第二输出信号;当声源位于第二区间时,根据第二处理信号和第四信号得到第一输出信号,根据第二处理信号和第五信号得到第二输出信号;当声源位于所述第三区间时,根据第三处理信号和所述第四信号得到所述第一输出信号,根据所述第三处理信号和所述第五信号得到所述第二输出信号。
可选地,作为本发明一个实施例,接收器1100接收的至少三个子信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四道接收的第四信号和第五信道接收的第五信号,第一通道、第二通道或第三通道比第四通道和第五通道更靠近前方,第一通道、第二通道和第三通道位于第四通道和第五通道之间,终端设备的前方划分为相邻的第一区间、第二区间和第三区间;当判断声源位于前方时,处理器1300用于:当声源位于第一区间且第一信号、第四信号、第五信号均为目标信号时,对第一信号进行方位增强处理得到第一处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;当声源位于第二区间且第二信号、第四信号、第五信号均为目标信号时,对第二信号进行方位增强处理得到第二处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;当声源位于所述第三区间且第三信号、第四信号、第五信号均为所述目标信号时,对第三信号进行方位增强处理得到第三处理信号,对第四信号处理得到第四处理信号,对第五信号进行方位增强处理得到第五处理信号;处理器1300还用于:当声源位于第一区间时,根据第四处理信号和第一处理信号得到第一输出信号,根据第五处理信号和第一处理信号得到第二输出信号;当声源位于第二区间时,根据第四处理信号和第二处理信号得到第一输出信号,根据第五处理信号和第二处理信号得到第二输出信号;当声源位于第三区间时,根据第四处理信号和第三处理信号得到第一输出信号;根据第五处理信号和第三处理信号得到第二输出信号。
可选地,作为本发明一个实施例,上述处理器1300还用于:当声源位于所述第一区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第一处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;当声源位于第二区间时,根据第 四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第二处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;当声源位于第三区间时,根据第四信号每个特征频带内的信号幅度与第五信号每个特征频带内的信号幅度,对第三处理信号对应的每个特征频带进行幅度调整,以得到第一输出信号和第二输出信号;其中,第一处理信号、第二处理信号、第三处理信号、第四信号和第五信号的每个特征频带划分方式相同。
本发明实施例通过确定声源相对于终端设备的位置,对声源发出的目标信号进行方位增强处理,根据方位增强处理后的结果,得到终端设备的输出信号,使得该输出信号的前方特征频带与后方特征频带的区分度增大,由此能够增强输出信号的声像方位感,降低将前方声像误判为后方声像的概率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或步骤可以用硬件、处理器执行的软件程序,或者二者的结合来实施。软件程序可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内。

Claims (22)

  1. 一种处理声音信号的方法,其特征在于,包括:
    由位于终端设备不同位置的通道接收同一声源发出的至少三个信号,其中,所述至少三个信号和所述通道一一对应;
    根据所述至少三个信号中的三个信号,确定所述三个信号两两之间信号时延差,所述信号时延差能够判断所述声源相对于所述终端设备的位置;
    根据所述信号时延差,判断所述声源相对于所述终端设备的位置;
    所述声源位于所述终端设备的前方时,对所述至少三个信号中的目标信号进行方位增强处理,根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号,其中,所述方位增强处理用于增大所述目标信号的前方特征频带与后方特征频带的区分度。
  2. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为
    所述第一信号为所述目标信号时,对所述第一信号进行所述方位增强处理,得到第一处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    根据所述第一处理信号和所述第二信号得到所述第一输出信号;
    根据所述第一处理信号和所述第三信号得到所述第二输出信号。
  3. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:
    所述第一信号、所述第二信号与所述第三信号均为所述目标信号时,对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进 行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    根据所述第一处理信号和所述第二处理信号得到所述第一输出信号;
    根据所述第一处理信号和所述第三处理信号得到所述第二输出信号。
  4. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:
    所述第一信号、所述第二信号与所述第三信号均为所述目标信号时,对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    根据所述第一处理信号、所述第二处理信号和所述第二信号得到所述第一输出信号;
    根据所述第一处理信号、所述第三处理信号和所述第三信号得到所述第二输出信号。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二信号每个特征频带内的信号幅度与所述第三信号每个特征频带内的信号幅度,对所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号,其中,所述第一处理信号、所述第二信号与所述第三信号的所述每个特征频带划分方式相同。
  6. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分 别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第二通道和所述第三通道之间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:
    所述第一类型信号中的至少一个信号为所述目标信号时,对所述第一类型中的至少一个信号进行所述方位增强处理,得到第一类型处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    根据所述第一类型处理信号和所述第二信号得到所述第一输出信号;
    根据所述第一类型处理信号和所述第三信号得到所述第二输出信号。
  7. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第二通道和所述第三通道之间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:
    所述第一类型信号中的至少一个信号、所述第二信号和所述第三信号为所述目标信号时,对所述第一类型中的至少一个信号进行所述方位增强处理得到第一类型处理信号;对所述第二信号进行所述方位增强处理得到第二处理信号;对所述第三信号进行所述方位增强处理得到第三处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    根据所述第一类型处理信号和所述第二处理信号得到所述第一输出信号;
    根据所述第一类型处理信号和所述第三处理信号得到所述第二输出信号。
  8. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一类型通道接收的第一类型信号、第二通道接收的第二信号和第三通道接 收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第二通道和所述第三通道之间,所述第一类型通道位于所述第二通道和所述第三通道之间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:
    所述第一类型信号中的至少一个信号、所述的第二信号和所述第三信号为所述目标信号时,对所述第一类型中的至少一个信号进行所述方位增强处理得到第一类型处理信号;对所述第二信号进行所述方位增强处理得到第二处理信号;对所述第三信号进行所述方位增强处理得到第三处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    根据所述第一类型处理信号、所述第二处理信号和所述第二信号得到所述第一输出信号;
    根据所述第一类型处理信号、所述第三处理信号和所述第三信号得到所述第二输出信号。
  9. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;
    其中,若对所述至少三个信号中的目标信号进行方位增强处理具体为:
    当所述声源位于所述第一区间且所述第一信号为所述目标信号时,对所述第一信号进行所述方位增强处理,得到第一处理信号;
    当所述声源位于所述第二区间且所述第二信号为所述目标信号时,对所述第二信号进行所述方位增强处理,得到第二处理信号;
    当所述声源位于所述第三区间且所述第三信号为所述目标信号时,对所述第三信号进行所述方位增强处理,得到第三处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    当所述声源位于所述第一区间时,根据所述第一处理信号和所述第四信号得到所述第一输出信号,根据所述第一处理信号和所述第五信号得到所述第二输出信号;
    当所述声源位于所述第二区间时,根据所述第二处理信号和所述第四信号得到所述第一输出信号,根据所述第二处理信号和所述第五信号得到所述第二输出信号;
    当所述声源位于所述第三区间时,根据所述第三处理信号和所述第四信号得到所述第一输出信号,根据所述第三处理信号和所述第五信号得到所述第二输出信号。
  10. 根据权利要求1所述的方法,其特征在于,所述至少三个信号包括第一通道接收的第一信号、第二通道接收的第二信号、第三通道接收的第三信号、第四通道接收的第四信号和第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;
    其中,若所述对所述至少三个信号中的目标信号进行方位增强处理具体为:
    当所述声源位于所述第一区间且所述第一信号、所述第四信号、所述第五信号均为所述目标信号时,对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;
    当所述声源位于所述第二区间且所述第二信号、所述第四信号、所述第五信号均为所述目标信号时,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第四信号进行所述方位增强处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;
    当所述声源位于所述第三区间且所述第三信号、所述第四信号、所述第五信号均为所述目标信号时,对所述第三信号进行所述方位增强处理得到第三处理信号,对所述第四信号进行所述方位增强处理得到第四处理信号,对 所述第五信号进行所述方位增强处理得到第五处理信号;
    则所述根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号具体为:
    当所述声源位于所述第一区间时,根据所述第四处理信号和所述第一处理信号得到所述第一输出信号,根据所述第五处理信号和所述第一处理信号得到所述第二输出信号;
    当所述声源位于所述第二区间时,根据所述第四处理信号和所述第二处理信号得到所述第一输出信号,根据所述第五处理信号和所述第二处理信号得到所述第二输出信号;
    当所述声源位于所述第三区间时,根据所述第四处理信号和所述第三处理信号得到所述第一输出信号;根据所述第五处理信号和所述第三处理信号得到所述第二输出信号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    当所述声源位于所述第一区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;
    当所述声源位于所述第二区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第二处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;
    当所述声源位于所述第三区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第三处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;
    其中,所述第一处理信号、所述第二处理信号、所述第三处理信号、所述第四信号和所述第五信号的所述每个特征频带划分方式相同。
  12. 一种终端设备,其特征在于,包括:
    接收模块,所述接收模块包括位于所述终端设备不同位置的至少三个接收通道,所述至少三个接收通道用于接收同一声源发出的至少三个信号,其中,所述至少三个信号与所述通道一一对应;
    确定模块,用于根据所述接收模块接收的所述至少三个信号中的三个信号,确定所述三个信号两两之间信号时延差,所述信号时延差能够判断所述声源相对于所述终端设备的位置;
    判断模块,用于根据所述确定模块得到的信号时延差,判断所述声源相对于所述终端设备的位置;
    处理模块,用于当所述判断模块判定所述声源位于所述终端设备的前方时,对所述至少三个信号中的目标信号进行方位增强处理,根据所述方位增强处理的结果,得到所述终端设备的第一输出信号和第二输出信号,其中,所述方位增强处理用于增大目标信号的前方特征频带和后方特征频带的区分度。
  13. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;
    其中,所述处理模块包括第一处理单元和第二处理单元,所述第一处理单元用于当所述判断模块判定所述声源位于所述终端设备的前方时,对所述第一信号进行所述方位增强处理,得到第一处理信号,其中所述第一信号为所述目标信号;
    其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一处理信号得到所述第二输出信号。
  14. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处 理得到第三处理信号,其中,所述第一信号、所述第二信号和所述第三信号均为所述目标信号;
    其中,所述第二处理单元用于:根据所述第一处理单元得到的所述第一处理信号和所述第二处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第一处理信号和所述第三处理信号得到所述第二输出信号。
  15. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一通道比所述第二通道和所述第三通道更靠近前方,所述第一通道位于所述第二通道和所述第三通道之间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一信号、所述第二信号和所述第三信号均为所述目标信号;
    其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一处理信号、所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一处理信号、所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
  16. 根据权利要求13至15中任一项所述的终端设备,其特征在于,所述处理模块还包括第三处理单元,所述第三处理单元用于:根据所述第二信号每个特征频带内的信号幅度与所述第三信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号,其中,所述第一处理信号、所述第二信号与所述第三信号的所述每个特征频带划分方式相同。
  17. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一类型通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一类型信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别 用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道中任意一个通道位于所述第一通道和所述第二通道之间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一类型信号中的至少一个信号进行所述方位增强处理得到第一类型处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一类型信号中的至少一个信号为所述目标信号;
    其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一类型处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一类型处理信号得到所述第二输出信号。
  18. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一类型通道、第二通道和第三通道,所述至少三个信号包括所述第一通道接收的第一类型信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道位于所述第一通道和所述第二通道之间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一类型信号中的至少一个信号进行所述方位增强处理得到第一类型处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一类型信号中的至少一个信号、所述第二信号和所述第三信号为所述目标信号;
    其中,所述第二处理单元用于:根据所述第一处理单元得到的所述第一类型处理信号和所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第一类型处理信号和所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
  19. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一类型通道、第二通道和第三通道,所述至少三个信号包括所述第一通 道接收的第一类型信号、所述第二通道接收的第二信号和所述第三通道接收的第三信号,所述第一类型通道包括至少两个通道,所述至少两个通道分别用于接收至少两个信号,所述第一类型通道中任意一个通道比所述第二通道和所述第三通道更靠近前方,所述第一类型通道位于所述第一通道和所述第二通道之间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述终端设备的前方时,所述第一处理单元用于:对所述第一类型信号中的至少一个信号进行所述方位增强处理得到第一类型处理信号,对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第三信号进行所述方位增强处理得到第三处理信号,其中所述第一类型信号中的至少一个信号、所述第二信号和所述第三信号为所述目标信号;
    其中,所述第二处理单元用于:根据所述第二信号和所述第一处理单元得到的所述第一类型处理信号、所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第三信号和所述第一处理单元得到的所述第一类型处理信号、所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
  20. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一通道、第二通道、第三通道、第四通道和第五通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号、所述第三通道接收的第三信号、所述第四通道接收的第四信号和所述第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述第一区间且所述第一信号为所述目标信号时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理,得到第一处理信号;当所述判断模块判定所述声源位于所述终端设备的第二区间且所述第二信号为所述目标信号时,所述第一处理单元用于对所述第二信号进行所述方位增强处理,得到第二处理信号;当所述判断模块判定所述声源位于所述终端设备的第三区间且所述第三信号为所述目标信号时,所述第一处理单元 用于对所述第三信号进行所述方位增强处理,得到第三处理信号;
    其中,当所述判断模块判定所述声源位于所述第一区间时,所述第二处理单元用于:根据所述第四信号和所述第一处理单元得到的所述第一处理信号得到所述第一输出信号,根据所述第五信号和所述第一处理单元得到的所述第一处理信号得到所述第二输出信号;
    当所述判断模块判定所述声源位于所述第二区间时,所述第二处理单元用于:根据所述第四信号和所述第一处理单元得到的所述第二处理信号得到所述第一输出信号,根据所述第五信号和所述第一处理单元得到的所述第二处理信号得到所述第二输出信号;
    当所述判断模块判定所述声源位于所述第三区间时,所述第二处理单元具体用于:根据所述第四信号和所述第一处理单元得到的所述第三处理信号得到所述第一输出信号,根据所述第五信号和所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
  21. 根据权利要求12所述的终端设备,其特征在于,所述接收模块包括第一通道、第二通道、第三通道、第四通道和第五通道,所述至少三个信号包括所述第一通道接收的第一信号、所述第二通道接收的第二信号、所述第三通道接收的第三信号、所述第四通道接收的第四信号和所述第五通道接收的第五信号,所述第一通道、所述第二通道或所述第三通道比所述第四通道和所述第五通道更靠近前方,所述第一通道、所述第二通道和所述第三通道位于所述第四通道和所述第五通道之间,所述终端设备的前方划分为相邻的第一区间、第二区间和第三区间;
    其中,所述处理模块包括第一处理单元和第二处理单元,当所述判断模块判定所述声源位于所述第一区间且所述第一信号为所述目标信号时,所述第一处理单元用于:对所述第一信号进行所述方位增强处理得到第一处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;
    当所述判断模块判定所述声源位于所述终端设备的第二区间且所述第二信号为所述目标信号时,所述第一处理单元用于:对所述第二信号进行所述方位增强处理得到第二处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;
    当所述判断模块判定所述声源位于所述终端设备的第三区间且所述第 三信号为所述目标信号时,所述第一处理单元用于:对所述第三信号进行所述方位增强处理得到第三处理信号,对所述第四信号处理得到第四处理信号,对所述第五信号进行所述方位增强处理得到第五处理信号;
    其中,当所述判断模块判定所述声源位于所述第一区间时,所述第二处理单元用于:根据所述第一处理单元得到的所述第四处理信号和所述第一处理单元得到的所述第一处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第五信号和所述第一处理单元得到的所述第一处理信号得到所述第二输出信号;
    当所述判断模块判定所述声源位于所述第二区间时,所述第二处理单元用于:根据所述第一处理单元得到的所述第四处理信号和所述第一处理单元得到的所述第二处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第五处理信号和所述第一处理单元得到的所述第二处理信号得到所述第二输出信号;
    当所述判断模块判定所述声源位于所述第三区间时,所述第二处理单元用于:根据所述第一处理单元得到的所述第四处理信号和所述第三处理信号得到所述第一输出信号;根据所述第一处理单元得到的所述第五处理信号和所述第一处理单元得到的所述第三处理信号得到所述第二输出信号。
  22. 根据权利要求20或21所述的终端设备,其特征在于,所述处理模块还包括第三处理单元,所述第三处理单元具体用于:
    当所述判断模块判定所述声源位于所述第一区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第一处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;
    当所述判断模块判定所述声源位于所述第二区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第二处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;
    当所述判断模块判定所述声源位于所述第三区间时,根据所述第四信号每个特征频带内的信号幅度与所述第五信号每个特征频带内的信号幅度,对所述第一处理单元得到的所述第三处理信号对应的每个特征频带进行幅度调整,以得到所述第一输出信号和所述第二输出信号;
    其中,所述第一处理信号、所述第二处理信号、所述第三处理信号、所述第四信号和所述第五信号的所述每个特征频带划分方式相同。
PCT/CN2015/086933 2015-01-21 2015-08-14 处理声音信号的方法和终端设备 WO2016115880A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15878550.1A EP3249948B1 (en) 2015-01-21 2015-08-14 Method and terminal device for processing voice signal
US15/656,465 US10356544B2 (en) 2015-01-21 2017-07-21 Method for processing sound signal and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510030723.0A CN104735588B (zh) 2015-01-21 2015-01-21 处理声音信号的方法和终端设备
CN201510030723.0 2015-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/656,465 Continuation US10356544B2 (en) 2015-01-21 2017-07-21 Method for processing sound signal and terminal device

Publications (1)

Publication Number Publication Date
WO2016115880A1 true WO2016115880A1 (zh) 2016-07-28

Family

ID=53458941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086933 WO2016115880A1 (zh) 2015-01-21 2015-08-14 处理声音信号的方法和终端设备

Country Status (4)

Country Link
US (1) US10356544B2 (zh)
EP (1) EP3249948B1 (zh)
CN (1) CN104735588B (zh)
WO (1) WO2016115880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110996238A (zh) * 2019-12-17 2020-04-10 杨伟锋 双耳同步信号处理助听***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735588B (zh) * 2015-01-21 2018-10-30 华为技术有限公司 处理声音信号的方法和终端设备
CN112770248B (zh) * 2021-01-06 2023-03-24 北京小米移动软件有限公司 音箱控制方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875656A (zh) * 2003-10-27 2006-12-06 大不列颠投资有限公司 来自于前置扬声器的多声道音频环绕声
EP1862813A1 (en) * 2006-05-31 2007-12-05 Honda Research Institute Europe GmbH A method for estimating the position of a sound source for online calibration of auditory cue to location transformations
CN101263739A (zh) * 2005-09-13 2008-09-10 Srs实验室有限公司 用于音频处理的***和方法
CN101884227A (zh) * 2006-04-03 2010-11-10 Srs实验室有限公司 音频信号处理
CN102804808A (zh) * 2009-06-30 2012-11-28 诺基亚公司 空间音频中的位置消歧
CN104735588A (zh) * 2015-01-21 2015-06-24 华为技术有限公司 处理声音信号的方法和终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815661B2 (ja) * 2000-08-24 2011-11-16 ソニー株式会社 信号処理装置及び信号処理方法
AU2002329160A1 (en) * 2002-08-13 2004-02-25 Nanyang Technological University Method of increasing speech intelligibility and device therefor
US9456289B2 (en) * 2010-11-19 2016-09-27 Nokia Technologies Oy Converting multi-microphone captured signals to shifted signals useful for binaural signal processing and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875656A (zh) * 2003-10-27 2006-12-06 大不列颠投资有限公司 来自于前置扬声器的多声道音频环绕声
CN101263739A (zh) * 2005-09-13 2008-09-10 Srs实验室有限公司 用于音频处理的***和方法
CN101884227A (zh) * 2006-04-03 2010-11-10 Srs实验室有限公司 音频信号处理
EP1862813A1 (en) * 2006-05-31 2007-12-05 Honda Research Institute Europe GmbH A method for estimating the position of a sound source for online calibration of auditory cue to location transformations
CN102804808A (zh) * 2009-06-30 2012-11-28 诺基亚公司 空间音频中的位置消歧
CN104735588A (zh) * 2015-01-21 2015-06-24 华为技术有限公司 处理声音信号的方法和终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110996238A (zh) * 2019-12-17 2020-04-10 杨伟锋 双耳同步信号处理助听***及方法
CN110996238B (zh) * 2019-12-17 2022-02-01 杨伟锋 双耳同步信号处理助听***及方法

Also Published As

Publication number Publication date
CN104735588B (zh) 2018-10-30
US10356544B2 (en) 2019-07-16
EP3249948A1 (en) 2017-11-29
EP3249948B1 (en) 2020-10-07
US20170325046A1 (en) 2017-11-09
CN104735588A (zh) 2015-06-24
EP3249948A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
US10313814B2 (en) Apparatus and method for sound stage enhancement
US7149315B2 (en) Microphone array for preserving soundfield perceptual cues
US9552840B2 (en) Three-dimensional sound capturing and reproducing with multi-microphones
KR101619203B1 (ko) 각도 의존적으로 작동하는 장치 또는 의사-스테레오포닉 오디오 신호를 얻는 방법
US10880669B2 (en) Binaural sound source localization
CN102771144A (zh) 用于方向相关空间噪声减低的设备和方法
US20110268299A1 (en) Sound field control apparatus and sound field control method
CN104604254A (zh) 声音处理装置、方法和程序
WO2022228220A1 (zh) 一种合唱音频的处理方法、设备及存储介质
WO2016169310A1 (zh) 一种音频信号处理的方法和装置
WO2016115880A1 (zh) 处理声音信号的方法和终端设备
US20080175396A1 (en) Apparatus and method of out-of-head localization of sound image output from headpones
WO2016058393A1 (zh) 声像方位感处理方法和装置
US9794717B2 (en) Audio signal processing apparatus and audio signal processing method
Croghan et al. Binaural interference in the free field
JP2023054779A (ja) 空間オーディオキャプチャ内の空間オーディオフィルタリング
CN110225432B (zh) 一种声纳目标立体收听方法
JP2006324991A (ja) サラウンド・サウンドシステム
Glasgal Improving 5.1 and Stereophonic Mastering/Monitoring by Using Ambiophonic Techniques
JP2023503140A (ja) バイノーラル信号のステレオオーディオ信号への変換
JP2020039168A (ja) サウンドステージ拡張のための機器及び方法
CN106899920A (zh) 一种声音信号处理方法及***
JP2008306357A (ja) 音像定位処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015878550

Country of ref document: EP