WO2016114321A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2016114321A1
WO2016114321A1 PCT/JP2016/050879 JP2016050879W WO2016114321A1 WO 2016114321 A1 WO2016114321 A1 WO 2016114321A1 JP 2016050879 W JP2016050879 W JP 2016050879W WO 2016114321 A1 WO2016114321 A1 WO 2016114321A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
battery according
transmission member
lithium
Prior art date
Application number
PCT/JP2016/050879
Other languages
French (fr)
Japanese (ja)
Inventor
中島 潤二
祥雅 藤原
章理 出川
Original Assignee
中島 潤二
祥雅 藤原
章理 出川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中島 潤二, 祥雅 藤原, 章理 出川 filed Critical 中島 潤二
Priority to JP2016569490A priority Critical patent/JP6527174B2/en
Publication of WO2016114321A1 publication Critical patent/WO2016114321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery.
  • the battery converts the chemical energy of the chemical substance contained in the battery into electrical energy through an electrochemical redox reaction.
  • batteries are widely used around the world, mainly in portable electronic devices such as electronics, communication, and computers. Further, in the future, practical use as a large-sized device such as a moving body such as an electric vehicle and a stationary battery such as a power load leveling system is desired, and the battery is becoming an increasingly important key device.
  • a typical lithium ion secondary battery includes a positive electrode using a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium ions (for example, lithium metal, lithium alloy, metal oxide or A negative electrode using carbon) as an active material, a non-aqueous electrolyte, and a separator are provided (for example, refer to JPH05-242911A).
  • JP2015-2167A discloses a secondary battery having characteristics of both a chemical battery and a semiconductor battery.
  • JP2015-2167A discloses a secondary battery capable of obtaining a high capacity and a high output that could not be obtained by a conventional lithium ion secondary battery. It is expected to further improve performance.
  • the secondary battery disclosed in JP2015-2167A can be confirmed to have a life of about 3000 cycles, but it is expected that the life performance will be further improved for the spread of electric vehicles and smart grids.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel secondary battery that has a long life and can realize both high input / output and high capacity.
  • a secondary battery includes a first electrode, a second electrode, an ion transmission member that contacts the first electrode and the second electrode, and a contact with the first electrode and the second electrode. Or a hole transmission member that is in contact via a solid electrolyte, and the second electrode contains at least graphene and silicon.
  • the first electrode includes a composite oxide, and the composite oxide contains an alkali metal or an alkaline earth metal.
  • the composite oxide includes a p-type composite oxide that is a p-type semiconductor.
  • the p-type composite oxide contains lithium and nickel doped with at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium.
  • the composite oxide is Li 1 + x (Fe 0.2 Ni 0.2 ) Mn 0.6 O 3 , where 0 ⁇ x ⁇ 3, and M is antimony, lead, phosphorus, boron, aluminum, and It is at least one selected from the group consisting of gallium.
  • the composite oxide contains fluorine.
  • the ion transmission member is one of a liquid, a gel body, and a solid. It contains at least fluorinated ethylene carbonate and phenazine methosulfate.
  • the hole transmission member contains at least a ceramic material and a polymer resin.
  • the hole transmission member has a nonwoven fabric carrying a ceramic material.
  • At least one of the first electrode and the second electrode is bonded to a porous film layer containing an inorganic oxide filler.
  • the inorganic oxide filler contains ⁇ -Al 2 O 3 as a main component.
  • the porous membrane layer further contains ZrO 2 —P 2 O 5 .
  • the porous film layer contains at least one element selected from the group consisting of antimony, sodium, lithium, magnesium, and aluminum.
  • the second electrode contains graphene and a silicon-containing material.
  • the graphene contains carbon nanotubes.
  • the second electrode contains graphene, carbon nanotubes, or a mixture of graphene and carbon nanotubes, and a silicon-containing material, and is doped with lithium.
  • the lithium is doped by heating the organic lithium contained in the second electrode.
  • lithium metal is attached to the second electrode.
  • the second electrode has a halogen.
  • the halogen includes fluorine.
  • the halogen includes iodine.
  • the second electrode includes an alkali metal.
  • the alkali metal includes sodium.
  • the alkali metal includes potassium
  • the second electrode contains titanium.
  • the second electrode contains zinc.
  • At least one of the first electrode and the second electrode has an acrylic resin layer.
  • the acrylic resin layer has a rubbery polymer containing polyacrylic acid as a basic unit.
  • the acrylic resin layer has polymers having different molecular weights as the rubbery polymer.
  • the secondary battery further includes a first current collector in contact with the first electrode and a second current collector in contact with the second electrode, wherein the first current collector and the first current collector Each of the two current collectors is formed from stainless steel.
  • FIG. 1 shows a schematic diagram of the secondary battery 100 of the present embodiment.
  • the secondary battery 100 includes an electrode 10, an electrode 20, an ion transmission member 30, and a hole transmission member 40.
  • the electrode 10 faces the electrode 20 via the ion transmission member 30 and the hole transmission member 40, and the electrode 10 does not physically contact the electrode 20 by at least one of the ion transmission member 30 and the hole transmission member 40.
  • the electrode (first electrode) 10 functions as a positive electrode
  • the electrode (second electrode) 20 functions as a negative electrode.
  • the potential of the electrode 10 is higher than the potential of the electrode 20, and current flows from the electrode 10 to the electrode 20 via an external load (not shown).
  • a high potential terminal of an external power source (not shown) is electrically connected to the electrode 10
  • a low potential terminal of an external power source (not shown) is electrically connected to the electrode 20.
  • the electrode 10 is in contact with the current collector (first current collector) 110 to form a positive electrode
  • the electrode 20 is in contact with the current collector (second current collector) 120 to form the negative electrode. Forming.
  • the ion transmission member 30 is in contact with the electrode 10 and the electrode 20.
  • FIG. 1 schematically shows a case where the ion transmission member 30 is located in a hole provided in the hole transmission member 40 so as to connect the electrode 10 and the electrode 20.
  • an ion conductive membrane such as NASICON without holes may be used.
  • the ion transmission member 30 located in the hole is, for example, a liquid (specifically, an electrolytic solution).
  • the ion transmission member 30 may be a solid or a gel body.
  • ions (cations) generated in the electrode 20 move to the electrode 10 via the ion transmission member 30.
  • ions generated at the electrode 10 move to the electrode 20 via the ion transmission member 30.
  • the electrode 20 is electronically inserted to generate holes in the electrode 10 due to excessive cations, the holes are directed toward the electrode 20, and the ion transfer member 30 and the hole transfer member 40.
  • the hole generated from the electrode 10 collides with the material containing the polyvalent cation contained in the portion including the hole transmission member 40 or the ion transmission member 30 and transports the polyvalent cation to the electrode 20.
  • Multivalent cations collide and cause holes.
  • the holes in the electrode 20 travel in a direction perpendicular to the direction of the electric field at the electrode 10 and electrons are accumulated in the direction opposite to the holes.
  • the electrode 10 is a semiconductor material made p-type by doping
  • the electrode 20 is a semiconductor material made n-type of contained silicon.
  • NASICON is the following structural material. Li 1 + x + y Alx (Ti, Ge) 2-x Si y P 3-y O 12
  • the difference between the phenomenon of the electrode 10 and the electrode 20 is a battery having a bipolar structure in which two batteries exist. As a result, it has been found that an unprecedented high safety, long life, high input / output, and high capacity battery can be obtained.
  • the ions are alkali metal or alkaline earth metal ions.
  • the electrode 10 contains a compound containing an alkali metal or an alkaline earth metal.
  • the electrode 20 can occlude and release alkali metal ions or alkaline earth metal ions.
  • alkali metal ions or alkaline earth metal ions are released from the electrode 20 and move to the electrode 10 through the ion transmission member 30.
  • ions of alkali metal or alkaline earth metal move from the electrode 10 to the electrode 20 through the ion transmission member 30 and are occluded by the electrode 20.
  • the ions transmitted through the ion transmission member 30 may be both alkali metal ions and alkaline earth metal ions.
  • the electrode 10 has a p-type semiconductor. In each case of charging and discharging, the hole moves through the electrode 10.
  • the hole transmission member 40 is in contact with the electrode 10 and the electrode 20. During discharge, the hole of the electrode 10 moves to the electrode 20 via an external load (not shown), and the electrode 10 receives the hole via the hole transmission member 40. On the other hand, at the time of charging, the hole of the electrode 10 moves to the electrode 20 through the hole transmitting member 40, and the electrode 10 receives the hole from an external power source (not shown).
  • ions generated at the electrode 20 not only move to the electrode 10 via the ion transfer member 30, but also due to the potential difference between the electrode 10 and the electrode 20, 10, the external load (not shown), the electrode 20, and the hole transmission member 40 are circulated in this order.
  • ions generated in the electrode 10 not only move to the electrode 20 via the ion transmission member 30 but also the holes are formed in the electrode 10, the hole transmission member 40, the electrode 20, an external power source (not shown) ) Can be assumed to circulate in this order, but this time, the following phenomenon was found under the conditions shown in the claims.
  • the holes existing in the electrode 20 collide with the multivalent cations of the ion transfer member 30 and those that reach the hole transfer member 40. There are those in which cations return to each metal-containing material.
  • the in-electrode quantum balance with the electrons in the electrode 10 is balanced. That is, an electron accumulation in the electrode 20 is caused by high input / output and capacity, and a bipolar structure having a mechanism with the electrode 10 as a trigger function of the operation is obtained. Since the material of the electrode 20 is an inclusion of graphene and silicon, more holes can be secured than in the conventional ion battery, so that more electrons can be stored than in the conventional ion battery. As a result, the present invention effect could be obtained.
  • the ions generated at the electrode 10 or the electrode 20 move between the electrode 10 and the electrode 20 via the ion transmission member 30. Since the ions move between the electrode 10 and the electrode 20, the secondary battery 100 can realize a high capacity. Further, in the secondary battery 100 of the present embodiment, the hole moves between the electrode 10 and the electrode 20 via the hole transmission member 40. Since the hole is smaller than the ion and has high mobility, the secondary battery 100 can achieve high output.
  • the hole transmission member 40 and the ion transmission member 30 have also found out a role of replacing ions and holes. As a result, high safety and long life, high capacity and high output were achieved.
  • FIG. 2 is a graph showing the weight energy density of the secondary battery 100 of this embodiment and a general lithium ion battery. As can be understood from FIG. 2, according to the secondary battery 100 of the present embodiment, the output characteristics can be greatly improved.
  • the secondary battery 100 of the present embodiment achieves high capacity and high output.
  • the secondary battery 100 of this embodiment includes a chemical battery that transmits ions through the ion transfer member 30 and a semiconductor battery that transmits holes from the electrode 10 that is a p-type semiconductor through the hole transfer member 40.
  • the secondary battery 100 can be said to be a hybrid battery of a chemical battery and a physical battery (semiconductor battery).
  • the electrode 20 is a semiconductor battery
  • the electrode 10 is a bipolar battery that triggers the semiconductor battery.
  • the secondary battery 100 of this embodiment since the amount of the electrolyte solution as the ion transfer member 30 can be reduced, even if the electrode 10 and the electrode 20 come into contact with each other and the inside is short-circuited, the secondary battery 100 The rise in temperature can be suppressed.
  • the secondary battery 100 of the present embodiment is excellent in cycle characteristics with little decrease in capacity due to rapid discharge.
  • the effects of the present invention can be easily obtained, and the capacity and output characteristics of the secondary battery 100 can be further improved.
  • the electrode 10 and the electrode 20 are a p-type semiconductor and an n-type semiconductor can be determined by measuring a Hall effect. Due to the Hall effect, when a magnetic field is applied while a current is flowing, a voltage is generated in a direction in which the current flows and in a direction perpendicular to the direction in which the magnetic field is applied. Whether the semiconductor is a p-type semiconductor or an n-type semiconductor can be determined based on the direction of the voltage.
  • the ion transmission member 30 is typically located in the hole provided in the hole transmission member 40, but the present invention is not limited to this.
  • the ion transmission member 30 may be located at a location away from the hole transmission member 40.
  • ions and holes are transmitted through the ion transmission member 30 and the hole transmission member 40 during charging and discharging, respectively, but ion transmission is performed during one of charging and discharging. Ions or holes may be transmitted through one of the member 30 and the hole transmitting member 40.
  • the ion transmission member (for example, electrolyte) 30 may not be present, and only holes may be transmitted.
  • the hole transmission member 40 may not be provided, and ions may be transmitted from the electrode 10 to the electrode 20 via the ion transmission member 30.
  • the hole transmission member 40 may be formed integrally with the ion transmission member 30. That is, the same member may transmit both ions and holes.
  • the ion transmission member 30 contains fluorinated ethylene carbonate and phenazine methosulfate, which greatly improves the life and input / output performance.
  • the effect of phenazine methosulfate on reducing the reduction reaction at the interface between graphene and electrolyte has been confirmed, and the effect of reducing the resistance of electron and hole movement between the graphene layers has also been confirmed this time. It is thought that there is.
  • fluorinated ethylene carbonate suppresses silicon from being attacked by hydrofluoric acid in the electrolytic solution, and has also confirmed the effect of lowering the barrier for hole incorporation into silicon. As a result, this effect is considered to be obtained.
  • the electrode 10 has a composite oxide containing an alkali metal or an alkaline earth metal.
  • the alkali metal is at least one of lithium and sodium
  • the alkaline earth metal is magnesium.
  • the composite oxide functions as a positive electrode active material of the secondary battery 100.
  • the electrode 10 is formed from a positive electrode material obtained by mixing a composite oxide and a positive electrode binder. Further, a conductive material may be further mixed with the positive electrode material.
  • the composite oxide is not limited to one type, and may be a plurality of types.
  • the complex oxide includes a p-type complex oxide that is a p-type semiconductor.
  • the p-type composite oxide has lithium and nickel doped with at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium.
  • This composite oxide is expressed as Li x Ni y Mz O ⁇ .
  • M is an element for functioning as a p-type semiconductor, and M is at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium. Due to the doping, structural defects are generated in the p-type composite oxide, thereby forming holes.
  • the p-type complex oxide preferably contains lithium nickelate doped with a metal element.
  • the p-type composite oxide is antimony-doped lithium nickelate.
  • the complex oxide preferably includes a solid solution complex oxide that forms a solid solution with the p-type complex oxide.
  • the solid solution is formed from a p-type complex oxide and a solid solution complex oxide.
  • the solid solution composite oxide easily forms a layered solid solution with nickel acid, and the solid solution has a structure in which holes are easily moved.
  • the solid solution composite oxide is lithium manganese oxide (Li 2 MnO 3 ). In this case, the valence of lithium is 2.
  • the composite oxide preferably further contains an olivine structure composite oxide having an olivine structure. Due to the olivine structure, deformation of the electrode 10 is suppressed even when the p-type complex oxide forms holes.
  • the olivine structure composite oxide has lithium and manganese, and the valence of lithium is preferably larger than 1. In this case, lithium ions easily move and holes are easily formed.
  • the olivine structure composite oxide is LiMnPO 4 .
  • the composite oxide may include a p-type composite oxide, a solid solution composite oxide, and an olivine structure composite oxide.
  • the composite oxide may contain Li x Ni y M z O ⁇ , Li 2 MnO 3 , and Li ⁇ MnPO 4 .
  • 0 ⁇ x ⁇ 3, y + z 1, 1 ⁇ ⁇ 4, and ⁇ > 1.0.
  • the composite oxide may contain Li x Ni y M z O ⁇ , Li 2 MnO 3 , and Li ⁇ MnSiO 4 .
  • 0 ⁇ x ⁇ 3, y + z 1, 1 ⁇ ⁇ 4, ⁇ > 1.0.
  • the composite oxide may contain Li 1 + x (Fe 0.2 Ni 0.2 ) Mn 0.6 O 3 , Li 2 MnO 3 , and Li ⁇ MnPO 4 .
  • modified products thereof antimony, aluminum, magnesium, etc.
  • the composite oxide may contain fluorine.
  • LiMnPO 4 F may be used as the composite oxide.
  • the electrode 10 is formed from a positive electrode material in which a composite oxide, a positive electrode binder, and a conductive material are mixed.
  • the positive electrode binder contains an acrylic resin, and an acrylic resin layer is formed on the electrode 10.
  • the positive electrode binder contains a rubbery polymer containing polyacrylic acid units.
  • a polymer having a relatively high molecular weight and a polymer having a relatively low molecular weight are mixed as the rubbery polymer.
  • the mixture of polymers having different molecular weights is resistant to hydrofluoric acid and inhibits the movement of holes.
  • the positive electrode binder is a modified acrylonitrile rubber particle binder (such as BM-520B manufactured by Nippon Zeon Co., Ltd.), carboxymethylcellulose (CMC) having a thickening effect, and soluble modified acrylonitrile rubber (BM manufactured by Nippon Zeon Co., Ltd.). -720H and the like). It is preferable to use a binder (SX9172 manufactured by Nippon Zeon Co., Ltd.) made of a polyacrylic acid monomer having an acrylic group as the positive electrode binder.
  • acetylene black, ketjen black, and various graphites, graphenes, carbon nanotubes, and carbon nanofibers may be used alone or in combination.
  • the electrode 10 is hardly cracked, and the yield can be maintained high. Further, by using a material having an acrylic group as the positive electrode binder, the internal resistance is lowered, and inhibition of the properties of the p-type semiconductor of the electrode 10 can be suppressed.
  • the positive electrode binder which has an acrylic group.
  • the positive electrode binder does not become a resistor, electrons are not easily trapped, and heat generation of the electrode 10 is suppressed.
  • the presence of graphene, phosphorus element, or ion conductive glass in the positive electrode binder having an acrylic group promotes lithium dissociation and diffusion in the case of a lithium ion battery.
  • the acrylic resin layer can cover the active material, and the generation of gas due to the reaction between the active material and the electrolytic solution can be suppressed. Further, even in the case of this battery, since the internal resistance of the battery is kept low, the result that the operation with the electrode 20 can be performed efficiently is brought about.
  • the electrode 20 can occlude and emit ions, holes, and electrons generated in the electrode 10.
  • the active material of the electrode 20 has at least graphene and a silicon-containing material, and in addition, various natural graphites, artificial graphite, silicon-based composite materials (silicides), silicon oxide-based materials, titanium alloy-based materials, and various alloy composition materials Can be used alone or in combination.
  • the electrode 20 contains a mixture of graphene and silicon. Further, in this case, the electrode 20 becomes an n-type semiconductor by adding and dispersing phosphorus oxide or sulfur oxide with a thin-film swirl type high-speed mixer (for example, Filmix (registered trademark) manufactured by Primics Co., Ltd.).
  • graphene is a nano-level layer having 10 or fewer layers.
  • the graphene may contain carbon nanotube (CNT).
  • the electrode 20 preferably contains a mixture of graphene and silicon or silicon oxide.
  • the occlusion efficiency of ions (cations) and holes of the electrode 20 can be improved, and at the same time, an electron storage layer can be provided.
  • graphene and silicon oxide are unlikely to function as heating elements, the safety and lifetime of the secondary battery 100 can be improved.
  • the electrode 20 is preferably an n-type semiconductor.
  • the electrode 20 includes a material containing graphene and silicon.
  • the substance containing silicon is, for example, SiOxa (xa ⁇ 2). Further, by using graphene and / or silicon for the electrode 20, even when an internal short circuit of the secondary battery 100 occurs, it is difficult to generate heat and the secondary battery 100 can be prevented from bursting.
  • the electrode 20 may be doped with a donor.
  • the electrode 20 is doped with a metal element as a donor.
  • the metal element is, for example, an alkali metal or a transition metal.
  • an alkali metal for example, any of copper, lithium, sodium, and potassium may be doped.
  • titanium or zinc may be doped as a transition metal.
  • phosphorus oxide or sulfur oxide may be used.
  • the electrode 20 may have graphene doped with lithium.
  • lithium may be doped by heating the material of the electrode 20 containing organolithium, or by using the heat of impact of a substance under high dispersion conditions using the above-described thin film swirl type high speed mixer.
  • lithium doping may be performed by attaching lithium metal to the electrode 20.
  • the electrode 20 contains graphene and silicon doped with lithium.
  • the thin-film swirl type high-speed mixer has a rotor (turbine) at the center of the container.
  • the coating material is pressed against the container wall surface by centrifugal force.
  • a thin film coating layer is formed, and emulsified droplet dispersion is performed in this thin film coating layer in a balance between rotational force and centrifugal force. Since the dispersion treatment is performed using a thin film, the zeta potential between the material particles of nano-level fine particles can be lowered to make the dispersion uniform.
  • the electrode 20 may contain halogen and the life is further improved.
  • halogen includes fluorine.
  • the electrode 20 may contain SiOxaF.
  • the halogen includes iodine.
  • the electrode 20 is formed from a negative electrode material obtained by mixing a negative electrode active material and a negative electrode binder.
  • a negative electrode binder the same material as the positive electrode binder can be used. Note that a conductive material may be further mixed into the negative electrode material.
  • the ion transmission member 30 is either a liquid, a gel body, or a solid.
  • a liquid electrolytic solution
  • the electrolytic solution preferably contains at least fluorinated ethylene carbonate and phenazine methosulfate.
  • LiPF 6 as a salt, LiBF 4, LiClO 4, LiSbF 6, LiAsF 6, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3 LiN (SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl, LiI, lithium bis (pentafluoroethanesulfonyl) imide (LiN (SO 2 C 2 Fb) 2 : Lithium Bis ( Pentafluoro-ethane-sulfonyl) Imide: LiBETI) and a mixture of one or more selected from the group consisting of lithium bis (trifluoromethanesulfonyl) imide (Lithium Bis (Trifluoromethanesulfonyl) Imide: LiTFS) Object is used.
  • ethylene carbonate Ethylene Carbonate: EC
  • fluorinated Ethyl Carbonate FEC
  • dimethyl carbonate DMC
  • diethyl carbonate Diethyl Carbonate: DEC
  • methyl ethyl carbonate A mixture obtained by mixing one or two or more selected from the group consisting of Methyl Ethyl Carbonate (MEC) is used.
  • the electrolyte solution includes vinylene carbonate (VC), cyclohexylbenzene (CHB), propane sultone (PS), propylene sulfite (Propylene). Sulfite (PRS), ethylene sulfite (ES) and the like, and modified products thereof may be added.
  • VC vinylene carbonate
  • CHB cyclohexylbenzene
  • PS propane sultone
  • Propylene propylene sulfite
  • Sulfite (PRS) ethylene sulfite (ES) and the like, and modified products thereof may be added.
  • the hole transmission member 40 is a solid or a gel body.
  • the hole transmission member 40 is bonded to at least one of the electrode 10 and the electrode 20. Alternatively, they are bonded via an electrolyte.
  • the hole transmission member 40 preferably has a porous layer.
  • the electrolytic solution communicates between the electrode 10 and the electrode 20 through the pores of the porous layer.
  • the hole transmission member 40 includes a ceramic material.
  • the hole transmission member 40 has a porous film layer containing an inorganic oxide filler.
  • the inorganic oxide filler is preferably composed mainly of alumina ( ⁇ -Al 2 O 3 ), and the holes move on the surface of the alumina.
  • the porous film layer may further contain ZrO 2 —P 2 O 5 .
  • titanium oxide or silica may be used as the hole transmission member 40, or Li 1 + x + y Alx (Ti, Ge) 2-x Si y P 3-y O 12 is mixed with titanium oxide or silica. You may use what you did.
  • the hole transmission member 40 does not easily shrink regardless of the temperature change.
  • the resistance of the hole transmission member 40 is preferably low.
  • a nonwoven fabric carrying a ceramic material is used as the hole transmission member 40. Nonwoven fabrics are difficult to shrink regardless of temperature changes. Moreover, a nonwoven fabric shows voltage resistance and oxidation resistance, and shows low resistance. For this reason, a nonwoven fabric is used suitably as a material of the hole transmission member 40.
  • the hole transmission member 40 preferably functions as a so-called separator.
  • the hole transmission member 40 has a composition that can withstand the usage range of the secondary battery 100 and is not particularly limited as long as the semiconductor function in the secondary battery 100 is not lost.
  • As the hole transmission member 40 it is preferable to use a non-woven fabric carrying alumina ( ⁇ -Al 2 O 3 ).
  • the thickness of the hole transmission member 40 is not particularly limited, but is preferably designed to be 6 ⁇ m to 25 ⁇ m so as to be within a film thickness that can provide a design capacity. More preferably, alumina is mixed with ZrO 2 —P 2 O 5 .
  • the hole transmission member 40 preferably has a mixture in which an additive is mixed with a ceramic material.
  • the additive includes at least one of a compound containing at least one of antimony, aluminum, and magnesium, a compound containing at least one of antimony, aluminum, and magnesium, or a complex containing at least one of antimony, aluminum, and magnesium. preferable. In this case, as a result, the holes can be more easily transmitted.
  • the hole transmission member 40 preferably contains at least a ceramic material and a polymer resin. It is conceivable that the hole transmission part deposits a ceramic material or a metal by vapor deposition or the like. However, a metal is short-circuited as a battery. In addition, the process cost increases in vapor deposition. Therefore, as a means of obtaining this feature in the process of conventional lithium batteries in productivity, by using a ceramic and resin coated film, it prevents tact and process increase and suppresses increase in process cost. Can do.
  • the first current collector 110 and the second current collector 120 are made of stainless steel. Thereby, the potential width can be expanded at low cost.
  • artificial graphite a styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40 parts by weight) manufactured by Nippon Zeon Co., Ltd., and carboxymethylcellulose (CMC) in a weight ratio of 100: 2.5.
  • CMC carboxymethylcellulose
  • the mixture was stirred with a double-arm kneader together with an appropriate amount of water to prepare a negative electrode material.
  • a negative electrode material was applied to a copper foil having a thickness of 10 ⁇ m and dried, and then rolled to a total thickness of 180 ⁇ m, and then cut into a specific size to form a negative electrode.
  • a polypropylene microporous film having a thickness of 20 ⁇ m was sandwiched between the positive electrode and the negative electrode as a separator, laminated, cut into a predetermined size, and inserted into a battery case.
  • An electrolytic solution obtained by dissolving 1 M of LiPF 6 in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) are mixed in a dry air environment. After injecting into a can and leaving for a certain period of time, it was precharged for about 20 minutes at a current corresponding to 0.1 C, and then sealed to produce a stacked lithium ion secondary battery. After that, it was left to age for a certain period in a room temperature environment.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • Example 1 Polyacrylic acid monomer having acetylene black, which is a conductive member, and a material obtained by adding 0.4% by weight of antimony (Sb) (manufactured by High Purity Science) to lithium nickelate (manufactured by JFE Mineral Co., Ltd.) and an acrylic group A binder consisting of SX9172 manufactured by ZEON Co., Ltd. in a solid weight ratio of 92: 3: 5 is stirred and dispersed with N-methylpyrrolidone (NMP) in a film mix which is a thin film swirl type high-speed mixer manufactured by Primix Co., Ltd. Thus, a positive electrode material was produced.
  • SB antimony
  • NMP N-methylpyrrolidone
  • the positive electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 ⁇ m, dried, and then rolled to an area density of 26.7 mg / cm 2 . Then, it cut
  • silicon-containing graphene material (“xGnP Graphene Nanoplatelets H type + Si” manufactured by XG Sciences, Inc.), 0.2 wt% of sulfur oxide with respect to the silicon-containing graphene material, and a polyacrylic acid monomer having an acrylic group A negative electrode binder (SX 9172 manufactured by Nippon Zeon Co., Ltd.) was stirred at a solid content ratio of 95: 5 together with N-methylpyrrolidone (NMP) in a film mix to prepare a negative electrode material.
  • NMP N-methylpyrrolidone
  • a negative electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 ⁇ m, dried, and then rolled to a surface density of 5.2 mg / cm 2 . Then, it cut
  • SUS current collector foil manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
  • a laminated structure is formed by sandwiching a sheet (“Nano X” manufactured by Mitsubishi Paper Industries Co., Ltd.) between the electrode 10 and the electrode 20 with ⁇ -alumina supported on a non-woven fabric having a thickness of 20 ⁇ m.
  • the laminated structure has a predetermined size. It cut
  • a mixed solvent in which EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) are mixed at a volume ratio of 1/1/1 is prepared, and 1M of LiPF 6 is dissolved in this mixed solvent. Furthermore, (vinylene carbonate (VC) 1.5 wt%, fluorinated ethylene carbonate (FEC) 2.0 wt%, phenazine methosulfate (PMS) 0.5 wt% and propane An electrolyte was prepared by adding 1% by weight of sultone (1,3-Propanesultone: PS), and was treated so that the electrolyte was immersed in the non-woven sheet carrying the ⁇ -alumina in a dry environment.
  • VC ethylene carbonate
  • FEC fluorinated ethylene carbonate
  • PMS phenazine methosulfate
  • Example 2 In Example 2, the positive electrode acetylene black of Example 1 was replaced with graphene (“xGnP Graphene Nanoplatelets H type” manufactured by XG Sciences, Inc.) to produce a secondary battery.
  • graphene xGnP Graphene Nanoplatelets H type manufactured by XG Sciences, Inc.
  • Example 3 In Example 3, a solid electrolyte, here LiNbO 3 , between the hole transfer member 40 and the ion transfer member 30 and the electrode 10 of Example 1, and between the hole transfer member 40 and the ion transfer member 30 and the electrode 20, is used. / Li 3 PS 4 was provided, and an electrolyte was dropped only on the surface of the solid electrolyte to produce a secondary battery.
  • a solid electrolyte here LiNbO 3
  • Example 4 the hole transmission member 40 and the ion transmission member 30 of Example 3 are an integral ion conductive film Li 1 + x + y Alx (Ti, Ge) 2 ⁇ x Si y P 3 ⁇ y O 12 , A secondary battery having a surface made of polyethylene oxide (PEO) containing the above electrolyte solution and made into an appropriate paste was prepared.
  • PEO polyethylene oxide
  • Example 5 a secondary battery in which the hole transmission member 40 of Example 1 includes a substance containing antimony, aluminum, and magnesium was manufactured.
  • Example 6 carbon nanotubes manufactured by Cano Technology Limited were added to the graphene of Example 1 so as to have a volume ratio of 3: 1 to produce a secondary battery.
  • Example 7 a secondary battery was fabricated by attaching a lithium metal foil having an area of 1/7 of the electrode 20 to the electrode 20 in Example 1.
  • Example 8 when producing the negative electrode material of Example 1, a secondary battery was produced by adding 0.06% by weight of lithium powder in a moisture content environment of 10 ppm or less.
  • Example 9 when the negative electrode material of Example 1 was produced, a secondary battery was produced by adding 0.06% by weight of sodium powder.
  • Example 10 when producing the negative electrode material of Example 1, a secondary battery was produced by adding 0.06% by weight of potassium powder.
  • Example 11 In Example 11, when the negative electrode material of Example 1 was produced, a secondary battery was produced by adding 0.06% by weight of zinc powder.
  • Example 12 In Example 12, a secondary battery was manufactured by adding ZrO 2 —P 2 O 5 to the nonwoven fabric of Example 1 at a volume ratio of 250 ppm.
  • Example 13 when producing the negative electrode material of Example 1, a secondary battery was produced by adding 0.8% by weight of lithium octylate.
  • Example 14 In Example 1, a secondary battery was manufactured by mixing materials with a double arm stirrer without using a fill mix.
  • Example 15 Lithium nickel oxide (manufactured by Sumitomo Metal Mining Co., Ltd.) doped with 0.7% by weight of antimony (Sb), Li 1.2 MnPO 4 (Lithated Metal Phosphate II manufactured by Dow Chemical Company), and Li 2 MnO 3 (Zhenhua) ZHFL-01 manufactured by E-Chem Co., Ltd. was mixed at a weight ratio of 54.7% by weight, 18.2% by weight and 18.2% by weight, respectively, and AMS-LAB manufactured by Hosokawa Micron Corporation ( The active material of the electrode 10 was produced by performing a treatment for 3 minutes at a rotation speed of 1500 rpm in Mechanofusion (registered trademark).
  • a binder (SX9172 manufactured by Nippon Zeon Co., Ltd.) composed of an active material, acetylene black as a conductive member, and a polyacrylic acid monomer having an acrylic group at a solid weight ratio of 92: 3: 5, N—
  • NMP methylpyrrolidone
  • the positive electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 ⁇ m, dried, and then rolled to an area density of 26.7 mg / cm 2 . Then, it cut
  • a graphene material (“xGnP Graphene Nanoplatelets H type” manufactured by XG Sciences, Inc.) and silicon oxide SiO xa (“SiOx” manufactured by Shanghai Sugisugi Technology Co., Ltd.) have a weight ratio of 56.4: 37.6.
  • the mixture was treated with NOB-130 (Nobilta (registered trademark)) manufactured by Hosokawa Micron Corporation for 3 minutes at a rotational speed of 800 rpm to prepare a negative electrode active material.
  • a negative electrode binder composed of a negative electrode active material and a polyacrylic acid monomer having an acryl group (SX 9172 manufactured by Nippon Zeon Co., Ltd.) at a solid content weight ratio of 95: 5 is combined with N-methylpyrrolidone (NMP). The mixture was stirred with an arm kneader to produce a negative electrode material.
  • NMP N-methylpyrrolidone
  • a negative electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 ⁇ m, dried, and then rolled to a surface density of 5.2 mg / cm 2 . Then, it cut
  • SUS current collector foil manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
  • a laminated structure is formed by sandwiching a sheet (“Nano X” manufactured by Mitsubishi Paper Industries Co., Ltd.) between the electrode 10 and the electrode 20 with ⁇ -alumina supported on a non-woven fabric having a thickness of 20 ⁇ m.
  • the laminated structure has a predetermined size. It cut
  • “Novolyte EEL-003” (Vinylene Carbonate (VC)) and lithium bis (oxalato) borate (LiBOB) of Novolite technologies are used for the nonwoven sheet carrying ⁇ -alumina. 2% by weight and 1% by weight added) were soaked.
  • a mixed solvent in which EC (ethylene carbonate), DMC (dimethyl carbonate), EMC (ethyl methyl carbonate), and PC (propylene carbonate) are mixed at a volume ratio of 1: 1: 1: 1 is prepared.
  • An electrolytic solution in which 1M LiPF 6 was dissolved in the mixed solvent was formed. Then, after injecting the electrolyte into the battery container in a dry air environment and leaving it for a certain period of time, it is precharged for about 20 minutes at a current corresponding to 0.1 C, and then sealed and aged for a certain period of time in a room temperature environment. A secondary battery was produced by allowing it to stand.
  • the capacity comparison performance of each secondary battery was evaluated by setting the 1C discharge capacity in the specification potential range of 2V-4.3V of Comparative Example 1 to 100.
  • the capacity evaluation was performed on the capacity comparison performance of each secondary battery even in the potential range of 2V-4.6V.
  • the discharge capacity ratio of 10C / 1C was measured.
  • the output performance is evaluated.
  • the 10C / 1C charge capacity ratio was measured. This evaluates input performance and quick chargeability.
  • Table 1 shows the results of the evaluation described above.
  • the secondary battery of Comparative Example 1 is a so-called general lithium ion secondary battery.
  • overheating was remarkable after 1 second regardless of the nail penetration speed, whereas in the secondary battery of Example 1, there was almost no increase in temperature after the nail penetration. Was suppressed.
  • the separator was melted over a wide range, but in the secondary battery of Example 1, the ceramic-containing non-woven fabric had its original shape. I kept it.
  • the ceramic-containing non-woven fabric was able to prevent significant overheating because the structure was not destroyed even in the case of heat generation due to a short circuit that occurred after nail penetration, and the expansion of the short circuit area could be suppressed.
  • the battery operated as a battery when the nail was removed after nail penetration.
  • Comparative Example 1 there was no battery operation. This is presumably because the battery of the present invention is not an ion battery but a battery having a semiconductor mechanism utilizing hole movement.
  • the mechanism of the semiconductor can be operated even if a part is destroyed, and it becomes a battery with good impact resistance that could not be obtained with conventional ion batteries, and this time, by finding this feature, it is highly safe A high-capacity, high-output battery could be obtained.
  • the positive electrode binder is examined.
  • PVDF was used as the positive electrode binder, and overheating could not be suppressed when the nail penetration speed was reduced.
  • the active material was dropped from the aluminum foil (current collector). The reason is considered as follows.
  • Example 1 When the nail pierces the secondary battery of Comparative Example 1 and an internal short circuit occurs, Joule heat is generated by the short circuit, and the positive electrode is deformed by melting PVDF (crystal melting point 174 ° C.). When the active material fell off, the resistance decreased and the current flowed more easily, and overheating was promoted and deformed. In contrast, in Example 1, SX9172 manufactured by Nippon Zeon Co., Ltd. was used as the negative electrode binder, and deformation was suppressed even when the current was temporarily concentrated and overheated.
  • PVDF crystal melting point 174 ° C.
  • Example 1 shows a direction in which high input performance, that is, the possibility of rapid charging can be obtained. Furthermore, it has been found that the lifetime is also greatly improved. This is because graphene, silicon, and nanoparticles of dopant can be uniformly dispersed to make a semiconductor uniformly, and the portion that does not become a semiconductor only generates ion migration, so there is a portion where the features of the present invention do not occur.
  • the portion that is not made into a semiconductor is mainly composed of a chemical reaction, it becomes a state close to that of a conventional ion battery, it is difficult to rapidly charge, and chemical deterioration occurs, so that it is considered difficult to obtain a long life effect.
  • FIG. 3 shows the 1C discharge capacity in Examples 1, 5 and Comparative Example 1. From FIG. 3, it can be understood that the secondary battery of this example exhibits a high capacity.
  • Example 1 at 4.6 V charging, the distribution of electrons in the electrode 20 was divided into blocks and evaluated by measuring current and resistance. As a result, distribution bias was observed in one direction perpendicular to the electric field. I understand. At the same time, Hall measurement was performed. As a result, there was a bias in the direction opposite to the electron distribution and almost perpendicular to the electric field direction. From this, it was also possible to find a phenomenon in which electrons and holes move in the electrode 20 in directions opposite to each other and substantially perpendicular to the electric field. It has also been found that an electron storage layer is provided in the electrode 20 during charging.
  • the secondary battery of the present invention can achieve high output and high capacity, and is suitably used as a highly safe large-sized storage battery or the like.
  • the secondary battery of the present invention is suitably used as a storage battery for a power generation mechanism with unstable power generation, such as geothermal power generation, wind power generation, solar power generation, hydroelectric power generation, and wave power generation.
  • the secondary battery of the present invention is also suitably used for mobile objects such as electric vehicles. Furthermore, since it is highly safe, it can be used for card batteries, mobile phones and mobile terminals.

Abstract

A secondary battery which is provided with a first electrode, a second electrode, an ion transfer member that is in contact with the first electrode and the second electrode, and a hole transfer member that is in contact with the first electrode and the second electrode directly or with a solid electrolyte being interposed therebetween, and wherein the second electrode contains at least graphene and silicon.

Description

二次電池Secondary battery
 本発明は二次電池に関する。 The present invention relates to a secondary battery.
 電池は、内部に入っている化学物質の化学エネルギーを電気化学的酸化還元反応によって電気エネルギーに変換する。近年、電池は、電子、通信、コンピュータなどの携帯型電子機器を中心に世界的に広く使用されている。また、電池は、今後、電気自動車等の移動体、および、電力負荷平準化システム等の定置用電池といった大型デバイスとしての実用化が望まれており、益々、重要なキーデバイスとなっている。 The battery converts the chemical energy of the chemical substance contained in the battery into electrical energy through an electrochemical redox reaction. In recent years, batteries are widely used around the world, mainly in portable electronic devices such as electronics, communication, and computers. Further, in the future, practical use as a large-sized device such as a moving body such as an electric vehicle and a stationary battery such as a power load leveling system is desired, and the battery is becoming an increasingly important key device.
 電池の中でも、リチウムイオン二次電池は、現在広く普及されている。一般的なリチウムイオン二次電池は、リチウム含有遷移金属複合酸化物を活物質とする正極と、リチウムイオンを吸蔵および放出することが可能な材料(例えば、リチウム金属、リチウム合金、金属酸化物またはカーボン)を活物質とする負極と、非水電解液と、セパレータとを備えている(例えば、JPH05‐242911A参照)。 Among the batteries, lithium ion secondary batteries are currently widely used. A typical lithium ion secondary battery includes a positive electrode using a lithium-containing transition metal composite oxide as an active material and a material capable of inserting and extracting lithium ions (for example, lithium metal, lithium alloy, metal oxide or A negative electrode using carbon) as an active material, a non-aqueous electrolyte, and a separator are provided (for example, refer to JPH05-242911A).
 また、JP2015-2167Aには、化学電池及び半導体電池の両方の特性を有する二次電池が開示されている。 JP2015-2167A discloses a secondary battery having characteristics of both a chemical battery and a semiconductor battery.
 しかしながら、従来のリチウムイオン二次電池は、単位重さあたりの出力および容量に限界を有しており、新たな二次電池が期待されている。 However, conventional lithium ion secondary batteries have limitations in output and capacity per unit weight, and new secondary batteries are expected.
 また、JP2015-2167Aには、従来のリチウムイオン二次電池では得られなかった高容量且つ高出力を得られる二次電池が開示されているが、電気自動車の普及には、高入力、急速充電性能を更に向上させることが期待される。また、JP2015-2167Aに開示された二次電池では、3000サイクル程度の寿命が確認できるが、電気自動車やスマートグリッドの普及には更に寿命性能を向上させることが期待されている。 JP2015-2167A discloses a secondary battery capable of obtaining a high capacity and a high output that could not be obtained by a conventional lithium ion secondary battery. It is expected to further improve performance. In addition, the secondary battery disclosed in JP2015-2167A can be confirmed to have a life of about 3000 cycles, but it is expected that the life performance will be further improved for the spread of electric vehicles and smart grids.
 本発明は上記課題に鑑みてなされたものであり、その目的は、高寿命であり且つ、高出入力および高容量を両立実現可能な新規な二次電池を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel secondary battery that has a long life and can realize both high input / output and high capacity.
 本発明のある実施態様による二次電池は、第1電極と、第2電極と、前記第1電極および前記第2電極と接触するイオン伝達部材と、前記第1電極および前記第2電極と接触するもしくは固体電解質を介して接触するホール伝達部材と、を備え、前記第2電極が少なくともグラフェンとシリコンを含有する。 A secondary battery according to an embodiment of the present invention includes a first electrode, a second electrode, an ion transmission member that contacts the first electrode and the second electrode, and a contact with the first electrode and the second electrode. Or a hole transmission member that is in contact via a solid electrolyte, and the second electrode contains at least graphene and silicon.
 ある実施形態において、前記第1電極は、複合酸化物を有しており、前記複合酸化物は、アルカリ金属またはアルカリ土類金属を含有する。 In one embodiment, the first electrode includes a composite oxide, and the composite oxide contains an alkali metal or an alkaline earth metal.
 ある実施形態において、前記複合酸化物は、p型半導体であるp型複合酸化物を含む。 In one embodiment, the composite oxide includes a p-type composite oxide that is a p-type semiconductor.
 ある実施形態において、前記p型複合酸化物は、アンチモン、鉛、燐、ホウ素、アルミニウムおよびガリウムからなる群から選択された少なくとも1種がドーピングされたリチウムおよびニッケルを含有する。 In one embodiment, the p-type composite oxide contains lithium and nickel doped with at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium.
 ある実施形態において、前記複合酸化物は、LixNiyzOαを少なくとも含み、ここで、0<x<3、y+z=1、1<α<4、Mは、アンチモン、鉛、燐、ホウ素、アルミニウムおよびガリウムからなる群から選択された少なくとも1種である。 In one embodiment, the composite oxide includes at least Li x Ni y M z Oα, where 0 <x <3, y + z = 1, 1 <α <4, and M is antimony, lead, phosphorus, It is at least one selected from the group consisting of boron, aluminum and gallium.
 ある実施形態において、前記複合酸化物は、Li1+x(Fe0.2Ni0.2)Mn0.63、ここで、0<x<3であり、Mは、アンチモン、鉛、燐、ホウ素、アルミニウムおよびガリウムからなる群から選択された少なくとも1種である。 In one embodiment, the composite oxide is Li 1 + x (Fe 0.2 Ni 0.2 ) Mn 0.6 O 3 , where 0 <x <3, and M is antimony, lead, phosphorus, boron, aluminum, and It is at least one selected from the group consisting of gallium.
 ある実施形態において、前記複合酸化物はフッ素を含有する。 In one embodiment, the composite oxide contains fluorine.
 ある実施形態において、前記イオン伝達部材は、液体、ゲル体および固体のいずれかである。その中に、フッ化エチレンカーボネートとフェナジンメトサルフェートを少なくとも含む。 In one embodiment, the ion transmission member is one of a liquid, a gel body, and a solid. It contains at least fluorinated ethylene carbonate and phenazine methosulfate.
 ある実施形態において、前記ホール伝達部材は、セラミック材料と高分子樹脂を少なくとも含有する。 In one embodiment, the hole transmission member contains at least a ceramic material and a polymer resin.
 ある実施形態において、前記ホール伝達部材は、セラミック材料を担持する不織布を有する。 In one embodiment, the hole transmission member has a nonwoven fabric carrying a ceramic material.
 ある実施形態において、前記第1電極および前記第2電極の少なくとも一方は、無機酸化物フィラーの含有された多孔膜層に接着されている。 In one embodiment, at least one of the first electrode and the second electrode is bonded to a porous film layer containing an inorganic oxide filler.
 ある実施形態において、前記無機酸化物フィラーは、α-Al23を主成分とする。 In one embodiment, the inorganic oxide filler contains α-Al 2 O 3 as a main component.
 ある実施形態において、前記多孔膜層は、ZrO2-P25をさらに含有する。 In one embodiment, the porous membrane layer further contains ZrO 2 —P 2 O 5 .
 ある実施形態において、前記多孔膜層は、アンチモン、ナトリウム、リチウム、マグネシウム、及びアルミニウムからなる群から選択された少なくとも1種の元素を含む。 In one embodiment, the porous film layer contains at least one element selected from the group consisting of antimony, sodium, lithium, magnesium, and aluminum.
 ある実施形態において、前記第2電極は、グラフェンとシリコン含有物を含有する。 In one embodiment, the second electrode contains graphene and a silicon-containing material.
 ある実施形態において、前記グラフェンに、カーボンナノチューブが含有されている。 In one embodiment, the graphene contains carbon nanotubes.
 ある実施形態において、前記第2電極は、グラフェン、カーボンナノチューブ、またはグラフェンとカーボンナノチューブの混合と、シリコン含有物と、を含有し、それらにリチウムがドーピングされている。 In one embodiment, the second electrode contains graphene, carbon nanotubes, or a mixture of graphene and carbon nanotubes, and a silicon-containing material, and is doped with lithium.
 ある実施形態において、前記リチウムは、有機リチウムを前記第2電極に含有させて加熱することによってドープされる。 In one embodiment, the lithium is doped by heating the organic lithium contained in the second electrode.
 ある実施形態において、前記第2電極にリチウム金属が貼り付けられる。 In one embodiment, lithium metal is attached to the second electrode.
 ある実施形態において、前記第2電極はハロゲンを有する。 In one embodiment, the second electrode has a halogen.
 ある実施形態において、前記ハロゲンはフッ素を含む。 In one embodiment, the halogen includes fluorine.
 ある実施形態において、前記ハロゲンはヨウ素を含む。 In one embodiment, the halogen includes iodine.
 ある実施形態において、前記第2電極はアルカリ金属を有する。 In one embodiment, the second electrode includes an alkali metal.
 ある実施形態において、前記アルカリ金属はナトリウムを含む。 In one embodiment, the alkali metal includes sodium.
 ある実施形態において、前記アルカリ金属はカリウムを含む。 In one embodiment, the alkali metal includes potassium.
 ある実施形態において、前記第2電極はチタンを含有する。 In one embodiment, the second electrode contains titanium.
 ある実施形態において、前記第2電極は亜鉛を含有する。 In one embodiment, the second electrode contains zinc.
 ある実施形態において、前記第1電極および前記第2電極の少なくとも一方はアクリル樹脂層を有している。 In one embodiment, at least one of the first electrode and the second electrode has an acrylic resin layer.
 ある実施形態において、前記アクリル樹脂層は、基本単位としてポリアクリル酸を含むゴム状高分子を有する。 In one embodiment, the acrylic resin layer has a rubbery polymer containing polyacrylic acid as a basic unit.
 ある実施形態において、前記アクリル樹脂層は、前記ゴム状高分子として、分子量の異なる高分子を有する。 In one embodiment, the acrylic resin layer has polymers having different molecular weights as the rubbery polymer.
 ある実施形態において、前記二次電池は、前記第1電極と接触する第1集電体と、前記第2電極と接触する第2集電体とをさらに備え、前記第1集電体および第2集電体のそれぞれはステンレス鋼から形成されている。 In one embodiment, the secondary battery further includes a first current collector in contact with the first electrode and a second current collector in contact with the second electrode, wherein the first current collector and the first current collector Each of the two current collectors is formed from stainless steel.
 本発明によれば、高寿命であり且つ、高出入力および高容量を実現可能な二次電池を提供することができる。 According to the present invention, it is possible to provide a secondary battery that has a long life and is capable of realizing high input / output and high capacity.
本発明の実施形態の二次電池の模式図である。It is a schematic diagram of the secondary battery of the embodiment of the present invention. 本発明の実施形態の二次電池とリチウムイオン電池の重量エネルギー密度を示すグラフである。It is a graph which shows the weight energy density of the secondary battery and lithium ion battery of embodiment of this invention. 実施例1、実施例5および比較例1の1C放電容量を示したグラフである。6 is a graph showing 1C discharge capacities of Example 1, Example 5, and Comparative Example 1.
 以下、図面を参照して本発明の実施形態の二次電池について説明する。ただし、本発明は以下の実施形態に限定されない。 Hereinafter, a secondary battery according to an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
 図1に、本実施形態の二次電池100の模式図を示す。二次電池100は、電極10と、電極20と、イオン伝達部材30と、ホール伝達部材40とを備えている。電極10はイオン伝達部材30およびホール伝達部材40を介して電極20と対向しており、イオン伝達部材30およびホール伝達部材40の少なくとも一方により、電極10は電極20と物理的に接触しない。 FIG. 1 shows a schematic diagram of the secondary battery 100 of the present embodiment. The secondary battery 100 includes an electrode 10, an electrode 20, an ion transmission member 30, and a hole transmission member 40. The electrode 10 faces the electrode 20 via the ion transmission member 30 and the hole transmission member 40, and the electrode 10 does not physically contact the electrode 20 by at least one of the ion transmission member 30 and the hole transmission member 40.
 ここでは、電極(第1電極)10は正極として機能し、電極(第2電極)20は負極として機能する。放電を行う際、電極10の電位は電極20の電位よりも高く、電流は、電極10から外部負荷(図示せず)を介して電極20に流れる。また、充電を行う際、外部電源(図示せず)の高電位端子が電極10と電気的に接続され、外部電源(図示せず)の低電位端子が電極20と電気的に接続される。また、ここでは、電極10は集電体(第1集電体)110と接触して正極を形成しており、電極20は集電体(第2集電体)120と接触して負極を形成している。 Here, the electrode (first electrode) 10 functions as a positive electrode, and the electrode (second electrode) 20 functions as a negative electrode. When discharging, the potential of the electrode 10 is higher than the potential of the electrode 20, and current flows from the electrode 10 to the electrode 20 via an external load (not shown). Further, when charging, a high potential terminal of an external power source (not shown) is electrically connected to the electrode 10, and a low potential terminal of an external power source (not shown) is electrically connected to the electrode 20. Here, the electrode 10 is in contact with the current collector (first current collector) 110 to form a positive electrode, and the electrode 20 is in contact with the current collector (second current collector) 120 to form the negative electrode. Forming.
 イオン伝達部材30は電極10および電極20と接触している。図1では、模式的に、イオン伝達部材30が、電極10と電極20の間を繋ぐようにホール伝達部材40に設けられた孔に位置している場合を示す。これに代わり、孔がなくNASICONのようなイオン伝導性膜である場合であってもよい。孔に位置しているイオン伝達部材30は、例えば、液体(具体的には、電解液)である。あるいは、イオン伝達部材30は固体またはゲル体であってもよい。放電の際、電極20において発生したイオン(カチオン)は、イオン伝達部材30を介して電極10に移動する。一方、充電の際、電極10において発生したイオンは、イオン伝達部材30を介して電極20に移動する。イオンが電極10から電極20に移動することにより、電極10の電位は電極20の電位よりも高くなるようなことも想定され、また、他のメカニズム動作も想定できる。それは、充電の際は、電極20に電子挿印することで、電極10内に過剰なカチオンを起因として、ホールを発生させ、ホールが電極20方向に向かい、イオン伝達部材30とホール伝達部材40に電極10から発生したホールが衝突してホール伝達部材40もしくはイオン伝達部材30を含む部分に含有していた多価カチオンになり得る含材料から乖離し、多価カチオンを輸送し、電極20に多価カチオンが衝突し、ホールを起因させる。その電極20内のホールは電極10での電界方向と垂直方向に進行するとともに電子もホールと反対方向に蓄積されて行く。これは電極20に用いているグラフェン(Graphene)に起因する現象であることをこの度見出している。この時、電極10はドーピングによりp型化させた半導体材料であり、電極20は含有しているシリコンをn型化させた半導体材料である。その結果、急速充電を実現し、高入力性能を得ることができる。 The ion transmission member 30 is in contact with the electrode 10 and the electrode 20. FIG. 1 schematically shows a case where the ion transmission member 30 is located in a hole provided in the hole transmission member 40 so as to connect the electrode 10 and the electrode 20. Alternatively, an ion conductive membrane such as NASICON without holes may be used. The ion transmission member 30 located in the hole is, for example, a liquid (specifically, an electrolytic solution). Alternatively, the ion transmission member 30 may be a solid or a gel body. During discharge, ions (cations) generated in the electrode 20 move to the electrode 10 via the ion transmission member 30. On the other hand, during charging, ions generated at the electrode 10 move to the electrode 20 via the ion transmission member 30. As the ions move from the electrode 10 to the electrode 20, it is assumed that the potential of the electrode 10 becomes higher than the potential of the electrode 20, and other mechanism operations can be assumed. When charging, the electrode 20 is electronically inserted to generate holes in the electrode 10 due to excessive cations, the holes are directed toward the electrode 20, and the ion transfer member 30 and the hole transfer member 40. The hole generated from the electrode 10 collides with the material containing the polyvalent cation contained in the portion including the hole transmission member 40 or the ion transmission member 30 and transports the polyvalent cation to the electrode 20. Multivalent cations collide and cause holes. The holes in the electrode 20 travel in a direction perpendicular to the direction of the electric field at the electrode 10 and electrons are accumulated in the direction opposite to the holes. This time, it has been found that this is a phenomenon caused by the graphene used for the electrode 20. At this time, the electrode 10 is a semiconductor material made p-type by doping, and the electrode 20 is a semiconductor material made n-type of contained silicon. As a result, rapid charging can be realized and high input performance can be obtained.
 また、放電時は、誘電分極反応を起こし、電極20の電子蓄積層に蓄積された電子は一気に電極内から外部に放出され、電極20内のホールが電極10側に移動することで高出力を得る結果に結びつく。 In addition, during discharge, a dielectric polarization reaction occurs, and electrons accumulated in the electron accumulation layer of the electrode 20 are released from the electrode to the outside at once, and the holes in the electrode 20 move to the electrode 10 side, resulting in high output. It leads to the result to be obtained.
 ここで、NASICONとは、次の構造物質である。
Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12
Here, NASICON is the following structural material.
Li 1 + x + y Alx (Ti, Ge) 2-x Si y P 3-y O 12
 このように電極10と電極20での現象の異なり、2つの電池が存在するような仕組みであるバイポーラ構造も得られた電池となることも見出された。これによって、これまでにない高安全、高寿命、高出入力、高容量の電池を得ることが出来ることを見出した。 As described above, it was also found that the difference between the phenomenon of the electrode 10 and the electrode 20 is a battery having a bipolar structure in which two batteries exist. As a result, it has been found that an unprecedented high safety, long life, high input / output, and high capacity battery can be obtained.
 例えば、イオンは、アルカリ金属またはアルカリ土類金属のイオンである。電極10はアルカリ金属またはアルカリ土類金属を含む化合物を含有している。電極20はアルカリ金属のイオンまたはアルカリ土類金属のイオンを吸蔵および放出可能である。二次電池100が放電する際に、アルカリ金属のイオンまたはアルカリ土類金属のイオンは電極20から放出され、イオン伝達部材30を介して電極10まで移動する。また、二次電池100を充電する際に、アルカリ金属またはアルカリ土類金属のイオンが電極10からイオン伝達部材30を介して電極20まで移動し、電極20に吸蔵される。なお、イオン伝達部材30を伝達するイオンは、アルカリ金属のイオンおよびアルカリ土類金属のイオンの両方であってもよい。 For example, the ions are alkali metal or alkaline earth metal ions. The electrode 10 contains a compound containing an alkali metal or an alkaline earth metal. The electrode 20 can occlude and release alkali metal ions or alkaline earth metal ions. When the secondary battery 100 is discharged, alkali metal ions or alkaline earth metal ions are released from the electrode 20 and move to the electrode 10 through the ion transmission member 30. Further, when the secondary battery 100 is charged, ions of alkali metal or alkaline earth metal move from the electrode 10 to the electrode 20 through the ion transmission member 30 and are occluded by the electrode 20. The ions transmitted through the ion transmission member 30 may be both alkali metal ions and alkaline earth metal ions.
 本実施形態の二次電池100では、電極10はp型半導体を有している。充電および放電のそれぞれの場合において、ホールが電極10を介して移動する。 In the secondary battery 100 of this embodiment, the electrode 10 has a p-type semiconductor. In each case of charging and discharging, the hole moves through the electrode 10.
 ホール伝達部材40は、電極10および電極20と接触している。放電の際、電極10のホールは、外部負荷(図示せず)を介して電極20に移動し、また、電極10は、ホール伝達部材40を介してホールを受け取る。一方、充電の際、電極10のホールは、ホール伝達部材40を介して電極20に移動し、また、電極10は外部電源(図示せず)からホールを受け取る。 The hole transmission member 40 is in contact with the electrode 10 and the electrode 20. During discharge, the hole of the electrode 10 moves to the electrode 20 via an external load (not shown), and the electrode 10 receives the hole via the hole transmission member 40. On the other hand, at the time of charging, the hole of the electrode 10 moves to the electrode 20 through the hole transmitting member 40, and the electrode 10 receives the hole from an external power source (not shown).
 本実施形態の二次電池100では、充電および放電のそれぞれの際に、イオンだけでなくホールも移動する。具体的には、放電の際に、電極20において発生したイオンがイオン伝達部材30を介して電極10に移動するだけでなく、電極10と電極20との電位差に起因して、ホールは、電極10、外部負荷(図示せず)、電極20、ホール伝達部材40の順番に循環する。また、充電の際に、電極10において発生したイオンがイオン伝達部材30を介して電極20に移動するだけでなく、ホールは、電極10、ホール伝達部材40、電極20、外部電源(図示せず)の順番に循環する場合も想定できるが、この度、ここ請求項に示す条件により、以下の現象を見出した。放電の際に、電極20において存在する電子は外部回路に放出され、同時に電極20に存在するホールはホール伝達部材40に到達するものと、イオン伝達部材30の多価カチオンに衝突し、多価カチオンが各金属含有物に戻るものが存在する。ホール伝達部材40を伝って電極10内をホールが移動することで、電極10内の電子との電極内量子バランスが均衡を得る。すなわち、電極20における電子蓄積が高出入力と容量に起因し、その作動のきっかけ機能として電極10が有る機構を備えたバイポーラ構造を得る。電極20の材料はグラフェンとシリコンの含有物であるため、ホールを従来のイオン電池よりも多く確保できることから電子蓄積も従来のイオン電池よりも多くできる。この結果、今回の発明効果を得ることができた。 In the secondary battery 100 of the present embodiment, not only ions but also holes move during charging and discharging. Specifically, during discharge, ions generated at the electrode 20 not only move to the electrode 10 via the ion transfer member 30, but also due to the potential difference between the electrode 10 and the electrode 20, 10, the external load (not shown), the electrode 20, and the hole transmission member 40 are circulated in this order. Further, during charging, ions generated in the electrode 10 not only move to the electrode 20 via the ion transmission member 30 but also the holes are formed in the electrode 10, the hole transmission member 40, the electrode 20, an external power source (not shown) ) Can be assumed to circulate in this order, but this time, the following phenomenon was found under the conditions shown in the claims. At the time of discharge, electrons existing in the electrode 20 are emitted to the external circuit, and at the same time, the holes existing in the electrode 20 collide with the multivalent cations of the ion transfer member 30 and those that reach the hole transfer member 40. There are those in which cations return to each metal-containing material. As holes move through the electrode 10 through the hole transmission member 40, the in-electrode quantum balance with the electrons in the electrode 10 is balanced. That is, an electron accumulation in the electrode 20 is caused by high input / output and capacity, and a bipolar structure having a mechanism with the electrode 10 as a trigger function of the operation is obtained. Since the material of the electrode 20 is an inclusion of graphene and silicon, more holes can be secured than in the conventional ion battery, so that more electrons can be stored than in the conventional ion battery. As a result, the present invention effect could be obtained.
 このように、本実施形態の二次電池100では、電極10または電極20において発生したイオンは、イオン伝達部材30を介して電極10と電極20との間を移動する。イオンが電極10と電極20との間を移動するため、二次電池100は、高容量を実現できる。また、本実施形態の二次電池100では、ホールは、ホール伝達部材40を介して電極10と電極20との間を移動する。ホールは、イオンよりも小さく、かつ、高い移動度を有しているため、二次電池100は、高出力を実現できる。 Thus, in the secondary battery 100 of the present embodiment, the ions generated at the electrode 10 or the electrode 20 move between the electrode 10 and the electrode 20 via the ion transmission member 30. Since the ions move between the electrode 10 and the electrode 20, the secondary battery 100 can realize a high capacity. Further, in the secondary battery 100 of the present embodiment, the hole moves between the electrode 10 and the electrode 20 via the hole transmission member 40. Since the hole is smaller than the ion and has high mobility, the secondary battery 100 can achieve high output.
 また、ここに見出したる条件によれば、ホール伝達部材40及びイオン伝達部材30では、イオンとホールを置換する役目も見出した。これによって、高安全で高寿命であり、高容量、高出入力を実現する結果を得た。 Also, according to the conditions found here, the hole transmission member 40 and the ion transmission member 30 have also found out a role of replacing ions and holes. As a result, high safety and long life, high capacity and high output were achieved.
 図2は、本実施形態の二次電池100および一般的なリチウムイオン電池の重量エネルギー密度を示すグラフである。図2から理解されるように、本実施形態の二次電池100によれば、出力特性を大きく改善することができる。 FIG. 2 is a graph showing the weight energy density of the secondary battery 100 of this embodiment and a general lithium ion battery. As can be understood from FIG. 2, according to the secondary battery 100 of the present embodiment, the output characteristics can be greatly improved.
 以上により、本実施形態の二次電池100は、高容量および高出力を実現している。本実施形態の二次電池100は、イオン伝達部材30を介してイオンの伝達を行う化学電池、および、p型半導体である電極10からホール伝達部材40を介してホールの伝達を行う半導体電池の両方の特性を有しており、二次電池100は、化学電池および物理電池(半導体電池)のハイブリッド電池といえる。 As described above, the secondary battery 100 of the present embodiment achieves high capacity and high output. The secondary battery 100 of this embodiment includes a chemical battery that transmits ions through the ion transfer member 30 and a semiconductor battery that transmits holes from the electrode 10 that is a p-type semiconductor through the hole transfer member 40. The secondary battery 100 can be said to be a hybrid battery of a chemical battery and a physical battery (semiconductor battery).
 もしくは、電極20の部分が半導体電池であり、電極10の部分が半導体電池のきっかけを起こす電池であるバイポーラ電池とも言える。 Alternatively, it can be said that the electrode 20 is a semiconductor battery, and the electrode 10 is a bipolar battery that triggers the semiconductor battery.
 本実施形態の二次電池100では、イオン伝達部材30としての電解液量を低減させることができるため、仮に、電極10と電極20とが接触して内部を短絡させても、二次電池100の温度の上昇を抑制できる。また、本実施形態の二次電池100は、急速放電での容量低下も少なく、サイクル特性に優れている。 In the secondary battery 100 of this embodiment, since the amount of the electrolyte solution as the ion transfer member 30 can be reduced, even if the electrode 10 and the electrode 20 come into contact with each other and the inside is short-circuited, the secondary battery 100 The rise in temperature can be suppressed. In addition, the secondary battery 100 of the present embodiment is excellent in cycle characteristics with little decrease in capacity due to rapid discharge.
 なお、電極10をp型半導体とすることに加えて、電極20をn型半導体とすることにより、本発明効果を得やすく、二次電池100の容量および出力特性をさらに向上させることができる。 In addition to using the electrode 10 as a p-type semiconductor and the electrode 20 as an n-type semiconductor, the effects of the present invention can be easily obtained, and the capacity and output characteristics of the secondary battery 100 can be further improved.
 電極10および電極20がそれぞれp型半導体およびn型半導体であるか否かは、ホール効果(Hall effect)を測定することによって判定できる。ホール効果により、電流を流しながら磁場を印加すると、電流が流れる方向および磁場の印加方向と直角する方向に電圧が発生する。その電圧の向きにより、p型半導体であるかn型半導体であるか判定できる。 Whether or not the electrode 10 and the electrode 20 are a p-type semiconductor and an n-type semiconductor can be determined by measuring a Hall effect. Due to the Hall effect, when a magnetic field is applied while a current is flowing, a voltage is generated in a direction in which the current flows and in a direction perpendicular to the direction in which the magnetic field is applied. Whether the semiconductor is a p-type semiconductor or an n-type semiconductor can be determined based on the direction of the voltage.
 なお、図1では、模式的に、イオン伝達部材30は、ホール伝達部材40に設けられた孔内に位置していたが、本発明はこれに限定されない。イオン伝達部材30はホール伝達部材40から離れた場所に位置していてもよい。 In FIG. 1, the ion transmission member 30 is typically located in the hole provided in the hole transmission member 40, but the present invention is not limited to this. The ion transmission member 30 may be located at a location away from the hole transmission member 40.
 また、上述した説明では、充電および放電のそれぞれの際に、イオン伝達部材30およびホール伝達部材40を介してイオンおよびホールがそれぞれ伝達したが、充電および放電のうちの一方の際に、イオン伝達部材30およびホール伝達部材40の一方を介してイオンまたはホールが伝達してもよい。例えば、放電時に、イオン伝達部材(例えば、電解液)30がなくてもよく、ホールのみが伝達されてもよい。あるいは、充電時に、ホール伝達部材40がなくてもよく、イオンがイオン伝達部材30を介して電極10から電極20に伝達されてもよい。 In the above description, ions and holes are transmitted through the ion transmission member 30 and the hole transmission member 40 during charging and discharging, respectively, but ion transmission is performed during one of charging and discharging. Ions or holes may be transmitted through one of the member 30 and the hole transmitting member 40. For example, at the time of discharging, the ion transmission member (for example, electrolyte) 30 may not be present, and only holes may be transmitted. Alternatively, at the time of charging, the hole transmission member 40 may not be provided, and ions may be transmitted from the electrode 10 to the electrode 20 via the ion transmission member 30.
 また、ホール伝達部材40はイオン伝達部材30と一体的に形成されてもよい。すなわち、同一の部材がイオンおよびホールの両方を伝達してもよい。 Further, the hole transmission member 40 may be formed integrally with the ion transmission member 30. That is, the same member may transmit both ions and holes.
 イオン伝達部材30にフッ化エチレンカーボネートとフェナジンメトサルフェートを含有させると尚好ましく、寿命及び出入力性能を大幅に向上させる。フェナジンメトサルフェートがグラフェンと電解液の界面での還元反応を抑制させる効果が確認されており、また、グラフェン層間への電子やホール移動の抵抗を下げる効果も今回確認でき、このことが起因していると考えられる。また、フッ化エチレンカーボネートが、シリコンが電解液中の弗酸に侵されるのを抑制していると考えられ、更に、シリコンへのホール取り込みの障壁を下げる効果も確認できている。これらの結果、本効果が得られるものと考える。 It is more preferable that the ion transmission member 30 contains fluorinated ethylene carbonate and phenazine methosulfate, which greatly improves the life and input / output performance. The effect of phenazine methosulfate on reducing the reduction reaction at the interface between graphene and electrolyte has been confirmed, and the effect of reducing the resistance of electron and hole movement between the graphene layers has also been confirmed this time. It is thought that there is. In addition, it is considered that fluorinated ethylene carbonate suppresses silicon from being attacked by hydrofluoric acid in the electrolytic solution, and has also confirmed the effect of lowering the barrier for hole incorporation into silicon. As a result, this effect is considered to be obtained.
 [電極10について]
 電極10は、アルカリ金属またはアルカリ土類金属を含有する複合酸化物を有している。例えば、アルカリ金属はリチウムおよびナトリウムの少なくとも1種であり、アルカリ土類金属はマグネシウムである。複合酸化物は、二次電池100の正極活物質として機能する。例えば、電極10は、複合酸化物および正極結着剤を混合した正極電極材から形成される。また、正極電極材には、さらに導電材が混合されてもよい。なお、複合酸化物は、1種類に限られず、複数種類であってもよい。
[About electrode 10]
The electrode 10 has a composite oxide containing an alkali metal or an alkaline earth metal. For example, the alkali metal is at least one of lithium and sodium, and the alkaline earth metal is magnesium. The composite oxide functions as a positive electrode active material of the secondary battery 100. For example, the electrode 10 is formed from a positive electrode material obtained by mixing a composite oxide and a positive electrode binder. Further, a conductive material may be further mixed with the positive electrode material. The composite oxide is not limited to one type, and may be a plurality of types.
 複合酸化物は、p型半導体であるp型複合酸化物を含む。例えば、p型半導体として機能するように、p型複合酸化物は、アンチモン、鉛、燐、ホウ素、アルミニウムおよびガリウムからなる群から選択された少なくとも1種をドーピングしたリチウムおよびニッケルを有する。この複合酸化物は、LixNiyzOαと表される。ここで、0<x<3、y+z=1、1<α<4である。また、ここでは、Mは、p型半導体として機能させるための元素であり、Mは、アンチモン、鉛、燐、ホウ素、アルミニウムおよびガリウムからなる群から選択された少なくとも1種である。ドーピングにより、p型複合酸化物には構造的な欠損が生じており、これにより、ホールが形成される。 The complex oxide includes a p-type complex oxide that is a p-type semiconductor. For example, in order to function as a p-type semiconductor, the p-type composite oxide has lithium and nickel doped with at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium. This composite oxide is expressed as Li x Ni y Mz Oα. Here, 0 <x <3, y + z = 1, and 1 <α <4. Here, M is an element for functioning as a p-type semiconductor, and M is at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium. Due to the doping, structural defects are generated in the p-type composite oxide, thereby forming holes.
 例えば、p型複合酸化物は、金属元素のドーピングされたニッケル酸リチウムを含むことが好ましい。一例として、p型複合酸化物は、アンチモンをドープしたニッケル酸リチウムである。 For example, the p-type complex oxide preferably contains lithium nickelate doped with a metal element. As an example, the p-type composite oxide is antimony-doped lithium nickelate.
 なお、複合酸化物は、複数種類混合されることが好ましい。例えば、複合酸化物は、p型複合酸化物と固溶体を形成する固溶体状複合酸化物を含むことが好ましい。固溶体は、p型複合酸化物および固溶体状複合酸化物から形成される。例えば、固溶体状複合酸化物は、ニッケル酸と層状の固溶体を形成しやすく、固溶体はホールを移動させやすい構造になる。例えば、固溶体状複合酸化物はリチウムマンガン酸化物(Li2MnO3)であり、この場合、リチウムの価数は2である。 In addition, it is preferable that multiple types of complex oxide are mixed. For example, the complex oxide preferably includes a solid solution complex oxide that forms a solid solution with the p-type complex oxide. The solid solution is formed from a p-type complex oxide and a solid solution complex oxide. For example, the solid solution composite oxide easily forms a layered solid solution with nickel acid, and the solid solution has a structure in which holes are easily moved. For example, the solid solution composite oxide is lithium manganese oxide (Li 2 MnO 3 ). In this case, the valence of lithium is 2.
 また、複合酸化物は、さらに、オリビン構造を有するオリビン構造複合酸化物を含むことが好ましい。オリビン構造により、p型複合酸化物がホールを形成する際にも電極10が変形することが抑制される。また、例えば、オリビン構造複合酸化物はリチウムおよびマンガンを有しており、リチウムの価数は1よりも大きいことが好ましい。この場合、リチウムイオンが移動しやすく、また、ホールが形成されやすい。例えば、オリビン構造複合酸化物はLiMnPO4である。 Further, the composite oxide preferably further contains an olivine structure composite oxide having an olivine structure. Due to the olivine structure, deformation of the electrode 10 is suppressed even when the p-type complex oxide forms holes. Further, for example, the olivine structure composite oxide has lithium and manganese, and the valence of lithium is preferably larger than 1. In this case, lithium ions easily move and holes are easily formed. For example, the olivine structure composite oxide is LiMnPO 4 .
 また、複合酸化物は、p型複合酸化物と、固溶体状複合酸化物と、オリビン構造複合酸化物とを含んでもよい。このように複数種類の複合酸化物を混合させることにより、二次電池100のサイクル特性を向上させることができる。 Further, the composite oxide may include a p-type composite oxide, a solid solution composite oxide, and an olivine structure composite oxide. Thus, by mixing a plurality of types of complex oxides, the cycle characteristics of the secondary battery 100 can be improved.
 例えば、複合酸化物は、LixNiyzOαと、Li2MnO3と、LiβMnPO4とを含有してもよい。ここで、0<x<3、y+z=1、1<α<4および、β>1.0である。または、複合酸化物は、LixNiyzOαと、Li2MnO3と、LiγMnSiO4とを含有してもよい。ここで、0<x<3、y+z=1、1<α<4、γ>1.0である。あるいは、複合酸化物は、Li1+x(Fe0.2Ni0.2)Mn0.63と、Li2MnO3と、LiβMnPO4とを含有してもよい。ここで、0<x<3、β>1.0である。 For example, the composite oxide may contain Li x Ni y M z Oα, Li 2 MnO 3 , and LiβMnPO 4 . Here, 0 <x <3, y + z = 1, 1 <α <4, and β> 1.0. Alternatively, the composite oxide may contain Li x Ni y M z Oα, Li 2 MnO 3 , and LiγMnSiO 4 . Here, 0 <x <3, y + z = 1, 1 <α <4, γ> 1.0. Alternatively, the composite oxide may contain Li 1 + x (Fe 0.2 Ni 0.2 ) Mn 0.6 O 3 , Li 2 MnO 3 , and LiβMnPO 4 . Here, 0 <x <3 and β> 1.0.
 例えば、電極10の活物質として、ニッケル酸リチウム、リン酸マンガンリチウム、マンガン酸リチウム、ニッケルマンガン酸リチウム、マンガンニオブ酸リチウムおよび、これらの固溶体、ならびに、各々の変性体(アンチモンやアルミニウムやマグネシウム等の金属を共晶させたもの)などの複合酸化物や各々の材料を化学的または物理的に合成したものが挙げられる。 For example, as the active material of the electrode 10, lithium nickelate, lithium manganese phosphate, lithium manganate, lithium nickel manganate, lithium manganese niobate, and solid solutions thereof, and modified products thereof (antimony, aluminum, magnesium, etc.) Composite oxides obtained by eutectic crystal of these metals) and those obtained by chemically or physically synthesizing each material.
 なお、複合酸化物はフッ素を含有してもよい。例えば、複合酸化物として、LiMnPO4Fを用いてもよい。これにより、電解液が六フッ化リン酸リチウムを含むためにフッ酸が発生しても、複合酸化物の特性の変化を抑制することができる。 Note that the composite oxide may contain fluorine. For example, LiMnPO 4 F may be used as the composite oxide. Thereby, even if hydrofluoric acid is generated because the electrolytic solution contains lithium hexafluorophosphate, changes in the characteristics of the composite oxide can be suppressed.
 電極10は、複合酸化物、正極結着剤および導電材を混合した正極電極材から形成される。例えば、正極結着剤はアクリル樹脂を含有し、電極10にアクリル樹脂層が形成される。例えば、正極結着剤は、ポリアクリル酸単位を含むゴム状高分子を含む。 The electrode 10 is formed from a positive electrode material in which a composite oxide, a positive electrode binder, and a conductive material are mixed. For example, the positive electrode binder contains an acrylic resin, and an acrylic resin layer is formed on the electrode 10. For example, the positive electrode binder contains a rubbery polymer containing polyacrylic acid units.
 なお、ゴム状高分子として、分子量の比較的高い高分子と分子量の比較的低い高分子とが混合されていることが好ましい。このように、分子量の異なる高分子が混合していることにより、フッ酸に強く、ホール移動の妨害が抑制される。 In addition, it is preferable that a polymer having a relatively high molecular weight and a polymer having a relatively low molecular weight are mixed as the rubbery polymer. As described above, the mixture of polymers having different molecular weights is resistant to hydrofluoric acid and inhibits the movement of holes.
 例えば、正極結着剤は、変性アクリロニトリルゴム粒子バインダー(日本ゼオン株式会社製BM-520Bなど)を、増粘効果のあるカルボキシメチルセルロース(Carboxymethylcellulose:CMC)および可溶性変性アクリロニトリルゴム(日本ゼオン株式会社製BM-720Hなど)と混合して作製される。正極結着剤としてアクリル基を有するポリアクリル酸モノマーからなる結着剤(日本ゼオン株式会社製SX9172)を用いることが好ましい。また、導電剤として、アセチレンブラック、ケッチェンブラック、および、各種グラファイトやグラフェンやカーボンナノチューブ、カーボンナノファイバーを単独または組み合わせて用いてもよい。 For example, the positive electrode binder is a modified acrylonitrile rubber particle binder (such as BM-520B manufactured by Nippon Zeon Co., Ltd.), carboxymethylcellulose (CMC) having a thickening effect, and soluble modified acrylonitrile rubber (BM manufactured by Nippon Zeon Co., Ltd.). -720H and the like). It is preferable to use a binder (SX9172 manufactured by Nippon Zeon Co., Ltd.) made of a polyacrylic acid monomer having an acrylic group as the positive electrode binder. As the conductive agent, acetylene black, ketjen black, and various graphites, graphenes, carbon nanotubes, and carbon nanofibers may be used alone or in combination.
 上述した材料を正極結着剤とすることにより、二次電池100を組み立てる際、電極10にクラックが生じにくく、歩留を高く維持できる。また、正極結着剤としてアクリル基を有する材料を用いることにより、内部抵抗が低くなり、電極10のp型半導体の性質の阻害を抑制できる。 By using the above-mentioned material as the positive electrode binder, when the secondary battery 100 is assembled, the electrode 10 is hardly cracked, and the yield can be maintained high. Further, by using a material having an acrylic group as the positive electrode binder, the internal resistance is lowered, and inhibition of the properties of the p-type semiconductor of the electrode 10 can be suppressed.
 なお、アクリル基を有する正極結着剤内にグラフェンやイオン伝導性ガラスまたは燐元素が存在していることが好ましい。これにより、正極結着剤が抵抗体とならず、電子がトラップしにくくなり、電極10の発熱が抑制される。具体的には、アクリル基を有する正極結着剤内にグラフェンや燐元素またはイオン伝導性ガラスが存在すると、リチウムイオン電池の場合、リチウムの解離反応および拡散が促進される。これらの材料が含まれることにより、アクリル樹脂層は活物質を覆うことができ、活物質と電解液との反応によってガスが生じることを抑制できる。更に、本電池のような場合も、電池内部抵抗が低く保てられるため、電極20での動作を効率良く行える結果をもたらす。 In addition, it is preferable that graphene, ion conductive glass, or a phosphorus element exists in the positive electrode binder which has an acrylic group. As a result, the positive electrode binder does not become a resistor, electrons are not easily trapped, and heat generation of the electrode 10 is suppressed. Specifically, the presence of graphene, phosphorus element, or ion conductive glass in the positive electrode binder having an acrylic group promotes lithium dissociation and diffusion in the case of a lithium ion battery. By including these materials, the acrylic resin layer can cover the active material, and the generation of gas due to the reaction between the active material and the electrolytic solution can be suppressed. Further, even in the case of this battery, since the internal resistance of the battery is kept low, the result that the operation with the electrode 20 can be performed efficiently is brought about.
 さらに、アクリル樹脂層内にグラフェンや燐元素またはイオン伝導性ガラス材料が存在すると、リチウムイオン電池の場合、電位が緩和されて活物質に到達する酸化電位を下げることになる一方で、リチウムは緩衝されずに移動できる。また、アクリル樹脂層は耐電圧に優れている。このため、電極10内に、高電圧で高容量かつ高出力を実現できるイオン伝導機構を形成できる。また、拡散速度が速く、抵抗が低くなることで、高出力時の温度上昇も抑制されるため、寿命および安全性を向上させることもできる。本電池のような場合も、同様に電池内部抵抗を下げることができ、高効率で高性能であり、高寿命も保つことができる。 Furthermore, if graphene, phosphorus element, or ion-conducting glass material is present in the acrylic resin layer, in the case of a lithium ion battery, the potential is relaxed and the oxidation potential reaching the active material is lowered, while lithium is buffered. It can move without being. The acrylic resin layer is excellent in withstand voltage. For this reason, an ion conduction mechanism capable of realizing a high capacity and a high output at a high voltage can be formed in the electrode 10. In addition, since the diffusion rate is high and the resistance is low, the temperature rise at the time of high output is suppressed, so that the life and safety can be improved. In the case of this battery as well, the internal resistance of the battery can be similarly lowered, high efficiency and high performance, and a long life can be maintained.
 [電極20について]
 電極20は電極10において発生するイオンやホール、電子を吸蔵および放出可能である。電極20の活物質として、少なくともグラフェンとシリコン含有物を有し、加えて、各種天然黒鉛、人造黒鉛、シリコン系複合材料(シリサイド)、酸化シリコン系材料、チタン合金系材料、および各種合金組成材料を単独または混合して用いることができる。
[About the electrode 20]
The electrode 20 can occlude and emit ions, holes, and electrons generated in the electrode 10. The active material of the electrode 20 has at least graphene and a silicon-containing material, and in addition, various natural graphites, artificial graphite, silicon-based composite materials (silicides), silicon oxide-based materials, titanium alloy-based materials, and various alloy composition materials Can be used alone or in combination.
 例えば、電極20はグラフェンとシリコンの混合物を含有する。更に、酸化燐や硫黄酸化物を薄膜旋回型高速ミキサー(例えば、プライミクス株式会社製フィルミックス(登録商標))で添加分散することで、この場合、電極20はn型半導体となる。ここでは、グラフェンは、層数が10層以下のナノレベルの層である。グラフェンには、カーボンナノチューブ(Carbon nanotube:CNT)が含有されてもよい。 For example, the electrode 20 contains a mixture of graphene and silicon. Further, in this case, the electrode 20 becomes an n-type semiconductor by adding and dispersing phosphorus oxide or sulfur oxide with a thin-film swirl type high-speed mixer (for example, Filmix (registered trademark) manufactured by Primics Co., Ltd.). Here, graphene is a nano-level layer having 10 or fewer layers. The graphene may contain carbon nanotube (CNT).
 特に、電極20は、グラフェンおよびシリコンもしくは酸化シリコンの混合物を含有することが好ましい。この場合、電極20のイオン(カチオン)やホールの吸蔵効率を向上させることができると同時に電子蓄積層を設けることができる。また、グラフェンおよび酸化シリコンはそれぞれ発熱体として機能しにくいため、二次電池100の安全性を向上及び寿命を向上させることができる。 In particular, the electrode 20 preferably contains a mixture of graphene and silicon or silicon oxide. In this case, the occlusion efficiency of ions (cations) and holes of the electrode 20 can be improved, and at the same time, an electron storage layer can be provided. In addition, since graphene and silicon oxide are unlikely to function as heating elements, the safety and lifetime of the secondary battery 100 can be improved.
 上述したように、電極20はn型半導体となることが好ましい。電極20は、グラフェンおよびシリコンを含む物質を有する。シリコンを含む物質は、例えば、SiOxa(xa<2)である。また、電極20に、グラフェンおよび/またはシリコンを用いることにより、二次電池100の内部短絡が生じた場合でも、発熱しにくく、二次電池100の破裂を抑制することができる。 As described above, the electrode 20 is preferably an n-type semiconductor. The electrode 20 includes a material containing graphene and silicon. The substance containing silicon is, for example, SiOxa (xa <2). Further, by using graphene and / or silicon for the electrode 20, even when an internal short circuit of the secondary battery 100 occurs, it is difficult to generate heat and the secondary battery 100 can be prevented from bursting.
 また、電極20に、ドナーがドーピングされてもよい。例えば、電極20には、ドナーとして金属元素がドープされている。金属元素は、例えば、アルカリ金属または遷移金属である。アルカリ金属として、例えば、銅、リチウム、ナトリウムおよびカリウムのいずれかがドープされてもよい。あるいは、遷移金属として、チタンまたは亜鉛がドープされてもよい。また、酸化燐や硫黄酸化物を用いても良い。 Further, the electrode 20 may be doped with a donor. For example, the electrode 20 is doped with a metal element as a donor. The metal element is, for example, an alkali metal or a transition metal. As an alkali metal, for example, any of copper, lithium, sodium, and potassium may be doped. Alternatively, titanium or zinc may be doped as a transition metal. Further, phosphorus oxide or sulfur oxide may be used.
 電極20は、リチウムのドーピングされたグラフェンを有してもよい。例えば、電極20の材料に有機リチウムを含有させて加熱もしくは、前述の薄膜旋回型高速ミキサーを用いて高分散状況下で物質の衝突熱を利用することにより、リチウムのドーピングを行ってもよい。あるいは、電極20にリチウム金属を貼り付けることにより、リチウムのドーピングを行ってもよい。好ましくは、電極20は、リチウムがドープされたグラフェン及びシリコンを含有する。 The electrode 20 may have graphene doped with lithium. For example, lithium may be doped by heating the material of the electrode 20 containing organolithium, or by using the heat of impact of a substance under high dispersion conditions using the above-described thin film swirl type high speed mixer. Alternatively, lithium doping may be performed by attaching lithium metal to the electrode 20. Preferably, the electrode 20 contains graphene and silicon doped with lithium.
 薄膜旋回型高速ミキサーは、容器中心部にローター(タービン)を有し、高速でローターが回転することで遠心力により塗料材料が容器壁面に押し付けられて容器内壁面全面に沿った中空円柱状の薄膜塗料層を形成し、この薄膜塗料層の中で乳化液滴分散が回転力と遠心力のバランスで行われる。薄膜にして分散処理が行われるため、ナノレベルの微粒子の材料粒子間のゼータ電位を下げて分散を均一にできる。 The thin-film swirl type high-speed mixer has a rotor (turbine) at the center of the container. When the rotor rotates at high speed, the coating material is pressed against the container wall surface by centrifugal force. A thin film coating layer is formed, and emulsified droplet dispersion is performed in this thin film coating layer in a balance between rotational force and centrifugal force. Since the dispersion treatment is performed using a thin film, the zeta potential between the material particles of nano-level fine particles can be lowered to make the dispersion uniform.
 電極20はハロゲンを含有しても良く、寿命が更に向上することも確認した。ハロゲンを含有することにより、電解液として六フッ化リン酸リチウムを用いてフッ酸が発生しても、電極20の特性の変化が抑制される。例えば、ハロゲンはフッ素を含む。例えば、電極20はSiOxaFを含有してもよい。あるいは、ハロゲンはヨウ素を含む。 It was also confirmed that the electrode 20 may contain halogen and the life is further improved. By containing halogen, even if hydrofluoric acid is generated using lithium hexafluorophosphate as the electrolytic solution, changes in the characteristics of the electrode 20 are suppressed. For example, halogen includes fluorine. For example, the electrode 20 may contain SiOxaF. Alternatively, the halogen includes iodine.
 電極20は、負極活物質および負極結着剤を混合した負極電極材から形成される。負極結着剤として、正極結着剤と同様の物を用いることができる。なお、負極電極材には、さらに導電材が混合されてもよい。 The electrode 20 is formed from a negative electrode material obtained by mixing a negative electrode active material and a negative electrode binder. As the negative electrode binder, the same material as the positive electrode binder can be used. Note that a conductive material may be further mixed into the negative electrode material.
 [イオン伝達部材30について]
 イオン伝達部材30は、液体、ゲル体および固体のいずれかである。イオン伝達部材30として、好適には、液体(電解液)が用いられる。その電解液には少なくともフッ化エチレンカーボネートとフェナジンメトサルフェートを含むことが好ましい。
[Ion transfer member 30]
The ion transmission member 30 is either a liquid, a gel body, or a solid. As the ion transmission member 30, a liquid (electrolytic solution) is preferably used. The electrolytic solution preferably contains at least fluorinated ethylene carbonate and phenazine methosulfate.
 また、電解液には、溶媒に塩が溶解されている。塩としてLiPF6、LiBF4、LiClO4、LiSbF6、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32、LiC49SO3、LiAlO4、LiAlCl4、LiCl、LiI、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiN(SO22Fb)2:Lithium Bis(pentafluoro-ethane-sulfonyl)Imide:LiBETI)、および、リチウムビス(トリフルオロメタンスルホニル)イミド(Lithium Bis(Trifluoromethanesulfonyl)Imide:LiTFS)からなる群から選択される1種または2種以上を混合した混合物が用いられる。 In the electrolytic solution, a salt is dissolved in a solvent. LiPF 6 as a salt, LiBF 4, LiClO 4, LiSbF 6, LiAsF 6, LiCF 3 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3 LiN (SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl, LiI, lithium bis (pentafluoroethanesulfonyl) imide (LiN (SO 2 C 2 Fb) 2 : Lithium Bis ( Pentafluoro-ethane-sulfonyl) Imide: LiBETI) and a mixture of one or more selected from the group consisting of lithium bis (trifluoromethanesulfonyl) imide (Lithium Bis (Trifluoromethanesulfonyl) Imide: LiTFS) Object is used.
 また、溶媒として、エチレンカーボネート(Ethylene Carbonate:EC)、フッ化エチレンカーボネート(Fluorinated Ethylene Carbonate:FEC)、ジメチルカーボネート(Dimethyl Carbonate:DMC)、ジエチルカーボネート(Diethyl Carbonate:DEC)、および、メチルエチルカーボネート(Methyl Ethyl Carbonate:MEC)からなる群から選択される1種または2種以上を混合した混合物が用いられる。 Further, as a solvent, ethylene carbonate (Ethylene Carbonate: EC), fluorinated ethylene carbonate (Fluorinated Ethyl Carbonate: FEC), dimethyl carbonate (Dimethyl Carbonate: DMC), diethyl carbonate (Diethyl Carbonate: DEC), and methyl ethyl carbonate (DEC) A mixture obtained by mixing one or two or more selected from the group consisting of Methyl Ethyl Carbonate (MEC) is used.
 また、電解液には、過充電時の安定性を保証するために、ビニレンカーボネート(Vinylene Carbonate:VC)、シクロヘキシルベンゼン(Cyclohexylbenzene:CHB)、プロパンスルトン(Propane Sultone:PS)、プロピレンサルファイト(Propylene Sulfite:PRS)、エチレンサルファイト(Ethylene Sufite:ES)等およびその変性体を添加してもよい。 In addition, in order to ensure the stability during overcharge, the electrolyte solution includes vinylene carbonate (VC), cyclohexylbenzene (CHB), propane sultone (PS), propylene sulfite (Propylene). Sulfite (PRS), ethylene sulfite (ES) and the like, and modified products thereof may be added.
 [ホール伝達部材40について]
 ホール伝達部材40は固体またはゲル体である。ホール伝達部材40は、電極10および電極20の少なくとも一方と接着されている。もしくは、電解質を介して接着されている。
[Hole transmission member 40]
The hole transmission member 40 is a solid or a gel body. The hole transmission member 40 is bonded to at least one of the electrode 10 and the electrode 20. Alternatively, they are bonded via an electrolyte.
 イオン伝達部材30として電解液を用いる場合、ホール伝達部材40は、多孔質層を有していることが好ましい。この場合、電解液は多孔質層の孔を介して電極10と電極20とを連絡している。 When the electrolytic solution is used as the ion transmission member 30, the hole transmission member 40 preferably has a porous layer. In this case, the electrolytic solution communicates between the electrode 10 and the electrode 20 through the pores of the porous layer.
 例えば、ホール伝達部材40は、セラミック材料を有している。一例として、ホール伝達部材40は、無機酸化物フィラーを含有する多孔膜層を有している。例えば、無機酸化物フィラーは、アルミナ(α-Al23)を主成分とすることが好ましく、ホールはアルミナの表面を移動する。また、多孔膜層は、ZrO2-P25をさらに含有してもよい。あるいは、ホール伝達部材40として、酸化チタンまたはシリカを用いてもよく、もしくは、酸化チタンまたはシリカにLi1+x+yAlx(Ti,Ge)2-xSiyP3-yO12を混合したものを用いてもよい。 For example, the hole transmission member 40 includes a ceramic material. As an example, the hole transmission member 40 has a porous film layer containing an inorganic oxide filler. For example, the inorganic oxide filler is preferably composed mainly of alumina (α-Al 2 O 3 ), and the holes move on the surface of the alumina. The porous film layer may further contain ZrO 2 —P 2 O 5 . Alternatively, titanium oxide or silica may be used as the hole transmission member 40, or Li 1 + x + y Alx (Ti, Ge) 2-x Si y P 3-y O 12 is mixed with titanium oxide or silica. You may use what you did.
 ホール伝達部材40は、温度変化に関わらず収縮しにくいことが好ましい。また、ホール伝達部材40の抵抗は低いことが好ましい。例えば、ホール伝達部材40として、セラミック材料を担持する不織布が用いられる。不織布は、温度変化に関わらず収縮しにくい。また、不織布は、耐電圧性および耐酸化性を示し、低抵抗を示す。このため、不織布は、ホール伝達部材40の材料として好適に用いられる。 It is preferable that the hole transmission member 40 does not easily shrink regardless of the temperature change. The resistance of the hole transmission member 40 is preferably low. For example, as the hole transmission member 40, a nonwoven fabric carrying a ceramic material is used. Nonwoven fabrics are difficult to shrink regardless of temperature changes. Moreover, a nonwoven fabric shows voltage resistance and oxidation resistance, and shows low resistance. For this reason, a nonwoven fabric is used suitably as a material of the hole transmission member 40.
 ホール伝達部材40はいわゆるセパレータとして機能することが好ましい。ホール伝達部材40は、二次電池100の使用範囲に耐えうる組成であり、二次電池100における半導体機能を失わなければ特に限定されない。ホール伝達部材40として、不織布にアルミナ(α-Al23)を担持したものを用いることが好ましい。ホール伝達部材40の厚さは、特に限定されないが、設計容量を得られる膜厚内となるように、6μm~25μmと設計することが好ましい。また、アルミナに、ZrO2-P25を混合させることがさらに好ましい。 The hole transmission member 40 preferably functions as a so-called separator. The hole transmission member 40 has a composition that can withstand the usage range of the secondary battery 100 and is not particularly limited as long as the semiconductor function in the secondary battery 100 is not lost. As the hole transmission member 40, it is preferable to use a non-woven fabric carrying alumina (α-Al 2 O 3 ). The thickness of the hole transmission member 40 is not particularly limited, but is preferably designed to be 6 μm to 25 μm so as to be within a film thickness that can provide a design capacity. More preferably, alumina is mixed with ZrO 2 —P 2 O 5 .
 更に、ホール伝達部材40は、セラミック材料に添加材が混合された混合物を有するのが好ましい。添加材としては、アンチモン、アルミニウム、マグネシウム等の金属、アンチモン、アルミニウム、及びマグネシウムの少なくとも一つを含む化合物、もしくはアンチモン、アルミニウム、及びマグネシウムの少なくとも一つを含む錯体の少なくとも一つを含むのが好ましい。この場合、結果的にホールをより伝達しやすくすることができる。 Furthermore, the hole transmission member 40 preferably has a mixture in which an additive is mixed with a ceramic material. The additive includes at least one of a compound containing at least one of antimony, aluminum, and magnesium, a compound containing at least one of antimony, aluminum, and magnesium, or a complex containing at least one of antimony, aluminum, and magnesium. preferable. In this case, as a result, the holes can be more easily transmitted.
 更に、ホール伝達部材40は、セラミック材料と高分子樹脂を少なくとも含有するのが好ましい。ホール伝達部は、蒸着などでセラミック材料もしくは金属を蒸着することが考えられる。しかし、金属では電池としては短絡してしまう。また、蒸着ではプロセスコストが上がる。そこで、生産性において従来のリチウム電池のプロセスのまま本特徴を得られる手段として、セラミックと樹脂を塗膜化したものを用いることでタクト、プロセスの増加を防ぎ、プロセスコストが上がるのを抑えことができる。 Furthermore, the hole transmission member 40 preferably contains at least a ceramic material and a polymer resin. It is conceivable that the hole transmission part deposits a ceramic material or a metal by vapor deposition or the like. However, a metal is short-circuited as a battery. In addition, the process cost increases in vapor deposition. Therefore, as a means of obtaining this feature in the process of conventional lithium batteries in productivity, by using a ceramic and resin coated film, it prevents tact and process increase and suppresses increase in process cost. Can do.
 [集電体110、120について]
 例えば、第1集電体110および第2集電体120はステンレス鋼から形成されている。これにより、低コストで電位幅を拡大させることができる。
[About current collectors 110 and 120]
For example, the first current collector 110 and the second current collector 120 are made of stainless steel. Thereby, the potential width can be expanded at low cost.
 以下に、本発明の実施例を説明する。ただし、本発明は、以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
 (比較例1)
 住友スリーエム株式会社製ニッケルマンガンコバルト酸リチウムBC-618、株式会社クレハ製PVDF#1320(固形分12重量部のN-メチルピロリドン(NMP)溶液)、および、アセチレンブラックを重量比率3:1:0.09で、さらなるN-メチルピロリドン(NMP)とともに双腕式練合機にて攪拌し、正極電極材を作製した。厚さ13.3μmのアルミニウム箔に正極電極材を塗布して乾燥させた後、総厚が155μmとなるように圧延し、その後、特定の大きさに切り出して正極の電極を形成した。
(Comparative Example 1)
Sumitomo 3M Co., Ltd. Lithium Nickel Manganese Cobalt BC-618, Kureha Co., Ltd. PVDF # 1320 (N-methylpyrrolidone (NMP) solution with a solid content of 12 parts by weight), and acetylene black in a weight ratio of 3: 1: 0. 0.09 and further N-methylpyrrolidone (NMP) with a double arm kneader to prepare a positive electrode material. A positive electrode material was applied to an aluminum foil having a thickness of 13.3 μm and dried, and then rolled to a total thickness of 155 μm, and then cut into a specific size to form a positive electrode.
 一方、人造黒鉛、日本ゼオン株式会社製のスチレン-ブタジエン共重合体ゴム粒子結着剤BM-400B(固形分40重量部)、および、カルボキシメチルセルロース(Carboxymethylcellulose:CMC)を重量比率100:2.5:1で適量の水とともに双腕式練合機にて攪拌し、負極電極材を作製した。厚さ10μmの銅箔に負極電極材を塗布して乾燥させた後、総厚が180μmとなるように圧延し、その後、特定な大きさに切り出して負極の電極を形成した。 On the other hand, artificial graphite, a styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40 parts by weight) manufactured by Nippon Zeon Co., Ltd., and carboxymethylcellulose (CMC) in a weight ratio of 100: 2.5. The mixture was stirred with a double-arm kneader together with an appropriate amount of water to prepare a negative electrode material. A negative electrode material was applied to a copper foil having a thickness of 10 μm and dried, and then rolled to a total thickness of 180 μm, and then cut into a specific size to form a negative electrode.
 厚さ20μmのポリプロピレン微多孔フィルムをセパレータとして正極および負極のそれぞれの電極で挟持して積層構成し、所定の大きさで切断して電槽缶内に挿入した。エチレンカーボネート(Ethylene Carbonate:EC)、ジメチルカーボネート(Dimethyl Carbonate:DMC)およびメチルエチルカーボネート(Methyl Ethyl Carbonate:MEC)を混合した混合溶媒にLiPF6を1M溶解させた電解液をドライエア環境下で電槽缶に注入して一定期間放置した後、0.1Cに相当する電流で20分程度予備充電を行った後で封口し、積層型リチウムイオン二次電池を作製した。なお、その後、常温環境下で一定期間エージング放置した。 A polypropylene microporous film having a thickness of 20 μm was sandwiched between the positive electrode and the negative electrode as a separator, laminated, cut into a predetermined size, and inserted into a battery case. An electrolytic solution obtained by dissolving 1 M of LiPF 6 in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) are mixed in a dry air environment. After injecting into a can and leaving for a certain period of time, it was precharged for about 20 minutes at a current corresponding to 0.1 C, and then sealed to produce a stacked lithium ion secondary battery. After that, it was left to age for a certain period in a room temperature environment.
 (実施例1)
 ニッケル酸リチウム(JFEミネラル株式会社製)にアンチモン(Sb)(高純度科学製)を0.4重量%相当添加した材料に、導電部材であるアセチレンブラック、および、アクリル基を有するポリアクリル酸モノマーからなる結着剤(日本ゼオン株式会社製SX9172)を固形分重量比率92:3:5で、N-メチルピロリドン(NMP)とともにプライミクス株式会社製薄膜旋回型高速ミキサーであるフィルミックスにて攪拌分散し、正極電極材を作製した。
(Example 1)
Polyacrylic acid monomer having acetylene black, which is a conductive member, and a material obtained by adding 0.4% by weight of antimony (Sb) (manufactured by High Purity Science) to lithium nickelate (manufactured by JFE Mineral Co., Ltd.) and an acrylic group A binder consisting of SX9172 manufactured by ZEON Co., Ltd. in a solid weight ratio of 92: 3: 5 is stirred and dispersed with N-methylpyrrolidone (NMP) in a film mix which is a thin film swirl type high-speed mixer manufactured by Primix Co., Ltd. Thus, a positive electrode material was produced.
 正極電極材を厚さ13μmのSUS製集電箔(新日鉄住金マテリアルズ株式会社製)に塗布し、乾燥させた後、面密度26.7mg/cm2となるように圧延した。その後、特定の大きさに切断し、電極10を得た。この電極10のホール効果を測定したところ、電極10はp型半導体であることが確認された。 The positive electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 μm, dried, and then rolled to an area density of 26.7 mg / cm 2 . Then, it cut | disconnected to the specific magnitude | size and the electrode 10 was obtained. When the Hall effect of the electrode 10 was measured, it was confirmed that the electrode 10 was a p-type semiconductor.
 一方、シリコン含有グラフェン材料(XG Sciences,Inc.製の「xGnP Graphene Nanoplatelets H type+Si」)、硫黄酸化物をシリコン含有グラフェン材料に対して0.2重量%添加し、アクリル基を有するポリアクリル酸モノマーからなる負極結着剤(日本ゼオン株式会社製SX9172)を固形分重量比率95:5で、N-メチルピロリドン(NMP)とともにフィルミックスにて攪拌し、負極電極材を作製した。ここで、硫黄酸化物の代わりに五酸化燐を用いても同様の結果が得られることも確認した。 On the other hand, silicon-containing graphene material (“xGnP Graphene Nanoplatelets H type + Si” manufactured by XG Sciences, Inc.), 0.2 wt% of sulfur oxide with respect to the silicon-containing graphene material, and a polyacrylic acid monomer having an acrylic group A negative electrode binder (SX 9172 manufactured by Nippon Zeon Co., Ltd.) was stirred at a solid content ratio of 95: 5 together with N-methylpyrrolidone (NMP) in a film mix to prepare a negative electrode material. Here, it was also confirmed that similar results were obtained even when phosphorus pentoxide was used instead of sulfur oxide.
 厚さ13μmのSUS製集電箔(新日鉄住金マテリアルズ株式会社製)に負極電極材を塗布し、乾燥させた後、面密度5.2mg/cm2となるように圧延した。その後、特定の大きさに切断し、電極20を形成した。 A negative electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 μm, dried, and then rolled to a surface density of 5.2 mg / cm 2 . Then, it cut | disconnected to the specific magnitude | size and the electrode 20 was formed.
 厚さ20μmの不織布にαアルミナを担持したシート(三菱製紙株式会社製「Nano X」)を電極10と電極20との間に挟持させて積層構造を形成し、積層構造を所定の大きさに切断して電池容器内に挿入した。 A laminated structure is formed by sandwiching a sheet (“Nano X” manufactured by Mitsubishi Paper Industries Co., Ltd.) between the electrode 10 and the electrode 20 with α-alumina supported on a non-woven fabric having a thickness of 20 μm. The laminated structure has a predetermined size. It cut | disconnected and inserted in the battery container.
 次に、EC(エチレンカーボネート)、DMC(ジメチルカーボネート)、およびEMC(エチルメチルカーボネート)を容積比率1/1/1で混合させた混合溶媒を用意し、この混合溶媒にLiPF6を1M溶解させ、更に、(ビニレンカーボネート(Vinylene Carbonate:VC)を1.5重量%、フッ化エチレンカーボネート(FEC)を2.0重量%、フェナジンメトサルフェート(Phenezine methosulfate:PMS)を0.5重量%およびプロパンサルトン(1,3-Propanesultone:PS)1重量%を添加させて電解液を作製した。ドライ環境下で前記α-アルミナを担持した不織布シートにこの電解液を浸み込ませるように処理した。その後、ドライエア環境下で電池容器内に一定期間放置した後、0.1Cに相当する電流で20分程度予備充電を行い、その後、封口し、常温環境下で一定期間エージング放置して二次電池を作製した。 Next, a mixed solvent in which EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) are mixed at a volume ratio of 1/1/1 is prepared, and 1M of LiPF 6 is dissolved in this mixed solvent. Furthermore, (vinylene carbonate (VC) 1.5 wt%, fluorinated ethylene carbonate (FEC) 2.0 wt%, phenazine methosulfate (PMS) 0.5 wt% and propane An electrolyte was prepared by adding 1% by weight of sultone (1,3-Propanesultone: PS), and was treated so that the electrolyte was immersed in the non-woven sheet carrying the α-alumina in a dry environment. After leaving it in a battery container for a certain period of time in a dry air environment, Performed 20 minutes pre-charged with a current corresponding to .1c, then sealed to prepare a certain period aging left to the secondary battery in a normal temperature environment.
 (実施例2)
 実施例2では、実施例1の正極のアセチレンブラックを、グラフェン(XG Sciences,Inc.製の「xGnP Graphene Nanoplatelets H type」)に代えて、二次電池を作製した。
(Example 2)
In Example 2, the positive electrode acetylene black of Example 1 was replaced with graphene (“xGnP Graphene Nanoplatelets H type” manufactured by XG Sciences, Inc.) to produce a secondary battery.
 (実施例3)
 実施例3では、実施例1のホール伝達部材40及びイオン伝達部材30と電極10との間、及びホール伝達部材40及びイオン伝達部材30と電極20との間に固体電解質、ここでは、LiNbO3/Li3PS4を設けてこの固体電解質表面にのみ電解液を滴下して二次電池を作製した。
(Example 3)
In Example 3, a solid electrolyte, here LiNbO 3 , between the hole transfer member 40 and the ion transfer member 30 and the electrode 10 of Example 1, and between the hole transfer member 40 and the ion transfer member 30 and the electrode 20, is used. / Li 3 PS 4 was provided, and an electrolyte was dropped only on the surface of the solid electrolyte to produce a secondary battery.
 (実施例4)
 実施例4では、実施例3のホール伝達部材40及びイオン伝達部材30が一体のイオン伝導膜Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12であり、この表面にポリエチレンオキサイド(PEO)に前記電解液を含有させて適当な糊状にしたものを設置して構成させた二次電池を作製した。
Example 4
In Example 4, the hole transmission member 40 and the ion transmission member 30 of Example 3 are an integral ion conductive film Li 1 + x + y Alx (Ti, Ge) 2−x Si y P 3−y O 12 , A secondary battery having a surface made of polyethylene oxide (PEO) containing the above electrolyte solution and made into an appropriate paste was prepared.
 (実施例5)
 実施例5では、実施例1のホール伝達部材40がアンチモン、アルミニウム、及びマグネシウムを含有する物質を含む二次電池を作製した。
(Example 5)
In Example 5, a secondary battery in which the hole transmission member 40 of Example 1 includes a substance containing antimony, aluminum, and magnesium was manufactured.
 (実施例6)
 実施例6では、実施例1のグラフェンにCnano Technology Limited製のカーボンナノチューブを容積比率3:1となるように添加し、二次電池を作製した。
(Example 6)
In Example 6, carbon nanotubes manufactured by Cano Technology Limited were added to the graphene of Example 1 so as to have a volume ratio of 3: 1 to produce a secondary battery.
 (実施例7)
 実施例7では、実施例1における電極20に、電極20の1/7の面積を有するリチウム金属箔を貼り付けて二次電池を作製した。
(Example 7)
In Example 7, a secondary battery was fabricated by attaching a lithium metal foil having an area of 1/7 of the electrode 20 to the electrode 20 in Example 1.
 (実施例8)
 実施例8では、実施例1の負極電極材を作製する際に、10ppm以下の水分量環境下でリチウム粉を0.06重量%添加することによって二次電池を作製した。
(Example 8)
In Example 8, when producing the negative electrode material of Example 1, a secondary battery was produced by adding 0.06% by weight of lithium powder in a moisture content environment of 10 ppm or less.
 (実施例9)
 実施例9では、実施例1の負極電極材を作製する際に、ナトリウム粉を0.06重量%添加することによって二次電池を作製した。
Example 9
In Example 9, when the negative electrode material of Example 1 was produced, a secondary battery was produced by adding 0.06% by weight of sodium powder.
 (実施例10)
 実施例10では、実施例1の負極電極材を作製する際に、カリウム粉を0.06重量%添加することによって二次電池を作製した。
(Example 10)
In Example 10, when producing the negative electrode material of Example 1, a secondary battery was produced by adding 0.06% by weight of potassium powder.
 (実施例11)
 実施例11では、実施例1の負極電極材を作製する際に、亜鉛粉を0.06重量%添加することによって二次電池を作製した。
(Example 11)
In Example 11, when the negative electrode material of Example 1 was produced, a secondary battery was produced by adding 0.06% by weight of zinc powder.
 (実施例12)
 実施例12では、実施例1の不織布にZrO2-P25を容積比率250ppm添加し、二次電池を作製した。
Example 12
In Example 12, a secondary battery was manufactured by adding ZrO 2 —P 2 O 5 to the nonwoven fabric of Example 1 at a volume ratio of 250 ppm.
 (実施例13)
 実施例13では、実施例1の負極電極材を作製する際に、オクチル酸リチウムを0.8重量%添加することによって二次電池を作製した。
(Example 13)
In Example 13, when producing the negative electrode material of Example 1, a secondary battery was produced by adding 0.8% by weight of lithium octylate.
 (実施例14)
 実施例1において、フィルミックスを使わずに双腕式攪拌機で材料混合して二次電池を作製した。
(Example 14)
In Example 1, a secondary battery was manufactured by mixing materials with a double arm stirrer without using a fill mix.
 (実施例15)
 ニッケル酸リチウム(住友金属鉱山株式会社製)にアンチモン(Sb)を0.7重量%ドープした材料、Li1.2MnPO4(Dow Chemical Company製のLithiated Metal Phosphate II)、および、Li2MnO3(Zhenhua E-Chem co.,ltd製のZHFL-01)をそれぞれ重量比率54.7重量%、18.2重量%、18.2重量%となるように混合し、ホソカワミクロン株式会社製のAMS-LAB(メカノフュージョン(登録商標))において回転速度1500rpmで3分間処理し、電極10の活物質を作製した。次に、活物質、導電部材であるアセチレンブラック、および、アクリル基を有するポリアクリル酸モノマーからなる結着剤(日本ゼオン株式会社製SX9172)を固形分重量比率92:3:5で、N-メチルピロリドン(NMP)とともに双腕式練合機にて攪拌し、正極電極材を作製した。
(Example 15)
Lithium nickel oxide (manufactured by Sumitomo Metal Mining Co., Ltd.) doped with 0.7% by weight of antimony (Sb), Li 1.2 MnPO 4 (Lithated Metal Phosphate II manufactured by Dow Chemical Company), and Li 2 MnO 3 (Zhenhua) ZHFL-01 manufactured by E-Chem Co., Ltd. was mixed at a weight ratio of 54.7% by weight, 18.2% by weight and 18.2% by weight, respectively, and AMS-LAB manufactured by Hosokawa Micron Corporation ( The active material of the electrode 10 was produced by performing a treatment for 3 minutes at a rotation speed of 1500 rpm in Mechanofusion (registered trademark). Next, a binder (SX9172 manufactured by Nippon Zeon Co., Ltd.) composed of an active material, acetylene black as a conductive member, and a polyacrylic acid monomer having an acrylic group at a solid weight ratio of 92: 3: 5, N— The mixture was stirred with methylpyrrolidone (NMP) in a double arm kneader to produce a positive electrode material.
 正極電極材を厚さ13μmのSUS製集電箔(新日鉄住金マテリアルズ株式会社製)に塗布し、乾燥させた後、面密度26.7mg/cm2となるように圧延した。その後、特定の大きさに切断し、電極10を得た。この電極10のホール効果を測定したところ、電極10はp型半導体であることが確認された。 The positive electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 μm, dried, and then rolled to an area density of 26.7 mg / cm 2 . Then, it cut | disconnected to the specific magnitude | size and the electrode 10 was obtained. When the Hall effect of the electrode 10 was measured, it was confirmed that the electrode 10 was a p-type semiconductor.
 一方、グラフェン材料(XG Sciences,Inc.製の「xGnP Graphene Nanoplatelets H type」)、および、酸化シリコンSiOxa(上海杉杉科技有限公司製の「SiOx」)を重量比率56.4:37.6で混合し、ホソカワミクロン株式会社製NOB-130(ノビルタ(登録商標))において回転速度800rpmで3分間処理し、負極活物質を作製した。次に、負極活物質、および、アクリル基を有するポリアクリル酸モノマーからなる負極結着剤(日本ゼオン株式会社製SX9172)を固形分重量比率95:5で、N-メチルピロリドン(NMP)とともに双腕式練合機にて攪拌し、負極電極材を作製した。 On the other hand, a graphene material (“xGnP Graphene Nanoplatelets H type” manufactured by XG Sciences, Inc.) and silicon oxide SiO xa (“SiOx” manufactured by Shanghai Sugisugi Technology Co., Ltd.) have a weight ratio of 56.4: 37.6. The mixture was treated with NOB-130 (Nobilta (registered trademark)) manufactured by Hosokawa Micron Corporation for 3 minutes at a rotational speed of 800 rpm to prepare a negative electrode active material. Next, a negative electrode binder composed of a negative electrode active material and a polyacrylic acid monomer having an acryl group (SX 9172 manufactured by Nippon Zeon Co., Ltd.) at a solid content weight ratio of 95: 5 is combined with N-methylpyrrolidone (NMP). The mixture was stirred with an arm kneader to produce a negative electrode material.
 厚さ13μmのSUS製集電箔(新日鉄住金マテリアルズ株式会社製)に負極電極材を塗布し、乾燥させた後、面密度5.2mg/cm2となるように圧延した。その後、特定の大きさに切断し、電極20を形成した。 A negative electrode material was applied to a SUS current collector foil (manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) having a thickness of 13 μm, dried, and then rolled to a surface density of 5.2 mg / cm 2 . Then, it cut | disconnected to the specific magnitude | size and the electrode 20 was formed.
 厚さ20μmの不織布にαアルミナを担持したシート(三菱製紙株式会社製「Nano X」)を電極10と電極20との間に挟持させて積層構造を形成し、積層構造を所定の大きさに切断して電池容器内に挿入した。α-アルミナを担持した不織布シートには、Novolyte technologies社の「Novolyte EEL-003」(ビニレンカーボネート(Vinylene Carbonate:VC)およびリチウムビス(オキサラト)ホウ酸塩(Lithium bis(oxalate)borate:LiBOB)をそれぞれ2重量%および1重量%添加したもの)を染み込ませるように処理した。 A laminated structure is formed by sandwiching a sheet (“Nano X” manufactured by Mitsubishi Paper Industries Co., Ltd.) between the electrode 10 and the electrode 20 with α-alumina supported on a non-woven fabric having a thickness of 20 μm. The laminated structure has a predetermined size. It cut | disconnected and inserted in the battery container. For the nonwoven sheet carrying α-alumina, “Novolyte EEL-003” (Vinylene Carbonate (VC)) and lithium bis (oxalato) borate (LiBOB) of Novolite technologies are used. 2% by weight and 1% by weight added) were soaked.
 次に、EC(エチレンカーボネート)、DMC(ジメチルカーボネート)、EMC(エチルメチルカーボネート)、および、PC(プロピレンカーボネート)を容積比率1:1:1:1で混合させた混合溶媒を用意し、この混合溶媒にLiPF6を1M溶解させた電解液を形成した。その後、ドライエア環境下で電池容器内に電解液を注入して一定期間放置した後、0.1Cに相当する電流で20分程度予備充電を行い、その後、封口し、常温環境下で一定期間エージング放置して二次電池を作製した。 Next, a mixed solvent in which EC (ethylene carbonate), DMC (dimethyl carbonate), EMC (ethyl methyl carbonate), and PC (propylene carbonate) are mixed at a volume ratio of 1: 1: 1: 1 is prepared. An electrolytic solution in which 1M LiPF 6 was dissolved in the mixed solvent was formed. Then, after injecting the electrolyte into the battery container in a dry air environment and leaving it for a certain period of time, it is precharged for about 20 minutes at a current corresponding to 0.1 C, and then sealed and aged for a certain period of time in a room temperature environment. A secondary battery was produced by allowing it to stand.
 上記のように作製した実施例1から実施例15および比較例1の電池を、以下に示す方法にて評価した。 The batteries of Examples 1 to 15 and Comparative Example 1 produced as described above were evaluated by the methods shown below.
 (電池初期容量評価)
 比較例1の仕様電位範囲2V-4.3Vにおける1C放電容量を100として各二次電池の容量比較性能評価を行った。また、電池の形状は、今回、角型電池缶を用い、積層電池とした。また、容量評価は2V-4.6Vの電位範囲でも各二次電池の容量比較性能評価を行った。さらに、10C/1Cの放電容量比を測定した。これによって、出力性能を評価する。同様に10C/1C充電容量比を測定した。これによって入力性能、急速充電性を評価する。
(Evaluation of initial battery capacity)
The capacity comparison performance of each secondary battery was evaluated by setting the 1C discharge capacity in the specification potential range of 2V-4.3V of Comparative Example 1 to 100. In addition, as the shape of the battery, a square battery can was used this time to obtain a laminated battery. In addition, the capacity evaluation was performed on the capacity comparison performance of each secondary battery even in the potential range of 2V-4.6V. Furthermore, the discharge capacity ratio of 10C / 1C was measured. Thus, the output performance is evaluated. Similarly, the 10C / 1C charge capacity ratio was measured. This evaluates input performance and quick chargeability.
 (釘刺試験)
 満充電した二次電池に対して、2.7mm径の鉄製丸釘を常温環境下で5mm/秒の速度で貫通させた時の発熱状態及び外観を観測した。下記表1に結果を示す。表1では、二次電池の温度及び外観の変化が生じなかった二次電池を「OK」と示し、二次電池の温度及び外観の変化が生じた二次電池を「NG」と示している。
(Nail penetration test)
With respect to a fully charged secondary battery, a heat generation state and an appearance were observed when a 2.7 mm diameter iron round nail was penetrated at a speed of 5 mm / second in a normal temperature environment. The results are shown in Table 1 below. In Table 1, a secondary battery in which changes in temperature and appearance of the secondary battery did not occur is indicated as “OK”, and a secondary battery in which changes in the temperature and appearance of the secondary battery occurred is indicated as “NG”. .
 (過充電試験)
 充電率200%を電流維持し、15分以上外観に変化が生じるか否かを判定した。下記表1に結果を示す。表1では、異常を起こさなかった二次電池を「OK」と示し、変化(膨れまたは破裂等)が生じた二次電池を「NG」と示している。
(Overcharge test)
The current was maintained at a charging rate of 200%, and it was determined whether or not the appearance changed for 15 minutes or more. The results are shown in Table 1 below. In Table 1, a secondary battery in which no abnormality occurred is indicated as “OK”, and a secondary battery in which a change (bulging or rupture or the like) has occurred is indicated as “NG”.
 (常温寿命特性)
 実施例1から実施例15及び比較例1の二次電池を仕様電位範囲2V-4.3V仕様の場合、25℃で1C/4.3Vで充電した後、1C/2V放電を3000サイクル及び1万サイクル実施し、初回目の容量に対して容量低下を比較した。
(Normal temperature life characteristics)
In the case where the secondary batteries of Examples 1 to 15 and Comparative Example 1 have a specification potential range of 2 V to 4.3 V, the batteries were charged at 1 C / 4.3 V at 25 ° C., and then 1 C / 2 V discharge was performed for 3000 cycles and 1 Ten thousand cycles were performed, and the capacity drop was compared with the first capacity.
 (評価結果)
 表1に上述した評価の結果を示す。
(Evaluation results)
Table 1 shows the results of the evaluation described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1の二次電池は、いわゆる一般的なリチウムイオン二次電池である。比較例1の二次電池では、釘刺速度の如何に関わらず1秒後に過熱が顕著であったのに対し、実施例1の二次電池では、釘刺後において温度上昇が殆どなく、大幅に抑制された。釘刺試験後の電池を分解し調べたところ、比較例1の二次電池では、セパレータが広範囲に及んで溶融していたが、実施例1の二次電池では、セラミック含有不織布がその原形を留めていた。このことから、セラミック含有不織布は、釘刺後に起こる短絡による発熱においても構造が破壊されず、短絡箇所の拡大を抑止できたため、大幅な過熱を防げたと考えられる。また、実施例の形態であれば、釘刺し後、釘を抜くと、電池として動作することも確認できた。比較例1では、電池動作するものはなかった。これは、本発明の電池がイオン電池ではなく、ホール移動を利用した半導体の仕組みからなる電池であるとからと考えられる。一部分が破壊されても半導体の仕組みが成り立ては動作ができることを意味しており、従来のイオン電池では得られなかった耐衝撃性の良い電池となり、今回、この特徴を見出すことによって、高安全な高容量高出入力電池を得ることができた。 The secondary battery of Comparative Example 1 is a so-called general lithium ion secondary battery. In the secondary battery of Comparative Example 1, overheating was remarkable after 1 second regardless of the nail penetration speed, whereas in the secondary battery of Example 1, there was almost no increase in temperature after the nail penetration. Was suppressed. When the battery after the nail penetration test was disassembled and examined, in the secondary battery of Comparative Example 1, the separator was melted over a wide range, but in the secondary battery of Example 1, the ceramic-containing non-woven fabric had its original shape. I kept it. From this, it is considered that the ceramic-containing non-woven fabric was able to prevent significant overheating because the structure was not destroyed even in the case of heat generation due to a short circuit that occurred after nail penetration, and the expansion of the short circuit area could be suppressed. In the case of the embodiment, it was confirmed that the battery operated as a battery when the nail was removed after nail penetration. In Comparative Example 1, there was no battery operation. This is presumably because the battery of the present invention is not an ion battery but a battery having a semiconductor mechanism utilizing hole movement. It means that the mechanism of the semiconductor can be operated even if a part is destroyed, and it becomes a battery with good impact resistance that could not be obtained with conventional ion batteries, and this time, by finding this feature, it is highly safe A high-capacity, high-output battery could be obtained.
 ここで、正極結着剤について検討する。比較例1の二次電池では、正極結着剤としてPVDFを用いており、釘刺速度を減じたときに過熱が抑止できなかった。比較例1の二次電池を分解して調べたところ、アルミニウム箔(集電体)から活物質が脱落していた。この理由は以下のように考えられる。 Here, the positive electrode binder is examined. In the secondary battery of Comparative Example 1, PVDF was used as the positive electrode binder, and overheating could not be suppressed when the nail penetration speed was reduced. When the secondary battery of Comparative Example 1 was disassembled and examined, the active material was dropped from the aluminum foil (current collector). The reason is considered as follows.
 釘が比較例1の二次電池に刺さって内部短絡が生じると、短絡によってジュール熱が発生し、PVDF(結晶融点174℃)の融解によって正極が変形する。活物質が脱落すると、抵抗が低下してさらに電流が流れやすくなり、過熱が促進されて変形していた。これに対して、実施例1では、負極結着剤として、日本ゼオン株式会社製SX9172を用いており、一時的に電流集中して過熱されても変形が抑制された。 When the nail pierces the secondary battery of Comparative Example 1 and an internal short circuit occurs, Joule heat is generated by the short circuit, and the positive electrode is deformed by melting PVDF (crystal melting point 174 ° C.). When the active material fell off, the resistance decreased and the current flowed more easily, and overheating was promoted and deformed. In contrast, in Example 1, SX9172 manufactured by Nippon Zeon Co., Ltd. was used as the negative electrode binder, and deformation was suppressed even when the current was temporarily concentrated and overheated.
 実施例でステンレス集電体を用いず、比較例1と同様の集電体とした場合、上限4.6Vの充電仕様での寿命が半減することもわかった。これは以下のように考える。 It was also found that when the stainless steel current collector was not used in the examples and the current collector was the same as that of Comparative Example 1, the life under the charge specification with an upper limit of 4.6 V was halved. This is considered as follows.
 アルミニウム箔と銅箔の組み合わせで4.6Vの電位では、イオン化し易いためと考えられる。集電体の溶解と析出を繰り返すためと考える。 This is probably because the combination of aluminum foil and copper foil is easy to ionize at a potential of 4.6V. This is thought to be due to repeated dissolution and precipitation of the current collector.
 また、実施例14及び15に対する実施例1の結果から、高入力性能、すなわち急速充電の可能性を得られる方向性を見出したと言える。更に、寿命も大幅に改善することが分かった。これは、グラフェンやシリコン、ドーパントのナノ粒子を均一に分散させることで均一に半導体化できるからであり、半導体化しない部分はイオン移動しか発生しないことから本発明の特徴が発生しない部分が存在し、半導体化しない部分が化学反応が主体となることで従来のイオン電池に近い状態となり、急速充電でき難く、化学劣化が生じるため、長寿命効果も得にくくなるものと考えられる。 Also, from the results of Example 1 with respect to Examples 14 and 15, it can be said that a direction in which high input performance, that is, the possibility of rapid charging can be obtained has been found. Furthermore, it has been found that the lifetime is also greatly improved. This is because graphene, silicon, and nanoparticles of dopant can be uniformly dispersed to make a semiconductor uniformly, and the portion that does not become a semiconductor only generates ion migration, so there is a portion where the features of the present invention do not occur. Since the portion that is not made into a semiconductor is mainly composed of a chemical reaction, it becomes a state close to that of a conventional ion battery, it is difficult to rapidly charge, and chemical deterioration occurs, so that it is considered difficult to obtain a long life effect.
 実施例14と実施例1の比較から、フィルミックスのような高剪断力高分散がこの電池系では、有効であることが明らかとなった。 From the comparison between Example 14 and Example 1, it became clear that high shear force and high dispersion such as fill mix is effective in this battery system.
 図3に、実施例1、実施例5および比較例1における1C放電容量を示す。図3から、本実施例の二次電池は高容量を示すことが理解される。 FIG. 3 shows the 1C discharge capacity in Examples 1, 5 and Comparative Example 1. From FIG. 3, it can be understood that the secondary battery of this example exhibits a high capacity.
 実施例1において、4.6V充電時に、電極20内の電子分布を各ブロックに輪切りにして、電流、抵抗測定によって評価したところ、電界とは垂直方向に一方の方向に分布偏りが見られることも分かった。同時にホール測定も行ったところ、電子分布とは逆方向で電界方向とほぼ垂直方向に偏りが見られた。このことより、電子とホールはお互い逆方向で電界とはほぼ垂直方向に電極20内を移動する現象も見出すことができた。そして、電子蓄積層が充電時に電極20内に設けられることも見出した。 In Example 1, at 4.6 V charging, the distribution of electrons in the electrode 20 was divided into blocks and evaluated by measuring current and resistance. As a result, distribution bias was observed in one direction perpendicular to the electric field. I understand. At the same time, Hall measurement was performed. As a result, there was a bias in the direction opposite to the electron distribution and almost perpendicular to the electric field direction. From this, it was also possible to find a phenomenon in which electrons and holes move in the electrode 20 in directions opposite to each other and substantially perpendicular to the electric field. It has also been found that an electron storage layer is provided in the electrode 20 during charging.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2015年1月15日に日本国特許庁に出願された特願2015-5786に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-5786 filed with the Japan Patent Office on January 15, 2015, the entire contents of which are incorporated herein by reference.
 本発明の二次電池は高出力および高容量を実現可能であり、高安全な大型蓄電池等として好適に用いられる。例えば、本発明の二次電池は、地熱発電、風力発電、太陽発電、水力発電および波力発電といった発電力の安定しない発電機構の蓄電池として好適に用いられる。また、本発明の二次電池は、電気自動車等の移動体にも好適に用いられる。更に、高安全であるため、カード用電池から携帯電話、モバイル端末にも用いられる。 The secondary battery of the present invention can achieve high output and high capacity, and is suitably used as a highly safe large-sized storage battery or the like. For example, the secondary battery of the present invention is suitably used as a storage battery for a power generation mechanism with unstable power generation, such as geothermal power generation, wind power generation, solar power generation, hydroelectric power generation, and wave power generation. The secondary battery of the present invention is also suitably used for mobile objects such as electric vehicles. Furthermore, since it is highly safe, it can be used for card batteries, mobile phones and mobile terminals.

Claims (33)

  1.  第1電極と、
     第2電極と、
     前記第1電極および前記第2電極と接触するイオン伝達部材と、
     前記第1電極および前記第2電極と接触するもしくは固体電解質を介して接触するホール伝達部材と、
    を備え、前記第2電極が少なくともグラフェンとシリコンを含有する二次電池。
    A first electrode;
    A second electrode;
    An ion transmission member in contact with the first electrode and the second electrode;
    A hole transmission member in contact with the first electrode and the second electrode or through a solid electrolyte;
    A secondary battery in which the second electrode contains at least graphene and silicon.
  2.  前記第1電極とホール伝達部材とは固体電解質を介して接触され、
     前記第2電極とホール伝達部材とは固体電解質を介して接触されてなる請求項1に記載の二次電池。
    The first electrode and the hole transmission member are contacted via a solid electrolyte,
    The secondary battery according to claim 1, wherein the second electrode and the hole transmission member are in contact with each other through a solid electrolyte.
  3.  前記第1電極は、複合酸化物を有しており、
     前記複合酸化物は、アルカリ金属またはアルカリ土類金属を含有する、請求項1または2に記載の二次電池。
    The first electrode has a complex oxide,
    The secondary battery according to claim 1, wherein the composite oxide contains an alkali metal or an alkaline earth metal.
  4.  前記複合酸化物は、p型半導体であるp型複合酸化物を含む、請求項1から3のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the composite oxide includes a p-type composite oxide that is a p-type semiconductor.
  5.  前記p型複合酸化物は、アンチモン、鉛、燐、ホウ素、アルミニウムおよびガリウムからなる群から選択された少なくとも1種がドーピングされたリチウムおよびニッケルを含有する、請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein the p-type composite oxide contains lithium and nickel doped with at least one selected from the group consisting of antimony, lead, phosphorus, boron, aluminum, and gallium.
  6.  前記イオン伝達部材は、液体、ゲル体および固体のいずれかである、請求項1から5のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 5, wherein the ion transmission member is one of a liquid, a gel body, and a solid.
  7.  前記イオン伝達部材は、フッ化エチレンカーボネートとフェナジンメトサルフェートを少なくとも含有する請求項1から6のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the ion transmission member contains at least fluoroethylene carbonate and phenazine methosulfate.
  8.  前記固体電解質の材質の1つが少なくともLiNbO3/Li3PS4よりなる請求項1から7のいずれか一つに記載の二次電池。 The secondary battery according to claim 1, wherein one of the materials of the solid electrolyte is at least LiNbO 3 / Li 3 PS 4 .
  9.  前記イオン伝達部材と前記ホール伝達部材がLi1+x+yAlx(Ti,Ge)2-xSiyP3-yO12(x+y=1、x>0、y>0)にて一体的に形成されてなる請求項1から8のいずれか一つに記載の二次電池。 The ion transmission member and the hole transmission member are integrally formed by Li 1 + x + y Alx (Ti, Ge) 2−x Si y P 3−y O 12 (x + y = 1, x> 0, y> 0). The secondary battery according to any one of claims 1 to 8, wherein the secondary battery is formed.
  10.  前記ホール伝達部材は、セラミック材料と高分子樹脂を少なくとも含有する請求項1から8のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 8, wherein the hole transmission member contains at least a ceramic material and a polymer resin.
  11.  前記ホール伝達部材は、セラミック材料に添加材が混合された混合物を有し、
     前記添加材は、
     アンチモン、アルミニウム、及びマグネシウム少なくとも一つを含む化合物、及びアンチモン、アルミニウム、及びマグネシウムの少なくとも一つを含む錯体の少なくとも一つを含む、請求項1から8のいずれか一つに記載の二次電池。
    The hole transmission member has a mixture in which an additive is mixed with a ceramic material,
    The additive is
    The secondary battery according to claim 1, comprising at least one of a compound containing at least one of antimony, aluminum, and magnesium, and a complex containing at least one of antimony, aluminum, and magnesium. .
  12.  前記ホール伝達部材は、無機酸化物フィラーを含有する多孔膜層を有し、前記第1電極および前記第2電極の少なくとも一方に接着されている、請求項11に記載の二次電池。 The secondary battery according to claim 11, wherein the hole transmission member has a porous film layer containing an inorganic oxide filler, and is bonded to at least one of the first electrode and the second electrode.
  13.  前記無機酸化物フィラーは、α-Al23を主成分とする、請求項12に記載の二次電池。 The secondary battery according to claim 12, wherein the inorganic oxide filler contains α-Al 2 O 3 as a main component.
  14.  前記多孔膜層は、ZrO2-P25をさらに含有する、請求項12又は13に記載の二次電池。 The secondary battery according to claim 12 or 13, wherein the porous film layer further contains ZrO 2 -P 2 O 5 .
  15.  前記ホール伝達部材の材料は、不織布である、請求項10から14のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 10 to 14, wherein a material of the hole transmission member is a nonwoven fabric.
  16.  前記グラフェンは、カーボンナノチューブを含有する請求項1から15のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 15, wherein the graphene contains carbon nanotubes.
  17.  前記第2電極に、リチウムがドーピングされている、請求項1から16のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 16, wherein the second electrode is doped with lithium.
  18.  前記リチウムは、有機リチウムを前記第2電極材料に含有させて薄膜旋回型高速ミキサーで処理することによってドープされる、請求項17に記載の二次電池。 The secondary battery according to claim 17, wherein the lithium is doped by including organic lithium in the second electrode material and processing with a thin film swirl type high-speed mixer.
  19.  前記第2電極にリチウム金属が貼り付けられる、請求項17に記載の二次電池。 The secondary battery according to claim 17, wherein lithium metal is attached to the second electrode.
  20.  前記第2電極はアルカリ金属を有する、請求項1から16のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 16, wherein the second electrode includes an alkali metal.
  21.  前記アルカリ金属はナトリウムを含む、請求項20に記載の二次電池。 21. The secondary battery according to claim 20, wherein the alkali metal includes sodium.
  22.  前記アルカリ金属はカリウムを含む、請求項20に記載の二次電池。 21. The secondary battery according to claim 20, wherein the alkali metal includes potassium.
  23.  前記第2電極は亜鉛を有する、請求項1から16のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 16, wherein the second electrode includes zinc.
  24.  前記第2電極は、硫黄酸化物を前記第2電極材料に含有させて薄膜旋回型高速ミキサーで処理することによってドープされ、前記第2電極に硫黄元素を含んだ請求項1から23のいずれか一つに記載の二次電池。 The second electrode according to any one of claims 1 to 23, wherein the second electrode is doped by adding sulfur oxide to the second electrode material and processed by a thin film swirl type high speed mixer, and the second electrode contains sulfur element. The secondary battery as described in one.
  25.  前記第2電極は、五酸化燐を前記第2電極材料に含有させて薄膜旋回型高速ミキサーで処理することによってドープされ、前記第2電極に燐の元素を含んだ請求項1から24のいずれか一つに記載の二次電池。 The said 2nd electrode is doped by making the said 2nd electrode material contain phosphorus pentoxide and processing with a thin film swirl | vortex type high speed mixer, The phosphorus element was contained in the said 2nd electrode. The secondary battery as described in any one.
  26.  前記第1電極および前記第2電極の少なくとも一方はアクリル樹脂層を有している、請求項1から25のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 25, wherein at least one of the first electrode and the second electrode has an acrylic resin layer.
  27.  前記アクリル樹脂層は、基本単位としてポリアクリル酸を含むゴム状高分子を有する、請求項26に記載の二次電池。 27. The secondary battery according to claim 26, wherein the acrylic resin layer has a rubber-like polymer containing polyacrylic acid as a basic unit.
  28.  前記アクリル樹脂層は、前記ゴム状高分子として、分子量の異なる高分子を有する、請求項27に記載の二次電池。 The secondary battery according to claim 27, wherein the acrylic resin layer has polymers having different molecular weights as the rubbery polymer.
  29.  前記第1電極は、グラフェンを含有する請求項1から28のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 28, wherein the first electrode contains graphene.
  30.  前記第1電極と接触する第1集電体と、
     前記第2電極と接触する第2集電体と、
    をさらに備え、
     前記第1集電体および第2集電体のそれぞれはステンレス鋼から形成されている、請求項1から29のいずれか一つに記載の二次電池。
    A first current collector in contact with the first electrode;
    A second current collector in contact with the second electrode;
    Further comprising
    30. The secondary battery according to any one of claims 1 to 29, wherein each of the first current collector and the second current collector is made of stainless steel.
  31.  充電時、前記第2電極内では、電界方向とは外れた方向に電子移動し、電子蓄積層が備わる請求項1から30のいずれか一つに記載の二次電池。 The secondary battery according to any one of claims 1 to 30, wherein, during charging, electrons move in a direction deviating from an electric field direction in the second electrode, and an electron storage layer is provided.
  32.  前記電界方向とは外れた方向が、前記電界方向に対してほぼ垂直方向である請求項31に記載の二次電池。 32. The secondary battery according to claim 31, wherein a direction deviating from the electric field direction is a direction substantially perpendicular to the electric field direction.
  33.  前記電子蓄積層とは反対方向にホール蓄積層が備わる請求項31または32に記載の二次電池。 The secondary battery according to claim 31 or 32, wherein a hole storage layer is provided in a direction opposite to the electron storage layer.
PCT/JP2016/050879 2015-01-15 2016-01-13 Secondary battery WO2016114321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569490A JP6527174B2 (en) 2015-01-15 2016-01-13 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005786 2015-01-15
JP2015-005786 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016114321A1 true WO2016114321A1 (en) 2016-07-21

Family

ID=56405862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050879 WO2016114321A1 (en) 2015-01-15 2016-01-13 Secondary battery

Country Status (3)

Country Link
JP (1) JP6527174B2 (en)
TW (1) TW201640730A (en)
WO (1) WO2016114321A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027016A1 (en) * 2017-08-03 2019-02-07 株式会社パワーフォー Secondary battery
CN109855768A (en) * 2019-02-22 2019-06-07 清华大学 A kind of sensing device based on graphene and preparation method thereof, application method
WO2020137912A1 (en) * 2018-12-28 2020-07-02 株式会社パワーフォー Secondary battery
JP2020109735A (en) * 2018-12-28 2020-07-16 株式会社パワーフォー Secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511675B (en) * 2021-08-03 2023-04-07 重庆锦添翼新能源科技有限公司 Solid electrolyte with crown structure and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212213A (en) * 2009-03-12 2010-09-24 Nissan Motor Co Ltd Electrode for secondary battery
JP2012028150A (en) * 2010-07-22 2012-02-09 Toyota Motor Corp Lithium ion secondary battery
JP2012204266A (en) * 2011-03-28 2012-10-22 Nippon Electric Glass Co Ltd Negative electrode active material for electricity storage device, negative electrode material for electricity storage device containing the same, and negative electrode for electricity storage device
JP2014007141A (en) * 2012-04-10 2014-01-16 Semiconductor Energy Lab Co Ltd Graphene oxide, positive electrode for nonaqueous secondary battery using the same, method of manufacturing the same, nonaqueous secondary battery, and electronic equipment
JP2015002167A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery
JP2015002168A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054958A (en) * 2011-09-05 2013-03-21 Hitachi Maxell Energy Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
CN104241623A (en) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 Cathode active substance and secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212213A (en) * 2009-03-12 2010-09-24 Nissan Motor Co Ltd Electrode for secondary battery
JP2012028150A (en) * 2010-07-22 2012-02-09 Toyota Motor Corp Lithium ion secondary battery
JP2012204266A (en) * 2011-03-28 2012-10-22 Nippon Electric Glass Co Ltd Negative electrode active material for electricity storage device, negative electrode material for electricity storage device containing the same, and negative electrode for electricity storage device
JP2014007141A (en) * 2012-04-10 2014-01-16 Semiconductor Energy Lab Co Ltd Graphene oxide, positive electrode for nonaqueous secondary battery using the same, method of manufacturing the same, nonaqueous secondary battery, and electronic equipment
JP2015002167A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery
JP2015002168A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027016A1 (en) * 2017-08-03 2019-02-07 株式会社パワーフォー Secondary battery
JP2019029317A (en) * 2017-08-03 2019-02-21 株式会社パワーフォー Secondary battery
EP3553850A4 (en) * 2017-08-03 2020-07-01 Power IV, Inc. Secondary battery
WO2020137912A1 (en) * 2018-12-28 2020-07-02 株式会社パワーフォー Secondary battery
JP2020109735A (en) * 2018-12-28 2020-07-16 株式会社パワーフォー Secondary battery
CN109855768A (en) * 2019-02-22 2019-06-07 清华大学 A kind of sensing device based on graphene and preparation method thereof, application method
CN109855768B (en) * 2019-02-22 2020-10-16 清华大学 Graphene-based sensing device and preparation method and application method thereof

Also Published As

Publication number Publication date
JP6527174B2 (en) 2019-06-05
TW201640730A (en) 2016-11-16
JPWO2016114321A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6518734B2 (en) Secondary battery
JP6527174B2 (en) Secondary battery
JP2011210450A (en) Cell electrode plate and cell
JP2015002168A (en) Secondary battery
JP2014199723A (en) Pre-doping agent, power storage device including the same, and method for manufacturing the power storage device
JP2015002167A (en) Secondary battery
US20140370392A1 (en) Secondary battery and electrode for secondary battery
US20140370389A1 (en) Positive electrode active material and secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
KR20230083877A (en) Rechargeable lithium battery
JP6836281B2 (en) Rechargeable battery
WO2020137912A1 (en) Secondary battery
JP2015002171A (en) Secondary battery and electrode for secondary battery
CN109326773B (en) Electrode active material, battery electrode and semiconductor nano battery
CN108400331B (en) Secondary battery
CN206595344U (en) A kind of secondary cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737392

Country of ref document: EP

Kind code of ref document: A1