WO2018098858A1 - 一种用于高速光模块的光分波合波器光口装置 - Google Patents

一种用于高速光模块的光分波合波器光口装置 Download PDF

Info

Publication number
WO2018098858A1
WO2018098858A1 PCT/CN2016/110661 CN2016110661W WO2018098858A1 WO 2018098858 A1 WO2018098858 A1 WO 2018098858A1 CN 2016110661 W CN2016110661 W CN 2016110661W WO 2018098858 A1 WO2018098858 A1 WO 2018098858A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
interface
speed
module
unit
Prior art date
Application number
PCT/CN2016/110661
Other languages
English (en)
French (fr)
Inventor
张玉安
郭路
梅雪
梁飞
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2018098858A1 publication Critical patent/WO2018098858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to an optical communication device, and more particularly to an optical branching optical port device for a high-speed optical module, which belongs to the field of optical communication.
  • the IEEE802.3bj working group defines a 4-wavelength LAN-WDM technology solution in the 200GBASE-LR4 high-speed optical module standard, and defines an 8-wavelength LAN-WDM technology solution in the 400GBASE-FR8 and 400GBASE-LR8 high-speed optical module standards.
  • the 400GBASE-FR8 and 400GBASE-LR8 are mostly designed with two 4-wavelength integrated optical transceiver components.
  • optical splitter The use of two 4-wavelength integrated optical transceiver components to implement a 400G optical module requires the addition of two components, an optical splitter and an optical combiner, within the module housing.
  • one implementation is a splitter.
  • the device is installed inside the module by means of pigtails, which will occupy a large space inside the module, and the connection of the optical transceiver assembly and the splitter has a large installation operation difficulty, and falls due to manual operation or transportation.
  • the fiber inside the module is prone to damage or breakage, which directly causes problems such as failure or failure of the optical module.
  • the object of the present invention is to provide an optical splitting optical port device which is simple in structure, easy to manufacture and debug, small in size, small in insertion loss, easy to install and debug high-speed optical modules, and improves the reliability of high-speed optical modules, and utilizes optical paths at the same time.
  • the reversible principle realizes the problem that the same structure realizes the splitting and combining of optical signals to solve the above problems.
  • An optical branching optical splitter device for a high-speed optical module comprising a package housing, an external optical input or output interface unit, two internal optical output or input interface units, and an optical splitting or combining Optical unit. among them:
  • the package housing comprises a mounting assembly space, a coupling hole of the external interface, and two coupling holes of the inner interface.
  • the external optical input or output interface unit includes an insertable optical connector interface and an optical lens.
  • the optical lens is mounted in the external optical interface unit, and the bonding is integrated.
  • the internal light output or input interface unit includes a fiber ferrule for insertion into a light emitting or receiving component In the optical interface.
  • the optical splitting or combining optical unit comprises a wave decomposition multiplexing device or a wavelength division multiplexing device, the light beam reflects the corner of the corner, and the beam collimating lens.
  • the external optical input or output interface unit is coupled to the external interface coupling hole of the package housing, and includes an insertable optical connector interface portion for accessing the optical connector, and the optical lens is mounted on the external light input or In the output interface unit, multi-wavelength optical signals are allowed to pass through.
  • the two pair of internal light output or input interface units are respectively coupled in the coupling holes of the two inner interfaces of the package housing.
  • the three outer coupling holes are sized to allow the outer and inner interface units to be partially inserted into the package housing.
  • the optical wavelength division optical port device is configured to receive an optical signal in the optical fiber line, and the received optical signal includes ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 eight wavelengths, the eight wavelengths of optical signals are demultiplexed into two beams of ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 and ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 by a wave decomposition multiplexing device .
  • the split two beams are coupled into the inner fiber ferrule through an internal turning collimating lens that can be inserted into the optical receiving assembly optical port.
  • the optical fiber ferrule is connected to the optical ports of the two light emitting components, and the light emitted by the two sets of light emitting components is ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8
  • two beams enter the multiplexed optical unit, and the optical signals after the collimated turning are entered into the wavelength division multiplexing device and multiplexed into wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , A beam of ⁇ 6 , ⁇ 7 , ⁇ 8 .
  • the multiplexed beam is coupled to the external optical output interface unit and then transmitted over the fiber optic line.
  • the eight wavelengths of ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are LAN-WDM wavelengths defined by the IEEE 802.3bj standard.
  • optical splitting multiplexer optical port device of the present invention can be installed in a CFP series and QSFP-DD high speed optical module package structure.
  • an optical branching optical splitter device for a high-speed optical module is used at a splitting end to receive an optical fiber connector through an insertable optical connector interface in an external input interface.
  • the optical signals of the eight wavelengths, the received optical signal enters the optical demultiplexer through the optical lens in the external interface unit, the optical demultiplexer reflects the optical signals of the four wavelengths therein, and transmits the optical signals of the remaining four wavelengths.
  • the transflective optical signal passes through the turning prism, is collimated, and is output to the optical fiber ferrule on the inner output unit.
  • the structure of the multiplexed end light path is consistent with the splitting end.
  • the folding prism added in the optical path can adjust the optical path at a small angle, compensates for the optical path mismatch caused by the processing and assembly of the device, greatly reduces the requirement for the process precision of the component, and can ensure the consistency of the insertion loss between the channels.
  • the coupling efficiency is maximized and the insertion loss is less than 0.5dB.
  • Symmetrical and asymmetrical structural design can be adopted on the package housing, which can effectively reduce the structural design, and can effectively utilize the space of the housing, which is more advantageous for miniaturization of the module.
  • the invention device can be quickly installed and adjusted in the high-speed optical module fabrication and assembly, and the assembly and debugging process is simple and quick. At the same time, due to the compact structure, there is no fiber winding in the module, thereby avoiding damage or breakage of the optical fiber and improving the reliability of the module. Conducive to the installation of high-speed optical modules.
  • 1 is a schematic diagram of an optical communication system using an eight-wave high-speed optical module
  • FIG. 2 is a functional block diagram of an internal structure according to Embodiment 1 of the present invention.
  • Embodiment 3 is a functional block diagram of an internal structure according to Embodiment 2 of the present invention.
  • FIG. 4 is a functional block diagram of an internal structure according to Embodiment 3 of the present invention.
  • Figure 5 is a functional block diagram of a light wave decomposition multiplexing or multiplexing device
  • FIG. 7 is a schematic structural diagram of a wave decomposition multiplexing device or a wavelength division multiplexing device according to the present invention.
  • the embodiment of the invention provides an optical splitting optical port device for a high-speed optical module, which can be applied to a high-speed optical module, and is described in detail below through specific embodiments.
  • FIG. 1 is a schematic diagram of an eight-wave high-speed optical module optical communication system.
  • a local high-speed optical module 11 and a The remote high-speed optical module 12 and the two optical fibers 13 and 14 are composed.
  • the local high-speed optical module 11 is composed of a local light emitting unit 15, a local light receiving unit 16, and a local electrical connector interface 17.
  • the remote high speed optical module 12 is comprised of a remote light emitting unit 15', a remote light receiving unit 16', and a remote electrical connector interface 17'.
  • the local light emitting unit 15 transmits the information of the local optical signal to the remote light receiving unit 16' through an optical fiber 13, and the local light receiving unit 16 receives the optical signal from the remote light emitting unit 15' through an optical fiber 14. Thereby achieving bidirectional transmission of the optical signal.
  • the two ends of the optical fiber 13 are respectively connected to the optical port device 25 of the local high-speed optical module 11 and the optical port device 35' of the remote high-speed optical module 12 through the optical connector, and the two tails of the optical fiber 14 The ends are respectively connected to the optical port device 35 of the local high-speed optical module 11 and the optical port device 25' of the remote high-speed optical module 12 through the optical connector.
  • the local light emitting unit 15 includes drive circuits 20 and 21, light emitting components 22 and 23, an optical combiner 24, and a light output optical port device 25.
  • the drive circuits 20 and 21 are used to drive the light emitting components 22 and 23 to convert electrical signals into optical signals.
  • the light emitting component 22 includes lasers outputting four wavelengths of ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4
  • the transmitting component 23 includes lasers of four wavelengths of output ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8
  • the optical signal emitted by the optical multiplexer comprises a bundle 24 into a multiplexed optical signal [lambda] 1 to ⁇ 8 wavelengths ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8
  • the multiplexed optical signal enters the insertable optical output optical port device 25, and the optical signal is transmitted on the optical fiber 13 through the inserted optical connector.
  • the remote light receiving unit 16' includes an insertable optical input optical port device 35', an optical splitter 34', light receiving components 32' and 33', and receiving amplification circuits 30' and 31', wherein the light output light can be inserted.
  • the optical device 13 accessed by the optical device through the optical connector 13 receives the optical signals ( ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 ) from the line, and the received light
  • the signal enters the optical demultiplexer 34', and the four wavelength optical signals of the ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 after the optical demultiplexer are divided into the optical receiving component 32' for photoelectric conversion, and the divided ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 four wavelength optical signals enter the light receiving component 33' for photoelectric conversion, and the receiving amplifying circuits 30' and 31' amplify the received electrical signals corresponding to the
  • the remote light emitting unit 15' is similar to the local light emitting unit 15, having the same or a substantial portion;
  • the local light receiving unit 16 is similar to the remote light receiving unit 16', having the same or a substantial portion.
  • the optical splitting multiplexer optical port device for high-speed optical module provided by the invention can be used to replace the two units of the optical multiplexer 24 and the insertable optical port device 25 shown in FIG. 1, thereby effectively reducing component process precision. It is required to improve the coupling efficiency to the highest, ensure the consistency of the insertion loss between the channels, improve the reliability of the optical module, facilitate the quick installation and adjustment, and facilitate the installation and manufacture of the high-speed optical module.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the optical fiber splitter optical port device for a high-speed optical module has a functional block diagram of the internal structure of the first embodiment.
  • the package includes a package housing 102 and an external optical interface. Unit 100, two pairs of internal optical interface units 118 and 119, an optical splitting or combining optical unit.
  • the package housing 102 includes a mounting assembly space, and provides a coupling hole 110 for the outer interface and coupling holes 111 and 112 for the two inner interfaces.
  • the installation assembly space is used to install a fixed package optical splitting or multiplex optical unit.
  • the external interface coupling hole 110 is used for mounting the external optical interface unit 100, and the external interface coupling hole 110 is sized to allow the external optical interface unit 100 to be partially inserted into the package housing 102.
  • the two inner interface coupling holes 111 and 112 are for mounting the inner optical interface units 118 and 119, and the same two inner interface coupling holes 111 and 112 are sized to allow the inner optical interface units 118 and 119 to be partially inserted into the package. Inside the housing 102.
  • the external optical interface unit 100 is configured to access the optical connector, and is mounted on the external interface coupling hole 110 on the package housing 102 and partially inserted into the external interface coupling hole 110.
  • the external optical interface unit 100 includes an insertable optical connector interface 101, an optical lens 103.
  • the optical lens 103 is mounted in the external optical interface unit 100, and is bonded to the insertable optical connector interface 101 as a whole, allowing multi-wavelength optical signals to be collimated.
  • the two pairs of internal optical interface units 118 and 119 are inserted into the optically-engageable optical interface or the optically-receivable component of the light-receiving component, which are mounted on the inner-to-interface coupling holes 111 and 112 on the package housing 102.
  • the inner optical interface units 118 and 119 are partially inserted into the inner interface coupling holes 111 and 112.
  • the pair of inner optical interface units 118 and 119 include an optical fiber ferrule that is inserted into an optically dismountable optical port or optically connectable optical port.
  • the optical splitting or combining optical unit comprises a wave decomposition multiplexing device or a wavelength division multiplexing device 104, the light beam reflecting the corners 105 and 107, and the beam collimating lenses 106 and 108.
  • the optical wavelength division optical unit is used in the optical wavelength division optical port unit, and the external optical interface unit 100 is configured to receive the optical signal in the optical fiber line, and the received optical signal includes ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 .
  • the eight wavelengths of optical signals are collimated by the optical lens 103 and then enter the wave decomposition multiplexing device 104, which is demultiplexed into ⁇ 1 , ⁇ 2 , ⁇ by the wave decomposition multiplexing device 104. 3 , ⁇ 4 and ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 two beams.
  • the split two beams enter the beam collimating lenses 106 and 108 from the two directions through the beam reflecting corners 105 and 107, respectively, and are then coupled into the fiber ferrules of the pair of optical interface units 118 and 119.
  • the optical multiplexer optical unit is used in the optical multiplexer optical port device, and the optical fiber ferrules of the internal optical interface units 118 and 119 are connected to the optical ports of the two light emitting components, and the light emitted by the two sets of light emitting components is ⁇ 1 , ⁇ 2 , Two beams of ⁇ 3 , ⁇ 4 and ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 enter the multiplexed optical unit, and are collimated by the beam collimating lenses 106 and 108, respectively, and enter the beam reflection turning corners 105 and 107, and are deflected therethrough.
  • the two optical signals are multiplexed into the wavelength division multiplexing device 104 from two directions into a beam of wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 .
  • the multiplexed beam is coupled to the external optical interface unit 100 and then transmitted over the fiber optic line.
  • the wave decomposition multiplexing device 104 and the wavelength division multiplexing device 104 are actually different functions of the same device in two different optical path directions, and therefore will be collectively referred to as optical wave decomposition multiplexing or wavelength division multiplexing.
  • the device 104 thus, the optical splitting optical unit and the optical multiplex optical unit are actually different functions of the same device in different optical path directions, that is, the optical splitting optical unit and the optical multiplex optical unit are simultaneously realized by using the same optical path structure.
  • the optical wave demultiplexing or wavelength division multiplexing device 104 includes a front optical surface 1041 and a rear optical surface 1042, wherein the front optical surface 1041 is plated with a filter film, and the transmission reflection wavelength of the filter film
  • the spectrum is as shown in Fig. 6.
  • the filter film transmits a spectrum of a wavelength range of ⁇ 1 to ⁇ 4 and reflects a spectrum of a wavelength range of ⁇ 5 to ⁇ 8 .
  • a filter film that reflects ⁇ 1 to ⁇ 4 wavelength and transmits ⁇ 5 to ⁇ 8 wavelength can be selectively plated.
  • a total reflection film is plated on the rear optical surface 1042, and the total reflection film can totally reflect the light transmitted by the filter film.
  • the light beam including the wavelengths ⁇ 1 to ⁇ 8 from the optical fiber line enters the external optical interface unit 100, passes through the optical lens 103, and enters the optical wave decomposition multiplexing device 104.
  • the filter diaphragm on the front optical surface 1041 of the optical wave decomposition multiplexing device 104 reflects the light beams of four wavelengths, and the reflected light beam enters the beam reflection turning corner 107 for total reflection, and the light reflected by the beam reflection turning corner 107 enters.
  • the collimating lens 108 is collimated and then coupled to the output in the in-line optical interface unit 118; the remaining four wavelengths of light are transmitted through the filter diaphragm on the front optical surface 1041 to the rear optical surface 1042 of the optical decomposition multiplexing device 104. After being reflected by the light total reflection film plated on the rear optical surface 1042, the light is reflected by the corners 105 to be totally reflected. The light reflected by the beam reflection corners 105 enters the collimator lens 106 for collimation, and then coupled to the inside.
  • the optical interface 119 outputs.
  • the internal optical interface units 118, 119 are respectively connected into the optical ports of the light receiving components of the corresponding wavelength range, thereby realizing the use of the apparatus of the present invention on the high speed optical module light receiving unit.
  • the beam passing path is opposite to that used in the light receiving unit of the high speed optical module, and the detailed description will not be repeated here.
  • the four wavelengths of light input through the internal optical interface unit 119 are reflected by the beam reflection corners 105 and enter the optical wavelength division multiplexing device 104, which is reflected by the rear optical surface 1042 of the optical wavelength division multiplexing device 104 to the front optical surface.
  • the filter diaphragm on the front optical surface 1041 and transmitted through the filter diaphragm on the front optical surface 1041; the four wavelength beams input through the internal optical interface unit 118 are reflected by the beam reflection turning corner 107 and enter the optical wavelength division multiplexing device 104, which is wavelength division multiplexed by the light.
  • the filter film on the front optical surface 1041 of the device 104 is reflected by the light beam of the four wavelengths transmitted through the filter film, and then outputted through the external optical interface unit 100.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the functional block diagram of the internal structure of the second embodiment of the present invention includes a package housing 202, an external optical interface unit 200, two internal optical interface units 218 and 219, and an optical splitting or combining optical unit.
  • the external optical interface unit 200 and the internal optical interface units 218 and 219 are identical to the functions/structures described in the corresponding components in the first embodiment.
  • the package housing 202 includes a mounting hole 210 and a coupling hole 210 for the outer interface, and coupling holes 211 and 212 for the two inner interfaces.
  • the coupling hole is also identical to the function/structure described in the corresponding components of the first embodiment. .
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is mainly in the structure of the optical demultiplexing or combining optical unit.
  • a light wave decomposition multiplexing or wavelength division multiplexing device 204 is included, and the beam reflection corner 207 is collimated.
  • the wave decomposition multiplexing device or the wavelength division multiplexing device 204 adopts a planar lens structure, and only filters the filter film on the front optical surface 2041, and the filter film is as shown in FIG.
  • a spectrum that transmits a wavelength range of ⁇ 1 to ⁇ 4 reflects a spectrum of a wavelength range of ⁇ 5 to ⁇ 8 , or reflects a spectrum of a wavelength range of ⁇ 1 to ⁇ 4 , and transmits a spectrum of a wavelength range of ⁇ 5 to ⁇ 8 to thereby realize different wavelengths Reflection and transmission.
  • the light beam including the wavelengths ⁇ 1 to ⁇ 8 from the optical fiber line is input to the external optical interface unit 200, processed by the optical lens 203, and then subjected to optical wave decomposition multiplexing or wavelength division multiplexing.
  • the device 204, the filter diaphragm on the front optical surface 2041 of the optical wave demultiplexing or wavelength division multiplexing device 204 reflects the light beams of four wavelengths, and the reflected light beam enters the beam reflection turning corner 207 for total reflection, and the beam reflection is turned.
  • the light reflected by the edge 207 enters the collimating lens 208 for collimation and then is coupled to the output of the in-line optical interface unit 218; the other four wavelengths are transmitted through the filter diaphragm on the front optical surface 2041 and directly into the collimating lens 206. Collimated and then coupled to the output in the internal optical interface unit 219.
  • the internal optical interface units 218, 219 are respectively connected into the optical ports of the light receiving components of the corresponding wavelength range, thereby realizing the use of the inventive device on the light receiving unit of the high speed optical module.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Embodiment 3 is a symmetrical structure of Embodiment 2, and its function and implementation are consistent with 2, as shown in FIG.
  • the eight wavelengths of ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , ⁇ 7 , ⁇ 8 described in the present invention are LAN-WDM wavelengths defined by the IEEE 802.3bj standard.
  • optical branching optical splitter device of the present invention can be installed in a CFP series and QSFP-DD high speed optical module package structure.
  • the position of the external and internal interfaces can be adjusted according to the definition of the high-speed optical module size, but the overall frame does not undergo a fundamental change, and the corners added in the optical path can be adjusted at a small angle to compensate for the processing of the device.
  • the optical path mismatch caused by assembly greatly reduces the requirement for component process precision, and can ensure the consistency of insertion loss between channels, so that the coupling efficiency is the highest and the insertion loss is less than 0.5dB.
  • Symmetrical and asymmetrical structural design can be adopted on the package housing, which can effectively reduce the structural design, and can effectively utilize the space of the housing, which is more advantageous for miniaturization of the module.
  • the invention device can be quickly installed and adjusted in the high-speed optical module fabrication and assembly, and the assembly and debugging process is simple and quick. At the same time, due to the compact structure, no fiber winding in the module, the damage or breakage of the optical fiber is avoided, and the reliability of the module is improved. Conducive to the installation of high-speed optical modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种用于高速光模块的光分波合波器光口装置,包括封装壳体(102),一个对外光接口单元(100),两个对内接口单元(118、119),一个分波合波光学单元,对外光接口单元(100)安装在高速光模块光纤接口位置,用于接入连接光纤(13、14),对内光接口单元(118、119)连接光收发组件,封装壳体(102)内部的分波合波光学单元实现光纤链路上光信号的分合波,高速光模块的光分波合波器光口装置用在高速光模块光口位置,容易实现模块外光纤链路与模块内光收发组件的连接,同时由于结构小巧,有利于模块的小型化,在高速光模块制作装配中能够快速安装调整,组装调试过程简单快捷,同时由于模块内无光纤盘绕,避免了光纤的损伤或断裂,提高了模块的可靠性,有利于高速光模块的安装制作。

Description

一种用于高速光模块的光分波合波器光口装置 技术领域
本发明涉及一种光通信器件,尤其涉及一种用于高速光模块的光分波合波器光口装置,属于光通信领域。
背景技术
随着光通信领域的迅猛发展,互联网用户数,应用种类,网络带宽等都呈现出爆发式的增长。点到点(P2P)技术、在线视频、社交网络、移动互联的发展正在不断吞噬网络带宽。同时云计算、大数据等技术的飞速发展,以超级数据中心为核心的云网络,对带宽需求更为迫切。承运商和服务供应商们正在规模化的应用和部署100G高速光收发模块,100G高速光收发模块已经成为主流配置光模块,且对更高速率的光模块提出了迫切的需求,200G/400G更高速率的光模块正在逐步进入市场。IEEE802.3bj工作组在200GBASE-LR4高速光模块标准中定义了4波长LAN-WDM的技术方案,在400GBASE-FR8和400GBASE-LR8高速光模块标准内定义了8波长LAN-WDM的技术方案。其中在200GBASE-LR4和400GBASE-FR8和400GBASE-LR8存在4个一致的波长,因此为了减少400G光模块8波长集成的光发射组件和光接收组件开发成本和开发难度,同时提高光发射组件和光接收组件的兼容性,提高光收发射组件器件的利用率和减少维护费用,400GBASE-FR8和400GBASE-LR8大部分采用2个4波长集成的光收发组件进行设计。
采用2个4波长集成的光收发组件实现400G光模块需要在模块管壳内部增加光分波器和光合波器两个器件,现有技术中,一种实现方式是分合波器这两个器件采用尾纤的方式安装在模块内部,这将在模块内部将占据较大的空间,且将光收发组件与分合波器连接存在较大的安装操作难度,而且由于人工操作或运输,跌落等原因,模块内部的光纤容易造成损伤或断裂等问题,直接造成光模块不合格或失效等问题。
因此,研究一种在高速光模块中使用,可以容易操作,可靠接入的光分波合波装置,从而提高生产效率和产品的可靠性具有现实的应用价值。
发明内容
本发明的目的在于提供一种结构简单,容易制作调试,体积小,***损耗小且易于高速光模块安装调试,提高高速光模块可靠性的光分波合波器光口装置,同时利用了光路可逆的原理实现同一结构实现光信号的分波和合波问题,以解决上述问题。
为达到上述目的,本发明的技术问题通过以下的技术方案予以解决:
一种用于高速光模块的光分波合波器光口装置,包括封装壳体,一个对外光输入或输出接口单元,两个对内光输出或输入接口单元,一个光分波或合波光学单元。其中:
所述的封装壳体包括安装装配空间,一个对外接口的耦合孔,两个对内接口的耦合孔。
所述的对外光输入或输出接口单元包括一个可***光连接器接口,一个光学透镜。所述的光学透镜安装在外光接口单元中,粘接成为一个整体。
所述的对内光输出或输入接口单元包括光纤插芯,用于***至光发射或接收组件的可插 入光接口中。
所述的光分波或合波光学单元包括一波分解复用装置或一波分复用装置,光束反射转折棱角,光束准直透镜。
进一步,所述的对外光输入或输出接口单元耦合在封装壳体的对外接口耦合孔中,其包括的可***光连接器接口部分用于接入光连接器,光学透镜安装在对外光输入或输出接口单元中,允许多波长光信号准直透过。
进一步,所述的两个对内光输出或输入接口单元分别耦合在封装壳体的两个对内接口的耦合孔中。
进一步,所述的对外对内三个耦合孔的大小要允许所述对外和对内接口单元可部分***至所述的封装壳体内。
进一步,所述的光分波光口装置,对外光输入接口单元用于接收光纤线路中光信号,接收的光信号包含λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8八个波长,这八个波长的光信号经过波分解复用装置解复用为λ1,λ2,λ3,λ4和λ5,λ6,λ7,λ8两束光束。分波后的两束光束通过内部的转折准直透镜耦合至对内光纤插芯中,光纤插芯可***至光接收组件光口中。
进一步,所述的光合波光口装置中光纤插芯接入两个光发射组件光口中,两组光发射组件发出的光波长为λ1,λ2,λ3,λ4和λ5,λ6,λ7,λ8两束光束进入合波光学单元中,通过准直转折后的光信号进入波分复用装置复用为波长为λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8的一束光束。合波后的光束耦合至对外光输出接口单元,然后在光纤线路上进行传输。
进一步,所述的λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8八个波长为IEEE802.3bj标准定义的LAN-WDM波长。
进一步,本发明所述的光分波合波器光口装置可安装在CFP系列和QSFP-DD高速光模块封装结构中。
采用上述技术方案,本发明所述的一种用于高速光模块的光分波合波器光口装置,用在分波端通过对外输入接口中的可***光连接器接口接收来自光纤线路的八种波长的光信号,接收的光信号通过对外接口单元中的光学透镜进入光解复用器,光解复用器反射其中的四个波长的光信号,透射其余四种波长的光信号,透射反射的光信号通过转折棱镜,准直后输出至对内输出单元上的光纤插芯中。合波端光路结构与分波端一致。在光路中加入的转折棱镜可以小角度的调整光路,补偿由于器件加工及装配带来的光路失配,大大降低了对于组件工艺精度的要求,并且可以保证各通道之间***损耗的一致性,使得耦合效率达到最高,***损耗小于0.5dB。在封装壳体上可以采用对称和非对称结构设计,可以有效的缩小结构设计,同时可以有效的利用壳体的空间,更有利于模块的小型化。在高速光模块制作装配中采用此发明装置可以快速的安装调整,组装调试过程简单快捷,同时由于结构小巧,模块内无光纤盘绕,避免了光纤的损伤或断裂,提高了模块的可靠性,有利于高速光模块的安装制作。
附图说明
为了更清楚的说明本发明实施例的技术方案,先将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术 人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为采用八波的高速光模块光通信***示意图;
图2为本发明实施方式1的内部结构功能框图;
图3为本发明实施方式2的内部结构功能框图;
图4为本发明实施方式3的内部结构功能框图;
图5为一光波分解复用或复用装置结构功能框图;
图6为本发明所述的光波分解复用和光波分复用装置的反射和透射光谱;
图7为本发明波分解复用装置或波分复用装置的结构示意图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种用于高速光模块的光分波合波器光口装置,可应用在高速光模块中,下面通过具体实施例,分别进行详细的说明。
为了更好的说明本发明的各个实施方式,请参阅图1,图1为一种采用八波的高速光模块光通信***示意图,在此光通信***10中由一本地高速光模块11、一远端高速光模块12、两根光纤13和14组成。其中所述本地高速光模块11由本地光发射单元15、本地光接收单元16、本地电连接器接口17组成。所述远端高速光模块12由远端光发射单元15’,远端光接收单元16’,远端电连接器接口17’组成。本地光发射单元15通过一根光纤13将本地光信号的信息传送至远端光接收单元16’,本地光接收单元16通过一根光纤14接收来自远端光发射单元15’发出的光信号,从而实现光信号的双向传输。其中所述的光纤13的两个尾端通过光连接器分别接入至本地高速光模块11的光口装置25和远端高速光模块12的光口装置35’中,光纤14的两个尾端通过光连接器分别接入至本地高速光模块11的光口装置35和远端高速光模块12的光口装置25’中。
其中本地光发射单元15包括驱动电路20和21,光发射组件22和23,光合波器24以及光输出光口装置25。其中驱动电路20和21用于驱动光发射组件22和23将电信号转换成光信号。光发射组件22包含输出λ1,λ2,λ3,λ4四种波长的激光器,发射组件23包含输出λ5,λ6,λ7,λ8四种波长的激光器,两组光发射组件22、23发出的光信号通过光合波器24合波成一束包含λ1至λ8波长的光信号(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8),合波后的光信号进入可***光输出光口装置25中,通过***的光连接器实现光信号在光纤13上的发射。
其中远端光接收单元16’包括可***光输入光口装置35’,光分波器34’,光接收组件32’和33’,接收放大电路30’和31’,其中可***光输出光口装置35’通过光连接器接入的光纤13接收来自线路上的光信号(λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8),接收后的光信号进入光分波器34’,光分波器分波后的λ1,λ2,λ3,λ4四种波长光信号进入光接 收组件32’中进行光电转换,分波后的λ5,λ6,λ7,λ8四种波长光信号进入光接收组件33’中进行光电转换,接收放大电路30’和31’将接收的与8各波长光信号相对应的电信号进行放大处理。
其中远端光发射单元15’与本地光发射单元15相类似,具有相同或相当部分;本地光接收单元16与远端光接收单元16’相类似,具有相同或相当部分。
本发明所提供的一种用于高速光模块的光分波合波器光口装置可用于替代图1所示光合波器24和可***光口装置25两个单元,从而有效降低组件工艺精度要求,提高耦合效率达到最高,保证各通道之间***损耗的一致性,同时提高光模块的可靠性,方便快速的安装调整,有利于高速光模块的安装制作。
实施方式1:
本发明所提供的一种用于高速光模块的光分波合波器光口装置,其实施方式1的内部结构功能框图如图2所示,其包括:封装壳体102,一个对外光接口单元100,两个对内光接口单元118和119,一个光分波或合波光学单元。其中:封装壳体102包括安装装配空间,并提供一个对外接口的耦合孔110,两个对内接口的耦合孔111和112。其中,安装装配空间用于安装固定封装光分波或合波光学单元。对外接口耦合孔110用于安装对外光接口单元100,对外接口耦合孔110的大小要允许对外光接口单元100可以部分***至封装壳体102内。两个对内接口耦合孔111和112用于安装对内光接口单元118和119,同样两个对内接口耦合孔111和112的大小要允许对内光接口单元118和119可以部分***至封装壳体102内。
对外光接口单元100用于接入光连接器,其安装在封装壳体102上的对外接口耦合孔110上,并部分***对外接口耦合孔110中。对外光接口单元100包括一个可***光连接器接口101,一个光学透镜103。其中光学透镜103安装在对外光接口单元100中,与可***光连接器接口101粘接成为一个整体,允许多波长光信号准直透过。
两个对内光接口单元118和119***至光发射组件或光接收组件的可***光接口中,其安装在封装壳体102上的对内接口耦合孔111和112上。其中对内光接口单元118和119部分***对内接口耦合孔111和112中。对内光接口单元118和119包括光纤插芯,该光纤插芯***到光发射组件或光接收组件的可***光口中。
光分波或合波光学单元包括一波分解复用装置或一波分复用装置104,光束反射转折棱角105和107,光束准直透镜106和108。光分波光学单元用在光分波光口装置中,对外光接口单元100用于接收光纤线路中光信号,接收的光信号包含λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8八个波长,这八个波长的光信号经过光学透镜103准直后进入波分解复用装置104,通过波分解复用装置104解复用为λ1,λ2,λ3,λ4和λ5,λ6,λ7,λ8两束光束。分波后的两束光束从两个方向分别通过光束反射转折棱角105和107进入光束准直透镜106和108中,然后耦合至对内光接口单元118和119的光纤插芯中。光合波光学单元用在光合波光口装置中,对内光接口单元118和119的光纤插芯接入两个光发射组件光口中,两组光发射组件发出的光波长为λ1,λ2,λ3,λ4和λ5,λ6,λ7,λ8两束光束进入合波光学单元,分别 通过光束准直透镜106和108准直后进入光束反射转折棱角105和107,经其偏转后,两束光信号从两个方向进入波分复用装置104复用为波长为λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8的一束光束。合波后的光束耦合至对外光接口单元100,然后在光纤线路上进行传输。
如图2所示,波分解复用装置104和波分复用装置104实际上是同一装置在两个不同光路方向上的不同作用,因此后面也会统称为光波分解复用或波分复用装置104;由此,实际上光分波光学单元和光合波光学单元也是同一装置在不同光路方向上的不同作用,也就是说使用同一光路结构同时实现光分波光学单元和光合波光学单元
其中光波分解复用或波分复用装置104,如图5所示,包括前光学面1041和后光学面1042,其中前光学面1041上镀有滤波膜片,该滤波膜片的透射反射波长光谱如图6所示,该滤波膜片透射λ1至λ4波长范围的光谱,反射λ5至λ8波长范围的光谱。同样在前光学面1041上还可以选择镀反射λ1至λ4波长,透射λ5至λ8波长的滤波膜片。在后光学面1042上镀全反射膜片,全反射膜片可以将由滤波膜片透射的光进行全反射。
本实施方式1用在高速光模块的光接收单元上时,来自光纤线路的包含λ1至λ8波长的光束进入对外光接口单元100中,经过光学透镜103处理后进入光波分解复用装置104,光波分解复用装置104的前光学面1041上的滤波膜片将其中四个波长的光束反射,反射后的光束进入光束反射转折棱角107进行全反射,经光束反射转折棱角107反射的光进入准直透镜108进行准直,然后耦合至对内光接口单元118中输出;其余四个波长的光束透射穿过前光学面1041上的滤波膜片至光波分解复用装置104的后光学面1042,被后光学面1042上所镀的光全反射膜片反射后进入光束反射转折棱角105进行全反射,经光束反射转折棱角105反射的光进入准直透镜106进行准直,然后耦合至对内光接口119中输出。对内光接口单元118,119分别接入对应波长范围的光接收组件光口内,从而实现本发明装置在高速光模块光接收单元上的使用。
由于此实施方式所采用内部光路结构的可逆性,其用在高速光模块的光发射单元上时,光束通过路径与用在高速光模块的光接收单元时相反,在此不再重复详细描述,简单来说,通过对内光接口单元119输入的四个波长光束通过光束反射转折棱角105反射后进入光波分复用装置104,由光波分复用装置104的后光学面1042反射至前光学面1041,并透射穿过前光学面1041上的滤波膜片;通过对内光接口单元118输入的四个波长光束通过光束反射转折棱角107反射后进入光波分复用装置104,被光波分复用装置104的前光学面1041上的滤波膜片所反射,与透射穿过该滤波膜片的四个波长的光束合波后通过对外光接口单元100输出。
实施方式2:
本发明实施方式2的内部结构功能框图如图3所示,包括封装壳体202,一个对外光接口单元200,两个对内光接口单元218和219,一个光分波或合波光学单元。其中对外光接口单元200,对内光接口单元218和219与实施方式1中相应部件所述的功能/结构一致。封装壳体202包括有安装装配空间,并提供一个对外接口的耦合孔210,两个对内接口的耦合孔211和212,上述耦合孔也与实施方式1中相应部件所述的功能/结构一致。实施方式2与 实施方式1的区别主要在于光分波或合波光学单元的结构,在实施方式2中包括一光波分解复用或波分复用装置204,光束反射转折棱角207,光束准直透镜206和208。其中波分解复用装置或波分复用装置204,如图7所示,采用平面透镜结构,仅在前光学面2041上镀滤波膜片,滤波膜片如图6所示,该滤波膜片透射λ1至λ4波长范围的光谱,反射λ5至λ8波长范围的光谱,又或者反射λ1至λ4波长范围的光谱,透射λ5至λ8波长范围的光谱,从而实现不同波长的反射和透射。
本实施方式2用在高速光模块光接收单元时,来自光纤线路包含λ1至λ8波长的光束输入对外光接口单元200中,经过光学透镜203处理后进入光波分解复用或波分复用装置204,光波分解复用或波分复用装置204前光学面2041上的滤波膜片将其中四个波长的光束反射,反射后的光束进入光束反射转折棱角207进行全反射,经光束反射转折棱角207反射的光进入准直透镜208进行准直,然后耦合至对内光接口单元218中输出;另外四个波长透射穿过前光学面2041上的滤波膜片后直接进入准直透镜206进行准直,然后耦合至对内光接口单元219中输出。对内光接口单元218,219分别接入对应波长范围的光接收组件光口内,从而实现此发明装置在高速光模块的光接收单元上的使用。
同理由于此实施方式内部光路结构的可逆性,用在高速光模块的光发射单元上时,光束通过路径与用在高速光模块的光接收单元时相反,在此不再重复描述。
实施方式3:
实施方式3为实施方式2的一种对称结构,其功能和实施方式与2相一致,如图4所示。
在本发明中所述的λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8八个波长为IEEE802.3bj标准定义的LAN-WDM波长。
在本发明所述的光分波合波器光口装置可安装在CFP系列和QSFP-DD高速光模块封装结构中。
在本发明中对外和对内接口位置可以根据高速光模块尺寸定义进行调整,但整体框架不会产生根本性的变化,同时光路中加入的转折棱角可以小角度的调整光路,补偿由于器件加工及装配带来的光路失配,大大降低了对于组件工艺精度的要求,并且可以保证各通道之间***损耗的一致性,使得耦合效率达到最高,***损耗小于0.5dB。在封装壳体上可以采用对称和非对称结构设计,可以有效的缩小结构设计,同时可以有效的利用壳体的空间,更有利于模块的小型化。在高速光模块制作装配中采用此发明装置可以快速的安装调整,组装调试过程简单快捷,同时由于结构小巧,模块内无光纤盘绕,避免了光纤的损伤或断裂,提高了模块的可靠性,有利于高速光模块的安装制作。
以上实施方案仅用以说明本发明的技术方案,而非对其限制;尽管参照实施方案对本发明进行了详细说明,但对于本领域技术人员应对理解:其依然可以对前述各实施例所记载的技术方案进行修改,可在形式上和细节上对本发明做出各种变化,其并未脱离本专利的技术与精神。

Claims (10)

  1. 一种用于高速光模块的光分波合波器光口装置,包括一个对外光接口单元和两个对内光接口单元,以及设置在所述一个对外光接口单元和两个对内光接口单元之间的分波合波光学单元,以实现将从所述对外光接口单元输入的光信号按指定波长分别分波到两个对内光接口单元输出、或者将从所述两个对内光接口单元输入的不同波长光信号合波到所述对外光接口单元输出;其特征在于包括:分波合波光学单元具有前光学面和后光学面,所述前光学面上具有滤波膜片,所述滤波膜片对一波长范围的光信号反射、并对另一波长范围的光信号透射,两个不同波长范围的光信号分别对应由两个对内光接口单元输入或输出。
  2. 如权利要求1所述的用于高速光模块的光分波合波器光口装置,其特征在于:所述滤波膜片对IEEE802.3bj标准定义的LAN-WDM的8个波长中的四个进行反射、对另外四个进行透射。
  3. 如权利要求1-2中任一项所述的用于高速光模块的光分波合波器光口装置,其特征在于:进一步包括有封装壳体,所述封装壳体具有安装装配空间以容纳所述分波合波光学单元;所述封装壳体上还具有接入对外光接口单元的对外接口耦合孔,以及分别接入两个对内光接口单元的对内接口耦合孔。
  4. 如权利要求3所述的用于高速光模块的光分波合波器光口装置,其特征在于:所述对外光接口单元具有可***光连接器接口,以及与所述可***光连接器接口相连接的光学透镜,所述光学透镜用于使所述可***光连接器接口与所述分波合波光学单元的前光学面相对准。
  5. 如权利要求1-4中任一项所述的用于高速光模块的光分波合波器光口装置,其特征在于:所述分波合波光学单元还包括有光束反射转折棱角和光束准直透镜,两个对内光接口单元中的至少一个通过光束反射转折棱角来与所述分波合波光学单元的前光学面相对准。
  6. 如权利要求5所述的用于高速光模块的光分波合波器光口装置,其特征在于:所述两个对内光接口单元具有光纤插芯,所述光纤插芯分别***到高速光模块的光发射组件或光接收组件的可***光口中。
  7. 如权利要求1-6中任一项所述的用于高速光模块的光分波合波器光口装置,其特征在于:所述光分波合波器光口装置的***损耗小于0.5dB。
  8. 如权利要求1-7中任一项所述的用于高速光模块的光分波合波器光口装置,其特征在于:所述光分波合波器光口装置安装在CFP系列和QSFP-DD高速光模块封装结构中。
  9. 一种用于高速光模块的光分波合波器件,其特征在于:具有前光学面和后光学面,所述前光学面上具有滤波膜片,所述滤波膜片对IEEE802.3bj标准定义的LAN-WDM的8个波长中的四个进行反射、对另外四个进行透射。
  10. 如权利要求9所述的用于高速光模块的光分波合波器件,其特征在于:所述光分波合波器件安装在CFP系列和QSFP-DD高速光模块封装结构中。
PCT/CN2016/110661 2016-11-30 2016-12-19 一种用于高速光模块的光分波合波器光口装置 WO2018098858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611076945.7A CN106788754B (zh) 2016-11-30 2016-11-30 一种用于高速光模块的光分波合波器光口装置
CN201611076945.7 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018098858A1 true WO2018098858A1 (zh) 2018-06-07

Family

ID=58901007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110661 WO2018098858A1 (zh) 2016-11-30 2016-12-19 一种用于高速光模块的光分波合波器光口装置

Country Status (2)

Country Link
CN (1) CN106788754B (zh)
WO (1) WO2018098858A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953419A (zh) * 2019-05-16 2020-11-17 青岛海信宽带多媒体技术有限公司 光模块
CN111999828A (zh) * 2020-09-24 2020-11-27 武汉锐奥特科技有限公司 一种直连式光模块及其装配方法
CN112929092A (zh) * 2021-03-09 2021-06-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN114200594A (zh) * 2020-09-18 2022-03-18 青岛海信宽带多媒体技术有限公司 一种光模块

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055272B (zh) * 2017-12-27 2023-03-24 北京华为数字技术有限公司 光接收、组合收发组件、组合光模块、olt及pon***
WO2020041953A1 (zh) * 2018-08-27 2020-03-05 华为技术有限公司 光接收、组合收发组件、组合光模块、通讯装置及pon***
CN111970081B (zh) * 2020-08-25 2021-05-04 深圳盘古通信有限公司 一种基于5g通讯的波分光虹传导结构
CN116155383A (zh) * 2023-01-13 2023-05-23 讯芸电子科技(中山)有限公司 单纤多任务传输***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211383A (ja) * 1996-02-07 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 波長多重合分波回路
JP2002072008A (ja) * 2000-08-23 2002-03-12 Matsushita Electric Ind Co Ltd 光分波器および光合波器
JP2004302279A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 光送信モジュール及び多波長光送信モジュール
JP2006023500A (ja) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd 波長多重カプラ
US20100086262A1 (en) * 2008-10-08 2010-04-08 Sumitomo Electric Industries, Ltd. Bi-directional optical module with precisely adjusted wdm filter
CN104734800A (zh) * 2013-12-24 2015-06-24 华为技术有限公司 一种光复用器及发射光器件
CN105891960A (zh) * 2016-06-24 2016-08-24 福州百讯光电有限公司 一种偏振波分复用的光学模块及其实现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681111A (zh) * 2012-05-09 2012-09-19 上海波汇通信科技有限公司 一种解波分复用光电接收模块
CN103257403B (zh) * 2013-05-20 2016-01-20 武汉锐奥特科技有限公司 一种波分复用光器件及波分解复用光器件
CN103487890A (zh) * 2013-09-10 2014-01-01 浙江同星光电科技有限公司 一种小型化wdm波分复用器
JP2016006479A (ja) * 2014-05-28 2016-01-14 日立金属株式会社 光送信モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211383A (ja) * 1996-02-07 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 波長多重合分波回路
JP2002072008A (ja) * 2000-08-23 2002-03-12 Matsushita Electric Ind Co Ltd 光分波器および光合波器
JP2004302279A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 光送信モジュール及び多波長光送信モジュール
JP2006023500A (ja) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd 波長多重カプラ
US20100086262A1 (en) * 2008-10-08 2010-04-08 Sumitomo Electric Industries, Ltd. Bi-directional optical module with precisely adjusted wdm filter
CN104734800A (zh) * 2013-12-24 2015-06-24 华为技术有限公司 一种光复用器及发射光器件
CN105891960A (zh) * 2016-06-24 2016-08-24 福州百讯光电有限公司 一种偏振波分复用的光学模块及其实现方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953419A (zh) * 2019-05-16 2020-11-17 青岛海信宽带多媒体技术有限公司 光模块
CN111953419B (zh) * 2019-05-16 2022-08-02 青岛海信宽带多媒体技术有限公司 光模块
CN114200594A (zh) * 2020-09-18 2022-03-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN114200594B (zh) * 2020-09-18 2022-12-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN111999828A (zh) * 2020-09-24 2020-11-27 武汉锐奥特科技有限公司 一种直连式光模块及其装配方法
CN112929092A (zh) * 2021-03-09 2021-06-08 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN106788754A (zh) 2017-05-31
CN106788754B (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2018098858A1 (zh) 一种用于高速光模块的光分波合波器光口装置
WO2017118271A1 (zh) 一种用于双链路传输的并行收发光模块和制作方法
US9519151B2 (en) Optical multiplexer and transmitter optical subassembly
US9401773B1 (en) Compact multi-channel WDM devices for high-speed data communications
CN105717589B (zh) 一种单光口多路并行光发射组件
CN203301489U (zh) 具有多路波长通道的光发射器件、光接收器件及光模块
CN204925459U (zh) 一种多波长单纤双向光收发模块
US20190334648A1 (en) Four-channel coarse wavelength division multiplexing qsfp optical module
JP7169708B2 (ja) 単芯双方向光送受信アセンブリ
JP5623675B2 (ja) 光信号多重化方法および光多重化装置
CN104459904A (zh) 一种单纤双向bosa结构
CN110554463B (zh) 光整合器件及环形器
CN104991320A (zh) 一种多波长单纤双向光收发模块及其工作方法
CN106908912B (zh) 用于高速收发***的单纤双向bosa光学结构
CN108732684A (zh) 一种单纤双向多波长光收发组件
KR20150070045A (ko) 단일섬유결합의 멀티파장광 송수신모듈
WO2018157767A1 (zh) 一种多波长共存光模块
CN206270551U (zh) 一种高速光发射器件
CN217639658U (zh) 光收发模块
CN208421302U (zh) 一种单纤双向多波长光收发组件
CN102611505B (zh) 一种用于多波长高速率传输的光发射器件
CN108551372B (zh) 一种多波长空间错位分合波模块
US10795170B2 (en) Multi-channel optical multiplexer or demultiplexer
JP2010204636A (ja) 3方向光学装置
CN110927883A (zh) 一种小型的波分复用器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922649

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16922649

Country of ref document: EP

Kind code of ref document: A1