WO2016110253A1 - 一种冷再生催化剂循环方法及其装置 - Google Patents

一种冷再生催化剂循环方法及其装置 Download PDF

Info

Publication number
WO2016110253A1
WO2016110253A1 PCT/CN2016/070252 CN2016070252W WO2016110253A1 WO 2016110253 A1 WO2016110253 A1 WO 2016110253A1 CN 2016070252 W CN2016070252 W CN 2016070252W WO 2016110253 A1 WO2016110253 A1 WO 2016110253A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cold
regenerated catalyst
riser
reaction
Prior art date
Application number
PCT/CN2016/070252
Other languages
English (en)
French (fr)
Inventor
李群柱
Original Assignee
李群柱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李群柱 filed Critical 李群柱
Priority to US15/541,379 priority Critical patent/US20180021769A1/en
Priority to EP16734913.3A priority patent/EP3243567B1/en
Publication of WO2016110253A1 publication Critical patent/WO2016110253A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • B01J38/32Indirectly heating or cooling material within regeneration zone or prior to entry into regeneration zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/007Separating solid material from the gas/liquid stream by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/38Treating with free oxygen-containing gas and adding heat by solid heat carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the fields of petroleum refining, chemical engineering and the like, and particularly relates to catalytic conversion of heavy oil catalytic conversion and light hydrocarbons such as inferior gasoline by using a cold regenerated catalyst circulation method and a device thereof.
  • Heavy oil catalytic cracking is due to the heavy raw material and high residual carbon value, which increases the coke yield, and the heat is more than the heat required by the system, resulting in excess heat. Therefore, the heavy oil catalytic cracking unit must be equipped with a heat extraction facility to remove excess heat from the system to maintain the heat balance between the two units.
  • No. 5,451,313 discloses an FCC process in which the severity of the process is reduced by circulating the spent agent with the regenerant, improving the atomization of the feed and promoting contact with the catalyst.
  • no catalyst cooler has been proposed for both regenerator bed cooling and regenerant cooling of the riser cracking feed.
  • the “x design” technology developed by UOP ( ⁇ World Petroleum Science>>, 1996, 3(9)) is characterized in that part of the waiting agent (to be regenerated catalyst) is not regenerated by burning carbon and mixed with regenerant in the mixing tank. After mixing, it is directly returned to the riser reactor, and the ratio of the agent to the oil is increased due to the temperature of the regenerant.
  • a disadvantage of this technique is that the regenerant and the spent agent are directly mixed, which reduces the activity of the catalyst entering the riser reactor, which is detrimental to the catalytic cracking reaction.
  • the flexible multi-effect catalytic cracking process developed by Luoyang Petrochemical Engineering Co., Ltd. uses a double riser reactor to increase the ratio of the agent to the oil through the mixing of the gasoline riser and the regenerant to improve the atomization of the feed. Promote contact with the catalyst.
  • One riser acts as a gasoline reforming reaction zone, using high activity catalyst to reform gasoline; another riser acts as FCC main riser reaction District, the process should take into account the reaction conditions of the heavy lift catalytic cracking of the main riser and the upgrading of the gasoline riser gasoline, due to the bias or uneven mixing of the hot and cold catalyst (ie, homogenization and soaking is not good), and the activity of the catalyst to be produced is low. It is not conducive to the catalytic cracking reaction of the main riser.
  • the MIP technology innovatively proposed the concept of the second reaction zone, that is, using a cascade riser reactor, the reaction is divided into two reaction zones, the first reaction zone is mainly cracking reaction, and the higher reaction temperature is adopted; the second reaction The zone adopts lower reaction temperature, larger oil ratio and longer reaction time, and mainly performs reactions such as hydrogen transfer, aromatization and isomerization.
  • Increasing the ratio of the agent to the oil in the second reaction zone by circulating the spent agent into the second reaction zone and mixing with the regenerant, due to the bias or uneven mixing of the hot and cold catalyst (ie, poor homogenization and soaking), and the catalyst to be produced Low activity is not conducive to the catalytic cracking reaction of the first reaction zone.
  • Chinese patents CN 1288932A and CN1288933A disclose a new heat extraction technology for regenerant conveying pipelines, which reduces the temperature of the regenerant entering the reactor and improves the feedstock oil while ensuring a sufficiently high regenerator temperature and good regeneration effect. Preheating temperature, improve the atomization effect of raw materials, improve the ratio of agent to oil, improve product distribution, and improve liquid grazing rate.
  • the object of the present invention is to use the catalyst cooling technology commonly used in the catalytic cracking process to adopt the dense phase bed operation to improve the driving force of the catalyst circulation to overcome the increase of the circulation system resistance caused by the increase of the ratio of the oil to the oil.
  • the ratio of the agent to the oil becomes an independent adjustable variable to solve the contradiction between the currently existing regeneration temperature, feed temperature, reaction temperature and agent to oil ratio, achieving "low temperature contact, large oil to oil ratio, high catalyst activity"
  • the catalytic cracking reaction requires the creation of good reaction conditions for the catalytic cracking reaction.
  • Another object of the present invention is to reduce the temperature of the regenerant entering the reactor, improve the preheating temperature of the feedstock, and improve the feedstock oil by a cold regenerated catalyst circulation method while ensuring a sufficiently high regeneration temperature and a good regeneration effect.
  • the atomization effect improves the ratio of the agent to the oil, improves the reaction selectivity, improves the product distribution of the heavy oil catalytic cracking, and improves the liquid yield.
  • Another object of the present invention is to reduce the reaction temperature of the gasoline upgrading riser, improve the catalyst activity of the gasoline riser, and promote the reactions of hydrogen transfer, isomerization and aromatization under the premise of ensuring the ratio of the suitable agent to oil. Reduce the yield of coke and gas, thereby increasing the yield of gasoline and light bismuth, the octane number of gasoline, and reducing the olefin and impurity content of oil.
  • the technical problem to be solved by the present invention is to provide a cold regenerated catalyst or a contact agent (hereinafter referred to as a catalyst) recycling method, which utilizes a catalyst cooling technology commonly used in a catalytic cracking process, and uses a low-speed dense phase bed operation to increase the driving force of the catalyst circulation system.
  • a catalyst a cold regenerated catalyst or a contact agent (hereinafter referred to as a catalyst) recycling method, which utilizes a catalyst cooling technology commonly used in a catalytic cracking process, and uses a low-speed dense phase bed operation to increase the driving force of the catalyst circulation system.
  • the ratio of the agent to the oil is truly an independent variable, so as to solve the contradiction between the current regenerative temperature, the feed temperature, the reaction temperature and the ratio of the agent to the oil, thereby realizing Partition optimization of the reaction zones of the riser or/and the fluidized bed reactor, realizing optimal control of the reaction depth.
  • the invention provides a cold regenerated catalyst circulation method and a device thereof, comprising a gas-solid reaction regeneration process: a hydrocarbon feedstock is reacted with a catalyst in each reaction zone of a riser reactor (with or without a fluidized bed reactor) The reaction stream enters the settler to separate the catalyst from the oil and gas. The separated catalyst is stripped by the stripping section and then enters the regenerator for scorch regeneration. The regenerated catalyst is returned to the riser after cooling or/and without cooling. The reactor is recycled and the specific features are as follows:
  • the regenerator is provided with one, two or more catalyst coolers for regulating the reaction temperatures of the respective reaction zones of the respective riser reactors (and/or fluidized bed reactors), and/or conditioning The temperature of the regenerator is kept at an optimum value.
  • Each of the catalyst coolers is provided with one, two or more catalyst outlets for transporting the cold regenerated catalyst to one, two or more riser reactors (and/or fluidized bed reactors), respectively.
  • Each reaction zone and/or for transporting a cold regenerated catalyst is recycled to the regenerator.
  • Each of the riser reactors is provided with one, two or more reaction zones, with or without a fluidized bed reactor.
  • At least one fluidized medium distributor is disposed at the bottom of each of the catalyst coolers, the fluidizing medium is mainly introduced into the catalyst cooler by the distributor, and the apparent gas velocity (volume flow rate of the fluidized medium is The ratio of the cross section of the cooler) is in the range of 0 to 0.7 m/s (preferably 0.005 to 0.3 m/s, preferably 0.01 to 0.15 m/s), and the temperature of the cold regenerated catalyst is mainly adjusted by adjusting the fluidized medium. Traffic is controlled.
  • the regenerated catalyst entering each of the catalyst coolers is any carbon content regenerated catalyst or incompletely regenerated catalyst, or any carbon content of the spent catalyst, contact agent or coke.
  • Each of the catalyst coolers may be disposed externally or internally to the regenerator or disposed below the riser reactor (or/and fluidized bed reactor) to which it is coupled.
  • the cold catalyst delivery channels of the various reaction zones to the riser reactor may be disposed wholly or partially external to the catalyst cooler housing or inside the catalyst cooler housing.
  • the cold catalyst delivery passage returning to the regenerator may be disposed in whole or in part outside the catalyst cooler housing or inside the catalyst cooler housing.
  • the cold catalyst delivery channel of the return regenerator may also be omitted depending on the process requirements.
  • the pre-lifting section may be disposed wholly (or partially) externally or internally to the catalyst cooler housing to which it is coupled.
  • one or two or more auxiliary risers are installed (or not provided), respectively connected to the cold regenerated catalyst transport channels (such as outer circulation pipe, inner circulation pipe, etc.) for conveying cold regenerated catalyst (pre-elevation)
  • the medium is raised to one, two or more riser reactors (or/and fluidized bed reactors).
  • Each reaction zone is used as a cold shock or mixed with other gaseous or liquid cold shock as a cold shock and recycled.
  • the gaseous or liquid cold shock agent is water, oil including gasoline, refinery oil, clarified oil, and catalyst including cold regenerated catalyst of any carbon content, cold standby catalyst, cold semi-regenerated catalyst. One, two or more mixtures.
  • the catalyst cooler is a mature industrial equipment, and the method and the device of the invention can adopt various structural forms (such as flow type, downflow type, etc.), and heat exchange elements (including heat taking tubes, heat collecting tubes, etc.) can also adopt various structures.
  • the connection form, the catalyst delivery channel can also adopt various specific connection structures (such as inner circulation tube, Y-type, U-type external delivery (circulation) tube, etc.), and the specific structure, connection type, operation and The control process is very clear and does not constitute any of the inventive concepts. Limitations of the body embodiment.
  • the temperature of the above-described mixed regenerated catalyst entering each reaction zone of the riser reactor (or/and the fluidized bed reactor) can be independently controlled by adjusting the ratio of the hot and cold regenerated catalyst and/or other parameters.
  • the cold regenerated catalyst cooled by the catalyst cooler directly enters the riser reactor (or/and the fluidized bed reactor) and enters the cold regeneration of each reaction zone of the riser reactor (or/and the fluidized bed reactor).
  • the catalyst temperature is controlled by adjusting the flow rate and/or other parameters of the fluidizing medium and/or the heat taking medium and/or the conveying medium; or by adjusting the flow rate of the fluidizing medium and/or the heat taking medium and/or the conveying medium and/or
  • the flow rate and/or other parameters of the cold catalyst returning to the regenerator are controlled. Therefore, the ratio of the agent to the oil (the ratio of the regenerated catalyst to the raw material) and the reaction temperature of the riser reactor (or/and the fluidized bed reactor) can be independently controlled.
  • the catalyst cooler that regulates the temperature of the regenerator may not be provided, or/and any one or two of the catalyst coolers that regulate the reaction temperatures of the reaction zones of the riser reactor (or/and the fluidized bed reactor). Alternatively or not, the thermally regenerated catalyst directly enters the riser.
  • the catalyst cooler for adjusting the temperature of the regenerator is not provided.
  • the regenerator temperature is mainly regulated by the reaction.
  • the heat balance of the regeneration system is controlled, or/and the flow rate or other parameters of the fluidizing medium and/or the heat taking medium and/or the catalyst returning to the regenerator, etc., primarily by adjusting one, two or more of these catalyst coolers Take control.
  • the regenerator temperature is mainly adjusted by adjusting the heat balance of the reaction regeneration system. Controlled; or/and controlled primarily by adjusting the flow rate or other parameters of the fluidization medium of the catalyst cooler not connected to the riser and/or the heat transfer medium and/or the catalyst returning to the regenerator; or/and primarily by conditioning The flow rate of the fluidization medium of the catalyst cooler connected to the riser and/or the heat transfer medium and/or the catalyst returning to the regenerator or the like is controlled.
  • the reaction temperature of each reaction zone of the above riser reactor is mainly through a regulator oil ratio (control elements such as slide valves, plug valves, etc. are provided in the above-mentioned cold catalyst return passage), or/and mainly The temperature of the cold regenerated catalyst or the mixed regenerated catalyst is adjusted to maintain the optimum value.
  • the fluidizing medium and the transport medium may be air, steam or other gases, or the like, and the heat medium may be water, steam, air or other gas, various oils, or the like or a mixture thereof.
  • the pre-lifting medium may be water, steam or other gases, various refinery dry gases, etc. or a mixture thereof.
  • the regenerated catalyst entering the catalyst cooler described above may be any carbon content regenerated catalyst or incompletely regenerated catalyst.
  • the above regenerated catalyst entering the catalyst cooler also includes any carbon content of the catalyst to be produced, contact agent or coke particles, and the like.
  • the catalyst cooler described above may be integrated with the regenerator or the riser or may be connected thereto by a pipeline.
  • the invention also provides a catalyst cooling device for realizing the regenerative catalyst circulation method, which is generally a fluidized bed provided with a vertical heat exchange tube bundle, and the fluidized bed is mainly provided with a catalyst outlet and a fluidized medium from bottom to top.
  • the cold regenerated catalyst circulation method and the equipment thereof of the invention can be used for catalytic cracking devices of various reaction regeneration types (such as coaxial type, side-by-side type, etc.), and the regenerator has various combinations, such as being disposed in the first regenerator, It is provided to the second regenerator or the like, and it is obvious to those skilled in the art that the combination type, operation and control process are not limited to any specific embodiment of the inventive concept.
  • the catalytic cracking device using the cold regenerated catalyst circulation method and the equipment thereof of the present invention, the separation of the reaction products and the regeneration of the catalyst are carried out according to a conventional method, and the various types of reaction regeneration patterns used in the catalytic cracking process of the riser and the apparatus may be used.
  • a riser type including equal or variable diameter, with or without a fluidized bed reactor, etc.
  • various regenerative types and various combinations thereof.
  • the spent catalyst is subjected to charring regeneration in a regenerator under conventional catalytic cracking catalyst regeneration conditions, and the general regeneration temperature is controlled at 630 to 800 ° C (preferably 680 to 730 ° C).
  • the riser catalytic cracking process and apparatus are well-established industrial processes, and those skilled in the art are well aware of the combination, operation, and control processes thereof, and do not constitute a limitation on any particular embodiment of the inventive concept.
  • the invention has no limitations on its catalyst selection and process conditions.
  • the cold regenerated catalyst circulation method and the equipment thereof are widely used, and can be used in various fluid catalytic cracking processes including heavy oil catalytic conversion, wax oil catalytic conversion, gasoline catalytic upgrading, light hydrocarbons (liquefied petroleum gas, carbon four, carbon five , gasoline, etc.) catalytic conversion, etc., can also be used for other gas-solid fluidization reactions
  • the charring process includes residue pretreatment, methanol to olefin (MTO), methanol to propylene (MTP), methanol to aromatics (MTA), fluid coking, flexible coking, and the like.
  • the cold regenerated catalyst circulation method and equipment thereof can be separately implemented, and can be provided in each reaction zone of a riser reactor (or/and a fluidized bed reactor) for various fluid catalytic cracking processes, and can be provided according to process requirements.
  • One, two or more auxiliary risers are delivered to the reaction zone of the riser reactor (or/and the fluidized bed reactor) as a cold shock agent; or jointly implemented for two or more with different functions
  • One or two of the two or more risers of the feedstock, each reaction zone of the riser reactor, one or two or more auxiliary risers may be provided to the riser reactor (or/and depending on the process requirements) Fluidized bed reactor)
  • Each reaction zone acts as a cold shock.
  • the cold regenerant circulation method and the equipment thereof of the invention can be applied to a heavy oil catalytic cracking process, and the heavy petroleum hydrocarbons are mixed with the cold regenerated catalyst from the pre-lifting zone of the heavy oil riser (or not) into the heavy oil riser reactor (belt)
  • the main operating conditions are as follows: reaction temperature 400-650 ° C (preferably 480-600 ° C), reaction pressure 0.1 l ⁇ 0.4 MPa, contact time 0.05 ⁇ 5 seconds (preferably 0.1 ⁇ ) 3 seconds), the catalyst to raw material weight ratio (agent to oil ratio) is generally from 3 to 15, preferably from 5 to 12.
  • the heavy oil riser reactor operating conditions of the heavy oil riser reactor are relatively independent, and the operating conditions such as the reaction temperature, the ratio of the agent to the oil and the preheating temperature of the raw materials can be flexibly adjusted according to the nature of the heavy oil and the reaction requirements. Therefore, the slag-mixing ratio can be increased, the inferior heavy oil can be processed, and the light oil yield can be improved; the effect of reducing the olefin olefin volume content is more remarkable, and the octane number of the gasoline is improved, the oil impurity content is lowered, and the operability is also achieved. Strong, simple and flexible, and widely used.
  • the invention adopts a low-speed dense phase bed operation, can increase the density of the circulating catalyst, improve the driving force of the circulation system, overcome the increase of the system resistance caused by the increase of the circulation amount, and truly realize the operation of the large oil ratio.
  • the ratio of the ratio of the agent to the oil, the temperature of the feed, the reaction temperature and the regeneration temperature are all independently adjustable variables, thereby realizing the riser or/and the fluidized bed reactor.
  • the optimization of the partitioning of each reaction zone truly optimizes the depth of the catalytic cracking reaction, thereby reducing coke and dry gas, improving product distribution and product quality, and reducing device energy consumption and flue gas emissions. Therefore, the present invention has the following advantages:
  • a more suitable high feed temperature can be used to improve the atomization of the raw materials and promote contact with the catalyst, thereby reducing the coke and dry gas yield.
  • each reaction zone and the regeneration temperature of the regenerator can be flexibly adjusted to maintain the optimum value. Therefore, each reaction zone of the riser or/and the fluidized bed reactor can adopt a more suitable reaction time and a more suitable reaction temperature, thereby reducing coke and dry gas, improving product distribution and product quality.
  • the regeneration temperature is not restricted by the ratio of the agent to the oil and the preheating temperature of the raw material, and the regeneration temperature can be increased, which is advantageous for efficient regeneration and functions to passivate heavy metals.
  • the high regeneration temperature causes the flue gas to take out more heat and reduce the amount of heat taken.
  • the increase of the circulating catalyst density reduces the amount of air entrained by the circulating catalyst, thereby reducing the non-hydrocarbon gas content such as nitrogen in the dry gas, increasing the heating value of the dry gas, and reducing the power consumption of the rich gas compressor.
  • the fluidized air consumption is reduced by about 80%, the total pressurized air consumption is reduced by about 50%, and the power consumption of the supercharger is reduced by about 50%.
  • the wire speed of the outer heat extractor shell is very low (preferably 0.005-0.3 m/s, optimal 0.01-0.15 m/s), and the catalyst particles have little abrasion to the heat-treating tube bundle. Conducive to extending the life of the heat extractor.
  • the heat temperature is high and the heat utilization is more reasonable.
  • the cold regenerant circulation method and the equipment thereof of the invention can also be applied to gasoline catalytic conversion, the operating conditions of the riser reactor are relatively independent, and the operating conditions such as the reaction temperature, the ratio of the agent to the oil and the preheating temperature of the raw materials can be flexibly adjusted according to the reaction requirements.
  • the method used in the invention has the effects of reducing the volume content of gasoline olefins, and has the characteristics of improving the octane number of gasoline and reducing the content of impurities in oil, and has the operability, simple and flexible. , the application of a wide range of advantages.
  • the volume content of the olefin in the gasoline can be reduced to 30 to 70%, the octane number (RON) can be increased by 0.5 to 40 units, and the sulfur content in the gasoline. Reduce by 30% by weight.
  • the gasoline (gaseous or liquid) enters the riser and is mixed with the cold regenerated catalyst from the pre-lift zone (or not) of the petrol riser into the petrol riser reactor (with or without With fluidized bed reactor), it mainly carries out gasoline upgrading reaction such as isomerization and aromatization, and achieves the purpose of reducing olefin, sulfur and nitrogen content and increasing octane number.
  • the main operating conditions of the gasoline catalytic conversion upgrading process using the present invention are as follows: a reaction temperature of 350-650 ° C (preferably 400-600 ° C), an absolute pressure of 0.1 l - 0.4 MPa, and a contact time of 0.5 to 30 seconds (preferably 1-15 seconds). ).
  • the gasoline catalytic conversion process of the present invention can be carried out in combination with a heavy oil catalytic cracking process, or can be carried out separately.
  • the operating conditions of the gasoline riser reactor are relatively independent and more flexible, and the reaction temperature and other conditions can be flexibly adjusted according to market conditions:
  • the reaction temperature can be very low (350-520 ° C, preferably 400-480 ° C), which is ideal for isomerization, hydrogen transfer, aromatization, alkylation, etc.
  • the secondary reaction has an absolute advantage under the premise of time guarantee.
  • the light oil yield is greater than 98.5%.
  • the reaction temperature can be very high (500-650 ° C, preferably 520-600 ° C), which leads to the reaction of olefin cracking and the like, while improving the ratio of diesel to gasoline and reducing the olefin and sulfur of gasoline. Content, the purpose of producing high octane clean gasoline.
  • the gasoline fraction may be a full fraction, for example, a fraction having an initial boiling point of up to about 220 ° C: it may also be a fraction of a narrow fraction thereof, for example, a fraction of 70 to 145 ° C.
  • the gasoline fraction may be a primary processed gasoline fraction such as straight run gasoline, condensate, etc., a secondary processed gasoline fraction such as coker gasoline, FCC gasoline, viscous gasoline, hot cracked gasoline, etc. or a mixture of more than one gasoline fraction.
  • the gasoline fraction may have an olefin content of 0 to 80% by weight and contain a small amount of impurities such as sulfur and nitrogen, for example, a sulfur content of more than 200 ppm and a nitrogen content of more than 30 ppm.
  • the inferior gasoline of the whole fraction or the narrow fraction is one of gasoline including straight-run gasoline, condensate, catalytic cracking gasoline, hot cracked gasoline, viscous gasoline, coking gasoline, cracked ethylene gasoline, and two Kind, variety and mixed gasoline.
  • Figure 1 is a typical schematic view of the present invention.
  • FIGS. 2 to 4 are typical schematic views of a heavy oil catalytic converter device to which the present invention is applied.
  • Figure 1 is a typical schematic diagram of the invention (1 cold regenerated catalyst cycle process)
  • the cold regenerated catalyst cycle of the present invention comprises a settler 1 comprising a pre-lift zone 4 and a regenerator 5. Between the regenerator 5 and the stripper section 1A of the settler 1, a catalyst delivery tube 7 and a control valve 20 are connected to the regenerator 5 and the stripping section 1A, and the catalyst to be produced is delivered to the regenerator 5.
  • the regenerator is provided with two internal or external heat extraction devices, namely a catalyst cooler, including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • a catalyst cooler including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • Catalyst cooler 8A is primarily used to adjust the reaction temperature of the first reaction zone to maintain it at an optimum value.
  • Another catalyst cooler (not shown) is primarily used to regulate the regenerator temperature to maintain it at an optimum value.
  • 35A is a fluidized medium such as air, steam, etc.
  • 36A is a lifting medium such as air, steam, etc.
  • 37A is a heat medium, including water, steam, air, various oils, and the like.
  • the regenerator 5 is connected to the catalyst cooler 8A through the regenerated catalyst delivery pipe 10A, and the regenerated catalyst is cooled and then enters the lower mixing buffer space 9A.
  • the cold regenerated catalyst is connected to the riser reactor pre-lift zone 4 through the cold regenerated catalyst delivery pipe 11A.
  • the temperature of the cold regenerated catalyst leaving the catalyst cooler 8A (lower mixing buffer space 9A) is adjusted by the flow rate of the fluidizing medium 35A (including air, steam, etc.) and/or the cold regenerated catalyst returning to the lifting medium 36A on the tube 12A (including air, The flow rate of steam, etc. is controlled.
  • the control valve 21A is a specific control element provided to facilitate control of the flow rate of the cold regenerated catalyst.
  • a hot regenerated catalyst delivery pipe (including a control valve) (not shown) may be provided to directly connect the regenerator 5 to the pre-lift zone 4 of the heavy oil riser reactor.
  • the cold regenerated catalyst and the hot regenerated catalyst are mixed in the pre-lifting zone 4 of the riser reactor, and the temperature is raised by the pre-lifting medium 32 (including water, steam, various refinery dry gas, etc.) to reach equilibrium.
  • the heavy oil riser reactor can also be provided with two reaction zones, and the cold regenerated catalyst enters the auxiliary riser through the cold regenerated catalyst delivery pipe, and is sent to the second reaction zone of the riser reactor as a cold shock agent through the pre-lifting medium (not shown) Out).
  • the catalyst cooler which is primarily used to regulate the temperature of the regenerator, may not be provided.
  • the temperature of the regenerator 5 is controlled by adjusting the flow rate of the fluidizing medium 35A including air, steam, and the like and the flow rate of the lift medium 36A on the cold regenerated catalyst return pipe 12A including air, steam, and the like.
  • the catalyst cooler described above may be integrated with the regenerator or the riser or may be connected thereto by a pipeline.
  • the cold regenerated catalyst cooled to 200-720 ° C enters the riser reactor 2 through the pre-elevation zone 4.
  • the hydrocarbon raw material is contacted with the catalyst in the riser reactor 2, the reaction stream enters the settler 1 to separate the catalyst from the oil and gas, and the separated catalyst is stripped by the stripping section 1A, and then enters the regenerator 5 in the oxygen-containing gas.
  • the charred regeneration is carried out in the presence of 38 (including air, etc.), and the regenerated catalyst is cooled or directly returned to the riser reactor for recycling.
  • the catalyst cooler is provided with at least one fluidized medium distributor, and the fluidized medium enters the catalyst cooler from the bottom of the catalyst cooler, and the superficial gas velocity is 0-0.7 m/s (preferably 0.005-0.3 m/s,
  • the temperature of the cold regenerated catalyst is controlled mainly by adjusting the flow rate of the fluidized medium, preferably 0.01 to 0.15 m/s.
  • Fig. 2 is a typical schematic view of a heavy oil catalytic converter unit to which the present invention is applied.
  • the heavy oil catalytic conversion method and apparatus thereof comprise a settler 1, and the heavy oil riser reactor comprises a pre-lift zone 4, a first reaction zone 3, a second reaction zone 2, a regenerator 5, and charring.
  • Tank 5A Between the charred tank 5A and the stripping section 1A of the settler 1, a catalyst delivery pipe 7 and a control valve 20 are connected to the coke drum 5A and the stripping section 1A, and the catalyst to be produced is sent to the scorch tank 5A.
  • a regenerated catalyst circulation pipe 16 and a control valve 23 are provided.
  • the regenerator is provided with two internal or external heat extraction devices, namely a catalyst cooler, including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • a catalyst cooler including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • 35A, 35B are fluidized media such as air, water, steam, etc.
  • 36A, 36B are lifting media such as air, steam, etc.
  • 37A, 37B are heat taking medium, including water, steam, air, various oils and so on.
  • Catalyst cooler 8A is primarily used to adjust the reaction temperature of the first reaction zone to maintain it at an optimum value.
  • Catalyst cooler 8B is primarily used to regulate the regenerator temperature to maintain it at an optimum value.
  • any one or two of the catalyst cooler 8A and the catalyst cooler 8B may not be provided.
  • the regenerator 5 is connected to the catalyst cooler 8A through the regenerated catalyst delivery pipe 10A, and the regenerated catalyst is cooled and then enters the lower mixing buffer space 9A.
  • the cold regenerated catalyst is connected to the heavy oil riser reactor pre-lifting zone 4 through the cold regenerated catalyst delivery pipe 11A.
  • the temperature of the cold regenerated catalyst exiting the catalyst cooler 8A is controlled by adjusting the flow rate of the fluidizing medium 35A (including air, steam, etc.) and/or the flow rate of the lifting medium 36A (including air, steam, etc.) on the cold regenerative catalyst return pipe 12A.
  • the control valve 21A is a specific control element provided to facilitate control of the flow rate of the cold regenerated catalyst.
  • a hot regenerated catalyst delivery pipe (including a control valve) (not shown) may be directly connected to the pre-lift zone 4 of the heavy oil riser reactor, which is cold.
  • the regenerated catalyst and the hot regenerated catalyst are equilibrated in the pre-lifting zone 4 of the heavy oil riser reactor through the pre-lifting medium 32 (including water, steam, various refinery dry gas, etc.).
  • the cold shock agent 34 can be injected into the first Downstream of a reaction zone to facilitate control of the temperature of the second reaction zone 2.
  • the above-mentioned cold shocking agent may be any one of a gas or a liquid (including water, various oils, and the like) and a cold catalyst, or may be two or more of them.
  • the above cold catalyst may be any one of a cold regenerated catalyst, a cold standby catalyst, and a cold semi-regenerated catalyst, or may be two or more of them.
  • the cold regenerated catalyst When used as a cold shock agent, it can enter the auxiliary riser through the cold regenerated catalyst delivery pipe and be transported to the second reaction zone of the riser reactor through a pre-lifting medium (not shown).
  • the regenerator 5 is connected to the catalyst cooler 8B through the regenerated catalyst delivery pipe 10B, and the regenerated catalyst is cooled and then enters the lower mixing buffer space 9B. .
  • the temperature of the regenerator 5 is controlled by adjusting the flow rate of the fluidized medium 35B (including air, steam, etc.) and/or the flow rate of the lift medium 36B (including air, steam, etc.) on the cold regenerative catalyst return pipe 12B.
  • the catalyst coolers 8A, 8B are provided with at least one fluidized medium distributor, and the fluidized medium enters the catalyst cooler from the catalyst cooler bottom distributor, and the superficial gas velocity is 0-0.7 m/s (preferably 0.005-0.3 m). /s, preferably 0.01 to 0.15 m/s), the temperature of the cold regenerated catalyst is mainly controlled by adjusting the flow rate of the fluidized medium.
  • the catalyst cooler described above may be integrated with the regenerator or the riser or may be connected thereto by a pipeline.
  • the heavy oil raw material 33 is mixed with the regenerated catalyst from the heavy oil riser reactor pre-lifting zone 4 into the first reaction zone 3 of the heavy oil riser reactor, and the reaction is carried out under catalytic cracking conditions.
  • the main operating conditions are as follows: the reaction temperature is 400-650 ° C ( Preferably, the reaction pressure is from 0.1 to 0.4 MPa, the contact time is from 0.05 to 5 seconds (preferably from 0.1 to 3 seconds), and the weight ratio of the catalyst to the raw material is usually from 3 to 15, preferably from 5 to 12.
  • the cold shock agent 34 is mixed with the reaction oil and gas mixture from the first reaction zone 3 to cool down, and then enters the second reaction zone 2 of the heavy oil riser reactor, mainly performing secondary reactions such as hydrogen transfer, isomerization and aromatization. Further reduce olefin and sulfur content and increase octane number.
  • the main operating conditions are as follows: a reaction temperature of 350 to 620 ° C (preferably 450 to 530 ° C), a reaction pressure of 0.1 to 0.4 MPa, and a contact time of 0.5 to 30 seconds (preferably 1 to 5 seconds).
  • the mixture of reaction oil and gas from the second reaction zone 2 enters the settler 1 to separate the oil and gas from the catalyst, and the oil and gas enters the fractionation and absorption stabilization system for fractionation and liquefied petroleum gas (LPG). Recycled to obtain products including catalytically cracked gasoline and unconverted oil.
  • LPG liquefied petroleum gas
  • the catalyst to be produced is stripped by the stripping section 1A of the settler 1, and then enters the scorch tank 5A through the catalyst delivery tube 7 and the control valve 20, and is rapidly passed in the presence of the main wind 38A (oxygen-containing gas including air, etc.). Charging, the upper regenerator 5 is further scorched and regenerated, and the bottom of the regenerator 5 is supplemented with secondary air 38B (oxygen-containing gas including air, etc.).
  • the regenerated catalyst is taken from the bottom of the regenerator 5 and enters the catalyst cooler 8A and the catalyst cooler 8B in two ways. One cold regenerated catalyst is mixed with or without the hot regenerated catalyst, and the other is returned to the regenerator.
  • the injection point of the above gas or liquid refrigerant may be upstream or downstream of the cold catalyst injection point to facilitate control of the temperature of each reaction zone or to form another reaction zone.
  • Fig. 3 is a typical schematic view of a heavy oil catalytic converter unit (combined with gasoline upgrading) to which the present invention is applied.
  • the heavy oil catalytic conversion method and apparatus thereof include a heavy oil settler 1, a gasoline settler 18, and a heavy oil riser reactor including a pre-lift zone 4, a first reaction zone 3, and a second reaction zone 2.
  • Regenerator 5 gasoline riser 6.
  • a catalyst delivery pipe 7 and a control valve are connected to the regenerator 5 and the stripping section 1A of the heavy oil settler 1 to transport the catalyst to be produced. Go to the regenerator 5.
  • a catalyst delivery tube 15 and a control valve 23 are provided to communicate the regenerator 5 with the stripping section 18A of the settler 18.
  • the control valve 23 is a specific control element provided for the purpose of facilitating the control of the flow rate of the catalyst for the cold surge.
  • there are many other control devices and control methods which do not constitute a limitation on any specific embodiment of the inventive concept.
  • the regenerator is provided with three internal or external heat extraction devices, namely a catalyst cooler, including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • a catalyst cooler including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • the catalyst cooler 8A is mainly used to adjust the reaction temperature of the first reaction zone of the heavy oil riser to keep it at an optimum value.
  • the catalyst cooler 8B is mainly used to adjust the reaction temperature of the gasoline riser to keep it at an optimum value.
  • Another catalyst cooler (not shown) is primarily used to regulate the regenerator temperature to maintain it at an optimum value.
  • 35A, 35B are fluidized media such as air, steam, etc.
  • 36A, 36B are lifting media such as air, steam, etc.
  • 37A, 37B are heat-receiving media, including water, steam, air, various oils, and the like.
  • any one or two of the above three catalyst coolers may not be provided.
  • the catalyst cooler which is primarily used to regulate the temperature of the regenerator, is not set, and the regenerator temperature is adjusted by the flow rate of the fluidizing medium 35A, 35B (including air, steam, etc.) of the catalyst cooler 8A, and/or the catalyst cooler 8B. Or control the amount of catalyst returned to the regenerator and / or control by the heat balance of the reaction regeneration system.
  • a cold shock agent 34 may be injected downstream of the first reaction zone to facilitate control of the temperature of the second reaction zone 2.
  • the above-mentioned cold shocking agent may be any one of a gas or a liquid (including water, various oils, and the like) and a cold catalyst, or may be two or more of them.
  • the above cold catalyst may be any one of a cold regenerated catalyst, a cold standby catalyst, and a cold semi-regenerated catalyst, or may be two or more of them.
  • the cold regenerated catalyst When the cold regenerated catalyst is used as a cold shock agent, it can enter the auxiliary riser through the cold regenerated catalyst delivery pipe and be transported to the second reaction zone of the riser reactor through a pre-lifting medium (not shown).
  • the regenerator 5 is connected to the catalyst cooler 8A through the regenerated catalyst delivery pipe 10A, and the regenerated catalyst is cooled and then enters the lower mixing buffer space 9A.
  • the cold regenerated catalyst is connected to the heavy oil riser reactor pre-lifting zone 4 through the cold regenerated catalyst delivery pipe 11A.
  • the temperature of the cold regenerated catalyst exiting the catalyst cooler 8A is controlled by adjusting the flow rate of the fluidizing medium 35A (including air, steam, etc.) or/and the flow rate of the lifting medium 36A (including air, steam, etc.) on the cold regenerative catalyst return pipe 12A.
  • the control valve 21A is a specific control element provided to facilitate control of the flow rate of the cold regenerated catalyst.
  • a hot regenerated catalyst delivery pipe (including a control valve) is connected to the pre-lift zone 4 of the heavy oil riser reactor, and the cold regenerated catalyst and the hot regenerated catalyst are reacted in the heavy oil riser.
  • the pre-lifting zone 4 is balanced by the pre-lifting medium 32 (including water, steam, various refinery dry gas, etc.).
  • the regenerator 5 is connected to the catalyst cooler 8B through the regenerated catalyst delivery pipe 10B, and the regenerated catalyst is cooled and then enters the lower mixing buffer space 9B.
  • the cold regenerated catalyst is connected to the gasoline riser pre-lifting zone through the cold regenerated catalyst delivery pipe 11B.
  • the temperature of the cold regenerated catalyst exiting the catalyst cooler 8B is controlled by adjusting the flow rate of the fluidizing medium 35B (including air, steam, etc.) or/and the flow rate of the lifting medium 36B (including air, steam, etc.) on the cold regenerative catalyst return pipe 12B.
  • the control valve 21B is a specific control element provided to facilitate control of the flow rate of the cold regenerated catalyst.
  • the catalyst coolers 8A, 8B are provided with at least one fluidized medium distributor, fluidized medium From the bottom of the catalyst cooler to the catalyst cooler, the superficial gas velocity is 0-0.7 m/s (preferably 0.005-0.3 m/s, preferably 0.01-0.15 m/s), and the cold regenerated catalyst temperature is mainly Control by adjusting the flow rate of the fluidized medium.
  • a hot regenerated catalyst delivery pipe 19B (including the control valve 22B) is connected to the gasoline riser reactor pre-lift zone 4, and the cold regenerated catalyst and the hot regenerated catalyst are in the gasoline riser reactor.
  • the pre-lifting zone 4 is balanced by the pre-lifting medium 30 (including water, steam, various refinery dry gas, etc.) after the mixing.
  • the catalyst cooler described above may be integrated with the regenerator or the riser or may be connected thereto by a pipeline.
  • the heavy oil raw material 33 is mixed with the regenerated catalyst from the pre-lifting zone 4 of the heavy oil riser reactor to be cooled, and then enters the first reaction zone 3 of the heavy oil riser reactor, and the reaction is carried out under catalytic cracking conditions.
  • the main operating conditions are as follows: reaction temperature 400-650 °C (preferably 480-560 ° C), a reaction pressure of 0.1 l to 0.4 MPa, and a contact time of 0.05 to 5 seconds (preferably 0.1 to 3 seconds), and the weight ratio of the catalyst to the raw material is usually 5 to 15, preferably 5 to 12.
  • the mixture of the reaction oil and the catalyst from the first reaction zone 3 is mixed with the cold shock agent 34 to cool down, and then enters the second reaction zone 2 of the heavy oil riser reactor, mainly performing secondary reactions such as hydrogen transfer, isomerization and aromatization. Further reduce olefin and sulfur content and increase octane number.
  • the main operating conditions are as follows: a reaction temperature of 350 to 620 ° C (preferably 450 to 530 ° C), a reaction pressure of 0.1 to 0.4 MPa, and a contact time of 0.5 to 30 seconds (preferably 1 to 5 seconds).
  • the inferior gasoline 31 is mixed with the regenerated catalyst from the pre-lifting zone of the gasoline riser into the gasoline riser reactor, and is contacted at a reaction temperature of 300-650 ° C (preferably 400-500 ° C) and a reaction pressure of 0.1 l to 0.4 MPa.
  • the time is 0.5 to 30 seconds (preferably 1 to 15 seconds), and the weight ratio of the catalyst to the raw material is generally 1 to 50, preferably 2 to 20, and the gasoline reforming reaction such as isomerization and aromatization is mainly carried out to reduce the olefin and sulfur content. To increase the octane number.
  • the mixture of reaction oil and gas from the second reaction zone 2 enters the settler 1 to separate the oil and gas from the catalyst.
  • the oil and gas are mixed with the oil and gas from the settler 18 alone, and then enter the fractionation and absorption stabilization system for fractionation and LPG recovery, and are obtained. Products that are catalytically cracked gasoline and unconverted oil.
  • the catalyst to be produced is stripped by the stripping section 1A of the settler 1, it enters the regenerator 5 through the catalyst delivery tube 7 and the control valve (not shown).
  • the reactant stream from the gasoline riser 6 enters the settler 18 to separate the oil and gas from the catalyst, and the oil and gas separately enters the fractionation and absorption stabilization system for fractionation and LPG recovery to obtain a product including catalytic cracking gasoline; or with oil and gas from the settler 1 After mixing, it enters a common fractionation and absorption stabilization system for fractionation and liquefied petroleum gas (LPG) recovery.
  • LPG liquefied petroleum gas
  • the catalyst to be produced After the catalyst to be produced is stripped by the stripper section 18A of the settler 18, it enters the regenerator 5 through the catalyst delivery pipe 15 and the control valve 23.
  • the catalyst to be produced from the two settler stripping sections enters the regenerator 5, is scorched and regenerated in the presence of an oxygen-containing gas 38 (including air, etc.) and enters the catalyst cooler 8A and the catalyst cooler 8B in two ways.
  • the road cold regenerated catalyst is recycled with or without mixing with the hot regenerated catalyst.
  • the injection point of the above gas or liquid refrigerant may be upstream or downstream of the cold catalyst injection point to facilitate control of the temperature of each reaction zone or to form another reaction zone.
  • Fig. 4 is a typical schematic view of a heavy oil catalytic converter (common settler) to which the present invention is applied.
  • the heavy oil catalytic conversion method and apparatus thereof comprise a settler 1, two heavy oil riser reactors sharing a settler (including pre-lift zones 4A, 4B, first reaction zones 3A, 3B, The second reaction zone 2A, 2B,), the regenerator 5, and the charring tank 5A.
  • a catalyst delivery pipe 7 and a control valve 20 are connected to the coke drum 5A and the stripping section 1A, and the catalyst to be produced is sent to the scorch tank 5A.
  • a regenerated catalyst circulation pipe 16 and a control valve 23 are provided.
  • the regenerator is provided with three internal or external heat extraction devices, namely a catalyst cooler, including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • a catalyst cooler including a catalyst inlet directly connected to the regenerator densely (or through a pipeline), a lower mixing buffer space, and an internal heating element (including a casing type, Snake tube type, etc., lower fluidized medium distribution facility, etc.
  • Catalyst coolers 8A, 8B are primarily used to regulate the reaction temperature of the first reaction zone of the two heavy oil riser reactors to maintain optimum values.
  • Another catalyst cooler (not shown) is primarily used to regulate the regenerator temperature to maintain it at an optimum value.
  • 35A, 35B are fluidized media such as air, steam, etc.
  • 36A, 36B are lifting media such as air, steam, etc.
  • 37A, 37B are heat-receiving media, including water, steam, air, various oils, and the like.
  • any one or two of the above three catalyst coolers may not be provided.
  • the regenerator 5 is connected to the catalyst cooler 8A through the regenerated catalyst delivery pipe 10A, and is regenerated.
  • the agent enters the lower mixing buffer space 9A after being cooled.
  • the cold regenerated catalyst is connected to the heavy oil riser reactor pre-lifting zone 4A through the cold regenerated catalyst delivery pipe 11A.
  • the temperature of the cold regenerated catalyst exiting the catalyst cooler 8A is controlled by adjusting the flow rate of the fluidizing medium 35A (including air steam, etc.) or/and the flow rate of the lifting medium 36A (including air, steam, etc.) on the cold regenerative catalyst return pipe 12A.
  • the control valve 21A is a specific control element provided to facilitate control of the flow rate of the cold regenerated catalyst.
  • the regenerator 5 is connected to the catalyst cooler 8B through the regenerated catalyst delivery pipe 10B, and the regenerated catalyst is cooled and then enters the lower mixing buffer space 9B.
  • the cold regenerated catalyst is connected to the heavy oil riser reactor pre-lifting zone 4B through the cold regenerated catalyst delivery pipe 11B.
  • the temperature of the cold regenerated catalyst exiting the catalyst cooler 8A is controlled by adjusting the flow rate of the fluidized medium 35B including air, steam, or the like and/or the flow rate of the lift medium 36B on the cold regenerated catalyst return pipe 12B including air, steam, and the like.
  • the control valve 21A is a specific control element provided to facilitate control of the flow rate of the cold regenerated catalyst.
  • the catalyst coolers 8A, 8B are provided with at least one fluidized medium distributor, and the fluidized medium enters the catalyst cooler from the catalyst cooler bottom distributor, and the superficial gas velocity is 0-0.7 m/s (preferably 0.005-0.3 m). /s, preferably 0.01 to 0.15 m/s), the temperature of the cold regenerated catalyst is mainly controlled by adjusting the flow rate of the fluidized medium.
  • a hot regenerated catalyst delivery pipe (including a control valve) (not shown) may be connected to the pre-lift zones 4A, 4B of the heavy oil riser reactor,
  • the cold regenerated catalyst and the hot regenerated catalyst are equilibrated in the pre-lifting zone 4A, 4B of the heavy oil riser reactor through the pre-lifting medium 32A, 32B (including water, steam, various refinery dry gas, etc.).
  • pre-lifting medium 32A, 32B including water, steam, various refinery dry gas, etc.
  • coldeners 34A, 34B may be injected downstream of the first reaction zone to facilitate control of the temperature of the second reaction zone 2.
  • the above-mentioned cold shocking agent may be any one of a gas or a liquid (including water, various oils, and the like) and a cold catalyst, or may be two or more of them.
  • the above cold catalyst may be any one of a cold regenerated catalyst, a cold standby catalyst, and a cold semi-regenerated catalyst, or may be two or more of them.
  • the cold regenerated catalyst When the cold regenerated catalyst is used as a cold shock agent, it can enter the auxiliary riser through the cold regenerated catalyst conveying pipe, and is pre-lifted. The liter medium is sent to the second reaction zone of the riser reactor (not shown).
  • the catalyst cooler described above may be integrated with the regenerator or the riser or may be connected thereto by a pipeline.
  • the heavy oil raw material (fresh raw material) 33A is mixed with the regenerated catalyst from the heavy oil riser reactor pre-lifting zone 4A into the first reaction zone 3A of the heavy oil riser reactor, and the reaction is carried out under catalytic cracking conditions.
  • the main operating conditions are as follows: reaction temperature 400 -650 ° C (preferably 480-560 ° C ° C), the reaction pressure is 0.1 l ⁇ 0.4 MPa, contact time 0.05 ⁇ 5 seconds (preferably 0.1 - 3 seconds), the catalyst to raw material weight ratio is generally 3 ⁇ 15, preferably 5 ⁇ 12 .
  • the cold shock agent 34A is mixed with the reaction oil and gas mixture from the first reaction zone 3A to cool down, and then enters the second reaction zone 2A of the heavy oil riser reactor, mainly performing secondary reactions such as hydrogen transfer, isomerization and aromatization. Further reduce olefin and sulfur content and increase octane number.
  • the main operating conditions are as follows: a reaction temperature of 350 to 620 ° C (preferably 450 to 530 ° C), a reaction pressure of 0.1 to 0.4 MPa, and a contact time of 0.5 to 30 seconds (preferably 1 to 5 seconds).
  • the mixture of the reaction oil and the catalyst from the second reaction zone 2A enters the common settler 1 to separate the oil and gas from the catalyst.
  • the heavy oil raw material (refinery oil, oil slurry, etc.) 33B is mixed with the regenerated catalyst from the heavy oil riser reactor pre-lifting zone 4B into the first reaction zone 3B of the heavy oil riser reactor, and the reaction is carried out under catalytic cracking conditions, and the main operating conditions are as follows
  • the reaction temperature is 400-650 ° C (preferably 480-600 ° C)
  • the reaction pressure is 0.1 l to 0.4 MPa
  • the contact time is 0.05 to 5 seconds (preferably 0.1 to 3 seconds)
  • the weight ratio of the catalyst to the raw material is generally 3 to 15, preferably. 5 to 12.
  • the cold shock agent 34B is mixed with the mixture of the reaction oil and the catalyst from the first reaction zone 3B to cool down, and then enters the second reaction zone 2B of the heavy oil riser reactor, mainly performing secondary reactions such as hydrogen transfer, isomerization and aromatization. Further reduce olefin and sulfur content and increase octane number.
  • the main operating conditions are as follows: a reaction temperature of 350 to 620 ° C (preferably 450 to 530 ° C), a reaction pressure of 0.1 to 0.4 MPa, and a contact time of 0.5 to 30 seconds (preferably 1 to 5 seconds).
  • the mixture of the reaction oil and the catalyst from the second reaction zone 2B enters the common settler 1, and the oil and gas are separated from the catalyst (the separation facility is not shown).
  • the oil and gas mixture from the two heavy oil riser reactors is mixed and further separated from the catalyst.
  • the separated oil and gas enters a common fractionation and absorption stabilization system for fractionation and liquefied petroleum gas (LPG) recovery.
  • LPG liquefied petroleum gas
  • the spent catalyst from the two heavy oil riser reactors is mixed into the stripper section 1A of the settler 1, and after stripping, it is passed through the standby catalyst delivery pipe 7 and the control valve 20 into the charring tank 5A, in the main wind 38A (oxygen-containing gas) In the presence of air, etc., it is rapidly charred, and the regenerator 5 is further conveyed and regenerated, and the bottom of the regenerator 5 is supplemented with secondary air 38B (oxygen-containing gas including air, etc.).
  • secondary air 38B oxygen-containing gas including air, etc.
  • the regenerated catalyst is taken out from the bottom of the regenerator 5, and enters the catalyst cooler 8A, the catalyst cooler 8B, and the catalyst cooler 8C in three stages, and the cold regenerated catalyst is mixed with or not mixed with the hot regenerated catalyst, and the other is returned to the regenerator.
  • the injection point of the above gas or liquid refrigerant may be upstream or downstream of the cold catalyst injection point to facilitate control of the temperature of each reaction zone or to form another reaction zone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种再生剂冷却及循环的方法,来自再生器的再生催化剂经催化剂冷却器冷却到200-720℃不与热再生催化剂混合直接进入、或者与另一部分未经冷却的热再生催化剂混合得到温度低于再生器温度的混合再生催化剂混合后进入提升管反应器。所述的每个催化剂冷却器底部至少设置一个流化介质分布器,表观气速的范围为0~0.7m/s(优选0.005~0.3m/s,最佳0.01~0.15m/s),所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制。本发明的再生催化剂冷却和循环方法应用广泛,可用于各种流化催化裂化过程以及其它气固反应过程。

Description

一种冷再生催化剂循环方法及其装置 技术领域
本发明属于石油炼制、化工等领域,特别涉及利用冷再生催化剂循环方法及其装置进行重油催化转化和劣质汽油等轻烃的催化转化。
背景技术
随着原油质量的劣质化及重质化趋势的日益加剧,催化裂化的渣油掺炼比的不断提高,催化裂化特别重油催化裂化装置的干气焦炭产率偏高,轻油总收率偏低;汽油烯烃和硫含量偏高,不能满足汽油的新国家标准要求。
重油催化裂化因原料重,残炭值高,使焦炭产率上升,热量多于***所需热量,造成热量过剩。因此,重油催化裂化装置必须设置取热设施,从***中取出过剩热量,才能够维持两器热量平衡。
现有重油催化裂化过程中取出***过剩热量的催化剂冷却器种类很多。现行取热技术即催化剂冷却技术因冷再生催化剂返回再生器密相段仅具有取热功能,而无法对反应***的操作条件进行优化,因此现行反应再生***的技术又都有其不足之处。
US5451313公开一种FCC方法,其中通过待生剂与再生剂混合一起循环来降低方法的苛刻度,改进进料的雾化,促进与催化剂的接触。但未提出催化剂冷却器同时用于再生器床层冷却和提升管裂化进料的再生剂冷却。
UOP公司开发的“x设计”技术(<<世界石油科学>>,1996,3(9)),特点是部分待生剂(待再生催化剂)不经烧碳再生而与再生剂在混合罐掺混后直接返回提升管反应器,因再生剂降温,使剂油比提高。该技术的缺点是再生剂和待生剂直接混合,使进入提升管反应器的催化剂活性降低,不利于催化裂化反应。
洛阳石油化工工程公司开发的灵活多效催化裂化工艺(CN92105596.X)采用双提升管反应器,通过汽油提升管待生剂与再生剂混合一起循环来提高剂油比,改进进料的雾化,促进与催化剂的接触。一个提升管作为汽油改质反应区,利用高活性催化剂改质汽油;另一个提升管作为FCC主提升管反应 区,该工艺要兼顾主提升管重油催化裂化和汽油提升管汽油改质的反应条件,由于冷热催化剂的偏流或混合不均(即均质和均热不好),且待生催化剂活性低,不利于主提升管催化裂化反应。
MIP技术创新性地提出了第二反应区的概念,即采用串联提升管反应器,将反应分为两个反应区,第一反应区以裂化反应为主,采用较高反应温度;第二反应区采用较低反应温度、较大剂油比和较长反应时间,主要进行氢转移、芳构化和异构化等反应。通过待生剂进入第二反应区与再生剂混合一起循环来提高第二反应区剂油比,由于冷热催化剂的偏流或混合不均(即均质和均热不好),且待生催化剂活性低,不利于第一反应区的催化裂化反应。
中国专利CN 1288932A、CN1288933A公开了一种再生剂输送管路取热新技术,在保证足够高的再生器温度和良好的再生效果的前提下,降低进入反应器的再生剂的温度,提高原料油预热温度,改善原料雾化效果,提高剂油比,改善产品分布,提高液体牧率。
但是,上述技术均未提出如何实现大剂油比操作,如何克服剂油比增大引起的循环***阻力增大,从而真正使剂油比成为独立可调变量。
本发明的目的就是在上述现有技术的基础上,利用催化裂化过程常用的催化剂冷却技术,采用密相床操作,提高催化剂循环的推动力,以克服剂油比增大引起的循环***阻力增大,从而真正使剂油比成为独立可调变量,以解决目前普遍存在的再生温度、进料温度、反应温度和剂油比的矛盾,实现“低温接触、大剂油比、高催化剂活性”的催化裂化反应要求,为催化裂化反应创造良好的反应条件。
本发明的另一目的是在保证足够高的再生温度和良好的再生效果的前提下,通过冷再生催化剂循环方法,降低进入反应器的再生剂之温度,提高原料油预热温度,改善原料油雾化效果,提高剂油比,提高反应选择性,改善重油催化裂化的产品分布,提高液体收率。
本发明的另一目的是在保证适宜剂油比的前提下,降低汽油改质提升管的反应温度,提高汽油提升管的催化剂活性,促进氢转移、异构化、芳构化等反应的进行,降低焦炭和气体的产率,从而提高汽油和轻镏分的产率提高,汽油辛烷值,降低油品烯烃和杂质含量。
发明内容
本发明所要解决的技术问题是提供一种冷再生催化剂或接触剂(以下均简称催化剂)循环方法,利用催化裂化过程常用的催化剂冷却技术,采用低速密相床操作提高催化剂循环***的推动力,以克服剂油比增大引起的循环***阻力增大,真正使剂油比成为独立可调变量,以解决目前普遍存在的再生温度、进料温度、反应温度和剂油比的矛盾,从而实现提升管或/和流化床反应器的各反应区的分区优化,真正实现反应深度的优化控制。
本发明提供一种冷再生催化剂循环方法及其设备,包括一个气固反应再生过程:烃类原料在提升管反应器(带有或不带有流化床反应器)各反应区与催化剂接触反应,反应物流进入沉降器进行催化剂与油气的分离,分离出的待生催化剂经汽提段汽提后进入再生器烧焦再生,再生后的催化剂经冷却后或/和不经冷却直接返回提升管反应器循环使用,具体特征如下:
1)再生器设有一个、两个或多个催化剂冷却器,分别用于调节各自相连接的提升管反应器(和/或流化床反应器)各反应区的反应温度,和/或调节再生器的温度,分别使其保持在最佳值。所述的每个催化剂冷却器设有一个、两个或多个催化剂出口,分别用于输送冷再生催化剂循环至一个、两个或多个提升管反应器(和/或流化床反应器)各反应区和/或用于输送冷再生催化剂循环至再生器。
2)将一部分来自再生器的再生催化剂经催化剂冷却器冷却到200-720℃(优选360~650℃)直接进入提升管反应器预提升区或/和各反应区(和/或流化床反应器各反应区);或/和与另一部分未经冷却的热再生催化剂混合得到温度低于再生器温度的混合再生催化剂后进入提升管反应器预提升区或/和各反应区(和/或流化床反应器各反应区);或者冷热再生催化剂分别直接进入提升管预提升区,经预提升介质提升温度达到均衡后进入提升管反应器各反应区(和/或流化床反应器各反应区);或者不经催化剂冷却器直接进入提升管反应器预提升区或/和各反应区(和/或流化床反应器各反应区),循环使用。
所述的每个提升管反应器设有一个、两个或多个反应区、带有或不带有流化床反应器。在冷再生催化剂进入所述的提升管反应器(或/和流化床反应器)前设有或不设预提升器和/或混合器,用预提升介质将上述冷再生催化剂 输送至提升管反应器(或/和流化床反应器)。
3)所述的每个催化剂冷却器底部至少设置一个流化介质分布器,流化介质主要由此分布器进入所述的催化剂冷却器,表观气速(流化介质的体积流量与所述的冷却器横截面之比)的范围为0~0.7m/s(优选0.005~0.3m/s,最佳0.01~0.15m/s),所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制。
所述的进入每个催化剂冷却器的再生催化剂是任何碳含量的再生催化剂或不完全再生催化剂,或者是任何碳含量的待生催化剂、接触剂或焦粒。
所述的每个催化剂冷却器可以分别设置于再生器外部或内部,或者设置于与其相连接提升管反应器(或/和流化床反应器)的下面。
所述的至提升管反应器(或/和流化床反应器)各反应区的冷催化剂输送通道可以全部或部分设置于催化剂冷却器壳体外部或催化剂冷却器壳体内部。所述的返回至再生器的冷催化剂输送通道可以全部或部分设置于催化剂冷却器壳体外部或催化剂冷却器壳体内部。
根据工艺要求也可以不设所述的返回再生器的冷催化剂输送通道。
所述的预提升段可以全部(或部分)设置于与其相连接的催化剂冷却器壳体外部或内部。
根据工艺要求,设置(或不设)一个、两个或多个辅助提升管,分别连接冷再生催化剂输送通道(如外循环管、内循环管等),用于输送冷再生催化剂(用预提升介质提升)至一个、两个或多个提升管反应器(或/和流化床反应器)各反应区作为冷激剂或者与其他气态或液态冷激剂混合作为冷激剂,循环使用。
所述的气态或液态冷激剂是水、包括汽油、回炼油、澄清油在内的油品以及包括任何炭含量的冷再生催化剂、冷待生催化剂、冷半再生催化剂在内的催化剂中的一种、两种或两种以上的混合物。
催化剂冷却器为成熟工业设备,本发明的方法及其装置可采用各种结构形式(如上流式、下流式等),换热元件(包括取热管、取热管束等)也可以采用各种结构和连接形式,催化剂输送通道也可采用各种具体连接结构(如内循环管、Y型、U型外输送(循环)管等),本领域普通技术人员对其具体结构、连接型式、操作和控制过程非常清楚,不构成对本发明构思的任何具 体实施方式的限制。
进入提升管反应器(或/和流化床反应器)各反应区的上述混合再生催化剂的温度可通过调节所述冷热再生催化剂的比例和/或其它参数而得到独立控制。上述经催化剂冷却器冷却后的冷再生催化剂直接进入提升管反应器(或/和流化床反应器)时,进入提升管反应器(或/和流化床反应器)各反应区的冷再生催化剂温度通过调节流化介质和/或取热介质和/或输送介质的流量和/或其它参数进行控制;或者通过调节流化介质和/或取热介质和/或输送介质的流量和/或返回再生器的冷催化剂的流量和/或其它参数进行控制。因此,提升管反应器(或/和流化床反应器)的剂油比(再生催化剂与原料的比例)和反应温度均可得到独立控制。
根据工艺要求,调节再生器温度的催化剂冷却器可以不设,或/和调节提升管反应器(或/和流化床反应器)各反应区反应温度的催化剂冷却器中的任意一个、两个或多个也可以不设,热再生催化剂直接进入提升管。
调节再生器温度的催化剂冷却器不设,仅设一个、两个或多个与提升管反应器(或/和流化床反应器)相连接的催化剂冷却器时,再生器温度主要通过调节反应再生***的热平衡进行控制,或/和主要通过调节这些催化剂冷却器中的一个、两个或多个的流化介质和/或取热介质和/或返回再生器的催化剂等的流量或其它参数进行控制。
调节提升管反应器(或/和流化床反应器)各反应区反应温度的催化剂冷却器中的任意一个、两个或多个不设时,再生器温度主要通过调节反应再生***的热平衡进行控制;或/和主要通过调节不与提升管相连的催化剂冷却器的流化介质和/或取热介质和/或返回再生器的催化剂等的流量或其它参数进行控制;或/和主要通过调节与提升管相连的催化剂冷却器的流化介质和/或取热介质和/或返回再生器的催化剂等的流量或其它参数进行控制。
上述提升管反应器(或/和流化床反应器)各反应区的反应温度主要通过调节剂油比(在上述冷催化剂返回通道设置控制元件如滑阀、塞阀等),或/和主要通过调节冷再生催化剂或混合再生催化剂的温度进行控制,使其分别保持在最佳值。
当然还可有许多其他控制设备和控制方法,本领域普通技术人员对其非常清楚,不构成对本发明构思的任何具体实施方式的限制。
上述流化介质、输送介质可以是空气、蒸汽或其他气体等或者是它们的混合物,取热介质可以是水、蒸汽、空气或其他气体、各种油品等或者是它们的混合物。上述预提升介质可以是水、蒸汽或其他气体、各种炼厂干气等或者是它们的混合物。
上述进入催化剂冷却器的再生催化剂可以是任何碳含量的再生催化剂或不完全再生催化剂。上述进入催化剂冷却器的再生催化剂还包括任何碳含量的待生催化剂、接触剂或焦粒等。
上述的催化剂冷却器可以与再生器、提升管连为一体,也可以通过管线与其相连。
本发明还提供用于实现所述的再生催化剂循环方法的催化剂冷却设备,它大体上是设置有垂直换热管束的流化床,流化床自下而上主要设置有催化剂出口、流化介质分布器、换热管、密相流化床、脱气平衡口和催化剂进口;其中多根换热管垂直分布组成换热管束,从流化床顶部一直延伸至流化床下部,浸没在密相流化床中。
本发明的冷再生催化剂循环方法及其设备可用于各种反应再生型式(如同轴式、并列式等)的催化裂化装置,与再生器有多种组合型式,如设置于第一再生器、设置于第二再生器等,本领域普通技术人员对其组合型式、操作和控制过程非常清楚,不构成对本发明构思的任何具体实施方式的限制。
采用本发明的冷再生催化剂循环方法及其设备的催化裂化装置,其反应产物的分离及催化剂的再生均按常规方法进行,可以采用提升管催化裂化工艺及装置使用的各种反应再生型式包括各种提升管型式(包括等直径或变直径、带有或不带有流化床反应器等)、各种再生型式及其各种组合型式。待生催化剂在再生器中于常规催化裂化催化剂再生条件下进行烧焦再生,一般再生温度控制在630~800℃(优选680-730℃)。
提升管催化裂化工艺及装置为成熟工业过程,本领域普通技术人员对其组合型式、操作和控制过程非常清楚,不构成对本发明构思的任何具体实施方式的限制。本发明对其催化剂选用和工艺条件没有任何限制。
本发明的冷再生催化剂循环方法及其设备应用广泛,可用于各种流化催化裂化过程包括重油催化转化、蜡油催化转化、汽油催化改质、轻烃(液化石油气、碳四、碳五、汽油等)催化转化等,也可用于其它气固流态化反应 烧焦过程包括渣油预处理、甲醇制烯烃(MTO)、甲醇制丙烯(MTP)、甲醇制芳烃(MTA)、流化焦化、灵活焦化等。所述的冷再生催化剂循环方法及其设备可单独实施,用于各种流化催化裂化过程的一个提升管反应器(或/和流化床反应器)各反应区,根据工艺需要可设有一个、两个或多个辅助提升管输送至提升管反应器(或/和流化床反应器)各反应区作为冷激剂;或者联合实施,同时用于具有不同功能的两个或多个提升管反应器中的一个、两个或多个提升管反应器(或/和流化床反应器)各反应区包括用于双提升管催化裂化装置的重油提升管和汽油提升管、加工不同原料的两个或多个提升管等中的一个或两个提升管反应器各反应区,根据工艺需要可设有一个、两个或多个辅助提升管输送至提升管反应器(或/和流化床反应器)各反应区作为冷激剂。
本发明的冷再生剂循环方法及其设备可应用于重油催化裂化工艺,重质石油烃类与来自重油提升管预提升区(也可不设)的冷再生催化剂混合进入重油提升管反应器(带有或不带有流化床反应器),主要操作条件如下:反应温度400-650℃(优选480-600℃)、反应压力为0.1l~0.4MPa,接触时间0.05~5秒(优选0.1~3秒),催化剂与原料重量比(剂油比)一般为3~15,优选5~12。
应用本发明的重油催化裂化工艺与现有技术相比,重油提升管反应器操作条件相对独立,反应温度、剂油比和原料预热温度等操作条件可以根据重油性质和反应要求灵活调节。因此能提高掺渣比,加工劣质重油,提高轻油收率;其降低汽油烯烃体积含量的效果更加显著,兼有提高汽油辛烷值、降低其油品杂质含量的特点,同时具有可操作性强、简单灵活、应用广泛的优势。
与现有技术相比,本发明采用低速密相床操作,可提高循环催化剂的密度,提高循环***的推动力,克服循环量增大引起的***阻力增加,真正实现大剂油比操作。在不降低再生温度的条件下,通过降低再生催化剂温度,真正使剂油比、进料温度、反应温度和再生温度均成为独立可调变量,从而实现提升管或/和流化床反应器的各反应区的分区优化,真正实现催化裂化反应深度的优化控制,从而降低焦碳和干气,改善产品分布和产品质量,降低装置能耗和烟气排放。因此本发明具有如下优点:
1)原料的雾化效果更好。
在提高剂油比的同时,可采用更适宜的高进料温度,改进原料的雾化,促进与催化剂的接触,从而降低焦碳和干气产率。
2)可灵活调节各反应区的反应温度和再生器的再生温度,使其保持在最佳值。因此提升管或/和流化床反应器的各反应区可采用更适宜的反应时间和更适宜的反应温度,从而降低焦碳和干气,改善产品分布和产品质量。
3)可采用更适宜的高再生温度。
再生温度不受剂油比和原料预热温度制约,再生温度可以提高,有利于高效再生,并起到钝化重金属的作用。高再生温度使烟气带出热量增多,取热量减少。
4)催化剂的活性更高。
因再生剂温度降低,再生剂在提升管预提升段的水热失活减轻。
5)循环催化剂密度的提高,减少了循环催化剂夹带的空气量,从而降低了干气中的氮气等非烃类气体含量,提高干气的热值,降低富气压缩机的功率消耗。
6)流化风用量降低约80%,增压风总用量降低约50%,增压机的功率消耗降低约50%。
7)采用低速密相床操作,外取热器壳程线速很低(优选0.005~0.3m/s,最佳0.01~0.15m/s),催化剂颗粒对取热管束的磨蚀很小,有利于延长取热器的使用寿命。
8)与其他技术共同使用,效果更好。
使用本技术,并不影响其他技术的使用,如与现行密相段取热技术,提升管反应终止剂注入技术,多反应区多点进料技术等同时使用,效果更好。当然也可与许多其他工艺技术和方法同时使用,不构成对本发明构思的任何具体实施方式的限制。
与单独采用混合温度控制技术、注终止剂等技术相比,取热温位高,热量利用更加合理。
本发明的冷再生剂循环方法及其设备也可应用于汽油催化转化,提升管反应器操作条件相对独立,反应温度、剂油比和原料预热温度等操作条件可以根据反应要求灵活调节。
本发明所采用的方法与现有技术相比,其降低汽油烯烃体积含量的效果更加显著,兼有提高汽油辛烷值、降低其油品杂质含量的特点,同时具有可操作性强、简单灵活、应用广泛的优势。与现有技术相比,劣质汽油经本发明的催化转化装置后,汽油中烯烃体积含量可降低为30~70%,辛烷值(RON)可提高0.5~40个单位,汽油中的硫含量降低30%(重量)。
经过预热(或不预热)后的汽油(气态或液态)进入提升管,与来自汽油提升管预提升区(也可不设)的冷再生催化剂混合进入汽油提升管反应器(带有或不带有流化床反应器),主要进行异构化、芳构化等汽油改质反应,达到降低烯烃和硫、氮含量,提高辛烷值的目的。
应用本发明的汽油催化转化改质工艺主要操作条件如下:反应温度350-650℃(优选400-600℃)、绝对压力为0.1l~0.4MPa,接触时间0.5~30秒(优选1-15秒)。
本发明的汽油催化转化工艺可与重油催化裂化工艺联合实施,也可以单独实施。汽油提升管反应器操作条件调节相对独立,更加灵活,反应温度等条件可以根据市场情况灵活调节:
1)采用较低的反应温度,生产低硫、低烯烃高辛烷值汽油。
以降低汽油烯烃和硫含量为目的生产清洁汽油时,反应温度可以很低(350-520℃,优选400-480℃),使异构化、氢转移、芳构化、烷基化等理想的二次反应在有时间保证的前提下占据绝对优势。轻油收率大于98.5%。
2)采用较高的反应温度,多产液化气、轻烯烃,同时生产低硫、低烯烃的高辛烷值汽油。
当需要多产液化气、轻烯烃时,反应温度又可以很高(500-650℃,优选520-600℃),使烯烃裂化等反应占主导,同时实现提高柴汽比、降低汽油烯烃和硫含量,生产高辛烷值清洁汽油的目的。
该汽油馏分可以是全馏分,例如,初馏点至220℃左右的馏分:也可以是其中的部分窄馏分,例如,70~145℃馏分。该汽油馏分可以是一次加工汽油馏分如直馏汽油、凝析油等、二次加工汽油馏分如焦化汽油、FCC汽油、减粘汽油、热裂化汽油等或一种以上的汽油馏分的混合物。该汽油馏分的烯烃含量可以为0~80重%,并含有少量的硫、氮等杂质,例如,硫含量大于200ppm,氮含量大于30ppm。
所述的全馏分或窄馏分的劣质汽油是包括直馏汽油、凝析油、催化裂化汽油、热裂化汽油、减粘汽油、焦化汽油、裂解制乙烯汽油在内的汽油中的一种、两种、多种及其混合汽油。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明的一种典型示意图。
图2至图4为应用本发明的重油催化转化装置的典型示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图进一步阐述本发明。
图1为本发明的典型示意图(1个冷再生催化剂循环过程)
如附图1所示:本发明的冷再生催化剂循环包括沉降器1,提升管反应器2包括预提升区4、再生器5。再生器5与沉降器1汽提段1A之间设有待生催化剂输送管7和控制阀20连通再生器5与汽提段1A,将待生催化剂输送到再生器5。
再生器设有2个内或外取热设备,即催化剂冷却器,包括与再生器密相直接(或通过管道)连接的催化剂入口、下部混合缓冲空间、内部取热元件(包括套管式、蛇管式等)、下部流化介质分布设施等。
催化剂冷却器8A主要用于调节第一反应区的反应温度,使其保持在最佳值。另一催化剂冷却器(图中未画出)主要用于调节再生器温度,使其保持在最佳值。35A为流化介质如空气、蒸汽等,36A为提升介质如空气、蒸汽等,37A为取热介质,包括水、蒸汽、空气、各种油品等。
再生器5通过再生催化剂输送管10A与催化剂冷却器8A相连,再生催化剂经冷却后进入下部混合缓冲空间9A。冷再生催化剂通过冷再生催化剂输送管11A与提升管反应器预提升区4相连。离开催化剂冷却器8A(下部混合缓冲空间9A)的冷再生催化剂温度通过调节流化介质35A(包括空气、蒸汽等)的流量和/或冷再生催化剂返回管12A上的提升介质36A(包括空气、蒸汽等)的流量进行控制。控制阀21A是为了方便控制冷再生催化剂的流量而设置的具体控制元件。
为方便控制进入提升管反应器反应区的温度,还可设置热再生催化剂输送管(包括控制阀)(图中未画出)将再生器5直接与重油提升管反应器预提升区4相连,冷再生催化剂与热再生催化剂在提升管反应器预提升区4混合后经预提升介质32(包括水、蒸汽、各种炼厂干气等)提升温度达到均衡。
重油提升管反应器还可以设置2个反应区,冷再生催化剂通过冷再生催化剂输送管进入辅助提升管,经预提升介质输送至提升管反应器第2反应区作为冷激剂(图中未画出)。
根据工艺要求,主要用于调节再生器温度的催化剂冷却器可以不设。再生器5的温度通过调节流化介质35A包括空气、蒸汽等的流量和冷再生催化剂返回管12A上的提升介质36A包括空气、蒸汽等的流量进行控制。
当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
上述的催化剂冷却器可以与再生器、提升管连为一体,也可以通过管线与其相连。
冷却到200-720℃(优选360-650℃)的冷再生催化剂经预提升区4进入提升管反应器2。烃类原料在提升管反应器2与催化剂接触反应、反应物流进入沉降器1进行催化剂与油气的分离、分离出的待生催化剂经汽提段1A汽提后、进入再生器5在含氧气体38(包括空气等)的存在下经烧焦再生、再生后的催化剂经冷却后或直接返回提升管反应器循环使用。
所述的催化剂冷却器至少设置一个流化介质分布器,流化介质由催化剂冷却器底部分布器进入催化剂冷却器,表观气速为0~0.7m/s(优选0.005~0.3m/s,最佳0.01~0.15m/s),所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制。
图2为应用本发明的重油催化转化装置的一种典型示意图。
如附图2所示:本发明重油催化转化方法及其设备包括沉降器1,重油提升管反应器包括预提升区4、第一反应区3、第二反应区2、再生器5、烧焦罐5A。烧焦罐5A与沉降器1的汽提段1A之间设有待生催化剂输送管7和控制阀20连通烧焦罐5A与汽提段1A,将待生催化剂输送到烧焦罐5A。为保证烧焦罐5A的起始烧焦温度,设有再生催化剂循环管16和控制阀23。
再生器设有2个内或外取热设备,即催化剂冷却器,包括与再生器密相直接(或通过管道)连接的催化剂入口、下部混合缓冲空间、内部取热元件(包括套管式、蛇管式等)、下部流化介质分布设施等。
35A,35B为流化介质如空气、水、蒸汽等,36A,36B为提升介质如空气、蒸汽等,37A,37B为取热介质,包括水、蒸汽、空气、各种油品等。催化剂冷却器8A主要用于调节第一反应区的反应温度,使其保持在最佳值。催化剂冷却器8B主要用于调节再生器温度,使其保持在最佳值。
根据工艺要求,催化剂冷却器8A、催化剂冷却器8B的任意1个或2个都可以不设。
再生器5通过再生催化剂输送管10A与催化剂冷却器8A相连,再生催化剂经冷却后进入下部混合缓冲空间9A。冷再生催化剂通过冷再生催化剂输送管11A与重油提升管反应器预提升区4相连。离开催化剂冷却器8A的冷再生催化剂温度通过调节流化介质35A(包括空气、蒸汽等)的流量和/或冷再生催化剂返回管12A上的提升介质36A(包括空气、蒸汽等)的流量进行控制。控制阀21A是为了方便控制冷再生催化剂的流量而设置的具体控制元件。
为方便控制进入重油提升管反应器第一反应区的温度,还可以设置热再生催化剂输送管(包括控制阀)(图中未画出)直接与重油提升管反应器预提升区4相连,冷再生催化剂与热再生催化剂在重油提升管反应器预提升区4经预提升介质32(包括水、蒸汽、各种炼厂干气等)提升混合后温度达到均衡。
当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
为方便控制提升管反应器第二反应区2的温度,可以将冷激剂34注入第 一反应区的下游,以方便控制第二反应区2的温度。上述冷激剂可以是气体或液体(包括水、各种油品等)和冷催化剂中的任意一种,也可以是它们中的两种或多种。上述冷催化剂可以是冷再生催化剂、冷待生催化剂、冷半再生催化剂中的任意一种,也可以是它们中的两种或多种。
冷再生催化剂作为冷激剂时,可通过冷再生催化剂输送管进入辅助提升管,经预提升介质输送至提升管反应器第2反应区(图中未画出)。
再生器5通过再生催化剂输送管10B与催化剂冷却器8B相连,再生催化剂经冷却后进入下部混合缓冲空间9B。。再生器5的温度通过调节流化介质35B(包括空气、蒸汽等)的流量和/或冷再生催化剂返回管12B上的提升介质36B(包括空气、蒸汽等)的流量进行控制。
所述的催化剂冷却器8A、8B至少设置一个流化介质分布器,流化介质由催化剂冷却器底部分布器进入催化剂冷却器,表观气速为0~0.7m/s(优选0.005~0.3m/s,最佳0.01~0.15m/s),所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制。
当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
上述的催化剂冷却器可以与再生器、提升管连为一体,也可以通过管线与其相连。
重油原料33与来自重油提升管反应器预提升区4的再生催化剂混合进入重油提升管反应器第一反应区3,在催化裂化条件下进行反应,主要操作条件如下:反应温度400-650℃(优选480-560℃)、反应压力为0.1l~0.4MPa,接触时间0.05~5秒(优选0.1-3秒),催化剂与原料重量比一般为3~15,优选5~12。
冷激剂34与来自第一反应区3的反应油气和催化剂的混合物混合降温后,进入重油提升管反应器第二反应区2,主要进行氢转移、异构化、芳构化等二次反应,进一步降低烯烃和硫含量,提高辛烷值。主要操作条件如下:反应温度350-620℃(优选450-530℃)、反应压力为0.1l~0.4MPa,接触时间0.5~30秒(优选1-5秒)。
来自第二反应区2的反应油气和催化剂的混合物进入沉降器1,进行油气与催化剂分离,油气进入分馏、吸收稳定***进行分馏与液化石油气(LPG) 回收,得到包括催化裂化汽油在内的产品和未转化油。
待生催化剂经沉降器1的汽提段1A汽提后,通过待生催化剂输送管7和控制阀20进入烧焦罐5A,在主风38A(含氧气体包括空气等)的存在下经快速烧焦,向上输送再生器5进一步烧焦再生,再生器5底部补充二次风38B(含氧气体包括空气等)。再生催化剂由再生器5底部引出,分两路进入催化剂冷却器8A和催化剂冷却器8B,一路冷再生催化剂与或不与热再生催化剂混合循环使用,另一路返回再生器。
上述气体或液体冷激剂的注入点可以在冷催化剂注入点的上游或下游,以方便控制各反应区的温度,或形成另一反应区。
图3为应用本发明的重油催化转化装置(与汽油改质联合实施)的一种典型示意图。
如附图3所示:本发明重油催化转化方法及其设备包括重油沉降器1,汽油沉降器18,重油提升管反应器包括预提升区4、第一反应区3、第二反应区2、再生器5、汽油提升管6。再生器5与沉降器1的汽提段1A之间设有待生催化剂输送管7和控制阀(图中未画出)连通再生器5与重油沉降器1汽提段1A,将待生催化剂输送到再生器5。设有待生催化剂输送管15和控制阀23将再生器5与沉降器18的汽提段18A相连通。控制阀23是为了方便控制冷激用的待生催化剂的流量而设置的具体控制元件,当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
再生器设有3个内或外取热设备,即催化剂冷却器,包括与再生器密相直接(或通过管道)连接的催化剂入口、下部混合缓冲空间、内部取热元件(包括套管式、蛇管式等)、下部流化介质分布设施等。
催化剂冷却器8A主要用于调节重油提升管第一反应区的反应温度,使其保持在最佳值。催化剂冷却器8B主要用于调节汽油提升管的反应温度,使其保持在最佳值。另一催化剂冷却器(图中未画出)主要用于调节再生器温度,使其保持在最佳值。
35A,35B为流化介质如空气、蒸汽等,36A,36B为提升介质如空气、蒸汽等,37A,37B为取热介质,包括水、蒸汽、空气、各种油品等。
根据工艺要求,上述3个催化剂冷却器中的任意1个或2个都可以不设。
主要用于调节再生器温度的催化剂冷却器不设时,再生器温度通过调节催化剂冷却器8A、和/或催化剂冷却器8B的流化介质35A、35B(包括空气、蒸汽等)的流量和/或返回再生器的催化剂量和/或通过反应再生***的热平衡进行控制。
为方便控制重油提升管反应器第二反应区2的温度,可以将冷激剂34注入第一反应区的下游,以方便控制第二反应区2的温度。上述冷激剂可以是气体或液体(包括水、各种油品等)和冷催化剂中的任意一种,也可以是它们中的两种或多种。上述冷催化剂可以是冷再生催化剂、冷待生催化剂、冷半再生催化剂中的任意一种,也可以是它们中的两种或多种。冷再生催化剂作为冷激剂时,可通过冷再生催化剂输送管进入辅助提升管,经预提升介质输送至提升管反应器第2反应区(图中未画出)。
再生器5通过再生催化剂输送管10A与催化剂冷却器8A相连,再生催化剂经冷却后进入下部混合缓冲空间9A。冷再生催化剂通过冷再生催化剂输送管11A与重油提升管反应器预提升区4相连。离开催化剂冷却器8A的冷再生催化剂温度通过调节流化介质35A(包括空气、蒸汽等)的流量或/和冷再生催化剂返回管12A上的提升介质36A(包括空气、蒸汽等)的流量进行控制。控制阀21A是为了方便控制冷再生催化剂的流量而设置的具体控制元件。
为方便控制重油提升管反应器第一反应区的温度,设置热再生催化剂输送管(包括控制阀)与重油提升管反应器预提升区4相连,冷再生催化剂与热再生催化剂在重油提升管反应器预提升区4经预提升介质32(包括水、蒸汽、各种炼厂干气等)提升混合后温度达到均衡。当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
再生器5通过再生催化剂输送管10B与催化剂冷却器8B相连,再生催化剂经冷却后进入下部混合缓冲空间9B。冷再生催化剂通过冷再生催化剂输送管11B与汽油提升管预提升区相连。离开催化剂冷却器8B的冷再生催化剂温度通过调节流化介质35B(包括空气、蒸汽等)的流量或/和冷再生催化剂返回管12B上的提升介质36B(包括空气、蒸汽等)的流量进行控制。控制阀21B是为了方便控制冷再生催化剂的流量而设置的具体控制元件。
所述的催化剂冷却器8A、8B至少设置一个流化介质分布器,流化介质 由催化剂冷却器底部分布器进入催化剂冷却器,表观气速为0~0.7m/s(优选0.005~0.3m/s,最佳0.01~0.15m/s),所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制。
为方便控制进入汽油提升管反应器的温度,设置热再生催化剂输送管19B(包括控制阀22B)与汽油提升管反应器预提升区4相连,冷再生催化剂与热再生催化剂在汽油提升管反应器预提升区4经预提升介质30(包括水、蒸汽、各种炼厂干气等)提升混合后温度达到均衡。当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
上述的催化剂冷却器可以与再生器、提升管连为一体,也可以通过管线与其相连。
重油原料33与来自重油提升管反应器预提升区4的再生催化剂混合降温后进入重油提升管反应器第一反应区3,在催化裂化条件下进行反应,主要操作条件如下:反应温度400-650℃(优选480-560℃)、反应压力为0.1l~0.4MPa,接触时间0.05~5秒(优选0.1-3秒),催化剂与原料重量比一般为5~15,优选5~12。
来自第一反应区3的反应油气和催化剂的混合物与冷激剂34混合降温后,进入重油提升管反应器第二反应区2,主要进行氢转移、异构化、芳构化等二次反应,进一步降低烯烃和硫含量,提高辛烷值。主要操作条件如下:反应温度350-620℃(优选450-530℃)、反应压力为0.1l~0.4MPa,接触时间0.5~30秒(优选1-5秒)。
劣质汽油31与来自汽油提升管预提升区的再生催化剂混合进入汽油提升管反应器,在反应温度300-650℃(优选400-500℃)、反应压力为0.1l~0.4MPa条件下接触,接触时间0.5~30秒(优选1-15秒),催化剂与原料重量比一般为1~50,优选2~20,主要进行异构化、芳构化等汽油改质反应,达到降低烯烃和硫含量,提高辛烷值的目的。
来自第二反应区2的反应油气和催化剂的混合物进入沉降器1,进行油气与催化剂分离,油气单独或与来自沉降器18的油气混合后进入分馏、吸收稳定***进行分馏与LPG回收,得到包括催化裂化汽油在内的产品和未转化油。待生催化剂经沉降器1的汽提段1A汽提后,通过待生催化剂输送管7和控制阀(未画出)进入再生器5。
来自汽油提升管6的反应物流进入沉降器18进行油气与催化剂分离,油气单独进入分馏、吸收稳定***进行分馏与LPG回收,得到包括催化裂化汽油在内的产品;或与来自沉降器1的油气混合后,进入共用的分馏、吸收稳定***进行分馏与液化石油气(LPG)回收。
待生催化剂经沉降器18汽提段18A汽提后,通过待生催化剂输送管15和控制阀23进入再生器5。
来自两沉降器汽提段的待生催化剂进入再生器5后,在含氧气体38(包括空气等)的存在下经烧焦再生后分两路进入催化剂冷却器8A和催化剂冷却器8B,两路冷再生催化剂与或不与热再生催化剂混合分别循环使用。
上述气体或液体冷激剂的注入点可以在冷催化剂注入点的上游或下游,以方便控制各反应区的温度,或形成另一反应区。
图4为应用本发明的重油催化转化装置(共用沉降器)的一种典型示意图。
如附图4所示:本发明重油催化转化方法及其设备包括沉降器1、共用一个沉降器的两个重油提升管反应器(包括预提升区4A、4B、第一反应区3A、3B、第二反应区2A、2B、)、再生器5、烧焦罐5A。烧焦罐5A与沉降器1的汽提段1A之间设有待生催化剂输送管7和控制阀20连通烧焦罐5A与汽提段1A,将待生催化剂输送到烧焦罐5A。为保证烧焦罐5A的起始烧焦温度,设有再生催化剂循环管16和控制阀23。
再生器设有3个内或外取热设备,即催化剂冷却器,包括与再生器密相直接(或通过管道)连接的催化剂入口、下部混合缓冲空间、内部取热元件(包括套管式、蛇管式等)、下部流化介质分布设施等。
催化剂冷却器8A、8B主要用于调节两个重油提升管反应器第一反应区的反应温度,使其保持在最佳值。另一催化剂冷却器(图中未画出)主要用于调节再生器温度,使其保持在最佳值。
35A,35B为流化介质如空气、蒸汽等,36A,36B为提升介质如空气、蒸汽等,37A,37B为取热介质,包括水、蒸汽、空气、各种油品等。
根据工艺要求,上述3个催化剂冷却器中的任意1个或2个都可以不设。
再生器5通过再生催化剂输送管10A与催化剂冷却器8A相连,再生催 化剂经冷却后进入下部混合缓冲空间9A。冷再生催化剂通过冷再生催化剂输送管11A与重油提升管反应器预提升区4A相连。离开催化剂冷却器8A的冷再生催化剂温度通过调节流化介质35A(包括空气蒸汽等的)流量或/和冷再生催化剂返回管12A上的提升介质36A(包括空气、蒸汽等)的流量进行控制。控制阀21A是为了方便控制冷再生催化剂的流量而设置的具体控制元件。
再生器5通过再生催化剂输送管10B与催化剂冷却器8B相连,再生催化剂经冷却后进入下部混合缓冲空间9B。冷再生催化剂通过冷再生催化剂输送管11B与重油提升管反应器预提升区4B相连。离开催化剂冷却器8A的冷再生催化剂温度通过调节流化介质35B包括空气、蒸汽等的流量或/和冷再生催化剂返回管12B上的提升介质36B包括空气、蒸汽等的流量进行控制。控制阀21A是为了方便控制冷再生催化剂的流量而设置的具体控制元件。
所述的催化剂冷却器8A、8B至少设置一个流化介质分布器,流化介质由催化剂冷却器底部分布器进入催化剂冷却器,表观气速为0~0.7m/s(优选0.005~0.3m/s,最佳0.01~0.15m/s),所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制。
当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
为方便控制进入两提升管反应器第一反应区的温度,还可以设置热再生催化剂输送管(包括控制阀)(图中未画出)与重油提升管反应器预提升区4A、4B相连,冷再生催化剂与热再生催化剂在重油提升管反应器预提升区4A、4B经预提升介质32A、32B(包括水、蒸汽、各种炼厂干气等)提升混合后温度达到均衡。当然也可有许多其他控制设备和控制方法,不构成对本发明构思的任何具体实施方式的限制。
为方便控制两提升管反应器第二反应区2的温度,可以将冷激剂34A、34B注入第一反应区的下游,以方便控制第二反应区2的温度。上述冷激剂可以是气体或液体(包括水、各种油品等)和冷催化剂中的任意一种,也可以是它们中的两种或多种。上述冷催化剂可以是冷再生催化剂、冷待生催化剂、冷半再生催化剂中的任意一种,也可以是它们中的两种或多种。冷再生催化剂作为冷激剂时,可通过冷再生催化剂输送管进入辅助提升管,经预提 升介质输送至提升管反应器第2反应区(图中未画出)。
上述的催化剂冷却器可以与再生器、提升管连为一体,也可以通过管线与其相连。
重油原料(新鲜原料)33A与来自重油提升管反应器预提升区4A的再生催化剂混合进入重油提升管反应器第一反应区3A,在催化裂化条件下进行反应,主要操作条件如下:反应温度400-650℃(优选480-560℃℃)、反应压力为0.1l~0.4MPa,接触时间0.05~5秒(优选0.1-3秒),催化剂与原料重量比一般为3~15,优选5~12。
冷激剂34A与来自第一反应区3A的反应油气和催化剂的混合物混合降温后,进入重油提升管反应器第二反应区2A,主要进行氢转移、异构化、芳构化等二次反应,进一步降低烯烃和硫含量,提高辛烷值。主要操作条件如下:反应温度350-620℃(优选450-530℃)、反应压力为0.1l~0.4MPa,接触时间0.5~30秒(优选1-5秒)。
来自第二反应区2A的反应油气和催化剂的混合物进入共用的沉降器1,进行油气与催化剂分离。
重油原料(回炼油、油浆等)33B与来自重油提升管反应器预提升区4B的再生催化剂混合进入重油提升管反应器第一反应区3B,在催化裂化条件下进行反应,主要操作条件如下:反应温度400-650℃(优选480-600℃)、反应压力为0.1l~0.4MPa,接触时间0.05~5秒(优选0.1-3秒),催化剂与原料重量比一般为3~15,优选5~12。
冷激剂34B与来自第一反应区3B的反应油气和催化剂的混合物混合降温后,进入重油提升管反应器第二反应区2B,主要进行氢转移、异构化、芳构化等二次反应,进一步降低烯烃和硫含量,提高辛烷值。主要操作条件如下:反应温度350-620℃(优选450-530℃)、反应压力为0.1l~0.4MPa,接触时间0.5~30秒(优选1-5秒)。
来自第二反应区2B的反应油气和催化剂的混合物进入共用的沉降器1,进行油气与催化剂分离(分离设施未画出)。
来自两个重油提升管反应器的油气与催化剂的混合物混合后进行进一步的油气与催化剂分离,分离后的反应油气进入共用的分馏、吸收稳定***进行分馏与液化石油气(LPG)回收。
来自两个重油提升管反应器的待生催化剂混合进入沉降器1汽提段1A,汽提后通过待生催化剂输送管7和控制阀20进入烧焦罐5A,在主风38A(含氧气体包括空气等)的存在下经快速烧焦,向上输送再生器5进一步烧焦再生,再生器5底部补充二次风38B(含氧气体包括空气等)。再生催化剂由再生器5底部引出,分3路分别进入催化剂冷却器8A、催化剂冷却器8B和催化剂冷却器8C,冷再生催化剂与或不与热再生催化剂混合循环使用,另一路返回再生器。
上述气体或液体冷激剂的注入点可以在冷催化剂注入点的上游或下游,以方便控制各反应区的温度,或形成另一反应区。
本申请要求于2015年1月6日递交的中国专利申请第201510004405.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (10)

  1. 一种冷再生催化剂循环方法,其包括一个流化催化裂化过程:烃类原料在带有或不带有流化床反应器的提升管反应器与催化剂接触反应,反应物流进入沉降器进行催化剂与油气的分离,分离出的待生催化剂经汽提段汽提后,进入再生器烧焦再生,再生后的催化剂经冷却后或/和不经冷却直接返回提升管反应器循环使用,其中:
    1)再生器设有一个、两个或多个催化剂冷却器,分别用于调节各自相连接的提升管反应器(和/或流化床反应器)各反应区的反应温度,和/或调节再生器的温度,分别使其保持在最佳值;所述的每个催化剂冷却器设有一个、两个或多个催化剂出口,分别用于输送冷再生催化剂循环至一个、两个或多个提升管反应器(和/或流化床反应器)各反应区和/或用于输送冷再生催化剂循环至再生器;
    2)将一部分来自再生器的再生催化剂经催化剂冷却器冷却到200~720℃直接进入提升管反应器预提升区或/和各反应区(和/或流化床反应器各反应区);或/和与另一部分未经冷却的热再生催化剂混合得到温度低于再生器温度的混合再生催化剂后进入提升管反应器预提升区或/和各反应区(和/或流化床反应器各反应区);或者冷热再生催化剂分别直接进入提升管预提升区,经预提升介质提升温度达到均衡后进入提升管反应器各反应区(和/或流化床反应器各反应区);或者不经催化剂冷却器直接进入提升管反应器预提升区或/和各反应区(和/或流化床反应器各反应区),循环使用;
    所述的每个提升管反应器设有一个、两个或多个反应区、带有或不带有流化床反应器,在冷再生催化剂进入所述的提升管反应器或/和流化床反应器前设有或不设预提升器和/或混合器,用预提升介质将上述冷再生催化剂输送至提升管反应器(或/和流化床反应器);
    3)所述的每个催化剂冷却器底部至少设置一个流化介质分布器,流化介质主要由此分布器进入所述的催化剂冷却器,表观气速(流化介质的体积流量与所述的冷却器横截面之比)的范围为大于0~0.7m/s,所述的冷再生催化剂温度主要通过调节流化介质的流量进行控制;
    所述的进入每个催化剂冷却器的再生催化剂是任何碳含量的再生催化剂 或不完全再生催化剂,或者是任何碳含量的待生催化剂或接触剂或焦粒。
  2. 按照权利要求1所述的方法,其中步骤3)中的所述表观气速为0.005~0.3m/s。
  3. 按照权利要求1或2所述的方法,其中步骤3)中的所述表观气速为0.01~0.15m/s。
  4. 根据权利要求1至3中任一项所述的方法,其中所述的冷再生催化剂温度通过调节流化介质和/或取热介质和/或输送介质的流量和/或其它参数进行控制;或者通过调节流化介质和/或取热介质和/或输送介质的流量和/或返回再生器的冷催化剂的流量和/或其它参数进行控制;或者所述的混合再生催化剂的温度通过调节所述冷热再生催化剂的比例和/或其它参数而得到控制。
  5. 根据权利要求1至4中任一项所述的方法,其中所述的提升管反应器或/和流化床反应器各反应区的反应温度通过调节剂油比,或/和通过调节所述冷再生催化剂或所述混合再生催化剂的温度,或/和采用多点进料技术,或/和向提升管反应器注入各种冷激剂而得到控制。
  6. 按照权利要求1至5中任一项所述的方法,其中所述的至提升管反应器(或流化床反应器)各反应区的冷催化剂输送通道可以全部或部分设置于催化剂冷却器壳体外部或催化剂冷却器壳体内部;所述的返回至再生器的冷催化剂输送通道可以全部或部分设置于催化剂冷却器壳体外部或催化剂冷却器壳体内部;所述的预提升段全部(或部分)设置于与其相连接的催化剂冷却器壳体外部或内部。
  7. 按照权利要求1至6中任一项所述的方法,其中设置一个、两个或多个辅助提升管,用于输送冷再生催化剂至一个、两个或多个提升管反应器或/和流化床反应器各反应区作为冷激剂,或/和与其他气态或液态冷激剂混合作为冷激剂;所述的气态或液态冷激剂是水、包括汽油、回炼油、澄清油在内 的各种油品以及包括冷再生催化剂、待生催化剂、冷半再生催化剂在内的任何炭含量的催化剂中的一种、两种或两种以上的混合物。
  8. 按照权利要求1至7中任一项所述的方法,其中所述的冷再生催化剂循环方法单独实施,用于各种流化催化裂化过程的一个提升管反应器或/和流化床反应器各反应区;或者联合实施,同时用于具有不同功能的两个或多个提升管反应器中的一个、两个或多个提升管反应器或/和流化床反应器各反应区包括用于双提升管催化裂化装置的重油提升管和汽油提升管或加工不同原料的两个或多个提升管中的一个、两个或多个提升管反应器的各反应区。
  9. 按照权利要求1至8中任一项所述的方法,其中用于各种流化催化裂化过程包括重油催化转化、蜡油催化转化、汽油催化改质、轻烃催化转化,或者用于其它气固流态化反应烧焦过程包括渣油预处理、甲醇制烯烃、甲醇制丙烯、甲醇制芳烃、流化焦化、灵活焦化。
  10. 一种冷再生催化剂循环装置,其为按照权利要求1至9中任一项所述的方法实施的装置。
PCT/CN2016/070252 2015-01-06 2016-01-06 一种冷再生催化剂循环方法及其装置 WO2016110253A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/541,379 US20180021769A1 (en) 2015-01-06 2016-01-06 Cold regenerated catalyst circulation method and device therefor
EP16734913.3A EP3243567B1 (en) 2015-01-06 2016-01-06 Cold regenerated catalyst circulation method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510004405.7 2015-01-06
CN201510004405.7A CN105820830A (zh) 2015-01-06 2015-01-06 一种冷再生催化剂循环方法及其装置

Publications (1)

Publication Number Publication Date
WO2016110253A1 true WO2016110253A1 (zh) 2016-07-14

Family

ID=56355534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070252 WO2016110253A1 (zh) 2015-01-06 2016-01-06 一种冷再生催化剂循环方法及其装置

Country Status (4)

Country Link
US (1) US20180021769A1 (zh)
EP (1) EP3243567B1 (zh)
CN (2) CN115287092A (zh)
WO (1) WO2016110253A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109971A1 (zh) * 2020-11-27 2022-06-02 广州智京科技有限公司 一种fcc装置的预提升***和工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011373A (zh) 2015-01-06 2022-09-06 李群柱 一种再生催化剂冷却方法及其设备
BR112018072147A2 (pt) * 2016-04-29 2019-02-12 Basf Corporation projeto de unidade de desativação de metal cíclica novo para a desativação de catalisador de fcc
CN109536192B (zh) * 2017-09-22 2021-03-09 中国石油天然气股份有限公司 一种油砂流化焦化***及油砂流化焦化方法
CN109701458B (zh) * 2018-12-20 2020-12-01 清华大学 分区分功能将甲醇转化为芳烃的流化床装置及方法
US11286431B2 (en) * 2019-07-02 2022-03-29 Lummus Technology Llc Fluid catalytic cracking processes and apparatus
US20230133426A1 (en) * 2021-11-02 2023-05-04 Uop Llc Process and apparatus for reacting feed with cooled regenerated catalyst
CN115841050B (zh) * 2023-02-20 2023-06-06 新***山子石油化工有限公司 催化裂化再生催化剂和分子组成原料油预混温度计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066627A (en) * 1990-06-08 1991-11-19 Mobil Oil Corporation Process for simultaneous heating and cooling a fast fluidized bed catalyst regenerator
CN101474582A (zh) * 2009-01-23 2009-07-08 中国石油化工集团公司 一种再生催化剂的冷却和汽提设备
CN101932671A (zh) * 2008-01-30 2010-12-29 埃克森美孚化学专利公司 在催化剂再生器和外部催化剂冷却器之间循环催化剂的方法
CN103379959A (zh) * 2011-02-28 2013-10-30 环球油品公司 用于催化剂冷却器通风的方法和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346613A (en) * 1993-09-24 1994-09-13 Uop FCC process with total catalyst blending
EP1013743B1 (en) * 1998-12-21 2005-02-02 INDIAN OIL CORPORATION Ltd. A fluid catalytic cracking (FCC) process
US7381322B2 (en) * 2002-05-08 2008-06-03 Indian Oil Corporation Limited Resid cracking apparatus with catalyst and adsorbent regenerators and a process thereof
US7273543B2 (en) * 2003-08-04 2007-09-25 Stone & Webster Process Technology, Inc. Process and apparatus for controlling catalyst temperature in a catalyst stripper
CN1324116C (zh) * 2005-03-23 2007-07-04 李莉 一种重油催化转化方法及其装置
CN101161786B (zh) * 2006-10-12 2012-05-09 中国石油化工股份有限公司 一种石油烃类的转化方法
DK2184335T3 (da) * 2007-08-09 2021-06-07 China Petroleum & Chem Corp Fremgangsmåde til katalytisk omdannelse
CN101665710B (zh) * 2008-09-02 2014-03-26 李莉 一种轻烃催化转化方法及其装置
CN101665712B (zh) * 2008-09-02 2014-03-26 李莉 一种流化催化转化方法及其装置
CN101665713B (zh) * 2008-09-02 2012-07-04 李莉 一种冷再生催化剂循环方法及其设备
CN101838545B (zh) * 2009-03-19 2014-06-04 李群柱 流化催化转化进料预热及反应温度控制的方法
WO2011097811A1 (zh) * 2010-02-11 2011-08-18 Li Li 一种冷再生催化剂循环方法及其设备
CN102212389A (zh) * 2010-04-02 2011-10-12 中国石油化工集团公司 一种催化裂化方法及其装置
TR201907926T4 (tr) * 2010-07-08 2019-06-21 Indian Oil Corp Ltd Çoklu yükselticili kalıntı katalitik çatlatma işlemi ve aparatı.
WO2012021404A2 (en) * 2010-08-09 2012-02-16 Southern Company Ash and solids cooling in high temperature and high pressure environment
CN104099129A (zh) * 2013-04-08 2014-10-15 中石化洛阳工程有限公司 一种短反应时间催化裂化方法
CN203928823U (zh) * 2014-03-18 2014-11-05 中国石油大学(北京) 一种流化床外取热器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066627A (en) * 1990-06-08 1991-11-19 Mobil Oil Corporation Process for simultaneous heating and cooling a fast fluidized bed catalyst regenerator
CN101932671A (zh) * 2008-01-30 2010-12-29 埃克森美孚化学专利公司 在催化剂再生器和外部催化剂冷却器之间循环催化剂的方法
CN101474582A (zh) * 2009-01-23 2009-07-08 中国石油化工集团公司 一种再生催化剂的冷却和汽提设备
CN103379959A (zh) * 2011-02-28 2013-10-30 环球油品公司 用于催化剂冷却器通风的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3243567A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109971A1 (zh) * 2020-11-27 2022-06-02 广州智京科技有限公司 一种fcc装置的预提升***和工艺

Also Published As

Publication number Publication date
CN105820830A (zh) 2016-08-03
EP3243567A1 (en) 2017-11-15
CN115287092A (zh) 2022-11-04
US20180021769A1 (en) 2018-01-25
EP3243567A4 (en) 2018-01-17
EP3243567B1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2016110253A1 (zh) 一种冷再生催化剂循环方法及其装置
CN104583373B (zh) 使轻烯烃或者中间馏分和轻烯烃最大化的流化催化裂化方法和装置
CN101161786B (zh) 一种石油烃类的转化方法
CN102925210A (zh) 一种低油剂接触温差的催化裂化方法和装置
CN110724550B (zh) 一种采用快速流化床进行催化裂解的方法和***
WO2019015580A1 (zh) 一种多产丙烯的催化转化方法
CN103540345B (zh) 一种催化裂化方法
KR102679916B1 (ko) 하향 유동 반응기의 탄화수소류 촉매 전환 방법 및 이의 장치
US20230256427A1 (en) Method and equipment for circulating cooled regenerated catalyst
CN101665710B (zh) 一种轻烃催化转化方法及其装置
CN101575534A (zh) 一种降低催化裂化再生催化剂温度的装置与方法
CN101665712B (zh) 一种流化催化转化方法及其装置
CN100523141C (zh) 一种重油催化裂化与汽油改质的互控方法和装置
WO2020015602A1 (zh) 一种烃油催化裂解方法和***
CN101665713B (zh) 一种冷再生催化剂循环方法及其设备
CN116218561A (zh) 催化裂化反应器、催化裂化***及方法
CN109609175A (zh) 一种下行床反应器轻烃催化转化方法及其装置
WO2001000751A1 (fr) Procede de transformation catalytique permettant de reduire la teneur en azote, soufre et olefines du petrole
CN1333048C (zh) 一种石油烃催化转化方法
CN112745903B (zh) 催化转化重质石油烃原料的方法和装置
CN102212389A (zh) 一种催化裂化方法及其装置
CN109609176A (zh) 一种下行床反应器重油催化转化方法及其装置
CN115992004A (zh) 一种反应原料为烃类原料的催化转化制低碳烯烃和芳烃的反应方法及反应器
CN115992003A (zh) 一种反应原料为烃类原料的催化转化制低碳烯烃和芳烃的方法及反应器
CN116083115A (zh) 一种烃类原料催化转化制低碳烯烃和芳烃的方法及反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734913

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016734913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15541379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE