WO2016109926A1 - 一种信息传输方法、设备及*** - Google Patents

一种信息传输方法、设备及*** Download PDF

Info

Publication number
WO2016109926A1
WO2016109926A1 PCT/CN2015/070132 CN2015070132W WO2016109926A1 WO 2016109926 A1 WO2016109926 A1 WO 2016109926A1 CN 2015070132 W CN2015070132 W CN 2015070132W WO 2016109926 A1 WO2016109926 A1 WO 2016109926A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
subframe
starting position
network device
dci
Prior art date
Application number
PCT/CN2015/070132
Other languages
English (en)
French (fr)
Inventor
李晓翠
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/070132 priority Critical patent/WO2016109926A1/zh
Priority to US15/541,675 priority patent/US10476721B2/en
Priority to EP15876437.3A priority patent/EP3232636B1/en
Priority to CN201580067179.5A priority patent/CN107005564B/zh
Publication of WO2016109926A1 publication Critical patent/WO2016109926A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to an information transmission method, device, and system.
  • each device needs to use frequency resources for information transmission, and the frequency resources are also called spectrum.
  • the spectrum can be divided into licensed spectrum and unlicensed spectrum.
  • the licensed spectrum is a frequency resource exclusive to some operators, and the unlicensed spectrum is a common frequency resource in a wireless communication network.
  • the amount of information transmitted in the wireless communication network is increasing, and preempting the unlicensed spectrum transmission information can improve the data throughput in the wireless communication network and better meet the needs of users.
  • the time of transmitting the data may be random, which may cause the time at which the device sends the data may not be the time when a complete subframe starts, so that the receiving device needs to continue. Blind detection of the channel to determine the start of data transmission, which makes the receiving device consume too much power.
  • An embodiment of the present invention provides an information transmission method, device, and system, which can solve the problem that a receiving device needs to continuously perform blind detection on a channel to determine a start time of data transmission because the initial OFDM symbol position of the first subframe is not known. The problem of excessive power consumption of the receiving device.
  • the present invention provides an information transmission method, including:
  • the network device acquires a starting position of the first subframe
  • the network device configures a first field in the downlink control information DCI of the second subframe, where the first field is used to indicate a starting position of the first subframe;
  • the network device Transmitting, by the network device, a first subframe and a second subframe, where the second subframe is sent after the first subframe, where the first subframe includes M orthogonal frequency divisions Multiplexing OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • the starting position of the first subframe is the network device to the user equipment. Transmitting a position or a range of positions of the first OFDM symbol of the first subframe.
  • the first field is used to indicate the previously sent The starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all the bits or the partial bits of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all values or partial values of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first field is a new field or original in the DCI. There are fields.
  • the first field is an original field in the DCI
  • the first field is a redundancy version RV field, a carrier indication field CIF, a resource allocation RA field, a modulation and coding mode MCS field, a downlink allocation indication bit DAI field, a sounding reference signal SRS request field, and a precoding matrix indicating TPMI acknowledgement.
  • precoding matrix indicating PMI acknowledgement field downlink power compensation field, hybrid automatic repeat request HARQ process number field, transport block replacement identifier field, precoding information field, transmit power control TPC field, scrambling identification field, antenna port, Layer number and reference signal scrambling sequence field, physical downlink shared channel PDSCH resource element RE mapping and quasi co-localization indicator field, demodulation reference signal DMRS phase rotation and superposition orthogonal code OCC index field, uplink index ULI field, downlink allocation index DAI field, channel status information CSI request field, indication field in DCI format 3, finger in DCI format 3A Field.
  • the first field is further used to indicate a meaning of an original field in the DCI.
  • the first subframe is an unlicensed carrier subframe.
  • the present invention provides an information transmission method, including:
  • the second subframe receives, by the user equipment, the adjacent first subframe and the second subframe that are sent by the network device, where the second subframe is received after the first subframe, where the first subframe includes M orthogonal frequency divisions With OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • the user equipment processes the first subframe from a starting position of the first subframe
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first field is used to indicate the previously sent The starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all bits or partial bits of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all values or partial values of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first field is a new field or an original field in the DCI.
  • the first field is an original field in the DCI
  • the first field is a redundancy version RV field, a carrier indication field CIF, a resource allocation RA field, a modulation and coding mode MCS field, a downlink allocation indication bit DAI field, a sounding reference signal SRS request field, and a precoding matrix indicating TPMI acknowledgement.
  • precoding matrix indicating PMI acknowledgement field downlink power compensation field, hybrid automatic repeat request HARQ process number field, transport block replacement identifier field, precoding information field, transmit power control TPC field, scrambling identification field, antenna port, Layer number and reference signal scrambling sequence field, physical downlink shared channel PDSCH resource element RE mapping and quasi co-localization indicator field, demodulation reference signal DMRS phase rotation and superposition orthogonal code OCC index field, uplink index ULI field, downlink allocation index DAI field, channel status information CSI request field, indication field in DCI format 3, finger in DCI format 3A Field.
  • the first field is further used to indicate a meaning of an original field in the DCI.
  • the first subframe is an unlicensed carrier subframe.
  • an embodiment of the present invention provides a network device, including:
  • An obtaining unit configured to obtain a starting position of the first subframe
  • a configuration unit configured to configure a first field in the downlink control information DCI of the second subframe, where the first field is used to indicate a starting position of the first subframe acquired by the acquiring unit;
  • a sending unit configured to send, to the user equipment, an adjacent first subframe and a second subframe, where the second subframe is sent after the first subframe, where the first subframe includes M orthogonal frequencies Sub-multiplexed OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first field is used to indicate the previously sent The starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all bits or partial bits of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all values or partial values of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first field is a new field or original in the DCI There are fields.
  • the first field is an original field in the DCI
  • the first field is a redundancy version RV field, a carrier indication field CIF, a resource allocation RA field, a modulation and coding mode MCS field, a downlink allocation indication bit DAI field, a sounding reference signal SRS request field, and a precoding matrix indicating TPMI acknowledgement.
  • precoding matrix indicating PMI acknowledgement field downlink power compensation field, hybrid automatic repeat request HARQ process number field, transport block replacement identifier field, precoding information field, transmit power control TPC field, scrambling identification field, antenna port, Layer number and reference signal scrambling sequence field, physical downlink shared channel PDSCH resource element RE mapping and quasi co-localization indicator field, demodulation reference signal DMRS phase rotation and superposition orthogonal code OCC index field, uplink index ULI field, downlink allocation index DAI field, channel status information CSI request field, indication field in DCI format 3, DCI format 3A The indication field in .
  • the first field is further used to indicate a meaning of an original field in the DCI.
  • the first subframe is an unlicensed carrier subframe.
  • an embodiment of the present invention provides a user equipment, including:
  • a receiving unit configured to receive a first subframe and a second subframe that are sent by the network device, where the second subframe is received after the first subframe, where the first subframe includes M orthogonal Frequency division multiplexing OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • An acquiring unit configured to acquire a starting position of the first subframe from a first field of downlink control information DCI of the second subframe received by the receiving unit;
  • a processing unit configured to process the first subframe from a starting position of the first subframe
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first field is used to indicate the previously sent The starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all the bits or the partial bits of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all values or partial values of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first field is a newly added field or original in the DCI There are fields.
  • the first field is an original field in the DCI
  • the first field is a redundancy version RV field, a carrier indication field CIF, a resource allocation RA field, a modulation and coding mode MCS field, a downlink allocation indication bit DAI field, a sounding reference signal SRS request field, and a precoding matrix indicating TPMI acknowledgement.
  • precoding matrix indicating PMI acknowledgement field downlink power compensation field, hybrid automatic repeat request HARQ process number field, transport block replacement identifier field, precoding information field, transmit power control TPC field, scrambling identification field, antenna port, Layer number and reference signal scrambling sequence field, physical downlink shared channel PDSCH resource element RE mapping and quasi co-localization indicator field, demodulation reference signal DMRS phase rotation and superposition orthogonal code OCC index field, uplink index ULI field, downlink allocation index DAI field, channel status information CSI request field, indication field in DCI format 3, finger in DCI format 3A Field.
  • the first field is further used to indicate a meaning of an original field in the DCI.
  • the first subframe is an unlicensed carrier subframe.
  • an embodiment of the present invention provides a network device, including: a processor, a memory, a bus, and a transmitter, where the processor, the memory, and the transmitter are connected to each other through the bus;
  • the processor is configured to obtain a start position of the first subframe, and configure a first field in the downlink control information DCI of the second subframe, where the first field is used to indicate the start of the first subframe position;
  • the transmitter is configured to send, to the user equipment, an adjacent first subframe and a second subframe, where the second subframe is sent after the first subframe, where the first subframe includes M positive Interleaving OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first field is used to indicate the previously sent The starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all bits or partial bits of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all values or partial values of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first field is a newly added field or original in the DCI There are fields.
  • the first field is an original field in the DCI
  • the first field is a redundancy version RV field, a carrier indication field CIF, a resource allocation RA field, a modulation and coding mode MCS field, a downlink allocation indication bit DAI field, a sounding reference signal SRS request field, and a precoding matrix indicating TPMI acknowledgement.
  • precoding matrix indicating PMI acknowledgement field downlink power compensation field, hybrid automatic repeat request HARQ process number field, transport block replacement identifier field, precoding information field, transmit power control TPC field, scrambling identification field, antenna port, Layer number and reference signal scrambling sequence field, physical downlink shared channel PDSCH resource element RE mapping and quasi co-localization indicator field, demodulation reference signal DMRS phase rotation and superposition Orthogonal code OCC index field, uplink index ULI field, downlink allocation index DAI field, channel state information CSI request field, indication field in DCI format 3, indication field in DCI format 3A.
  • the first field is further used to indicate a meaning of an original field in the DCI.
  • the first subframe is an unlicensed carrier subframe.
  • an embodiment of the present invention provides a user equipment, including: a processor, a memory, a bus, and a receiver, where the processor, the memory, and the receiver are connected to each other through the bus;
  • the receiver is configured to receive a first subframe and a second subframe that are sent by the network device, where the second subframe is received after the first subframe, where the first subframe includes M Orthogonal frequency division multiplexing OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • the processor is configured to acquire a starting position of the first subframe from a first field of downlink control information DCI of the second subframe, and start processing from a starting position of the first subframe Describe the first subframe;
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first field is used to indicate the previously sent The starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all bits or partial bits of the first field are used to indicate that the first transmission is performed. Deriving an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe or a starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • all values or partial values of the first field are used to indicate a starting orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or previously transmitted.
  • the first field is a new field or original in the DCI There are fields.
  • the first field is an original field in the DCI
  • the first field is a redundancy version RV field, a carrier indication field CIF, a resource allocation RA field, a modulation and coding mode MCS field, a downlink allocation indication bit DAI field, a sounding reference signal SRS request field, and a precoding matrix indicating TPMI acknowledgement.
  • precoding matrix indicating PMI acknowledgement field downlink power compensation field, hybrid automatic repeat request HARQ process number field, transport block replacement identifier field, precoding information field, transmit power control TPC field, scrambling identification field, antenna port, Layer number and reference signal scrambling sequence field, physical downlink shared channel PDSCH resource element RE mapping and quasi co-localization indicator field, demodulation reference signal DMRS phase rotation and superposition orthogonal code OCC index field, uplink index ULI field, downlink allocation index DAI field, channel status information CSI request field, indication field in DCI format 3, finger in DCI format 3A Field.
  • the first field is further used to indicate a meaning of an original field in the DCI.
  • the first subframe is an unlicensed carrier subframe.
  • a seventh aspect of the present invention provides a wireless network system, including: a network device and a user equipment;
  • the network device is the network device in any one of the possible implementation manners of the third aspect or the third aspect, where the user device is in any one possible implementation manner of the fourth aspect or the fourth aspect.
  • the network device is the network device in any one of the possible implementation manners of the fifth aspect or the fifth aspect, where the user device is in any one of the possible implementation manners of the sixth aspect or the sixth aspect.
  • the user equipment is the network device in any one of the possible implementation manners of the fifth aspect or the fifth aspect, where the user device is in any one of the possible implementation manners of the sixth aspect or the sixth aspect.
  • the network device acquires the starting position of the first subframe, configures the first field in the downlink control information DCI of the second subframe, and sends the phase to the user equipment.
  • the first subframe and the second subframe of the neighbor Because the network device sends the first field of the initial OFDM symbol indicating the first subframe to the user equipment in the second subframe, so that the user equipment can determine the starting OFDM symbol of the first subframe according to the first field.
  • the problem that the receiving device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, and the power consumption of the receiving device is too large is solved.
  • FIG. 1 is a schematic flowchart of an information transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a subframe according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a wireless network system according to an embodiment of the present invention.
  • An embodiment of the present invention provides an information transmission method, which is applied to a network device.
  • the network device may be a network device. Referring to FIG. 1, the method includes the following steps:
  • the network device acquires a starting position of the first subframe.
  • the network device configures a first field in the downlink control information DCI of the second subframe.
  • the first field is used to indicate the starting position of the first subframe.
  • the first field is included in DCI (Downlink Control Information) of the second subframe.
  • the network device sends the adjacent first subframe and the second subframe to the user equipment.
  • the first subframe and the second subframe are two subframes that are adjacent in time, and the second subframe is sent after the first subframe, and the first subframe includes M OFDM (Orthogonal Frequency Division Multiplexing). Frequency division multiplexing), the second subframe includes N OFDM symbols, where M and N are positive integers, and the starting position of the first subframe is the first one of the first subframe of the network device sending the user equipment to the user equipment The position or range of positions of the OFDM symbol.
  • M OFDM Orthogonal Frequency Division Multiplexing
  • M and N are positive integers
  • the starting position of the first subframe is the first one of the first subframe of the network device sending the user equipment to the user equipment The position or range of positions of the OFDM symbol.
  • a complete sub-frame contains 14 symbols.
  • the first subframe is transmitted from the 4th OFDM symbol, and this first field indicates the 4th OFDM symbol.
  • the first subframe is transmitted from the 4th OFDM symbol to the middle of the 7th OFDM symbol, and the first field is the interval indicating the 4th OFDM symbol to the 7th OFDM symbol.
  • four ASCII symbols of 1-3, 4-7, 8-10, and 11-14 may be represented by four digits of "00, 01, 10, 11", respectively, if the eighth OFDM symbol is For the starting OFDM symbol of the first subframe, "10" may be used as the first field.
  • 14 OFDM symbols are represented by a four-bit binary string. If the 8th OFDM symbol is the starting OFDM symbol of the first subframe, the corresponding binary string “0100” may be used as the first field.
  • the first field is used to indicate a starting orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or The starting OFDM symbol range of the first subframe transmitted first.
  • the first subframe and the second subframe may be subframes of the unlicensed spectrum, or may be subframes of the licensed spectrum.
  • the first field can also indicate the original meaning of the original field in the DCI.
  • the first field may be a new field or an original field in the DCI.
  • the first field may be an RV (Redundancy Version) field; or the first field may be included in the second subframe CIF (Carrier Indicator Field) Field).
  • RV Redundancy Version
  • CIF Carrier Indicator Field
  • the first field can also be other fields, for example:
  • RA Resource Allocation
  • MCS Modulation and coding scheme
  • DAI Downlink Assignment Index
  • SRS Sounding Reference Signal
  • TPC Transmitted Precoding Matrix Indicator
  • PMI Precoding Matrix Indicator
  • TPC Transmit Power Control
  • the first field may be a part of an existing field, or may be all of an existing field, and may be determined according to a specific situation, which is not limited by the present invention.
  • the first field may exist in the DCI of the second subframe in the following three manners:
  • the first way the first field can reuse existing fields.
  • the first field is used to indicate the starting OFDM symbol of the first subframe or the range of the starting OFDM symbol of the first subframe; otherwise, the first field retains the original meaning.
  • the first field is further used to indicate the original meaning of the original field. All bits or partial bits of the first field may be used to indicate the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe transmitted or the starting OFDM symbol range of the first subframe transmitted previously.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the existing DCI field has two characters for indicating the transmission version number, and the two characters can be used as the first field.
  • the two characters are used to indicate The starting OFDM symbol of the first subframe or the range of the starting OFDM symbol of the first subframe. Otherwise, the two characters indicate the transmission version number.
  • the transmission version number is fixed to a preset value.
  • the second mode all values or partial values of the first field may be used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe to be transmitted or the start of the first subframe to be transmitted first. OFDM symbol range.
  • the first field is used to indicate a starting OFDM symbol of the first subframe or a range of starting OFDM symbols of the first subframe.
  • the preset interval may be an interval in the first field that has no specific meaning.
  • the existing CIF field contains three bits, which can indicate the 8 values of 0-8.
  • the current multi-carrier technology only supports 5 multi-carriers, so the three values of 5, 6, and 7 have no specific meaning. [5,7] can be used as a preset interval.
  • the CIF field is used as the first field to indicate the starting OFDM symbol of the first subframe.
  • a bit may be added to the DCI of the second subframe to indicate the meaning of the first field, that is, the first field is reserved.
  • the original meaning of the original field is also a range indicating the starting position or starting position of the first subframe.
  • a new field is added as the first field in the DCI of the second subframe.
  • the network device can be used in a scenario where the network device preempts the unlicensed spectrum, and is preferably applied to the LAA-LTE (Licensed Assisted Access Using Long Term Evolution) system.
  • the mode occupies the unlicensed spectrum, the LBP (Load Based Equipment) mode and the FBE (Frame Based Equipment) mode.
  • the network device adopts the LBE working mode, the network device sends the channel resource.
  • the CSA Car Channel Assessment
  • the network device randomly selects an integer N from 1 to q as an initial backoff value, q may be referred to as a preset backoff threshold of the network device, and q is a pre-set positive integer greater than 1; if the network device performs CCA If it is determined that the channel resource is idle, the initial backoff value N is decremented by one; if the network device determines that the channel resource is occupied when performing the CCA detection, the backoff value is kept unchanged, and the backoff value determined after each CCA detection may be referred to as The current backoff value Nc, until the current backoff value Nc is reduced to 0, the network device occupies the channel resource transmission data.
  • the process by which the network device decrements the initial backoff value based on the initial backoff value and the CCA detection may be referred to as CCA backoff.
  • the network device When the network device adopts the working mode of the FBE, the network device needs to perform a CCA backoff mechanism before occupying the channel resource to send data. Once the channel is found to be idle, the network device directly sends the data.
  • the time point of occupying the channel is random, so the time when the LAA-LTE carrier appears signal is also random, then the LAA-LTE subframe occupies the channel time and the authorized carrier sate The time at which the frame occupies the channel may be misaligned. Therefore, when the data is transmitted after the unlicensed spectrum is preempted, the starting OFDM symbol position of the first subframe is not fixed, that is, the first subframe in this embodiment. The starting OFDM symbol position is random. As shown in FIG. 2, the first subframe is not a complete subframe.
  • the first field is carried in the second subframe, and the first subframe and the first subframe are The second subframe is sent to the user equipment, and the user equipment may determine the starting OFDM symbol of the first subframe according to the first field carried in the second subframe.
  • the first field may be sent on the unlicensed spectrum, or may be sent on the licensed spectrum, that is, the second subframe may be a subframe of the unlicensed spectrum or a subframe of the licensed spectrum.
  • the network device acquires the starting position of the first subframe, configures the first field in the downlink control information DCI of the second subframe, and sends the adjacent first subframe to the user equipment. And the second subframe. Because the network device sends the first field of the initial OFDM symbol indicating the first subframe to the user equipment in the second subframe, so that the user equipment can determine the starting OFDM symbol of the first subframe according to the first field.
  • the problem that the receiving device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, and the power consumption of the receiving device is too large is solved.
  • another embodiment of the present invention provides an information transmission method.
  • the receiving end of the information transmission corresponding to the embodiment shown in FIG. 1 is applied to a user equipment. Referring to FIG. 3, the following steps are included. :
  • the user equipment receives an adjacent first subframe and a second subframe that are sent by the network device.
  • the first subframe and the second subframe are two subframes that are adjacent in time.
  • the second subframe is received after the first subframe, the first subframe includes M OFDM symbols, the second subframe includes N OFDM symbols, M and N are positive integers, and M ⁇ N; DCI of the second subframe
  • the first field is used, where the first field is used to indicate the starting position of the first subframe, and the starting position of the first subframe is the location or location range of the first OFDM symbol of the first subframe that the network device sends to the user equipment. .
  • the first field is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • the starting OFDM symbol range of the frame is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • the first field may be a redundant version RV field of the second subframe or a carrier indication field CIF of the second subframe.
  • the first field may also be other fields, which is not limited by the present invention.
  • the first subframe may be a subframe of the unlicensed spectrum
  • the second subframe may be a subframe of the licensed spectrum or a subframe of the unlicensed spectrum.
  • the user equipment may perform the It is determined that if the first subframe does not include the DCI of the user equipment, the initial OFDM symbol of the first subframe needs to be determined, and the first field indicates the start OFDM symbol of the first subframe or the start OFDM symbol of the first subframe Range, user equipment based
  • the first field demodulates the first subframe; otherwise, the first field retains the original meaning of the original field.
  • the first field may also retain the original meaning of the original field while indicating the starting OFDM symbol or the starting OFDM symbol range of the first subframe.
  • all values or partial values of the first field may be used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first transmitted first.
  • the starting OFDM symbol range of the subframe It is also possible that all bits or partial bits of the first field are used to indicate the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe transmitted or the starting OFDM symbol range of the first subframe that was previously transmitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the user equipment acquires a starting position of the first subframe from a first field of the DCI of the second subframe.
  • the user equipment processes the first subframe from a starting position of the first subframe.
  • the user equipment may demodulate the first subframe according to the first field; when the first field indicates the first subframe
  • the user equipment may determine the start OFDM symbol of the first subframe according to the range of the start OFDM symbol of the first subframe indicated by the first field, and demodulate the first subframe.
  • the user equipment performs blind detection on the first subframe within the range of the starting OFDM symbol indicated by the first field, thereby determining the starting OFDM symbol of the first subframe, so that the range of the blind detection is relatively small, and is also reduced. The power consumption of the user equipment is reduced.
  • the user equipment may determine, according to the first field included in the second subframe, the initial OFDM symbol of the first subframe, and further The starting position of a subframe starts to process the first subframe, and the receiving device needs to continuously perform blind detection on the channel to determine the starting moment of the data transmission, so that the receiving device is not known.
  • the problem of excessive power consumption is not known.
  • the embodiment of the present invention provides a network device, which is used to perform the information transmission method described in the foregoing embodiment corresponding to FIG. 1.
  • the network device 40 includes an obtaining unit 401.
  • the obtaining unit 401 is configured to acquire a starting position of the first subframe.
  • the configuration unit 402 is configured to configure a first field in the downlink control information DCI of the second subframe, where the first field is used to indicate a starting position of the first subframe acquired by the acquiring unit 401.
  • the sending unit 403 is configured to send the first subframe and the second subframe to the user equipment, where the second subframe is sent after the first subframe, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols
  • the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N.
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first subframe is a subframe of an unlicensed carrier or an authorized carrier
  • the second subframe is a subframe of an unlicensed carrier or an authorized carrier.
  • the first subframe is a subframe of an unlicensed carrier.
  • the first field is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • the starting OFDM symbol range of the frame is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • all bits or partial bits of the first field are used to indicate a starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe to be transmitted or a starting OFDM symbol range of the first transmitted first subframe.
  • all values or partial values of the first field are used to indicate the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe transmitted or the starting OFDM symbol range of the first subframe transmitted first.
  • the first field is a new field or an original field in the DCI.
  • the first field is also used to indicate the meaning of the original field in the DCI.
  • the first field may be an RV (Redundancy Version) field; or the first field may be included in a CIF (Carrier Indicator Field) of the second subframe.
  • the first field can also be in other fields, for example:
  • RA Resource Allocation
  • MCS Modulation and coding scheme
  • DAI Downlink Assignment Index
  • SRS Sounding Reference Signal
  • TPMI Transmitted Precoding Matrix Indicator
  • PMI Precoding Matrix Indicator
  • HARQ Hybrid Automatic Repeat Reque
  • Transport block to codeword swap flag Field Precoding information field
  • TPC Transmit Power Control
  • Scrambling identity field Antenna port, layer number and reference signal scrambling sequence (Antenna port(s), Scrambling identity and number of layers field, physical downlink shared channel resource element mapping and Quasi-Co-Location Indicator field, demodulation reference signal phase rotation and OCC index (Cyclic) Shift for Demodulation Reference Signal and Orthogonal Cover Code index) field, Up Link Index (ULI) field, Downlink Assignment Index (DAI) field, Channel State Information Request (Channel State In
  • the first field is further used to indicate the original meaning of the original field in the DCI.
  • the network device acquires a starting position of the first subframe, configures a first field in the downlink control information DCI of the second subframe, and sends the adjacent first subframe to the user equipment. Second subframe. Because the network device sends the first field of the initial OFDM symbol indicating the first subframe to the user equipment in the second subframe, so that the user equipment can determine the starting OFDM symbol of the first subframe according to the first field.
  • the problem that the receiving device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, and the power consumption of the receiving device is too large is solved.
  • the embodiment of the present invention provides a user equipment, which is used to perform the information transmission method described in the foregoing embodiment corresponding to FIG. 3.
  • the user number device 50 includes a receiving unit. 501.
  • the receiving unit 501 is configured to receive, by the network device, the adjacent first subframe and the second subframe, the second subframe is received after the first subframe, where the first subframe includes M orthogonal frequency divisions. With OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N.
  • the obtaining unit 502 is configured to obtain a starting position of the first subframe from the first field of the downlink control information DCI of the second subframe received by the receiving unit 501.
  • the processing unit 503 is configured to process the first subframe from a starting position of the first subframe.
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first subframe is a subframe of an unlicensed carrier or an authorized carrier
  • the second subframe is a subframe of an unlicensed carrier or an authorized carrier.
  • the first subframe is a subframe of an unlicensed carrier.
  • the first field is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • the starting OFDM symbol range of the frame is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • all bits or partial bits of the first field are used to indicate a starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe to be transmitted or a starting OFDM symbol range of the first transmitted first subframe.
  • all values or partial values of the first field are used to indicate the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe transmitted or the starting OFDM symbol range of the first subframe transmitted first.
  • the first field is a new field or an original field in the DCI.
  • the first field is also used to indicate the meaning of the original field in the DCI.
  • the first field may be an RV (Redundancy Version) field; or the first field may be included in a CIF (Carrier Indicator Field) of the second subframe.
  • the first field can also be in other fields, for example:
  • RA Resource Allocation
  • MCS Modulation and coding scheme
  • DAI Downlink Assignment Index
  • SRS Sounding Reference Signal
  • TPMI Transmitted Precoding Matrix Indicator
  • PMI Precoding Matrix Indicator
  • HARQ Hybrid Automatic Repeat Reque
  • Transport block to codeword swap flag field Precoding information field
  • TPC Transmit power Transmit Power Control
  • Scrambling identity field Antenna port(s), scrambling identity and number of layers field
  • physical downlink shared channel The Physical Downlink Shared Channel Resource Element Mapping and Quasi-Co-Location Indicator field, the Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index field, Up Link Index (ULI) field, Downlink Assignment Index (DAI) field, Channel State Information request field, or indication field in DCI format 3, DCI grid Indication field 3A.
  • the first field is further used to indicate the original meaning of the original field in the DCI.
  • the user equipment after receiving the first subframe and the second subframe, the user equipment may determine, according to the first field included in the second subframe, an initial OFDM symbol of the first subframe, and then from the first The starting position of the subframe starts to process the first subframe, and the decoding device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, so that the receiving device works. Excessively expensive.
  • another embodiment of the present invention provides a network device 60 for performing the information transmission method described in the foregoing embodiment corresponding to FIG. 1.
  • the network device 60 is shown.
  • the method includes at least one processor 601, a memory 602, a bus 603, and a transmitter 604.
  • the at least one processor 601, the memory 602, and the transmitter 604 are connected by a bus 603 and complete communication with each other.
  • the bus 603 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture). System structure) bus, etc.
  • the bus 603 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 6, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 602 is used to execute the application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and controlled by the processor 601 for execution.
  • the memory can be a read only memory ROM or other type of static storage device that can store static information and instructions, a random access memory RAM or other type of dynamic storage device that can store information and instructions, or can be electrically erasable or programmable.
  • These memories are connected to the processor via a bus.
  • the processor 601 may be a central processing unit 601 (CPU), or an application specific integrated circuit (ASIC), or one configured to implement an embodiment of the present invention. Multiple integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 601 is configured to call the program code in the memory 602. In a possible implementation manner, when the application program is executed by the processor 601, the following functions are implemented.
  • the processor 601 is configured to obtain a starting position of the first subframe, and configure a first field in the downlink control information DCI of the second subframe, where the first field is used to indicate a starting position of the first subframe.
  • the transmitter 604 is configured to send the first subframe and the second subframe to the user equipment, where the second subframe is sent after the first subframe, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols
  • the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N.
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first subframe is a subframe of an unlicensed carrier or an authorized carrier
  • the second subframe is a subframe of an unlicensed carrier or an authorized carrier.
  • the first subframe is a subframe of an unlicensed carrier.
  • the first field is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • the starting OFDM symbol range of the frame is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • all bits or partial bits of the first field are used to indicate a starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe to be transmitted or a starting OFDM symbol range of the first transmitted first subframe.
  • all values or partial values of the first field are used to indicate the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe transmitted or the starting OFDM symbol range of the first subframe transmitted first.
  • the first field is a new field or an original field in the DCI.
  • the first field is also used to indicate the meaning of the original field in the DCI.
  • the first field may be an RV (Redundancy Version) field; or the first field may be included in a CIF (Carrier Indicator Field) of the second subframe.
  • the first field can also be in other fields, for example:
  • RA Resource Allocation
  • MCS Modulation and coding scheme
  • DAI Downlink Assignment Index
  • SRS Sounding Reference Signal
  • TPC Transmitted Precoding Matrix Indicator
  • PMI Precoding Matrix Indicator
  • TPC Transmit Power Control
  • Scrambling identity Field antenna port, layer and reference signal scrambling sequence (Antenna port(s), scrambling identity and number of layers) field
  • Physical Downlink shared channel resource element mapping and quasi-co-localization indicator Physical Downlink shared channel resource element mapping and quasi-co-localization indicator
  • Physical Downlink Physical Downlink shared channel resource element mapping and quasi-co-localization indicator
  • Physical Downlink Physical Downlink shared channel resource element mapping and quasi-co-localization indicator
  • Physical Downlink Physical Downlink
  • Physical Downlink Physical Downlink
  • Physical Downlink a Shared Channel Resource Element Mapping and Quasi-Co-Location Indicator field
  • Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index field an Up Link Index (ULI)
  • the first field is further used to indicate the original meaning of the original field in the DCI.
  • the network device acquires a starting position of the first subframe, configures a first field in the downlink control information DCI of the second subframe, and sends the adjacent first subframe to the user equipment. Second subframe. Because the network device sends the first field of the initial OFDM symbol indicating the first subframe to the user equipment in the second subframe, so that the user equipment can determine the starting OFDM symbol of the first subframe according to the first field.
  • the problem that the receiving device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, and the power consumption of the receiving device is too large is solved.
  • another embodiment of the present invention provides a user equipment 70 for performing the information transmission method described in the foregoing embodiment corresponding to FIG. 3.
  • the method includes at least one processor 701, a memory 702, a bus 703, and a receiver 704.
  • the at least one processor 701, the memory 702, and the receiver 704 are connected by a bus 703 and complete communication with each other.
  • the bus 703 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component) bus, or an EISA (Extended Industry Standard Architecture) bus.
  • the bus 703 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 702 is for executing application code of the inventive scheme, and the application code for executing the inventive scheme is stored in a memory and controlled by the processor 701 for execution.
  • the memory can be a read only memory ROM or can store static information and instructions Other types of static storage devices, random access memory RAM or other types of dynamic storage devices that can store information and instructions, may also be electrically erasable programmable read only memory EEPROM, CD-ROM or other optical disk storage, Optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other medium accessed by a computer, but is not limited thereto. These memories are connected to the processor via a bus.
  • the processor 701 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention. Integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 701 is configured to invoke program code in the memory 702. In a possible implementation manner, when the application program is executed by the processor 701, the following functions are implemented.
  • the receiver 704 is configured to receive the first subframe and the second subframe that are sent by the network device, where the second subframe is received after the first subframe, where the first subframe includes M orthogonal frequency division multiplexing OFDM. a symbol, the second subframe includes N OFDM symbols, where M and N are positive integers, and M ⁇ N;
  • the processor 701 is configured to obtain a starting position of the first subframe from a first field of the downlink control information DCI of the second subframe, and process the first subframe from a starting position of the first subframe.
  • the starting position of the first subframe is a location or a range of locations where the network device sends the first OFDM symbol of the first subframe to the user equipment.
  • the first subframe is a subframe of an unlicensed carrier or an authorized carrier
  • the second subframe is a subframe of an unlicensed carrier or an authorized carrier.
  • the first subframe is a subframe of an unlicensed carrier.
  • the first field is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • the starting OFDM symbol range of the frame is used to indicate the initial orthogonal frequency division multiplexing OFDM symbol of the first subframe that is sent first or the first subframe that is sent first.
  • all bits or partial bits of the first field are used to indicate a starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe to be transmitted or a starting OFDM symbol range of the first transmitted first subframe.
  • all values or partial values of the first field are used to indicate the starting Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first subframe transmitted or the starting OFDM symbol range of the first subframe transmitted first.
  • the first field is a new field or an original field in the DCI.
  • the first field is also used to indicate the meaning of the original field in the DCI.
  • the first field may be an RV (Redundancy Version) field; or the first field may be included in a CIF (Carrier Indicator Field) of the second subframe.
  • the first field can also be in other fields, for example:
  • RA Resource Allocation
  • MCS Modulation and coding scheme
  • DAI Downlink Assignment Index
  • SRS Sounding Reference Signal
  • TPC Transmitted Precoding Matrix Indicator
  • PMI Precoding Matrix Indicator
  • TPC Transmit Power Control
  • the first field is further used to indicate the original meaning of the original field in the DCI.
  • the user equipment after receiving the first subframe and the second subframe, the user equipment may determine, according to the first field included in the second subframe, an initial OFDM symbol of the first subframe, and then from the first The starting position of the subframe starts to process the first subframe, and the decoding device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, so that the receiving device works. Excessively expensive.
  • the embodiment of the present invention provides a wireless network system for implementing the information transmission method described in the foregoing embodiments corresponding to FIG. 1 and FIG. 3, which is shown in FIG.
  • the wireless network system 80 includes a network device 801 and a user device 802.
  • the network device 801 is the network device described in the embodiment corresponding to FIG. 4, and the user device 802 is the user device described in the embodiment corresponding to FIG. 5.
  • the network device 801 is the network device described in the embodiment corresponding to FIG. 6, and the user device 802 is the user device described in the embodiment corresponding to FIG. 7.
  • the network device acquires the starting position of the first subframe, configures the first field in the downlink control information DCI of the second subframe, and sends the adjacent first subframe to the user equipment. And the second subframe. Because the network device sends the first field of the initial OFDM symbol indicating the first subframe to the user equipment in the second subframe, so that the user equipment can determine the starting OFDM symbol of the first subframe according to the first field.
  • the problem that the receiving device needs to continuously perform blind detection on the channel to determine the start time of the data transmission, and the power consumption of the receiving device is too large is solved.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • the storage medium can be a computer Any available media that can be accessed.
  • the computer readable medium may include a RAM (Random Access Memory), a ROM (Read Only Memory), and an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • Any connection may suitably be a computer readable medium.
  • coaxial cable, fiber optic cable, twisted pair, DSL (Digital Subscriber Line), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • the disc and the disc include a CD (Compact Disc), a laser disc, a compact disc, a DVD disc (Digital Versatile Disc), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied,
  • the disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息传输方法、设备及***,涉及通信领域,能够解决接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。具体方案为:网络设备获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,并向用户设备发送相邻的第一子帧和第二子帧,第一字段用于指示第一子帧的起始位置。本发明用于信息传输。

Description

一种信息传输方法、设备及*** 技术领域
本发明涉及通信领域,尤其涉及一种信息传输方法、设备及***。
背景技术
在无线通信网络中,各个设备需要利用频率资源进行信息传输,频率资源也被称为频谱。频谱可以分为授权频谱和非授权频谱。授权频谱是一些运营商专属的频率资源,非授权频谱是无线通信网络中公用的频率资源。随着通信技术的发展,无线通信网络中传输的信息量日益增加,抢占非授权频谱传输信息,可以提高无线通信网络中的数据吞吐量,更好地满足用户的需求。
但是,现有技术中,当设备成功抢占非授权频谱的信道之后,发送数据的时刻可能是随机的,这导致设备发送数据的时刻可能不是一个完整子帧开始的时刻,这样,接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,这使得接收设备功耗过大。
发明内容
本发明的实施例提供一种信息传输方法、设备及***,能够解决因为不知道第一子帧的起始OFDM符号位置,接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明提供一种信息传输方法,包括:
网络设备获取第一子帧的起始位置;
所述网络设备配置第二子帧的下行控制信息DCI中的第一字段,所述第一字段用于指示所述第一子帧的起始位置;
所述网络设备向用户设备发送相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后发送,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
其中所述第一子帧的起始位置为所述网络设备向所述用户设备 发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
结合第一方面,在第一方面的第一种可能的实现方式中,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一字段的所有比特或者部分比特用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一字段的所有数值或部分数值用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第一方面至第一方面的第三种可能的实现方式中任一实现方式,在第一方面的第四种可能的实现方式中,所述第一字段为DCI中新增的字段或原有的字段。
结合第一方面至第一方面的第四种可能的实现方式中任一实现方式,在第一方面的第五种可能的实现方式中,当所述第一字段为DCI中原有的字段时,所述第一字段是冗佘版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3中的指示字段,DCI格式3A中的指示字段。
结合第一方面的第五种可能的实现方式中任一实现方式,在第一方面的第六种可能的实现方式中,所述第一字段还用于指示DCI中原有字段的含义。
结合第一方面的第六种可能的实现方式中任一实现方式,在第一方面的第七种可能的实现方式中,所述第一子帧为非授权载波子帧。
第二方面,本发明提供一种信息传输方法,包括:
用户设备接收网络设备发送的相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后接收,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
所述用户设备从所述第二子帧的下行控制信息DCI的第一字段中获取所述第一子帧的起始位置;
所述用户设备从所述第一子帧的起始位置开始处理所述第一子帧;
其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
结合第二方面,在第二方面的第一种可能的实现方式中,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第一字段的所有比特或者部分比特用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述第一字段的所有数值或部分数值用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第二方面至第二方面的第三种可能的实现方式中任一实现 方式,在第二方面的第四种可能的实现方式中,所述第一字段为DCI中新增的字段或原有的字段。
结合第二方面至第二方面的第四种可能的实现方式中任一实现方式,在第二方面的第五种可能的实现方式中,当所述第一字段为DCI中原有的字段时,所述第一字段是冗佘版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3中的指示字段,DCI格式3A中的指示字段。
结合第二方面的第五种可能的实现方式中任一实现方式,在第二方面的第六种可能的实现方式中,所述第一字段还用于指示DCI中原有字段的含义。
结合第二方面的第六种可能的实现方式中任一实现方式,在第二方面的第七种可能的实现方式中,所述第一子帧为非授权载波子帧。
第三方面,本发明实施例提供一种网络设备,包括:
获取单元,用于获取第一子帧的起始位置;
配置单元,用于配置第二子帧的下行控制信息DCI中的第一字段,所述第一字段用于指示所述获取单元获取的所述第一子帧的起始位置;
发送单元,用于向用户设备发送相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后发送,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
结合第三方面,在第三方面的第一种可能的实现方式中,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第一字段的所有比特或者部分比特用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述第一字段的所有数值或部分数值用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第三方面至第三方面的第三种可能的实现方式中任一实现方式,在第三方面的第四种可能的实现方式中,所述第一字段为DCI中新增的字段或原有的字段。
结合第三方面至第三方面的第四种可能的实现方式中任一实现方式,在第三方面的第五种可能的实现方式中,当所述第一字段为DCI中原有的字段时,所述第一字段是冗佘版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3中的指示字段,DCI格式3A 中的指示字段。
结合第三方面的第五种可能的实现方式中任一实现方式,在第三方面的第六种可能的实现方式中,所述第一字段还用于指示DCI中原有字段的含义。
结合第三方面的第六种可能的实现方式中任一实现方式,在第三方面的第七种可能的实现方式中,所述第一子帧为非授权载波子帧。
第四方面,本发明实施例提供一种用户设备,包括:
接收单元,用于接收网络设备发送的相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后接收,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
获取单元,用于从所述接收单元接收的所述第二子帧的下行控制信息DCI的第一字段中获取所述第一子帧的起始位置;
处理单元,用于从所述第一子帧的起始位置开始处理所述第一子帧;
其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
结合第四方面,在第四方面的第一种可能的实现方式中,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述第一字段的所有比特或者部分比特用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述第一字段的所有数值或部分数值用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第四方面至第四方面的第三种可能的实现方式中任一实现方式,在第四方面的第四种可能的实现方式中,所述第一字段为DCI中新增的字段或原有的字段。
结合第四方面至第四方面的第四种可能的实现方式中任一实现方式,在第四方面的第五种可能的实现方式中,当所述第一字段为DCI中原有的字段时,所述第一字段是冗佘版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3中的指示字段,DCI格式3A中的指示字段。
结合第四方面的第五种可能的实现方式中任一实现方式,在第四方面的第六种可能的实现方式中,所述第一字段还用于指示DCI中原有字段的含义。
结合第四方面的第六种可能的实现方式中任一实现方式,在第四方面的第七种可能的实现方式中,所述第一子帧为非授权载波子帧。
第五方面,本发明实施例提供一种网络设备,包括:处理器、存储器、总线、发送器,所述处理器、所述存储器及所述发送器通过所述总线相互连接;
所述处理器,用于获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,所述第一字段用于指示所述第一子帧的起始位置;
所述发送器,用于向用户设备发送相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后发送,所述第一子帧包括M个正 交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
结合第五方面,在第五方面的第一种可能的实现方式中,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述第一字段的所有比特或者部分比特用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,所述第一字段的所有数值或部分数值用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第五方面至第五方面的第三种可能的实现方式中任一实现方式,在第五方面的第四种可能的实现方式中,所述第一字段为DCI中新增的字段或原有的字段。
结合第五方面至第五方面的第四种可能的实现方式中任一实现方式,在第五方面的第五种可能的实现方式中,当所述第一字段为DCI中原有的字段时,所述第一字段是冗佘版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加 正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3中的指示字段,DCI格式3A中的指示字段。
结合第五方面的第五种可能的实现方式中任一实现方式,在第五方面的第六种可能的实现方式中,所述第一字段还用于指示DCI中原有字段的含义。
结合第五方面的第六种可能的实现方式中任一实现方式,在第五方面的第七种可能的实现方式中,所述第一子帧为非授权载波子帧。
第六方面,本发明实施例提供一种用户设备,包括:处理器、存储器、总线、接收器,所述处理器、所述存储器及所述接收器通过所述总线相互连接;
所述接收器,用于接收网络设备发送的相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后接收,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
所述处理器,用于从所述第二子帧的下行控制信息DCI的第一字段中获取所述第一子帧的起始位置;从所述第一子帧的起始位置开始处理所述第一子帧;
其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
结合第六方面,在第六方面的第一种可能的实现方式中,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述第一字段的所有比特或者部分比特用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面 的第三种可能的实现方式中,所述第一字段的所有数值或部分数值用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。
结合第六方面至第六方面的第三种可能的实现方式中任一实现方式,在第六方面的第四种可能的实现方式中,所述第一字段为DCI中新增的字段或原有的字段。
结合第六方面至第六方面的第四种可能的实现方式中任一实现方式,在第六方面的第五种可能的实现方式中,当所述第一字段为DCI中原有的字段时,所述第一字段是冗佘版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3中的指示字段,DCI格式3A中的指示字段。
结合第六方面的第五种可能的实现方式中任一实现方式,在第六方面的第六种可能的实现方式中,所述第一字段还用于指示DCI中原有字段的含义。
结合第六方面的第六种可能的实现方式中任一实现方式,在第六方面的第七种可能的实现方式中,所述第一子帧为非授权载波子帧。
第七方面,本发明实施例提供一种无线网络***,包括:网络设备和用户设备;
其中,所述网络设备为第三方面或第三方面的任意一种可能的实现方式中所述的网络设备,所述用户设备为第四方面或第四方面的任意一种可能的实现方式中所述的用户设备;
或者,所述网络设备为第五方面或第五方面的任意一种可能的实现方式中所述的网络设备,所述用户设备为第六方面或第六方面的任意一种可能的实现方式中所述的用户设备。
本发明实施例提供的一种信息传输方法、设备及***,网络设备获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,并向用户设备发送相邻的第一子帧和第二子帧。因为网络设备将用于指示第一子帧的起始OFDM符号的第一字段添加在第二子帧中发送至用户设备,使得用户设备可以根据第一字段确定第一子帧的起始OFDM符号,解决了接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种信息传输方法流程示意图;
图2为本发明实施例提供的一种子帧结构示意图;
图3为本发明另一实施例提供的一种信息传输方法流程示意图;
图4为本发明实施例提供的一种网络设备结构示意图;
图5为本发明实施例提供的一种用户设备结构示意图;
图6为本发明另一实施例提供的一种网络设备结构示意图;
图7为本发明另一实施例提供的一种用户设备结构示意图;
图8为本发明实施例提供的一种无线网络***结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种信息传输方法,应用于网络设备,可选的,网络设备可以是网络设备,参照图1所示,包括以下步骤:
101、网络设备获取第一子帧的起始位置。
102、网络设备配置第二子帧的下行控制信息DCI中的第一字段。
第一字段用于指示第一子帧的起始位置。第一字段包含于第二子帧的DCI(Downlink Control Information,下行控制信息)中。
103、网络设备向用户设备发送相邻的第一子帧和第二子帧。
其中,第一子帧和第二子帧是在时间上相邻的两个子帧,第二子帧在第一子帧之后发送,第一子帧包括M个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,第二子帧包括N个OFDM符号,其中M和N为正整数,且,第一子帧的起始位置为网络设备向用户设备发送第一子帧的第一个OFDM符号的位置或者位置范围。
例如,一个完整子帧包含14个符号。第一子帧,是从第4个OFDM符号开始传输,那么这个第一字段就是指示第4个OFDM符号。又比如,第一子帧,是从第4个OFDM符号到第7个OFDM符号中间的位置开始传输,那么这个第一字段就是指示第4个OFDM符号到到第7个OFDM符号这个区间。可选的,可以用“00、01、10、11”四个两位字符分别表示1-3、4-7、8-10、11-14四个OFDM符号范围,如果第8个OFDM符号是第一子帧的起始OFDM符号,则可以将“10”作为第一字段。又如,利用四位二进制字符串表示14个OFDM符号,如果第8个OFDM符号是第一子帧的起始OFDM符号,则可以将对应的二进制字符串“0100”作为第一字段。
优选的,当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示在先发送的所述第一子帧的起始正交频分复用OFDM符号或在先发送的所述第一子帧的起始OFDM符号范围。可选的,第一子帧和第二子帧可以是非授权频谱的子帧,也可以是授权频谱的子帧。第一字段还可以指示DCI中原有字段的原有含义。
可选的,第一字段可以是DCI中新增的字段或原有的字段。当第一字段为DCI中的原有字段时,第一字段可以是RV(Redundancy Version,冗佘版本)字段;或者,第一字段可以包含于第二子帧的CIF(Carrier Indicator Field,载波指示字段)。
当然,第一字段也可以是其他字段,例如:
资源分配(Resource Allocation,RA)字段,调制和编码方式(Modulation and coding scheme,MCS)字段,下行分配指示位(Downlink Assignment Index,DAI)字段,探测参考信号(Sounding Reference Signal,SRS)请求字段,发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)确认字段,预编码矩阵指示(Precoding Matrix Indicator,PMI)确认字段,下行功率补偿(Downlink power offset)字段,混合自动重传请求(Hybrid Automatic Repeat Reque st,HARQ)进程数字段,传输块替换标志(Transport block to codeword swap flag)字段,预编码信息(Precoding information)字段,发射功率控制(Transmit Power Control,TPC)字段,加扰标识(Scrambling identity)字段,天线端口、层数和参考信号加扰序列(Antenna port(s),scrambling identity and number of layers)字段,物理下行共享信道资源元素映射和准共定位指标(Physical Downlink Shared Channel Resource element Mapping and Quasi-Co-Location Indicator)字段,解调参考信号相位旋转和OCC索引(Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index)字段,上行索引(Up Link Index,ULI)字段,下行分配索引(Downlink Assignment Index,DAI)字段,信道状态信息请求(Channel State Information request)字段,或者DCI格式3中的指示字段,DCI格式3A中的指示字段。
第一字段可以是某个现有字段中的一部分,也可以是某个现有字段的全部,可以根据具体情况而定,本发明对此不做限定。
可选的,第一字段可以通过以下三种方式存在于第二子帧的DCI中:
第一种方式:第一字段可以复用现有的字段。当第一子帧不包含用户设备的DCI时,第一字段用于指示第一子帧的起始OFDM符号或者第一子帧的起始OFDM符号的范围,否则,第一字段保留原有的含义。或者,当第一字段用于指示第一子帧的起始OFDM符号或者第一子帧的起始OFDM符号的范围时,第一字段还用于指示原有字段的原有含义。可以是第一字段的所有比特或者部分比特用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。例如,现有的DCI字段中有两位字符用于指示传输版本号,可以将这两位字符作为第一字段,当第一子帧不包含用户设备的DCI时,这两位字符用于指示第一子帧的起始OFDM符号或第一子帧的起始OFDM符号的范围,否则,这两位字符指示传输版本号。或者,这两位用于指示第一子帧的起始OFDM符号或者第一子帧的起始OFDM符号的范围时,传输版本号固定为预设值。
第二种方式:可以是第一字段的所有数值或部分数值用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。可选的,当第一字段的数值属于预设区间时,第一字段用于指示第一子帧的起始OFDM符号或第一子帧的起始OFDM符号的范围。优选的,预设区间可以是第一字段中没有具体含义的数值的区间。例如,现有的CIF字段包含三位,可以指示0-8这8个数值,而现在的多载波技术中仅支持5个多载波,因此5、6、7这三个数值并没有具体含义,可以将[5,7]作为预设区间,当CIF字段的数值在预设区间[5,7]时,CIF字段作为第一字段指示第一子帧的起始OFDM符号。
可选的,在上述第一种方式和第二种方式实现的过程中,可以在第二子帧的DCI中增加1个比特,指示第一字段的含义,即用于指示第一字段是保留原有字段的原有含义还是指示第一子帧的起始位置或起始位置的范围。
第三种方式,在第二子帧的DCI中添加新的字段作为第一字段。
可选的,应用于网络设备抢占非授权频谱的场景中,优选的,应用于LAA-LTE(Licensed Assisted Access Using Long Term Evolution,长期演进的辅助授权频谱接入)***中,网络设备可以采用两种方式占用非授权频谱,LBE(Load Based Equipment,基于负载的设备)模式和FBE(Frame Based Equipment,基于帧的设备)模式,当网络设备采用LBE的工作模式时,网络设备在占用信道资源发送数据之前需要执行CCA(Clear Channel Assessment,空闲信道检测)机制。具体地,网络设备从1到q中随机选择一个整数N作为初始退避值,q可以称为该网络设备的预设退避阈值,q是预先设置的大于1的正整数;如果该网络设备进行CCA检测时确定信道资源空闲,则将初始退避值N减1;如果该网络设备进行CCA检测时确定信道资源被占用,则保持退避值不变,每次进行CCA检测后确定的退避值可以称为当前退避值Nc,直到当前退避值Nc减为0时,网络设备占用信道资源传输数据。网络设备根据初始退避值以及采用CCA检测将初始退避值递减的过程可以称为CCA退避。
当网络设备采用FBE的工作模式时,网络设备在占用信道资源发送数据之前需要执行CCA退避机制,一旦发现信道空闲,网络设备直接发送数据。
无论采用FBE模式还是LBE模式来接入信道,其占用信道的时间点是随机的,因此LAA-LTE载波出现信号的时间也是随机的,那么LAA-LTE子帧占用信道的时间和授权载波上子帧占用信道的时间可能会不对齐,因此,在抢占非授权频谱后,发送数据时,第一个子帧的起始OFDM符号位置是不固定的,即本实施例中的第一子帧的起始OFDM符号位置是随机的,如图2所示,第一个子帧不是一个完整的子帧,此时,将第一字段携带在第二子帧中,并将第一子帧及第二子帧发送至用户设备,用户设备可以根据第二子帧中携带的第一字段确定第一子帧的起始OFDM符号。第一字段可以在非授权频谱上发送,也可以在授权频谱上发送,即第二子帧可以是非授权频谱的子帧,也可以是授权频谱的子帧。
本发明实施例提供的信息传输方法,网络设备获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,并向用户设备发送相邻的第一子帧和第二子帧。因为网络设备将用于指示第一子帧的起始OFDM符号的第一字段添加在第二子帧中发送至用户设备,使得用户设备可以根据第一字段确定第一子帧的起始OFDM符号,解决了接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
结合图1对应的实施例,本发明另一实施例提供一种信息传输方法,对应图1所示的实施例中信息传输的接收端,应用于用户设备,参照图3所示,包括以下步骤:
301、用户设备接收网络设备发送的相邻的第一子帧和第二子帧。
其中,第一子帧和第二子帧是在时间上相邻的两个子帧。第二子帧在第一子帧之后接收,第一子帧包括M个OFDM符号,第二子帧包括N个OFDM符号,M和N为正整数,且M≤N;第二子帧的DCI包括第一字段,第一字段用于指示第一子帧的起始位置,第一子帧的起始位置为网络设备向用户设备发送第一子帧的第一个OFDM符号的位置或者位置范围。可选的,当第一子帧不包含用户设备的DCI时,第一字段用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段可以是第二子帧的冗佘版本RV字段或第二子帧的载波指示字段CIF。当然,第一字段也可以是其他字段,本发明对此不做限制。
优选的,第一子帧可以是非授权频谱的子帧,第二子帧可以是授权频谱的子帧或非授权频谱的子帧。
另外,可选的,结合图1对应的实施例步骤101中的第一种方式,在网络设备抢占非授权频谱的场景中,当第一字段复用现有的字段时,用户设备可以先进行判断,如果第一子帧不包含用户设备的DCI,则需要确定第一子帧的起始OFDM符号,第一字段指示第一子帧的起始OFDM符号或第一子帧起始OFDM符号的范围,用户设备根据 第一字段对第一子帧进行解调;否则第一字段保留原有字段的原有含义。第一字段还可以在指示第一子帧的起始OFDM符号或起始OFDM符号范围的同时,保留原有字段的原有含义。
可选的,在第一字段中,可以是第一字段的所有数值或部分数值用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。也可以是第一字段的所有比特或部分比特用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
302、用户设备从第二子帧的DCI的第一字段中获取第一子帧的起始位置。
303、用户设备从第一子帧的起始位置开始处理第一子帧。
可选的,以解调为例,当第一字段指示第一子帧的起始OFDM符号时,用户设备可以根据第一字段对第一子帧进行解调;当第一字段指示第一子帧的起始OFDM符号的范围时,用户设备可以根据第一字段指示的第一子帧的起始OFDM符号的范围确定第一子帧的起始OFDM符号,并对第一子帧进行解调,优选的,用户设备在第一字段指示的起始OFDM符号范围内对第一子帧进行盲检测,从而确定第一子帧的起始OFDM符号,这样,盲检测的范围比较小,也减小了用户设备的功耗。
本发明实施例提供的信息传输方法,用户设备接收第一子帧及第二子帧后,可以根据第二子帧中包含的第一字段确定第一子帧的起始OFDM符号,进而从第一子帧的起始位置开始处理第一子帧,解决了因为不知道第一子帧的起始OFDM符号,接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
基于上述图1对应的实施例,本发明实施例提供一种网络设备,用于执行上述图1对应的实施例中描述的信息传输方法,参照图4所示,该网络设备40包括获取单元401、配置单元402及发送单元403。
获取单元401,用于获取第一子帧的起始位置。
配置单元402,用于配置第二子帧的下行控制信息DCI中的第一字段,第一字段用于指示获取单元401获取的第一子帧的起始位置。
发送单元403,用于向用户设备发送相邻的第一子帧和第二子帧,第二子帧在第一子帧之后发送,第一子帧包括M个正交频分复用OFDM符号,第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N。
其中第一子帧的起始位置为网络设备向用户设备发送第一子帧的第一个OFDM符号的位置或者位置范围。
可选的,第一子帧为非授权载波或授权载波的子帧,第二子帧为非授权载波或授权载波的子帧。在一种优选的应用场景中,第一子帧为非授权载波的子帧。
可选的,当第一子帧不包含用户设备的DCI时,第一字段用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段的所有比特或者部分比特用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。也可以是第一字段的所有数值或部分数值用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段为DCI中新增的字段或原有的字段。当第一字段为DCI中的原有字段时,第一字段还用于指示DCI中原有字段的含义。此时,第一字段可以是RV(Redundancy Version,冗佘版本)字段;或者,第一字段可以包含于第二子帧的CIF(Carrier Indicator Field,载波指示字段)。第一字段也可以是其他字段中,例如:
资源分配(Resource Allocation,RA)字段,调制和编码方式(Modulation and coding scheme,MCS)字段,下行分配指示位(Downlink Assignment Index,DAI)字段,探测参考信号(Sounding Reference Signal,SRS)请求字段,发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)确认字段,预编码矩阵指示 (Precoding Matrix Indicator,PMI)确认字段,下行功率补偿(Downlink power offset)字段,混合自动重传请求(Hybrid Automatic Repeat Reque st,HARQ)进程数字段,传输块替换标志(Transport block to codeword swap flag)字段,预编码信息(Precoding information)字段,发射功率控制(Transmit Power Control,TPC)字段,加扰标识(Scrambling identity)字段,天线端口、层数和参考信号加扰序列(Antenna port(s),scrambling identity and number of layers)字段,物理下行共享信道资源元素映射和准共定位指标(Physical Downlink Shared Channel Resource element Mapping and Quasi-Co-Location Indicator)字段,解调参考信号相位旋转和OCC索引(Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index)字段,上行索引(Up Link Index,ULI)字段,下行分配索引(Downlink Assignment Index,DAI)字段,信道状态信息请求(Channel State Information request)字段,或者DCI格式3中的指示字段,DCI格式3A中的指示字段。
可选的,第一字段还用于指示DCI中原有字段的原有含义。
本发明实施例提供的网络设备,网络设备获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,并向用户设备发送相邻的第一子帧和第二子帧。因为网络设备将用于指示第一子帧的起始OFDM符号的第一字段添加在第二子帧中发送至用户设备,使得用户设备可以根据第一字段确定第一子帧的起始OFDM符号,解决了接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
基于上述图3对应的实施例,本发明实施例提供一种用户设备,用于执行上述图3对应的实施例中描述的信息传输方法,参照图5所示,该用户数设备50包括接收单元501、获取单元502和处理单元503。
接收单元501,用于接收网络设备发送的相邻的第一子帧和第二子帧第二子帧在第一子帧之后接收,第一子帧包括M个正交频分复 用OFDM符号,第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N。
获取单元502,用于从接收单元501接收的第二子帧的下行控制信息DCI的第一字段中获取第一子帧的起始位置。
处理单元503,用于从第一子帧的起始位置开始处理第一子帧。
其中第一子帧的起始位置为网络设备向用户设备发送第一子帧的第一个OFDM符号的位置或者位置范围。
可选的,第一子帧为非授权载波或授权载波的子帧,第二子帧为非授权载波或授权载波的子帧。在一种优选的应用场景中,第一子帧为非授权载波的子帧。
可选的,当第一子帧不包含用户设备的DCI时,第一字段用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段的所有比特或者部分比特用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。也可以是第一字段的所有数值或部分数值用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段为DCI中新增的字段或原有的字段。当第一字段为DCI中的原有字段时,第一字段还用于指示DCI中原有字段的含义。此时,第一字段可以是RV(Redundancy Version,冗佘版本)字段;或者,第一字段可以包含于第二子帧的CIF(Carrier IndicatorField,载波指示字段)。第一字段也可以是其他字段中,例如:
资源分配(Resource Allocation,RA)字段,调制和编码方式(Modulation and coding scheme,MCS)字段,下行分配指示位(Downlink Assignment Index,DAI)字段,探测参考信号(Sounding Reference Signal,SRS)请求字段,发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)确认字段,预编码矩阵指示(Precoding Matrix Indicator,PMI)确认字段,下行功率补偿 (Downlink power offset)字段,混合自动重传请求(Hybrid Automatic Repeat Reque st,HARQ)进程数字段,传输块替换标志(Transport block to codeword swap flag)字段,预编码信息(Precoding information)字段,发射功率控制(Transmit Power Control,TPC)字段,加扰标识(Scrambling identity)字段,天线端口、层数和参考信号加扰序列(Antenna port(s),scrambling identity and number of layers)字段,物理下行共享信道资源元素映射和准共定位指标(Physical Downlink Shared Channel Resource element Mapping and Quasi-Co-Location Indicator)字段,解调参考信号相位旋转和OCC索引(Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index)字段,上行索引(Up Link Index,ULI)字段,下行分配索引(Downlink Assignment Index,DAI)字段,信道状态信息请求(Channel StateInformation request)字段,或者DCI格式3中的指示字段,DCI格式3A中的指示字段。
可选的,第一字段还用于指示DCI中原有字段的原有含义。
本发明实施例提供的用户设备,用户设备接收第一子帧及第二子帧后,可以根据第二子帧中包含的第一字段确定第一子帧的起始OFDM符号,进而从第一子帧的起始位置开始处理第一子帧,解决了因为不知道第一子帧的起始OFDM符号,接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
基于上述图1对应的实施例,本发明另一实施例提供一种网络设备60,用于执行上述图1对应的实施例中所描述的信息传输方法,参照图6所示,该网络设备60包括:至少一个处理器601、存储器602、总线603和发送器604,该至少一个处理器601、存储器602和发送器604通过总线603连接并完成相互间的通信。
该总线603可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component,外部设备互连)总线或EISA(Extended Industry Standard Architecture,扩展工业标准体 系结构)总线等。该总线603可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
存储器602用于执行本发明方案的应用程序代码,执行本发明方案的应用程序代码保存在存储器中,并由处理器601来控制执行。
该存储器可以是只读存储器ROM或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器EEPROM、只读光盘CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。这些存储器通过总线与处理器相连接。
处理器601可能是一个中央处理器601(Central Proce ssing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
处理器601,用于调用存储器602中的程序代码,在一种可能的实施方式中,当上述应用程序被所述处理器601执行时,实现如下功能。
处理器601,用于获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,第一字段用于指示第一子帧的起始位置。
发送器604,用于向用户设备发送相邻的第一子帧和第二子帧,第二子帧在第一子帧之后发送,第一子帧包括M个正交频分复用OFDM符号,第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N。
其中第一子帧的起始位置为网络设备向用户设备发送第一子帧的第一个OFDM符号的位置或者位置范围。
可选的,第一子帧为非授权载波或授权载波的子帧,第二子帧为非授权载波或授权载波的子帧。在一种优选的应用场景中,第一子帧为非授权载波的子帧。
可选的,当第一子帧不包含用户设备的DCI时,第一字段用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段的所有比特或者部分比特用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。也可以是第一字段的所有数值或部分数值用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段为DCI中新增的字段或原有的字段。当第一字段为DCI中的原有字段时,第一字段还用于指示DCI中原有字段的含义。此时,第一字段可以是RV(Redundancy Version,冗佘版本)字段;或者,第一字段可以包含于第二子帧的CIF(Carrier IndicatorField,载波指示字段)。第一字段也可以是其他字段中,例如:
资源分配(Resource Allocation,RA)字段,调制和编码方式(Modulation and coding scheme,MCS)字段,下行分配指示位(Downlink Assignment Index,DAI)字段,探测参考信号(Sounding Reference Signal,SRS)请求字段,发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)确认字段,预编码矩阵指示(Precoding Matrix Indicator,PMI)确认字段,下行功率补偿(Downlink power offset)字段,混合自动重传请求(Hybrid Automatic Repeat Reque st,HARQ)进程数字段,传输块替换标志(Transport block to codeword swap flag)字段,预编码信息(Precoding information)字段,发射功率控制(Transmit Power Control,TPC)字段,加扰标识(Scrambling identity)字段,天线端口、层数和参考信号加扰序列(Antenna port(s),scrambling identity and number of layers)字段,物理下行共享信道资源元素映射和准共定位指标(Physical Downlink  Shared Channel Resource element Mapping and Quasi-Co-Location Indicator)字段,解调参考信号相位旋转和OCC索引(Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index)字段,上行索引(Up Link Index,ULI)字段,下行分配索引(DownlinkAssignment Index,DAI)字段,信道状态信息请求(Channel State Information request)字段,或者DCI格式3中的指示字段,DCI格式3A中的指示字段。
可选的,第一字段还用于指示DCI中原有字段的原有含义。
本发明实施例提供的网络设备,网络设备获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,并向用户设备发送相邻的第一子帧和第二子帧。因为网络设备将用于指示第一子帧的起始OFDM符号的第一字段添加在第二子帧中发送至用户设备,使得用户设备可以根据第一字段确定第一子帧的起始OFDM符号,解决了接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
基于上述图3对应的实施例,本发明另一实施例提供一种用户设备70,用于执行上述图3对应的实施例中所描述的信息传输方法,参照图7所示,该用户设备70包括:至少一个处理器701、存储器702、总线703和接收器704,该至少一个处理器701、存储器702和接收器704通过总线703连接并完成相互间的通信。
该总线703可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component,外部设备互连)总线或EISA(Extended Industry Standard Architecture,扩展工业标准体系结构)总线等。该总线703可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
存储器702用于执行本发明方案的应用程序代码,执行本发明方案的应用程序代码保存在存储器中,并由处理器701来控制执行。
该存储器可以是只读存储器ROM或可存储静态信息和指令的 其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器EEPROM、只读光盘CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。这些存储器通过总线与处理器相连接。
处理器701可能是一个中央处理器701(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
处理器701,用于调用存储器702中的程序代码,在一种可能的实施方式中,当上述应用程序被所述处理器701执行时,实现如下功能。
接收器704,用于接收网络设备发送的相邻的第一子帧和第二子帧,第二子帧在第一子帧之后接收,第一子帧包括M个正交频分复用OFDM符号,第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
处理器701,用于从第二子帧的下行控制信息DCI的第一字段中获取第一子帧的起始位置;从第一子帧的起始位置开始处理第一子帧。
其中第一子帧的起始位置为网络设备向用户设备发送第一子帧的第一个OFDM符号的位置或者位置范围。
可选的,第一子帧为非授权载波或授权载波的子帧,第二子帧为非授权载波或授权载波的子帧。在一种优选的应用场景中,第一子帧为非授权载波的子帧。
可选的,当第一子帧不包含用户设备的DCI时,第一字段用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段的所有比特或者部分比特用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。也可以是第一字段的所有数值或部分数值用于指示在先发送的第一子帧的起始正交频分复用OFDM符号或在先发送的第一子帧的起始OFDM符号范围。
可选的,第一字段为DCI中新增的字段或原有的字段。当第一字段为DCI中的原有字段时,第一字段还用于指示DCI中原有字段的含义。此时,第一字段可以是RV(Redundancy Version,冗佘版本)字段;或者,第一字段可以包含于第二子帧的CIF(Carrier Indicator Field,载波指示字段)。第一字段也可以是其他字段中,例如:
资源分配(Resource Allocation,RA)字段,调制和编码方式(Modulation and coding scheme,MCS)字段,下行分配指示位(Downlink Assignment Index,DAI)字段,探测参考信号(Sounding Reference Signal,SRS)请求字段,发送预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI)确认字段,预编码矩阵指示(Precoding Matrix Indicator,PMI)确认字段,下行功率补偿(Downlink power offset)字段,混合自动重传请求(Hybrid Automatic Repeat Reque st,HARQ)进程数字段,传输块替换标志(Transport block to codeword swap flag)字段,预编码信息(Precoding information)字段,发射功率控制(Transmit Power Control,TPC)字段,加扰标识(Scrambling identity)字段,天线端口、层数和参考信号加扰序列(Antenna port(s),scrambling identity and number of layers)字段,物理下行共享信道资源元素映射和准共定位指标(Physical Downlink Shared Channel Resource element Mapping and Quasi-Co-LocationIndicator)字段,解调参考信号相位旋转和OCC索引(Cyclic shift for Demodulation Reference Signal and Orthogonal Cover Code index)字段,上行索引(Up Link Index,ULI)字段,下行分配索引(Downlink Assignment Index,DAI)字段,信道状态信息请求(Channel State Information request)字段,或者DCI格式3中的指示字段,DCI格 式3A中的指示字段。
可选的,第一字段还用于指示DCI中原有字段的原有含义。
本发明实施例提供的用户设备,用户设备接收第一子帧及第二子帧后,可以根据第二子帧中包含的第一字段确定第一子帧的起始OFDM符号,进而从第一子帧的起始位置开始处理第一子帧,解决了因为不知道第一子帧的起始OFDM符号,接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
基于上述图1和图3对应的实施例,本发明实施例提供一种无线网络***,用于实施上述图1和图3对应的实施例中所描述的信息传输方法,参照图8所示,该无线网络***80包括网络设备801和用户设备802。
其中,网络设备801为图4对应的实施例中所描述的网络设备,用户设备802为图5对应的实施例中所描述的用户设备。
或者,网络设备801为图6对应的实施例中所描述的网络设备,用户设备802为图7对应的实施例中所描述的用户设备。
本发明实施例提供的无线网络***,网络设备获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,并向用户设备发送相邻的第一子帧和第二子帧。因为网络设备将用于指示第一子帧的起始OFDM符号的第一字段添加在第二子帧中发送至用户设备,使得用户设备可以根据第一字段确定第一子帧的起始OFDM符号,解决了接收设备需要持续对信道进行盲检测以确定数据传输的开始时刻,而使得接收设备功耗过大的问题。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机 能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM(Random Access Memory,随机存储器)、ROM(Read Only Memory,只读内存)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,即只读光盘)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、DSL(Digital Subscriber Line,数字用户专线)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘和碟包括CD(Compact Disc,压缩光碟)、激光碟、光碟、DVD碟(Digital Versatile Disc,数字通用光)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (19)

  1. 一种信息传输方法,其特征在于,包括:
    网络设备获取第一子帧的起始位置;
    所述网络设备配置第二子帧的下行控制信息DCI中的第一字段,所述第一字段用于指示所述第一子帧的起始位置;
    所述网络设备向用户设备发送相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后发送,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
    其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
  2. 根据权利要求1所述的方法,其特征在于,
    当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示所述第一子帧的起始位置。
  3. 根据权利要求1所述的方法,其特征在于,所述第一字段用于指示所述第一子帧的起始位置包括:
    所述第一字段的所有比特或者部分比特用于指示所述第一子帧的起始位置。
  4. 根据权利要求1所述的方法,其特征在于,所述第一字段用于指示所述第一子帧的起始位置包括:
    所述第一字段的所有数值或部分数值用于指示所述第一子帧的起始位置。
  5. 根据权利要求1所述的方法,其特征在于,所述第一字段为DCI中新增的字段或原有的字段。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,当所述第一字段为DCI中原有的字段时,所述第一字段是冗余版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功 率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3A中的指示字段或者DCI格式3中的指示字段。
  7. 根据权利要求6所述的方法,其特征在于,所述第一字段还用于指示DCI中原有字段的原有含义。
  8. 一种信息传输方法,其特征在于,包括:
    用户设备接收网络设备发送的相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后接收,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
    所述用户设备从所述第二子帧的下行控制信息DCI的第一字段中获取所述第一子帧的起始位置;
    所述用户设备从所述第一子帧的起始位置开始处理所述第一子帧;
    其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
  9. 根据权利要求8所述的方法,其特征在于,
    当所述第一子帧不包含所述用户设备的DCI时,所述第一字段用于指示所述第一子帧的起始位置。
  10. 根据权利要求8所述的方法,其特征在于,所述第一字段用于指示所述第一子帧的起始位置包括:
    所述第一字段的所有比特或者部分比特用于指示所述第一子帧的起始位置。
  11. 根据权利要求8所述的方法,其特征在于,所述第一字段用于指示所述第一子帧的起始位置包括:
    所述第一字段的所有数值或部分数值用于指示所述第一子帧的起始位置。
  12. 根据权利要求8所述的方法,其特征在于,
    所述第一字段为DCI中新增的字段或原有的字段。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,
    当所述第一字段为DCI中原有的字段时,所述第一字段是冗余版本RV字段,载波指示字段CIF,资源分配RA字段,调制和编码方式MCS字段,下行分配指示位DAI字段,探测参考信号SRS请求字段,发送预编码矩阵指示TPMI确认字段,预编码矩阵指示PMI确认字段,下行功率补偿字段,混合自动重传请求HARQ进程数字段,传输块替换标识字段,预编码信息字段,发射功率控制TPC字段,加扰标识字段,天线端口、层数和参考信号加扰序列字段,物理下行共享信道PDSCH资源元素RE映射和准共定位指标字段,解调参考信号DMRS相位旋转和叠加正交码OCC索引字段,上行索引ULI字段,下行分配索引DAI字段,信道状态信息CSI请求字段,DCI格式3A中的指示字段或者DCI格式3中的指示字段。
  14. 根据权利要求13任一项所述的方法,其特征在于,所述第一字段还用于指示DCI中原有字段的原有含义。
  15. 一种网络设备,其特征在于,包括:
    获取单元,用于获取第一子帧的起始位置;
    配置单元,用于配置第二子帧的下行控制信息DCI中的第一字段,所述第一字段用于指示所述获取单元获取的所述第一子帧的起始位置;
    发送单元,用于向用户设备发送相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后发送,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
    其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
  16. 一种用户设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后接收,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
    获取单元,用于从所述接收单元接收的所述第二子帧的下行控制信息DCI的第一字段中获取所述第一子帧的起始位置;
    处理单元,用于从所述第一子帧的起始位置开始处理所述第一子帧;
    其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
  17. 一种网络设备,其特征在于,包括:处理器、存储器、总线、发送器,所述处理器、所述存储器及所述发送器通过所述总线相互连接;
    所述处理器,用于获取第一子帧的起始位置,配置第二子帧的下行控制信息DCI中的第一字段,所述第一字段用于指示所述第一子帧的起始位置;
    所述发送器,用于向用户设备发送相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后发送,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M≤N;
    其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
  18. 一种用户设备,其特征在于,包括:处理器、存储器、总线、接收器,所述处理器、所述存储器及所述接收器通过所述总线相互连接;
    所述接收器,用于接收网络设备发送的相邻的第一子帧和第二子帧,所述第二子帧在所述第一子帧之后接收,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号, 其中M和N为正整数,且M≤N;
    所述处理器,用于从所述第二子帧的下行控制信息DCI的第一字段中获取所述第一子帧的起始位置;从所述第一子帧的起始位置开始处理所述第一子帧;
    其中所述第一子帧的起始位置为所述网络设备向所述用户设备发送所述第一子帧的第一个OFDM符号的位置或者位置范围。
  19. 一种无线网络***,其特征在于,包括:网络设备和用户设备;
    其中,所述网络设备为权利要求15所述的网络设备,所述用户设备为权利要求16所述的用户设备;
    或者,所述网络设备为权利要求17所述的网络设备,所述用户设备为权利要求18所述的用户设备。
PCT/CN2015/070132 2015-01-05 2015-01-05 一种信息传输方法、设备及*** WO2016109926A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/070132 WO2016109926A1 (zh) 2015-01-05 2015-01-05 一种信息传输方法、设备及***
US15/541,675 US10476721B2 (en) 2015-01-05 2015-01-05 Information transmission method, device, and system using DCI configuration
EP15876437.3A EP3232636B1 (en) 2015-01-05 2015-01-05 Information transmission method, device and system
CN201580067179.5A CN107005564B (zh) 2015-01-05 2015-01-05 一种信息传输方法、设备及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070132 WO2016109926A1 (zh) 2015-01-05 2015-01-05 一种信息传输方法、设备及***

Publications (1)

Publication Number Publication Date
WO2016109926A1 true WO2016109926A1 (zh) 2016-07-14

Family

ID=56355390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070132 WO2016109926A1 (zh) 2015-01-05 2015-01-05 一种信息传输方法、设备及***

Country Status (4)

Country Link
US (1) US10476721B2 (zh)
EP (1) EP3232636B1 (zh)
CN (1) CN107005564B (zh)
WO (1) WO2016109926A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
WO2019028897A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 设备通信方法和装置
WO2019136677A1 (zh) * 2018-01-11 2019-07-18 富士通株式会社 信号接收装置及方法、通信***
CN110351864A (zh) * 2018-04-04 2019-10-18 电信科学技术研究院有限公司 一种打断传输的指示方法、网络侧设备及终端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10382107B2 (en) * 2015-08-12 2019-08-13 Intel Corporation Multi-user multiple input multiple output communication systems and methods
CN109644068B (zh) 2016-03-27 2020-04-21 欧芬诺有限责任公司 无线网络中的信道状态信息传输
CN113726492A (zh) * 2017-02-04 2021-11-30 华为技术有限公司 终端、网络设备和通信方法
US11102805B2 (en) * 2017-11-16 2021-08-24 Lg Electronics Inc. Method for transmitting and receiving downlink control information and apparatus therefor
WO2021029664A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 웨이크 업 신호 설정
EP4042814B1 (en) * 2019-10-09 2024-08-14 Telefonaktiebolaget LM Ericsson (publ) Operation of wireless communication devices in unlicensed spectrum for frame-based equipment (fbe) networks
CN112199723A (zh) * 2020-10-16 2021-01-08 深圳无域科技技术有限公司 Pki***、pki控制方法以及数据安全***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780334A (zh) * 2012-10-25 2014-05-07 华为技术有限公司 下行控制信息的传输方法和装置
CN104144031A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 一种下行控制信令传输方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092222A (ko) 2007-04-11 2008-10-15 엘지전자 주식회사 Tdd 시스템에서의 데이터 전송 방법
KR20140054424A (ko) 2007-10-29 2014-05-08 인터디지탈 패튼 홀딩스, 인크 랜덤 액세스 채널 응답의 처리
US8468412B2 (en) * 2009-06-19 2013-06-18 Research In Motion Limited Downlink transmissions for type 2 relay
CA2928133C (en) 2010-05-17 2018-09-18 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control information for repeater
US9408168B2 (en) * 2011-04-28 2016-08-02 Lg Electronics Inc. Method and apparatus for transmitting synchronization signal in carrier aggregation system
CN103875202B (zh) 2011-10-09 2018-01-09 Lg电子株式会社 在无线通信***中设置数据信道的起始位置的方法和使用该方法的装置
US9485763B2 (en) * 2013-01-14 2016-11-01 Lg Electronics Inc. Method and user equipment for receiving downlink signal and method and base station for transmitting downlink signal
EP2919402B1 (en) * 2013-01-14 2017-05-24 LG Electronics Inc. Method for receiving downlink signal and method for transmitting downlink signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780334A (zh) * 2012-10-25 2014-05-07 华为技术有限公司 下行控制信息的传输方法和装置
CN104144031A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 一种下行控制信令传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232636A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
US10749584B2 (en) 2016-12-22 2020-08-18 Samsung Electronics Co., Ltd. Uplink MIMO codebook for advanced wireless communication systems
WO2019028897A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 设备通信方法和装置
WO2019136677A1 (zh) * 2018-01-11 2019-07-18 富士通株式会社 信号接收装置及方法、通信***
US11924829B2 (en) 2018-01-11 2024-03-05 Fujitsu Limited Signal reception apparatus and method and communications system
CN110351864A (zh) * 2018-04-04 2019-10-18 电信科学技术研究院有限公司 一种打断传输的指示方法、网络侧设备及终端
CN110351864B (zh) * 2018-04-04 2021-04-09 电信科学技术研究院有限公司 一种打断传输的指示方法、网络侧设备及终端

Also Published As

Publication number Publication date
US20180006863A1 (en) 2018-01-04
EP3232636A4 (en) 2018-01-10
CN107005564B (zh) 2019-11-29
EP3232636B1 (en) 2019-04-03
CN107005564A (zh) 2017-08-01
US10476721B2 (en) 2019-11-12
EP3232636A1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
WO2016109926A1 (zh) 一种信息传输方法、设备及***
US10616915B2 (en) Downlink control information sending method and device, and downlink control information receiving method and device
US11139926B2 (en) User equipments, base stations and methods for physical downlink control channel monitoring in downlink
WO2017124861A1 (zh) 上行调度的方法及装置
JP5784645B2 (ja) 無線ネットワークにおいて、拡大された有効通信範囲を用いて、制御情報を送信するための方法および装置
AU2018328285B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
US9998319B2 (en) Control information transmission method and sending and receiving device
CN106685614B (zh) 一种指示信息的传输方法和设备
CN111132350B (zh) 上行控制信道资源确定方法、终端和网络侧设备
CN107682929B (zh) 一种无线传输中的方法和装置
US20190215819A1 (en) Information processing method, communication device, and computer storage medium
WO2014135064A1 (zh) 一种通信处理方法及设备
CN110149701A (zh) 一种上行信息传输方法及设备
WO2011153700A1 (zh) 消息发送和接收方法、基站和移动台
CN107370532B (zh) 通信***中的通信方法、基站设备以及通信设备
CN107078992B (zh) 一种信息传输方法、设备及***
WO2015143986A1 (zh) 一种信息传输方法及设备
CN106576269B (zh) 一种数据传输方法、设备及***
KR20230006444A (ko) 무선 통신 시스템에서 다운링크 제어 정보를 송신 또는 수신하는 방법 및 장치
EP3136673A1 (en) Design method and device for aggregated frame
WO2019214554A1 (zh) 一种mcs表格确定方法、终端和基站及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015876437

Country of ref document: EP