WO2017124861A1 - 上行调度的方法及装置 - Google Patents

上行调度的方法及装置 Download PDF

Info

Publication number
WO2017124861A1
WO2017124861A1 PCT/CN2016/109948 CN2016109948W WO2017124861A1 WO 2017124861 A1 WO2017124861 A1 WO 2017124861A1 CN 2016109948 W CN2016109948 W CN 2016109948W WO 2017124861 A1 WO2017124861 A1 WO 2017124861A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
bits
hybrid automatic
automatic repeat
transport block
Prior art date
Application number
PCT/CN2016/109948
Other languages
English (en)
French (fr)
Inventor
彭佛才
苟伟
毕峰
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/071,432 priority Critical patent/US10912038B2/en
Publication of WO2017124861A1 publication Critical patent/WO2017124861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for uplink scheduling.
  • the 3rd Generation Partnership Project (3GPP) has completed the downlink communication of the Licensed Assisted Access (LAA) (base station transmission; user equipment ( User Equipment (referred to as UE) receives part of the standardization work.
  • LAA Licensed Assisted Access
  • UE User Equipment
  • 3GPP will perform the standardization work of the LAA uplink communication (UE transmission; base station reception) part.
  • the UE In LAA uplink communication, the UE needs to obtain the authorization (or configuration) of the base station before transmitting data (including channels and signals here). However, it has not been determined in the related art what the authorization information contains.
  • the UE When transmitting data, the UE may have authorized carriers or unlicensed carriers; there may be different channels and signals on these carriers. However, it has not been determined in the related art how to allocate transmission power between carriers, how to allocate transmission power between channels (signals), and how authorization information indicates transmission power.
  • the present invention proposes a corresponding solution.
  • the embodiments of the present invention provide a method and an apparatus for uplink scheduling, so as to at least solve the problem of authorization information determination, transmission power allocation, and indication in the related art.
  • a method for uplink scheduling including:
  • the user equipment UE receives the downlink control information DCI sent by the base station;
  • the UE transmits an uplink channel or/and a signal according to the configuration information of the base station and the DCI, and determines a transmit power of the channel or/and the signal.
  • an apparatus for uplink scheduling which is located in a user equipment UE, and includes:
  • a receiving module configured to receive downlink control information DCI sent by the base station
  • a sending module configured to send an uplink channel or/and a signal according to the configuration information of the base station and the DCI, and determine a transmit power of the channel or/and the signal.
  • a computer storage medium is also provided, and the computer storage medium may be stored and executed.
  • the user equipment UE receives the downlink control information DCI sent by the base station, and the UE sends the uplink channel or/and signal according to the configuration information of the base station and the DCI, and determines the channel or/and the transmission of the signal.
  • the power solves the problem of authorization information determination, transmission power allocation and indication, and improves the technical solution of authorized carrier assisted access.
  • FIG. 1 is a flowchart of an uplink scheduling according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an apparatus for uplink scheduling according to an embodiment of the present invention.
  • FIG. 3 is a first schematic diagram showing the structure of DCI information according to a preferred embodiment of the present invention.
  • FIG. 4 is a second schematic diagram showing the structure of DCI information according to a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of an uplink scheduling according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 the base station sends downlink control information DCI to the user equipment UE;
  • Step S104 The user equipment UE transmits the uplink channel or/and signal according to the configuration information of the base station and the downlink control information DCI, and determines the transmission power of the channel or/and the signal.
  • the user equipment UE receives downlink control information (Downlink Control Information, DCI for short) sent by the base station, and the UE sends an uplink channel or/and signal according to the configuration information of the base station and the DCI, and determines the channel or / and the transmission power of the signal solves the problem of authorization information determination, transmission power allocation and indication, and perfects the technical scheme of authorized carrier-assisted access.
  • DCI Downlink Control Information
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for a scheduled physical uplink shared channel (PUSCH), and a demodulation reference signal DM-RS.
  • Cyclic offset and Orthogonal Cover Code (OCC) index bits uplink scheduling indicator bits, downlink allocation indication DAI bits, hybrid automatic repeat request HARQ process number bits, channel state information CSI request bits, detection Reference signal SRS request bit, resource allocation type bit, for the first Modulation coding scheme bits of the transport block, new data indication bits for the first transport block, redundant version bits for the first transport block, modulation coding scheme bits for the second transport block, for the second transport block
  • the new data indicates bits, redundant version bits for the second transport block, precoding information, and transmit layer bits.
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH, a cyclic offset and a quadrature mask for the demodulation reference signal DM-RS.
  • OCC index bit uplink scheduling indication bit, downlink allocation indication DAI bit, channel state information CSI request bit, sounding reference signal SRS request bit, resource allocation type bit, hybrid automatic repeat request hybrid automatic retransmission for the first transport block Request (Hybrid Automatic Repeat Request, abbreviated as HARQ) process number bit, modulation coding scheme bit for the first transport block, new data indication bit for the first transport block, and redundancy version bit for the first transport block Hybrid automatic repeat request for the second transport block HARQ process number bit, modulation coding scheme bit for the second transport block, new data indication bit for the second transport block, redundancy for the second transport block The remaining version bits, precoding information, and transmit layer bits.
  • HARQ Hybrid Automatic Repeat Request
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH, a cyclic offset and a quadrature mask for the demodulation reference signal DM-RS.
  • OCC index bit hybrid automatic repeat request HARQ process number bit, resource allocation type bit, modulation coding scheme bit for the first transport block, new data indication bit for the first transport block, for the first transport block Redundancy version bits, modulation coding scheme bits for the second transport block, new data indication bits for the second transport block, redundant version bits for the second transport block, precoding information, and transmit layer bits.
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH, a cyclic offset and a quadrature mask for the demodulation reference signal DM-RS.
  • OCC index bit hybrid automatic repeat request HARQ process number bit, resource allocation type bit, modulation coding scheme bit for the first transport block, new data indication bit for the first transport block, for the second transport block Modulation coding scheme bits, new data indication bits for the second transport block, precoding information, and transmit layer bits.
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH, a cyclic offset and a quadrature mask for the demodulation reference signal DM-RS.
  • OCC index bit hybrid automatic repeat request HARQ process number bit, resource allocation type bit, modulation coding scheme bit for the first transport block, new data indication bit for the first transport block, for the first transport block Redundancy version bits, modulation coding scheme bits for the second transport block, new data indication bits for the second transport block, redundant version bits for the second transport block, precoding information, and transmit layer bits, Whether the SRS transmits the bit simultaneously with the PUSCH, whether the physical uplink control channel PUCCH transmits the bit simultaneously with the PUSCH, and the physical uplink control channel PUCCH and the PUSCH simultaneously transmit the TPC bit for the physical uplink control channel PUCCH, and the physical random access channel PRACH A bit that is transmitted simultaneously with the PUSCH and is distinguished from the downlink control information DCI format 4.
  • the downlink control information DCI includes: a carrier indication bit, a flag bit that distinguishes the DCI format 0/1A, a hopping bit, a resource block allocation bit, a modulation and coding scheme bit, a hybrid automatic repeat request HARQ process number bit, and a new data indication bit. , redundancy version bits, transmit power control TPC bits for the scheduled physical uplink shared channel PUSCH, cyclic offset and orthogonal mask OCC index bits for the demodulation reference signal DM-RS, uplink scheduling indication bits, downlink The allocation indication DAI bit, the channel state information CSI request bit, the sounding reference signal SRS request bit, the resource allocation type bit.
  • the downlink control information DCI includes: a carrier indication bit, a flag bit that distinguishes the DCI format 0/1A, a hopping bit, a resource block allocation bit, a modulation and coding scheme bit, a hybrid automatic repeat request HARQ process number bit, and a new data indication bit. , redundancy version bits, transmit power control TPC bits for the scheduled physical uplink shared channel PUSCH, cyclic offset and orthogonal mask OCC index bits for the demodulation reference signal DM-RS, resource allocation type bits.
  • the downlink control information DCI includes: a carrier indication bit, a flag bit that distinguishes the DCI format 0/1A, a hopping bit, a resource block allocation bit, a modulation and coding scheme bit, a hybrid automatic repeat request HARQ process number bit, and a new data indication bit.
  • the downlink control information DCI includes: a carrier indication bit, a flag bit that distinguishes the DCI format 0/1A, a hopping bit, a resource block allocation bit, a modulation and coding scheme bit, a hybrid automatic repeat request HARQ process number bit, and a new data indication bit.
  • redundancy version bits transmit power control TPC bits for the scheduled physical uplink shared channel PUSCH, cyclic offset and orthogonal mask OCC index bits for the demodulation reference signal DM-RS, resource allocation type bits, SRS Whether to transmit a bit simultaneously with the PUSCH, whether the physical uplink control channel PUCCH transmits a bit simultaneously with the PUSCH, and when the physical uplink control channel PUCCH and the PUSCH are simultaneously transmitted, control whether the TPC bit, the physical random access channel PRACH, and the PUSCH are transmitted for the physical uplink control channel PUCCH At the same time, the bits are transmitted, and the bits are distinguished from the downlink control information DCI format 0.
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH, a cyclic offset and a quadrature mask for the demodulation reference signal DM-RS.
  • OCC index bit uplink scheduling indication bit, downlink allocation indication DAI bit, channel state information CSI request bit, sounding reference signal SRS request bit, resource allocation type bit, modulation coding scheme bit for the first transport block, for the first one
  • the downlink control information DCI includes: a carrier indication bit, a flag bit that distinguishes the DCI format 0/1A, a frequency hopping bit, a resource block allocation bit, a modulation and coding scheme bit, a new data indication bit, and a PUSCH for the scheduled physical uplink shared channel. Transmit power control TPC bit, cyclic offset and orthogonal mask OCC index bit for demodulation reference signal DM-RS, uplink scheduling indication bit, downlink allocation indication DAI bit, channel state information CSI request bit, sounding reference signal SRS Request bit, resource allocation type bits.
  • the downlink control information DCI includes: a carrier indication bit, a resource block allocation bit, a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH, a cyclic offset and a quadrature mask for the demodulation reference signal DM-RS.
  • OCC index bit uplink scheduling indication bit, downlink allocation indication DAI bit, hybrid automatic repeat request HARQ process number bit, channel state information CSI request bit, sounding reference signal SRS request bit, resource allocation type bit, for the first transport block Modulation coding scheme bits, new data indication bits for the first transport block, modulation coding scheme bits for the second transport block, new data indication bits for the second transport block, precoding information, and transmission Layer number bits.
  • the downlink control information DCI includes: a carrier indication bit, a flag bit that distinguishes the DCI format 0/1A, a hopping bit, a resource block allocation bit, a modulation and coding scheme bit, a hybrid automatic repeat request HARQ process number bit, and a new data indication bit.
  • the downlink control information DCI includes: a transmit power control TPC bit for a physical uplink control channel PUCCH.
  • the downlink control information DCI includes: a transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH.
  • the user equipment UE After receiving the downlink control information DCI, the user equipment UE first allocates transmit power to all channels or/and signals of the authorized carrier, and then allocates transmit power to the unlicensed carrier.
  • the carrier indication bit is 0 bit or 3 bits or 5 bits or 6 bits.
  • the base station may configure the user equipment UE with 5-bit carrier indication bits. If the user equipment UE supports cross-carrier retransmission, the base station may configure the user equipment UE with 6-bit carrier indication bits. Among the 6-bit carrier indication bits, the lowest 3 bits are the serving cell index of the destination carrier, and the highest 3 bits are the serving cell index of the source carrier. During cross-carrier retransmission, the data of the source carrier is retransmitted on the destination carrier.
  • the resource block allocation bits are max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2))), ceil(log2(Com(ceil(N_UL_RB/P+1), 4)))))))) bits.
  • max() is the operation of the larger of the two numbers
  • ceil() is the upper rounding operation
  • log2() is the operation of taking the base 2 logarithm
  • N_UL_RB is the resource block unit.
  • the resource block allocation bit is a ceil (log2(N_UL_RB*(N_UL_RB+1)/2)) bit.
  • the transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH is 2 bits.
  • the cyclic offset and orthogonal mask OCC index bits for the demodulation reference signal DM-RS are 3 bits.
  • the uplink scheduling indication bit is 0 bits or 2 bits. 0 bits indicate that there is no uplink scheduling indication bit.
  • the downlink assignment indicates that the DAI bit is 0 bits or 2 bits or 4 bits. 0 bits indicate that there is no downlink allocation indication DAI bit.
  • the hybrid automatic repeat request HARQ process number bit for the first transport block and the hybrid automatic repeat request HARQ process number bit and the hybrid automatic repeat request HARQ process number bit for the second transport block are both 0 bits Or 3 bits. 0 bits indicate no.
  • the hybrid automatic repeat request HARQ process number bit for the first transport block and the hybrid automatic repeat request HARQ process number bit and the hybrid automatic repeat request HARQ process number bit for the second transport block are both 0 bits or 4 bits. 0 bits indicate no.
  • the channel state information CSI request bit is 0 bits or 1 bit or 2 bits or 3 bits. 0 bits indicate that there is no channel state information CSI request bit.
  • the sounding reference signal SRS request bit is 0 bit or 1 bit or 2 bits. 0 bits indicate that there is no sounding reference signal SRS request bit.
  • the resource allocation type bit is 0 bit or 1 bit. 0 bits indicate that there are no resource allocation type bits.
  • modulation coding scheme bits for the first transport block and the modulation coding scheme bits and modulation coding scheme bits for the second transport block are both 5 bits.
  • the new data indication bit for the first transport block and the new data indication bit and the new data indication bit for the second transport block are both 1 bit.
  • the new data indication bit of the first transport block of 1 bit or the new data indication bit or new data indication bit for the second transport block indicates retransmission and new transmission.
  • a binary "0" indicates a new transmission and a binary "1” indicates a retransmission.
  • a binary "1” indicates a new transmission and a binary "0” indicates a retransmission.
  • the redundancy version bits for the first transport block and the redundancy version bits and redundancy version bits for the second transport block are both 0 bits or 1 bit or 2 bits. 0 bits indicate no.
  • the precoding information and the transmission layer number bits are 3 bits at 2 antenna ports and 6 bits at 4 antenna ports.
  • Whether the SRS transmits bits simultaneously with the PUSCH is 0 bits or 1 bit. 0 bits indicate whether no SRS transmits bits simultaneously with the PUSCH. At 1 bit, a binary "1" indicates that the SRS is transmitted simultaneously with the PUSCH, and a binary "0" indicates that the SRS and the PUSCH are not simultaneously transmitted.
  • Whether the physical uplink control channel PUCCH transmits bits simultaneously with the PUSCH is 0 bits or 1 bit. 0 bits indicate whether there is no physical uplink control channel PUCCH to transmit bits simultaneously with the PUSCH. At 1 bit, a binary "1" indicates that the physical uplink control channel PUCCH is transmitted simultaneously with the PUSCH, and a binary "0" indicates that the physical uplink control channel PUCCH and PUSCH are not simultaneously transmitted.
  • the transmit power control TPC bit for the physical uplink control channel PUCCH is 0 bits or 2 bits.
  • the 0 bit indicates that the TPC bit is not transmitted for the physical uplink control channel PUCCH when the physical uplink control channel PUCCH and the PUSCH are simultaneously transmitted.
  • the transmit power control TPC bit for the physical uplink control channel PUCCH is valid (meaningful) Otherwise invalid (meaningless).
  • Whether the physical random access channel PRACH transmits bits simultaneously with the PUSCH is 0 bits or 1 bit. 0 bits indicate whether there is no physical random access channel PRACH transmitting bits simultaneously with the PUSCH. At 1 bit, a binary "1" indicates that the physical random access channel PRACH is transmitted simultaneously with the PUSCH, and a binary "0" indicates that the physical random access channel PRACH and PUSCH are not simultaneously transmitted.
  • the total bit length of the downlink control information DCI should be equal to the bit length of the downlink control information DCI format 0.
  • the downlink control information DCI is added with a binary bit "0" at the end.
  • the total bit length of the downlink control information DCI should be equal to the bit length of the downlink control information DCI format 4.
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B or 2C or 2D or scheduled uplink for the same serving cell for scheduling downlink in the configured transmission mode
  • the downlink control information DCI format 4 has the same bit length, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the bit distinguished from the downlink control information DCI format 4 is 0 bits or 1 bit. 0 bits indicate that there is no bit distinguished from the downlink control information DCI format 4. In the case of 1 bit, the binary "1" indicates that the downlink control information DCI received by the user equipment UE is different from the downlink control information DCI format 4, and the binary "0" indicates the downlink control information DCI and the downlink control information DCI format received by the user equipment UE. 4 is the same.
  • the bit distinguished from the downlink control information DCI format 0 is 0 bits or 1 bit. 0 bits indicate that there is no bit distinguished from the downlink control information DCI format 0. In the case of 1 bit, the binary "1" indicates that the downlink control information DCI received by the user equipment UE is different from the downlink control information DCI format 0. The binary "0" indicates the downlink control information DCI and the downlink control information DCI format received by the user equipment UE. 0 is the same.
  • the resource block allocation bits are max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2))), ceil(log2(Com(ceil(N_UL_RB/P+1), 4)))))-HARQ_BIT bits.
  • HARQ_BIT is a hybrid automatic repeat request HARQ process number bit number
  • HARQ_BIT is a hybrid automatic repeat request HARQ process number bit number for the first transport block and a hybrid automatic repeat request for the second transport block The sum of the number of HARQ process number bits.
  • the resource allocation granularity is 2*P or 3*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the resource block allocation bits are max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)), ceil(log2(Com(ceil(N_UL_RB/P+1), 4))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  • RV_BIT is the sum of the number of redundant version bits for the first transport block and the number of redundant version bits for the second transport block.
  • the resource allocation granularity is 4*P or 5*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the resource block allocation bits are ceil (log2(N_UL_RB*(N_UL_RB+1)/2)))-HARQ_BIT bits.
  • HARQ_BIT is the hybrid automatic repeat request HARQ process number bit number.
  • the resource allocation granularity is 2*P or 3*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the resource block allocation bits are ceil (log2(N_UL_RB*(N_UL_RB+1)/2))) - HARQ_BIT - RV_BIT bits.
  • the HARQ_BIT is the hybrid automatic repeat request HARQ process number bit number
  • the RV_BIT is the redundancy version bit number.
  • the resource allocation granularity is 3*P or 4*P or 5*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the version is always 0. That is RV 0.
  • the redundancy of the user equipment UE transmitting the physical uplink shared channel PUSCH when the redundancy version bit for the first transport block or the redundancy version bit or the redundancy version bit for the second transport block is 1 bit Versions are 0 and 2. That is, the binary "0" of the bit corresponds to RV 0, the binary "1” of the bit corresponds to RV 2, or the redundancy version is 2*Bit_RV, where Bit_RV is the value of the redundancy version bit (specifically, the value can be 0) Or 1), or the binary "1" of the bit corresponds to RV 0, and the binary "0" of the bit corresponds to RV 2.
  • the modulation coding scheme bit for the first transport block or the modulation coding scheme bit for the second transport block corresponds to a decimal value of 0 (ie, 5 bits are all binary "0") or 29 or 30 or 31
  • the corresponding transport block is prohibited from transmitting.
  • the base station When the base station schedules the physical uplink shared channel PUSCH of the user equipment UE, the base station should allocate 90 or 96 or 100 resource blocks.
  • the sounding reference signal SRS and the PUSCH simultaneously transmit a binary "1" of 1 bit
  • the sounding reference signal SRS should be configured as an emission bandwidth of 96 resource blocks.
  • the base station shall allocate 90 or 96 resource blocks to the PUSCH.
  • the base station allocates 5 or 2 resource blocks (total 10 or 4 resource blocks) to the physical uplink control channel PUCCH at each end of the system bandwidth.
  • the base station shall allocate 90 resource blocks to the PUSCH.
  • the configuration information of the base station includes: a serving cell index, whether a carrier indication bit exists, whether it is self-scheduling or cross-carrier scheduling, a total maximum transmission power for all unlicensed carriers, and a maximum maximum transmission for each unlicensed carrier.
  • Power physical uplink control channel PUCCH configuration information, sounding reference signal SRS configuration information, physical random access channel PRACH configuration information, downlink transmission mode configuration information, downlink scheduling configuration information, uplink transmission mode configuration information, user equipment UE needs The configuration information of the downlink control information DCI for uplink scheduling, the uplink system bandwidth, and the number of uplink transmit antenna ports.
  • the downlink control information DCI includes: 4-bit subframe configuration information for an authorized carrier-assisted access LAA; or the downlink control information DCI includes: 4-bit subframe configuration information for an authorized carrier-assisted access LAA, Hybrid automatic retransmission request for HARQ process number bits and reserved information bits for a single user equipment UE or all user equipment UEs of the entire cell.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 14 (the binary value is "1110"), indicating that the current subframe is a non-complete subframe of 12 orthogonal frequency division multiplexing OFDM symbols and the following A subframe is an uplink subframe.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 15 (the binary value is "1111"), it indicates that the current subframe is a complete subframe of 14 orthogonal frequency division multiplexing OFDM symbols and the next sub-frame A frame is an uplink subframe.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 14 (the binary value is "1110"), indicating that the next subframe is a non-complete subframe of 12 orthogonal frequency division multiplexing OFDM symbols and the next one The subframe after the subframe is an uplink subframe.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 15 (the binary value is "1111"), indicating that the next subframe is a complete subframe of 14 orthogonal frequency division multiplexing OFDM symbols and the next sub-frame
  • the subframe after the frame is an uplink subframe.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 14 (the binary value is "1110"), indicating that the current subframe is 11 or 10 or 9 or 6 or 3 orthogonal frequency division multiplexing OFDM symbols.
  • the non-complete subframe and the next subframe are uplink subframes.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 14 (the binary value is "1110"), indicating that the next subframe is 11 or 10 or 9 or 6 or 3 orthogonal frequency division multiplexing OFDM symbols.
  • the non-complete subframe and the subframe after the next subframe are uplink subframes.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 15 (the binary value is "1111"), indicating that the current subframe is 11 or 10 or 9 or 6 or 3 orthogonal frequency division multiplexing OFDM symbols.
  • the non-complete subframe and the next subframe are uplink subframes.
  • the subframe configuration information of the 4-bit LAA takes a decimal value of 15 (the binary value is "1111"), indicating that the next subframe is 11 or 10 or 9 or 6 or 3 orthogonal frequency division multiplexing OFDM symbols.
  • the non-complete subframe and the subframe after the next subframe are uplink subframes.
  • the transmit power control TPC bit for the physical uplink control channel PUCCH is sent from the downlink control information DCI format 1A or 1B or 1D or 1 or 2A or 2 or 2B or 2C or 2D on the unlicensed carrier, then the physical uplink is The transmit power control TPC bit of the control channel PUCCH is only valid for the unlicensed carrier, and is invalid for the physical uplink control channel PUCCH of the authorized carrier.
  • the transmit power control TPC bit for the physical uplink control channel PUCCH should be reserved.
  • the user equipment UE does not have a corresponding operation.
  • the transmit power control TPC command sent by the downlink control information DCI format 3 or 3A acts only on the physical uplink control channel PUCCH of the unlicensed carrier. Or / and physical uplink shared channel PUSCH.
  • the uplink channel or/and signal includes a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, The physical random access channel PRACH, the sounding reference signal SRS, the demodulation reference signal DM-RS, and the uplink occupied signal.
  • the total bit length of the downlink control information DCI is smaller than the bit length of the downlink control information DCI format 4 for scheduling the uplink in the configured transmission mode for the same serving cell, then at the end of the downlink control information DCI Adding one or more binary bits "0" such that the total bit length of the downlink control information DCI and the bit length of the downlink control information DCI format 4 for scheduling the uplink in the configured transmission mode for the same serving cell equal.
  • the total bit length of the downlink control information DCI is smaller than the bit length of the downlink control information DCI format 0 for scheduling the uplink in the configured transmission mode for the same serving cell, then at the end of the downlink control information DCI Adding one or more binary bits "0" such that the total bit length of the downlink control information DCI and the bit length of the downlink control information DCI format 0 for the same serving cell for scheduling uplink in the configured transmission mode equal.
  • the resource block allocation bits are max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)), ceil(log2(Com(ceil(N_UL_RB/P+1), 4)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  • HARQ_BIT is a hybrid automatic repeat request HARQ process number bit number
  • HARQ_BIT is a hybrid automatic repeat request HARQ process number bit number for the first transport block and a hybrid automatic repeat request for the second transport block
  • the sum of the HARQ process number bits, and Reserve is one or more reserved bits.
  • the resource allocation granularity is 2*P or 3*P or 4*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the resource block allocation bit is max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)), ceil(log2(Com(ceil(N_UL_RB/P+1), 4))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  • RV_BIT is the sum of the number of redundant version bits for the first transport block and the number of redundant version bits for the second transport block
  • Reserve is one or more reserved bits.
  • the resource allocation granularity is 4*P or 5*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the resource block allocation bits are ceil(log2(N_UL_RB*(N_UL_RB+1)/2)))-HARQ_BIT-Reserve bits.
  • HARQ_BIT is the number of bits of the hybrid automatic repeat request HARQ process number
  • Reserve is one or more reserved bits.
  • the resource allocation granularity is 2*P or 3*P or 4*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the resource block allocation bits are ceil(log2(N_UL_RB*(N_UL_RB+1)/2)))-HARQ_BIT–RV_BIT–Reserve bits.
  • HARQ_BIT is the hybrid automatic repeat request HARQ process number bit number
  • RV_BIT is the redundancy version number of bits
  • Reserve is reserved one or more bits.
  • the resource allocation granularity is 3*P or 4*P or 5*P or 25 resource blocks, and the resource allocation manner is a bit bitmap or all system bandwidth is allocated.
  • the downlink control information DCI includes a hybrid automatic repeat request HARQ process number bit for a single user equipment UE or all user equipment UEs of the entire cell.
  • the hybrid automatic repeat request HARQ process number bit for a single user equipment UE or all user equipment UEs of the entire cell is 2 bits or 3 bits or 4 bits or 5 bits.
  • the user equipment UE obtains the hybrid automatic repeat request HARQ process number; then, according to the one or more downlink control information DCI, the user equipment UE obtains other downlink control information DCI;
  • the mobile retransmission request HARQ process number and other downlink control information DCI are transmitted to transmit the physical uplink shared channel PUSCH.
  • the channel state information CSI request bit and the sounding reference signal SRS request bit are concatenated to form a hybrid automatic repeat request HARQ process number bit.
  • the user equipment UE may transmit the redundancy version with a fixed redundancy version or with a modulation coding scheme bit for the first transport block or a modulation coding scheme bit for the second transport block or a modulation coding scheme bit.
  • the redundancy version can be fixed to 0 (RV 0).
  • the channel state information CSI request bit and the sounding reference signal SRS request bit are concatenated to form a hybrid automatic repeat request HARQ process number bit and a redundancy version bit.
  • L_Limit will have no redundancy version bits.
  • the user equipment UE may transmit the redundancy version with a fixed redundancy version or with a modulation coding scheme bit for the first transport block or a modulation coding scheme bit for the second transport block or a modulation coding scheme bit.
  • the redundancy version can be fixed to 0 (RV 0).
  • the channel state information CSI request bit is the highest bit MSB, and the sounding reference signal SRS request bit is the lowest bit LSB.
  • the channel state information CSI request bit or/and the sounding reference signal SRS request bit are in series, the channel state information CSI request bit is the lowest bit LSB, and the sounding reference signal SRS request bit is the highest bit MSB.
  • the channel state information CSI request bit is 1 bit and the sounding reference signal SRS request bit is 2 bits, they are connected in series to form a hybrid automatic repeat request.
  • the HARQ process number bit is 3 bits, and can support up to 8 bits.
  • Hybrid automatic repeat request HARQ process when the channel state information CSI request bit is 2 bits and the sounding reference signal SRS request bit is 2 bits, they are concatenated to form a hybrid automatic repeat request HARQ process number
  • the bit is 4 bits, and can support up to 16 hybrid automatic repeat request HARQ processes; when the channel state information CSI request bit is 2 bits and the sounding reference signal SRS request bit is 1 bit, they are connected in series
  • the hybrid automatic repeat request HARQ process number bit is 3 bits, and can support up to 8 hybrid automatic repeat request HARQ processes; when the channel state information CSI request bit is 2 bits and the sounding reference signal SRS request bit is 0 In the case of bits, they are concatenated to form a hybrid automatic repeat request.
  • the HARQ process number bits are 2 bits and can support up to 4 hybrids. Automatically retransmitting the request HARQ process; when the channel state information CSI request bit is 1 bit and the sounding reference signal SRS request bit is 1 bit, they are concatenated to form a hybrid automatic repeat request HARQ process number bit is 2 bits, which can support up to 4 hybrid automatic repeat request HARQ processes; when the channel state information CSI request bit is 1 bit and the sounding reference signal SRS request bit is 0 bits, they are connected in series to form a hybrid
  • the automatic retransmission request HARQ process number bit is 1 bit, and can support up to 2 hybrid automatic repeat request HARQ processes.
  • the modulation coding scheme bits for the first transport block and the modulation coding scheme bits and modulation coding scheme bits for the second transport block may also indicate redundancy version information for the respective corresponding transport block.
  • the corresponding redundancy version is 0 (RV 0); when their corresponding decimal value is 29, the corresponding redundancy version is 1 (RV 1);
  • the corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when their corresponding decimal value is 31, the corresponding redundancy version is 3 (RV 3).
  • the carrier indication bit can be used to indicate a hybrid automatic repeat request HARQ process number.
  • the decimal value corresponding to the carrier indication bit is the hybrid automatic repeat request HARQ process number.
  • the decimal value corresponding to the 3-bit or 5-bit carrier indication bit is the hybrid automatic repeat request HARQ process number.
  • the decimal value corresponding to the highest 3 bits or the lowest 3 bits of the 5-bit carrier indication bit is the hybrid automatic repeat request HARQ process number.
  • the decimal value corresponding to the highest 4 bits or the lowest 4 bits of the 5-bit carrier indication bit is the hybrid automatic repeat request HARQ process number.
  • the cyclic offset and orthogonal mask OCC index bits for the demodulation reference signal DM-RS may be used to indicate a hybrid automatic repeat request HARQ process number.
  • the 3-bit cyclic offset for the demodulation reference signal DM-RS and the decimal value corresponding to the orthogonal mask OCC index bit are the hybrid automatic repeat request HARQ process number, at which time the cyclic offset of the demodulation reference signal DM-RS And the orthogonal mask OCC index is fixed to 0 or the parameter value of the high-level configuration cyclicShift; or the 3-bit cyclic offset for the demodulation reference signal DM-RS and the highest 2 bits or the lowest 2 bits of the orthogonal mask OCC index bit
  • the corresponding decimal value is the hybrid automatic repeat request HARQ process number.
  • the cyclic offset and orthogonal mask OCC index of the demodulation reference signal DM-RS may be 0 or 1 or a parameter value of the high-level configuration cyclicShift; or 3 bits.
  • the cyclic offset of the demodulation reference signal DM-RS and the decimal value of the highest 1 bit or the lowest 1 bit of the orthogonal mask OCC index bit are the hybrid automatic repeat request HARQ process number, and the demodulation reference signal DM at this time
  • the cyclic offset and orthogonal mask OCC index of the RS may be 0 or 1 or 2 or 3 or the parameter value cyclicShift of the higher layer configuration.
  • the 5-bit modulation coding scheme bits for the first transport block and the modulation coding scheme bits for the second transport block are each taken by 1 bit or 2 bits as a hybrid automatic repeat request HARQ process number. .
  • the hybrid automatic repeat request HARQ process number has 2 bits or 4 bits.
  • the 1-bit or 2-bit is extracted in the 5-bit modulation coding scheme bit as a hybrid automatic repeat request HARQ process number.
  • the hybrid automatic repeat request HARQ process number has 1 bit or 2 bits.
  • the precoding information and the transmission layer number bits of the port are taken out as 2 or 3 bits or 4 bits to be used as a hybrid automatic repeat request HARQ process number.
  • the precoding information and the highest 2 bits or 3 bits or 4 bits of the transmission layer number bits may be extracted, or the precoding information and the lowest 2 bits or 3 bits or 4 bits of the transmission layer number bits may be extracted.
  • the channel state information CSI request bit and the sounding reference signal SRS request bit and the resource allocation type bit are concatenated to form a hybrid automatic repeat request HARQ process number bit.
  • the user equipment UE may transmit the redundancy version with a fixed redundancy version or with a modulation coding scheme bit for the first transport block or a modulation coding scheme bit for the second transport block or a modulation coding scheme bit.
  • the redundancy version can be fixed to 0 (RV 0).
  • the channel state information CSI request bit and the sounding reference signal SRS request bit and the resource allocation type bit are concatenated to form a hybrid automatic repeat request HARQ process number bit and a redundancy version bit.
  • L_Limit will have no redundancy version bits.
  • the user equipment UE may use a fixed redundancy version or a modulation coding scheme bit for the first transport block or a modulation coding scheme bit or tone for the second transport block.
  • the coding scheme bits are used to obtain a redundancy version for transmission.
  • the redundancy version can be fixed to 0 (RV 0).
  • the channel state information CSI request bit may be used to indicate a hybrid automatic repeat request HARQ process number.
  • the decimal value corresponding to the CSI request bit is the hybrid automatic repeat request HARQ process number, at which time the channel state information CSI request is fixed to zero.
  • the frequency hopping bit is 1 bit.
  • the channel state information CSI request bit and the hopping bit are concatenated to represent a hybrid automatic repeat request HARQ process number.
  • the decimal value corresponding to the 2-bit or 3-bit or 4-bit concatenated bit is the hybrid automatic repeat request HARQ process number.
  • the channel state information CSI request is fixed to 0, and the frequency hopping is fixed to 0 (ie, no frequency hopping) ).
  • the channel state information CSI request bit may be represented as a serving cell index of a source carrier; or the cyclic offset and orthogonal mask OCC index bits for a demodulation reference signal DM-RS may be represented as a serving cell index of a source carrier Or the precoding information and the transmit layer number bits may be represented as a serving cell index of the source carrier; or the uplink scheduling indicator bit and the downlink allocation indication DAI bit concatenated may be represented as a serving cell index or hybrid automatic of the source carrier.
  • the channel state information CSI request bit and the sounding reference signal SRS request bit may be serially connected as a serving cell index of the source carrier; or the channel state information CSI request bit and the frequency hopping bit string Together, it can be represented as the serving cell index of the source carrier.
  • the downlink control information DCI is transmitted on a first control channel unit CCE with a degree of aggregation of 4 or 8 in a common search space of an unlicensed carrier; or the downlink control information DCI is 2nd in a common search space of an unlicensed carrier.
  • the control channel unit CCE having a degree of aggregation of 4 or 8 transmits; or the downlink control information DCI is transmitted on the 3rd or 4th control channel unit CCE of the common search space of the unlicensed carrier.
  • the downlink control information DCI is transmitted on a first control channel unit CCE with a degree of aggregation of 4 or 8 in a common search space of the authorized carrier; or the downlink control information DCI is in the first of the common search space of the authorized carrier. Or transmitting on the second or third or fourth control channel unit CCE with a degree of aggregation of 4; or, the first or second degree of aggregation of the downlink control information DCI in the common search space of the authorized carrier is The control channel unit CCE of 8 transmits.
  • the hybrid automatic repeat request HARQ process number for a single user equipment UE or all user equipment UEs of the entire cell may be carried by one or more physical hybrid automatic repeat request indication channel PHICH.
  • a physical hybrid automatic repeat request indicates that the channel PHICH carries a 1-bit hybrid automatic repeat request HARQ process number information; three physical hybrid automatic repeat request indication channel PHICH carries a 3-bit hybrid automatic repeat request HARQ process number information;
  • the physical hybrid automatic repeat request indication channel PHICH carries 4-bit hybrid automatic repeat request HARQ process number information; the five physical hybrid automatic repeat request indication channel PHICH carries 5-bit hybrid automatic repeat request HARQ process number information.
  • the hybrid automatic repeat request HARQ process number information has 3 bits
  • the first bit is carried on the first PHICH group
  • the second bit is carried on the second PHICH group
  • the third bit is carried in the third bit.
  • the hybrid automatic repeat request HARQ process number information may be evenly or alternately distributed to Above each PHICH group.
  • the hybrid automatic repeat request HARQ process number information has 3 bits
  • the 3 bits of the hybrid automatic repeat request HARQ process number will directly replace the one-bit hybrid automatic repeat request to indicate the HI encoded 3 bits; or,
  • the hybrid automatic repeat request of bits indicates that the 3 bits after HI encoding will be replaced by the 3-bit hybrid automatic repeat request HARQ process number.
  • the first bit is carried on the first PHICH of the first PHICH group (channel number) 0)
  • the 2nd bit is carried on the first PHICH of the 2nd PHICH group (channel number) 0)
  • the 3rd bit is carried on the first PHICH of the 3rd PHICH group (channel number) Is 0).
  • the respective bits of the hybrid automatic repeat request HARQ process number information may be fixed to the respective PHICHs of the respective PHICH groups.
  • the M-th bit of the hybrid automatic repeat request HARQ process number is carried in the group number
  • the channel number of the PHICH group is ) PHICH above. among them, For the cell ID number, mod is the modulo operation (the modulo of the next number is taken for the previous number), and M is a positive integer. Is the spreading factor of the PHICH channel, The value is 2 or 4, For the number of PHICH groups, Ceil(.) is the upper rounding operation (take the smallest integer greater than or equal to the number), and Ng is the parameter (configuration information) configured by the base station. The value of Ng ranges from ⁇ 0, 1/6, 1/2, 1, 2 ⁇ , For the downlink system bandwidth (configuration information) in resource blocks, The value ranges from 6 to 110. Channel number It can also be fixed to 0. When the hybrid automatic repeat request HARQ process number is for a single user equipment, the above The value is the cell radio network temporary identifier C-RNTI of the user equipment.
  • the downlink control information DCI includes an LBT mode bit after uplink listening.
  • the LBT mode bit is 2 bits.
  • the downlink control information DCI includes: when the physical uplink shared channel PUSCH of the user equipment UE is configured to transmit mode 3 or transmit mode 2 or transmit mode 2A, the user equipment UE will monitor the one or more formats. Downstream control information DCI.
  • an apparatus for uplink scheduling is further provided, and the apparatus is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of an apparatus for uplink scheduling according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes
  • the receiving module 22 is configured to receive downlink control information DCI sent by the base station;
  • the sending module 24 is connected to the receiving module 22, and is configured to send an uplink channel or/and a signal according to the configuration information of the base station and the DCI, and determine a transmit power of the channel or/and the signal.
  • the receiving module 22 is configured to receive the downlink control information DCI sent by the base station
  • the sending module 24 is configured to send the uplink channel or/and signal according to the configuration information of the base station and the DCI, and determine the channel or/and the The transmission power of the signal solves the problem of authorization information determination, transmission power allocation and indication, and perfects the technical scheme of authorized carrier assisted access.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned, the maximum transmit power is 200mW (ie, 23dBm), and at this time there is no authorized carrier to transmit only the unlicensed carrier to transmit" as an example to illustrate.
  • the base station transmits downlink control information DCI to the user equipment UE.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B for scheduling the downlink in the configured transmission mode for the same serving cell (herein referred to as the unlicensed carrier) Or the 2C or 2D or the uplink control information of the uplink control DCI format 4 has the same bit length, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and the transmit power of the physical uplink shared channel PUSCH is not More than 200mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned, the maximum transmit power is 200mW (ie, 23dBm), and at this time there is no authorized carrier to transmit only the unlicensed carrier to transmit" as an example to illustrate.
  • the base station transmits downlink control information DCI to the user equipment UE.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B for scheduling the downlink in the configured transmission mode for the same serving cell (herein referred to as the unlicensed carrier) Or the bit length of the downlink control information DCI format 4 of the 2C or 2D or the scheduled uplink is equal, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and the transmit power of the physical uplink shared channel PUSCH is not More than 200mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned, the maximum transmit power is 200mW (ie, 23dBm), and at this time there is no authorized carrier to transmit only the unlicensed carrier to transmit" as an example to illustrate.
  • the base station transmits downlink control information DCI to the user equipment UE.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the user equipment UE Since there is no redundancy version information in the downlink control information DCI, the user equipment UE always transmits one transport block or two transport blocks with a fixed redundancy version (for example, redundancy version RV 0).
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B for scheduling the downlink in the configured transmission mode for the same serving cell (herein referred to as the unlicensed carrier) Or the bit lengths of 2C or 2D are equal, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the operation may be absent, if the total bit length of the downlink control information DCI should be the downlink control for scheduling the uplink in the configured transmit mode for the same serving cell (here, the unlicensed carrier)
  • the information DCI format 4 has the same bit length, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned.
  • the base station transmits downlink control information DCI to the user equipment UE.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a resource block allocation bit (the number of which is described in the next paragraph), and a 2-bit transmission power control TPC bit for the scheduled physical uplink shared channel PUSCH for indicating the PUSCH transmission.
  • Power change 3-bit cyclic offset and orthogonal mask OCC index bits for demodulation reference signal DM-RS, 3-bit hybrid automatic repeat request HARQ process number bit, 1-bit resource allocation type bit, 5 bits Modulation coding scheme bit for the first transport block, 1 bit new data indication bit for the first transport block, 5 bits of modulation coding scheme bits for the second transport block, 1 bit for the second
  • the new data of the transport block indicates bits, 3-bit precoding information, and transmit layer bits.
  • HARQ_BIT is the number of bits of the hybrid automatic repeat request HARQ process number
  • Reserve is one or more reserved bits.
  • the resource allocation mode is a bit bitmap.
  • the reserved bit can be used to distinguish the downlink control information DCI and the downlink control information DCI format 4 (when the Reserve bit takes "1", it indicates that the downlink control information DCI; when the Reserve bit takes "0", it indicates that the downlink control information DCI Format 4);
  • the Reserve bit can also be used to distinguish the downlink control information DCI from the downlink control information DCI format 0 (when the Reserve bit takes "1", it indicates that the downlink control information DCI; when the Reserve bit takes "0", it indicates Is the downlink control information DCI format 0).
  • the user equipment UE Since there is no redundancy version information in the downlink control information DCI, the user equipment UE always transmits one transport block or two transport blocks with a fixed redundancy version (for example, redundancy version RV 0).
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B for scheduling the downlink in the configured transmission mode for the same serving cell (herein referred to as the unlicensed carrier) Or the bit lengths of 2C or 2D are equal, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the downlink control information DCI is added with one or more binary bits "0" at the end to make the total bit length of the downlink control information DCI and the bit used to schedule the uplink downlink control information DCI format 4 in the configured transmission mode.
  • the length is equal.
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned, the maximum transmit power is 200mW (ie, 23dBm), and at this time there is no authorized carrier to transmit only the unlicensed carrier to transmit" as an example to illustrate.
  • the base station transmits downlink control information DCI to the user equipment UE.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the 2-bit channel state information CSI request bit of the previous segment and the 2-bit sounding reference signal SRS request bit are concatenated to obtain 4 bits, which are used as hybrid automatic repeat request HARQ process number bits, so that 16 can be supported.
  • a HARQ process
  • the user equipment UE Since there is no redundancy version information in the downlink control information DCI, the user equipment UE always transmits one transport block or two transport blocks with a fixed redundancy version (for example, redundancy version RV 0).
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B for scheduling the downlink in the configured transmission mode for the same serving cell (herein referred to as the unlicensed carrier) Or the bit lengths of 2C or 2D are equal, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the downlink control information DCI is added with one or more binary bits "0" at the end to make the total bit length of the downlink control information DCI and the bit used to schedule the uplink downlink control information DCI format 4 in the configured transmission mode.
  • the length is equal.
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be forbidden), the maximum transmit power is 200mW (ie, 23dBm), at this time, there is no authorized carrier to transmit only the unlicensed carrier to transmit, the CSI request bit and the highest 3-bit MSB after the SRS request bit is concatenated as a hybrid.
  • the automatic retransmission request HARQ process number bit is described as an example.
  • the base station transmits downlink control information DCI to the user equipment UE.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the 2-bit channel state information CSI request bit of the previous segment and the 2-bit sounding reference signal SRS request bit are concatenated to obtain 4 bits, and the 4-bit highest 3-bit MSB is used as the hybrid automatic repeat request HARQ process number bit. This will support 8 HARQ processes.
  • the 4-bit minimum 1-bit LSB is used as redundancy version information, which supports 2 redundancy versions (eg, RV 0 and RV 2). The two transport blocks use the same redundancy version.
  • the total bit length of the downlink control information DCI should be the downlink control information DCI format 1 or 2 or 2A or 2B for scheduling the downlink in the configured transmission mode for the same serving cell (herein referred to as the unlicensed carrier) Or the bit lengths of 2C or 2D are equal, and the downlink control information DCI is added with a binary bit "0" at the end.
  • the downlink control information DCI is added with one or more binary bits "0" at the end to make the total bit length of the downlink control information DCI and the bit used to schedule the uplink downlink control information DCI format 4 in the configured transmission mode.
  • the length is equal.
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier with the redundancy version RV 0 or RV 2 according to the configuration information of the base station (system bandwidth, antenna port, transmission power, transmission mode, etc.) and the downlink control information DCI.
  • the transmit power of the physical uplink shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • FIG. 3 is a schematic diagram 1 of the DCI information composition structure according to a preferred embodiment of the present invention.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the UE-specific search space on the authorized carrier.
  • the DCI is the "second DCI.”
  • the downlink control information DCI includes: 3-bit carrier indication bit, 1-bit flag division of DCI format 0/1A, 1-bit hopping bit, 13-bit resource block allocation bit, 5-bit modulation coding scheme bit, 1-bit new data indication bit, 2-bit transmit power control TPC bit for scheduled physical uplink shared channel PUSCH, 3-bit cyclic offset for demodulation reference signal DM-RS, and orthogonal mask OCC index bit 0 bit uplink scheduling indication bit (ie, no such bit), 0 bit downlink allocation indication DAI bit (ie, no such bit), 1 or 2 bit channel state information CSI request bit, 0 or 1 bit detection The reference signal SRS request bit, the 1-bit resource allocation type bit.
  • the base station transmits another downlink control information DCI to the user equipment UE on the unlicensed carrier or the common search space on the authorized carrier.
  • the DCI is the "first DCI.”
  • the DCI includes a 3-bit or 4-bit hybrid automatic repeat request HARQ process number bit for a single user equipment UE or all user equipment UEs of the entire cell. Generally, it is 3 bits.
  • the hybrid automatic repeat request HARQ process number can be applied to all unlicensed carriers or to the licensed carrier (ie, all unlicensed carriers or authorized carriers use the same hybrid automatic repeat request HARQ process number).
  • the base station does not schedule the physical uplink shared channel PUSCH of the user equipment UE (ie, the base station does not transmit DCI 0/4; the user equipment UE does not detect DCI 0/4), the 3 bits in the DCI (referring to the first DCI)
  • the 4-bit hybrid automatic repeat request HARQ process number bit for a single user equipment UE or all user equipment UEs of the entire cell is reserved, and has no practical meaning.
  • the user equipment UE always transmits a transport block with a fixed redundancy version (for example, redundancy version RV 0; in FIG. 3, using RV 0); or, the user equipment UE according to the modulation coding scheme in the downlink control information DCI Bit to determine the redundancy version (eg, when its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version Is 1 (RV 1); when its corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV) 3)).
  • a fixed redundancy version for example, redundancy version RV 0; in FIG. 3, using RV 0
  • the modulation coding scheme in the downlink control information DCI Bit to determine the redundancy version (eg, when its corresponding decimal value is 0–28, the corresponding redundancy version is
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier by using the redundancy version RV 0 according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the two downlink control information DCI.
  • the transmit power of the physical uplink shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the authorized carrier.
  • the downlink control information DCI includes: 3-bit carrier indication bit, 1-bit flag division of DCI format 0/1A, 1-bit hopping bit, 13-bit resource block allocation bit, 5-bit modulation coding scheme bit, 1-bit new data indication bit, 2-bit transmit power control TPC bit for scheduled physical uplink shared channel PUSCH, 3-bit cyclic offset for demodulation reference signal DM-RS, and orthogonal mask OCC index bit 0 bit uplink scheduling indication bit (ie, no such bit), 0 bit downlink allocation indication DAI bit (ie, no such bit), 1 or 2 bit channel state information CSI request bit, 0 or 1 bit detection The reference signal SRS request bit, the 1-bit resource allocation type bit.
  • the cyclic offset and orthogonal mask OCC index bits for the demodulation reference signal DM-RS can be used to represent the hybrid automatic repeat request HARQ process number.
  • the 3-bit cyclic offset for the demodulation reference signal DM-RS and the decimal value corresponding to the orthogonal mask OCC index bit are the hybrid automatic repeat request HARQ process number, at which time the demodulation parameter
  • the cyclic offset and orthogonal mask OCC index of the test signal DM-RS is fixed to 0 (or a fixed value of 0-7).
  • a 3-bit cyclic offset for the demodulation reference signal DM-RS and a decimal value corresponding to the highest 2 bits or the lowest 2 bits of the orthogonal mask OCC index bits are hybrid automatic repeat request HARQ processes.
  • Number in the table below, the HARQ process number takes the lowest 2 bits
  • the cyclic offset and orthogonal mask OCC index of the demodulation reference signal DM-RS can be 0 or 1 (in the table below)
  • the cyclic offset of the DM-RS takes up to 1 bit).
  • the hybrid automatic repeat request HARQ process Number (in the table below, the HARQ process number takes the lowest 2 up to 1 bit), at which time the cyclic offset and orthogonal mask OCC index of the demodulation reference signal DM-RS can be 0 or 1 or 2 or 3 (In the table below, the cyclic offset of the DM-RS takes the lowest 2 bits).
  • the user equipment UE always transmits a transport block with a fixed redundancy version (for example, redundancy version RV 0); or, the user equipment UE determines the redundancy version according to the modulation and coding scheme bits in the downlink control information DCI (eg, When its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version is 1 (RV 1); When the corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV 3)).
  • a fixed redundancy version for example, redundancy version RV 0
  • DCI downlink control information
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned, the maximum transmit power is 200mW (ie, 23dBm), and at this time there is no authorized carrier to transmit only the unlicensed carrier to transmit" as an example to illustrate.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the authorized carrier.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the new data indicates bits, 3-bit precoding information, and transmit layer bits.
  • the precoding information and the transmit layer number bits can be used to indicate the hybrid automatic repeat request HARQ process number.
  • the 3-bit precoding information and the decimal value corresponding to the transmit layer number bits are the hybrid automatic repeat request HARQ process number.
  • the precoding information and the number of transmit layers (TPMI) are fixed to 0 (or a fixed value of 0–7). .
  • the precoding information and the number of transmitted layers may be 0 or 1 (in the following table, the precoding information and the number of transmission layers TPMI are the highest 1 bit).
  • the user equipment UE always transmits 2 transport blocks with a fixed redundancy version (for example, redundancy version RV 0); or, the user equipment UE determines the redundancy version according to the modulation and coding scheme bits in the downlink control information DCI (eg When its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version is 1 (RV 1); When its corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV 3)).
  • a fixed redundancy version for example, redundancy version RV 0
  • DCI downlink control information
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and the transmission power of the user equipment UE. How to assign and indicate.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be banned, the maximum transmit power is 200mW (ie, 23dBm), and at this time there is no authorized carrier to transmit only the unlicensed carrier to transmit" as an example to illustrate.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the authorized carrier.
  • the downlink control information DCI includes: a 3-bit carrier indication bit, a 14-bit resource block allocation bit, and a 2-bit transmit power control TPC bit for the scheduled physical uplink shared channel PUSCH to indicate a transmit power change of the PUSCH, 3
  • the channel state information CSI request bit can be used to indicate a hybrid automatic repeat request HARQ process number.
  • 1-bit or 2-bit or 3-bit channel state information The decimal value corresponding to the CSI request bit is the hybrid automatic repeat request HARQ process number, at which time the channel state information CSI request is fixed to 0 (or a fixed value in 0-7). .
  • the user equipment UE always transmits 2 transport blocks with a fixed redundancy version (for example, redundancy version RV 0); or, the user equipment UE determines the redundancy version according to the modulation and coding scheme bits in the downlink control information DCI (eg When its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version is 1 (RV 1); When its corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV 3)).
  • a fixed redundancy version for example, redundancy version RV 0
  • DCI downlink control information
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be forbidden), the maximum transmit power is 200mW (ie, 23dBm), at this time there is no authorized carrier to transmit, only the unlicensed carrier is to be transmitted, and the UE supports cross-carrier retransmission" as an example.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the authorized carrier.
  • the downlink control information DCI includes: 6-bit carrier indication bits (the meaning of which is described in the next paragraph), 14-bit resource block allocation bits, 3-bit hybrid automatic repeat request HARQ process number bits, and 2-bit for scheduled physical
  • the transmit power control TPC bit of the uplink shared channel PUSCH is used to indicate the transmit power change of the PUSCH, the 3-bit cyclic offset for the demodulation reference signal DM-RS, and the orthogonal mask OCC index bit, and the 0-bit uplink scheduling indicator bit.
  • the 0-bit downlink assignment indicates the DAI bit (ie, no such bit), the 1-bit or 2-bit or 3-bit channel state information CSI request bit, the 2-bit sounding reference signal SRS request bit, 1-bit resource allocation type bit, 5-bit modulation coding scheme bit for the first transport block, 1-bit new data indication bit for the first transport block, 5-bit modulation coding for the second transport block The scheme bit, the 1-bit new data indication bit for the second transport block, the 3-bit precoding information, and the transmission layer number bits.
  • the lowest 3 bits are the serving cell index of the destination carrier, and the highest 3 bits are the serving cell index of the source carrier.
  • the data of the source carrier (PUSCH/PDSCH) is retransmitted on the destination carrier.
  • the user equipment UE always transmits 2 transport blocks with a fixed redundancy version (for example, redundancy version RV 0); or, the user equipment UE determines the redundancy version according to the modulation and coding scheme bits in the downlink control information DCI (eg When its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version is 1 (RV 1); When its corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV 3)).
  • a fixed redundancy version for example, redundancy version RV 0
  • DCI downlink control information
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the following is "20MHz uplink system bandwidth (100 RBs), cross-carrier scheduling, 3 bits of carrier indication bits, 2 uplink transmit antenna ports, and 2 uplink transmission blocks (the MCS of these 2 TBs are all greater than 0; That is, it will not be forbidden), the maximum transmit power is 200mW (ie, 23dBm), at this time there is no authorized carrier to transmit, only the unlicensed carrier is to be transmitted, and the UE supports cross-carrier retransmission" as an example.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the authorized carrier.
  • the downlink control information DCI includes: 3-bit carrier indication bit (the meaning of which is described in the next paragraph), 14-bit resource block allocation bit, 3-bit hybrid automatic repeat request HARQ process number bit, and 2-bit for scheduled physical
  • the transmit power control TPC bit of the uplink shared channel PUSCH is used to indicate the transmit power change of the PUSCH, the 3-bit cyclic offset for the demodulation reference signal DM-RS, and the orthogonal mask OCC index bit, and the 0-bit uplink scheduling indicator bit.
  • the 0-bit downlink assignment indicates the DAI bit (ie, no such bit), the 1-bit or 2-bit or 3-bit channel state information CSI request bit, the 2-bit sounding reference signal SRS request bit, 1-bit resource Assignment type bits, 5 bits of modulation coding scheme bits for the first transport block, 1 bit of new data indication bits for the first transport block, 5 bits of modulation coding scheme bits for the second transport block, 1
  • the new data of the bit for the second transport block indicates the bit, the 3-bit precoding information, and the transmit layer number bits.
  • the 3-bit carrier indication bit is a serving cell index of the destination carrier.
  • the channel state information CSI request bit and the sounding reference signal SRS request bit are serially represented as a serving cell index of the source carrier.
  • the data of the source carrier (PUSCH/PDSCH) is retransmitted on the destination carrier.
  • the user equipment UE always transmits 2 transport blocks with a fixed redundancy version (for example, redundancy version RV 0); or, the user equipment UE determines the redundancy version according to the modulation and coding scheme bits in the downlink control information DCI (eg When its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version is 1 (RV 1); When its corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV 3)).
  • a fixed redundancy version for example, redundancy version RV 0
  • DCI downlink control information
  • the user equipment UE transmits the physical uplink shared channel PUSCH on the unlicensed carrier according to the configuration information of the base station (system bandwidth, antenna port, transmit power, transmission mode, etc.) and the downlink control information DCI, and physically uplinks
  • the transmit power of the shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • FIG. 4 is a second schematic diagram of the DCI information composition structure according to a preferred embodiment of the present invention.
  • the base station transmits a downlink control information DCI to the user equipment UE on the unlicensed carrier or the UE-specific search space on the authorized carrier.
  • DCI downlink control information
  • the downlink control information DCI includes: 3-bit carrier indication bit, 1-bit flag division of DCI format 0/1A, 1-bit hopping bit, 13-bit resource block allocation bit, 5-bit modulation coding scheme bit, 1-bit new data indication bit, 2-bit transmit power control TPC bit for scheduled physical uplink shared channel PUSCH, 3-bit cyclic offset for demodulation reference signal DM-RS, and orthogonal mask OCC index bit 0 bit uplink scheduling indication bit (ie, no such bit), 0 bit downlink allocation indication DAI bit (ie, no such bit), 1 or 2 bit channel state information CSI request bit, 0 or 1 bit detection The reference signal SRS request bit, the 1-bit resource allocation type bit.
  • the base station transmits three PHICHs to the user equipment UE on the unlicensed carrier or the control area on the authorized carrier. In Figure 4, it refers to "one or more PHICH channels.” These PHICH channels include 3-bit hybrid automatic repeat request HARQ process number bits for a single user equipment UE or all user equipment UEs of the entire cell. Hybrid automatic retransmission The request HARQ process number can be applied to all unlicensed carriers or to the licensed carrier (ie, all unlicensed carriers or authorized carriers use the same hybrid automatic repeat request HARQ process number).
  • the M-th bit of the hybrid automatic repeat request HARQ process number is carried in the group number
  • the channel number of the PHICH group is ) PHICH above. among them, For the cell ID number, mod is the modulo operation (the modulo of the next number is taken for the previous number), and M is a positive integer. Is the spreading factor of the PHICH channel, The value here is 4, For the number of PHICH groups, Ceil(.) is the upper rounding operation (take the smallest integer greater than or equal to the number), and Ng is the parameter (configuration information) configured by the base station. The value of Ng is 1/6 here. For the downlink system bandwidth (configuration information) in resource blocks, Is 100.
  • the first, second, and third bits of the hybrid automatic repeat request HARQ process number are respectively carried on the PHICH whose channel numbers are 2, 0, and 1, respectively, whose channel numbers are 1, 2, and 3.
  • the hybrid automatic repeat request HARQ process number is for a single user equipment, the above The value is the cell radio network temporary identifier C-RNTI of the user equipment.
  • more PHICHs may be transmitted repeatedly to improve the performance of the hybrid automatic repeat request HARQ process number.
  • the user equipment UE always transmits a transport block with a fixed redundancy version (for example, redundancy version RV 0; in FIG. 3, using RV 0); or, the user equipment UE according to the modulation coding scheme in the downlink control information DCI Bit to determine the redundancy version (eg, when its corresponding decimal value is 0–28, the corresponding redundancy version is 0 (RV 0); when its corresponding decimal value is 29, the corresponding redundancy version Is 1 (RV 1); when its corresponding decimal value is 30, the corresponding redundancy version is 2 (RV 2); when its corresponding decimal value is 31, the corresponding redundancy version is 3 (RV) 3)).
  • a fixed redundancy version for example, redundancy version RV 0; in FIG. 3, using RV 0
  • the modulation coding scheme in the downlink control information DCI Bit to determine the redundancy version (eg, when its corresponding decimal value is 0–28, the corresponding redundancy version is
  • the user equipment UE according to the configuration information of the base station (system bandwidth, antenna port, transmission power, transmission mode, Ng, cell number) And the downlink control information DCI and PHICH channels are used to transmit the physical uplink shared channel PUSCH on the unlicensed carrier with the redundancy version RV0, and the transmit power of the physical uplink shared channel PUSCH does not exceed 200 mW.
  • this embodiment clarifies how the authorization information is determined, and how the transmission power of the user equipment UE is allocated and indicated.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the user equipment UE receives the downlink control information DCI sent by the base station;
  • the UE sends an uplink channel or/and a signal according to the configuration information of the base station and the DCI, and determines a transmit power of the channel or/and the signal.
  • the storage medium is further arranged to store program code for performing the method steps of the above-described embodiments:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the foregoing technical solution provided by the embodiment of the present invention may be applied to an uplink scheduling process, where the user equipment UE receives the downlink control information DCI sent by the base station, and the UE sends the uplink channel or/and signal according to the configuration information of the base station and the DCI. And determining the transmission power of the channel or/and the signal, solving the authorization information determination, the transmission power allocation and the indication problem, and perfecting the technical solution for granting the carrier assisted access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种上行调度的方法及装置,其中,该方法包括:用户设备UE接收基站发送的下行控制信息DCI,该UE根据该基站的配置信息和该DCI来发送上行的信道或/和信号,以及确定该信道或/和该信号的发射功率。通过上述技术方案,解决了授权信息确定、发射功率分配与指示问题,完善了授权载波辅助接入的技术方案。

Description

上行调度的方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种上行调度的方法及装置。
背景技术
在相关技术中,第3代移动通信合作伙伴项目(the 3rd Generation Partnership Project,简称为3GPP)已完成授权载波辅助接入(License Assisted Access,简称为LAA)的下行通信(基站发射;用户设备(User Equipment,简称为UE)接收)部分的标准化工作。在接下来的一段时间内,3GPP将进行LAA的上行通信(UE发射;基站接收)部分的标准化工作。
在LAA上行通信中,UE在发射数据(这里包括信道和信号)之前,需要获得基站的授权(或配置)。但相关技术中尚未确定授权信息包含什么内容。
UE在发射数据时,可能有授权载波,也可能有非授权载波;这些载波上可能有不同的信道和信号。但相关技术中尚未确定如何在载波之间分配发射功率、如何在信道(信号)之间分配发射功率、授权信息如何指示发射功率。
针对相关技术中,授权信息确定、发射功率分配与指示问题,本发明提出了相应的解决方案。
发明内容
本发明实施例提供了一种上行调度的方法及装置,以至少解决相关技术中授权信息确定、发射功率分配与指示问题。
根据本发明的一个实施例,提供了一种上行调度的方法,包括:
用户设备UE接收基站发送的下行控制信息DCI;
所述UE根据所述基站的配置信息和所述DCI来发送上行的信道或/和信号,以及确定所述信道或/和所述信号的发射功率。
根据本发明的另一实施例,提供了一种上行调度的装置,位于用户设备UE中,其中,包括:
接收模块,设置为接收基站发送的下行控制信息DCI;
发送模块,设置为根据所述基站的配置信息和所述DCI来发送上行的信道或/和信号,以及确定所述信道或/和所述信号的发射功率。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行 指令,该执行指令用于执行上述实施例中的上行调度方法的实现。
通过本发明实施例,用户设备UE接收基站发送的下行控制信息DCI,该UE根据该基站的配置信息和该DCI来发送上行的信道或/和信号,以及确定该信道或/和该信号的发射功率,解决了授权信息确定、发射功率分配与指示问题,完善了授权载波辅助接入的技术方案。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种上行调度的的流程图;
图2是根据本发明实施例的一种上行调度的装置的结构框图;
图3是根据本发明优选实施例的DCI信息组成结构示意图一;
图4是根据本发明优选实施例的DCI信息组成结构示意图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种上行调度的方法,图1是根据本发明实施例的一种上行调度的的流程图,如图1所示,该流程包括如下步骤:
步骤S102,基站给用户设备UE发射下行控制信息DCI;
步骤S104,用户设备UE根据基站的配置信息和下行控制信息DCI来发射上行的信道或/和信号,以及确定信道或/和信号的发射功率。
通过上述步骤,用户设备UE接收基站发送的下行控制信息(Downlink Control Information,简称为DCI),该UE根据该基站的配置信息和该DCI来发送上行的信道或/和信号,以及确定该信道或/和该信号的发射功率,解决了授权信息确定、发射功率分配与指示问题,完善了授权载波辅助接入的技术方案。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道(Physical uplink shared channel,简称为PUSCH)的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码(Orthogonal Cover Code,简称为OCC)索引比特、上行调度指示比特、下行分配指示DAI比特、混合自动重传请求HARQ进程号码比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个 传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的混合自动重传请求混合自动重传请求(Hybrid Automatic Repeat Request,简称为HARQ)进程号码比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的混合自动重传请求HARQ进程号码比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、混合自动重传请求HARQ进程号码比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、混合自动重传请求HARQ进程号码比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、预编码信息和发射层数比特。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、混合自动重传请求HARQ进程号码比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特、SRS是否与PUSCH同时发射比特、物理上行控制信道PUCCH是否与PUSCH同时发射比特、物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特、物理随机接入信道PRACH是否与PUSCH同时发射比特、与下行控制信息DCI格式4相区分的比特。
所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、冗余版本比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行 分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特。
所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、冗余版本比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、资源分配类型比特。
所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、资源分配类型比特。
所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、冗余版本比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、资源分配类型比特、SRS是否与PUSCH同时发射比特、物理上行控制信道PUCCH是否与PUSCH同时发射比特、物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特、物理随机接入信道PRACH是否与PUSCH同时发射比特、与下行控制信息DCI格式0相区分的比特。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、预编码信息和发射层数比特。
所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、新数据指示比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特。
所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、混合自动重传请求HARQ进程号码比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、预编码信息和发射 层数比特。
所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特。
所述下行控制信息DCI包括:针对物理上行控制信道PUCCH的发射功率控制TPC比特。
所述下行控制信息DCI包括:针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特。
用户设备UE在接收到所述下行控制信息DCI后,先给授权载波的所有信道或/和信号分配发射功率,然后再给非授权载波分配发射功率。
所述载波指示比特为0比特或3比特或5比特或6比特。
0比特表示没有载波指示比特。
如果用户设备UE支持超过5个成分载波CC或用户设备UE支持多达32个成分载波CC,则基站可以给该用户设备UE配置5比特的载波指示比特。如果用户设备UE支持跨载波重传,则基站可以给该用户设备UE配置6比特的载波指示比特。在6比特的载波指示比特中,最低3比特为目的载波的服务小区索引,最高3比特为源载波的服务小区索引。在跨载波重传时,源载波的数据在目的载波上重传。
资源块分配比特为max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))比特。其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作(当M<N时,Com(M,N)=1),P为根据上行***带宽而确定的资源块组大小(当上行***带宽分别为5MHz、10MHz、15MHz、20MHz时,N_UL_RB的值分别为25、50、75、100或110,同时,P的值分别为2、3、4、4)。
所述资源块分配比特为ceil(log2(N_UL_RB*(N_UL_RB+1)/2))比特。
所述针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特为2比特。
所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特为3比特。
所述上行调度指示比特为0比特或2比特。0比特表示没有上行调度指示比特。
所述下行分配指示DAI比特为0比特或2比特或4比特。0比特表示没有下行分配指示DAI比特。
所述针对第一个传输块的混合自动重传请求HARQ进程号码比特和针对第二个传输块的混合自动重传请求HARQ进程号码比特和混合自动重传请求HARQ进程号码比特都为0比特 或3比特。0比特表示没有。
所述针对第一个传输块的混合自动重传请求HARQ进程号码比特和针对第二个传输块的混合自动重传请求HARQ进程号码比特和混合自动重传请求HARQ进程号码比特都为0比特或4比特。0比特表示没有。
所述信道状态信息CSI请求比特为0比特或1比特或2比特或3比特。0比特表示没有信道状态信息CSI请求比特。
所述探测参考信号SRS请求比特为0比特或1比特或2比特。0比特表示没有探测参考信号SRS请求比特。
所述资源分配类型比特为0比特或1比特。0比特表示没有资源分配类型比特。
所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特和调制编码方案比特都为5比特。
所述针对第一个传输块的新数据指示比特和针对第二个传输块的新数据指示比特和新数据指示比特都为1比特。
所述1比特的第一个传输块的新数据指示比特或针对第二个传输块的新数据指示比特或新数据指示比特表示重传和新传。可选地,二进制“0”表示新传,二进制“1”表示重传。可选地,二进制“1”表示新传,二进制“0”表示重传。
所述针对第一个传输块的冗余版本比特和针对第二个传输块的冗余版本比特和冗余版本比特都为0比特或1比特或2比特。0比特表示没有。
所述预编码信息和发射层数比特在2天线端口时为3比特,在4天线端口时为6比特。
所述SRS是否与PUSCH同时发射比特为0比特或1比特。0比特表示没有SRS是否与PUSCH同时发射比特。在1比特时,二进制“1”表示SRS与PUSCH同时发射,二进制“0”表示SRS与PUSCH没有同时发射。
所述物理上行控制信道PUCCH是否与PUSCH同时发射比特为0比特或1比特。0比特表示没有物理上行控制信道PUCCH是否与PUSCH同时发射比特。在1比特时,二进制“1”表示物理上行控制信道PUCCH与PUSCH同时发射,二进制“0”表示物理上行控制信道PUCCH与PUSCH没有同时发射。
所述物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特为0比特或2比特。0比特表示没有物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特。当所述物理上行控制信道PUCCH是否与PUSCH同时发射比特为二进制“1”时,所述物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特有效(有意义),否则无效(无意义)。
所述物理随机接入信道PRACH是否与PUSCH同时发射比特为0比特或1比特。0比特表示没有物理随机接入信道PRACH是否与PUSCH同时发射比特。在1比特时,二进制“1”表示物理随机接入信道PRACH与PUSCH同时发射,二进制“0”表示物理随机接入信道PRACH与PUSCH没有同时发射。
所述下行控制信息DCI的总的比特长度应与下行控制信息DCI格式0的比特长度相等。
如果所述下行控制信息DCI的总的比特长度与下行控制信息DCI格式0的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
所述下行控制信息DCI的总的比特长度应与下行控制信息DCI格式4的比特长度相等。
如果所述下行控制信息DCI的总的比特长度应与针对同一服务小区的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D或调度上行的下行控制信息DCI格式4的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
所述与下行控制信息DCI格式4相区分的比特为0比特或1比特。0比特表示没有与下行控制信息DCI格式4相区分的比特。在1比特时,二进制“1”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式4不同,二进制“0”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式4相同。
所述与下行控制信息DCI格式0相区分的比特为0比特或1比特。0比特表示没有与下行控制信息DCI格式0相区分的比特。在1比特时,二进制“1”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式0不同,二进制“0”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式0相同。
资源块分配比特为max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,或者HARQ_BIT为所述针对第一个传输块的混合自动重传请求HARQ进程号码比特数与针对第二个传输块的混合自动重传请求HARQ进程号码比特数之和。这时候的资源分配粒度为2*P或3*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
资源块分配比特为max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–RV_BIT比特。其中,RV_BIT为所述针对第一个传输块的冗余版本比特数与针对第二个传输块的冗余版本比特数之和。这时候的资源分配粒度为4*P或5*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
资源块分配比特为ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数。这时候的资源分配粒度为2*P或3*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
资源块分配比特为ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT–RV_BIT比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,RV_BIT为所述冗余版本比特数。这时候的资源分配粒度为3*P或4*P或5*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
所述针对第一个传输块的冗余版本比特或针对第二个传输块的冗余版本比特或冗余版本比特为0比特时,用户设备UE在发射物理上行共享信道PUSCH的使用的冗余版本总是0。即RV 0。
所述针对第一个传输块的冗余版本比特或针对第二个传输块的冗余版本比特或冗余版本比特为1比特时,用户设备UE在发射物理上行共享信道PUSCH的使用的冗余版本为0和2。即该比特的二进制“0”对应RV 0,该比特的二进制“1”对应RV 2,或者,冗余版本为2*Bit_RV,其中,Bit_RV为冗余版本比特的取值(具体可以取值0或1),或者,该比特的二进制“1”对应RV 0,该比特的二进制“0”对应RV 2。
当所述针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特对应的十进制值为0(即,5比特都为二进制“0”)或29或30或31时,则对应的传输块被禁止发射。
基站在调度用户设备UE的物理上行共享信道PUSCH时,应分配90或96或100个资源块。
当所述探测参考信号SRS与PUSCH同时发射比特为1比特的二进制“1”时,探测参考信号SRS应配置为96个资源块的发射带宽。
当所述物理上行控制信道PUCCH与PUSCH同时发射比特为1比特的二进制“1”时,基站应给PUSCH分配90或96个资源块。基站给物理上行控制信道PUCCH在***带宽的2端各配置5个或2个资源块(总共10个或4个资源块)。
当所述物理随机接入信道PRACH与PUSCH同时发射比特为1比特的二进制“1”时,基站应给PUSCH分配90个资源块。
所述基站的配置信息包括:服务小区索引、载波指示比特是否存在、是自调度还是跨载波调度、用于所有非授权载波的总的最大发射功率、用于各个非授权载波的各自的最大发射功率、物理上行控制信道PUCCH的配置信息、探测参考信号SRS的配置信息、物理随机接入信道PRACH的配置信息、下行发射模式配置信息、下行调度配置信息、上行发射模式配置信息、用户设备UE需要监视的用于上行调度的下行控制信息DCI的配置信息、上行***带宽、上行发射天线端口数。
所述下行控制信息DCI包括:4比特的针对授权载波辅助接入LAA的子帧配置信息;或者,所述下行控制信息DCI包括:4比特的针对授权载波辅助接入LAA的子帧配置信息、针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特、预留的信息比特。
当所述4比特LAA的子帧配置信息取十进制值14的时候(二进制值为“1110”),表示当前子帧是12个正交频分复用OFDM符号的非完整子帧并且接下来的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值15的时候(二进制值为“1111”),表示当前子帧是14个正交频分复用OFDM符号的完整子帧并且接下来的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值14的时候(二进制值为“1110”),表示下一个子帧是12个正交频分复用OFDM符号的非完整子帧并且下一个子帧之后的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值15的时候(二进制值为“1111”),表示下一个子帧是14个正交频分复用OFDM符号的完整子帧并且下一个子帧之后的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值14的时候(二进制值为“1110”),表示当前子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且接下来的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值14的时候(二进制值为“1110”),表示下一个子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且下一个子帧之后的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值15的时候(二进制值为“1111”),表示当前子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且接下来的子帧是上行子帧。
当所述4比特LAA的子帧配置信息取十进制值15的时候(二进制值为“1111”),表示下一个子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且下一个子帧之后的子帧是上行子帧。
如果针对物理上行控制信道PUCCH的发射功率控制TPC比特是从非授权载波上的下行控制信息DCI格式1A或1B或1D或1或2A或2或2B或2C或2D发出的,则该针对物理上行控制信道PUCCH的发射功率控制TPC比特仅对非授权载波有效,对授权载波的物理上行控制信道PUCCH无效。
如果非授权载波不支持物理上行控制信道PUCCH且针对物理上行控制信道PUCCH的发射功率控制TPC比特是从非授权载波上的下行控制信息DCI格式1A或1B或1D或1或2A或2或2B或2C或2D发出的,则该针对物理上行控制信道PUCCH的发射功率控制TPC比特应预留。用户设备UE没有对应的操作。
如果非授权载波上有公共搜索空间且支持下行控制信息DCI格式3或3A,则由该下行控制信息DCI格式3或3A发出的发射功率控制TPC命令仅作用到非授权载波的物理上行控制信道PUCCH或/和物理上行共享信道PUSCH上。
所述上行的信道或/和信号包括物理上行共享信道PUSCH、物理上行控制信道PUCCH、 物理随机接入信道PRACH、探测参考信号SRS、解调参考信号DM-RS、上行占用信号。
如果所述下行控制信息DCI的总的比特长度小于针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度,则在所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得所述下行控制信息DCI的总的比特长度与针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度相等。
如果所述下行控制信息DCI的总的比特长度小于针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式0的比特长度,则在所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得所述下行控制信息DCI的总的比特长度与针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式0的比特长度相等。
资源块分配比特为max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–Reserve比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,或者HARQ_BIT为所述针对第一个传输块的混合自动重传请求HARQ进程号码比特数与针对第二个传输块的混合自动重传请求HARQ进程号码比特数之和,Reserve为预留的一个或多个比特。这时候的资源分配粒度为2*P或3*P或4*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
资源块分配比特为max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–RV_BIT–Reserve比特。其中,RV_BIT为所述针对第一个传输块的冗余版本比特数与针对第二个传输块的冗余版本比特数之和,Reserve为预留的一个或多个比特。这时候的资源分配粒度为4*P或5*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
资源块分配比特为ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT–Reserve比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,Reserve为预留的一个或多个比特。这时候的资源分配粒度为2*P或3*P或4*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
资源块分配比特为ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT–RV_BIT–Reserve比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,RV_BIT为所述冗余版本比特数,Reserve为预留的一个或多个比特。这时候的资源分配粒度为3*P或4*P或5*P或25个资源块,资源分配方式为比特位图或者分配全部***带宽。
所述下行控制信息DCI包括:针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特。
针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特为2比特或3比特或4比特或5比特。
用户设备UE获得混合自动重传请求HARQ进程号码;然后,根据上述的一个或多个下行控制信息DCI,用户设备UE获得其他的下行控制信息DCI;然后用户设备UE结合混合自 动重传请求HARQ进程号码和其他的下行控制信息DCI来发射物理上行共享信道PUSCH。
所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来构成混合自动重传请求HARQ进程号码比特。这时候,用户设备UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射。冗余版本可固定为0(RV 0)。
所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来构成混合自动重传请求HARQ进程号码比特和冗余版本比特。当它们串接起来的比特长度低于一定值时L_Limit,将没有冗余版本比特。这时候,用户设备UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射。冗余版本可固定为0(RV 0)。L_Limit的取值为1、2、3、4、5。一般地,L_Limit=3。
所述信道状态信息CSI请求比特和探测参考信号SRS请求比特在串接的时候,信道状态信息CSI请求比特为最高比特MSB,探测参考信号SRS请求比特为最低比特LSB。
所述信道状态信息CSI请求比特或/和探测参考信号SRS请求比特在串接的时候,信道状态信息CSI请求比特为最低比特LSB,探测参考信号SRS请求比特为最高比特MSB。
当所述信道状态信息CSI请求比特为1比特且所述探测参考信号SRS请求比特为2比特的时候,它们串接起来而构成混合自动重传请求HARQ进程号码比特为3比特,可支持最多8个混合自动重传请求HARQ进程;当所述信道状态信息CSI请求比特为2比特且所述探测参考信号SRS请求比特为2比特的时候,它们串接起来而构成混合自动重传请求HARQ进程号码比特为4比特,可支持最多16个混合自动重传请求HARQ进程;当所述信道状态信息CSI请求比特为2比特且所述探测参考信号SRS请求比特为1比特的时候,它们串接起来而构成混合自动重传请求HARQ进程号码比特为3比特,可支持最多8个混合自动重传请求HARQ进程;当所述信道状态信息CSI请求比特为2比特且所述探测参考信号SRS请求比特为0比特的时候,它们串接起来而构成混合自动重传请求HARQ进程号码比特为2比特,可支持最多4个混合自动重传请求HARQ进程;当所述信道状态信息CSI请求比特为1比特且所述探测参考信号SRS请求比特为1比特的时候,它们串接起来而构成混合自动重传请求HARQ进程号码比特为2比特,可支持最多4个混合自动重传请求HARQ进程;当所述信道状态信息CSI请求比特为1比特且所述探测参考信号SRS请求比特为0比特的时候,它们串接起来而构成混合自动重传请求HARQ进程号码比特为1比特,可支持最多2个混合自动重传请求HARQ进程。
所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特和调制编码方案比特还可以指示出各自对应传输块的冗余版本信息。当它们的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它们的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它们的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它们的对应的十进制值为31时,对应的冗余版本为3(RV 3)。
所述载波指示比特可用来表示混合自动重传请求HARQ进程号码。载波指示比特对应的十进制值为混合自动重传请求HARQ进程号码。当本载波调度本载波(自调度)时,3比特或5比特的载波指示比特对应的十进制值为混合自动重传请求HARQ进程号码。当载波指示比特5比特且为本载波调度本载波(自调度)时,5比特的载波指示比特的最高3比特或最低3比特对应的十进制值为混合自动重传请求HARQ进程号码。当载波指示比特5比特且为本载波调度本载波(自调度)时,5比特的载波指示比特的最高4比特或最低4比特对应的十进制值为混合自动重传请求HARQ进程号码。
所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特可用来表示混合自动重传请求HARQ进程号码。3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候解调参考信号DM-RS的循环偏移及正交掩码OCC索引固定为0或高层配置的参数值cyclicShift;或者3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特的最高2比特或最低2比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候解调参考信号DM-RS的循环偏移及正交掩码OCC索引可为0或1或高层配置的参数值cyclicShift;或者3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特的最高1比特或最低1比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候解调参考信号DM-RS的循环偏移及正交掩码OCC索引可为0或1或2或3或高层配置的参数值cyclicShift。
在所述5比特的针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特各都是取出1比特或2比特来当作混合自动重传请求HARQ进程号码用。这样一来,混合自动重传请求HARQ进程号码有2比特或4比特。
在所述5比特的调制编码方案比特取出1比特或2比特来当作混合自动重传请求HARQ进程号码用。这样一来,混合自动重传请求HARQ进程号码有1比特或2比特。
在所述3比特(在2天线端口时)的预编码信息和发射层数比特中取出2比特或3比特来当作混合自动重传请求HARQ进程号码用;在所述6比特(在4天线端口时)的预编码信息和发射层数比特中取出2比特或3比特或4比特来当作混合自动重传请求HARQ进程号码用。在取出来的时候,可取出预编码信息和发射层数比特的最高2比特或3比特或4比特,或者取出预编码信息和发射层数比特的最低2比特或3比特或4比特。
所述信道状态信息CSI请求比特和探测参考信号SRS请求比特和资源分配类型比特串接起来构成混合自动重传请求HARQ进程号码比特。这时候,用户设备UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射。冗余版本可固定为0(RV 0)。
所述信道状态信息CSI请求比特和探测参考信号SRS请求比特和资源分配类型比特串接起来构成混合自动重传请求HARQ进程号码比特和冗余版本比特。当它们串接起来的比特长度低于一定值时L_Limit,将没有冗余版本比特。这时候,用户设备UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调 制编码方案比特来获得冗余版本来发射。冗余版本可固定为0(RV 0)。L_Limit的取值为1、2、3、4、5。一般地,L_Limit=3。
所述信道状态信息CSI请求比特可用来表示混合自动重传请求HARQ进程号码。1比特或2比特或3比特的信道状态信息CSI请求比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候信道状态信息CSI请求固定为0。
所述跳频比特为1比特。
所述信道状态信息CSI请求比特和跳频比特串接起来来表示混合自动重传请求HARQ进程号码。2比特或3比特或4比特的串接后的比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候信道状态信息CSI请求固定为0,跳频固定为0(即,不跳频)。
所述信道状态信息CSI请求比特可表示为源载波的服务小区索引;或者所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特可表示为源载波的服务小区索引;或者所述预编码信息和发射层数比特可表示为源载波的服务小区索引;或者所述上行调度指示比特和下行分配指示DAI比特串接起来可表示为源载波的服务小区索引或混合自动重传请求HARQ进程号码;或者所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来可表示为源载波的服务小区索引;或者所述信道状态信息CSI请求比特和跳频比特串接起来可表示为源载波的服务小区索引。
所述下行控制信息DCI在非授权载波的公共搜索空间的第一个聚合度为4或8的控制信道单元CCE上发射;或者所述下行控制信息DCI在非授权载波的公共搜索空间的第2个聚合度为4或8的控制信道单元CCE上发射;或者所述下行控制信息DCI在非授权载波的公共搜索空间的第3或第4个聚合度为4的控制信道单元CCE上发射。
所述下行控制信息DCI在授权载波的公共搜索空间的第一个聚合度为4或8的控制信道单元CCE上发射;或者,所述下行控制信息DCI在授权载波的公共搜索空间的第一个或第二个或第三个或第四个聚合度为4的控制信道单元CCE上发射;或者,所述下行控制信息DCI在授权载波的公共搜索空间的第一个或第二个聚合度为8的控制信道单元CCE上发射。
针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码可以由一条或多条物理混合自动重传请求指示信道PHICH来承载。
一条物理混合自动重传请求指示信道PHICH承载1比特的混合自动重传请求HARQ进程号码信息;3条物理混合自动重传请求指示信道PHICH承载3比特的混合自动重传请求HARQ进程号码信息;4条物理混合自动重传请求指示信道PHICH承载4比特的混合自动重传请求HARQ进程号码信息;5条物理混合自动重传请求指示信道PHICH承载5比特的混合自动重传请求HARQ进程号码信息。
当混合自动重传请求HARQ进程号码信息有3比特时,第一个比特承载在第一个PHICH组上面,第2个比特承载在第2个PHICH组上面,第3个比特承载在第3个PHICH组上面。可选地,当混合自动重传请求HARQ进程号码信息有更多比特时,可均匀地或轮流地分布到 各个PHICH组上面。
当混合自动重传请求HARQ进程号码信息有3比特时,这3个比特的混合自动重传请求HARQ进程号码将直接取代一比特的混合自动重传请求指示HI编码后的3比特;或者,一比特的混合自动重传请求指示HI编码后的3比特将被3比特的混合自动重传请求HARQ进程号码取代。
当混合自动重传请求HARQ进程号码信息有3比特时,第一个比特承载在第一个PHICH组的第一条PHICH上面(信道号码
Figure PCTCN2016109948-appb-000001
为0),第2个比特承载在第2个PHICH组的第一条PHICH上面(信道号码
Figure PCTCN2016109948-appb-000002
为0),第3个比特承载在第3个PHICH组的第一条PHICH上面(信道号码
Figure PCTCN2016109948-appb-000003
为0)。
混合自动重传请求HARQ进程号码信息的各个比特可固定到各个PHICH组的各个PHICH上面。
混合自动重传请求HARQ进程号码的第M个比特承载在组号为
Figure PCTCN2016109948-appb-000004
的PHICH组的信道号码为
Figure PCTCN2016109948-appb-000005
)的PHICH上面。其中,
Figure PCTCN2016109948-appb-000006
为小区ID号码,mod为取模操作(对前面一个数取后面一个数的模),M为正整数,
Figure PCTCN2016109948-appb-000007
是PHICH信道的扩频因子,
Figure PCTCN2016109948-appb-000008
的取值为2或4,
Figure PCTCN2016109948-appb-000009
为PHICH组的数量,
Figure PCTCN2016109948-appb-000010
Ceil(.)为上取整操作(取大于等于该数的最小整数),Ng为基站配置的参数(配置信息),Ng的取值范围为{0,1/6,1/2,1,2},
Figure PCTCN2016109948-appb-000011
为以资源块为单位的下行***带宽(配置信息),
Figure PCTCN2016109948-appb-000012
的取值范围为6到110。信道号码
Figure PCTCN2016109948-appb-000013
也可固定为0。当混合自动重传请求HARQ进程号码是针对单个用户设备的时候,上述
Figure PCTCN2016109948-appb-000014
取值为用户设备的小区无线网络临时标识C-RNTI。
所述下行控制信息DCI包括上行先听后说LBT方式比特。LBT方式比特为2比特。
所述下行控制信息DCI包括:当用户设备UE的物理上行共享信道PUSCH配置为发射模式3或发射模式2或发射模式2A时,用户设备UE将监视所述的一种或多种格式的所述下行控制信息DCI。
在本实施例中还提供了一种上行调度的装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的一种上行调度的装置的结构框图,如图2所示,该装置包括
接收模块22,设置为接收基站发送的下行控制信息DCI;
发送模块24,与接收模块22连接,设置为根据所述基站的配置信息和所述DCI来发送上行的信道或/和信号,以及确定所述信道或/和所述信号的发射功率。
通过上述装置,接收模块22设置为接收基站发送的下行控制信息DCI,发送模块24设置为根据该基站的配置信息和该DCI来发送上行的信道或/和信号,以及确定该信道或/和该信号的发射功率,解决了授权信息确定、发射功率分配与指示问题,完善了授权载波辅助接入的技术方案。
下面结合优选实施例和实施方式对本发明进行详细说明。
优选实施例一:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE发射下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、3比特的混合自动重传请求HARQ进程号码比特(针对上行PUSCH的HARQ进程号码;下同)、2比特的信道状态信息CSI请求比特、2比特的探测参考信号SRS请求比特、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、2比特的针对第一个传输块的冗余版本比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、2比特的针对第二个传输块的冗余版本比特、3比特的预编码信息和发射层数比特。
如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D或调度上行的下行控制信息DCI格式4的比特长度相等,则该下行控制信息DCI最后面添加一个二进制比特“0”。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例二:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE发射下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、3比特的混合自动重传请求HARQ进程号码比特、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、2比特的针对第一个传输块的冗余版本比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、2比特的针对第二个传输块的冗余版本比特、3比特的预编码信息和发射层数比特。
如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D或调度上行的下行控制信息DCI格式4的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例三:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE发射下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、4比特的混合自动重传请求HARQ进程号码比特、1比特的资源分配类型比特、5比特的针对第一个 传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
由于在下行控制信息DCI里面没有冗余版本信息,故用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射一个传输块或二个传输块。
如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
可选地(这个操作可以没有),如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例四:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射、Reserve=1、资源分配粒度为3*P、资源分配方式为比特位图”为例来加以说明。
基站给用户设备UE发射下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、资源块分配比特(其数量在下一段描述)、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、3比特的混合自动重传请求HARQ进程号码比特、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
在上面一段中,资源块分配比特为max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–Reserve=max(13,14)–3–1=10比特。其中,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,Reserve为预留的一个或多个比特。这时候的资源分配粒度为3*P=3*4=12个资源块,资源分配方式为比特位图。
Reserve比特可用来区分本下行控制信息DCI与下行控制信息DCI格式4(当Reserve比特取“1”时,表示是本下行控制信息DCI;当Reserve比特取“0”时,表示是下行控制信息DCI格式4);Reserve比特也可用来区分本下行控制信息DCI与下行控制信息DCI格式0(当Reserve比特取“1”时,表示是本下行控制信息DCI;当Reserve比特取“0”时,表示是下行控制信息DCI格式0)。
由于在下行控制信息DCI里面没有冗余版本信息,故用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射一个传输块或二个传输块。
如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
如果上述下行控制信息DCI的总的比特长度应小于针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度,则所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得该下行控制信息DCI的总的比特长度与用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度相等。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例五:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE发射下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、2比特的信道状态信息CSI请求比特(其含义在下一段描述)、2比特的探测参考信号SRS请求比特(其含义在下一段描述)、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息 和发射层数比特。
将上一段的2比特的信道状态信息CSI请求比特和2比特的探测参考信号SRS请求比特串接起来,得到4比特,这4比特作为混合自动重传请求HARQ进程号码比特,这样就可支持16个HARQ进程。
由于在下行控制信息DCI里面没有冗余版本信息,故用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射一个传输块或二个传输块。
如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
如果上述下行控制信息DCI的总的比特长度应小于针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度,则所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得该下行控制信息DCI的总的比特长度与用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度相等。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例六:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射、CSI请求比特和SRS请求比特串接后的最高3比特MSB作为混合自动重传请求HARQ进程号码比特”为例来加以说明。
基站给用户设备UE发射下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、2比特的信道状态信息CSI请求比特(其含义在下一段描述)、2比特的探测参考信号SRS请求比特(其含义在下一段描述)、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输 块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
将上一段的2比特的信道状态信息CSI请求比特和2比特的探测参考信号SRS请求比特串接起来,得到4比特,这4比特的最高3比特MSB作为混合自动重传请求HARQ进程号码比特,这样就可支持8个HARQ进程。这4比特的最低1比特LSB作为冗余版本信息,这样可支持2个冗余版本(如,RV 0和RV 2)。2个传输块使用相同的冗余版本。
如果上述下行控制信息DCI的总的比特长度应与针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
如果上述下行控制信息DCI的总的比特长度应小于针对同一服务小区(这里指该非授权载波)的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度,则所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得该下行控制信息DCI的总的比特长度与用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度相等。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0或RV 2来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例七:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、调度1个上行传输块、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射、基站发射2个DCI”和图3为例来加以说明,图3是根据本发明优选实施例的DCI信息组成结构示意图一。
基站给用户设备UE在非授权载波上或授权载波上的UE特定的搜索空间发射一个下行控制信息DCI。在图3中,该DCI是“第二个DCI”。
该下行控制信息DCI包括:3比特的载波指示比特、1比特的区分DCI格式0/1A的标志比特、1比特的跳频比特、13比特的资源块分配比特、5比特的调制编码方案比特、1比特的新数据指示比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、1或2比特的信道状态信息CSI请求比特、0或1比特的探测参考信号SRS请求比特、1比特的资源分配类型比特。
基站给用户设备UE在非授权载波上或授权载波上的公共搜索空间发射另一个下行控制信息DCI。在图3中,该DCI是“第一个DCI”。该DCI包括3比特或4比特的针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特。一般地,为3比特。该混合自动重传请求HARQ进程号码可作用到所有的非授权载波上或授权载波上(即,所有非授权载波上或授权载波都使用相同的混合自动重传请求HARQ进程号码)。当基站没有调度用户设备UE的物理上行共享信道PUSCH时(即,基站没有发射DCI 0/4;用户设备UE没有检测到DCI 0/4),该DCI(指第一个DCI)里面的3比特或4比特的针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特起预留作用,没有实际含义。
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0;在图3中,使用RV 0)来发射一个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述2个下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例八:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、调度1个上行传输块、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE在非授权载波上或授权载波上发射一个下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、1比特的区分DCI格式0/1A的标志比特、1比特的跳频比特、13比特的资源块分配比特、5比特的调制编码方案比特、1比特的新数据指示比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、1或2比特的信道状态信息CSI请求比特、0或1比特的探测参考信号SRS请求比特、1比特的资源分配类型比特。
如表1所示,所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特可用来表示混合自动重传请求HARQ进程号码。3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候解调参 考信号DM-RS的循环偏移及正交掩码OCC索引固定为0(或者0–7的一个固定值)。
表1
Figure PCTCN2016109948-appb-000015
如表2所示,或者3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特的最高2比特或最低2比特对应的十进制值为混合自动重传请求HARQ进程号码(在下面的表格中,HARQ进程号码取的是最低2比特),这时候解调参考信号DM-RS的循环偏移及正交掩码OCC索引可为0或1(在下面的表格中,DM-RS的循环偏移取的是最高1比特)。
表2
Figure PCTCN2016109948-appb-000016
Figure PCTCN2016109948-appb-000017
如表3所示,或者3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特的最高1比特或最低1比特对应的十进制值为混合自动重传请求HARQ进程号码(在下面的表格中,HARQ进程号码取的是最低2最高1比特),这时候解调参考信号DM-RS的循环偏移及正交掩码OCC索引可为0或1或2或3(在下面的表格中,DM-RS的循环偏移取的是最低2比特)。
表3
Figure PCTCN2016109948-appb-000018
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射一个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例九:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE在非授权载波上或授权载波上发射一个下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、2比特的信道状态信息CSI请求比特(其含义在下一段描述)、2比特的探测参考信号SRS请求比特(其含义在下一段描述)、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
如表4所示,所述预编码信息和发射层数比特可用来表示混合自动重传请求HARQ进程号码。3比特的预编码信息和发射层数比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候预编码信息和发射层数(TPMI)固定为0(或者0–7的一个固定值)。
表4
Figure PCTCN2016109948-appb-000019
Figure PCTCN2016109948-appb-000020
如表5所示,或者3比特的预编码信息和发射层数比特的最高2比特或最低2比特对应的十进制值为混合自动重传请求HARQ进程号码(在下面的表格中,HARQ进程号码取的是最低2比特),这时候预编码信息和发射层数(TPMI)可为0或1(在下面的表格中,预编码信息和发射层数TPMI是最高1比特)。
表5
Figure PCTCN2016109948-appb-000021
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射2个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率 如何分配与指示。
优选实施例十:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射”为例来加以说明。
基站给用户设备UE在非授权载波上或授权载波上发射一个下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特、14比特的资源块分配比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、1比特或2比特或3比特的信道状态信息CSI请求比特(其含义在下一段描述)、2比特的探测参考信号SRS请求比特(其含义在下一段描述)、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
如表6、7和8所示,所述信道状态信息CSI请求比特可用来表示混合自动重传请求HARQ进程号码。1比特或2比特或3比特的信道状态信息CSI请求比特对应的十进制值为混合自动重传请求HARQ进程号码,这时候信道状态信息CSI请求固定为0(或者0–7中的一个固定值)。
表6
Figure PCTCN2016109948-appb-000022
表7
Figure PCTCN2016109948-appb-000023
Figure PCTCN2016109948-appb-000024
表8
Figure PCTCN2016109948-appb-000025
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射2个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例十一:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射、UE支持跨载波重传”为例来加以说明。
基站给用户设备UE在非授权载波上或授权载波上发射一个下行控制信息DCI。
该下行控制信息DCI包括:6比特的载波指示比特(其含义在下一段描述)、14比特的资源块分配比特、3比特的混合自动重传请求HARQ进程号码比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、1比特或2比特或3比特的信道状态信息CSI请求比特、2比特的探测参考信号SRS请求比特、1比特的资源分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
所述6比特的载波指示比特中,最低3比特为目的载波的服务小区索引,最高3比特为源载波的服务小区索引。在跨载波重传时,源载波的数据(PUSCH/PDSCH)在目的载波上重传。
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射2个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例十二:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、2个上行发射天线端口、调度2个上行传输块(这2个TB的MCS都大于0;即,不会被禁止)、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射、UE支持跨载波重传”为例来加以说明。
基站给用户设备UE在非授权载波上或授权载波上发射一个下行控制信息DCI。
该下行控制信息DCI包括:3比特的载波指示比特(其含义在下一段描述)、14比特的资源块分配比特、3比特的混合自动重传请求HARQ进程号码比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特用于指示PUSCH的发射功率改变、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、1比特或2比特或3比特的信道状态信息CSI请求比特、2比特的探测参考信号SRS请求比特、1比特的资源 分配类型比特、5比特的针对第一个传输块的调制编码方案比特、1比特的针对第一个传输块的新数据指示比特、5比特的针对第二个传输块的调制编码方案比特、1比特的针对第二个传输块的新数据指示比特、3比特的预编码信息和发射层数比特。
所述3比特的载波指示比特为目的载波的服务小区索引。所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来表示为源载波的服务小区索引。在跨载波重传时,源载波的数据(PUSCH/PDSCH)在目的载波上重传。
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0)来发射2个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式等)和上述下行控制信息DCI来在非授权载波上用冗余版本RV 0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
优选实施例十三:
下面以“20MHz的上行***带宽(100个RB)、跨载波调度、存在3比特的载波指示比特、调度1个上行传输块、最大发射功率为200mW(即,23dBm)、这时候没有授权载波要发射只有非授权载波要发射、基站发射一个DCI、基站发射3条PHICH、Ng为1/6、小区号码
Figure PCTCN2016109948-appb-000026
为137”和图4为例来加以说明,图4是根据本发明优选实施例的DCI信息组成结构示意图二。
基站给用户设备UE在非授权载波上或授权载波上的UE特定的搜索空间发射一个下行控制信息DCI。在图4中,该DCI是图中的“DCI”。
该下行控制信息DCI包括:3比特的载波指示比特、1比特的区分DCI格式0/1A的标志比特、1比特的跳频比特、13比特的资源块分配比特、5比特的调制编码方案比特、1比特的新数据指示比特、2比特的针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、0比特的上行调度指示比特(即,没有该比特)、0比特的下行分配指示DAI比特(即,没有该比特)、1或2比特的信道状态信息CSI请求比特、0或1比特的探测参考信号SRS请求比特、1比特的资源分配类型比特。
基站给用户设备UE在非授权载波上或授权载波上的控制区域发射3条PHICH。在图4中,指的是“一条或多条PHICH信道”。这些PHICH信道包括3比特的针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特。该混合自动重传 请求HARQ进程号码可作用到所有的非授权载波上或授权载波上(即,所有非授权载波上或授权载波都使用相同的混合自动重传请求HARQ进程号码)。
混合自动重传请求HARQ进程号码的第M个比特承载在组号为
Figure PCTCN2016109948-appb-000027
的PHICH组的信道号码为
Figure PCTCN2016109948-appb-000028
)的PHICH上面。其中,
Figure PCTCN2016109948-appb-000029
为小区ID号码,mod为取模操作(对前面一个数取后面一个数的模),M为正整数,
Figure PCTCN2016109948-appb-000030
是PHICH信道的扩频因子,
Figure PCTCN2016109948-appb-000031
的取值在这里为4,
Figure PCTCN2016109948-appb-000032
为PHICH组的数量,
Figure PCTCN2016109948-appb-000033
Ceil(.)为上取整操作(取大于等于该数的最小整数),Ng为基站配置的参数(配置信息),Ng的取值在这里为1/6,
Figure PCTCN2016109948-appb-000034
为以资源块为单位的下行***带宽(配置信息),
Figure PCTCN2016109948-appb-000035
为100。这样一来,混合自动重传请求HARQ进程号码的第1、2、3个比特分别承载在组号分别为2、0、1的信道号码分别为1、2、3的PHICH上面。当混合自动重传请求HARQ进程号码是针对单个用户设备的时候,上述
Figure PCTCN2016109948-appb-000036
取值为用户设备的小区无线网络临时标识C-RNTI。
另外,也可重复发射更多的PHICH来提高混合自动重传请求HARQ进程号码的性能。
用户设备UE总是用固定的冗余版本(例如,冗余版本RV 0;在图3中,使用RV 0)来发射一个传输块;或者,用户设备UE根据下行控制信息DCI里的调制编码方案比特来确定冗余版本(如,当它的对应的十进制值为0–28时,对应的冗余版本为0(RV 0);当它的对应的十进制值为29时,对应的冗余版本为1(RV 1);当它的对应的十进制值为30时,对应的冗余版本为2(RV 2);当它的对应的十进制值为31时,对应的冗余版本为3(RV 3))。
用户设备UE根据基站的配置信息(***带宽、天线端口、发射功率、发射模式、Ng、小区号码
Figure PCTCN2016109948-appb-000037
等)和上述下行控制信息DCI和PHICH信道来在非授权载波上用冗余版本RV0来发射物理上行共享信道PUSCH,物理上行共享信道PUSCH的发射功率不超过200mW。
从上面的实施例可以看出,该实施例明确了授权信息如何确定、用户设备UE的发射功率如何分配与指示。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,用户设备UE接收基站发送的下行控制信息DCI;
S2,所述UE根据所述基站的配置信息和所述DCI来发送上行的信道或/和信号,以及确定所述信道或/和所述信号的发射功率;
可选地,存储介质还被设置为存储用于执行上述实施例的方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的上述技术方案,可以应用于上行调度过程中,用户设备UE接收基站发送的下行控制信息DCI,该UE根据该基站的配置信息和该DCI来发送上行的信道或/和信号,以及确定该信道或/和该信号的发射功率,解决了授权信息确定、发射功率分配与指示问题,完善了授权载波辅助接入的技术方案。

Claims (74)

  1. 一种上行调度的方法,包括:
    用户设备UE接收基站发送的下行控制信息DCI;
    所述UE根据所述基站的配置信息和所述DCI发送上行的信道或/和信号,以及确定所述信道或/和所述信号的发射功率。
  2. 根据权利要求1所述的方法,其中,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、混合自动重传请求HARQ进程号码比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特;或者,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的混合自动重传请求HARQ进程号码比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的混合自动重传请求HARQ进程号码比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特;或者,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、混合自动重传请求HARQ进程号码比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特;或者,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、混合自动重传请求HARQ进程号码比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、预编码信息和 发射层数比特;或者,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、混合自动重传请求HARQ进程号码比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第一个传输块的冗余版本比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、针对第二个传输块的冗余版本比特、预编码信息和发射层数比特、SRS是否与PUSCH同时发射比特、物理上行控制信道PUCCH是否与PUSCH同时发射比特、物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特、物理随机接入信道PRACH是否与PUSCH同时发射比特、与下行控制信息DCI格式4相区分的比特;或者,
    所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、冗余版本比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特,或者,
    所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、冗余版本比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、资源分配类型比特;或者,
    所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、资源分配类型比特;或者,
    所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、冗余版本比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、资源分配类型比特、SRS是否与PUSCH同时发射比特、物理上行控制信道PUCCH是否与PUSCH同时发射比特、物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特、物理随机接入信道PRACH是否与PUSCH同时发射比特、与下行控制信息DCI格式0相区分的比特;或者,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、预编码信息和发射层数比特;或者,
    所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、新数据指示比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特;或者,
    所述下行控制信息DCI包括:载波指示比特、资源块分配比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、混合自动重传请求HARQ进程号码比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特、针对第一个传输块的调制编码方案比特、针对第一个传输块的新数据指示比特、针对第二个传输块的调制编码方案比特、针对第二个传输块的新数据指示比特、预编码信息和发射层数比特;或者,
    所述下行控制信息DCI包括:载波指示比特、区分DCI格式0/1A的标志比特、跳频比特、资源块分配比特、调制编码方案比特、混合自动重传请求HARQ进程号码比特、新数据指示比特、针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特、针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特、上行调度指示比特、下行分配指示DAI比特、信道状态信息CSI请求比特、探测参考信号SRS请求比特、资源分配类型比特;或者,
    所述下行控制信息DCI包括:针对物理上行控制信道PUCCH的发射功率控制TPC比特;或者,
    所述下行控制信息DCI包括:针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特。
  3. 根据权利要求1所述的方法,其中,
    所述UE在接收到所述下行控制信息DCI后,先给授权载波的所有信道或/和信号分配发射功率,然后再给非授权载波的所有信道或/和信号分配发射功率。
  4. 根据权利要求2所述的方法,其中,
    所述载波指示比特为0比特或3比特或5比特或6比特。
  5. 根据权利要求4所述的方法,其中,
    若所述用户设备UE支持超过5个成分载波CC或所述用户设备UE支持多达32个成分载波CC,则所述用户设备UE接收所述基站给所述用户设备UE配置的所述载波指示比特为5比特;
    若所述用户设备UE支持跨载波重传,则所述用户设备UE接收所述基站给所述用户设备UE配置的所述载波指示比特为6比特,其中,在所述6比特的载波指示比特中,最低3比特为目的载波的服务小区索引,最高3比特为源载波的服务小区索引,在所述跨载波重传时,源载波的数据在目的载波上重传。
  6. 根据权利要求2所述的方法,其中,
    所述资源块分配比特为:
    max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,其中,当M<N时,Com(M,N)=1,P为根据上行***带宽而确定的资源块组大小,其中,当所述上行***带宽分别为5MHz、10MHz、15MHz、20MHz时,所述N_UL_RB的值分别为25、50、75和100,或者25、50、75和110,同时,P的值分别为2、3、4和4;或者,
    所述资源块分配比特为:
    max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT比特;其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,或者HARQ_BIT为所述针对第一个传输块的混合自动重传请求HARQ进程号码比特数与针对第二个传输块的混合自动重传请求HARQ进程号码比特数之和,所述资源块分配的粒度为2*P或3*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小;或者,
    所述资源块分配比特为:
    max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–RV_BIT比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,RV_BIT为所述针对第一个传输块的冗余版本比特数与针对第二个传输块的冗余版本比特数之和,所述资源块分配的粒度为4*P或5*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小;或者,
    所述资源块分配比特为:ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,所述资源块分配的粒度为2*P或3*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小;或者,
    所述资源块分配比特为:ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT–RV_BIT比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,RV_BIT为所述冗余版本比特数,所述资源块分配的粒度为3*P或4*P或5*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小。
  7. 根据权利要求2所述的方法,其中,
    所述资源块分配比特为ceil(log2(N_UL_RB*(N_UL_RB+1)/2))比特,其中,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽。
  8. 根据权利要求2所述的方法,其中,
    所述针对被调度的物理上行共享信道PUSCH的发射功率控制TPC比特为2比特。
  9. 根据权利要求2所述的方法,其中,
    所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特为3比特。
  10. 根据权利要求2所述的方法,其中,
    所述上行调度指示比特为0比特或2比特。
  11. 根据权利要求2所述的方法,其中,
    所述下行分配指示DAI比特为0比特或2比特或4比特。
  12. 根据权利要求2的方法,其中,
    所述针对第一个传输块的混合自动重传请求HARQ进程号码比特和所述针对第二个传输块的混合自动重传请求HARQ进程号码比特和混合自动重传请求HARQ进程号码比特都为0比特或3比特。
  13. 根据权利要求2所述的方法,其中,
    所述针对第一个传输块的混合自动重传请求HARQ进程号码比特和所述针对第二个 传输块的混合自动重传请求HARQ进程号码比特和混合自动重传请求HARQ进程号码比特都为0比特或4比特。
  14. 根据权利要求2所述的方法,其中,
    所述信道状态信息CSI请求比特为0比特或1比特或2比特或3比特。
  15. 根据权利要求2所述的方法,其中,
    所述探测参考信号SRS请求比特为0比特或1比特或2比特。
  16. 根据权利要求2所述的方法,其中,
    所述资源分配类型比特为0比特或1比特。
  17. 根据权利要求2所述的方法,其中,
    所述针对第一个传输块的调制编码方案比特和所述针对第二个传输块的调制编码方案比特和调制编码方案比特都为5比特。
  18. 根据权利要求2所述的方法,其中,
    所述针对第一个传输块的新数据指示比特和所述针对第二个传输块的新数据指示比特和新数据指示比特都为1比特。
  19. 根据权利要求2所述的方法,其中,
    所述1比特的第一个传输块的新数据指示比特或所述针对第二个传输块的新数据指示比特或新数据指示比特表示重传和新传,其中,二进制“0”表示新传,二进制“1”表示重传,或者,二进制“1”表示新传,二进制“0”表示重传。
  20. 根据权利要求2所述的方法,其中,
    所述针对第一个传输块的冗余版本比特和所述针对第二个传输块的冗余版本比特和冗余版本比特都为0比特或1比特或2比特;或者,
    所述针对第一个传输块的冗余版本比特或针对第二个传输块的冗余版本比特或冗余版本比特为0比特时,用户设备UE在发射物理上行共享信道PUSCH的使用的冗余版本总是0,即冗余版本RV 0;或者,
    所述针对第一个传输块的冗余版本比特或针对第二个传输块的冗余版本比特或冗余版本比特为1比特时,用户设备UE在发射物理上行共享信道PUSCH的使用的冗余版本为0和2,即所述比特的二进制“0”对应RV 0,所述比特的二进制“1”对应RV 2,或者,冗余版本为2*Bit_RV,其中,Bit_RV为冗余版本比特的取值,或者,所述比特的二进制“1”对应RV 0,所述比特的二进制“0”对应RV 2;或者,
    当所述针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案 比特对应的十进制值为0即5比特都为二进制“0”或29或30或31时,则对应的传输块被禁止发射。
  21. 根据权利要求2所述的方法,其中,
    所述预编码信息和发射层数比特在2天线端口时为3比特,在4天线端口时为6比特。
  22. 根据权利要求2所述的方法,其中,
    所述SRS是否与PUSCH同时发射比特为0比特或1比特,其中,0比特表示没有SRS是否与PUSCH同时发射比特,在1比特时,二进制“1”表示SRS与PUSCH同时发射,二进制“0”表示SRS与PUSCH没有同时发射。
  23. 根据权利要求2所述的方法,其中,
    所述物理上行控制信道PUCCH是否与PUSCH同时发射比特为0比特或1比特,0比特表示没有物理上行控制信道PUCCH是否与PUSCH同时发射比特,在1比特时,二进制“1”表示物理上行控制信道PUCCH与PUSCH同时发射,二进制“0”表示物理上行控制信道PUCCH与PUSCH没有同时发射。
  24. 根据权利要求3所述的方法,其中,
    所述物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特为0比特或2比特,0比特表示没有物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特,当所述物理上行控制信道PUCCH是否与PUSCH同时发射比特为二进制“1”时,所述物理上行控制信道PUCCH与PUSCH同时发射时针对物理上行控制信道PUCCH的发射功率控制TPC比特有效,否则无效。
  25. 根据权利要求2所述的方法,其中,
    所述物理随机接入信道PRACH是否与PUSCH同时发射比特为0比特或1比特,其中,0比特表示没有物理随机接入信道PRACH是否与PUSCH同时发射比特,在1比特时,二进制“1”表示物理随机接入信道PRACH与PUSCH同时发射,二进制“0”表示物理随机接入信道PRACH与PUSCH没有同时发射。
  26. 根据权利要求2所述的方法,其中,
    所述下行控制信息DCI的总的比特长度应与下行控制信息DCI格式0的比特长度相等。
  27. 根据权利要求2所述的方法,其中,
    若所述下行控制信息DCI的总的比特长度与下行控制信息DCI格式0的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
  28. 根据权利要求2所述的方法,其中,
    所述下行控制信息DCI的总的比特长度应与下行控制信息DCI格式4的比特长度相等。
  29. 根据权利要求2所述的方法,其中,
    若所述下行控制信息DCI的总的比特长度应与针对同一服务小区的用于在配置好的发射模式下调度下行的下行控制信息DCI格式1或2或2A或2B或2C或2D或调度上行的下行控制信息DCI格式4的比特长度相等,则所述下行控制信息DCI最后面添加一个二进制比特“0”。
  30. 根据权利要求2所述的方法,其中,
    所述与下行控制信息DCI格式4相区分的比特为0比特或1比特,其中,0比特表示没有与下行控制信息DCI格式4相区分的比特,在1比特时,二进制“1”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式4不同,二进制“0”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式4相同。
  31. 根据权利要求2所述的方法,其中,
    所述与下行控制信息DCI格式0相区分的比特为0比特或1比特,其中,0比特表示没有与下行控制信息DCI格式0相区分的比特,在1比特时,二进制“1”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式0不同,二进制“0”表示用户设备UE接收到的下行控制信息DCI与下行控制信息DCI格式0相同。
  32. 根据权利要求2所述的方法,其中,
    所述UE接收所述基站的调度消息,所述调度消息指示所述基站为所述UE的PUSCH分配90或96或100个资源块。
  33. 根据权利要求22所述的方法,其中,
    当所述探测参考信号SRS与PUSCH同时发射比特为1比特的二进制“1”时,探测参考信号SRS应配置为96个资源块的发射带宽。
  34. 根据权利要求23所述的方法,其中,
    当所述PUCCH与PUSCH同时发射比特为1比特的二进制“1”时,所述UE接收所述基站的第一消息,所述第一消息指示所述基站为所述UE的PUSCH分配90或96个资源块,以及指示所述基站给物理上行控制信道PUCCH在***带宽的2端各配置5个或2个资源块,其中,所述***带宽总共10个或4个资源块。
  35. 根据权利要求25所述的方法,其中,
    当所述物理随机接入信道PRACH与PUSCH同时发射比特为1比特的二进制“1”时, 所述UE接收所述基站的第二消息,所述第二消息指示所述基站为所述UE的PUSCH分配90个资源块。
  36. 根据权利要求1所述的方法,其中,
    所述基站的配置信息包括:服务小区索引、载波指示比特是否存在、是自调度还是跨载波调度、用于所有非授权载波的总的最大发射功率、用于各个非授权载波的各自的最大发射功率、物理上行控制信道PUCCH的配置信息、探测参考信号SRS的配置信息、物理随机接入信道PRACH的配置信息、下行发射模式配置信息、下行调度配置信息、上行发射模式配置信息、用户设备UE需要监视的用于上行调度的下行控制信息DCI的配置信息、上行***带宽、上行发射天线端口数。
  37. 根据权利要求1所述的方法,其中,
    所述下行控制信息DCI包括:4比特的针对授权载波辅助接入LAA的子帧配置信息;或者,所述下行控制信息DCI包括:4比特的针对授权载波辅助接入LAA的子帧配置信息、针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特、预留的信息比特。
  38. 根据权利要求37所述的方法,其中,
    当所述4比特LAA的子帧配置信息取十进制值14的时,即二进制值为“1110”,表示当前子帧是12个正交频分复用OFDM符号的非完整子帧并且接下来的子帧是上行子帧;或者,
    当所述4比特LAA的子帧配置信息取十进制值15的时,即二进制值为“1111”,表示当前子帧是14个正交频分复用OFDM符号的完整子帧并且接下来的子帧是上行子帧;或者,
    当所述4比特LAA的子帧配置信息取十进制值14的时,即二进制值为“1110”,表示下一个子帧是12个正交频分复用OFDM符号的非完整子帧并且下一个子帧之后的子帧是上行子帧;或者,
    当所述4比特LAA的子帧配置信息取十进制值15的时候,即二进制值为“1111”,表示下一个子帧是14个正交频分复用OFDM符号的完整子帧并且下一个子帧之后的子帧是上行子帧;或者,
    当所述4比特LAA的子帧配置信息取十进制值14的时候,即二进制值为“1110”,表示当前子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且接下来的子帧是上行子帧;或者,
    制值14的时候,即二进制值为“1110”,表示下一个子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且下一个子帧之后的子帧是上行子帧;或者,
    当所述4比特LAA的子帧配置信息取十进制值15的时候,即二进制值为“1111”, 表示当前子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且接下来的子帧是上行子帧;或者,
    当所述4比特LAA的子帧配置信息取十进制值15的时候,即二进制值为“1111”,表示下一个子帧是11或10或9或6或3个正交频分复用OFDM符号的非完整子帧并且下一个子帧之后的子帧是上行子帧。
  39. 根据权利要求2所述的方法,其中,
    若针对物理上行控制信道PUCCH的发射功率控制TPC比特是从非授权载波上的下行控制信息DCI格式1A或1B或1D或1或2A或2或2B或2C或2D发出的,则该针对物理上行控制信道PUCCH的发射功率控制TPC比特仅对非授权载波有效,对授权载波的物理上行控制信道PUCCH无效若非授权载波不支持物理上行控制信道PUCCH且针对物理上行控制信道PUCCH的发射功率控制TPC比特是从非授权载波上的下行控制信息DCI格式1A或1B或1D或1或2A或2或2B或2C或2D发出的,则该针对物理上行控制信道PUCCH的发射功率控制TPC比特应预留,用户设备UE没有对应的操作。
  40. 根据权利要求2所述的方法,其中,
    若非授权载波上有公共搜索空间且支持下行控制信息DCI格式3或3A,则由该下行控制信息DCI格式3或3A发出的发射功率控制TPC命令仅作用到非授权载波的物理上行控制信道PUCCH或/和物理上行共享信道PUSCH上。
  41. 根据权利要求1所述的方法,其中,
    所述上行的信道或/和信号包括物理上行共享信道PUSCH、物理上行控制信道PUCCH、物理随机接入信道PRACH、探测参考信号SRS、解调参考信号DM-RS、上行占用信号。
  42. 根据权利要求2所述的方法,其中,
    若所述下行控制信息DCI的总的比特长度小于针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度,则在所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得所述下行控制信息DCI的总的比特长度与针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式4的比特长度相等。
  43. 根据权利要求2所述的方法,其中,
    若所述下行控制信息DCI的总的比特长度小于针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式0的比特长度,则在所述下行控制信息DCI最后面添加一个或多个二进制比特“0”以使得所述下行控制信息DCI的总的比特长度与针对同一服务小区的用于在配置好的发射模式下调度上行的下行控制信息DCI格式0的比特长度相等。
  44. 根据权利要求2所述的方法,其中,
    所述资源块分配比特为:
    max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–Reserve比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,或者HARQ_BIT为所述针对第一个传输块的混合自动重传请求HARQ进程号码比特数与针对第二个传输块的混合自动重传请求HARQ进程号码比特数之和,Reserve为预留的一个或多个比特,所述资源块的分配粒度为2*P或3*P或4*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小;或者,
    所述资源块分配比特为:
    max(ceil(log2(N_UL_RB*(N_UL_RB+1)/2)),ceil(log2(Com(ceil(N_UL_RB/P+1),4))))–HARQ_BIT–RV_BIT–Reserve比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,RV_BIT为所述针对第一个传输块的冗余版本比特数与针对第二个传输块的冗余版本比特数之和,Reserve为预留的一个或多个比特,所述资源块的分配粒度为4*P或5*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小;或者,
    所述资源块分配比特为:
    ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT–Reserve比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,Reserve为预留的一个或多个比特,所述资源块的分配粒度为2*P或3*P或4*P或25个资源块,所述资源块的资源分配方式为比特位图或者分配全部***带宽,P为根据上行***带宽而确定的资源块组大小;或者,
    所述资源块分配比特为:
    ceil(log2(N_UL_RB*(N_UL_RB+1)/2))–HARQ_BIT–RV_BIT–Reserve比特,其中,max()为取2个数中的较大者的操作,ceil()为上取整操作,log2()为取以2为底的对数的操作,N_UL_RB为以资源块为单位的上行***带宽,Com(M,N)为从M个数中取出N个数的扩展组合数操作,HARQ_BIT为混合自动重传请求HARQ进程号码比特数,RV_BIT为所述冗余版本比特数,Reserve为预留的一个或多个比特,所述资源块的分配粒度为3*P或4*P或5*P或25个资源块,所述资源块的资源分配方式为比特位图或者 分配全部***带宽。
  45. 根据权利要求1所述的方法,其中,
    所述下行控制信息DCI包括:针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特。
  46. 根据权利要求37或45所述的方法,其中,
    针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特为2比特或3比特或4比特或5比特。
  47. 根据权利要求2所述的方法,其中,
    在所述下行控制信息DCI包括:针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码比特的情况下,用户设备UE获得混合自动重传请求HARQ进程号码;然后,所述用户设备UE获得其他的下行控制信息DCI;然后所述用户设备UE结合所述混合自动重传请求HARQ进程号码和所述其他的下行控制信息DCI来发射物理上行共享信道PUSCH。
  48. 根据权利要求2所述的方法,其中,
    所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来构成混合自动重传请求HARQ进程号码比特,其中,用户设备UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射;或者,
    所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来构成混合自动重传请求HARQ进程号码比特和冗余版本比特,当所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来的比特长度低于预定值L_Limit时,将没有冗余版本比特,其中,UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射,L_Limit的取值为1、2、3、4、5。
  49. 根据权利要求48所述的方法,其中,
    所述信道状态信息CSI请求比特和探测参考信号SRS请求比特在串接的时候,信道状态信息CSI请求比特为最高比特MSB,探测参考信号SRS请求比特为最低比特LSB;或者,
    所述信道状态信息CSI请求比特或/和探测参考信号SRS请求比特在串接的时候,信道状态信息CSI请求比特为最低比特LSB,探测参考信号SRS请求比特为最高比特MSB。
  50. 根据权利要求48所述的方法,其中,
    当所述信道状态信息CSI请求比特为1比特且所述探测参考信号SRS请求比特为2 比特的时候,所述信道状态信息CSI请求比特和所述探测参考信号SRS请求比特串接起来而构成混合自动重传请求HARQ进程号码比特为3比特,可支持最多8个混合自动重传请求HARQ进程;
    当所述信道状态信息CSI请求比特为2比特且所述探测参考信号SRS请求比特为2比特的时候,所述信道状态信息CSI请求比特和所述探测参考信号SRS请求比特串接起来而构成混合自动重传请求HARQ进程号码比特为4比特,可支持最多16个混合自动重传请求HARQ进程;
    当所述信道状态信息CSI请求比特为2比特且所述探测参考信号SRS请求比特为1比特的时候,所述信道状态信息CSI请求比特和所述探测参考信号SRS请求比特串接起来而构成混合自动重传请求HARQ进程号码比特为3比特,可支持最多8个混合自动重传请求HARQ进程;
    当所述信道状态信息CSI请求比特为2比特且所述探测参考信号SRS请求比特为0比特的时候,所述信道状态信息CSI请求比特和所述探测参考信号SRS请求比特串接起来而构成混合自动重传请求HARQ进程号码比特为2比特,可支持最多4个混合自动重传请求HARQ进程;
    当所述信道状态信息CSI请求比特为1比特且所述探测参考信号SRS请求比特为1比特的时候,所述信道状态信息CSI请求比特和所述探测参考信号SRS请求比特串接起来而构成混合自动重传请求HARQ进程号码比特为2比特,可支持最多4个混合自动重传请求HARQ进程;
    当所述信道状态信息CSI请求比特为1比特且所述探测参考信号SRS请求比特为0比特的时候,所述信道状态信息CSI请求比特和所述探测参考信号SRS请求比特串接起来而构成混合自动重传请求HARQ进程号码比特为1比特,可支持最多2个混合自动重传请求HARQ进程。
  51. 根据权利要求17所述的方法,其中,
    所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特和调制编码方案比特均指示出各自对应传输块的冗余版本信息,当所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特和调制编码方案比特对应的十进制值为0至28中任一取值时,对应的冗余版本为0,即RV 0;
    当所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特和调制编码方案比特对应的十进制值为29时,对应的冗余版本为1,即RV 1;
    当所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特和调制编码方案比特对应的十进制值为30时,对应的冗余版本为2,即RV 2;
    当所述针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案 比特和调制编码方案比特对应的十进制值为31时,对应的冗余版本为3,即RV 3。
  52. 根据权利要求2所述的方法,其中,
    所述载波指示比特用来表示混合自动重传请求HARQ进程号码,载波指示比特对应的十进制值为混合自动重传请求HARQ进程号码;
    当本载波调度本载波时,3比特或5比特的载波指示比特对应的十进制值为混合自动重传请求HARQ进程号码;
    当载波指示比特5比特且为本载波调度本载波时,5比特的载波指示比特的最高3比特或最低3比特对应的十进制值为混合自动重传请求HARQ进程号码;
    当载波指示比特5比特且为本载波调度本载波时,5比特的载波指示比特的最高4比特或最低4比特对应的十进制值为混合自动重传请求HARQ进程号码。
  53. 根据权利要求2所述的方法,其中,
    所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特可用来表示混合自动重传请求HARQ进程号码;
    3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特对应的十进制值为混合自动重传请求HARQ进程号码,其中,解调参考信号DM-RS的循环偏移及正交掩码OCC索引固定为0或高层配置的参数值cyclicShift;或者3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特的最高2比特或最低2比特对应的十进制值为混合自动重传请求HARQ进程号码,其中,解调参考信号DM-RS的循环偏移及正交掩码OCC索引可为0或1或高层配置的参数值cyclicShift;或者3比特的针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特的最高1比特或最低1比特对应的十进制值为混合自动重传请求HARQ进程号码,其中,解调参考信号DM-RS的循环偏移及正交掩码OCC索引为0或1或2或3或高层配置的参数值cyclicShift。
  54. 根据权利要求2所述的方法,其中,
    在5比特的针对第一个传输块的调制编码方案比特和针对第二个传输块的调制编码方案比特各都是取出1比特或2比特来当作混合自动重传请求HARQ进程号码用,其中,混合自动重传请求HARQ进程号码有2比特或4比特。
  55. 根据权利要求2所述的方法,其中,
    在5比特的调制编码方案比特取出1比特或2比特来当作混合自动重传请求HARQ进程号码用,混合自动重传请求HARQ进程号码有1比特或2比特。
  56. 根据权利要求2所述的方法,其中,
    在2天线端口时,在3比特的预编码信息和发射层数比特中取出2比特或3比特来当作混合自动重传请求HARQ进程号码用;
    在4天线端口时,在6比特的预编码信息和发射层数比特中取出2比特或3比特或4比特来当作混合自动重传请求HARQ进程号码用,在取出2比特或3比特或4比特来当作混合自动重传请求HARQ进程号码用的情况下,取出预编码信息和发射层数比特的最高2比特或3比特或4比特,或者取出预编码信息和发射层数比特的最低2比特或3比特或4比特。
  57. 根据权利要求2所述的方法,其中,
    所述信道状态信息CSI请求比特和探测参考信号SRS请求比特和资源分配类型比特串接起来构成混合自动重传请求HARQ进程号码比特,其中,UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射。
  58. 根据权利要求2所述的方法,其中,
    所述信道状态信息CSI请求比特和探测参考信号SRS请求比特和资源分配类型比特串接起来构成混合自动重传请求HARQ进程号码比特和冗余版本比特,当所述信道状态信息CSI请求比特和探测参考信号SRS请求比特和资源分配类型比特串接串接起来的比特长度低于一定值时L_Limit,将没有冗余版本比特,用户设备UE可用固定的冗余版本或者按针对第一个传输块的调制编码方案比特或针对第二个传输块的调制编码方案比特或调制编码方案比特来获得冗余版本来发射,L_Limit的取值为1、2、3、4、5。
  59. 根据权利要求2所述的方法,其中,
    所述信道状态信息CSI请求比特表示混合自动重传请求HARQ进程号码,1比特或2比特或3比特的信道状态信息CSI请求比特对应的十进制值为混合自动重传请求HARQ进程号码。
  60. 根据权利要求2所述的方法,其中,
    所述跳频比特为1比特。
  61. 根据权利要求2所述的方法,其中,
    串接的所述信道状态信息CSI请求比特和跳频比特,用于表示混合自动重传请求HARQ进程号码;
    在2比特或3比特或4比特的串接后的所述信道状态信息CSI请求比特和跳频比特对应的十进制值为混合自动重传请求HARQ进程号码,信道状态信息CSI请求固定为0,跳频固定为0。
  62. 根据权利要求2所述的方法,其中,
    所述信道状态信息CSI请求比特表示为源载波的服务小区索引;
    或者所述针对解调参考信号DM-RS的循环偏移及正交掩码OCC索引比特表示为源 载波的服务小区索引;
    或者所述预编码信息和发射层数比特表示为源载波的服务小区索引;
    或者所述上行调度指示比特和下行分配指示DAI比特串接起来表示为源载波的服务小区索引或混合自动重传请求HARQ进程号码;
    或者所述信道状态信息CSI请求比特和探测参考信号SRS请求比特串接起来表示为源载波的服务小区索引;
    或者所述信道状态信息CSI请求比特和跳频比特串接起来表示为源载波的服务小区索引。
  63. 根据权利要求45所述的方法,其中,
    所述下行控制信息DCI在非授权载波的公共搜索空间的第一个聚合度为4或8的控制信道单元CCE上发射;
    或者所述下行控制信息DCI在非授权载波的公共搜索空间的第2个聚合度为4或8的控制信道单元CCE上发射;
    或者所述下行控制信息DCI在非授权载波的公共搜索空间的第3或第4个聚合度为4的控制信道单元CCE上发射。
  64. 根据权利要求45所述的方法,其中,
    所述下行控制信息DCI在授权载波的公共搜索空间的第一个聚合度为4或8的控制信道单元CCE上发射;
    或者,所述下行控制信息DCI在授权载波的公共搜索空间的第一个或第二个或第三个或第四个聚合度为4的控制信道单元CCE上发射;
    或者,所述下行控制信息DCI在授权载波的公共搜索空间的第一个或第二个聚合度为8的控制信道单元CCE上发射。
  65. 根据权利要求45所述的方法,其中,
    针对单个用户设备UE或整个小区所有用户设备UE的混合自动重传请求HARQ进程号码由一条或多条物理混合自动重传请求指示信道PHICH来承载。
  66. 根据权利要求45所述的方法,其中,
    一条物理混合自动重传请求指示信道PHICH承载1比特的混合自动重传请求HARQ进程号码信息;3条物理混合自动重传请求指示信道PHICH承载3比特的混合自动重传请求HARQ进程号码信息;4条物理混合自动重传请求指示信道PHICH承载4比特的混合自动重传请求HARQ进程号码信息;5条物理混合自动重传请求指示信道PHICH承载5比特的混合自动重传请求HARQ进程号码信息。
  67. 根据权利要求66所述的方法,其中,
    当混合自动重传请求HARQ进程号码信息有3比特时,第1个比特承载在第1个PHICH组上,第2个比特承载在第2个PHICH组上,第3个比特承载在第3个PHICH组上,当混合自动重传请求HARQ进程号码信息有超过3比特时,均匀地或轮流地分布到各个PHICH组上面。
  68. 根据权利要求66所述的方法,其中,
    当混合自动重传请求HARQ进程号码信息有3比特时,所述3比特的混合自动重传请求HARQ进程号码将直接取代1比特的混合自动重传请求指示HI编码后的3比特;
    或者,1比特的混合自动重传请求指示HI编码后的3比特将被3比特的混合自动重传请求HARQ进程号码取代。
  69. 根据权利要求66所述的方法,其中,
    当混合自动重传请求HARQ进程号码信息有3比特时,第1个比特承载在第1个PHICH组的第1条PHICH上面,其中,信道号码
    Figure PCTCN2016109948-appb-100001
    为0,第2个比特承载在第2个PHICH组的第1条PHICH上面,其中,信道号码
    Figure PCTCN2016109948-appb-100002
    为0,第3个比特承载在第3个PHICH组的第1条PHICH上面,其中,信道号码
    Figure PCTCN2016109948-appb-100003
    为0。
  70. 根据权利要求69所述的方法,其中,
    混合自动重传请求HARQ进程号码信息的各个比特固定到各个PHICH组的各个PHICH上面。
  71. 根据权利要求66所述的方法,其中,
    混合自动重传请求HARQ进程号码的第M个比特承载在组号为
    Figure PCTCN2016109948-appb-100004
    的PHICH组中信道号码为
    Figure PCTCN2016109948-appb-100005
    的PHICH上,其中,
    Figure PCTCN2016109948-appb-100006
    为小区ID号码,mod为取模操作,M为正整数,
    Figure PCTCN2016109948-appb-100007
    是PHICH信道的扩频因子,
    Figure PCTCN2016109948-appb-100008
    的取值为2或4,
    Figure PCTCN2016109948-appb-100009
    为PHICH组的数量,
    Figure PCTCN2016109948-appb-100010
    Ceil(.)为上取整操作,Ng为基站配置的参数,Ng的取值范围为{0,1/6,1/2,1,2},
    Figure PCTCN2016109948-appb-100011
    为以资源块为单位的下行***带宽,
    Figure PCTCN2016109948-appb-100012
    的取值范围为6至110,当混合自动重传请求HARQ进程号码是针对单个用户设备的时候,
    Figure PCTCN2016109948-appb-100013
    取值为用户设备的小区无线网络临时标识C-RNTI。
  72. 根据权利要求1所述的方法,其中,还包括:所述下行控制信息DCI包括上行先听后说LBT方式比特了,LBT方式比特为2比特。
  73. 根据权利要求2所述的方法,其中,还包括,当所述用户设备UE的物理上行共享信道PUSCH配置为发射模式3或发射模式2或发射模式2A时,所述用户设备UE将监视所述下行控制信息DCI。
  74. 一种上行调度的装置,位于用户设备UE中,包括:
    接收模块,设置为接收基站发送的下行控制信息DCI;
    发送模块,设置为根据所述基站的配置信息和所述DCI来发送上行的信道或/和信号,以及确定所述信道或/和所述信号的发射功率。
PCT/CN2016/109948 2016-01-20 2016-12-14 上行调度的方法及装置 WO2017124861A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/071,432 US10912038B2 (en) 2016-01-20 2016-12-14 Uplink scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610037437.1 2016-01-20
CN201610037437.1A CN106993332B (zh) 2016-01-20 2016-01-20 上行调度的方法及装置

Publications (1)

Publication Number Publication Date
WO2017124861A1 true WO2017124861A1 (zh) 2017-07-27

Family

ID=59361438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109948 WO2017124861A1 (zh) 2016-01-20 2016-12-14 上行调度的方法及装置

Country Status (3)

Country Link
US (1) US10912038B2 (zh)
CN (1) CN106993332B (zh)
WO (1) WO2017124861A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684348B (zh) * 2017-10-27 2020-02-01 大陸商Oppo廣東移動通信有限公司 無線通訊方法和設備

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884640A (zh) 2016-03-31 2022-08-09 北京三星通信技术研究有限公司 通信***中的终端、基站及其方法
EP3282612A1 (en) 2016-08-11 2018-02-14 Panasonic Intellectual Property Corporation of America Codeword disabling in multi-subframe grants
CN110476471B (zh) * 2017-02-08 2023-07-14 诺基亚技术有限公司 用于窄带机器类型通信的上行链路非正交多址
CN110870237A (zh) * 2017-05-05 2020-03-06 中兴通讯股份有限公司 基于数据块的传输
CN109587794B (zh) * 2017-09-29 2023-05-26 北京紫光展锐通信技术有限公司 Pucch跳频的实现方法、装置及用户设备
US10707939B2 (en) * 2017-10-03 2020-07-07 Mediatek Inc. Codebook-based uplink transmission in wireless communications
MX2020001740A (es) * 2017-10-14 2020-03-24 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento de transmision de datos, dispositivo terminal y dispositivo de red.
WO2019148376A1 (en) * 2018-01-31 2019-08-08 Lenovo (Beijing) Limited Method and apparatus for resource collision avoidance on sidelink
US11785624B2 (en) * 2018-02-08 2023-10-10 Samsung Electronics Co., Ltd. Method for transmitting physical channels, user equipment therefor, method and user equipment for relay transmission
WO2019173976A1 (en) 2018-03-13 2019-09-19 Zte Corporation Transmissions based on scheduling indications
CN110891315B (zh) * 2018-09-11 2022-09-09 华为技术有限公司 通信方法、装置及计算机存储介质
CN110972322B (zh) * 2018-09-28 2022-10-28 华为技术有限公司 一种随机接入的方法和通信装置
EP3849271A4 (en) * 2018-09-28 2021-10-27 Huawei Technologies Co., Ltd. COMMUNICATION PROCESS AND APPARATUS
US20220022226A1 (en) * 2018-11-01 2022-01-20 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus, and base station and terminal
CN115412218A (zh) * 2018-11-23 2022-11-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109983724A (zh) * 2019-02-01 2019-07-05 北京小米移动软件有限公司 混合自动重传的方法及装置
EP3941142A1 (en) * 2019-03-15 2022-01-19 Ntt Docomo, Inc. User terminal and wireless communication method
CN113678489A (zh) * 2019-03-29 2021-11-19 中兴通讯股份有限公司 确定用于上行链路传输的传输功率的方法、装置和***
WO2020204532A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
US20220191899A1 (en) * 2019-03-29 2022-06-16 Lg Electronics Inc. Method for transmitting or receiving signals for multiple transport block scheduling, and apparatus therefor
KR20210134334A (ko) * 2019-03-29 2021-11-09 엘지전자 주식회사 다중 전송 블록 스케줄링을 위한 신호의 송수신 방법 및 이를 위한 장치
US20220166551A1 (en) * 2019-04-02 2022-05-26 Datang Mobile Communications Equipment Co.,Ltd. Information transmission method and user equipment
CN112970303B (zh) * 2019-04-30 2022-11-04 Oppo广东移动通信有限公司 一种混合自动重传请求确认的传输方法、设备及存储介质
CN111866920B (zh) * 2019-04-30 2022-03-29 中国信息通信研究院 一种物理上行共享信道发送方法和设备
CN110535572B (zh) * 2019-05-15 2023-07-04 中兴通讯股份有限公司 上行信息反馈资源确定方法和装置
KR20220030996A (ko) * 2019-07-12 2022-03-11 삼성전자주식회사 통신 시스템에서 업링크 신호를 송신하는 방법 및 장치
CN111092634B (zh) * 2019-12-31 2024-04-19 中兴通讯股份有限公司 一种调度方法、装置、设备和存储介质
CN113676952A (zh) * 2020-05-13 2021-11-19 深圳市中兴微电子技术有限公司 编码方法、装置、设备和存储介质
US11777681B2 (en) * 2020-07-20 2023-10-03 Qualcomm Incorporated Transport block definitions for differential data-aided demodulation reference signals
CN115459888B (zh) * 2021-05-21 2023-09-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2023115422A1 (zh) * 2021-12-22 2023-06-29 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
WO2014049169A1 (en) * 2012-09-28 2014-04-03 Nokia Siemens Networks Oy Timing indication for dynamic time division duplex (tdd) uplink/downlink (ul/dl) reconfiguration
CN104917597A (zh) * 2014-03-13 2015-09-16 上海朗帛通信技术有限公司 一种非授权频谱上的传输方法和装置
CN104956740A (zh) * 2013-01-24 2015-09-30 Lg电子株式会社 在无线通信***中控制用于设备对设备通信的发现信号的发送功率的方法及其装置
CN105210430A (zh) * 2013-03-04 2015-12-30 Lg电子株式会社 在无线通信***中控制上行链路功率的方法及其设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788963B2 (en) * 2002-08-08 2004-09-07 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple a states
US7283818B2 (en) * 2004-01-23 2007-10-16 Samsung Electronics Co., Ltd. Apparatus and method using page response messages to change the slot cycle index of a selected mobile station in a wireless network
CN102362460A (zh) * 2009-04-24 2012-02-22 诺基亚公司 用于delta数据存储的方法和装置
CN104079388B (zh) * 2009-12-03 2017-10-17 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
CN101932114B (zh) * 2009-12-14 2014-10-22 中兴通讯股份有限公司 一种上行调度授权控制信令的发送方法和基站
RU2563799C2 (ru) * 2011-04-29 2015-09-20 Фудзицу Лимитед Способ сообщения сконфигурированной максимальной выходной мощности и пользовательское оборудование
CN103167615B (zh) * 2011-12-19 2016-03-02 华为技术有限公司 信息的处理方法及装置
US9603163B2 (en) * 2012-11-01 2017-03-21 Lg Electronics Inc. Method and apparatus for supporting scheduling groups of devices characteristics in a wireless communication system
CN104243108B (zh) * 2013-06-08 2019-06-14 中兴通讯股份有限公司 上行混合自动重传请求反馈方法、装置和***
CN104753631A (zh) * 2013-12-30 2015-07-01 中兴通讯股份有限公司 一种256qam的调度方法、基站及用户设备
US10368343B2 (en) * 2015-05-27 2019-07-30 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for downlink scheduling that mitigate PDCCH congestion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
WO2014049169A1 (en) * 2012-09-28 2014-04-03 Nokia Siemens Networks Oy Timing indication for dynamic time division duplex (tdd) uplink/downlink (ul/dl) reconfiguration
CN104956740A (zh) * 2013-01-24 2015-09-30 Lg电子株式会社 在无线通信***中控制用于设备对设备通信的发现信号的发送功率的方法及其装置
CN105210430A (zh) * 2013-03-04 2015-12-30 Lg电子株式会社 在无线通信***中控制上行链路功率的方法及其设备
CN104917597A (zh) * 2014-03-13 2015-09-16 上海朗帛通信技术有限公司 一种非授权频谱上的传输方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684348B (zh) * 2017-10-27 2020-02-01 大陸商Oppo廣東移動通信有限公司 無線通訊方法和設備

Also Published As

Publication number Publication date
CN106993332B (zh) 2019-07-02
US20190059057A1 (en) 2019-02-21
US10912038B2 (en) 2021-02-02
CN106993332A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2017124861A1 (zh) 上行调度的方法及装置
US11510232B2 (en) Method and apparatus for receiving downlink data transmissions
EP3577835B1 (en) Method and apparatus for short pdcch operation
CN106559878B (zh) 上行控制信息uci发送、获取方法及装置
AU2018328285B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
EP3251247B1 (en) Method and apparatus for transmission of uplink control information in multi-carrier communication system
JP6501903B2 (ja) ネットワークノードユーザデバイス及びその方法
CN107409014A (zh) 用于操作大量载波的上行链路反馈方法
JP2021512516A (ja) データ再伝送に関するコードブックフィードバック
WO2010133043A1 (zh) 多子帧调度方法、***及终端、基站
US20160198453A1 (en) Method, Device, and System for Sending Feedback Information
CN112088515B (zh) 针对重叠资源块集的速率匹配行为
TW201010458A (en) Dynamic assignment of ACK resource in a wireless communication system
WO2019052455A1 (zh) 数据信道参数配置方法及装置
WO2019148813A1 (zh) 信息的传输方法及装置、存储介质、电子装置
CN111615861B (zh) 多比特调度请求
US20110235534A1 (en) Uplink ack/nack signaling for aggregated carriers in a communication network
WO2019154126A1 (zh) 反馈码本确定方法及装置
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
US11252747B2 (en) Communication method and device
CN110603763B (zh) 数据反馈方法及相关设备
JP6687808B2 (ja) 制御情報を送信するための方法、装置、およびシステム
CN111435847A (zh) 传输信息的方法和装置
US20210204264A1 (en) Information sending method, information receiving method, and communications apparatus
GB2560523A (en) Transmission of acknowledgements over uplink in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886121

Country of ref document: EP

Kind code of ref document: A1