WO2016107254A1 - 一种分级波束接入方法及装置 - Google Patents

一种分级波束接入方法及装置 Download PDF

Info

Publication number
WO2016107254A1
WO2016107254A1 PCT/CN2015/092864 CN2015092864W WO2016107254A1 WO 2016107254 A1 WO2016107254 A1 WO 2016107254A1 CN 2015092864 W CN2015092864 W CN 2015092864W WO 2016107254 A1 WO2016107254 A1 WO 2016107254A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
node
uplink
downlink
beam group
Prior art date
Application number
PCT/CN2015/092864
Other languages
English (en)
French (fr)
Inventor
肖华华
毕峰
郭森宝
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016107254A1 publication Critical patent/WO2016107254A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for hierarchical beam access.
  • LTE-Advanced Long Term Evolution advanced system
  • the calculated average ratio of the high-frequency path loss value to the LTE path loss value is:
  • the receiving side satisfies the minimum signal to interference plus noise ratio (SINR) requirement, it is necessary to increase the transmission and receiver gain.
  • SINR signal to interference plus noise ratio
  • R is the radius of the cell coverage
  • is the wavelength of the corresponding carrier
  • G t is the transmit antenna gain
  • G r is the receive antenna gain
  • the highest demand for LTE communication is required to reach an area covering 100km. If only the average path loss (empty area) is considered according to the highest coverage, the high-frequency communication can be considered to cover an area up to 1km. If you consider the high air absorption (oxygen absorption, rain fading, fog fading) of the actual high-frequency carrier and sensitivity to shadow fading, the actual supported coverage is less than 1km.
  • the high-frequency communication supports a maximum of 1km coverage
  • the same coverage area can obtain a different SINR ratio than the LTE system.
  • the former has a signal-to-noise ratio of at least 20 dB lower than the latter, in order to ensure high-frequency communication and coverage within the LTE system.
  • With an approximate SINR it is necessary to ensure the antenna gain of high frequency communication. At this time, we are fortunate that because high-frequency communication has shorter wavelengths, it can guarantee more antenna elements per unit area, and more antenna elements can provide higher antenna gain, thus ensuring high-frequency communication. Coverage performance.
  • More antenna elements mean that we can use beamforming to ensure high-frequency communication coverage.
  • LTE in order to obtain a good beamforming effect, it is necessary to accurately obtain the state information of the channel, thereby The weight of the beamforming is obtained in the state information of the track.
  • the second node of the receiving end For the first node of the transmitting end, the second node of the receiving end needs to feed back the downlink channel state information or weight.
  • the first node of the transmitting end needs to feed back the uplink.
  • the channel state information or the weight value so that the first node can use the optimal beam to transmit the downlink service, and the second node can also use the optimal beam to send the uplink service.
  • the first node cannot use the optimal beam coverage to the receiving end before obtaining the weight, so that the receiving end cannot measure the reference signal sent by the first node.
  • the best way to solve this problem is to add a discovery process through which the first node and the second node can discover each other and communicate with the optimal weights.
  • the discovery process is actually a training process.
  • the transmitting end sends the multiple beam sequence signals (discovery signals) in advance, so that the receiving end can detect the sequence, obtain the beam sequence number and feedback the process, and send and receive at the transmitting end. After discovering that each other exists, the initial communication can be performed.
  • the second node When the second node performs synchronization, it needs to detect the synchronization signal for time synchronization and frequency synchronization, and the second node needs to detect the discovery signal to obtain the optimal beam index information. In addition, the second node can simultaneously obtain time synchronization and frequency synchronization and optimal beam index information by detecting the synchronization signal.
  • the embodiment of the invention provides a method and a device for grading beam access, so as to at least solve the problem that the first node or the second node cannot efficiently obtain an optimal beam in the related art.
  • a hierarchical beam access method including: a first node transmitting, by using at least two levels of beam groups, related signals and/or channels in a downlink access process, where the beam group is configured by One or more beams are formed.
  • the related signal and/or channel in the downlink access procedure includes at least one of the following signals and/or channels: a signal and/or a channel for identifying a downlink transmit beam; and a response to the uplink access signal and And/or downlink access response signals and/or channels of the channel; indication signals and/or channels for responding to uplink access configuration information.
  • the coverage space of one low-level beam group of the at least two-level beam group is a combined coverage space of one or more high-level beam groups of the at least two-level beam group; or the low-level beam
  • the group includes one or more high-level beam groups; or the coverage of the one low-level beam group is composed of one or more high-level beam group coverages; or one or more high-level beam groups Covered by a low-level beam group.
  • the sending, by the first node, the related signal and/or the channel in the downlink access process by using the at least two-stage beam group includes: the first node transmitting, by using the first-level downlink transmit beam group, the channel having the beam characteristic and/or Or signal; among them,
  • the channel and/or signal information is used to indicate at least one of the following: identification of a downlink transmission beam, synchronization of a downlink transmission beam, indication of access configuration information, and notification system configuration information; and the indication access configuration information includes at least the following Information of one: the first level downlink transmission beam group includes at least one first level downlink beam.
  • the first node receives the uplink access signal and/or the channel sent by the second node at the pre-defined or configured uplink sending time; the first node acquires the second one by using the uplink access signal and/or the channel.
  • the first node uses the second-level downlink transmit beam group to select a first-level downlink transmit beam group according to a predefined or pre-configured principle, and send the foregoing by using the first-level downlink transmit beam group.
  • Response information of the uplink access channel and/or signal is not limited to a predefined or pre-configured principle.
  • the first node receives the uplink access configuration information and/or the measurement reference signal sent by the second node on the predefined or pre-configured time-frequency resource, where the uplink access configuration information includes an uplink media connection.
  • Incoming Control Media Access Control, MAC for short
  • MAC Media Access Control
  • the uplink access configuration information further includes a beam index corresponding to the beam in the second secondary downlink transmit beam group.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the first node uses the obtained second secondary downlink transmit beam group to select an optimal one or more downlink transmit beams to form a third secondary downlink transmit beam according to a predefined or pre-configured principle. group.
  • the first node sends the uplink access configuration information response indication by using the third secondary downlink transmission beam group.
  • the information exchange between the first node and the second node by using the wave array includes: the first node uses the third secondary downlink transmit beam group and the second node to perform initial control signaling and/or data. Interaction.
  • the second-level downlink transmission beam group is one or more optimal downlink beams obtained by the second node when detecting the first-level downlink transmission beam group.
  • the downlink beam is a downlink beam with the best quality; the downlink beam is a downlink beam with the smallest interference; and the downlink beam is a downlink with a minimum power overhead. Beam.
  • a method for grading beam access including: a first node indicating at least two sets of beam groups for selecting an uplink transmit beam, wherein the beam set is composed of one or more beams .
  • the related signal and/or channel that indicates that the two-stage beam group is carried in the downlink access process includes one of the following signals and/or channels: downlink access for responding to the uplink access signal and/or channel A response signal or channel; an indication signal or channel for responding to uplink access configuration information.
  • the coverage space of a low-level beam group is one or more high-level of the at least two-level beam group.
  • the combination of the beam groups covers the space; or the low-level beam group includes one or more high-level beam groups; or the coverage of the one low-level beam group is covered by one or more high-level beam groups Composition; or, the space formed by one or more high-level beam groups is covered by a low-level beam group.
  • the first node sends a channel and/or a signal having a beam characteristic, where the channel and/or signal information is used to indicate information of at least one of: synchronizing, indicating access configuration information, notifying system configuration information;
  • the indication access configuration information includes at least one of the following: a time-frequency code resource of the first-level uplink transmission beam group, an uplink access signal, and/or a transmission power indication information of the channel.
  • the first node receives an uplink access signal and/or channel that is sent by the second node by using the first level uplink transmit beam group at a predefined or configured uplink sending time.
  • the first node sends an uplink access channel and/or signal response information to the second node, and the uplink access channel and/or the signal response information carries a beam corresponding to the second uplink transmission beam group. Beam index.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is an optimal uplink transmit beam selected by the first node by detecting an uplink access channel and/or a signal according to a predefined or pre-configured principle.
  • the first node receives, on a predefined or pre-configured time-frequency resource, the second node, by using the first secondary uplink transmit beam group, to send uplink access configuration information and/or a measurement reference signal, where the access configuration is configured.
  • the information includes an uplink access medium access control MAC layer message.
  • the first node pre-defining the first-level uplink transmit beam group is one or more optimal selected by the second node from the second-level uplink transmit beam group according to a predefined or pre-configured principle.
  • Uplink transmit beam is one or more optimal selected by the second node from the second-level uplink transmit beam group according to a predefined or pre-configured principle.
  • the first node sends an uplink access configuration information response indication, where the uplink access configuration information response indication carries a beam index corresponding to a beam in the second secondary uplink transmission beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is an optimal one selected by the first node by detecting uplink access configuration information and/or a measurement reference signal according to a predefined or pre-configured principle.
  • Uplink transmit beam is an optimal one selected by the first node by detecting uplink access configuration information and/or a measurement reference signal according to a predefined or pre-configured principle.
  • the first node and the second node perform initial control signaling and/or data interaction.
  • a hierarchical beam access method including: a second node transmitting, by using at least two levels of beam groups, related signals and/or channels in an uplink access process, where the beam group is It consists of one or more beams.
  • the related signal and/or channel in the uplink access process includes at least one of the following signals and/or channels: a signal and/or a channel for identifying an uplink transmit beam; and a signal for performing uplink access. And/or channel; uplink access configuration signals and/or channels.
  • a low-level beam group is a combination of one or more high-level beam groups; or, a low level
  • the beam group includes one or more high-level beam groups; or, the coverage space or range of one low-level beam group is composed of one or more high-level beam groups; or, the space formed by one or more high-level beam groups Covered by a low-level beam group.
  • the second node sends the uplink access signal and/or channel sent by the first-level uplink transmit beam group in the pre-defined or configured uplink transmit time-frequency code resource.
  • the second node sends the uplink access configuration information and/or the measurement reference signal by using the first secondary uplink transmit beam group on the predefined or pre-configured time-frequency resource, where the access configuration information includes the uplink connection.
  • Incoming media access controls MAC layer messages.
  • the first secondary uplink transmit beam group is one or more optimal uplink transmit beams selected by the second node from the second primary uplink transmit beam group according to a predefined or pre-configured principle.
  • the second node selects an optimal third-level uplink transmit beam group according to the pre-defined or pre-configured principle according to the received second-level uplink transmit beam group index, and uses the third The level uplink transmit beam group and the first node perform initial control signaling and/or data interaction.
  • a hierarchical beam access method including: detecting, by a second node, a related signal and/or channel in a downlink access process by using a second node by using at least two levels of beam groups,
  • the beam group is composed of one or more beams.
  • the related signals and/or channels in the foregoing uplink access process include at least the following signals and/or channels: signals and/or channels used to identify uplink transmit beams; and signals for uplink access and/or Or channel; uplink access configuration signal and/or channel.
  • one low-level beam group is a combination of one or more high-level beam groups; or one low-level beam group includes one or more high-level beam groups; or, a low-level beam group coverage
  • the space or range consists of one or more high-level beam groups; or, the space formed by one or more high-level beam groups is covered by a low-level beam group.
  • the foregoing second node detects, on the predefined or configured time-frequency code resource, the channel and/or signal that is sent by the first node by using the first-level downlink transmit beam group, where the channel and/or the signal is used.
  • the signal information is used for at least one of a downlink transmission beam identification, a synchronization, an indication access configuration information, and a notification system configuration information, where the first level downlink transmission beam group includes at least one first level downlink beam.
  • the second node detects at least one of a time-frequency code resource, an uplink access signal, and/or a transmission power indication information of the first-level uplink transmission beam group in the indication access configuration information.
  • the second-level downlink transmission beam group is one or more optimal downlink beams obtained by the foregoing second node by detecting the first-level downlink transmission beam group.
  • the foregoing optimal selection principle includes at least one of the following: quality optimization, minimum interference, and minimum power consumption.
  • the second node selects the first secondary downlink transmit beam group according to the pre-defined or pre-configured principle according to the second-level downlink transmit beam group obtained by the first node, and the second node is in advance.
  • the receiving first node on the defined or pre-configured resource transmits the uplink access channel and/or signal response information by using the first secondary downlink transmit beam group.
  • the second node obtains a beam index corresponding to a beam in the second-level uplink transmit beam group in the uplink access channel and/or the signal response information.
  • the second node selects, according to the pre-defined or pre-configured principle, the first node by detecting the uplink access channel and/or the signal according to the beam corresponding to the beam in the second-level uplink transmit beam group. Excellent uplink transmit beam.
  • the foregoing access configuration information includes a beam index corresponding to a beam in the second secondary downlink transmit beam group.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node by detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the second node receives, on the predefined or pre-configured time-frequency code resource, the first node sends an uplink access configuration information response indication by using the third-level downlink transmission beam group, and the second node is in the uplink.
  • the beam index corresponding to the beam in the second-level uplink transmit beam group is obtained in the access configuration information response indication.
  • the foregoing second node pre-defines that the first node uses the obtained second-level downlink transmit beam group to select an optimal one or more downlink transmit beams according to a predefined or pre-configured principle for forming a lower third.
  • Secondary downlink transmit beam group pre-defines that the first node uses the obtained second-level downlink transmit beam group to select an optimal one or more downlink transmit beams according to a predefined or pre-configured principle for forming a lower third.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is an optimal one selected by the first node by detecting uplink access configuration information and/or a measurement reference signal according to a predefined or pre-configured principle.
  • Uplink transmit beam is an optimal one selected by the first node by detecting uplink access configuration information and/or a measurement reference signal according to a predefined or pre-configured principle.
  • a hierarchical beam access apparatus is further provided, where the apparatus is applied to a first node, and includes: a sending module, configured to use at least two levels of beam groups to send related signals in a downlink access process and / or channel, wherein the beam set described above consists of one or more beams.
  • a hierarchical beam access device is further provided, where the device is applied to a first node, and includes: an indication module, configured to at least indicate a two-level beam group for selecting an uplink transmit beam,
  • the beam set described above consists of one or more beams.
  • a hierarchical beam access device is further provided, where the device is applied to a second node, and includes: a sending module, configured to use at least two levels of beam groups to send related signals in an uplink access process and / or channel, wherein the beam set described above consists of one or more beams.
  • a hierarchical beam access device is further provided, where the device is applied to a second node, and includes: a detecting module, configured to detect that the first node sends downlink access by using at least two levels of beam groups A related signal and/or channel in the process, wherein the beam set is composed of one or more beams.
  • the first node uses at least two levels of beam groups to transmit related signals and/or channels in the downlink access process; wherein the beam group is composed of one or more beams.
  • FIG. 1 is a flowchart of a hierarchical beam access method according to an embodiment of the present invention
  • FIG. 2 is a flowchart (1) of a hierarchical beam access method according to an embodiment of the present invention
  • FIG. 3 is a flowchart (2) of a hierarchical beam access method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart (3) of a hierarchical beam access method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram (1) of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram (2) of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram (3) of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a two-stage beam group access training process according to an embodiment of the present invention.
  • 10(a), 10(b) are schematic diagrams of low-level beams and high-level beams in accordance with an embodiment of the present invention.
  • FIG. 1 is a flowchart of a hierarchical beam access method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 The first node sends the related signals and/or channels in the downlink access process by using at least two levels of beam groups, where the beam group is composed of one or more beams.
  • the first node uses at least two levels of beam groups to transmit related signals and/or channels in the downlink access process, which solves the problem that the first node or the second node cannot efficiently obtain the optimal beam in the related art, and realizes Different signal-to-noise ratios are provided for channels and signals, providing a more reliable and fast access process.
  • the track may be a signal and/or channel for identifying a downlink transmit beam, may be a downlink access response signal and/or channel for responding to an uplink access signal and/or channel, or may be configured to respond to an uplink access configuration.
  • An indication signal and/or channel for the information may be used to indicate whether the information is available.
  • the coverage space of one of the at least two-level beam groups is a combined coverage space of one or more high-level beam groups of the at least two-stage beam group; or, the one low level
  • the beam group includes the one or more high-level beam groups; or the coverage of one low-level beam group is composed of one or more high-level beam group coverages; or one or more high-level beam groups
  • the space is covered by a low-level beam set.
  • the so-called low-level beam refers to a beam with a large beam coverage and a wide beam width, as shown in Fig. 10(a).
  • the so-called high-level beam refers to a beam with a small beam coverage and a narrow beam width, as shown in Fig. 10(b).
  • a low-level beam can be subdivided into multiple high-level beams, and the high-level beam can be further subdivided into higher-level beams.
  • the first node uses the at least two-level beam group to send the related signals and/or channels in the downlink access process.
  • the first node sends the first-level downlink transmit beam group by using the first-level downlink transmit beam group.
  • a channel and/or signal having a beam characteristic; wherein the channel and/or signal information is used to indicate information of at least one of: identification of a downlink transmit beam, synchronization of a downlink transmit beam, indication of access configuration information, notification system configuration information And indicating that the access configuration information includes at least one of the following: the first level downlink transmission beam group includes at least one first level downlink beam.
  • the first node In a process in which the first node receives the uplink access signal and/or the channel sent by the second node at the pre-defined or configured uplink transmission time, in an optional embodiment, the first node passes the uplink access signal and/or Or the channel acquires a beam index corresponding to the beam in the second-level downlink transmission beam group.
  • the first node selects the first secondary downlink transmit beam group according to the pre-defined or pre-configured principle by using the second-level downlink transmit beam group, and sends the first-level downlink transmit beam group by using the first-level downlink transmit beam group.
  • Response information of the uplink access channel and/or signal is not limited to the pre-defined or pre-configured principle by using the second-level downlink transmit beam group, and sends the first-level downlink transmit beam group by using the first-level downlink transmit beam group.
  • the first node receives the uplink access configuration information and/or the measurement reference signal sent by the second node on the predefined or pre-configured time-frequency resource, where the uplink access configuration information includes the uplink connection. Enter the Media Access Control (MAC) layer message.
  • MAC Media Access Control
  • the uplink access configuration information may include multiple types of information.
  • the beam index corresponding to the beam in the second secondary downlink transmit beam group may be included.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the first node uses the acquired second-level downlink transmit beam group to select an optimal one or more downlink transmit beams to form a third-level downlink according to a predefined or pre-configured principle.
  • Send beam group uses the acquired second-level downlink transmit beam group to select an optimal one or more downlink transmit beams to form a third-level downlink according to a predefined or pre-configured principle.
  • the first node sends the uplink access configuration information response indication by using the third secondary downlink transmit beam group.
  • the first node uses the third secondary downlink transmit beam group and the second node to perform initial control signaling and/or data. Interaction.
  • the second-level downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first-level downlink transmit beam group.
  • the downlink beam is the downlink beam with the best quality, and the downlink beam is the downlink beam with the smallest interference.
  • the downlink beam is the downlink beam with the smallest power overhead.
  • the first level downlink beam (group), the second level downlink beam (group), the first level uplink beam (group), and the second level uplink beam (group) belong to the low level beam (group).
  • the third-level uplink beams (groups) belong to the high-level beam (group).
  • the first node includes at least one of the following: a macro base station, a micro base station, a pico base station, a home base station, a relay, and a wireless access point; and the second node includes at least one of the following: a data card, a mobile phone , laptops, personal computers, tablets, personal digital assistants, Bluetooth, relays, remote devices, wireless access points.
  • FIG. 2 is a flowchart (1) of a hierarchical beam access method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 The first node indicates at least two sets of beam groups for selecting an uplink transmit beam, and the beam set is composed of one or more beams.
  • the first node at least indicates that the two-stage beam group is used for selecting an uplink transmit beam, and solves the problem that the first node or the second node cannot obtain an optimal beam efficiently in the related art, and implements channel and signal provision. Different signal to noise ratios provide a more reliable and fast access process.
  • the signal or channel may also be an indication signal or channel for responding to uplink access configuration information.
  • a coverage space of a low-level beam group is a combined coverage space of one or more high-level beam groups in the at least two-level beam group; or a low-level beam group includes the one or Multiple high-level beam groups; or the coverage of the one low-level beam group is composed of one or more high-level beam group coverages; or one or more high-level beam groups consist of a low-level beam Group coverage.
  • the so-called low-level beam refers to a beam with a large beam coverage and a wide beam width, as shown in Fig. 10(a).
  • the so-called high-level beam refers to a beam with a small beam coverage and a narrow beam width, as shown in Fig. 10(b).
  • a low-level beam can be subdivided into multiple high-level beams, and the high-level beam can be further subdivided into higher-level beams.
  • the first node transmits a channel and/or signal having beam characteristics, the channel and/or signal information being used to indicate information of at least one of: synchronizing, indicating access configuration information, notifying system configuration information
  • the indication access configuration information includes at least one of the following: a time-frequency code resource of the first-level uplink transmission beam group, an uplink access signal, and/or a transmission power indication information of the channel.
  • the first node receives the uplink access signal and/or channel sent by the second node by using the first level uplink transmit beam group at a predefined or configured uplink transmission time.
  • the first node sends an uplink access channel and/or signal response information to the second node, and the uplink access channel and/or the signal response information carries the second-level uplink transmit beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is selected by the first node by detecting the uplink access channel and/or the signal according to a predefined or pre-configured principle. Uplink transmit beam.
  • the first node receives, on the predefined or pre-configured time-frequency resource, the second node, by using the first secondary uplink transmit beam group, to send uplink access configuration information and/or a measurement reference signal, where
  • the access configuration information includes an uplink access medium access control MAC layer message.
  • the first node pre-defines the first-level uplink transmit beam group to be one or more selected by the second node from the second-level uplink transmit beam group according to a predefined or pre-configured principle.
  • the optimal uplink transmit beam is a predefined or pre-configured principle.
  • the first node sends an uplink access configuration information response indication, where the uplink access configuration information response indication carries a beam index corresponding to the beam in the second secondary uplink transmission beam group.
  • the beam corresponding to the beam in the second secondary uplink transmit beam group is selected by the first node by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle. The optimal uplink transmit beam.
  • the first node and the second node perform initial control signaling and/or data interaction.
  • the first level downlink beam (group), the second level downlink beam (group), the first level uplink beam (group), and the second level uplink beam (group) belong to the low level beam (group).
  • the third-level uplink beams (groups) belong to the high-level beam (group).
  • the first node includes at least one of the following: a macro base station, a micro base station, a pico base station, a home base station, a relay, and a wireless access point; and the second node includes at least one of the following: a data card, a mobile phone , laptops, personal computers, tablets, personal digital assistants, Bluetooth, relays, remote devices, wireless access points.
  • FIG. 3 is a flowchart (2) of a hierarchical beam access method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 The second node sends the related signals and/or channels in the uplink access process by using at least two levels of beam groups, where the beam group is composed of one or more beams.
  • the second node uses at least two levels of beam groups to transmit related signals and/or channels in the uplink access process, which solves the problem that the first node or the second node cannot efficiently obtain the optimal beam in the related art, and realizes Different signal-to-noise ratios are provided for channels and signals, providing a more reliable and fast access process.
  • the related signals and/or channels in the uplink access process may include a plurality of types.
  • the signals and/or channels used to identify the uplink transmit beam may be signals for performing uplink access. And / or channel, can also be Uplink access configuration signals and/or channels.
  • one low-level beam group is a combination of one or more high-level beam groups; or one low-level beam group includes one or more high-level beam groups; or, a low-level beam group
  • the coverage space or range of the beam group is composed of one or more high-level beam groups; or, the space formed by one or more high-level beam groups is covered by a low-level beam group.
  • the so-called low-level beam refers to a beam with a large beam coverage and a wide beam width, as shown in Fig. 10(a).
  • the so-called high-level beam refers to a beam with a small beam coverage and a narrow beam width, as shown in Fig. 10(b).
  • a low-level beam can be subdivided into multiple high-level beams, and the high-level beam can be further subdivided into higher-level beams.
  • the second node transmits the uplink access signal and/or channel transmitted by the first-level uplink transmit beam group in the pre-defined or configured uplink transmit time-frequency code resource.
  • the second node sends the uplink access configuration information and/or the measurement reference signal by using the first secondary uplink transmit beam group on the predefined or pre-configured time-frequency resource, where the access configuration information is used.
  • the uplink access medium access control MAC layer message is included.
  • the first secondary uplink transmit beam group is one or more optimal uplink transmissions selected by the second node from the second primary uplink transmit beam group according to a predefined or pre-configured principle. Beam.
  • the second node selects an optimal third-level uplink transmit beam group according to the pre-defined or pre-configured principle according to the received second-level uplink transmit beam group index, and utilizes The third level uplink transmit beam group and the first node perform initial control signaling and/or data interaction.
  • the first level downlink beam (group), the second level downlink beam (group), the first level uplink beam (group), and the second level uplink beam (group) belong to the low level beam (group).
  • the third-level uplink beams (groups) belong to the high-level beam (group).
  • the first node includes at least one of the following: a macro base station, a micro base station, a pico base station, a home base station, a relay, and a wireless access point; and the second node includes at least one of the following: a data card, a mobile phone , laptops, personal computers, tablets, personal digital assistants, Bluetooth, relays, remote devices, wireless access points.
  • FIG. 4 is a flowchart (3) of a hierarchical beam access method according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 the second node detects that the first node uses at least two levels of beam groups to transmit related signals and/or channels in the downlink access process, where the beam group is composed of one or more beams.
  • the second node detects that the first node uses at least two levels of beam groups to send related signals and/or channels in the downlink access process, and solves the problem that the first node or the second node cannot obtain the optimal beam efficiently in the related art.
  • the problem is to provide different signal-to-noise ratios for channels and signals, thus providing a more reliable and fast access process.
  • the uplink access process may be a signal and/or channel for identifying an uplink transmit beam, and may be a signal for uplink access. And/or channel, which may also be an uplink access configuration signal and/or channel.
  • one low-level beam group is a combination of one or more high-level beam groups; or one low-level beam group includes one or more high-level beam groups; or, a low-level beam group
  • the coverage space or range of the beam group is composed of one or more high-level beam groups; or, the space formed by one or more high-level beam groups is covered by a low-level beam group.
  • the so-called low-level beam refers to a beam with a large beam coverage and a wide beam width, as shown in Fig. 10(a).
  • the so-called high-level beam refers to a beam with a small beam coverage and a narrow beam width, as shown in Fig. 10(b).
  • a low-level beam can be subdivided into multiple high-level beams, and the high-level beam can be further subdivided into higher-level beams.
  • the second node detects, on the predefined or configured time-frequency code resource, the channel and/or signal with the beam characteristic sent by the first node by using the first-level downlink transmit beam group, the channel And/or the signal information is used for at least one of a downlink transmission beam identification, a synchronization, an indication access configuration information, and a notification system configuration information, where the first level downlink transmission beam group includes at least one first level downlink beam.
  • the second node detects at least one of a time-frequency code resource, an uplink access signal, and/or a transmit power indication information of the first-level uplink transmit beam group in the indication access configuration information.
  • the second level downlink transmit beam group is one or more optimal downlink beams obtained when the second node detects the first level downlink transmit beam group.
  • the optimal selection principle includes at least one of the following: optimal quality, minimal interference, and minimal power overhead.
  • the second node selects the first secondary downlink transmit beam group according to the predefined or pre-configured principle according to the second-level downlink transmit beam group obtained by the first node, and the second node is in the second node.
  • the receiving first node on the predefined or pre-configured resource transmits the uplink access channel and/or signal response information by using the first secondary downlink transmit beam group.
  • the second node obtains a beam index corresponding to the beam in the second-level uplink transmit beam group in the uplink access channel and/or the signal response information.
  • the second node selects the uplink access channel and/or the signal according to the pre-defined or pre-configured principle according to the beam corresponding to the beam in the second-level uplink transmit beam group.
  • the access configuration information includes a beam index corresponding to the beam in the second secondary downlink transmit beam group.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the second node receives the first node utilization on the predefined or pre-configured time-frequency code resource.
  • the third-level downlink transmission beam group sends an uplink access configuration information response indication, and the second node obtains a beam index corresponding to the beam in the second-level uplink transmission beam group in the uplink access configuration information response indication.
  • the second node pre-defines the first node to use the obtained second-level downlink transmit beam group to select an optimal one or more downlink transmit beams according to a predefined or pre-configured principle.
  • the low-level three-level downlink transmission beam group is composed.
  • the beam corresponding to the beam in the second secondary uplink transmit beam group is selected by the first node by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • Optimal uplink transmit beam is selected by the first node by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • the first level downlink beam (group), the second level downlink beam (group), the first level uplink beam (group), and the second level uplink beam (group) belong to the low level beam (group).
  • the third-level uplink beams (groups) belong to the high-level beam (group).
  • the first node includes at least one of the following: a macro base station, a micro base station, a pico base station, a home base station, a relay, and a wireless access point; and the second node includes at least one of the following: a data card, a mobile phone , laptops, personal computers, tablets, personal digital assistants, Bluetooth, relays, remote devices, wireless access points.
  • a tiered beam access device is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a hierarchical beam access device according to an embodiment of the present invention.
  • the device is applied to a first node.
  • the device includes: a sending module 52, configured to send a downlink connection by using at least two levels of beam groups.
  • FIG. 6 is a structural block diagram (1) of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • the apparatus is applied to a first node.
  • the apparatus includes: an indication module 62 configured to indicate at least two levels of beams.
  • the group is used for the selection of an uplink transmit beam, which is composed of one or more beams.
  • FIG. 7 is a structural block diagram (2) of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • the apparatus is applied to a second node.
  • the apparatus includes: a transmitting module 72 configured to utilize at least two stages of beams.
  • the group transmits related signals and/or channels in the uplink access procedure, wherein the beam group is composed of one or more beams.
  • FIG. 8 is a structural block diagram (3) of a hierarchical beam access apparatus according to an embodiment of the present invention.
  • the apparatus is applied to a second node.
  • the apparatus includes: a detecting module 82 configured to detect that the first node utilizes At least two levels of beam groups transmit related signals and/or channels in a downlink access procedure, wherein the beam set is composed of one or more beams.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, each of the above modules is respectively located.
  • the first processor, the second processor, and the third processor In the first processor, the second processor, and the third processor.
  • the second node Since the second node needs to detect multiple optimal beams, multiple beam signals need to be detected. Similarly, the first node needs to send synchronization signals of multiple different beams, so that the second node can detect the optimal beam index.
  • the form of the hierarchical beam can be applied so that the second node and the first node side can obtain an optimal access beam through the access process.
  • the control signaling sent later is based on the channel, and the identification signal to noise ratio requirement of the access signal is lower than Control channel, so this form of hierarchical beam can provide different signal-to-noise ratios for channels and signals, providing a more reliable and fast access procedure.
  • the present invention provides a method and system for hierarchical beam access, in which a first node side uses at least two levels of beam groups to transmit related signals and/or channels in a downlink access procedure.
  • the related signal and/or channel in the downlink access process includes at least one of the following signals and/or channels:
  • a signal and/or channel for identifying a downlink transmit beam 1.
  • a downlink access response signal or channel for responding to an uplink access signal and/or channel is provided.
  • a beam set consists of one or more beams.
  • one low-level beam group is a combination of one or more high-level beam groups; or one low-level beam group includes one or more high-level beam groups; or, a low-level beam group coverage
  • the space or range consists of one or more high-level beam groups; or, the space formed by one or more high-level beam groups is covered by a low-level beam group.
  • the first node uses the first level downlink transmit beam group to send a channel and/or signal having beam characteristics, and the channel and/or signal information is used for identifying, synchronizing, indicating access configuration information, and notifying system configuration information of the downlink transmit beam.
  • At least one of the first level downlink transmit beam groups includes at least one first level downlink beam.
  • the indication access configuration information includes at least one of a time-frequency code resource of the first-level uplink transmission beam group, an uplink access signal, and/or a transmission power indication information of the channel.
  • the first node needs to receive, at a predefined or configured uplink sending moment, an uplink access signal and/or channel sent by the second node by using the first level uplink transmit beam group, and the first node is in the uplink access signal and/or Or obtaining a beam index corresponding to the beam in the second-level downlink transmission beam group in the channel.
  • the second-level downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first-level downlink transmit beam group.
  • the optimal selection principle may be one of quality optimization, minimum interference, or optimal power quality when the power consumption is minimum.
  • the first node selects the first secondary downlink transmit beam group according to the predefined or pre-configured principle by using the obtained second-level downlink transmit beam group, and sends the uplink connection by using the first secondary downlink transmit beam group.
  • Incoming channel and/or signal response information are examples of the first node.
  • the uplink access channel and/or the signal response information carries a beam index corresponding to the beam in the second-level uplink transmit beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is an optimal uplink transmit beam selected by the first node side by detecting an uplink access channel and/or a signal according to a predefined or pre-configured principle. .
  • the first node receives, on the predefined or pre-configured time-frequency resource, the second node, by using the first secondary uplink transmit beam group, to send uplink access configuration information and/or a measurement reference signal, where the access configuration information is used.
  • the access configuration information is used.
  • the first node side pre-defines the first second-level uplink transmit beam group to be one or more selected by the second node from the second-level uplink transmit beam group according to a pre-defined or pre-configured principle. Excellent uplink transmit beam.
  • the access configuration information includes a beam index corresponding to a beam in the second secondary downlink transmit beam group.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the first node sends the uplink access configuration information response indication by using the third secondary downlink transmission beam group, where the uplink access configuration information response indication carries the beam index corresponding to the beam in the second secondary uplink transmission beam group.
  • the first node uses the obtained second-level downlink transmit beam group to select an optimal one or more downlink transmit beams according to a predefined or pre-configured principle for forming a low-level three-level downlink transmit beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is selected by the first node side by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • Uplink transmit beam is selected by the first node side by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • the first node utilizes the third secondary downlink transmit beam set and the second node for initial control signaling and/or data interaction.
  • the present invention provides a method and system for hierarchical beam access, in which a second node side uses at least two levels of beam groups to transmit related signals and/or channels in an uplink access procedure.
  • the related signal and/or channel in the uplink access process includes at least one of the following signals and/or channels:
  • a signal and/or channel for identifying an upstream transmit beam 1.
  • the beam set consists of one or more beams.
  • a low-level beam group is a combination of one or more high-level beam groups; or a low-level beam group includes one or more high-level beam groups; or, a low-level beam group has a coverage space or range One or more high-level beam groups are formed; or, the space formed by one or more high-level beam groups is covered by a low-level beam group.
  • the second node detects, on the predefined or configured time-frequency code resource, a channel and/or a signal with a beam characteristic sent by the first node by using the first-level downlink transmission beam group, where the channel and/or signal information is used for downlink transmission. At least one of a beam identification, a synchronization, an indication access configuration information, and a notification system configuration information, where the first level downlink transmission beam group includes at least one first level downlink beam.
  • the second node detects at least one of a time-frequency code resource, an uplink access signal, and/or a transmission power indication information of the first-level uplink transmission beam group in the indication access configuration information.
  • the second node sends the uplink access signal and/or channel sent by the first-level uplink transmit beam group in the pre-defined or configured uplink transmit time-frequency code resource, and the uplink access signal and/or the channel includes the second The beam index corresponding to the beam in the first-level downlink transmission beam group.
  • the second-level downlink transmission beam group is one or more optimal downlink beams obtained by the second node when detecting the first-level downlink transmission beam group.
  • the optimal selection principle may be one of quality optimization, minimum interference, or optimal power quality when the power consumption is minimum.
  • the second node considers that the first node uses the obtained second-level downlink transmit beam group to select the first-level downlink transmit beam group according to the pre-defined or pre-configured principle, and the second node is on the predefined or pre-configured resource.
  • the receiving first node transmits the uplink access channel and/or the signal response information by using the first secondary downlink transmit beam group.
  • the second node obtains a beam index corresponding to the beam in the second-level uplink transmit beam group in the uplink access channel and/or the signal response information.
  • the second node considers that the beam corresponding to the beam in the second-level uplink transmit beam group is the most selected by the first node side by detecting the uplink access channel and/or the signal according to the pre-defined or pre-configured principle. Excellent uplink transmit beam.
  • the second node sends the uplink access configuration information and/or the measurement reference signal by using the first secondary uplink transmit beam group on the predefined or pre-configured time-frequency resource, where the access configuration information includes uplink access.
  • MAC layer message the access configuration information includes uplink access.
  • the first secondary uplink transmit beam group is one or more optimal uplink transmit beams selected by the second node from the second primary uplink transmit beam group according to a pre-defined or pre-configured principle.
  • the access configuration information includes a beam index corresponding to a beam in the second secondary downlink transmit beam group.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the second node receives, on the predefined or pre-configured time-frequency code resource, the first node, by using the third-level downlink transmit beam group, to send an uplink access configuration information response indication, and the second node accesses the uplink
  • the beam index corresponding to the beam in the second-level uplink transmit beam group is obtained in the configuration information response indication.
  • the second node pre-defines the first node to use the obtained second-level downlink transmit beam group to select an optimal one or more downlink transmit beams according to a predefined or pre-configured principle for forming a lower third-level secondary The downlink transmit beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is selected by the first node side by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • Uplink transmit beam is selected by the first node side by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • the second node selects an optimal third-level uplink transmit beam group according to the pre-defined or pre-configured principle according to the received second-level uplink transmit beam group index, and uses the third-level The uplink transmit beam set and the first node perform initial control signaling and/or data interaction.
  • the concept of the beam means that the beam can reduce the leakage of the signal power of the first node in other directions, ensure the concentrated characteristics of the signal power, and improve the coverage of the first node and the second node, and the uplink beam The power consumption of the second node can be reduced.
  • the beam index may be a direct beam index or an indirect beam index related information, and the information may be such that the first node and the second node can learn the corresponding beam information or identify that the beam is in the beam.
  • the index expresses the information within the scope.
  • FIG. 9 is a schematic diagram of a two-stage beam group access training process according to an embodiment of the present invention.
  • the first node uses a first-level downlink transmit beam group to transmit a channel and/or a signal having a beam characteristic, the channel.
  • the signal information is used for at least one of a downlink transmission beam identification, a synchronization, an indication access configuration information, and a notification system configuration information, where the first level downlink transmission beam group includes at least one first level downlink beam.
  • the indication access configuration information includes at least one of a time-frequency code resource of the first-level uplink transmission beam group, an uplink access signal, and/or a transmission power indication information of the channel.
  • the second node detects, on the predefined or configured time-frequency code resource, the channel and/or signal with the beam characteristic sent by the first node by using the first-level downlink transmit beam group.
  • the second node detects at least one of a time-frequency code resource, an uplink access signal, and/or a transmission power indication information of the first-level uplink transmission beam group in the indication access configuration information.
  • the second node sends the uplink access signal and/or channel sent by the first-level uplink transmit beam group in the pre-defined or configured uplink transmit time-frequency code resource, and the uplink access signal and/or the channel includes the second The beam index corresponding to the beam in the first-level downlink transmission beam group.
  • the second-level downlink transmission beam group is one or more optimal downlink beams obtained by the second node when detecting the first-level downlink transmission beam group.
  • the optimal selection principle may be one of quality optimization, minimum interference, or optimal power quality when the power consumption is minimum.
  • the first node receives, on the pre-defined or configured uplink sending resource, an uplink access signal and/or channel that is sent by the second node by using the first-level uplink transmit beam group, and the first node is in the uplink access signal and/or Or obtaining a beam index corresponding to the beam in the second-level downlink transmission beam group in the channel.
  • the first node selects the first secondary downlink transmission beam group according to the predefined or pre-configured principle, and uses the first secondary downlink transmission beam group to send the uplink access channel and/or Or signal response information.
  • the uplink access channel and/or the signal response information carries a beam index corresponding to the beam in the second-level uplink transmit beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is an optimal uplink transmit beam selected by the first node side by detecting an uplink access channel and/or a signal according to a pre-defined or pre-configured principle.
  • the second node receives, on the predefined or pre-configured resources, the first node to send the uplink access channel and/or the signal response information by using the first secondary downlink transmit beam group.
  • the second node obtains a beam index corresponding to the beam in the second-level uplink transmit beam group in the uplink access channel and/or the signal response information.
  • the second node sends the uplink access configuration information and/or the measurement reference signal by using the first secondary uplink transmit beam group on the predefined or pre-configured time-frequency resource, where the access configuration information includes an uplink access MAC layer message.
  • the first level two uplink transmit beam group is one or more optimal uplink transmit beams selected by the second node from the second level uplink transmit beam group according to a pre-defined or pre-configured principle.
  • the access configuration information includes a beam index corresponding to a beam in the second secondary downlink transmit beam group.
  • the second secondary downlink transmit beam group is one or more optimal downlink beams obtained by the second node when detecting the first secondary downlink transmit beam group according to a predefined or pre-configured principle.
  • the first node receives, on the predefined or pre-configured time-frequency resource, the second node, by using the first secondary uplink transmit beam group, to send the uplink access configuration information and/or the measurement reference signal, and from the configuration information and/or the measurement reference A beam index corresponding to the beam in the second-level downlink transmission beam group is obtained in the signal.
  • the first node uses the obtained second-level downlink transmission beam group to select an optimal one or more downlink transmission beams according to a pre-defined or pre-configured principle to form a third-level downlink transmission beam group.
  • the first node sends the uplink access configuration information response indication by using the third-level downlink transmission beam group, where the uplink access configuration information response indication carries the beam index corresponding to the beam in the second-level uplink transmission beam group.
  • the beam corresponding to the beam in the second-level uplink transmit beam group is an optimal uplink transmit beam selected by the first node side by detecting uplink access configuration information and/or measurement reference signal according to a predefined or pre-configured principle.
  • the second node receives, on the predefined or pre-configured time-frequency code resource, the first node sends an uplink access configuration information response indication by using the third-level downlink transmission beam group, and the second node responds to the uplink access configuration information response indication.
  • the beam index corresponding to the beam in the second-level uplink transmit beam group is obtained.
  • the second node selects an optimal third-level uplink transmit beam group according to the pre-defined or pre-configured principle according to the received second-level uplink transmit beam group index, and uses the third-level uplink transmit beam group. And the first node Initial control signaling and/or data interaction.
  • the first node utilizes the third secondary downlink transmit beam set and the second node for initial control signaling and/or data interaction.
  • the first node transmits at least one of the following signals and channels on the carrier by using the N downlink transmit beams: a synchronization signal, a downlink discovery signal, downlink system information, and uplink access configuration information.
  • the N beams can satisfy the basic first node coverage area requirements of the above channels.
  • the discovery signal is used to indicate a transmit beam used by the first node on the corresponding resource of the second node.
  • the N downlink beams constitute a first level downlink transmission beam group.
  • the synchronization signal may be used to indicate a transmit beam used by the first node on the corresponding resource of the second node, and the first node is not required to additionally send the discovery signal.
  • the downlink system information may be used to indicate the downlink transmit beam used by the first node on the corresponding resource of the second node, and the first node is not required to additionally send the discovery signal.
  • the second node detects the signal and/or channel transmitted by the first node on a plurality of resources.
  • the second node needs to select S0 (S0>0, S0 ⁇ N+1) optimal downlink transmission beams according to the pre-defined or pre-configured principle, and the corresponding downlink optimal transmission beam constitutes the second-level downlink transmission beam group. And obtaining an index corresponding to each downlink optimal transmit beam in the second-level downlink transmit beam group according to the predefined or high-layer signaling configuration information.
  • the second node When detecting the corresponding beam signal or the beam channel, the second node needs to determine the time-frequency code position of the uplink access signal and/or the channel according to the received control information, and utilize the first-level uplink transmit beam at the corresponding resource location.
  • the group sends the uplink access signal and/or the channel, and the access signal needs to carry a beam index indication corresponding to each downlink optimal transmit beam in the second-level downlink transmit beam group.
  • the beam index indication corresponding to the downlink optimal transmit beam is used to indicate the first downlink, and the second node passes the measurement result, and the recommended optimal downlink transmit beam.
  • the first node Receiving, by the first node, an uplink access signal and/or a channel sent by the second node at a predefined or configured time-frequency code resource location, where the first node detects a code sequence of each second node uplink access signal and/or channel, and An index corresponding to each downlink optimal transmit beam in the second-level downlink transmit beam group fed back by the second node is obtained from the corresponding uplink access signal and/or channel.
  • the first node can obtain the S0 optimal downlink transmit beams recommended by the second node.
  • the first node further selects a second-level downlink transmit beam from the S0 optimal downlink transmit beams according to a predefined or configured rule.
  • the first node can determine the number of secondary beams (sub-beams) included in the corresponding beam Index0, for example, the beam 0 includes X secondary beams ( Sub-beam), the space formed by X secondary beams (sub-beams) is the space covered by beam 0. At this time, the first node may select Y ((Y>0, Y ⁇ X+1)) from the X secondary beams to form the first secondary downlink transmission beam group.
  • the number of secondary beams included in the index0 corresponding to index0 is X0
  • the number of secondary beams included in Index1 is X1
  • the first node is from X0.
  • Secondary beam Y0 are selected
  • Y1 are selected from X1 secondary beams
  • Y0+Y1 beams constitute a first secondary downlink transmission beam group.
  • the number of secondary beams included in the corresponding beam of Index0 ⁇ Index(Z-1) is X0 ⁇ X(Z-1), respectively.
  • the first node selects Y0 from X0 secondary beams, selects Y1 from X1 secondary beams, and so on, and selects Y(Z-1) from X(Z-1) secondary beams.
  • the beams form a first secondary downlink transmit beam set.
  • the first node sends the random access response information by using multiple beams in the first secondary transmit beam group on the predefined or configured time-frequency code resources.
  • the first node receives the random access response signal of the second node, and uses a predefined or configured rule to send multiple random access response signals and/or channels carried by the first uplink transmission beam from the second node.
  • An optimal one or more random access response signals and/or uplink transmission beams corresponding to the channel are selected, and the selected plurality of uplink transmission beams are formed into a second-level uplink transmission beam group.
  • the first node needs to send random access response information on the predefined or configured resources, including the second node receiving and detecting the random access response information on the corresponding resource, and each beam in the second-level uplink transmit beam group. index of.
  • the second node needs to receive the access response information, and determine whether the response information is in response to the second node random access signal and/or channel.
  • the second node needs to obtain an index of each beam in the second-level uplink transmit beam group from the access response information. Thereby the second node can obtain the optimal uplink transmit beam recommended by the first node.
  • the second node further selects the first secondary uplink transmit beam from the A0 optimal uplink transmit beams according to a predefined or configured rule.
  • the first node can determine the number of secondary beams (sub-beams) included in the corresponding beam Index0, for example, the beam 0 includes X secondary beams ( Sub-beam), the space formed by X secondary beams (sub-beams) is the space covered by beam 0. At this time, the first node may select Y ((Y>0, Y ⁇ X+1)) from the X secondary beams to form the first secondary uplink transmit beam group.
  • the corresponding beam index is Index0 and Index1
  • the number of the second beam included in the index0 corresponding to Index0 is X0
  • the number of the second beam included in the beam corresponding to Index1 is X1
  • the first node is from X0
  • Y0 are selected from the two secondary beams
  • Y1 are selected from X1 secondary beams
  • Y0+Y1 beams constitute the first secondary uplink transmission beam group.
  • the number of secondary beams included in the corresponding beam of Index0 ⁇ Index(B-1) is X0 ⁇ X(B-1), respectively.
  • the first node selects Y0 from X0 secondary beams, selects Y1 from X1 secondary beams, and so on, and selects Y(B-1) from X(B-1) secondary beams.
  • the beams form a first level two uplink transmit beam group.
  • the second node selects, by using the pre-defined or configured rules, the access information sent by the first-level downlink transmission beam group on the first node side, and selects each beam in the first-level downlink transmission beam group.
  • the one or more downlink transmit beams are optimal, and the corresponding beams form a second secondary downlink transmit beam set.
  • the second node sends the uplink access configuration information by using the first secondary uplink transmit beam on the predefined or configured resource, where the uplink access configuration information is used to notify the first node, and the second node has received the first node. Random access response information.
  • the uplink access configuration information may include some contention resolution related information.
  • the uplink access configuration information includes beam corresponding beam index information in the second secondary downlink transmit beam group.
  • the first node receives the uplink access configuration information sent by the second node on the predefined or configured resource, and the multiple uplink access configuration information sent by using the first and second uplink uplink transmit beams is configured according to the predefined or configured In principle, an optimal one or more uplink transmit beams are selected, and the one or more optimal uplink transmit beams form a second secondary uplink transmit beam.
  • the first node obtains beam index information in the second secondary downlink transmit beam group from the uplink access configuration information.
  • the first node further selects a third secondary downlink transmit beam from the S0 second secondary downlink transmit beams according to a predefined or configured rule.
  • the first node can determine the number of secondary beams (sub-beams) included in the corresponding beam Index0, for example, the beam 0 includes X secondary beams ( Sub-beam), the space formed by X secondary beams (sub-beams) is the space covered by beam 0. At this time, the first node may select Y ((Y>0, Y ⁇ X+1)) from the X secondary beams to form a third secondary downlink transmission beam group.
  • the number of secondary beams included in the index0 corresponding to index0 is X0
  • the number of secondary beams included in Index1 is X1
  • the first node is from X0
  • Y0 are selected from the two secondary beams
  • Y1 are selected from X1 secondary beams
  • Y0+Y1 beams constitute a third secondary downlink transmission beam group.
  • the number of secondary beams included in the corresponding beam of Index0 ⁇ Index(Z-1) is X0 ⁇ X(Z-1), respectively.
  • the first node selects Y0 from X0 secondary beams, selects Y1 from X1 secondary beams, and so on, and selects Y(Z-1) from X(Z-1) secondary beams.
  • the beams form a third-level downlink transmit beam set.
  • the first node sends the access configuration information response information by using the third-level downlink transmission beam group, and is configured to respond to the access configuration response information of the second node.
  • the competition response related information may be included in the response information.
  • the response information includes index information of each beam in the second level uplink transmit beam group.
  • the second secondary uplink transmit beam group is an optimal uplink transmit beam that is selected by the first node by detecting the access configuration information or the measurement reference signal of the second node according to a predefined or configured rule.
  • the second node detects the access configuration information response information sent by the first node on the predefined or configured time-frequency code resource, and detects the second-level uplink transmission beam in the response information.
  • the second node selects an optimal uplink transmit beam according to the pre-defined or configured principle according to the detected second-level uplink transmit beam, and forms the selected optimal uplink transmit beam into a third-level uplink transmit beam group. And using the third-level uplink transmit beam group to perform initial data and/or control signaling interaction with the first node.
  • the first node uses the third secondary downlink transmit beam set to perform initial data and/or control signaling interaction with the second node.
  • the second node when the second node feeds back the beam index information in the second-level downlink transmission beam group, the second node may carry the quality indication information or related information of each beam in the second-level downlink transmission beam group.
  • the priority information is used to indicate channel quality information and/or priority information corresponding to each beam in the second-level downlink beam of the first node.
  • the first node may select the optimal one or more downlink transmit beams to form the first secondary downlink transmit beam group according to the corresponding quality information and/or the priority information by using a predefined or configured principle.
  • the first node when the first node indicates the beam index information in the second-level uplink transmit beam group to the second node, the first node may carry the quality of each beam in the second-level uplink transmit beam group.
  • the indication information or the related priority information is used to indicate that the second node corresponds to channel quality information and/or priority information corresponding to each beam in the recommended second-level uplink transmission beam group.
  • the second node may select the optimal one or more uplink transmit beams to form the first secondary uplink transmit beam group by using the pre-defined or configured principle according to the corresponding quality information and/or the priority information.
  • the second node when the second node feeds back the beam index information in the second-level downlink transmission beam group, the second node may carry the quality indication information or related information of each beam in the second-level downlink transmission beam group.
  • the priority information is used to indicate channel quality information and/or priority information corresponding to each beam in the second and second downlink beams of the first node.
  • the first node may select the optimal one or more downlink transmit beams to form the third secondary downlink transmit beam group by using the pre-defined or configured principle according to the corresponding quality information and/or the priority information.
  • the first node when the first node indicates the beam index information in the second-level uplink transmit beam group of the second node, the first node may carry the quality indicator of each beam in the second-level uplink transmit beam group.
  • the information or related priority information is used to indicate that the second node corresponds to channel quality information and/or priority information corresponding to each beam in the recommended second-level uplink transmit beam group.
  • the second node may select the optimal one or more uplink transmit beams to form the third-level uplink transmit beam group according to the corresponding quality information and/or the priority information.
  • the second node when the second node needs to send the first secondary uplink
  • the first node needs to select a second-level uplink sending group that needs to be instructed to the second node according to the first-level uplink sending group sent by the second node
  • the second node can use the first two.
  • the first uplink transmit beam group sends the measurement reference signal
  • the first node selects the second secondary uplink transmit beam group by measuring the reference signal sent by using the first secondary uplink transmit beam group, and sends the corresponding second secondary uplink.
  • the index information of each beam in the beam group is fed back to the second node.
  • the form of the hierarchical beam of the present invention can provide different signal to noise ratios for channels and signals, thereby providing a more reliable and fast access process.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the first node uses at least two levels of beam groups to transmit related signals and/or channels in the downlink access process; wherein the beam group is composed of one or more beams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种分级波束接入方法及装置,其中,该方法包括:第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道;其中,波束组由一个或者多个波束构成。通过本发明解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。

Description

一种分级波束接入方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种分级波束接入方法及装置。
背景技术
在高频通信时,由于采用了更高的载波频率进行传输,那么平均的路损会比传统的长期演进高级***(Long term evolution advanced system,简称为LTE-Advanced)大很多,例如我们采用28GHz的载频进行传输,利用公式:
Figure PCTCN2015092864-appb-000001
计算得出高频路损值与LTE路损值的平均比例信息为:
Figure PCTCN2015092864-appb-000002
在高频通信中为了保证覆盖,即接收侧满足最小信号与干扰加噪声比(Signal to Interence plus Noise Ratio,简称为SINR)要求,需要提高发送和接收机增益。
Figure PCTCN2015092864-appb-000003
其中,R为小区覆盖的半径,λ为对应载波的波长,Gt为发送天线增益,Gr为接收天线增益。
LTE通信需求最高要求达到覆盖100km的区域,如果按照最高覆盖,仅仅考虑平均路损(空旷区域),那么高频通信最高可以考虑覆盖达到1km的区域。如果考虑实际高频载波的高空气吸收度(氧气吸收,雨衰落,雾衰落)以及对于阴影衰落敏感等特点,实际可以支持的覆盖要小于1km。
如果高频通信支持最大1km覆盖,与LTE***相比,相同的覆盖区域可以获得的SINR比不同,前者比后者存在至少20dB的信噪比下降,为了保证高频通信与LTE***覆盖范围内具有近似的SINR,需要保证高频通信的天线增益。这时值得我们庆幸的是,由于高频通信具有更短的波长,从而可以保证单位面积上容纳更多的天线元素,更多的天线元素可以提供更高的天线增益,从而保证高频通信的覆盖性能。
更多的天线元素意味着我们可以采用波束赋型的方法来保证高频通信的覆盖。由LTE先前的设计思想可知,要想得到好的波束赋型效果需要准确的获得信道的状态信息,从而从信 道的状态信息中获得波束赋型的权值。而获得较好的波束赋型权值,对于发送端第一节点来说,接收端第二节点需要反馈下行的信道状态信息或者权值,对于接收端来说,发送端第一节点需要反馈上行的信道状态信息或者权值,从而保证第一节点可以采用最优的波束发送下行业务,第二节点也可以采用的最优的波束发送上行业务。这时就会存在一个“鸡生蛋,蛋生鸡”问题,第一节点在获得权值前,无法利用最优的波束覆盖到接收端,从而接收端无法测量第一节点发送的参考信号进行测量,或者即使第一节点覆盖到第二节点,但是第二节点无法达到第一节点的同样的覆盖,反馈的内容第一节点无法获知,从而也不能进行波束权值的选择和正常通信。解决这个问题的最优方法就是加入一种发现过程,通过这个发现过程来使得第一节点和第二节点得以发现对方,从而利用最优的权值进行通信。
简单的说发现过程其实就是训练的过程,发送端通过预先发送多个波束序列信号(发现信号),来使得接收端可以检测到这种序列,获得波束序号并反馈的过程,在发送端和接收端发现彼此存在后即可以进行初步的进行通信。
第二节点在进行同步时,需要检测同步信号用于时间同步和频率同步,同时第二节点需要检测发现信号来获得最优波束索引信息。另外,第二节点可以通过检测同步信号同时获得时间同步和频率同步以及最优波束索引信息。
针对相关技术中,第一节点或者第二节点无法高效的获取最优波束的问题,还未提出有效的解决方案。
发明内容
本发明实施例提供了一种分级波束接入方法及装置,以至少解决相关技术中第一节点或者第二节点无法高效的获取最优波束的问题。
根据本发明实施例的一个方面,提供了一种分级波束接入方法,包括:第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,上述波束组由一个或者多个波束构成。
可选地,上述下行接入过程中的相关信号和/或信道至少包括以下之一的信号和/或信道:用于识别下行发送波束的信号和/或信道;用于响应上行接入信号和/或信道的下行接入响应信号和/或信道;用于响应上行接入配置信息的指示信号和/或信道。
可选地,上述至少两级波束组中的一个低级别的波束组的覆盖空间为上述至少两级波束组中一个或者多个高级别波束组的组合覆盖空间;或者,上述一个低级别的波束组包括上述一个或者多个高级别波束组;或者,上述一个低级别的波束组的覆盖范围由一个或者多个高级别波束组覆盖范围组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
可选地,上述第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道包括:上述第一节点利用第一一级下行发送波束组发送具有波束特性的信道和/或信号;其中, 上述信道和/或信号信息用于指示以下至少之一的信息:下行发送波束的识别、下行发送波束的同步、指示接入配置信息、通知***配置信息;上述指示接入配置信息包括以下至少之一的信息:上述第一一级下行发送波束组中包括至少一个第一一级下行波束。
可选地,上述第一节点在预定义或者配置的上行发送时刻接收第二节点发送的上行接入信号和/或信道;上述第一节点通过上述上行接入信号和/或信道获取第二一级下行发送波束组中波束对应的波束索引。
可选地,上述第一节点利用上述第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且利用上述第一二级下行发送波束组发送上述上行接入信道和/或信号的响应信息。
可选地,上述第一节点在预定义或者预配置的时频资源上接收上述第二节点发送的上行接入配置信息和/或测量参考信号,其中,上述上行接入配置信息包括上行媒体接入控制(Media Access Control,简称为MAC)层消息。
可选地,上述上行接入配置信息还包括第二二级下行发送波束组中波束对应的波束索引。
可选地,上述第二二级下行发送波束组为上述第二节点根据预定义或者预配置原则通过检测上述第一二级下行发送波束组时获取的一个或者多个最优下行波束。
可选地,上述第一节点利用获取的上述第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成第三二级下行发送波束组。
可选地,上述第一节点利用上述第三二级下行发送波束组发送上述上行接入配置信息响应指示。
可选地,上述第一节点与第二节点通过上述波数组进行信息交互包括:上述第一节点利用上述第三二级下行发送波束组和上述第二节点进行初始控制信令和/或数据的交互。
可选地,上述第二一级下行发送波束组为上述第二节点通过检测上述第一一级下行发送波束组时获取的一个或者多个最优下行波束。
可选地,通过以下至少之一的原则判断下行波束为最优下行波束:上述下行波束为质量最优的下行波束;上述下行波束为干扰最小的下行波束;上述下行波束为功率开销最小的下行波束。
根据本发明实施例的另一个方面,还提供了一种分级波束接入方法,包括:第一节点至少指示两级波束组用于上行发送波束的选择,上述波束组由一个或者多个波束构成。
可选地,上述指示两级波束组承载在下行接入过程中的相关信号和/或信道包括以下之一的信号和/或信道:用于响应上行接入信号和/或信道的下行接入响应信号或者信道;用于响应上行接入配置信息的指示信号或者信道。
可选地,一个低级别的波束组的覆盖空间为上述至少两级波束组中一个或者多个高级别 波束组的组合覆盖空间;或者,上述一个低级别的波束组包括上述一个或者多个高级别波束组;或者,上述一个低级别的波束组的覆盖范围由一个或者多个高级别波束组覆盖范围组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
可选地,上述第一节点发送具有波束特性的信道和/或信号,上述信道和/或信号信息用于指示以下至少之一的信息:同步、指示接入配置信息、通知***配置信息;上述指示接入配置信息包括以下至少之一的信息:第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息。
可选地,上述第一节点在预定义或者配置的上行发送时刻接收第二节点利用第一一级上行发送波束组发送的上行接入信号和/或信道。
可选地,上述第一节点给第二节点发送上行接入信道和/或信号响应信息,并且上述上行接入信道和/或信号响应信息中携带第二一级上行发送波束组中波束对应的波束索引。
可选地,上述第二一级上行发送波束组中波束对应的波束为上述第一节点通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,上述第一节点在预定义或者预配置的时频资源上接收第二节点利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中上述接入配置信息包括上行接入媒体接入控制MAC层消息。
可选地,上述第一节点预定义第一二级上行发送波束组为第二节点根据预定义或者预配置的原则从上述第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
可选地,上述第一节点发送上行接入配置信息响应指示,上述上行接入配置信息响应指示中携带第二二级上行发送波束组中波束对应的波束索引。
可选地,上述第二二级上行发送波束组中波束对应的波束为上述第一节点通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,上述第一节点和第二节点进行初始控制信令和/或数据的交互。
根据本发明实施例的另一个方面,提供了一种分级波束接入方法,包括:第二节点利用至少两级波束组发送上行接入过程中的相关信号和/或信道,其中,上述波束组由一个或者多个波束构成。
可选地,上述上行接入过程中的相关信号和/或信道包括以下至少之一的信号和/或信道:用于识别上行发送波束的信号和/或信道;用于进行上行接入的信号和/或信道;上行接入配置信号和/或信道。
可选地,上述至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
可选地,一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别 的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
可选地,上述第二节点在预定义或者配置的上行发送时频码资源利用第一一级上行发送波束组发送的上行接入信号和/或信道。
可选地,上述第二节点在预定义或者预配置的时频资源上利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中上述接入配置信息包括上行接入媒体接入控制MAC层消息。
可选地,上述第一二级上行发送波束组为上述第二节点根据预定义或者预配置的原则从第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
可选地,上述第二节点根据接收到的第二二级上行发送波束组索引,根据预定义或者预配置的原则,选择出最优的第三二级上行发送波束组,并且利用第三二级上行发送波束组和第一节点进行初始控制信令和/或数据的交互。
根据本发明实施例的另一个方面,还提供了一种分级波束接入方法,包括:第二节点检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,上述波束组由一个或者多个波束构成。
可选地,上述上行接入过程中的相关信号和/或信道包括以下至少的信号和/或信道:用于识别上行发送波束的信号和/或信道;用于进行上行接入的信号和/或信道;上行接入配置信号和/或信道。
可选地,上述至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
可选地,一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
可选地,上述第二节点在预定义或者配置的时频码资源上检测上述第一节点利用第一一级下行发送波束组发送的具有波束特性的信道和/或信号,上述信道和/或信号信息用于下行发送波束的识别、同步、指示接入配置信息、通知***配置信息至少之一,上述第一一级下行发送波束组中包括至少一个第一一级下行波束。
可选地,上述第二节点在上述指示接入配置信息中检测第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
可选地,第二一级下行发送波束组为上述第二节点通过检测第一一级下行发送波束组时获得的一个或者多个最优下行波束。
可选地,上述最优的选择原则包括以下至少之一:质量最优、干扰最小、功率开销最小。
可选地,上述第二节点依据上述第一节点利用获得的第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且上述第二节点在预定义或者预配置的资源上接收第一节点利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。
可选地,上述第二节点在上述上行接入信道和/或信号响应信息中获得第二一级上行发送波束组中波束对应的波束索引。
可选地,第二节点根据上述第二一级上行发送波束组中波束对应的波束为上述第一节点通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,上述接入配置信息包括中包括第二二级下行发送波束组中波束对应的波束索引。
可选地,上述第二二级下行发送波束组为上述第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获得的一个或者多个最优下行波束。
可选地,上述第二节点在预定义或者预配置的时频码资源上接收第一节点利用第三二级下行发送波束组发送上行接入配置信息响应指示,并且上述第二节点在上述上行接入配置信息响应指示中获得第二二级上行发送波束组中波束对应的波束索引。
可选地,上述第二节点预定义上述第一节点利用获得的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成低三二级下行发送波束组。
可选地,上述第二二级上行发送波束组中波束对应的波束为上述第一节点通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
根据本发明的一个方面,还提供给了一种分级波束接入装置,上述装置应用于第一节点,包括:发送模块,设置为利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,上述波束组由一个或者多个波束构成。
根据本发明实施例的一个方面,还提供给了一种分级波束接入装置,上述装置应用于第一节点,包括:指示模块,设置为至少指示两级波束组用于上行发送波束的选择,上述波束组由一个或者多个波束构成。
根据本发明的一个方面,还提供给了一种分级波束接入装置,上述装置应用于第二节点,包括:发送模块,设置为利用至少两级波束组发送上行接入过程中的相关信号和/或信道,其中,上述波束组由一个或者多个波束构成。
根据本发明实施例的一个方面,还提供给了一种分级波束接入装置,上述装置应用于第二节点,包括:检测模块,设置为检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,上述波束组由一个或者多个波束构成。
通过本发明实施例,采用第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道;其中,波束组由一个或者多个波束构成。解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的分级波束接入方法的流程图;
图2是根据本发明实施例的分级波束接入方法的流程图(1);
图3是根据本发明实施例的分级波束接入方法的流程图(2);
图4是根据本发明实施例的分级波束接入方法的流程图(3);
图5是根据本发明实施例的分级波束接入装置的结构框图;
图6是根据本发明实施例的分级波束接入装置的结构框图(1);
图7是根据本发明实施例的分级波束接入装置的结构框图(2);
图8是根据本发明实施例的分级波束接入装置的结构框图(3);
图9是根据本发明实施例的两级波束组接入训练过程示意图;
图10(a)、10(b)是根据本发明实施例的低级别波束和高级别波束示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种分级波束接入方法,图1是根据本发明实施例的分级波束接入方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,波束组由一个或者多个波束构成。
通过上述步骤,第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。
下行接入过程中的相关信号和/或信道可以有很多种,在一个可选实施例中,信号和/或信 道可以是用于识别下行发送波束的信号和/或信道,可以是用于响应上行接入信号和/或信道的下行接入响应信号和/或信道,还可以是用于响应上行接入配置信息的指示信号和/或信道。
在一个可选实施例中,至少两级波束组中的一个低级别的波束组的覆盖空间为至少两级波束组中一个或者多个高级别波束组的组合覆盖空间;或者,该一个低级别的波束组包括该一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖范围由一个或者多个高级别波束组覆盖范围组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。所谓低级别波束是指波束覆盖范围大,波束宽度宽的波束,见图10(a);所谓高级别波束是指波束覆盖范围小,波束宽度窄的波束,见图10(b)。一个低级波束可以细分为多个高级别波束,高级别波束可以进一步细分为更高级别的波束。
上述步骤S102中涉及到第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,在一个可选实施例中,第一节点利用第一一级下行发送波束组发送具有波束特性的信道和/或信号;其中,信道和/或信号信息用于指示以下至少之一的信息:下行发送波束的识别、下行发送波束的同步、指示接入配置信息、通知***配置信息;指示接入配置信息包括以下至少之一的信息:该第一一级下行发送波束组中包括至少一个第一一级下行波束。
在第一节点在预定义或者配置的上行发送时刻接收第二节点发送的上行接入信号和/或信道的过程中,在一个可选实施例中,第一节点通过该上行接入信号和/或信道获取第二一级下行发送波束组中波束对应的波束索引。
在一个可选实施例中,第一节点利用第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且利用第一二级下行发送波束组发送上行接入信道和/或信号的响应信息。
在一个可选实施例中,第一节点在预定义或者预配置的时频资源上接收第二节点发送的上行接入配置信息和/或测量参考信号,其中,上行接入配置信息包括上行接入媒体接入控制(Media Access Control,简称为MAC)层消息。
上行接入配置信息可以包括多种信息,在一个可选实施例中,可以包括第二二级下行发送波束组中波束对应的波束索引。
在一个可选实施例中,第二二级下行发送波束组为第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获取的一个或者多个最优下行波束。
在一个可选实施例中,第一节点利用获取的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成第三二级下行发送波束组。
在一个可选实施例中,第一节点利用第三二级下行发送波束组发送该上行接入配置信息响应指示。
第一节点与第二节点通过波数组进行信息交互的过程中,在一个可选实施例中,第一节点利用第三二级下行发送波束组和第二节点进行初始控制信令和/或数据的交互。
在一个可选实施例中,第二一级下行发送波束组为该第二节点通过检测第一一级下行发送波束组时获取的一个或者多个最优下行波束。
判断下行波束为最优下行波束的原则可以有很多种,在一个可选实施例中,判断原则可以是下行波束为质量最优的下行波束,可以是下行波束为干扰最小的下行波束,还可以是下行波束为功率开销最小的下行波束。
其中,第一一级下行波束(组),第二一级下行波束(组)、第一一级上行波束(组),第二一级上行波束(组)都属于低级别波束(组)。第一二级下行波束(组),第二二级下行波束(组),第三二级下行波束(组)、第一二级上行波束(组),第二二级上行波束(组),第三二级上行波束(组)都属于高级别波束(组)。
在一个可选实施例中,第一节点包括以下至少之一:宏基站、微基站、微微基站,家庭基站、中继、无线接入点;第二节点包括以下至少之一:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙、中继、拉远设备、无线接入点。
在本实施例中还提供了另一种分级波束接入方法,图2是根据本发明实施例的分级波束接入方法的流程图(1),如图2所示,该流程包括如下步骤:
步骤S202,第一节点至少指示两级波束组用于上行发送波束的选择,波束组由一个或者多个波束构成。
通过上述步骤,第一节点至少指示两级波束组用于上行发送波束的选择,解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。
指示两级波束组承载在下行接入过程中的相关信号和/或信道可以有很多种,在一个可选实施例中,可以是用于响应上行接入信号和/或信道的下行接入响应信号或者信道,还可以是用于响应上行接入配置信息的指示信号或者信道。
在一个可选实施例中,一个低级别的波束组的覆盖空间为该至少两级波束组中一个或者多个高级别波束组的组合覆盖空间;或者,一个低级别的波束组包括该一个或者多个高级别波束组;或者,该一个低级别的波束组的覆盖范围由一个或者多个高级别波束组覆盖范围组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。所谓低级别波束是指波束覆盖范围大,波束宽度宽的波束,见图10(a);所谓高级别波束是指波束覆盖范围小,波束宽度窄的波束,见图10(b)。一个低级波束可以细分为多个高级别波束,高级别波束可以进一步细分为更高级别的波束。
在一个可选实施例中,第一节点发送具有波束特性的信道和/或信号,信道和/或信号信息用于指示以下至少之一的信息:同步、指示接入配置信息、通知***配置信息;该指示接入配置信息包括以下至少之一的信息:第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息。
在一个可选实施例中,第一节点在预定义或者配置的上行发送时刻接收第二节点利用第一一级上行发送波束组发送的上行接入信号和/或信道。
在一个可选实施例中,第一节点给第二节点发送上行接入信道和/或信号响应信息,并且该上行接入信道和/或信号响应信息中携带第二一级上行发送波束组中波束对应的波束索引。在另一个可选实施例中,第二一级上行发送波束组中波束对应的波束为第一节点通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
在一个可选实施例中,第一节点在预定义或者预配置的时频资源上接收第二节点利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中该接入配置信息包括上行接入媒体接入控制MAC层消息。
在一个可选实施例中,第一节点预定义第一二级上行发送波束组为第二节点根据预定义或者预配置的原则从该第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
在一个可选实施例中,第一节点发送上行接入配置信息响应指示,该上行接入配置信息响应指示中携带第二二级上行发送波束组中波束对应的波束索引。在另一个可选实施例中,第二二级上行发送波束组中波束对应的波束为该第一节点通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
在一个可选实施例中,第一节点和第二节点进行初始控制信令和/或数据的交互。
其中,第一一级下行波束(组),第二一级下行波束(组)、第一一级上行波束(组),第二一级上行波束(组)都属于低级别波束(组)。第一二级下行波束(组),第二二级下行波束(组),第三二级下行波束(组)、第一二级上行波束(组),第二二级上行波束(组),第三二级上行波束(组)都属于高级别波束(组)。
在一个可选实施例中,第一节点包括以下至少之一:宏基站、微基站、微微基站,家庭基站、中继、无线接入点;第二节点包括以下至少之一:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙、中继、拉远设备、无线接入点。
在本实施例中还提供了另一种分级波束接入方法,图3是根据本发明实施例的分级波束接入方法的流程图(2),如图3所示,该流程包括如下步骤:
步骤S302,第二节点利用至少两级波束组发送上行接入过程中的相关信号和/或信道,其中,该波束组由一个或者多个波束构成。
通过上述步骤,第二节点利用至少两级波束组发送上行接入过程中的相关信号和/或信道,解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。
上行接入过程中的相关信号和/或信道可以包含很多种,在一个可选实施例中,可以是用于识别上行发送波束的信号和/或信道,可以是用于进行上行接入的信号和/或信道,还可以是 上行接入配置信号和/或信道。
在一个可选实施例中,至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
在一个可选实施例中,一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。所谓低级别波束是指波束覆盖范围大,波束宽度宽的波束,见图10(a);所谓高级别波束是指波束覆盖范围小,波束宽度窄的波束,见图10(b)。一个低级波束可以细分为多个高级别波束,高级别波束可以进一步细分为更高级别的波束。
在一个可选实施例中,第二节点在预定义或者配置的上行发送时频码资源利用第一一级上行发送波束组发送的上行接入信号和/或信道。
在一个可选实施例中,第二节点在预定义或者预配置的时频资源上利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中该接入配置信息包括上行接入媒体接入控制MAC层消息。在另一个可选实施例中,第一二级上行发送波束组为第二节点根据预定义或者预配置的原则从第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
在一个可选实施例中,第二节点根据接收到的第二二级上行发送波束组索引,根据预定义或者预配置的原则,选择出最优的第三二级上行发送波束组,并且利用第三二级上行发送波束组和第一节点进行初始控制信令和/或数据的交互。
其中,第一一级下行波束(组),第二一级下行波束(组)、第一一级上行波束(组),第二一级上行波束(组)都属于低级别波束(组)。第一二级下行波束(组),第二二级下行波束(组),第三二级下行波束(组)、第一二级上行波束(组),第二二级上行波束(组),第三二级上行波束(组)都属于高级别波束(组)。
在一个可选实施例中,第一节点包括以下至少之一:宏基站、微基站、微微基站,家庭基站、中继、无线接入点;第二节点包括以下至少之一:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙、中继、拉远设备、无线接入点。
在本实施例中还提供了另一种分级波束接入方法,图4是根据本发明实施例的分级波束接入方法的流程图(3),如图4所示,该流程包括如下步骤:
步骤S402,第二节点检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,该波束组由一个或者多个波束构成。
通过上述步骤,第二节点检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。
上行接入过程中的相关信号和/或信道可以有很多种,在一个可选实施例中,可以是用于识别上行发送波束的信号和/或信道,可以是用于进行上行接入的信号和/或信道,还可以是上行接入配置信号和/或信道。
在一个可选实施例中,至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
在一个可选实施例中,一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。所谓低级别波束是指波束覆盖范围大,波束宽度宽的波束,见图10(a);所谓高级别波束是指波束覆盖范围小,波束宽度窄的波束,见图10(b)。一个低级波束可以细分为多个高级别波束,高级别波束可以进一步细分为更高级别的波束。
在一个可选实施例中,第二节点在预定义或者配置的时频码资源上检测该第一节点利用第一一级下行发送波束组发送的具有波束特性的信道和/或信号,该信道和/或信号信息用于下行发送波束的识别、同步、指示接入配置信息、通知***配置信息至少之一,该第一一级下行发送波束组中包括至少一个第一一级下行波束。
在一个可选实施例中,第二节点在该指示接入配置信息中检测第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
在一个可选实施例中,第二一级下行发送波束组为该第二节点通过检测第一一级下行发送波束组时获得的一个或者多个最优下行波束。在另一个可选实施例中,最优的选择原则包括以下至少之一:质量最优、干扰最小、功率开销最小。
在一个可选实施例中,第二节点依据第一节点利用获得的第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且第二节点在预定义或者预配置的资源上接收第一节点利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。
在一个可选实施例中,第二节点在该上行接入信道和/或信号响应信息中获得第二一级上行发送波束组中波束对应的波束索引。
在一个可选实施例中,第二节点根据第二一级上行发送波束组中波束对应的波束为第一节点通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。在另一个可选实施例中,接入配置信息包括中包括第二二级下行发送波束组中波束对应的波束索引。
在一个可选实施例中,第二二级下行发送波束组为该第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获得的一个或者多个最优下行波束。
在一个可选实施例中,第二节点在预定义或者预配置的时频码资源上接收第一节点利用 第三二级下行发送波束组发送上行接入配置信息响应指示,并且该第二节点在该上行接入配置信息响应指示中获得第二二级上行发送波束组中波束对应的波束索引。
在一个可选实施例中,第二节点预定义该第一节点利用获得的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成低三二级下行发送波束组。
在一个可选实施例中,第二二级上行发送波束组中波束对应的波束为该第一节点通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
其中,第一一级下行波束(组),第二一级下行波束(组)、第一一级上行波束(组),第二一级上行波束(组)都属于低级别波束(组)。第一二级下行波束(组),第二二级下行波束(组),第三二级下行波束(组)、第一二级上行波束(组),第二二级上行波束(组),第三二级上行波束(组)都属于高级别波束(组)。
在一个可选实施例中,第一节点包括以下至少之一:宏基站、微基站、微微基站,家庭基站、中继、无线接入点;第二节点包括以下至少之一:数据卡、手机、笔记本电脑、个人电脑、平板电脑、个人数字助理、蓝牙、中继、拉远设备、无线接入点。
在本实施例中还提供了一种分级波束接入装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的分级波束接入装置的结构框图,装置应用于第一节点,如图5所示,该装置包括:发送模块52,设置为利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,波束组由一个或者多个波束构成。
图6是根据本发明实施例的分级波束接入装置的结构框图(1),该装置应用于第一节点,如图6所述,该装置包括:指示模块62,设置为至少指示两级波束组用于上行发送波束的选择,该波束组由一个或者多个波束构成。
图7是根据本发明实施例的分级波束接入装置的结构框图(2),该装置应用于第二节点,如图7所示,该装置包括:发送模块72,设置为利用至少两级波束组发送上行接入过程中的相关信号和/或信道,其中,波束组由一个或者多个波束构成。
图8是根据本发明实施例的分级波束接入装置的结构框图(3),该装置应用于第二节点,如图8所示,该装置包括:检测模块82,设置为检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,该波束组由一个或者多个波束构成。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模块分别位 于第一处理器、第二处理器和第三处理器…中。
由于第二节点需要检测多个最优的波束,所以需要检测多个波束信号,同理,第一节点需要发送多个不同波束的同步信号,使得第二节点可以检测出最优的波束索引。在接入过程中,可以应用分级波束的形式使得第二节点和第一节点侧可以通过接入过程获得最优的接入波束。另外,由于初始接入过程中,第一节点和第二节点发送的都是接入信号,而之后发送的控制信令都是基于信道的,由于接入信号的识别信噪比要求要低于控制信道,所以这种分级波束的形式可以对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。
本可选实施例提出了一种分级波束接入的方法和***,其中第一节点侧利用至少两级波束组发送下行接入过程中的相关信号和/或信道。其中,该下行接入过程中的相关信号和/或信道至少包括以下信号和/或信道之一:
1、用于识别下行发送波束的信号和/或信道。
2、用于响应上行接入信号和/或信道的下行接入响应信号或者信道。
3、用于响应上行接入配置信息的指示信道。
至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
波束组由一个或者多个波束构成。
可选地,一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
第一节点利用第一一级下行发送波束组发送具有波束特性的信道和/或信号,该信道和/或信号信息用于下行发送波束的识别、同步、指示接入配置信息、通知***配置信息至少之一,该第一一级下行发送波束组中包括至少一个第一一级下行波束。
可选地,该指示接入配置信息包括第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
第一节点需要在预定义或者配置的上行发送时刻接收第二节点利用第一一级上行发送波束组发送的上行接入信号和/或信道,并且,第一节点在该上行接入信号和/或信道中获得第二一级下行发送波束组中波束对应的波束索引。
可选地,该第二一级下行发送波束组为第二节点通过检测第一一级下行发送波束组时获得的一个或者多个最优下行波束。
可选地,该最优的选择原则可以为质量最优、干扰最小或者功率开销最小时质量最优之一。
可选地,第一节点利用获得的第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。
可选地,该上行接入信道和/或信号响应信息中携带第二一级上行发送波束组中波束对应的波束索引。
可选地,该第二一级上行发送波束组中波束对应的波束为第一节点侧通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,第一节点在预定义或者预配置的时频资源上接收第二节点利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中该接入配置信息包括上行接入MAC层消息。
可选地,第一节点侧预定义该第一二级上行发送波束组为第二节点根据根据预定义或者预配置的原则从第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
可选地,该接入配置信息包括中包括第二二级下行发送波束组中波束对应的波束索引。
可选地,该第二二级下行发送波束组为第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获得的一个或者多个最优下行波束。(权14)
可选地,第一节点利用第三二级下行发送波束组发送上行接入配置信息响应指示,该上行接入配置信息响应指示中携带第二二级上行发送波束组中波束对应的波束索引。
可选地,第一节点利用获得的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成低三二级下行发送波束组。
可选地,该第二二级上行发送波束组中波束对应的波束为第一节点侧通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,第一节点利用利用第三二级下行发送波束组和第二节点进行初始控制信令和/或数据的交互。
本可选实施例提出了一种分级波束接入的方法和***,其中第二节点侧利用至少两级波束组发送上行接入过程中的相关信号和/或信道。其中,该上行接入过程中的相关信号和/或信道至少包括以下信号和/或信道之一:
1、用于识别上行发送波束的信号和/或信道。
2、用于进行上行接入的信号和/或信道。
3、上行接入配置信息。
该至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
该波束组由一个或者多个波束构成。
一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
第二节点在预定义或者配置的时频码资源上检测第一节点利用第一一级下行发送波束组发送的具有波束特性的信道和/或信号,该信道和/或信号信息用于下行发送波束的识别、同步、指示接入配置信息、通知***配置信息至少之一,该第一一级下行发送波束组中包括至少一个第一一级下行波束。
第二节点在该指示接入配置信息中检测第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
第二节点在预定义或者配置的上行发送时频码资源利用第一一级上行发送波束组发送的上行接入信号和/或信道,并且,该上行接入信号和/或信道中包括第二一级下行发送波束组中波束对应的波束索引。
该第二一级下行发送波束组为第二节点通过检测第一一级下行发送波束组时获得的一个或者多个最优下行波束。
可选地,该最优的选择原则可以为质量最优、干扰最小或者功率开销最小时质量最优之一。
第二节点认为第一节点利用获得的第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且第二节点在预定义或者预配置的资源上接收第一节点利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。
可选地,第二节点在该上行接入信道和/或信号响应信息中获得第二一级上行发送波束组中波束对应的波束索引。
可选地,第二节点认为该第二一级上行发送波束组中波束对应的波束为第一节点侧通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,第二节点在预定义或者预配置的时频资源上利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中该接入配置信息包括上行接入MAC层消息。
可选地,该第一二级上行发送波束组为第二节点根据根据预定义或者预配置的原则从第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
可选地,该接入配置信息包括中包括第二二级下行发送波束组中波束对应的波束索引。
可选地,该第二二级下行发送波束组为第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获得的一个或者多个最优下行波束。
可选地,第二节点在预定义或者预配置的时频码资源上接收第一节点利用第三二级下行发送波束组发送上行接入配置信息响应指示,并且第二节点在该上行接入配置信息响应指示中获得第二二级上行发送波束组中波束对应的波束索引。
可选地,第二节点预定义第一节点利用获得的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成低三二级下行发送波束组。
可选地,该第二二级上行发送波束组中波束对应的波束为第一节点侧通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
可选地,第二节点根据接收到的第二二级上行发送波束组索引,根据预定义或者预配置的原则,选择出最优的第三二级上行发送波束组,并且利用第三二级上行发送波束组和第一节点进行初始控制信令和/或数据的交互。
在实际***应用中波束的概念指的是波束可以减少第一节点的信号功率在其他方向上的泄露,保证了信号功率的集中特性,提高了第一节点和第二节点的覆盖范围,上行波束可以降低第二节点的功耗。
本可选实施例中波束索引可以是直接的波束索引,或者是间接的波束索引相关信息,只能能通过该信息使得第一节点和第二节点可以获知对应波束信息或者识别出波束都在波束索引表达信息范围之内。
实施例1:
图9是根据本发明实施例的两级波束组接入训练过程示意图,如图9所示,第一节点利用第一一级下行发送波束组发送具有波束特性的信道和/或信号,该信道和/或信号信息用于下行发送波束的识别、同步、指示接入配置信息、通知***配置信息至少之一,该第一一级下行发送波束组中包括至少一个第一一级下行波束。该指示接入配置信息包括第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
第二节点在预定义或者配置的时频码资源上检测第一节点利用第一一级下行发送波束组发送的具有波束特性的信道和/或信号。
第二节点在该指示接入配置信息中检测第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
第二节点在预定义或者配置的上行发送时频码资源利用第一一级上行发送波束组发送的上行接入信号和/或信道,并且,该上行接入信号和/或信道中包括第二一级下行发送波束组中波束对应的波束索引。
该第二一级下行发送波束组为第二节点通过检测第一一级下行发送波束组时获得的一个或者多个最优下行波束。
可选地,该最优的选择原则可以为质量最优、干扰最小或者功率开销最小时质量最优之一。
第一节点在预定义或者配置的上行发送资源上接收第二节点利用第一一级上行发送波束组发送的上行接入信号和/或信道,并且,第一节点在该上行接入信号和/或信道中获得第二一级下行发送波束组中波束对应的波束索引。
第一节点利用获得的第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。
可选地,该上行接入信道和/或信号响应信息中携带第二一级上行发送波束组中波束对应的波束索引。该第二一级上行发送波束组中波束对应的波束为第一节点侧通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
第二节点在预定义或者预配置的资源上接收第一节点利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。第二节点在该上行接入信道和/或信号响应信息中获得第二一级上行发送波束组中波束对应的波束索引。
第二节点在预定义或者预配置的时频资源上利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中该接入配置信息包括上行接入MAC层消息。
该第一二级上行发送波束组为第二节点根据根据预定义或者预配置的原则从第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
该接入配置信息包括中包括第二二级下行发送波束组中波束对应的波束索引。该第二二级下行发送波束组为第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获得的一个或者多个最优下行波束。
第一节点在预定义或者预配置的时频资源上接收第二节点利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,并且从该配置信息和/或测量参考信号中获得第二二级下行发送波束组中波束对应的波束索引。
第一节点利用获得的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成第三二级下行发送波束组。
第一节点利用第三二级下行发送波束组发送上行接入配置信息响应指示,该上行接入配置信息响应指示中携带第二二级上行发送波束组中波束对应的波束索引。
该第二二级上行发送波束组中波束对应的波束为第一节点侧通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
第二节点在预定义或者预配置的时频码资源上接收第一节点利用第三二级下行发送波束组发送上行接入配置信息响应指示,并且第二节点在该上行接入配置信息响应指示中获得第二二级上行发送波束组中波束对应的波束索引。
第二节点根据接收到的第二二级上行发送波束组索引,根据预定义或者预配置的原则,选择出最优的第三二级上行发送波束组,并且利用第三二级上行发送波束组和第一节点进行 初始控制信令和/或数据的交互。
第一节点利用利用第三二级下行发送波束组和第二节点进行初始控制信令和/或数据的交互。
实施例2:
第一节点在该载波上利用N个下行发送波束发送以下信号和信道至少之一:同步信号、下行发现信号、下行***信息、上行接入配置信息。N个波束可以满足以上信道基本第一节点覆盖区域要求。其中发现信号用于指示第二节点对应资源上第一节点采用的发送波束。
N个下行波束构成第一一级下行发送波束组。
可选地,同步信号可以用于指示第二节点对应资源上第一节点采用的发送波束,这时不需要第一节点额外发送发现信号。
可选地,可以通过下行***信息指示第二节点对应资源上第一节点采用的下行发送波束,这时不需要第一节点额外发送发现信号。
第二节点在多个资源上检测第一节点发送的该信号和/或信道。第二节点需要按照预定义或者预配置的原则选择出S0(S0>0,S0<N+1)个最优下行发送波束,并且对应的下行最优发送波束构成第二一级下行发送波束组,并且根据预定义或者高层信令配置信息,获得第二一级下行发送波束组中各个下行最优发送波束对应的索引。
第二节点在检测对应波束信号或者波束信道时,需要根据接收到的控制信息决定发送上行接入信号和/或信道的时频码位置,并且在对应的资源位置利用第一一级上行发送波束组发送该上行接入信号和/或信道,而且该接入信号需要携带第二一级下行发送波束组中各个下行最优发送波束对应的波束索引指示。该下行最优发送波束对应的波束索引指示用来指示第一节点侧,第二节点通过测量结果,推荐的最优下行发送波束。
第一节点在预定义或者配置的时频码资源位置接收第二节点发送的上行接入信号和/或信道,第一节点检测各个第二节点上行接入信号和/或信道的码序列,并且从对应的上行接入信号和/或信道中获得第二节点反馈的第二一级下行发送波束组中各个下行最优发送波束对应的索引。从而第一节点可以获得第二节点推荐的S0个最优下行发送波束。
第一节点按照预定义或者配置的规则,从S0个最优下行发送波束中进一步选择出第二级下行发送波束。
当S0的值为1,并且对应波束索引为Index0,这时第一节点可以判断对应波束Index0中包括的二级波束(子波束)的个数,例如:波束0中包括X个二级波束(子波束),X个二级波束(子波束)构成的空间为波束0覆盖的空间。这时第一节点可以从X个二级波束中选择Y个((Y>0,Y<X+1))构成第一二级下行发送波束组。
当S0的值为2,并且对应波束索引为Index0和Index1,Index0对应波束中包括二级波束的个数为X0,Index1对应的波束中包括二级波束的个数为X1,第一节点从X0个二级波束中 选择Y0个,并且从X1个二级波束中选择Y1个,Y0+Y1个波束构成第一二级下行发送波束组。
当S0的值为Z,并且对应波束索引为Index0~Index(Z-1),Index0~Index(Z-1)对应波束中包括二级波束的个数分别为X0~X(Z-1),第一节点从X0个二级波束中选择Y0个,从X1个二级波束中选择Y1个,依次类推,从X(Z-1)个二级波束中选择Y(Z-1)个,
Figure PCTCN2015092864-appb-000004
个波束构成第一二级下行发送波束组。
第一节点在预定义或者配置的时频码资源上利用第一二级发送波束组中的多个波束发送随机接入响应信息。
第一节点通过接收第二节点的随机接入响应信号,通过预定义或者配置的规则,从第二节点发送的第一一级上行发送波束承载的多个随机接入响应信号和/或信道中选择出最优的一个或者多个随机接入响应信号和/或信道对应的上行发送波束,并且把该选择出的多个上行发送波束组成第二一级上行发送波束组。
第一节点需要在预定义或者配置的资源上发送随机接入响应信息中,包括第二节点在对应的资源上接收和检测该随机接入响应信息以及第二一级上行发送波束组中各个波束的索引。
第二节点需要接收该接入响应信息,判断该响应信息是否是响应该第二节点随机接入信号和/或信道的。第二节点需要从该接入响应信息获得第二一级上行发送波束组中各个波束的索引。从而第二节点可以获得第一节点推荐的最优上行发送波束。
第二节点按照预定义或者配置的规则,从A0个最优上行发送波束中进一步选择出第一二级上行发送波束。
当A0的值为1,并且对应波束索引为Index0,这时第一节点可以判断对应波束Index0中包括的二级波束(子波束)的个数,例如:波束0中包括X个二级波束(子波束),X个二级波束(子波束)构成的空间为波束0覆盖的空间。这时第一节点可以从X个二级波束中选择Y个((Y>0,Y<X+1))构成第一二级上行发送波束组。
当A0的值为2,并且对应波束索引为Index0和Index1,Index0对应波束中包括二级波束的个数为X0,Index1对应的波束中包括二级波束的个数为X1,第一节点从X0个二级波束中选择Y0个,并且从X1个二级波束中选择Y1个,Y0+Y1个波束构成第一二级上行发送波束组。
当A0的值为B,并且对应波束索引为Index0~Index(B-1),Index0~Index(B-1)对应波束中包括二级波束的个数分别为X0~X(B-1),第一节点从X0个二级波束中选择Y0个,从X1个二级波束中选择Y1个,依次类推,从X(B-1)个二级波束中选择Y(B-1)个,
Figure PCTCN2015092864-appb-000005
个波束构成 第一二级上行发送波束组。
第二节点通过检测第一节点侧利用第一二级下行发送波束组发送的接入响应信息,按照预定义或者配置的规则,从该第一二级下行发送波束组中的各个波束中选择出最优的一个或者多个下行发送波束,并且把对应波束构成第二二级下行发送波束组。
第二节点在预定义或者配置的资源上利用第一二级上行发送波束发送上行接入配置信息,该上行接入配置信息用于通知第一节点,该第二节点已经接收到该第一节点的随机接入响应信息。
可选地,该上行接入配置信息中可以包括一些竞争解决相关信息。
该上行接入配置信息中包括第二二级下行发送波束组中波束对应波束索引信息。
第一节点在预定义或者配置的资源上接收第二节点发送的上行接入配置信息,从该利用第一二级上行发送波束发送的多个上行接入配置信息中,根据预定义或者配置的原则,选择出最优的一个或者多个上行发送波束,并且该一个或者多个最优上行发送波束组成第二二级上行发送波束。
第一节点从该上行接入配置信息中获得第二二级下行发送波束组中的波束索引信息。
第一节点按照预定义或者配置的规则,从S0个第二二级下行发送波束中进一步选择出第三二级下行发送波束。
当S0的值为1,并且对应波束索引为Index0,这时第一节点可以判断对应波束Index0中包括的二级波束(子波束)的个数,例如:波束0中包括X个二级波束(子波束),X个二级波束(子波束)构成的空间为波束0覆盖的空间。这时第一节点可以从X个二级波束中选择Y个((Y>0,Y<X+1))构成第三二级下行发送波束组。
当S0的值为2,并且对应波束索引为Index0和Index1,Index0对应波束中包括二级波束的个数为X0,Index1对应的波束中包括二级波束的个数为X1,第一节点从X0个二级波束中选择Y0个,并且从X1个二级波束中选择Y1个,Y0+Y1个波束构成第三二级下行发送波束组。
当S0的值为Z,并且对应波束索引为Index0~Index(Z-1),Index0~Index(Z-1)对应波束中包括二级波束的个数分别为X0~X(Z-1),第一节点从X0个二级波束中选择Y0个,从X1个二级波束中选择Y1个,依次类推,从X(Z-1)个二级波束中选择Y(Z-1)个,
Figure PCTCN2015092864-appb-000006
个波束构成第三二级下行发送波束组。
第一节点利用第三二级下行发送波束组发送接入配置信息响应信息,用于响应第二节点的接入配置响应信息。
可选地,该响应信息中可以包括竞争解决相关控制信息。
可选地,该响应信息中包括第二二级上行发送波束组中各个波束的索引信息。该第二二级上行发送波束组是第一节点通过检测第二节点的接入配置信息或者测量参考信号,按照预定义或者配置的规则选择出的最优上行发送波束。
第二节点在预定义或者配置的时频码资源上检测第一节点发送的接入配置信息响应信息,并且检测该响应信息中的第二二级上行发送波束。
第二节点根据检测到的第二二级上行发送波束,按照预定义或者配置的原则选择最优的上行发送波束,并且把选择出的最优上行发送波束组成第三二级上行发送波束组,并且利用第三二级上行发送波束组与第一节点进行初始的数据和/或控制信令的交互。
第一节点利用第三二级下行发送波束组与第二节点进行初始的数据和/或控制信令的交互。
实施例3:
在实施例1和实施例2中,第二节点在反馈第二一级下行发送波束组内各个波束索引信息时,可以携带对应第二一级下行发送波束组中各个波束的质量指示信息或者相关的优先级信息,用来指示第一节点第二一级下行波束中各个波束对应的信道质量信息和/或优先级信息。第一节点可以根据对应的质量信息和/或优先级信息利用预定义或者配置的原则选择最优的一个或者多个下行发送波束构成第一二级下行发送波束组。
在实施例1和实施例2中,第一节点在给第二节点指示第二一级上行发送波束组内各个波束索引信息时,可以携带对应第二一级上行发送波束组中各个波束的质量指示信息或者相关的优先级信息,用来指示第二节点对应推荐的第二一级上行发送波束组中各个波束对应的信道质量信息和/或优先级信息。第二节点可以根据对应的质量信息和/或优先级信息,利用预定义或者配置的原则选择最优的一个或者多个上行发送波束构成第一二级上行发送波束组。
在实施例1和实施例2中,第二节点在反馈第二二级下行发送波束组内各个波束索引信息时,可以携带对应第二二级下行发送波束组中各个波束的质量指示信息或者相关的优先级信息,用来指示第一节点第二二级下行波束中各个波束对应的信道质量信息和/或优先级信息。第一节点可以根据对应的质量信息和/或优先级信息,利用预定义或者配置的原则选择最优的一个或者多个下行发送波束构成第三二级下行发送波束组。
在实施例1和实施例2中,第一节点在指示第二节点第二二级上行发送波束组内各个波束索引信息时,可以携带对应第二二级上行发送波束组中各个波束的质量指示信息或者相关的优先级信息,用来指示第二节点对应推荐的第二二级上行发送波束组中各个波束对应的信道质量信息和/或优先级信息。第二节点可以根据对应的质量信息和/或优先级信息,利用预定义或者配置的原则选择最优的一个或者多个上行发送波束构成第三二级上行发送波束组。
实施例4:
可选地,如实施例1和实施例2中该方法和流程,当第二节点需要发送第一二级上行发 送组中的波束,并且第一节点需要根据第二节点发送的第一二级上行发送组选择出需要指示给第二节点的第二二级上行发送组时,第二节点可以利用第一二级上行发送波束组发送测量参考信号,第一节点通过测量利用第一二级上行发送波束组发送的该参考信号,选择出第二二级上行发送波束组,并且把对应第二二级上行发送波束组中各个波束的索引信息反馈给第二节点。
综上所述,通过本发明的分级波束的形式可以对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,采用第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道;其中,波束组由一个或者多个波束构成。解决了相关技术中第一节点或者第二节点无法高效的获取最优波束的问题,实现了对于信道和信号提供不同的信噪比,从而提供更加可靠快速的接入过程。

Claims (54)

  1. 一种分级波束接入方法,包括:
    第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,所述波束组由一个或者多个波束构成。
  2. 根据权利要求1所述的方法,其中,所述下行接入过程中的相关信号和/或信道至少包括以下之一的信号和/或信道:
    用于识别下行发送波束的信号和/或信道;
    用于响应上行接入信号和/或信道的下行接入响应信号和/或信道;
    用于响应上行接入配置信息的指示信号和/或信道。
  3. 根据权利要求1所述的方法,其中,包括:
    所述至少两级波束组中的一个低级别的波束组的覆盖空间为所述至少两级波束组中一个或者多个高级别波束组的组合覆盖空间;或者,
    所述一个低级别的波束组包括所述一个或者多个高级别波束组;或者,
    所述一个低级别的波束组的覆盖范围由一个或者多个高级别波束组覆盖范围组成;或者,
    一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
  4. 根据权利要求1所述的方法,其中,所述第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道包括:
    所述第一节点利用第一一级下行发送波束组发送具有波束特性的信道和/或信号;
    其中,所述信道和/或信号信息用于指示以下至少之一的信息:下行发送波束的识别、下行发送波束的同步、指示接入配置信息、通知***配置信息;所述指示接入配置信息包括以下至少之一的信息:所述第一一级下行发送波束组中包括至少一个第一一级下行波束。
  5. 根据权利要求1所述的方法,其中,包括:
    所述第一节点在预定义或者配置的上行发送时刻接收第二节点发送的上行接入信号和/或信道;
    所述第一节点通过所述上行接入信号和/或信道获取第二一级下行发送波束组中波束对应的波束索引。
  6. 根据权利要求5所述的方法,其中,包括:
    所述第一节点利用所述第二一级下行发送波束组根据预定义或者预配置的原则选择 出第一二级下行发送波束组,并且利用所述第一二级下行发送波束组发送所述上行接入信道和/或信号的响应信息。
  7. 根据权利要求6所述的方法,其中,包括:
    所述第一节点在预定义或者预配置的时频资源上接收所述第二节点发送的上行接入配置信息和/或测量参考信号,其中,所述上行接入配置信息包括上行接入媒体接入控制MAC层消息。
  8. 根据权利要求7所述的方法,其中,所述上行接入配置信息还包括第二二级下行发送波束组中波束对应的波束索引。
  9. 根据权利要求8所述的方法,其中,所述第二二级下行发送波束组为所述第二节点根据预定义或者预配置原则通过检测所述第一二级下行发送波束组时获取的一个或者多个最优下行波束。
  10. 根据权利要求9所述的方法,其中,所述第一节点利用获取的所述第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成第三二级下行发送波束组。
  11. 根据权利要求10所述的方法,其中,所述第一节点利用所述第三二级下行发送波束组发送所述上行接入配置信息响应指示。
  12. 根据权利要求11所述的方法,其中,所述第一节点与第二节点通过所述波数组进行信息交互包括:
    所述第一节点利用所述第三二级下行发送波束组和所述第二节点进行初始控制信令和/或数据的交互。
  13. 根据权利要求5所述的方法,其中,所述第二一级下行发送波束组为所述第二节点通过检测所述第一一级下行发送波束组时获取的一个或者多个最优下行波束。
  14. 根据权利要求13所述的方法,其中,通过以下至少之一的原则判断下行波束为最优下行波束:
    所述下行波束为质量最优的下行波束;
    所述下行波束为干扰最小的下行波束;
    所述下行波束为功率开销最小的下行波束。
  15. 一种分级波束接入方法,包括:
    第一节点至少指示两级波束组用于上行发送波束的选择,所述波束组由一个或者多个波束构成。
  16. 根据权利要求15所述的方法,其中,包括:所述指示两级波束组承载在下行接入过程中 的相关信号和/或信道包括以下之一的信号和/或信道:
    用于响应上行接入信号和/或信道的下行接入响应信号或者信道;
    用于响应上行接入配置信息的指示信号或者信道。
  17. 根据权利要求15所述的方法,其中,包括:
    一个低级别的波束组的覆盖空间为所述至少两级波束组中一个或者多个高级别波束组的组合覆盖空间;或者,
    所述一个低级别的波束组包括所述一个或者多个高级别波束组;或者,
    所述一个低级别的波束组的覆盖范围由一个或者多个高级别波束组覆盖范围组成;或者,
    一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
  18. 根据权利要求15所述的方法,其中,包括:
    所述第一节点发送具有波束特性的信道和/或信号,所述信道和/或信号信息用于指示以下至少之一的信息:同步、指示接入配置信息、通知***配置信息;所述指示接入配置信息包括以下至少之一的信息:第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息。
  19. 根据权利要求15所述的方法,其中,包括:
    所述第一节点在预定义或者配置的上行发送时刻接收第二节点利用第一一级上行发送波束组发送的上行接入信号和/或信道。
  20. 根据权利要求15所述的方法,其中,包括:
    所述第一节点给第二节点发送上行接入信道和/或信号响应信息,并且所述上行接入信道和/或信号响应信息中携带第二一级上行发送波束组中波束对应的波束索引。
  21. 根据权利要求20所述的方法,其中,包括:
    所述第二一级上行发送波束组中波束对应的波束为所述第一节点通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
  22. 根据权利要求20所述的方法,其中,包括:
    所述第一节点在预定义或者预配置的时频资源上接收第二节点利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中所述接入配置信息包括上行接入媒体接入控制MAC层消息。
  23. 根据权利要求20所述的方法,其中,包括:
    所述第一节点预定义第一二级上行发送波束组为第二节点根据预定义或者预配置的原则从所述第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
  24. 根据权利要求15所述的方法,其中,包括:
    所述第一节点发送上行接入配置信息响应指示,所述上行接入配置信息响应指示中携带第二二级上行发送波束组中波束对应的波束索引。
  25. 根据权利要求24所述的方法,其中,包括:
    所述第二二级上行发送波束组中波束对应的波束为所述第一节点通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
  26. 根据权利要求15所述的方法,其中,包括:
    所述第一节点和第二节点进行初始控制信令和/或数据的交互。
  27. 一种分级波束接入方法,包括:
    第二节点利用至少两级波束组发送上行接入过程中的相关信号和/或信道,其中,所述波束组由一个或者多个波束构成。
  28. 根据权利要求27所述的方法,其中,包括:
    所述上行接入过程中的相关信号和/或信道包括以下至少之一的信号和/或信道:
    用于识别上行发送波束的信号和/或信道;
    用于进行上行接入的信号和/或信道;
    上行接入配置信号和/或信道。
  29. 根据权利要求27所述的方法,其中,包括:
    所述至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
  30. 根据权利要求29所述的方法,其中,包括:
    一个低级别的波束组为一个或者多个高级别波束组的组合;或者,一个低级别的波束组包括一个或者多个高级别波束组;或者,一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
  31. 根据权利要求30所述的方法,其中,包括:
    所述第二节点在预定义或者配置的上行发送时频码资源利用第一一级上行发送波束组发送的上行接入信号和/或信道。
  32. 根据权利要求30所述的方法,其中,包括:
    所述第二节点在预定义或者预配置的时频资源上利用第一二级上行发送波束组发送上行接入配置信息和/或测量参考信号,其中所述接入配置信息包括上行接入媒体接入控制MAC层消息。
  33. 根据权利要求32所述的方法,其中,包括:
    所述第一二级上行发送波束组为所述第二节点根据预定义或者预配置的原则从第二一级上行发送波束组中选择出的一个或者多个最优上行发送波束。
  34. 根据权利要求30所述的方法,其中,包括:
    所述第二节点根据接收到的第二二级上行发送波束组索引,根据预定义或者预配置的原则,选择出最优的第三二级上行发送波束组,并且利用第三二级上行发送波束组和第一节点进行初始控制信令和/或数据的交互。
  35. 一种分级波束接入方法,包括:
    第二节点检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,所述波束组由一个或者多个波束构成。
  36. 根据权利要求35所述的方法,其中,包括:
    所述上行接入过程中的相关信号和/或信道包括以下至少的信号和/或信道:
    用于识别上行发送波束的信号和/或信道;
    用于进行上行接入的信号和/或信道;
    上行接入配置信号和/或信道。
  37. 根据权利要求35所述的方法,其中,包括:
    所述至少两级波束组之间具有相关性,通过较低级别的波束组特征可以获得一个或者多个高级别的波束组特征。
  38. 根据权利要求37所述的方法,其中,包括:
    一个低级别的波束组为一个或者多个高级别波束组的组合;或者,
    一个低级别的波束组包括一个或者多个高级别波束组;或者,
    一个低级别的波束组的覆盖空间或者范围由一个或者多个高级别波束组组成;或者,
    一个或者多个高级别波束组构成的空间由一个低级别波束组覆盖。
  39. 根据权利要求35所述的方法,其中,包括:
    所述第二节点在预定义或者配置的时频码资源上检测所述第一节点利用第一一级下行发送波束组发送的具有波束特性的信道和/或信号,所述信道和/或信号信息用于下行发送波束的识别、同步、指示接入配置信息、通知***配置信息至少之一,所述第一一级下行发送波束组中包括至少一个第一一级下行波束。
  40. 根据权利要求35所述的方法,其中,包括:
    所述第二节点在所述指示接入配置信息中检测第一一级上行发送波束组的时频码资源、上行接入信号和/或信道的发送功率指示信息至少之一。
  41. 根据权利要求35所述的方法,其中,包括:
    第二一级下行发送波束组为所述第二节点通过检测第一一级下行发送波束组时获得的一个或者多个最优下行波束。
  42. 根据权利要求41所述的方法,其中,包括:
    所述最优的选择原则包括以下至少之一:
    质量最优、干扰最小、功率开销最小。
  43. 根据权利要求35所述的方法,其中,包括:
    所述第二节点依据所述第一节点利用获得的第二一级下行发送波束组根据预定义或者预配置的原则选择出第一二级下行发送波束组,并且所述第二节点在预定义或者预配置的资源上接收第一节点利用第一二级下行发送波束组发送上行接入信道和/或信号响应信息。
  44. 根据权利要求40所述的方法,其中,包括:
    所述第二节点在所述上行接入信道和/或信号响应信息中获得第二一级上行发送波束组中波束对应的波束索引。
  45. 根据权利要求44所述的方法,其中,包括:
    第二节点根据所述第二一级上行发送波束组中波束对应的波束为所述第一节点通过检测上行接入信道和/或信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
  46. 根据权利要求35所述的方法,其中,包括:
    所述接入配置信息包括中包括第二二级下行发送波束组中波束对应的波束索引。
  47. 根据权利要求46所述的方法,其中,包括:
    所述第二二级下行发送波束组为所述第二节点根据预定义或者预配置原则通过检测第一二级下行发送波束组时获得的一个或者多个最优下行波束。
  48. 根据权利要求47所述的方法,其中,包括:
    所述第二节点在预定义或者预配置的时频码资源上接收第一节点利用第三二级下行发送波束组发送上行接入配置信息响应指示,并且所述第二节点在所述上行接入配置信息响应指示中获得第二二级上行发送波束组中波束对应的波束索引。
  49. 根据权利要求48所述的方法,其中,包括:
    所述第二节点预定义所述第一节点利用获得的第二二级下行发送波束组根据预定义或者预配置的原则选择出最优的一个或者多个下行发送波束用于组成低三二级下行发送波束组。
  50. 根据权利要求49所述的方法,其中,包括:
    所述第二二级上行发送波束组中波束对应的波束为所述第一节点通过检测上行接入配置信息和/或测量参考信号,根据预定义或者预配置的原则选择出的最优上行发送波束。
  51. 一种分级波束接入装置,所述装置应用于第一节点,包括:
    发送模块,设置为利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,所述波束组由一个或者多个波束构成。
  52. 一种分级波束接入装置,所述装置应用于第一节点,包括:
    指示模块,设置为至少指示两级波束组用于上行发送波束的选择,所述波束组由一个或者多个波束构成。
  53. 一种分级波束接入装置,所述装置应用于第二节点,包括:
    发送模块,设置为利用至少两级波束组发送上行接入过程中的相关信号和/或信道,其中,所述波束组由一个或者多个波束构成。
  54. 一种分级波束接入装置,所述装置应用于第二节点,包括:
    检测模块,设置为检测第一节点利用至少两级波束组发送下行接入过程中的相关信号和/或信道,其中,所述波束组由一个或者多个波束构成。
PCT/CN2015/092864 2014-12-31 2015-10-26 一种分级波束接入方法及装置 WO2016107254A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410856603.1 2014-12-31
CN201410856603.1A CN105812035B (zh) 2014-12-31 2014-12-31 一种分级波束接入方法及装置

Publications (1)

Publication Number Publication Date
WO2016107254A1 true WO2016107254A1 (zh) 2016-07-07

Family

ID=56284156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092864 WO2016107254A1 (zh) 2014-12-31 2015-10-26 一种分级波束接入方法及装置

Country Status (2)

Country Link
CN (1) CN105812035B (zh)
WO (1) WO2016107254A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040858A1 (zh) * 2016-09-05 2018-03-08 株式会社Ntt都科摩 波束选择方法及装置
WO2020093323A1 (zh) * 2018-11-08 2020-05-14 华为技术有限公司 一种波束管理的方法、装置和***
US11057863B2 (en) 2016-09-28 2021-07-06 Kddi Corporation Terminal device and network device for exchanging information on selected beam

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673793B2 (ja) * 2016-09-27 2020-03-25 Kddi株式会社 制御装置、端末装置、制御方法、及びプログラム
WO2018058917A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 初始接入的方法及装置
CN107888257B (zh) * 2016-09-30 2022-09-16 中兴通讯股份有限公司 一种波束选择方法、装置和基站
CN109923801B (zh) 2016-11-03 2022-05-24 Oppo广东移动通信有限公司 上行传输方法、终端设备、网络设备和计算机可读介质
BR112019008403A2 (pt) * 2016-11-03 2019-07-09 Guangdong Oppo Mobile Telecommunications Corp Ltd método de transmissão de sinais de link superior, e dispositivo terminal
MX2019007419A (es) * 2016-12-21 2019-08-16 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de transmision de se?ales, dispositivo de terminal y dispositivo de red.
CN108260133B (zh) * 2016-12-28 2020-05-12 维沃移动通信有限公司 一种波束测量上报的方法、网络侧设备及移动终端
JP2020504952A (ja) * 2016-12-30 2020-02-13 オッポ広東移動通信有限公司 情報伝送方法、ネットワーク装置及び端末装置
JP6982079B2 (ja) 2016-12-30 2021-12-17 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 情報伝送方法、ネットワーク機器及び端末機器
CN108282321B (zh) 2017-01-06 2022-03-29 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
WO2018127150A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种多扇区化天线及通信***
CN107079404B (zh) * 2017-01-06 2020-10-30 北京小米移动软件有限公司 寻呼信号发送方法、寻呼信号接收方法、装置及***
CN108282862B (zh) 2017-01-06 2024-01-30 华为技术有限公司 一种寻呼方法和装置
US10813079B2 (en) 2017-01-06 2020-10-20 Beijing Xiaomi Mobile Software Co., Ltd. Paging signal transmitting method, paging signal receiving method, device and system
EP3567752B1 (en) 2017-01-09 2023-05-10 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for acquiring and sending system information
CN106793059B (zh) * 2017-01-10 2020-06-02 北京小米移动软件有限公司 发送同步信息块的方法及装置
US10368325B2 (en) * 2017-02-03 2019-07-30 Futurewei Technologies, Inc. System and method for beam adaptation in a beam-based communications system
CN109392185B (zh) * 2017-08-02 2020-04-14 维沃移动通信有限公司 一种随机接入方法和用户终端
US20190068263A1 (en) * 2017-08-23 2019-02-28 Mediatek Inc. Method for Uplink Beam Training and Determination for Wireless Communication System with Beamforming
CN110418412B (zh) * 2018-04-28 2022-01-14 华为技术有限公司 一种波束管理方法、中继收发节点、终端和基站
CN111432428B (zh) * 2019-01-10 2022-09-27 ***通信有限公司研究院 一种测量方法和设备
CN112689329A (zh) * 2019-10-17 2021-04-20 北京三星通信技术研究有限公司 波束配置方法及装置、电子设备及计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399425A (zh) * 2001-07-20 2003-02-26 华为技术有限公司 无线通信***下行反馈多天线发射方法与装置
CN1658526A (zh) * 2004-02-17 2005-08-24 大唐移动通信设备有限公司 无线信道的下行波束赋形方法和装置
CN103634034A (zh) * 2012-08-23 2014-03-12 中兴通讯股份有限公司 波束赋形处理方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267236B (zh) * 2007-03-16 2013-02-27 中兴通讯股份有限公司 一种智能天线下行波束赋形方法及其装置
CN101689901B (zh) * 2007-07-05 2012-11-07 松下电器产业株式会社 无线通信装置、无线通信***以及无线通信方法
CN101252384B (zh) * 2008-03-28 2012-02-22 清华大学 基于ofdm和跨层设计的星载交换方法
US8457026B1 (en) * 2009-02-03 2013-06-04 Sibeam, Inc. Enhanced wireless data rates using multiple beams
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
CN102957470B (zh) * 2011-08-16 2016-04-06 上海贝尔股份有限公司 无线通信中的信道反馈的方法和设备
CN103716081B (zh) * 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及***
CN104184561B (zh) * 2014-01-13 2019-04-30 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端
CN105790886A (zh) * 2014-12-24 2016-07-20 中兴通讯股份有限公司 数据包发送、接收方法、装置、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399425A (zh) * 2001-07-20 2003-02-26 华为技术有限公司 无线通信***下行反馈多天线发射方法与装置
CN1658526A (zh) * 2004-02-17 2005-08-24 大唐移动通信设备有限公司 无线信道的下行波束赋形方法和装置
CN103634034A (zh) * 2012-08-23 2014-03-12 中兴通讯股份有限公司 波束赋形处理方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040858A1 (zh) * 2016-09-05 2018-03-08 株式会社Ntt都科摩 波束选择方法及装置
US11057863B2 (en) 2016-09-28 2021-07-06 Kddi Corporation Terminal device and network device for exchanging information on selected beam
US11844046B2 (en) 2016-09-28 2023-12-12 Kddi Corporation Terminal device, network device for exchanging information on selected beam
WO2020093323A1 (zh) * 2018-11-08 2020-05-14 华为技术有限公司 一种波束管理的方法、装置和***

Also Published As

Publication number Publication date
CN105812035A (zh) 2016-07-27
CN105812035B (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
WO2016107254A1 (zh) 一种分级波束接入方法及装置
KR102172908B1 (ko) 방향성 송신들을 가지는 무선 네트워크에서의 p2p 통신들 및 분산형 공간 공유를 위한 방법 및 시스템
US11223403B2 (en) Mobility measurements
WO2016041358A1 (zh) 一种上行同步方法、装置和***
WO2016062147A1 (zh) 消息发送接收方法、发送接收装置、基站及终端
JP2020523922A (ja) 通信方法及び通信装置
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20130083684A1 (en) Methods of device to device communication
CN105229942A (zh) 用于资源分配和设备对设备发现跳的用户设备和方法
JP2016532382A (ja) 通信方法及び装置
JPWO2014196295A1 (ja) 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置
CN106851712A (zh) 一种消息处理的方法、基站及终端
RU2739588C2 (ru) Оконечное устройство, базовая станция, способ и носитель информации
JP7245361B2 (ja) ビーム参照シグナリングを可能にするための方法、無線デバイス、及びネットワークノード
Dinh‐Van et al. Resource allocation and power control based on user grouping for underlay device‐to‐device communications in cellular networks
US11895637B2 (en) Beam management in multi-TRP operation
US20220302972A1 (en) UE Operations for Beam Management in Multi-TRP Operation
US11990973B2 (en) Beam management for a radio transceiver device
CN113412598B (zh) 干扰管理
CN112166640B (zh) 用于定向波束传输的网络辅助的波束调度机制
JP2023509544A (ja) 電子機器、無線通信方法及びコンピュータ読み取り可能な記憶媒体
CN114556800A (zh) 无线电网络中数据的接收和解码
US20230217384A1 (en) Method and apparatus for beam management in sidelink communication
EP3613234B1 (en) Method and user equipment for random access in a beamformed communications system
US20220248419A1 (en) Interference handling at radio access network nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874939

Country of ref document: EP

Kind code of ref document: A1