WO2016104311A1 - 無線通信端末、通信制御方法およびネットワーク装置 - Google Patents

無線通信端末、通信制御方法およびネットワーク装置 Download PDF

Info

Publication number
WO2016104311A1
WO2016104311A1 PCT/JP2015/085317 JP2015085317W WO2016104311A1 WO 2016104311 A1 WO2016104311 A1 WO 2016104311A1 JP 2015085317 W JP2015085317 W JP 2015085317W WO 2016104311 A1 WO2016104311 A1 WO 2016104311A1
Authority
WO
WIPO (PCT)
Prior art keywords
data communication
emergency data
wireless communication
emergency
communication terminal
Prior art date
Application number
PCT/JP2015/085317
Other languages
English (en)
French (fr)
Inventor
慎吾 片桐
和也 金野
裕二 井口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2016104311A1 publication Critical patent/WO2016104311A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present invention relates to a wireless communication terminal, a communication control method, and a network device, and more particularly, wireless communication that realizes QoS sufficient for data communication when urgency and / or real-time performance is required, such as emergency use.
  • the present invention relates to a terminal, a communication control method, and a network device.
  • LTE Long Term Evolution
  • the LTE system includes a UE (User Equipment) that is a radio communication terminal, an eNB (evolved Node B) that is a radio communication base station, and an EPC (Evolved Packet Core) that is an IP (Internet Protocol) -based core network.
  • UE User Equipment
  • eNB evolved Node B
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • VoLTE Voice over LTE
  • IP Internet protocol
  • a procedure for handling high priority emergency calls with the highest priority is defined.
  • the voice at the time of VoLTE is recognized as an application that is difficult to be cut off, and the priority 1 that is the highest priority in QCI (Quality of service class identifier) is assigned.
  • QCI Quality of service class identifier
  • data communication for example, a TCP-based service / application defined in 3GPP TS23.203 rel.12.
  • a lower priority for example, VoIP, VoLTE
  • QCI QoS
  • GRR Guaranteed bit rate
  • QCI QoS
  • QoS QoS
  • it is normal data communication (thing which does not require real-time property or urgency, for example, web browsing), there is no problem even with QoS corresponding to the QCI.
  • the present invention has been made to solve the above-described problems, and realizes QoS sufficient for data communication in data communication when urgency and / or real-time performance is required, such as emergency use. With the goal.
  • One aspect of a wireless communication terminal requests a network device to perform emergency data communication, and a service quality class corresponding to the emergency data communication transmitted from the network device in response to the request
  • a control unit is provided that receives an identifier (QCI) and performs a process of performing the emergency data communication via the network device based on the service quality class identifier.
  • QCI an identifier
  • the service quality class identifier corresponding to the emergency data communication is a service quality class identifier dedicated to the emergency data communication.
  • One aspect of the wireless communication terminal includes a service quality class identifier dedicated to the emergency data communication, wherein the service quality class identifier dedicated to the emergency data communication is stored in a memory of the network device. Assigned based on the QCI characteristic table.
  • the service quality class identifier corresponding to the emergency data communication is a service quality class identifier shared with other applications.
  • the service quality class identifier also used as the other application is stored in a memory of the network device, and the other application And the QCI characteristic table including the emergency data communication.
  • At least a higher priority than normal data communication is assigned to the service quality class identifier corresponding to the emergency data communication.
  • control unit performs a process of requesting execution of emergency data communication to the network device when an emergency call is transmitted.
  • the control unit when the control unit requests the network device to execute the emergency data communication, the PDN Connectivity Request corresponding to the emergency data communication is transmitted to the network device. Performs transmission processing to the device.
  • the PDN Connectivity Request corresponding to the emergency data communication is a PDN Connectivity Request including a specific access point name (APN) corresponding to the emergency data communication.
  • APN access point name
  • the control unit transmits a PDN Connectivity Request corresponding to the emergency call when an emergency call is made, and then the PDN Connectivity corresponding to the emergency data communication. Processing to send a Request is performed.
  • One aspect of the wireless communication terminal according to the present invention is a process in which the control unit transmits a PDN Connectivity Request corresponding to the emergency call and corresponding to the emergency data communication when an emergency call is made. Do.
  • the network device when executing emergency data communication, the network device is requested to execute another application corresponding to the emergency data communication, and in response to the request Control that receives a quality of service class identifier (QCI) corresponding to the other application transmitted from the network device, and performs a process of communicating the emergency data via the network device based on the service quality class identifier A part.
  • QCI quality of service class identifier
  • the wireless communication terminal requests the network device to execute emergency data communication (a), and the network device corresponds to the emergency data communication. (B) transmitting a quality of service class identifier (QCI) to the wireless communication terminal; and when the wireless communication terminal receives the quality of service class identifier (QCI), based on the quality of service class identifier, the network And (c) performing the emergency data communication through a device.
  • QCI quality of service class identifier
  • the wireless communication terminal corresponding to the emergency data communication responds to the request by the emergency communication
  • a control unit is provided for performing a process of transmitting a quality of service class identifier (QCI) to be used for data communication to the wireless communication terminal.
  • QCI quality of service class identifier
  • FIG. 10 is a diagram illustrating a control procedure when emergency data is transmitted from a UE in the LTE system according to the first embodiment.
  • 3 is a diagram illustrating a QCI characteristic table used in the LTE system according to Embodiment 1.
  • FIG. 6 is a diagram showing a QCI characteristic table used in the LTE system according to the first modification of the first embodiment.
  • FIG. 10 is a diagram illustrating a control procedure when emergency data is transmitted from the UE in the LTE system according to the second modification of the first embodiment.
  • FIG. 10 is a diagram illustrating a control procedure when an emergency call is transmitted from a UE in the LTE system according to the second embodiment.
  • FIG. 10 is a diagram illustrating a control procedure when an emergency call is transmitted from a UE in an LTE system according to a modification of the second embodiment.
  • FIG. 1 is a configuration diagram of an LTE system.
  • the LTE system includes a UE 100, an E-UTRAN (Evolved-UMTS Terrestria 1 Radio Access Network) 10, and an EPC 20.
  • the E-UTRAN 10 corresponds to a radio access network
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile radio communication terminal and performs radio communication with a connection destination cell (serving cell).
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (200-1, 200-2, 200-3).
  • the eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that establishes a connection with a cell managed by the eNB 200.
  • “cell” is used as a term indicating a minimum unit of a radio communication area, and also as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 (300-1, 300-2).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the interface X2.
  • the eNB 200 is connected to the MME / S-GW 300 via the interface S1.
  • FIG. 2 is a block diagram showing the configuration of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • GNSS Global Navigation Satellite System
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 ′.
  • the plurality of antennas 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 includes a transmission unit 111 that converts a baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits the radio signal from a plurality of antennas 101.
  • the radio transceiver 110 includes a receiving unit 112 that converts radio signals received by the plurality of antennas 101 into baseband signals (received signals) and outputs the baseband signals to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a signal processing unit 161 that performs signal processing such as modulation / demodulation and encoding / decoding of a baseband signal, and a control unit 162 that executes various programs by executing programs stored in the memory 150. Contains.
  • the control unit 162 performs a process for making an emergency call based on an operation through the user interface 120, which will be described later, and performs an emergency data communication under the control of the MME / S-GW. Control.
  • FIG. 3 is a block diagram showing the configuration of the MME / S-GW 300.
  • the MME / S-GW 300 includes a network interface 220, a memory 230, and a processor 240.
  • the network interface 220 is connected to the eNB 200 via the interface S1 (FIG. 1).
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a control unit 241 that receives an emergency call transmitted from the UE and performs a control operation for controlling the UE, and executes various controls for the UE described later.
  • the eNB and the MME / S-GW are collectively described as a network device (NW).
  • the UE and the eNB execute RRC Connection establishment processing S1.
  • the UE transmits an RRC connection request with the cause being “Emergency” to the eNB.
  • the RRC Connection establishment process S1 includes a procedure in which the eNB that has received the RRC Connection Request transmits the RRC Connection Setup to the UE, and the UE transmits the RRC Connection Setup Complete to the eNB, but the illustration is omitted. Further, although a default bearer establishment process for establishing a voice bearer (communication path) via the eNB with the MME / S-GW is executed subsequent to the RRC connection, illustration is omitted.
  • the PDN connection request process S2 is executed.
  • the UE transmits a PDN Connectivity Request with Req_type as Emergency to the MME / S-GW via the eNB.
  • the MME / S-GW Upon receiving the PDN Connectivity Request, the MME / S-GW executes a Default Bearer establishment process S3 for establishing a bearer for IMS signaling related to an emergency call (control signal related to call control), and Activate Default EPS BearerCerterCaster
  • the QCI value is included in the Request message and transmitted to the UE.
  • QCI 5 corresponding to IMS signaling for managing voice communication is assigned.
  • the MME / S-GW transmits an E-RAB Setup Request to the eNB, and the eNB transmits an RRC Connection Reconfiguration to the UE. Also included is a procedure in which the UE transmits an RRC Connection Reconfiguration Complete to the eNB, and the eNB transmits an E-RAB Setup Response to the MME / S-GW, but illustration is omitted.
  • the MME / S-GW executes a dedicated bearer establishment process S4 for establishing a bearer for voice data related to an emergency call, and includes the QCI value in the Activate Dedicated EPS Bearer Request Request message to the UE. Send.
  • QCI 1 corresponding to VoIP (Voice over IP) is assigned.
  • the MME / S-GW sends an E-RAB Setup Request to the eNB, and the eNB sends an RRC Connection Reconfiguration to the UE. Also included is a procedure in which the UE transmits an RRC Connection Reconfiguration Complete to the eNB, and the eNB transmits an E-RAB Setup Response to the MME, which is not shown. Voice communication by VoLTE is started through the above procedure.
  • FIG. 5 shows a basic (standard) QCI characteristic table.
  • bit rate is guaranteed (GBR, Non-GBR), priority (Priority (Level), packet delay budget (Packet Delay Budget), packet error loss rate (PELR) associated with the QCI value : Packet Error Loss Rate) and application (service) are shown.
  • VoIP VoiceLTE
  • VoIP is assigned the second priority level 2.
  • the transmission speed is also guaranteed and can be used stably.
  • FIG. 6 is a diagram illustrating a control procedure when the UE transmits emergency data in the LTE system according to the first embodiment.
  • eNB and MME / S-GW are collectively described as a network device (NW).
  • NW network device
  • an operation for emergency data transmission (emergency data communication start) is performed via the user interface 120 (FIG. 3) or an emergency
  • the UE and the eNB execute an RRC connection establishment process S11.
  • the UE transmits an RRC connection request with the cause being “Emergency” to the eNB.
  • the specific event that triggers the emergency data transmission is, for example, an emergency application.
  • the emergency application here is, for example, an in-vehicle camera device that has a communication function mounted on a vehicle and has an acceleration sensor or the like. This is an application that detects this with an acceleration sensor and transmits the image data before and after receiving an impact as emergency data to an external server or the like via a network device.
  • the emergency data transmission executed by this application is performed from the necessity of urgently transmitting the image data to an external server because there is a possibility that the in-vehicle camera device may be subsequently damaged in the case of a car accident.
  • the present invention is not limited to this, and the UE may be a communication module that transmits data received from the vehicle-mounted camera device via wire or wirelessly.
  • the acceleration sensor may not be provided in the in-vehicle camera device, but may be provided outside and configured to transmit the detection result to the in-vehicle camera device.
  • RRC Connection establishment process S11 there is also transmission of RRC Connection Setup from the eNB to the UE and transmission of RRC Connection Setup Complete from the UE to the eNB, but illustration is omitted.
  • a specific access point name (APN: Access Point Name) is included in the PDN Connectivity Request and transmitted.
  • the APN included in the PDN Connectivity Request is specified for emergency data communication by a network operator (communication carrier) or the like.
  • the MME / S-GW determines whether the APN included in the PDN Connectivity Request is compatible with emergency data communication. This determination is performed by the MME / S-GW using, for example, a table stored in the memory 230 (FIG. 3). If the MME / S-GW determines that the APN supports emergency data communication, for example, based on the QCI characteristic table shown in FIG. 7, a dedicated bearer is established to allocate a bearer for emergency data communication. Process S13 is performed and the bearer (QCI) matched with the emergency data communication (application) is allocated.
  • QCI bearer
  • FIG. 6 it is assumed that the UE is in an idle state. However, the present invention is not limited to this, and the UE may be in a null state or a connected state, and the UE is in a connected state. In this case, the transmission of the RRC Connection Request by the UE
  • the QCI has a value of 1 to 10 and the priority has a value of 1 to 10 due to the addition of the TCP protocol (emergency data communication) as an application.
  • TCP protocol electronic mail protocol
  • the present invention is not limited to this, and may be simply emergency data communication, and the emergency data communication may include the UDP protocol.
  • the packet delay budget is 150 ms, and the packet error loss rate is 10 ⁇ 3 . Needless to say, these values are only examples and may be changed to other values.
  • Modification 1 when the UE performs emergency data communication, the MME / S-GW has shown the configuration in which the QCI assignment is performed using the QCI characteristic table shown in FIG. Instead of setting a dedicated QCI and priority for emergency data communication, a QCI characteristic table including other applications and emergency data communication may be used as an application to which a specific QCI is applied.
  • FIG. 9 is a diagram illustrating a control procedure when the UE performs emergency data communication (emergency data transmission) in the LTE system according to the first modification of the first embodiment.
  • emergency data communication emergency data transmission
  • FIG. 9 in a UE in an idle state, for example, an operation for transmitting emergency data is performed via the user interface 120 (FIG. 3), or a trigger that triggers emergency data transmission
  • the UE and the eNB execute the RRC connection establishment process S11.
  • the UE transmits an RRC connection request with the cause being “Emergency” to the eNB.
  • the UE when the UE performs emergency data communication (emergency data is transmitted), in the PDN connection request processing S12, the UE performs PDN Connectivity Request with Req_type as Emergency, via the eNB, MME / S- When transmitting to the GW, the specific APN is included in the PDN Connectivity Request and transmitted.
  • the APN included in the PDN Connectivity Request is specified for real-time game use and emergency data communication by a network operator (communication carrier) or the like.
  • the MME / S-GW determines whether the APN included in the PDN Connectivity Request is compatible with emergency data communication. This determination is performed by the MME / S-GW using, for example, a table stored in the memory 230 (FIG. 3). If it is determined that the APN corresponds to emergency data communication or the like, for example, the QCI shown in FIG. In order to assign a bearer for emergency data communication or the like based on the characteristic table, the Dedicated Bearer establishment process S131 is executed, and the MME / S-GW is associated with the emergency data communication (application) (QCI). ).
  • application application
  • the emergency data communication is added to another existing application to which the QCI is assigned, instead of setting a dedicated QCI and priority for the emergency data communication. Therefore, the standardized QCI characteristic table can be handled without greatly changing, and the modification to the LTE system can be reduced.
  • the MME / S-GW has shown the configuration in which the QCI is assigned using the QCI characteristic table shown in FIG. Instead of setting a dedicated QCI and priority for emergency data communication, it may be configured to camouflage to an application to which a high-priority QCI is assigned when executing emergency data communication.
  • FIG. 10 is a diagram illustrating a control procedure when the UE transmits emergency data in the LTE system according to the second modification of the first embodiment.
  • the UE and the eNB perform RRC connection establishment processing. S11 is executed.
  • the UE transmits an RRC connection request with the cause being “Emergency” to the eNB.
  • the UE when the UE performs emergency data communication (emergency data is transmitted), in the PDN connection request processing S12, the UE performs PDN Connectivity Request with Req_type as Emergency, via the eNB through the MME / S. -When transmitting to the GW, include the specific APN in the PDN Connectivity Request.
  • the APN transmitted here is specified for a real-time game by a network operator or the like.
  • the MME / S-GW determines whether or not the APN included in the PDN Connectivity Request corresponds to the real-time game. This determination is performed by the MME / S-GW using, for example, a table stored in the memory 230 (FIG. 3). If it is determined that the APN corresponds to the real-time game, for example, the QCI characteristic table shown in FIG. Based on the above, a Dedicated Bearer establishment process S132 for establishing a bearer for a real-time game is executed, and the MME / S-GW assigns a bearer (QCI) associated with the real-time game (application).
  • QCI bearer
  • the MME / S-GW is based on the QCI characteristic table shown in FIG. 5 in the Activate Dedicated EPS Bearer Context Request message.
  • emergency data communication is standardized because it does not set a dedicated QCI or priority for emergency data communication, but camouflages the application to which a high-priority QCI is assigned.
  • QCI characteristic tables can be used, and fewer modifications are made to the LTE system.
  • Embodiment 2 In Embodiment 1 demonstrated above, the case where emergency data transmission was transmitted from UE in the LTE system was demonstrated. However, since the emergency data transmission is frequently used, there is a possibility that the speed of the truly urgent data communication may be delayed. Therefore, the execution of the emergency data communication may be limited. .
  • Embodiment 2 a configuration in which execution of emergency data communication is restricted will be described.
  • FIG. 11 is a diagram illustrating a control procedure when the UE transmits an emergency call in the LTE system according to the second embodiment.
  • the eNB and the MME / S-GW are collectively described as a network device (NW).
  • the UE and the eNB perform RRC Connection establishment process S21. Execute. In the RRC connection establishment process S11, the UE transmits an RRC connection request with the cause being “Emergency” to the eNB.
  • RRC connection establishment process S21 there is an RRC connection setup transmission from the eNB to the UE and an RRC connection setup complete transmission from the UE to the eNB, but the illustration is omitted. Further, although a default bearer establishment process for establishing a voice bearer is executed following RRC Connection, illustration is omitted.
  • the UE After the default bearer establishment process for establishing a voice bearer enables data exchange between the UE and the MME / S-GW, the UE sets Req_type to Emergency in the first PDN connection request process S22. PDN Connectivity Request is transmitted to MME / S-GW via eNB.
  • the MME / S-GW Upon receiving the PDN Connectivity Request, the MME / S-GW executes a Default Bearer establishment process S23 for establishing a bearer for IMS signaling (control signal) related to an emergency call, and sends an Activate Default EPS Bearer Quest Request Queue Request Quest Request Queue Request Queue Request Message Include value and send to UE.
  • a Default Bearer establishment process S23 for establishing a bearer for IMS signaling (control signal) related to an emergency call, and sends an Activate Default EPS Bearer Quest Request Queue Request Quest Request Queue Request Queue Request Message Include value and send to UE.
  • QCI 5 corresponding to IMS signaling for managing voice communication is assigned.
  • the MME / S-GW sends an E-RAB Setup Request to the eNB, and the eNB sends an RRC Connection Reconfiguration to the UE. Also included is a procedure in which the UE transmits an RRC Connection Reconfiguration Complete to the eNB, and the eNB transmits an E-RAB Setup Response to the MME / S-GW, but illustration is omitted.
  • the MME / S-GW executes a dedicated bearer establishment process S24 for establishing a bearer for voice data related to the emergency call, and includes the QCI value in the Activate Dedicated EPS Bearer Request Request message to the UE.
  • QCI 1 corresponding to VoIP is assigned based on the standardized QCI characteristic table shown in FIG.
  • the MME / S-GW sends an E-RAB Setup Request to the eNB, and the eNB sends an RRC Connection Reconfiguration to the UE. Also included is a procedure in which the UE transmits an RRC Connection Reconfiguration Complete to the eNB, and the eNB transmits an E-RAB Setup Response to the MME, which is not shown. Voice communication by VoLTE is started through the above procedure.
  • the UE when calling the police, if the UE needs to execute emergency data communication (emergency data transmission), for example, when a traffic accident occurs, call the police.
  • emergency data communication emergency data transmission
  • the UE sends a PDN Connectivity Request with Req_type as Emergency in the second PDN connection request processing S25 via the eNB via the MME / S-GW.
  • a specific APN is included in the PDN Connectivity Request and transmitted.
  • the UE may determine that it is necessary to execute the emergency data communication described above (transmission of emergency data) when making a call to the police, that is, call the police.
  • emergency data communication emergency data transmission
  • the APN included in the PDN Connectivity Request is, for example, the APN specified for emergency data communication by the network operator or the like described in the first embodiment, or the first modification of the first embodiment.
  • the APN specified for the real-time game and emergency data communication for example, by the network operator described in the above, or the APN specified for the real-time game, for example, by the network operator described in the second modification of the first embodiment It is.
  • the MME / S-GW executes the Dedicated Bearer establishment process S26 for establishing the bearer for emergency data communication
  • the MME / S-GW displays the Activate Dedicated EPS Bearer Context Request message in FIG. 5, FIG. 7 and FIG.
  • the QCI value (X) determined based on any of the shown QCI characteristic tables and transmitting it to the UE, at least emergency data communication can be performed with higher priority than normal data communication.
  • GBR is also set, so that the transmission speed is guaranteed and it can be used stably.
  • the second PDN connection request process for establishing the bearer for emergency data communication is performed.
  • a configuration has been shown in which emergency data communication can be performed with a high QoS such as a high priority.
  • an emergency data communication is also requested so that a single PDN connection request process is performed. You may enable it to perform emergency data communication.
  • FIG. 12 is a diagram illustrating a control procedure when an emergency call is transmitted from the UE in the LTE system according to the modification of the second embodiment.
  • the UE and the eNB perform RRC Connection establishment processing S31. Execute. In the RRC connection establishment process S11, the UE transmits an RRC connection request with the cause being “Emergency” to the eNB.
  • the RRC connection establishment process S31 there is a transmission of the RRC connection setup from the eNB to the UE and a transmission of the RRC connection setup complete from the UE to the eNB, but the illustration is omitted. Further, although a default bearer establishment process for establishing a voice bearer is executed following RRC Connection, illustration is omitted.
  • the PDN connection request process S32 causes the UE to use the PDN Connectivity Request with Req_type as Emergency. Is transmitted to the MME / S-GW via the eNB, the specific APN is included in the PDN Connectivity Request and transmitted. This APN is the APN described in the first embodiment or the first modification or the second modification thereof, and a duplicate description is omitted.
  • the MME / S-GW Upon receiving the PDN Connectivity Request, the MME / S-GW executes the Default Bearer establishment process S33 for establishing the bearer for IMS signaling related to the emergency call, and includes the Activate Default EPS Bearer Context Request message value in the Request Queue Request Quest message value. To the UE.
  • QCI 5 corresponding to IMS signaling for managing voice communication is assigned.
  • the MME / S-GW sends an E-RAB Setup Request to the eNB, and the eNB sends an RRC Connection Reconfiguration to the UE. Also included is a procedure in which the UE transmits an RRC Connection Reconfiguration Complete to the eNB, and the eNB transmits an E-RAB Setup Response to the MME / S-GW, but illustration is omitted.
  • the MME / S-GW executes a dedicated bearer establishment process S34 for establishing a bearer for voice data related to an emergency call, and includes the QCI value in the Activate Dedicated EPS Bearer Context Request message to the UE. Send.
  • QCI 1 corresponding to VoIP is assigned based on the QCI characteristic table shown in FIG.
  • the MME / S-GW transmits an E-RAB Setup Request to the eNB, and the eNB transmits an RRC Connection Reconfiguration to the UE. Also included is a procedure in which the UE transmits an RRC Connection Reconfiguration Complete to the eNB, and the eNB transmits an E-RAB Setup Response to the MME, which is not shown. Voice communication by VoLTE is started through the above procedure.
  • the MME / S-GW executes the Dedicated Bearer establishment process S35 for establishing the bearer for emergency data communication
  • the MME / S-GW adds the Activate Dedicated EPS Bearer Context Request message to FIG. 5, FIG. 7 and FIG.
  • the QCI value (X) determined based on any of the shown QCI characteristic tables and transmitting it to the UE
  • at least emergency data communication can be performed with higher priority than normal data communication.
  • GBR is also set, so that the transmission speed is guaranteed and it can be used stably.
  • emergency data communication is requested together with a call to the police.
  • a UE is a radio communication terminal
  • a traffic accident occurs

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明は無線通信端末に関し、ネットワーク装置に対して緊急用データ通信の実行を要求し、当該要求に応じてネットワーク装置から送信された緊急用データ通信に対応したサービス品質クラス識別子(QCI)を受信し、該サービス品質クラス識別子に基づいてネットワーク装置を介して緊急用データ通信する処理を行う制御部を備えている。

Description

無線通信端末、通信制御方法およびネットワーク装置
 本発明は、無線通信端末、通信制御方法よびネットワーク装置に関し、特に、緊急用途等、緊急性及び/又はリアルタイム性が求められる時のデータ通信において、当該データ通信に十分なQoSを実現する無線通信端末、通信制御方法およびネットワーク装置に関する。
 次世代の無線通信方式として、LTE(Long Term Evolution)システムが3GPP(3rd Generation Partnership Project)で標準化されている。LTEシステムは、無線通信端末であるUE(User Equipment)と、無線通信基地局であるeNB(evolved Node B)と、IP(Internet Protocol)ベースのコアネットワークであるEPC(Evolved Packet Core)とによって構成されている。なお、本明細書において、無線通信基地局は「基地局」と略記し、無線通信端末は「端末」と略記する。
 LTEシステムでは、インターネットプロトコル(IP)をベースとしたネットワークを経由して音声通信呼の接続を実現するVoLTE(Voice over LTE)が規定されており、VoLTEでは、警察や消防への発信など、緊急性の高い緊急呼を最優先で処理するための手順が規定されている。そして、VoLTE時の音声は切れては困るアプリケーションという認識が持たれており、QCI(Quality of service Class Identifier:サービス品質クラス識別子)において最優先である優先度1が割り当てられている。この結果、送信速度も保証され、安定して利用することが可能である。なお、VoLTEにおける緊急呼の処理手順については特許文献1に開示されている。一方、データ通信(例えば、3GPP TS23.203 rel.12で規定されているTCPベースのサービス/アプリケーション)は、他のアプリケーション(例えば、VoIP、VoLTE)に比べて、優先度(Priority Level)が低く(優先度6、8及び9)、なお且つ保証ビット・レート(GBR:Guaranteed bitrate)のないQCI(QoS)が割り当てられている。
国際公開第2014/050345号
 以上説明したように、LTEシステムにおいて、データ通信は、優先度が低く、なお且つ保証ビット・レートのないQCI(QoS)が割り当てられている。通常のデータ通信(リアルタイム性や緊急性を要しないもの、例えばウェブブラウジング)であれば、上記QCIに対応するQoSであっても問題はない。
 しかし、通常のデータ通信とは異なり、例えば緊急用途等、緊急性及び/又はリアルタイム性が求められるデータ通信(例えば、事故状況に関する動画の送信)を実行する場合においても、上記通常のデータ通信と同様の上記QCIに対応するQoSでは十分ではない可能性がある。
 本発明は上記のような課題を解決するためになされたものであり、緊急用途等、緊急性及び/又はリアルタイム性が求められる時のデータ通信において、当該データ通信に十分なQoSを実現することを目的とする。
 本発明に係る無線通信端末の一態様は、ネットワーク装置に対して緊急用データ通信の実行を要求し、当該要求に応じて前記ネットワーク装置から送信された前記緊急用データ通信に対応したサービス品質クラス識別子(QCI)を受信し、該サービス品質クラス識別子に基づいて前記ネットワーク装置を介して前記緊急用データ通信する処理を行う制御部を備えている。
 本発明に係る無線通信端末の一態様は、前記緊急用データ通信に対応したサービス品質クラス識別子が、前記緊急用データ通信に専用のサービス品質クラス識別子である。
 本発明に係る無線通信端末の一態様は、前記緊急用データ通信に専用のサービス品質クラス識別子が、前記ネットワーク装置のメモリに記憶された、前記緊急用データ通信に専用のサービス品質クラス識別子を含むQCI特性表に基づいて割り当てられる。
 本発明に係る無線通信端末の一態様は、前記緊急用データ通信に対応したサービス品質クラス識別子が、他のアプリケーションと兼用のサービス品質クラス識別子である。
 本発明に係る無線通信端末の一態様は、前記他のアプリケーションと兼用のサービス品質クラス識別子が、前記ネットワーク装置のメモリに記憶された、前記サービス品質クラス識別子の適用対象のアプリケーションに前記他のアプリケーション及び前記緊急用データ通信を含むQCI特性表に基づいて割り当てられる。
 本発明に係る無線通信端末の一態様は、前記緊急用データ通信に対応したサービス品質クラス識別子には、少なくとも通常のデータ通信よりも高い優先度が割り当てられる。
 本発明に係る無線通信端末の一態様は、前記制御部が、緊急呼の発信を契機として前記ネットワーク装置に対する緊急用データ通信の実行を要求する処理を行う。
 本発明に係る無線通信端末の一態様は、前記制御部が、前記ネットワーク装置に対して前記緊急用データ通信の実行を要求する際に、前記緊急用データ通信に対応するPDN Connectivity Requestを前記ネットワーク装置に対して送信する処理を行う。
 本発明に係る無線通信端末の一態様は、前記緊急用データ通信に対応するPDN Connectivity Requestは、前記緊急用データ通信に対応する特定のアクセスポイント名(APN)を含むPDN Connectivity Requestである。
 本発明に係る無線通信端末の一態様は、前記制御部が、緊急呼の発信の際に、当該緊急呼に対応するPDN Connectivity Requestを送信し、その後に前記緊急用データ通信に対応するPDN Connectivity Requestを送信する処理を行う。
 本発明に係る無線通信端末の一態様は、前記制御部が、緊急呼の発信の際に、当該緊急呼に対応し、なお且つ前記緊急用データ通信に対応するPDN Connectivity Requestを送信する処理を行う。
 本発明に係る無線通信端末の一態様は、緊急用データ通信の実行をする際に、当該緊急用データ通信に対応する他のアプリケーションの実行をネットワーク装置に対して要求し、当該要求に応じて前記ネットワーク装置から送信された前記他のアプリケーションに対応するサービス品質クラス識別子(QCI)を受信し、該サービス品質クラス識別子に基づいて、前記ネットワーク装置を介して前記緊急用データ通信する処理を行う制御部を備える。
 本発明に係る通信制御方法の一態様は、無線通信端末が、ネットワーク装置に対して緊急用データ通信の実行を要求するステップ(a)と、前記ネットワーク装置が、前記緊急用データ通信に対応したサービス品質クラス識別子(QCI)を前記無線通信端末に送信するステップ(b)と、前記無線通信端末が、前記サービス品質クラス識別子(QCI)を受信すると、該サービス品質クラス識別子に基づいて、前記ネットワーク装置を介して前記緊急用データ通信を行うステップ(c)と、を備えている。
 本発明に係るネットワーク装置の一態様は、無線通信端末から緊急用データ通信の実行の要求を受けると、当該要求に応じて、前記緊急用データ通信に対応した、前記無線通信端末が前記緊急用データ通信を行う際に用いるサービス品質クラス識別子(QCI)を、前記無線通信端末に送信する処理を行う制御部を備えている。
 本発明によれば、緊急用途等、緊急性及び/又はリアルタイム性が求められる時のデータ通信において、当該データ通信に十分なQoSを実現することができる。
LTEシステムの構成を説明する図である。 LTEシステムにおけるUEのブロック図である。 LTEシステムにおけるMME/S-GWのブロック図である。 UEから緊急呼が発信された場合の一般的な制御手順を説明する図である。 基本のQCI特性表を示す図である。 実施の形態1のLTEシステムにおいてUEから緊急用データが発信された場合の制御手順を示す図である。 実施の形態1のLTEシステムにおいて使用されるQCI特性表を示す図である。 実施の形態1の変形例1のLTEシステムにおいて使用されるQCI特性表を示す図である。 実施の形態1の変形例1のLTEシステムにおいて、UEから緊急用データが発信された場合の制御手順を示す図である。 図10は実施の形態1の変形例2に係るLTEシステムにおいて、UEから緊急用データが発信された場合の制御手順を示す図である。 実施の形態2のLTEシステムにおいてUEから緊急呼が発信された場合の制御手順を示す図である。 実施の形態2の変形例のLTEシステムにおいてUEから緊急呼が発信された場合の制御手順を示す図である。
 (はじめに)
 実施の形態の説明に先だって、LTEシステムについて説明する。図1は、LTEシステムの構成図である。図1に示すように、LTEシステムは、UE100と、E-UTRAN(Evolved-UMTS Terrestria1 Radio Access Network)10と、EPC20と、を含んでいる。E-UTRAN10は無線アクセスネットワークに相当し、EPC20はコアネットワークに相当する。E-UTRAN10およびEPC20は、LTEシステムのネットワークを構成する。
 UE100は、移動型の無線通信端末であり、接続先のセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(200-1、200-2、200-3)を含んでいる。eNB200は、1または複数のセルを管理しており、自らが管理するセルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他にUE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御およびスケジューリングのための測定制御機能と、を有している。
 EPC20は、複数のMME(Mobility Management Entity)/S-GW(Serving―Gateway)300(300-1、300-2)を含んでいる。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、インターフェイスX2を介して相互に接続される。また、eNB200は、インターフェイスS1を介してMME/S-GW300と接続される。
 図2は、UE100の構成を示すブロック図である。図2に示すようにUE100は、複数のアンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160とを有している。なお、UE100は、GNSS受信機130を有していなくても良い。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160'としても良い。
 複数のアンテナ101および無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ101から送信する送信部111を含んでいる。また、無線送受信機110は、複数のアンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する受信部112を含んでいる。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、および各種ボタンなどを含んでいる。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調および符号化・復号などの信号処理を行う信号処理部161と、メモリ150に記憶されるプログラムを実行して各種の制御を行う制御部162と、を含んでいる。
 なお、制御部162は、後述する、ユーザインターフェイス120を介しての操作に基づいて緊急呼の発信のための処理を行うと共に、MME/S-GWからの制御を受けて緊急用データ通信のための制御を行う。
 図3は、MME/S-GW300の構成を示すブロック図である。図3に示すようにMME/S-GW300は、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有している。
 ネットワークインターフェイス220は、インターフェイスS1(図1)を介してeNB200と接続される。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、UEから発信された緊急呼を受信して、UEを制御する制御動作を行う制御部241を有しており、後述するUEに対する各種の制御を実行する。
 次に、上述したLTEシステムにおいてUEから緊急呼が発信された場合の制御手順について図4を用いて説明する。なお、図4においては、eNBおよびMME/S-GWをまとめてネットワーク装置(NW)として記載している。
 図4に示すように、アイドル(Idle)状態にあるUEにおいて、例えば警察への発信操作により緊急呼が発信されると、UEとeNBは、RRC Connection確立処理S1を実行する。RRC Connection確立処理S1では、UEがeNBに対してcauseをEmergencyとしたRRC Connection Requestを送信する。
 なお、RRC Connection確立処理S1には、RRC Connection Requestを受信したeNBが、UEにRRC Connection Setupを送信し、UEがeNBにRRC Connection Setup Completeを送信する手順も含まれるが、図示は省略する。また、RRC Connectionに続いてMME/S-GWとの間でeNBを介した音声用のベアラ(通信経路)を確立するためのデフォルトベアラ確立処理が実行されるが、図示は省略する。
 音声用のベアラを確立するためのデフォルトベアラ確立処理により、UEとMME/S-GWとがデータ交換可能となった後、PDN接続要求処理S2が実行される。PDN接続要求処理S2では、UEが、Req_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する。
 PDN Connectivity Requestを受信したMME/S-GWは、緊急呼に係るIMSシグナリング(呼の制御に係る制御信号)用のベアラを確立するためのDeafault Bearer確立処理S3を実行し、Activate Default EPS Bearer Context RequestメッセージにQCIの値を含ませてUEに送信する。ここでは、音声通信を管理するためのIMSシグナリングに対応するQCI=5を割り当てる。
 なお、緊急呼に係るIMSシグナリング用のベアラを確立するためのDeafault Bearer確立処理S3では、MME/S-GWがeNBにE-RAB Setup Requestを送信し、eNBがUEにRRC Connection Reconfigurationを送信し、UEがeNBにRRC Connection Reconfiguration Completeを送信し、eNBがMME/S-GWにE-RAB Setup Responseを送信する手順も含まれるが、図示は省略する。
 次に、MME/S-GWは、緊急呼に係る音声データ用のベアラを確立するためのDedicated Bearer確立処理S4を実行し、Activate Dedicated EPS Bearer Context RequestメッセージにQCIの値を含ませてUEに送信する。ここでは、VoIP(Voice over IP)に対応するQCI=1を割り当てる。
 なお、緊急呼に係る音声データ用のベアラを確立するためのDedicated Bearer確立処理S4では、MME/S-GWがeNBにE-RAB Setup Requestを送信し、eNBがUEにRRC Connection Reconfigurationを送信し、UEがeNBにRRC Connection Reconfiguration Completeを送信し、eNBがMMEにE-RAB Setup Responseを送信する手順も含まれるが、図示は省略する。以上のような手順を経てVoLTEによる音声通信が開始される。
 図5には、基本の(基準となる)QCI特性表を示す。図5においては、QCI値に対応付けられた、ビット・レートの保証の有無(GBR、Non-GBR)、優先度(Priority Level)、パケット遅延バジェット(Packet Delay Budget)、パケットエラーロス率(PELR:Packet Error Loss Rate)およびアプリケーション(サービス)が示されている。
 図5に示されるように、VoIP(VoLTE)には2番目である優先度2が割り当てられている。この結果、送信速度も保証され、安定して利用することが可能である。
 (実施の形態1)
 以下、図6~図10を用いて、実施の形態1のLTEシステムについて説明する。図6は実施の形態1のLTEシステムにおいてUEが緊急用データの発信をする場合の制御手順を示す図である。なお、図6においては、eNBおよびMME/S-GWをまとめてネットワーク装置(NW)として記載している。
 図6に示すように、アイドル(Idle)状態にあるUEにおいて、例えばユーザインターフェイス120(図3)を介して緊急用データ発信(緊急用データ通信開始)のための操作がなされるか若しくは緊急用データ発信の契機となる特定のイベントが発生した場合、UEとeNBは、RRC Connection確立処理S11を実行する。RRC Connection確立処理S11では、UEがeNBに対してcauseをEmergencyとしたRRC Connection Requestを送信する。
 ここで、緊急用データ発信の契機となる特定のイベントとは、例えば、緊急用アプリケーションによるものである。ここでいう緊急用アプリケーションとは、例えば、UEが車両に搭載された通信機能を有する車載カメラ装置であって、内部に加速度センサーなどを有する場合、自車両が所定の閾値以上の衝撃を受けるとそれを加速度センサーで検知し、衝撃を受けた前後の画像データを緊急用データとしてネットワーク装置を介して外部のサーバー等に送信するアプリケーションである。このアプリケーションによって実行される緊急用データ発信は、自動車事故であれば、その後に車載カメラ装置が破損する可能性が考えられるので、画像データを至急に外部のサーバーに送信する必要性から行われる。
 なお、ここでは、UEを車載カメラ装置としているが、これに限られず、UEは、車載カメラ装置から有線若しくは無線を介して受信したデータを外部に送信する通信モジュールであっても良い。また、加速度センサーは、車載カメラ装置に設けられていなくとも良く、外部に設けられ、検出結果を車載カメラ装置に送信する構成であっても良い。
 なお、RRC Connection確立処理S11では、eNBからUEへのRRC Connection Setupの送信および、UEからeNBへのRRC Connection Setup Completeの送信もあるが、図示は省略する。
 UEが、緊急用データ通信を実行する(緊急用データを送信する)場合、例えば交通事故発生時に、事故現場の写真や動画を送信する場合、PDN接続要求処理S12において、Req_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する際に、特定のアクセスポイント名(APN:Access Point Name)をPDN Connectivity Requestに含めて送信する。
 ここで、PDN Connectivity Requestに含めて送信されるAPNは、ネットワークオペレータ(通信事業者)等によって緊急用データ通信用に特定されている。MME/S-GWは、PDN Connectivity Requestに含まれるAPNが、緊急用データ通信に対応するか否かを判定する。この判定は、MME/S-GWが、例えばメモリ230(図3)に記憶するテーブル等を用いて行う。MME/S-GWが、当該APNが緊急用データ通信に対応すると判定した場合は、例えば図7に示すQCI特性表に基づいて、緊急用データ通信のためのベアラを割り当てるために、Dedicated Bearer確立処理S13を実行し、緊急用データ通信(アプリケーション)に対応付けられたベアラ(QCI)の割り当てを行う。なお、図6においては、UEがアイドル状態であることを前提としているが、これに限られず、UEがヌル(null)状態若しくはコネクティッド(connected)状態であっても良く、UEがコネクティッド状態である場合には、UEによるRRC Connection Requestの送信を省略しても良い。
 図7に示すQCI特性表においては、アプリケーションとしてTCPプロトコル(緊急用データ通信)が加わったことにより、QCIは1から10の値を有し、優先度も1から10の値を有している。なお、TCPプロトコル(緊急用データ通信)と記載されているが、これに限られず、単に、緊急用データ通信であっても良く、この緊急用データ通信はUDPプロトコルによるものも含むようにしても良い。
 すなわち、QCI=5に緊急用データ通信がビット・レートの保証有り(GBR)として割り付けられ、その優先度は、VoIP(VoLTE)よりも低く、リアルタイムゲームよりも高い優先度3に設定されている。また、パケット遅延バジェットは150ms、パケットエラーロス率は10-3となっている。なお、これらの値は一例であり、他の値に変えて良いことは言うまでもない。また、緊急用データ通信がQCI=5に割り付けられたので、図5におけるQCI=5以上の値が1つずつ増加し、図5における優先度3以上の値が1つずつ増加したこと以外は図5と同じである。
 このようなQCI特性表を用いて、MME/S-GWは、緊急用データ通信用のベアラを確立するためのDedicated Bearer確立処理S13を実行する際に、Activate Dedicated EPS Bearer Context Requestメッセージに、図7に示すQCI特性表に基づいて決定したQCI=5の値を含ませてUEに送信する。
 QCI=5では優先度が3であるので、リアルタイムゲームや通常のデータ通信よりも優先的に緊急用データ通信を行うことができ、GBRも設定されているので送信速度も保証され、安定して利用することが可能となる。
  (変形例1)
 以上説明した実施の形態1では、UEが、緊急用データ通信を実行する場合に、MME/S-GWが、図7に示すQCI特性表を用いてQCIの割り当てを行う構成を示したが、緊急用データ通信のための専用のQCIや優先度を設定するのではなく、特定のQCIの適用対象のアプリケーションに、他のアプリケーション及び緊急用データ通信を含むQCI特性表を用いる構成としても良い。
 例えば、QCI特性表におけるQCI=4の適用対象のアプリケーションとして、リアルタイムゲームだけでなく、緊急用データ通信も加えるによって、QCIを複数のアプリケーションで兼用する構成とすることで、緊急用データ通信に際しては優先度3が割り当てられるようになり、UEが通常のデータ通信よりも優先的に緊急用データ通信を行うことができる。
 図8には、QCI=5の適用対象のアプリケーションとして、リアルタイムゲームと緊急用データ通信を含むQCI特性表を示す。
 図9は実施の形態1の変形例1に係るLTEシステムにおいて、UEが緊急用データ通信を実行する(緊急用データ発信をする)場合の制御手順を示す図である。図9に示すように、アイドル(Idle)状態にあるUEにおいて、例えばユーザインターフェイス120(図3)を介して緊急用データ発信のための操作がなされるか若しくは緊急用データ発信の契機となる特定のイベントが発生した場合、UEとeNBは、RRC Connection確立処理S11を実行する。RRC Connection確立処理S11では、UEがeNBに対してcauseをEmergencyとしたRRC Connection Requestを送信する。
 また、UEが、緊急用データ通信を実行する(緊急用データを発信する)場合、PDN接続要求処理S12において、UEがReq_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する際に、特定のAPNをPDN Connectivity Requestに含めて送信する。
 ここで、PDN Connectivity Requestに含めて送信されるAPNは、ネットワークオペレータ(通信事業者)等によってリアルタイムゲーム用と緊急用データ通信用に特定されている。MME/S-GWは、PDN Connectivity Requestに含まれるAPNが、緊急用データ通信に対応するか否かを判定する。この判定は、MME/S-GWが、例えばメモリ230(図3)に記憶するテーブル等を用いて行い、当該APNが緊急用データ通信等に対応すると判定した場合は、例えば図8に示すQCI特性表に基づいて、緊急用データ通信等のためのベアラを割り当てるために、Dedicated Bearer確立処理S131を実行し、MME/S-GWが緊急用データ通信(アプリケーション)に対応付けられたベアラ(QCI)の割り当てを行う。
 すなわち、MME/S-GWは、緊急用データ通信等用のベアラを確立するためのDedicated Bearer確立処理S131を実行する際に、Activate Dedicated EPS Bearer Context Requestメッセージに、図8に示すQCI特性表に基づいて決定したQCI=4の値を含ませてUEに送信する。
 QCI=4では優先度が3であるので、通常のデータ通信よりも優先的に緊急用データ通信を行うことができ、GBRも設定されているので送信速度も保証され、安定して利用することが可能となる。
 以上説明したように、緊急用データ通信に際しては、緊急用データ通信のための専用のQCIや優先度を設定するのではなく、QCIが割り当てられた既設の他のアプリケーションに緊急用データ通信を加えるので、標準化されたQCI特性表を大きく変更することなく対応でき、LTEシステムに加える改変が少なくて済む。
  (変形例2)
 以上説明した実施の形態1では、UEが、緊急用データ通信を実行する場合には、MME/S-GWでは、図7に示すQCI特性表を用いてQCIの割り当てを行う構成を示したが、緊急用データ通信のための専用のQCIや優先度を設定するのではなく、緊急用データ通信の実行に際しては、高優先度のQCIが割り当てられたアプリケーションにカモフラージュする構成としても良い。
 例えば、UEとMME/S-GWとの間で、QCI=2のビデオコール用のベアラを設定するための手順や、QCI=4のリアルタイムゲーム用のベアラを設定するための手順が確立されている場合、緊急用データ通信においてもそれらの手順を使用してQCI=2またはQCI=4が割り当てられるようにしても良い。
 この動作の一例を、図10を用いて説明する。図10は実施の形態1の変形例2に係るLTEシステムにおいて、UEが緊急用データを発信する際の制御手順を示す図である。図10に示すように、アイドル(Idle)状態にあるUEにおいて、例えばユーザインターフェイス120(図3)を介して緊急用データ発信のための操作がなされると、UEとeNBは、RRC Connection確立処理S11を実行する。RRC Connection確立処理S11では、UEがeNBに対してcauseをEmergencyとしたRRC Connection Requestを送信する。
 また、UEにおいて、緊急用データ通信を実行する(緊急用データを発信する)場合、PDN接続要求処理S12において、UEが、Req_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する際に、特定のAPNをPDN Connectivity Requestに含めて送信する。
 ここで送信するAPNは、ネットワークオペレータ等によってリアルタイムゲーム用に特定されている。MME/S-GWは、PDN Connectivity Requestに含まれるAPNが、リアルタイムゲームに対応するか否かを判定する。この判定は、MME/S-GWが、例えばメモリ230(図3)に記憶するテーブル等を用いて行い、当該APNがリアルタイムゲームに対応すると判定した場合は、例えば図5に示したQCI特性表に基づいて、リアルタイムゲーム用のベアラを確立するめのDedicated Bearer確立処理S132を実行し、MME/S-GWがリアルタイムゲーム(アプリケーション)に対応付けられたベアラ(QCI)の割り当てを行う。
 すなわち、MME/S-GWは、リアルタイムゲーム用のベアラを確立するためのDedicated Bearer確立処理S132を実行する際に、Activate Dedicated EPS Bearer Context Requestメッセージに、図5に示したQCI特性表に基づいて決定したQCI=4の値を含ませてUEに送信する。
 QCI=4では優先度が3であるので、通常のデータ通信よりも優先的に緊急用データ通信を行うことができ、GBRも設定されているので送信速度も保証され、安定して利用することが可能となる。
 以上説明したように、緊急用データ通信に際しては、緊急用データ通信のための専用のQCIや優先度を設定するのではなく、高優先度のQCIが割り当てられたアプリケーションにカモフラージュするので、標準化されたQCI特性表を使用することができ、LTEシステムに加える改変が少なくて済む。
 なお、以上説明した実施の形態1およびその変形例1および2では、VoLTEへの適用を前提として説明したが、実施の形態1およびその変形例1および変形例2は、VoLTEへの適用に限定されず、LTEシステムであれば適用可能である。
 (実施の形態2)
 以上説明した実施の形態1においては、LTEシステムにおいてUEから緊急用データ発信をする場合について説明した。しかし、緊急用データ発信が多用されることで、本当に緊急性のあるデータ通信の速度が遅延するという弊害が起きる可能性もあるので、緊急用データ通信の実行に制限をかけるようにしても良い。以下、実施の形態2として、緊急用データ通信の実行に制限をかけた構成について説明する。
 図11は実施の形態2のLTEシステムにおいてUEが緊急呼を発信した場合の制御手順を示す図である。なお、図11においては、eNBおよびMME/S-GWをまとめてネットワーク装置(NW)として記載している。
 図11に示すように、アイドル(Idle)状態にあるUEにおいて、例えばユーザインターフェイス120(図3)を介して緊急呼発信のための操作がなされると、UEとeNBは、RRC Connection確立処理S21を実行する。RRC Connection確立処理S11では、UEがeNBに対してcauseをEmergencyとしたRRC Connection Requestを送信する。
 なお、RRC Connection確立処理S21では、eNBからUEへのRRC Connection Setupの送信および、UEからeNBへのRRC Connection Setup Completeの送信もあるが、図示は省略する。また、RRC Connectionに続いて音声用のベアラを確立するためのデフォルトベアラ確立処理が実行されるが、図示は省略する。
 音声用のベアラを確立するためのデフォルトベアラ確立処理により、UEとMME/S-GWとがデータ交換可能となった後、第1のPDN接続要求処理S22において、UEが、Req_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する。
 PDN Connectivity Requestを受信したMME/S-GWは、緊急呼に係るIMSシグナリング(制御信号)用のベアラを確立するためのDeafault Bearer確立処理S23を実行し、Activate Default EPS Bearer Context RequestメッセージにQCIの値を含ませてUEに送信する。ここでは、図5に示した標準化されたQCI特性表に基づいて、音声通信を管理するためのIMSシグナリングに対応するQCI=5を割り当てる。
 なお、緊急呼に係るIMSシグナリング用のベアラを確立するためのDeafault Bearer確立処理S23では、MME/S-GWがeNBにE-RAB Setup Requestを送信し、eNBがUEにRRC Connection Reconfigurationを送信し、UEがeNBにRRC Connection Reconfiguration Completeを送信し、eNBがMME/S-GWにE-RAB Setup Responseを送信する手順も含まれるが、図示は省略する。
 次に、MME/S-GWは、緊急呼に係る音声データ用のベアラを確立するためのDedicated Bearer確立処理S24を実行し、Activate Dedicated EPS Bearer Context RequestメッセージにQCIの値を含ませてUEに送信する。ここでは、図5に示した標準化されたQCI特性表に基づいて、VoIPに対応するQCI=1を割り当てる。
 なお、緊急呼に係る音声データ用のベアラを確立するためのDedicated Bearer確立処理S24では、MME/S-GWがeNBにE-RAB Setup Requestを送信し、eNBがUEにRRC Connection Reconfigurationを送信し、UEがeNBにRRC Connection Reconfiguration Completeを送信し、eNBがMMEにE-RAB Setup Responseを送信する手順も含まれるが、図示は省略する。以上のような手順を経てVoLTEによる音声通信が開始される。
 上述したように、例えば警察への電話をかけた際に、UEにおいて、緊急用データ通信の実行(緊急用データの送信)が必要となった場合、例えば交通事故発生時に、警察への電話をすると共に事故現場の写真や動画を送信する必要が生じた場合、第2のPDN接続要求処理S25において、UEが、Req_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する際に、特定のAPNをPDN Connectivity Requestに含めて送信する。なお、UEは、警察への電話をかけた場合をもって、上述した緊急用データ通信の実行(緊急用データの送信)が必要となった場合と判断しても良く、つまり、警察への電話をかけた際に、自動的に、緊急用データ通信の実行(緊急用データの送信)が必要と判断しても良い。
 ここで、PDN Connectivity Requestに含めて送信されたAPNは、例えば、実施の形態1において説明した、ネットワークオペレータ等によって緊急用データ通信用に特定されたAPN、または、実施の形態1の変形例1において説明した、ネットワークオペレータ等によって例えばリアルタイムゲーム用と緊急用データ通信用に特定されたAPN、または実施の形態1の変形例2において説明した、ネットワークオペレータ等によって例えばリアルタイムゲーム用に特定されたAPNである。
 その後、MME/S-GWは、緊急用データ通信用のベアラを確立するためのDedicated Bearer確立処理S26を実行する際に、Activate Dedicated EPS Bearer Context Requestメッセージに、図5、図7および図8に示した何れかのQCI特性表に基づいて決定したQCIの値(X)を含ませてUEに送信することで、少なくとも通常のデータ通信よりも高い優先度で緊急用データ通信を行うことができ、GBRも設定されているので送信速度も保証され、安定して利用することが可能となる。
 以上説明したように、実施の形態2のLTEシステムにおいては、例えば警察への電話などの第1のPDN接続要求処理を行った後でなければ、高い優先度での緊急用データ通信を行うことができないので、緊急呼が多用されることによる弊害を抑制することができる。
  (変形例)
 以上説明した実施の形態2においては、緊急呼用のベアラ確立のために第1のPDN接続要求処理を行った後に、緊急用データ通信用のベアラ確立のために第2のPDN接続要求処理を行うことで、高い優先度等の高いQoSで緊急用データ通信を行える構成を示したが、緊急呼を発信する際に、緊急用データ通信も要求することで、1回のPDN接続要求処理で緊急用データ通信を実行できるようにしても良い。
 図12は実施の形態2の変形例のLTEシステムにおいてUEから緊急呼が発信された場合の制御手順を示す図である。
 図12に示すように、アイドル(Idle)状態にあるUEにおいて、例えばユーザインターフェイス120(図3)を介して緊急呼発信のための操作がなされると、UEとeNBは、RRC Connection確立処理S31を実行する。RRC Connection確立処理S11では、UEがeNBに対してcauseをEmergencyとしたRRC Connection Requestを送信する。
 なお、RRC Connection確立処理S31では、eNBからUEへのRRC Connection Setupの送信および、UEからeNBへのRRC Connection Setup Completeの送信もあるが、図示は省略する。また、RRC Connectionに続いて音声用のベアラを確立するためのデフォルトベアラ確立処理が実行されるが、図示は省略する。
 音声用のベアラを確立するためのデフォルトベアラ確立処理により、UEとMME/S-GWとがデータ交換可能となった後、PDN接続要求処理S32において、UEが、Req_typeをEmergencyとしたPDN Connectivity Requestを、eNBを経由してMME/S-GWに送信する際に、特定のAPNをPDN Connectivity Requestに含めて送信する。このAPNは、実施の形態1または、その変形例1または変形例2において説明したAPNであり、重複する説明は省略する。
 PDN Connectivity Requestを受信したMME/S-GWは、緊急呼に係るIMSシグナリング用のベアラを確立するためのDeafault Bearer確立処理S33を実行し、Activate Default EPS Bearer Context RequestメッセージにQCIの値を含ませてUEに送信する。ここでは、図5に示した標準化されたQCI特性表に基づいて、音声通信を管理するためのIMSシグナリングに対応するQCI=5を割り当てる。
 なお、緊急呼に係るIMSシグナリング用のベアラを確立するためのDeafault Bearer確立処理S33では、MME/S-GWがeNBにE-RAB Setup Requestを送信し、eNBがUEにRRC Connection Reconfigurationを送信し、UEがeNBにRRC Connection Reconfiguration Completeを送信し、eNBがMME/S-GWにE-RAB Setup Responseを送信する手順も含まれるが、図示は省略する。
 次に、MME/S-GWは、緊急呼に係る音声データ用のベアラを確立するためのDedicated Bearer確立処理S34を実行し、Activate Dedicated EPS Bearer Context RequestメッセージにQCIの値を含ませてUEに送信する。ここでは、図5に示したQCI特性表に基づいて、VoIPに対応するQCI=1を割り当てる。
 なお、緊急呼に係る音声データ用のベアラを確立するためのDedicated Bearer確立処理S34では、MME/S-GWがeNBにE-RAB Setup Requestを送信し、eNBがUEにRRC Connection Reconfigurationを送信し、UEがeNBにRRC Connection Reconfiguration Completeを送信し、eNBがMMEにE-RAB Setup Responseを送信する手順も含まれるが、図示は省略する。以上のような手順を経てVoLTEによる音声通信が開始される。
 その後、MME/S-GWは、緊急用データ通信用のベアラを確立するためのDedicated Bearer確立処理S35を実行する際に、Activate Dedicated EPS Bearer Context Requestメッセージに、図5、図7および図8に示した何れかのQCI特性表に基づいて決定したQCIの値(X)を含ませてUEに送信することで、少なくとも通常のデータ通信よりも高い優先度で緊急用データ通信を行うことができ、GBRも設定されているので送信速度も保証され、安定して利用することが可能となる。
 以上説明したように、実施の形態2の変形例のLTEシステムにおいては、例えば警察への電話と共に、緊急用データ通信も要求するので、例えば、UEが無線通信端末である場合、交通事故発生時に、警察に電話するだけでなく、無線通信端末で撮影した事故現場の写真や動画を送信したい場合に、1回のPDN接続要求処理で緊急用データ通信も実行できれば、ユーザにとってより利便性の高いシステムとなる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (14)

  1.  ネットワーク装置に対して緊急用データ通信の実行を要求し、当該要求に応じて前記ネットワーク装置から送信された前記緊急用データ通信に対応したサービス品質クラス識別子(QCI)を受信し、該サービス品質クラス識別子に基づいて前記ネットワーク装置を介して前記緊急用データ通信する処理を行う制御部を備える、無線通信端末。
  2.  前記緊急用データ通信に対応したサービス品質クラス識別子は、
     前記緊急用データ通信に専用のサービス品質クラス識別子である、請求項1記載の無線通信端末。
  3.  前記緊急用データ通信に専用のサービス品質クラス識別子は、
     前記ネットワーク装置のメモリに記憶された、前記緊急用データ通信に専用のサービス品質クラス識別子を含むQCI特性表に基づいて割り当てられる、請求項2記載の無線通信端末。
  4.  前記緊急用データ通信に対応したサービス品質クラス識別子は、
     他のアプリケーションと兼用のサービス品質クラス識別子である、請求項1記載の無線通信端末。
  5.  前記他のアプリケーションと兼用のサービス品質クラス識別子は、
     前記ネットワーク装置のメモリに記憶された、前記サービス品質クラス識別子の適用対象のアプリケーションに前記他のアプリケーション及び前記緊急用データ通信を含むQCI特性表に基づいて割り当てられる、請求項4記載の無線通信端末。
  6.  前記緊急用データ通信に対応したサービス品質クラス識別子には、少なくとも通常のデータ通信よりも高い優先度が割り当てられる、請求項1記載の無線通信端末。
  7.  前記制御部は、
     緊急呼の発信を契機として前記ネットワーク装置に対する緊急用データ通信の実行を要求する処理を行う、請求項1記載の無線通信端末。
  8.  前記制御部は、
     前記ネットワーク装置に対して前記緊急用データ通信の実行を要求する際に、前記緊急用データ通信に対応するPDN Connectivity Requestを前記ネットワーク装置に対して送信する処理を行う、請求項1記載の無線通信端末。
  9.  前記緊急用データ通信に対応するPDN Connectivity Requestは、前記緊急用データ通信に対応する特定のアクセスポイント名(APN)を含むPDN Connectivity Requestである、請求項8記載の無線通信端末。
  10.  前記制御部は、
     緊急呼の発信の際に、当該緊急呼に対応するPDN Connectivity Requestを送信し、その後に前記緊急用データ通信に対応するPDN Connectivity Requestを送信する処理を行う、請求項7記載の無線通信端末。
  11.  前記制御部は、
     緊急呼の発信の際に、当該緊急呼に対応し、なお且つ前記緊急用データ通信に対応するPDN Connectivity Requestを送信する処理を行う、請求項7記載の無線通信端末。
  12.  緊急用データ通信の実行をする際に、当該緊急用データ通信に対応する他のアプリケーションの実行をネットワーク装置に対して要求し、当該要求に応じて前記ネットワーク装置から送信された前記他のアプリケーションに対応するサービス品質クラス識別子(QCI)を受信し、該サービス品質クラス識別子に基づいて、前記ネットワーク装置を介して前記緊急用データ通信する処理を行う制御部を備える、無線通信端末。
  13.  (a)無線通信端末が、ネットワーク装置に対して緊急用データ通信の実行を要求するステップと、
     (b)前記ネットワーク装置が、前記緊急用データ通信に対応したサービス品質クラス識別子(QCI)を前記無線通信端末に送信するステップと、
     (c)前記無線通信端末が、前記サービス品質クラス識別子(QCI)を受信すると、該サービス品質クラス識別子に基づいて、前記ネットワーク装置を介して前記緊急用データ通信を行うステップと、を備える、通信制御方法。
  14.  無線通信端末から緊急用データ通信の実行の要求を受けると、当該要求に応じて、前記緊急用データ通信に対応した、前記無線通信端末が前記緊急用データ通信を行う際に用いるサービス品質クラス識別子(QCI)を、前記無線通信端末に送信する処理を行う制御部を備える、ネットワーク装置。
PCT/JP2015/085317 2014-12-25 2015-12-17 無線通信端末、通信制御方法およびネットワーク装置 WO2016104311A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262492 2014-12-25
JP2014262492 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104311A1 true WO2016104311A1 (ja) 2016-06-30

Family

ID=56150332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085317 WO2016104311A1 (ja) 2014-12-25 2015-12-17 無線通信端末、通信制御方法およびネットワーク装置

Country Status (1)

Country Link
WO (1) WO2016104311A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053376A1 (en) * 2011-10-10 2013-04-18 Telefonaktiebolaget L M Ericsson (Publ) A method of and apparatus for establishing bearer attributes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053376A1 (en) * 2011-10-10 2013-04-18 Telefonaktiebolaget L M Ericsson (Publ) A method of and apparatus for establishing bearer attributes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TS 23.401 V12.7.0, 17 December 2014 (2014-12-17), pages 73 - 75 , 236-242 *

Similar Documents

Publication Publication Date Title
US20220132603A1 (en) Apparatus, system, method, and computer-readable medium for connection-oriented vehicle-to-x (vtx) communication in 5g
US10952094B2 (en) AT commands for 5G QoS management
CN111182540B (zh) 数据传送的保障方法及通信设备
JP2023120188A (ja) 5gネットワークでのローカルエリアデータネットワーク(ladn)への接続を管理する方法
US20220022089A1 (en) Service instance indication for resource creation
CN108141867B (zh) 用于通信***中数据流传输的改进的优先级处理的方法
KR20130019024A (ko) 호출방법, 코어 네트워크 장치, 무선 액세스 네트워크 장치 및 게이트웨이 장치
US20190124563A1 (en) Communication method and device
JP2017511981A (ja) 被中継ueへのトラヒック及び被中継ueからのトラヒックを中継するue(ue−r)でのデータレート制御
CN108024284B (zh) 无线通信方法、用户设备接入网设备、和核心网设备
KR20120093491A (ko) 무선 통신 시스템에서 긴급 통신 서비스 제공 방법 및 장치
WO2018170747A1 (zh) 一种通信方法及装置
US20230189054A1 (en) Relay communication method, and communication apparatus
CN113950851A (zh) 无线通信方法和设备
WO2022161148A1 (zh) 一种服务质量的控制方法和装置
CN114173368A (zh) 一种服务质量QoS的监测方法
WO2022068687A1 (zh) 一种边缘计算的方法和装置
CN114586405B (zh) 测量报告上报方法及装置
KR102084038B1 (ko) 중요 데이터 패킷을 우선 처리하는 방법 및 장치
CN117156457A (zh) 一种服务质量QoS调整方法及装置
WO2016104311A1 (ja) 無線通信端末、通信制御方法およびネットワーク装置
KR101830224B1 (ko) 패킷 트래픽 제어 방법 및 이를 위한 장치
EP4391638A1 (en) Data transmission method and apparatus
US20240214867A1 (en) Data transmission method and apparatus
US20240171968A1 (en) Reduced capacity ues and 5th generation core network interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP