WO2022161148A1 - 一种服务质量的控制方法和装置 - Google Patents

一种服务质量的控制方法和装置 Download PDF

Info

Publication number
WO2022161148A1
WO2022161148A1 PCT/CN2022/071136 CN2022071136W WO2022161148A1 WO 2022161148 A1 WO2022161148 A1 WO 2022161148A1 CN 2022071136 W CN2022071136 W CN 2022071136W WO 2022161148 A1 WO2022161148 A1 WO 2022161148A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
quality
message
communication link
link
Prior art date
Application number
PCT/CN2022/071136
Other languages
English (en)
French (fr)
Inventor
邢玮俊
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022161148A1 publication Critical patent/WO2022161148A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for quality of service control.
  • UE can directly establish a communication link without forwarding communication through the base station.
  • a remote UE can establish a connection with a radio access network (RAN) through a relay device.
  • RAN radio access network
  • two UEs A connection can be established through a relay device, and the relay device forwards the respective communication data for the two UEs through the PC5 interface.
  • a remote UE connects to a network device or a target UE through a relay device
  • there will be two communication links that is, the communication link between the remote UE and the relay device, and the communication link between the relay device and the base station RAN or UE.
  • the data flow of the two links is transmitted based on QoS flow.
  • the base station RAN or the target UE can monitor the communication quality of the communication link between the relay device and the target UE.
  • the core network element SMF can be notified to change the corresponding QoS parameters, or the QoS parameters between the target UE and the relay UE can be changed.
  • the base station RAN or the target UE cannot perceive the communication quality of the link between the relay device and the remote UE.
  • the communication quality between the relay device and the remote UE changes, for example, the base station or the target UE obtains The communication quality between it and the relay device meets the requirements, but the communication quality between the relay device and the remote UE does not meet the transmission requirements, because the base station RAN or the target UE cannot obtain the communication quality in another link.
  • the network device or the target UE cannot adjust the corresponding QoS parameters according to the changes, so that the end-to-end QoS requirements cannot be guaranteed.
  • the present application provides a quality of service control method and device, by changing the parameters of the quality of service of the second communication link according to the quality of service of the first communication link, so that the parameters of the quality of service of the second communication link correspond to the parameters of the quality of service of the first communication link
  • the quality of service of the second communication link can be controlled more flexibly and accurately.
  • a first aspect provides a quality of service control method, the method comprising: determining that the quality of service of a first communication link does not meet a quality of service requirement or determining that the quality of service of the first communication link is changed, the first communication link
  • the link is a communication link between a relay device and a first terminal device, and the first terminal device communicates with the access network device through the relay device or communicates with the second terminal through the relay device device to communicate; send a first message, the first message is used to request to change the parameters of the quality of service of the second communication link, the second communication link is the relay device and the access network device or the A communication link between the relay device and the second terminal device.
  • determining that the quality of service of the first communication link does not meet the quality of service requirement or determining that the quality of service of the first communication link has changed in the embodiments of the present application may correspond to two situations respectively, the first is the PC5 link.
  • the quality of service does not meet the quality of service requirements, that is, trigger when the rate or delay does not reach the threshold; or, the second is when the QoS requirements of the PC5 link change, such as the lower bandwidth requirements of the relay and the remote UE.
  • the quality of service of a link is degraded.
  • the determining that the quality of service of the first communication link does not meet the quality of service requirement includes: detecting that the quality of service of the first communication link is lower than the first a threshold, the first threshold corresponds to the quality of service requirement.
  • This embodiment of the present application can determine whether the service quality of the first communication link meets the requirements by directly detecting the service quality of the first communication link, so that it can be further determined based on the judgment result to initiate a change of the second communication link to other devices. request, thereby overcoming the problem that the network side cannot obtain the quality of service of the first communication link, and thus cannot meet the communication requirements of the link.
  • the determining that the quality of service of the first communication link does not meet the quality of service requirement includes: receiving a second message from the first terminal device, the first The second message is used to instruct to reduce the quality of service of the first communication link.
  • the determining that the quality of service of the first communication link does not meet the quality of service requirement includes: receiving a first message from the first terminal device or the relay device Three messages, where the third message is used to indicate the quality of service of the first communication link; it is determined that the quality of service of the first communication link is lower than a first threshold, and the first threshold corresponds to the quality of service need.
  • the sending the first message includes: sending the first message to a session management network element, where the first message is used to reduce the second communication chain Road service quality.
  • the first message includes a cause value, and the cause indicated by the cause value is that the quality of service of the first communication link is to be changed.
  • the first message includes first indication information, where the first indication information is used to indicate that the second communication link is changed because the first The quality of service of a communication link is to be changed.
  • the sending the first message includes: sending the first message to the access network device, where the first message is used to instruct to lower the first message The quality of service of the two communication links.
  • the first message further includes at least one of the following: QoS flow identifier QFI, service data flow SDF information, PC5 link QoS flow identifier PFI, data The radio bearer DRB identifier and the side link radio bearer SLRB identifier.
  • the service data flow (service data flow, SDF) information is only a flow description, which may be a quintuple, an application identifier, etc., which may be expressed as SDF information, Or it can also be expressed as service description traffic descriptor information, which can specifically include application description application descriptor information (such as application identifier), Internet protocol (internet protocol, IP) or non-IP description IP/Non-IP descriptor information (such as five-tuple) Wait.
  • application description application descriptor information such as application identifier
  • Internet protocol Internet protocol, IP
  • non-IP description IP/Non-IP descriptor information such as five-tuple
  • the determining that the quality of service of the first communication link does not meet the quality of service requirement includes: determining that the quality of service of the first link is higher than a second threshold, The second threshold corresponds to the quality of service requirement.
  • the transmission efficiency can be improved and resources can be saved.
  • the first message is used to instruct to improve the quality of service of the second communication link.
  • the determining that the quality of service of the first communication link is changed includes: receiving a fourth message from the first terminal device, the fourth message using to instruct to add or remove the first traffic flow.
  • the fourth message includes at least one of the following: service data flow SDF information, and PC5 link QoS flow identifier PFI.
  • the first message is used to instruct to add or remove the first service flow.
  • the first message includes first indication information, where the first indication information is used to indicate that the second communication link is changed because the first A communication link adds or removes traffic flow.
  • a method for controlling quality of service comprising: determining, by a first terminal device, that quality of service of a first communication link does not meet a quality of service requirement, where the first communication link is between a relay device and a the communication link between the first terminal devices; and send a first message to the relay device, where the first message is used to request to change the parameters of the quality of service of the first communication link.
  • the relay device can change the service parameters according to the actual situation, and further, can initiate the process of changing the second communication link, so that the first The parameter of the quality of service of the second communication link corresponds to the quality of service of the first communication link, so that the quality of service of the second communication link can be controlled more flexibly and accurately.
  • a quality of service control device comprising: a processing module configured to determine that the quality of service of a first communication link does not meet a quality of service requirement, where the first communication link is between a relay device and a a communication link between first terminal devices, the first terminal device communicates with the access network device through the relay device or with the second terminal device through the relay device; a sending module, is used to send a first message, where the first message is used to request to change a parameter of the quality of service of a second communication link, where the second communication link is the relay device and the access network device or the relay The communication link between the device and the second terminal device.
  • the processing module is specifically configured to: detect that the quality of service of the first communication link is lower than a first threshold, where the first threshold corresponds to the the service quality requirements.
  • the processing module is specifically configured to: receive a second message from the first terminal device, where the second message is used to indicate that the first The quality of service of the communication link.
  • the processing module is specifically configured to: receive a third message from the first terminal device or the relay device, where the third message is used for Indicating the quality of service of the first communication link; determining that the quality of service of the first communication link is lower than a first threshold, the first threshold corresponding to the quality of service requirement.
  • the sending module is specifically configured to: send the first message to the session management network element, where the first message is used to reduce the second communication chain Road service quality.
  • the first message includes a cause value
  • the cause indicated by the cause value is that the quality of service of the first communication link is to be changed.
  • the first message includes first indication information, and the first indication information is used to indicate that the reason for the change of the second communication link is the The quality of service of a communication link is to be changed.
  • the sending module is specifically configured to: send the first message to the access network device, where the first message is used to instruct to lower the first message The quality of service of the two communication links.
  • the first message further includes at least one of the following: QoS flow identifier QFI, service data flow SDF information, PC5 link QoS flow identifier PFI, data The radio bearer DRB identifier and the side link radio bearer SLRB identifier.
  • the processing module is specifically configured to: determine that the quality of service of the first link is higher than a second threshold, and the second threshold corresponds to the service quality requirements.
  • the first message is used to instruct to improve the quality of service of the second communication link.
  • the processing module is specifically configured to: receive a fourth message from the first terminal device, where the fourth message is used to instruct adding or removing the first business flow.
  • the fourth message includes at least one of the following: service data flow SDF information, PC5 link QoS flow identifier PFI.
  • the first message is used to instruct to add or remove the first service flow.
  • the first message includes first indication information, and the first indication information is used to indicate that the reason for the change of the second communication link is the A communication link adds or removes traffic flow.
  • a quality of service control device comprising: a second processing module configured to determine that the quality of service of the first communication link does not meet the quality of service requirement, and the first communication link is a relay a communication link between the device and the device; a second sending module, configured to send a first message to the relay device, where the first message is used to request to change a parameter of the quality of service of the first communication link .
  • a communication device in a fifth aspect, has the function of implementing the methods described in the above aspects.
  • This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • a communication device comprising: a processor; the processor is coupled to a memory, and used to call and run a computer program from the memory to execute the above-mentioned aspects or any possible possibilities of the various aspects. method in the implementation.
  • a communication device including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes the above aspects or each A method in any possible implementation of an aspect.
  • an apparatus eg, the apparatus may be a system-on-a-chip
  • the apparatus including a processor for supporting the communication apparatus to implement the functions involved in the above aspects.
  • the device further includes a memory for storing necessary program instructions and data of the communication device.
  • the device When the device is a system-on-chip, it may be composed of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for performing a method as described above in each aspect or in any possible implementation of each aspect.
  • a computer program product comprising a computer program which, when run on a computer device, causes the computer device to perform the method according to the above aspects.
  • Figure 1 is a schematic diagram of the architecture of a 5G ProSe communication.
  • FIG. 2 is a schematic diagram of a user plane protocol stack using layer 2 relay in a UE-to-Network scenario.
  • FIG. 3 is a schematic diagram of a user plane protocol stack using layer 3 relay in a UE-to-Network scenario.
  • FIG. 4 is a schematic diagram of a quality of service control method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another quality of service control method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a QoS modification request initiated by a relay UE according to an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a QoS modification request initiated by a relay UE according to an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a QoS modification request initiated by a relay UE according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a QoS modification request initiated by a base station according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a QoS modification request initiated by a remote UE according to an embodiment of the present application.
  • FIG. 11 is another schematic flowchart of a QoS change request initiated by a remote UE according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a quality of service control apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another quality of service control apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a quality of service control apparatus according to an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of a quality of service control apparatus according to an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device in this embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of the public land mobile network (PLMN) equipment, etc., which are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system of mobile communication (GSM) system or a code division multiple access (code division multiple access, CDMA)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the base station (base transceiver station, BTS) in the LTE system can also be the base station (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolutionary base station (evolutional base station) in the LTE system.
  • NodeB eNB or eNodeB
  • it can also be a wireless controller in a cloud radio access network (CRAN) scenario
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and 5G
  • the network equipment in the network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiments of the present application.
  • FIG. 1 shows a schematic diagram of the architecture of a 5G ProSe communication in the prior art.
  • the network architecture includes terminal equipment, access network equipment, access management network elements, session management network elements, user plane network elements, and policy control. network element, network slice selection network element, network warehouse function network element, network data analysis network element, unified data management network element, unified data storage network element, authentication service function network element, network capability opening network element, application function network element, And the data network (DN) connecting the operator's network.
  • the terminal equipment can send service data to the data network and receive service data from the data network through the access network equipment and user plane network elements.
  • An access network device is a device in the network that is used to connect a terminal device to a wireless network.
  • the access network device may be a node in a radio access network, and may also be referred to as a base station, and may also be referred to as a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as traditional Macro base station eNB and micro base station eNB in heterogeneous network scenarios, or may also include the next generation node B (next generation node B) in the fifth generation mobile communication technology (5th generation, 5G) new radio (new radio, NR) system , gNB), or may also include radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS) , transmission reception point (TRP), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (base band unit, BBU), baseband pool BBU pool, or WiFi access point ( access point, AP), etc
  • CU supports radio resource control (RRC), packet data convergence protocol (PDCP), service data adaptation protocol (service data adaptation) protocol, SDAP) and other protocols;
  • DU mainly supports radio link control layer (radio link control, RLC), media access control layer (media access control, MAC) and physical layer protocols.
  • the access management network element is mainly used for terminal attachment, mobility management, and tracking area update procedures in the mobile network.
  • the access management network element terminates non-access stratum (NAS) messages, completes registration management, Connection management and reachability management, allocation of track area list (TA list) and mobility management, etc., and transparent routing of session management (SM) messages to session management network elements.
  • NAS non-access stratum
  • TA list allocation of track area list
  • SM session management
  • the access management network element can be an access and mobility management function (AMF).
  • AMF access and mobility management function
  • the mobility management network element may still be the AMF network element, or may have other names, which are not limited in this application.
  • the session management network element is mainly used for session management in the mobile network, such as session establishment, modification and release. Specific functions include allocating Internet Protocol (IP) addresses to terminals, and selecting user plane network elements that provide packet forwarding functions.
  • IP Internet Protocol
  • the session management network element may be a session management function (SMF).
  • SMF session management function
  • the session management network element may still be an SMF network element, or it may be With other names, this application is not limited.
  • User plane NEs are mainly used to process user packets, such as forwarding, accounting, and lawful interception.
  • the user plane network element may also be referred to as a protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA).
  • PDU protocol data unit
  • PSA protocol data unit
  • the user plane network element may be a user plane function (UPF).
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or it may be With other names, this application is not limited.
  • Policy control network element including user subscription data management function, policy control function, charging policy control function, quality of service (quality of service, QoS) control, etc.
  • the policy control network element may be a policy control function (PCF).
  • PCF policy control function
  • the policy control network element may still be a PCF network element, or it may be With other names, this application is not limited.
  • the network slice selection function network element is mainly used to select the appropriate network slice for the service of the terminal device.
  • the network slice selection network element may be the network slice selection function (NSSF) network element.
  • the network slice selection network element may still be the NSSF network element.
  • the network element may also have other names, which is not limited in this application.
  • the network warehouse function network element is mainly used to provide the registration and discovery functions of the network element or the services provided by the network element.
  • the network repository function network element may be a network repository function (NRF), and in a future communication system (such as a 6G communication system), the network repository function network element may still be an NRF network element, or It can also have other names, which is not limited in this application.
  • NRF network repository function
  • Network data analysis network elements can be analyzed from various network functions (network functions, NF), such as policy control network elements, session management network elements, user plane network elements, access management network elements, and application function network elements (through the network capability opening function). network elements) to collect data and make analysis and predictions.
  • network functions such as policy control network elements, session management network elements, user plane network elements, access management network elements, and application function network elements (through the network capability opening function). network elements) to collect data and make analysis and predictions.
  • the network data analysis network element may be the network data analysis function (NWDAF).
  • NWDAF network data analysis function
  • the network data analysis network element may still be the NWDAF network element. , or may have other names, which are not limited in this application.
  • the unified data management network element is mainly used to manage the subscription information of terminal equipment.
  • the unified data management network element may be a unified data management (UDM), and in a future communication system (such as a 6G communication system), the unified data management network element may still be a UDM network element, or It can also have other names, which is not limited in this application.
  • UDM unified data management
  • the unified data storage network element is mainly used to store structured data information, including subscription information, policy information, and network data or service data defined in a standard format.
  • the unified data storage network element may be a unified data repository (UDR).
  • the unified data storage network element may still be a UDR network element, or It can also have other names, which is not limited in this application.
  • the authentication service function network element is mainly used to perform security authentication on terminal equipment.
  • the authentication service function network element may be an authentication server function (AUSF).
  • AUSF authentication server function
  • the authentication service function network element may still be an AUSF network element, or It can also have other names, which is not limited in this application.
  • the network capability exposure network element can expose some functions of the network to applications in a controlled manner.
  • the network capability exposure network element may be the network capability exposure function (NEF).
  • the network capability exposure network element may still be the NEF network element. Alternatively, it may have other names, which are not limited in this application.
  • the application function network element can provide service data of various applications to the control plane network element of the operator's communication network, or obtain network data information and control information from the control plane network element of the communication network.
  • the application function network element may be an application function (AF), and in the future communication system (such as a 6G communication system), the application function network element may still be the AF network element, or may also have other The name is not limited in this application.
  • the data network is mainly used to provide data transmission services for terminal equipment.
  • the data network can be a private network, such as a local area network, or a public data network (PDN) network, such as the Internet (Internet), or a private network jointly deployed by operators, such as a configured IP multimedia network sub-network.
  • PDN public data network
  • IMS IP multimedia core network subsystem
  • network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (eg, a cloud platform).
  • a platform eg, a cloud platform
  • the foregoing network element or function may be implemented by one device, or may be implemented jointly by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • the communication between UE A, UE B and NG-RAN can be regarded as a communication connection under the architecture of UE-to-Network Relay, and the remote UE (ie UE B) can A connection is established with the Radio Access Network (RAN) through a relay device.
  • RAN Radio Access Network
  • UE A, UE B, and UE C can be regarded as communication connections in the UE-to-UE Relay architecture, and UE B as the The relay device (relay UE) between the remote UE (UE C) and UE A forwards the respective signaling and data for the two UEs through the PC5 interface.
  • a remote UE communicates with a network device or UE (target UE) through a relay device.
  • FIG. 2 shows the user plane protocol stack of the UE-to-network protocol data unit (protocol data unit, PDU) session transmission implemented using layer 2 relay in the UE-to-Network scenario.
  • the remote UE is directly connected to the PDU layer of the data network, and it can be understood that the data in the application data packet is directly encoded, decoded and transmitted between the two.
  • the data in the PDU layer is encapsulated once in a new radio-service data adaptation protocol (NR-SDAP) layer below the PDU layer of the remote UE.
  • NR-SDAP new radio-service data adaptation protocol
  • the NR-SDAP layer will correspond to the bearer used for physical layer transmission according to the quality of service (QOS) parameter (QoS flow, (QOS flow)) of the data packet, that is, after encapsulation, the SDAP layer
  • QOS quality of service
  • the lower layer that is, the packet data convergence protocol (PDCP) layer, when processing this data packet, according to the QoS flow allocated by SDAP, the data packet in the radio bearer (radio bearer, RB) corresponding to the QoS flow ) for transmission.
  • the NR-SDAP and NR-PDCP protocols are the communication protocols used by the Uu interface.
  • the remote UE is directly connected to the PDCP and SDAP of the NG-RAN (the SDAP layer in the figure omits the connection, but the same protocol layer name is actually connected, such as the PC5-
  • the RLC and the PC5-RLC of the relay are correspondingly connected, and the NR-RLC of the relay is correspondingly connected to the new air interface-radio link control (NR-radio link control, NR-RLC) layer of the NG-RAN, and so on.
  • the relay forwarding function can only perform codec forwarding operations on the PC5 interface and the Uu interface data below the PDCP layer.
  • the gNB needs to maintain the binding relationship between the remote UE and the relay at the same time, because when the gNB receives the data packet of the remote UE forwarded by the relay, the information of the relay is below the RLC layer of the data packet, and the information above the PDCP layer is It is the information of the remote UE.
  • the gNB needs to inform the relay UE of the radio resources of the Uu interface and the PC5 interface.
  • Fig. 3 shows the user plane protocol stack of UE-to-Network PDU session transmission using Layer 3 relay in a UE-to-Network scenario.
  • the remote UE and the relay use the PC5-U interface for data transmission.
  • the relay After the relay receives the data packet of the remote UE, it will decode the bottom layer (layer 1 and layer 2) of the data packet until it is decoded to the IP layer (the data content in the IP layer is not decoded).
  • the relay uses the protocol stack of the Uu interface to perform layer 2 and layer 1 packaging operations on the IP data packets of the remote UE, and uses the Uu interface to send the data packets to the UPF through the access network equipment, and the UPF is instructed by the data packets according to the data packets. Routing information sends the packet to the appropriate application server.
  • the gNB does not perceive that the relay is forwarding the data of the remote UE, and it can be understood that it only provides the traditional Uu interface cellular service for the relay.
  • layer 3 relay same as layer 2 relay, one relay UE can connect to multiple remote UEs and provide layer 3 relay forwarding for these remote UEs.
  • the PDU session used by the layer 3 relay to forward data for the remote UE is the PDU session of the relay UE itself.
  • the PC5 communication between the remote UE and the relay UE and the Uu communication link mapping between the relay UE and the gNB are maintained by the relay UE.
  • the user plane protocol stacks of the layer 2 and layer 3 relays in the UE-to-UE scenario are similar to the protocol stacks in the above UE-to-Network scenario. For details, please refer to the prior art.
  • a remote UE may use different applications (or services) in a PDU session, and the quality of service (quality of service) required by different applications (or services) service, QoS) parameters are different, for example, video services need high bandwidth, while voice communication needs to ensure reliable low latency. Therefore, SMF will establish different QoS flows for the QoS requirements of different services according to the communication requirements of the remote UE, and each QoS flow is identified by a QoS flow identifier (QFI). The QoS requirements corresponding to the same QoS flow are the same, and these requirements can be quantified by QoS parameters, such as delay, bandwidth, and packet loss rate.
  • QFI QoS flow identifier
  • the 3GPP standard combines indicators such as delay, packet loss rate, and packet processing priority with a standardized identifier, namely 5QI (5G QoS Identifier).
  • the QoS parameters corresponding to each QoS Flow also include allocation and retention priority (ARP), flow bit rate (for bandwidth guarantee (guaranteed flow bit rate) , GBR) QoS Flow, including guaranteed rate and maximum rate), flow sum rate (for bandwidth that does not require guaranteed (non-guaranteed flow bit rate, Non-GBR) QoS flow) and so on.
  • the SMF After the SMF establishes the PDU session, it sends the QFI used by the downlink data in the PDU session and its corresponding QoS parameters to the base station (eg gNB) through the N2 message, and configures it to the UPF through the N4 interface, thus connecting the DN to the base station. downlink data transmission link.
  • the uplink data sending rule (QoS rule) used by the UE and the corresponding QoS parameters are sent to the UE by the SMF through the N1 message.
  • the base station can allocate radio resources to the UE for transmitting different QoS flows according to the QoS parameters.
  • SMF can also instruct the base station to monitor the channel quality between the UE and the base station. When the channel quality between the UE and the base station does not meet the QoS requirements, it can notify the SMF to adjust the corresponding QoS parameters.
  • the base station needs to judge whether the radio resources on the wireless side can guarantee the bandwidth requirement corresponding to the GBR QoS Flow according to the channel quality between the UE and the base station .
  • the base station detects that the quality of the wireless air interface cannot guarantee the GBR requirement, the base station needs to notify the SMF to change the corresponding GBR QoS requirement.
  • the AMF sends the information in the N2 SM container to the base station, and the N2 SM information may include: PDU session identifier, QoS configuration information (QFI and its corresponding QoS parameters).
  • the SMF can also add a notification control indication to the QoS configuration to instruct the RAN side base station to monitor the QoS flow.
  • the bit rate (guaranteed flow bit rate, GFBR)
  • notification (alarm) information needs to be sent to the SMF.
  • the base station may attach the currently supported GFBR value, as well as the supported packet delay budget (PDB) and packet error rate (PER).
  • PDB packet delay budget
  • PER packet error rate
  • the N2 SM information may also include an optional QoS profile (alternative QoS profile, AQP).
  • 5QI 5G QoS Identifier, 5G QoS indicator
  • QoS parameters such as PDB and PER.
  • PDB the default priority
  • PER the default average window
  • 2000ms the default average window
  • SMF the base station AQP
  • the base station sends an N2 message to the SMF, which includes QFI and AQP information that can be satisfied (eg AQP 2).
  • PC5 QoS flow indicator PC5 QoS flow indicator
  • the base station can detect the link quality of the Uu interface between the base station and the UE, when the link quality between the base station and the UE does not meet the communication requirements, the base station can notify the SMF to perform QoS parameters on the Uu interface.
  • the remote UE uses the relay UE to communicate with the base station or UE, that is, in the UE-to-Network or UE-to-UE scenario, the base station or core network element SMF cannot know the remote UE and the relay.
  • the link quality of the PC5 link between the UEs therefore, when the link quality of the PC5 link between the remote UE and the relay UE cannot guarantee the GBR QoS requirements, the base station cannot notify the SMF to adjust the QoS parameters of the corresponding Uu interface , so that the bandwidth requirements of the remote UE or the end-to-end QoS requirements cannot be guaranteed.
  • the target UE cannot perceive the link quality of the PC5 link between the relay UE and the remote UE, so when the link quality between the relay UE and the remote UE changes, It is also impossible to adjust the QoS parameters between the corresponding relay UE and the target UE, so that the bandwidth requirements of the remote UEs or the end-to-end QoS requirements cannot be guaranteed.
  • the present application provides a quality of service control method, by changing the parameters of the quality of service of the second communication link according to the quality of service of the first communication link, so that the parameters of the quality of service of the second communication link correspond to the first communication link quality of service, so as to control the quality of service of the second communication link more flexibly and accurately.
  • the remote UE or the relay UE or the base station can initiate a change request for the QoS parameters of the Uu interface or the PC5 link between the relay UE and the target UE according to the communication quality of the PC5 link.
  • the network side or the target UE side can synchronously change the Uu interface or the second PC5 link (the link between the relay device and the target UE) and the first PC5 link QoS parameters of the link (the link between the relay device and the remote UE), thus ensuring the end-to-end QoS requirements.
  • the first PC5 link may be the PC5 link between the relay device and the remote UE
  • the second PC5 link may be the PC5 link between the relay device and the target UE
  • Other names may be used to represent two different links, which are not limited in this embodiment of the present application.
  • FIG. 4 shows a method for modifying QoS according to an embodiment of the present application.
  • the method 400 includes steps S410 to S420, and the two steps are described in detail below.
  • determining that the quality of service of the first communication link does not meet the quality of service requirement or determining that the quality of service of the first communication link has changed in the embodiments of the present application may correspond to two situations respectively, the first is the PC5 link.
  • the quality of service does not meet the quality of service requirements, that is, trigger when the rate or delay does not reach the threshold; or, the second is when the QoS requirements of the PC5 link change, such as the lower bandwidth requirements of the relay and the remote UE.
  • One link service quality is degraded, etc.
  • the embodiments of the present application may be applied in a UE-to-UE scenario, that is, the remote UE (that is, the first terminal device in the embodiments of the present application) communicates with the target UE (that is, the first terminal device in the embodiments of the present application) through the relay device. It can also be applied to UE-to-network scenarios, that is, a remote UE communicates with an access network device (such as a base station) through a relay device.
  • an access network device such as a base station
  • the first communication link is a communication link between the relay device and the first terminal device
  • the second communication link is the relay device and the access network device or the A communication link between a relay device and a second terminal device
  • the first terminal device communicates with the access network device through the relay device or communicates with the second terminal device through the relay device .
  • the first communication link in this embodiment of the present application may be a PC5 link
  • the second communication link may be a Uu interface link
  • the quality of service in this embodiment of the present application may include multiple judgment methods including QoS parameters, such as GFBR, delay, packet loss rate, and the like.
  • QoS parameters such as GFBR, delay, packet loss rate, and the like.
  • the determining that the service quality of the first communication link does not meet the service quality requirement includes: detecting the service quality of the first communication link The quality is below a first threshold, the first threshold corresponding to the quality of service requirement.
  • the execution subject can be a relay device.
  • the communication link between the first terminal device and the relay device is It is unknown to the access network, and the relay device can monitor the quality of the PC5 link during the PC5 communication process.
  • the specific monitoring method may be that the relay UE receives the data packets from the remote UE, and determines whether the received signal power strength decreases to a certain threshold (the specific value of the threshold can be pre-configured by the base station, or set on the device when the terminal is manufactured).
  • PC5 channel quality can guarantee the current PC5 QoS parameter requirements (such as GFBR, delay, packet loss rate, etc.), or whether it can support higher QoS parameter requirements (such as higher GFBR, lower delay, lower packet loss rate, etc.).
  • PC5 QoS parameter requirements such as GFBR, delay, packet loss rate, etc.
  • higher QoS parameter requirements such as higher GFBR, lower delay, lower packet loss rate, etc.
  • the execution subject can be the first terminal device (or the remote UE), and the first terminal device can monitor the quality of the PC5 link to determine the PC5 link.
  • the road quality cannot guarantee the current QoS parameters or the channel quality of the PC5 interface can support higher QoS parameter requirements.
  • the specific monitoring process refer to the above-mentioned method for monitoring the PC5 link by the relay UE.
  • the service quality of the first link is determined by receiving information sent by other devices. Specifically, the determining that the service quality of the first communication link does not meet the service quality requirement includes: receiving a second message from the first terminal device, where the second message is used to instruct to lower the first communication link quality of service.
  • the execution subject can be the relay UE, and in layer 3 relay, the communication link between the first terminal device and the relay device is for the access network. It is unknowable. If the first terminal device in the layer 3 relay obtains the service quality of the first communication link and judges that the service quality at this time does not meet the service requirements, the first terminal device can determine that it is necessary to change the first terminal device. the quality of service of a communication link, and the requirement is sent to the relay device through the first message.
  • the service quality of the first communication link may be indirectly judged by receiving the service quality of the first communication link sent by other devices. Specifically, receive a third message from the first terminal device or the relay device, where the third message is used to indicate the quality of service of the first communication link; determine the quality of the first communication link The quality of service is below a first threshold, the first threshold corresponding to the quality of service requirement.
  • the above-mentioned first threshold may correspond to the value of a QoS parameter, such as the value of parameters such as GFBR, delay or packet loss rate, etc.
  • the above-mentioned first threshold may be pre-configured, or may be obtained from the network side. obtained, which is not limited in this embodiment of the present application.
  • the base station can receive the PC5 chain reported by the first terminal device and/or the relay device.
  • channel quality of the received PC5 link for example, the base station can judge whether the channel quality of the PC5 interface cannot guarantee the current QoS parameters, or the base station can also judge whether the channel quality of the PC5 interface can support higher QoS parameter requirements.
  • S420 Send first information, where the first message is used to request to change the parameter of the quality of service of the second communication link.
  • the first message may be sent to the session management network element SMF.
  • the sending the first message includes: sending the first message to the session management network element, where the first message is used for The quality of service of the second communication link is reduced.
  • the relay device may send the first message to the session management network element, and optionally, the relay The device may send a QoS change request message, that is, the first message, to the session management network element through the PDU session change message, which requests to change the quality of service of the second communication link.
  • the relay device needs to modify the QoS parameters of the Uu interface to the network side first. Because in the layer 3 relay scenario, there is no control signaling interaction between the remote UE and the network side, so here only the relay device can initiate the QoS parameter change request of the Uu interface. Before the relay device sends the QoS change request of the Uu interface to the SMF network element, it needs to confirm to change the QoS parameters corresponding to those service flows.
  • the relay device can map the PFI to the QFI, and map the PC5 QoS parameter requirements to the Uu QoS parameter requirements through the PC5 QoS changes corresponding to the SDF or PFI obtained during the PC5 link monitoring process.
  • the relay device sends a NAS message to the AMF network element through the base station, and the message may include a PDU session identifier and an N1 session management container (N1 session management container, N1 SM container).
  • the AMF can use the Nsmf_PDUSession_UpdateSMContext service to forward the message to the SMF network element.
  • the first message sent by the relay UE may carry a service data flow (service data flow, SDF) identifier or a QFI identifier of the data stream that needs to be changed. Further, the first message may also include the modified specific parameter information.
  • the first terminal device may send the first message to the session management network element, optionally, the first terminal device may send a PDU session modification to the SMF through the NAS information.
  • the first terminal device may send a NAS message to the AMF, and after receiving the NAS message, the AMF may use the Nsmf_PDUSession_UpdateSMContext service to forward the message to the SMF network element.
  • the first terminal device may also forward the first message to the SMF network element through the UPF network element, and the first message may carry the SDF identifier or the QFI identifier of the data stream to be changed. Further, the first message may also include the modified specific parameter information.
  • this situation may also correspond to the third method above.
  • the execution subject is the access network device in the layer 2 relay scenario, and the access network device determines in S410 that the quality of service in the first communication network is not good
  • a QoS parameter modification process can be initiated, and a first message can be sent to the session management network element.
  • the first message can carry the QFI identifier of the data stream that needs to be modified.
  • the message may also include the changed specific parameter information.
  • a cause value may also be carried in the first message.
  • the first message includes a cause value
  • the cause indicated by the cause value is the first communication link.
  • the quality of service of the road is subject to change.
  • the receiving end can initiate a corresponding process of changing the quality of service of the second communication link.
  • the first message when the first message is sent above, the first message may include first indication information, specifically, the first message includes first indication information, and the first indication information is used to indicate The reason for the change of the second communication link is that the quality of service of the first communication link is to be changed.
  • the receiving end can be made to initiate a corresponding process of changing the quality of service of the second communication link.
  • the first indication information can be displayed indication information, such as a cause value or a certain cell, or it can be an implicit indication information, such as reflected in the name of the first message, such as changing the PC5 chain.
  • the first message may also be sent to the access network device.
  • the sending the first message includes: sending the first message to the access network device, where the first message is used for Instructing to reduce the quality of service of the second communication link.
  • the execution subject is the relay UE in the layer 3 relay scenario
  • the relay device learns that the service quality of the current first communication link does not meet the service requirements , can send a first message to the access network device, in the first message, can add the data radio bearer (data radio bearer, DRB) information corresponding to the service flow that needs to change the QoS parameter, that is, the air interface resource information on the wireless side. Further, the modified specific parameter information may also be added to the first message.
  • DRB data radio bearer
  • the first terminal device can report to the access link after finding that the quality of service of the first communication link cannot meet the service requirements during the monitoring process of the PC5 link.
  • the network device sends the first message.
  • the first message may carry a sidelink radio bearer (sidelink radio bearer, SLRB) or a DRB or a PFI or a QFI identifier.
  • SLRB sidelink radio bearer
  • the access network may only provide the PFI, and the access network device may derive the QFI corresponding to the PFI.
  • the first terminal device can also provide the radio resource information corresponding to the QoS parameters that need to be changed, that is, SLRB or DRB, because if the access network device maintains the mapping relationship between the SLRB or DRB and the QoS flow, the access network device can obtain information from these
  • the QoS flow information (QFI) that needs to be changed by the first terminal device is derived from the resource information.
  • the first message further includes at least one of the following: QFI identifier, SDF information, PFI identifier, DRB identifier, and SLRB identifier.
  • the unsatisfied service quality in this embodiment of the present application may be that the current channel quality cannot guarantee the link QoS parameter requirement, or it may also be that the current channel quality can support a higher QoS parameter requirement. Not limited.
  • the determining that the service quality of the first communication link does not meet the service quality requirement includes: determining that the service quality of the first link is higher than a second threshold, and the second threshold corresponds to the service quality requirement.
  • the first message is used to request to improve the service quality of the second communication link, and specifically, the first message is used to instruct to improve the service quality of the second communication link.
  • determining the quality of service of the first communication link in this embodiment of the present application may include different situations.
  • the relay device in the current link may correspond to multiple first terminal devices, that is, a one-to-many situation, or, the relay device may also correspond to a first terminal device, that is, a one-to-one situation.
  • the first terminal device, the relay device, and the access network device can all pass the embodiments of the present application.
  • the method in realizes the determination of the service quality of the first communication link, and executes the process of changing the service quality of the second communication link.
  • the parameters of the quality of service of the second communication link are changed according to the quality of service of the first communication link, so that the parameters of the quality of service of the second communication link correspond to the quality of service of the first communication link, so as to be more flexible, The quality of service of the second communication link is more accurately controlled.
  • FIG. 5 shows a method for modifying QoS according to an embodiment of the present application.
  • the method 500 includes steps S510 to S520, which will be described in detail below.
  • the first terminal device determines that the service quality of the first communication link does not meet the service quality requirement or determines that the service quality of the first communication link is changed.
  • the first communication link is a communication link between a relay device and the first terminal device.
  • the first terminal device may be a remote UE.
  • the first message is used to request to change a parameter of the quality of service of the first communication link.
  • determining that the quality of service of the first communication link does not meet the quality of service requirement or determining that the quality of service of the first communication link has changed in the embodiments of the present application may correspond to two situations respectively, the first is the PC5 link.
  • the quality of service of the network does not meet the quality of service requirements, that is, it is triggered when the rate or delay does not reach the threshold; or, the second is when the QoS requirements of the PC5 link change, such as the remote UE's demand for bandwidth becomes lower or stops using a service
  • the first terminal device can be triggered to send the first message to the relay device, so that the quality of service of the first communication link can be changed, so that the quality of service of the link can meet the transmission requirement.
  • the first terminal device sends a request message to the relay device when the service quality of the first communication link does not meet the requirement or the service quality requirement of the first terminal device changes, so as to change the service of the first communication link. quality, so that the link service quality can meet the transmission requirements and improve the data transmission efficiency.
  • the first communication link (or the PC5 link In the process of judging the service quality of the PC5 link or Uu interface link to change the service quality of the PC5 link or Uu interface link, it can be based on the PC5 link's service quality that does not meet the service quality requirements, such as speed or delay. Triggered when the threshold is reached, or it can be when the QoS requirements of the PC5 link are changed, such as the decrease in the quality of service of the PC5 link caused by the lower bandwidth requirements of the relay and the remote UE, or the remote UE itself.
  • this application does not specifically limit the method of triggering the change request in the PC5 link.
  • FIG. 6 shows a schematic flowchart of a QoS change request initiated by a relay UE in a layer 3 relay in a UE-to-Network scenario.
  • the remote UE establishes a data communication connection with the cellular network through the relay UE, and performs quality monitoring on the PC5 link between the remote UE and the relay UE during the data transmission process.
  • the relay UE can receive the data packet from the remote UE or when the remote UE receives the network side data packet forwarded from the relay UE, by monitoring the received signal power strength or by monitoring the GFBR of the received data packet Whether the delay, packet loss rate, etc.
  • the specific value of the first threshold can be pre-configured by the base station, or the network element on the network side, such as SMF, configures it to the UE or PCF network element through the N1 message It is sent to the UE with the user policy configuration information, or set by the equipment manufacturer when manufacturing the terminal equipment), so as to judge whether the PC5 channel quality can guarantee the current PC5 QoS parameter requirements (such as GFBR, delay, packet loss rate, etc.), Or whether higher QoS parameter requirements can be supported.
  • the specific value of the first threshold can be pre-configured by the base station, or the network element on the network side, such as SMF, configures it to the UE or PCF network element through the N1 message It is sent to the UE with the user policy configuration information, or set by the equipment manufacturer when manufacturing the terminal equipment), so as to judge whether the PC5 channel quality can guarantee the current PC5 QoS parameter requirements (such as GFBR, delay, packet loss rate, etc.), Or whether higher QoS parameter requirements can be supported.
  • the remote UE sends a QoS change request message of the PC5 link to the relay UE.
  • the remote UE finds in step S660 that the PC5 link quality cannot guarantee the current QoS parameter requirements or can support higher QoS requirements (such as higher transmission rates)
  • the remote UE can notify the After the UE initiates the QoS change process of the PC5 link.
  • the remote UE needs to indicate that the PC5 link needs to change the QoS service flow information (eg SDF, which can be expressed by Packet Filter) or PFI information, and the changed QoS parameter value.
  • the remote UE can also add or drop (or remove) a certain traffic flow. For example, it is triggered when the remote UE stops using the application corresponding to the service flow.
  • the remote UE may send a fourth message to the relay UE, where the fourth message is used to instruct to add or remove the first service flow.
  • the fourth message may include at least one of the following: service data flow SDF information, PC5 link QoS flow identifier PFI.
  • the fourth message may be a PC5 link change request message.
  • the remote UE may send a PC5 link modification request message to the relay UE, and the modification request message may include flow description information (for example, SDF, which can be expressed by Packet Filter) of the service flow to be added or removed (for example, SDF, which can be expressed by Packet Filter) and An indication of addition or deletion (for example, the Operation carried in the message is set to add or delete).
  • flow description information for example, SDF, which can be expressed by Packet Filter
  • SDF which can be expressed by Packet Filter
  • An indication of addition or deletion for example, the Operation carried in the message is set to add or delete.
  • the flow description information of the service flow may be the N3IWF address and the SPI (Security Parameters Index, security parameters). index) combination.
  • the modification request message may also include the PC5 QoS flow identifier (ie, PFI) corresponding to the service flow to be added or removed.
  • Steps S660 and S620 belong to the prior art, and are not described in detail in this embodiment of the present application.
  • the relay UE sends a QoS parameter modification request message to the SMF. Specifically, the relay UE monitors in step S660 that the link quality of the PC5 link does not meet the current QoS parameter requirements or can support higher QoS requirements, or the relay UE receives the PC5 link of the remote UE in step S620 The QoS change request of the link is sent, and the relay UE initiates the QoS change process of the Uu link to the SMF.
  • the relay UE in response to a situation in which the remote UE requests to add or remove the first service flow, the relay UE sends a first message to the SMF, where the first message is used to instruct the addition or removal of the first service flow.
  • the receiving end can add or remove related service flows, and add or delete QoS-related parameters corresponding to the service flows, that is, the first message can be used to indicate the change of the quality of service of the second communication link. parameter.
  • the first message may also include the aforementioned first indication information, where the first indication information is used to indicate that the second communication link is changed because the first communication link is added or removed. business flow.
  • the relay UE Before the relay UE sends the QoS change request of the Uu interface to the SMF network element, it needs to confirm which QoS parameters corresponding to the service flows need to be changed. Specifically, the relay UE maps the PFI identification to the QFI identification through the modification of the PC5 QoS corresponding to the SDF or PFI identification obtained in step S610 or step S620, and the PC5 QoS parameter requirement is mapped to the Uu QoS parameter requirement. It should be understood that in the layer 3 relay scenario, the relay UE maintains the correspondence between the PFI identifier and the QFI identifier, as well as the mapping relationship between the corresponding PC5 QoS parameters and UuQoS parameters. Therefore, the relay UE needs to perform the acquisition process. After the PFI identity or SDF identity of the QoS change, the mapping can be performed.
  • the relay UE sends a QoS change request of the Uu interface to the SMF network element.
  • the request message may be carried in a NAS message sent by the relay UE to the AMF network element through the base station, and the NAS message may include a PDU session identifier and an N1 session management container (N1 Session Management container, N1 SM container).
  • N1 Session Management container N1 Session Management container
  • it includes QoS parameter change request indication, Operation (add, modify or delete), PDU session ID, service flow information (such as SDF or QFI), requested QoS parameter information and change reason (Cause), etc.
  • the reason indicated by Cause is that the QoS of the PC5 link between the relay UE and the remote UE needs to be changed or a service flow is added or removed.
  • the AMF can use the Nsmf_PDUSession_UpdateSMContext service to forward the message to the SMF network element.
  • the relay UE can forward the QoS change request message of the Uu interface to the SMF network element through the UPF network element, and the request message carries: QoS parameter change indication, PDU session ID, service flow information (such as SDF or QFI) ), the requested QoS parameter information and the reason for the change (Cause), etc.
  • the relay UE needs to change the QoS parameters of the Uu interface to the network side first. Because in the layer 3 relay scenario, there is no control signaling interaction between the remote UE and the network side, so here only the relay UE can initiate the QoS parameter change request of the Uu interface.
  • the SMF changes the QoS parameters of the Uu interface. Specifically, after receiving the change request message, the SMF determines whether to change the QoS parameters.
  • the SMF may determine, according to the subscription session data of the UE, whether the modification request of the UE conforms to the subscription information (for example, whether the maximum bandwidth requested by the UE exceeds the subscription limit, etc.).
  • the SMF can use the local PCC rules or the QoS parameters (for example, the maximum bandwidth that can be used by the service) corresponding to the service specified in the PCC rule obtained from the PCF (that is, the service corresponding to the QFI or SDF) (for example, the maximum bandwidth that can be used, or used for guarantees).
  • Minimum bandwidth for service execution, delay, packet loss rate, etc. to determine whether the QoS parameter requested by the UE to be changed conforms to the QoS parameter value specified by the PCC rule.
  • the UE here may be a relay UE or a remote UE. If it is a remote UE, the relay may need to send the identification information of the remote UE to the SMF along with the QoS change request message, if the PDU session is multiplexed by multiple remote UEs.
  • the SMF can notify the RAN to update the QoS configuration (remove the QoS flow) through the N2 message. If the service flow multiplexes a GBR QoS flow with other service flows, the SMF needs to change the QoS parameters of the GBR QoS flow (for example, subtract the GFBR occupied by the service flow from the GFBR of the GBR QoS flow). For example, the GBR QoS flow was originally used to carry two service flows (service 1 and service 2, service 1 and service 2 can be used by remote UE at the same time, or service 1 is used by remote UE1, and service flow 2 is used by remote UE2.
  • Service 1 and service 2 can be used by remote UE at the same time.
  • 1 and service 2 occupy 10Mbps and 5Mbps GFBR respectively, that is, the GFBR of this GBR QoS flow is 15Mbps), when the relay UE requests SMF to remove service 1, SMF needs to set the GFBR of this GBR QoS flow to 5Mbps.
  • the SMF can modify the QoS parameter for the UE.
  • the SMF accepts the QoS parameter modification request, it modifies the QoS parameters of the service flow indicated by the SDF identifier indicated by the request message in step S630 or the QoS flow corresponding to the QFI identifier.
  • the SMF network element synchronously updates the UPF configuration information involved in the changed QFI.
  • the SMF sends the changed PDU session information to the AMF. Specifically, the SMF can send the N1 SM container and the N2 SM container to the AMF through the Nsmf_PDUSession_UpdateSMContext service message.
  • the AMF sends the information in the N2 SM container to the base station, where the N2 SM information includes: the PDU session identifier and the QoS parameters corresponding to the changed QFI.
  • the AMF sends the information in the N1 SM container to the relay UE, where the N1 SM information includes: the PDU session identifier and the QoS parameters corresponding to the changed QoS rules.
  • the base station after receiving the N2 SM message in step S660, the base station updates the QoS parameter mapping corresponding to the DRB and the QFI, and sends the modified DRB configuration information (ie, air interface resource information) to the relay through an RRC message UE.
  • the modified DRB configuration information ie, air interface resource information
  • the relay UE initiates a PC5 QoS modification process with the remote UE according to the updated Uu QoS information obtained in steps S670 and S680.
  • steps S640 to S690 belong to the prior art, and details are not described here in this embodiment of the present application.
  • the embodiment of this application involves the modification of QoS parameters in the layer 3 relay in the UE-to-network scenario.
  • the UE obtains the link quality of the PC5 link through the relay, and initiates a Uu when the quality of the PC5 link does not meet the QoS requirements.
  • the QoS change request of the interface enables the network side to synchronously change the QoS parameters of the Uu interface and the PC5 interface when the link quality of the PC5 link does not meet the requirements, thereby ensuring the end-to-end QoS requirements.
  • FIG. 7 shows another schematic flowchart of a QoS change request initiated by a relay UE in a layer 3 relay in a UE-to-Network scenario according to an embodiment of the present application.
  • the relay UE sends a QoS request message for changing the Uu interface to the base station, and then the base station sends the QoS parameters of the Uu interface to the SMF. Change request.
  • Figure 7 shows that in this embodiment of the application, the relay UE sends a QoS request message for changing the Uu interface to the base station, and then the base station sends the QoS parameters of the Uu interface to the SMF. Change request.
  • S710 and S770 are the same as S610 and S620 in FIG. 6 , and details are not described in this embodiment of the present application.
  • the relay UE sends a first message to the base station for requesting to change the QoS parameter of the Uu interface.
  • the relay UE may report the first message including the QoS parameter modification request of the Uu interface caused by the change of the PC5 link quality to the base station through the RRC message.
  • the service flow of the QoS parameter that needs to be changed or the data radio bearer (Data Radio Bearer, DRB) information corresponding to the QFI may be added, that is, the air interface resource information on the radio side.
  • DRB Data Radio Bearer
  • QoS parameter information may be added, and the QoS parameter information may include the target QoS parameters to be changed and their target requirements (such as target bandwidth, etc.), or may include the communication quality of the current service flow or the QoS flow and the QoS parameter requirements indication (e.g. GBR cannot be satisfied).
  • the relay UE will maintain the mapping relationship between the PFI identifier and the QFI identifier and their corresponding to the DRB, so the relay UE can obtain the needs from step S710 or S770. After changing the PFI identifier or SDF identifier of the QoS parameter, map it to the corresponding DRB.
  • the base station sends a second message to the SMF for requesting to change the QoS parameter of the Uu interface, indicating that the QoS parameter corresponding to the QFI identifier needs to be changed.
  • the base station on the RAN side may send a second message to the SMF through the AMF, indicating that the QoS parameter corresponding to the QFI identifier needs to be changed.
  • the above-mentioned QFI identifier is the QFI identifier corresponding to the DRB information confirmed by the base station according to the DRB information indicated in the first message after receiving the first message from the relay UE in step S730 (it should be understood that the base station is responsible for The mapping relationship between QFI and wireless air interface resources is processed, so the base station can confirm the QFI from the DRB information according to this mapping relationship).
  • the second message sent by the base station to the SMF may carry: the PDU session identifier, the QFI identifier, the QoS parameter information and the request cause Cause.
  • the QoS parameter information may include the target QoS parameters that need to be changed and their target requirements (such as target bandwidth, etc.), or may include an indication that the communication quality of the current service flow or QoS flow cannot meet the QoS parameter requirements (for example, GFBR cannot meet the requirements),
  • the reason for the request may be that the QoS parameter corresponding to the QFI identifier in the PC5 link needs to be changed.
  • the request message may be sent in the form of an N2 message.
  • Steps S750 to S7100 are similar to S640 to S690 in FIG. 6 , and will not be repeated here.
  • the embodiment of the present application involves the modification of QoS parameters in the layer 3 relay in the UE-to-network scenario.
  • the UE obtains the link quality of the PC5 link through the relay, and when the quality of the PC5 link does not meet the QoS requirements, sends a message to the base station.
  • FIG. 8 shows a schematic flowchart of a QoS change request initiated by a relay in a layer 3 relay in a UE-to-UE scenario according to an embodiment of the present application. As shown in Figure 8:
  • the remote UE and the target UE establish a connection through the relay UE, and the remote UE and the relay UE perform quality monitoring on the first PC5 link between the remote UE and the relay UE during the data transmission process.
  • the relay UE can receive the data packet from the remote UE or when the remote UE receives the network side data packet forwarded from the relay UE, by monitoring the received signal power strength or by monitoring the GFBR of the received data packet Whether the delay, packet loss rate, etc.
  • the specific value of the first threshold can be pre-configured by the base station, or the network element on the network side, such as SMF, configures it to the UE or PCF network element through the N1 message It is sent to the UE with the user policy configuration information, or is set by the equipment manufacturer when manufacturing the terminal equipment), so as to determine whether the PC5 channel quality can meet the current PC5 QoS parameter requirements (such as GFBR, delay, packet loss rate, etc.), or Whether higher QoS parameter requirements can be supported.
  • the current PC5 QoS parameter requirements such as GFBR, delay, packet loss rate, etc.
  • a service flow can also be added or removed between the remote UE and the target UE, and the relay UE also needs to synchronize the addition and removal of the UEs at both ends.
  • the first PC5 link is the PC5 link between the relay device and the remote UE
  • the second PC5 link is the PC5 link between the relay device and the target UE.
  • Other names represent two different links, which are not limited in this embodiment of the present application.
  • the remote UE sends a QoS modification request message of the first PC5 link to the relay UE.
  • the remote UE finds in step S810 that the quality of the first PC5 link cannot guarantee the current QoS parameter requirements or can support higher QoS requirements (eg, higher transmission rate)
  • the remote UE can pass the PC5 signaling message Notify the relay UE to initiate the QoS modification procedure of the first PC5 link.
  • the remote UE needs to indicate that the first PC5 link needs to change the QoS service flow information (such as SDF, which can be expressed by Packet Filter) or PFI information, and the changed QoS parameter value .
  • the change request message may include service flow information that needs to be added or removed (such as SDF, which can be expressed by Packet Filter), and the corresponding service flow corresponding to the newly added service flow.
  • SDF Service flow information that needs to be added or removed
  • QoS parameter value QoS parameter value
  • Steps S810 and S820 belong to the prior art, and are not described in detail in this embodiment of the present application.
  • the relay UE sends a second PC5 link QoS modification request message to the target UE.
  • the relay UE monitors in step S810 that the link quality of the first PC5 link does not meet the current QoS parameter requirements or can support higher QoS requirements, or the relay UE receives the remote UE's information in step S820
  • the relay UE initiates the QoS modification procedure of the second PC5 link to the target UE.
  • the relay UE Before the relay UE sends the QoS modification request of the second PC5 link to the target UE, it needs to confirm which QoS parameters corresponding to the service flows need to be modified. Specifically, the relay UE maps the first PFI identifier to the second PFI identifier by using the SDF obtained in step S810 or step S820 or the change of the first PC5 QoS corresponding to the first PFI identifier, and the first PC5 QoS parameter requirements Maps to the second PC5 QoS parameter requirement.
  • the relay UE maintains the correspondence between the first PFI identifier and the second PFI identifier, and the mapping relation between the corresponding first PC5 QoS parameters and the second PC5 QoS parameters, Therefore, after obtaining the PFI identifier or SDF identifier that needs to be changed in QoS, the relay UE can perform corresponding mapping.
  • PC5 QoS flow is used to carry the newly added service flow, and maps the QoS value corresponding to the newly added service flow provided by the remote UE to the PC5 QoS flow parameters (for example, the delay of QoS requirements, packet loss rate, etc. are mapped to On the PQI, the minimum bandwidth requirement is mapped to the corresponding GFBR).
  • the relay UE needs to synchronously send the updated (added) service flow information and QoS parameters to the target UE, and the relay UE or the target UE adds a PC5 QoS flow (for example, the fourth PC5 QoS flow) for the bearer the business flow.
  • a PC5 QoS flow for example, the fourth PC5 QoS flow
  • the relay UE When the remote UE instructs to remove the service flow, the relay UE notifies the target UE of the message of removing the service flow. If the service flow is carried by only one PC5 QoS flow, the relay UE may initiate withdrawal of this PC5 QoS flow. If the service flow is multiplexed with other service flows or other remote UEs, and the PC5 QoS flow is a GBR QoS flow, the relay UE needs to correspondingly subtract the GFBR corresponding to the service flow from the GFBR in the PC5 QoS flow. For example, there are two remote UEs (UE1 and UE2) respectively communicating with one target UE through the same relay UE.
  • UE1 and UE2 there are two remote UEs respectively communicating with one target UE through the same relay UE.
  • Each remote UE and the relay UE establish a GBR QoS flow
  • the GFBR of the GBR QoS flow (PFI 1) between UE1 and the relay UE is 10Mbps
  • the GFBR of the GBR QoS flow (PFI 2) between UE2 and the relay UE is 5Mbps
  • these two QoS flows can multiplex a GBR QoS flow (PFI 3) between the relay UE and the target UE.
  • the GFBR of the GBR QoS flow is 15Mbps (and the sum of the bandwidth of the two PC5 QoS flows).
  • the relay UE needs to synchronously update the GFBR of the GBR QoS flow (PFI3) of the relay UE and the target UE to be set to 5Mbps.
  • PFI3 GBR QoS flow
  • Another situation is that UE1 has two different service flows carried on the same GBR QoS flow (PFI 4), the GFBR of service 1 is 10Mbps, the GFBR of service 2 is 5Mbps, and service 1 and service 2 pass through the relay
  • the UE communicates with a GBR QoS flow (PFI 5) of the target UE.
  • the remote UE cancels service 1 the GFBR of the UE1 and the relay UE to update the PFI 4 is 5Mbps
  • the GFBR of the relay UE and the target UE to update the PFI5 is 5Mpbs.
  • the first PFI identifier in the embodiment of the present application may be the identifier of the data stream in the first PC5 link
  • the second PFI identifier may be the identifier of the data stream in the second PC5 link, or other names may also be used Indicates the identifier of the data flow in the two-segment link, which is not limited in this embodiment of the present application.
  • the relay UE sends a QoS modification request of the second PC5 link to the target UE.
  • the request message may include QoS parameter modification request indication, PDU session ID, service flow information (eg SDF information or second PFI identifier), requested QoS parameter information and modification reason (Cause), and the like.
  • the QoS parameter information may include the target QoS parameters that need to be changed and their target requirements (such as target bandwidth, etc.), or may include an indication that the current first PC5 link quality cannot meet the QoS parameter requirements (eg, the GBR cannot be satisfied), and the request reason can be the first
  • the QoS parameter corresponding to the second PFI identifier in a PC5 link needs to be changed.
  • the relay UE needs to first change the QoS parameters of the second PC5 link to the target UE.
  • the relay UE In the layer 3 relay scenario, there is no control signaling interaction between the remote UE and the target UE, so here only the relay UE can initiate a request for changing the QoS parameters of the second PC5 link.
  • the target UE sends the first message to the relay UE.
  • the first message may be a modification request confirmation message.
  • the target UE receives the modification request of the relay UE and completes modification of the QoS parameters of the PC5 link with the relay UE.
  • the first message may be a modification request rejection message, and at this time, the target UE decides to reject the modification request of the relay UE.
  • the relay UE sends the second message to the remote UE.
  • the second message may also be a change request confirmation message.
  • the QoS of the second PC5 link is completed between the relay UE and the remote UE parameter changes.
  • the second message may be a change request reject message
  • the relay UE and the remote UE do not perform the QoS of the first PC5 link Change.
  • the remote UE can choose to disconnect from the relay UE, or choose another relay UE to connect.
  • the embodiment of the present application relates to the modification of QoS parameters in the layer 3 relay in the UE-to-UE scenario, and the link quality of the first PC5 link is obtained through the relay UE, and the quality of the first PC5 link does not meet the QoS requirements.
  • the target UE can synchronize the QoS parameters of the second PC5 link and the first PC5 link when the link quality of the first PC5 link does not meet the requirements changes, thereby ensuring end-to-end QoS requirements.
  • FIG. 9 shows a schematic flowchart of a QoS modification request initiated by a base station in a layer 2 relay according to an embodiment of the present application. As shown in Figure 9:
  • the remote UE establishes a data communication connection with the cellular network through the relay UE, and performs quality monitoring on the PC5 link between the remote UE and the relay UE during the data transmission process.
  • the relay UE can receive the data packet from the remote UE or when the remote UE receives the network side data packet forwarded from the relay UE, by monitoring the received signal power strength or by monitoring the GFBR of the received data packet , delay, packet loss rate, etc.
  • the specific value of the first threshold can be pre-configured by the base station, or set by the equipment manufacturer when manufacturing the terminal equipment), so as to determine the PC5 channel Whether the quality can guarantee the current PC5 QoS parameter requirements (such as GFBR, delay, packet loss rate, etc.), or whether it can support higher QoS parameter requirements.
  • the relay UE sends the first message to the base station.
  • the first message may include the channel quality monitoring result of the PC5 link.
  • the relay UE may report the channel quality of the Uu interface to the base station.
  • the base station may evaluate the channel quality of the Uu interface by relaying the data packets uploaded by the UE or the received power of the reference information received on the measurement channel.
  • the relay UE When the base station allocates a DRB and a sidelink radio bearer (SLRB) to the relay UE, the relay UE in this embodiment of the present application may simultaneously report the channel quality information of the Uu interface and the PC5 interface to the base station.
  • SLRB sidelink radio bearer
  • the remote UE sends a second message to the base station, where the second message may include the channel quality monitoring result of the PC5 link, and at the same time, the second message may also include the identification information of the relay UE.
  • the PC5 link quality result in this embodiment of the present application may be sent only by the relay UE to the base station, or may be sent only by the remote UE to the base station, or alternatively, both the relay UE and the remote UE may be sent to the base station.
  • the quality result of the PC5 link may be sent to the base station, which is not limited in this embodiment of the present application.
  • the base station determines whether a QoS parameter modification request of the Uu interface needs to be initiated. Specifically, the base station evaluates whether the current QoS parameters need to be changed according to the channel quality of the PC5 interface and/or the Uu interface obtained from step S920 or S930.
  • the base station receives the channel quality monitoring result of the PC5 link of the relay UE from step S920, according to the information in the result (for example, the signal strength of the remote UE data packet received by the relay UE on the PC5 interface, Or the bandwidth, delay or packet loss rate that can be supported by the current PC5 interface obtained by statistics in the process of receiving the data packet transmission of the remote UE.)
  • the information in the result for example, the signal strength of the remote UE data packet received by the relay UE on the PC5 interface, Or the bandwidth, delay or packet loss rate that can be supported by the current PC5 interface obtained by statistics in the process of receiving the data packet transmission of the remote UE.
  • the base station needs to reduce the bandwidth of the Uu interface and adjust it to match the bandwidth of the PC5 interface.
  • the PC5 link information reported by the relay UE may be the SLRB identifier.
  • the base station needs to modify the QoS parameters of the DRB corresponding to the SLRB.
  • the base station performs QoS modification processing on the QFI, and when the DRB carries multiple QFIs, the base station needs to process these QFIs at the same time.
  • the information of the PC5 link in the second message may be the SLRB identifier or the DRB identifier or the QFI. If the base station receives the SLRB or DRB identifier, it needs to confirm the QFI that needs QoS change processing through the mapping relationship. If it receives the QFI identifier, the base station can directly evaluate the QoS parameter change processing for the QFI. For the specific evaluation process, please refer to the above description.
  • the base station initiates a QoS parameter change process.
  • the channel quality of the PC5 interface obtained by the base station may be monitored at the SLRB granularity, or may be monitored at the physical channel granularity.
  • the threshold may be locally configured by the base station, or may be obtained from the network side
  • the base station judges that the current PC5 link quality result corresponds to
  • the monitoring result of SLRB1 does not meet the first threshold (which may be GBR, delay or packet loss rate, etc.), therefore, it can be determined that a QoS parameter modification request needs to be sent.
  • the base station determines to initiate a QoS parameter modification request of the Uu interface, and sends a third message.
  • the third message may be sent in the form of a PDU session modification request message.
  • the third message is used to request to change the QoS parameters of the Uu interface.
  • the third message may include the QFI identifier of the QoS parameter that needs to be changed, the QoS parameter information, and the cause of the change request.
  • the base station determines in S950 that the QoS parameter corresponding to SLRB1 needs to be changed, it can map SLRB1 to the corresponding QFI according to the locally maintained mapping relationship between SLRB and QFI, so as to obtain the QFI identifier for which the QoS parameter needs to be changed.
  • the QoS parameter information can include the target QoS parameters that need to be changed and their target requirements (such as target bandwidth, etc.), or can include an indication that the current PC5 link quality cannot meet the QoS parameter requirements (such as GBR cannot meet the requirements), and the reason for the request can be the PC5 link
  • the QoS parameters corresponding to the QFI logo in need to be changed.
  • the SMF changes the QoS parameters of the Uu interface. Specifically, after receiving the change request message, the SMF determines whether to change the QoS parameters. If the QoS parameter modification request is accepted, the QoS parameters of the QoS flow corresponding to the QFI identifier indicated by the request message in step S950 are modified. After the change, the SMF network element synchronously updates the UPF configuration information involved in the changed QFI.
  • the SMF sends the changed PDU session information to the AMF. Specifically, the SMF can send the N1 SM container and the N2 SM container to the AMF through the Nsmf_PDUSession_UpdateSMContext service message.
  • the AMF sends the information in the N2 SM container to the base station, where the N2 SM information includes: the PDU session identifier and the QoS parameters corresponding to the changed QFI.
  • the AMF sends the information in the N1 SM container to the remote UE, and the N1 SM information may include: a PDU session identifier, and QoS parameters corresponding to the changed QoS rules.
  • the base station updates the QoS parameter mapping corresponding to the DRB and the QFI, and sends the modified DRB configuration information (ie, air interface resource information) to the relay through an RRC message UE. If the SLRB configuration is performed by the base station, at the same time, the base station sends the DRB and SLRB configuration information to the remote UE and the relay UE, or only to the relay UE, and then the relay UE forwards the SLRB configuration information to the remote UE.
  • the base station sends the DRB and SLRB configuration information to the remote UE and the relay UE, or only to the relay UE, and then the relay UE forwards the SLRB configuration information to the remote UE.
  • the base station may instruct the relay UE to initiate PC5 QoS parameter update in the RRC message, and the specific update steps refer to the prior art.
  • the remote UE initiates a PC5 QoS modification process with the relay UE according to the updated Uu QoS information obtained in step S990, or the relay UE initiates a communication with the remote UE according to the PC5 QoS parameter update instruction obtained in step S9100
  • the PC5 QoS modification process between UEs, the specific update steps refer to the prior art, and the embodiment of the present application does not repeat them here.
  • the embodiment of this application involves the modification of QoS parameters in the layer 2 relay in the UE-to-network scenario, the link quality of the PC5 link is obtained through the base station, and when the quality of the PC5 link does not meet the QoS requirements, a Uu is initiated to the SMF
  • the QoS change request of the interface enables the network side to synchronously change the QoS parameters of the Uu interface and the PC5 interface when the link quality of the PC5 link does not meet the requirements, thereby ensuring the end-to-end QoS requirements.
  • FIG. 10 shows a schematic flowchart of a QoS change request initiated by a remote UE in a layer 2 relay according to an embodiment of the present application. As shown in Figure 10:
  • S1001 is the same as the steps of S910 in FIG. 9 , and details are not described here.
  • the remote UE sends a first message to the base station.
  • the first message may be used to request to change the QoS parameters of the Uu interface and/or the PC5 interface.
  • the remote UE monitors the PC5 link quality in step S1001 and finds that the PC5 link quality cannot guarantee the current QoS parameters or that the channel quality of the PC5 interface can support higher QoS parameter requirements, the remote UE can send RRC signaling to The base station sends a QoS parameter change request.
  • the first message can only be used to request to change the QoS parameters of the Uu interface, because the remote UE maintains the PC5 link Therefore, after the QoS parameters of the Uu interface are changed, and the network side reconfigures the changed QoS parameter information to the remote UE, the remote UE can initiate the QoS parameter change process of the PC5 link according to the resources maintained by itself.
  • the first message sent by the remote UE should request to change the QoS of the Uu interface and the PC5 interface at the same time.
  • the remote UE needs to inform the base station which QoS parameters corresponding to the data flows need to be changed, that is, the base station needs to obtain two kinds of information: QoS flow information (eg QFI) and target QoS parameter information.
  • QoS flow information eg QFI
  • target QoS parameter information e.g QFI
  • the remote UE can only provide PFI, and the base station can deduce the QFI corresponding to the PFI.
  • the remote UE can also provide the radio resource information corresponding to the QoS parameters that need to be changed, that is, SLRB or DRB, because if the base station maintains the mapping relationship between SLRB or DRB and the QoS flow, the base station can deduce the remote UE needs from these resource information.
  • the remote UE can also directly provide the QFI identifier whose QoS parameter needs to be changed. Specifically, for example, after the remote UE monitors the quality of the PC5 link according to the steps of the prior art, it is found that the QoS parameters of the QoS flow corresponding to PFI1 do not meet the current transmission requirements. Because in the layer 2 relay scenario, the remote UE can perceive To the QFI granularity, the remote UE can map the identity of the PFI1 to the identity of the QFI, and send the identity to the base station.
  • the remote UE in the embodiment of the present application may also use other forms to send the identifier of the QoS flow that needs to be changed to the base station, which is not limited in the embodiment of the present application.
  • the base station sends a second message to the SMF.
  • the base station on the RAN side may send a second message to the SMF through the AMF, indicating that the QoS parameter corresponding to the QFI needs to be changed.
  • the second message may include a QFI identifier of the QoS flow that needs to be changed, (the QFI identifier can be obtained according to the method in step S420 ), QoS parameter information, and Cause.
  • the QoS parameter information may include the QoS parameters that need to be changed and their target requirements (such as target bandwidth, etc.), or may include an indication that the communication quality of the current data flow cannot meet the QoS parameter requirements (eg, GBR cannot meet the requirements), and the request reason may be
  • the QoS parameters in the PC5 link corresponding to the QoS flows identified by the QFI need to be changed.
  • the second message may be sent in the form of an N2 message.
  • the base station when the base station receives the QoS modification request from the remote UE, the base station needs to evaluate whether to accept the request of the remote UE.
  • a feasible evaluation situation is that, if the remote UE requests to increase the communication bandwidth, the base station needs to judge whether the remote UE initiates a QoS parameter modification request to the network side according to the air interface resource situation.
  • the specific situation may be whether the base station has enough resources to provide the remote UE, or whether the UE-AMBR on the base station side allows the remote UE to increase the bandwidth, etc.
  • S1004 to S1009 are the same as S960 to S9110 in FIG. 9 , and details are not described here in this embodiment of the present application.
  • the embodiment of this application involves the modification of QoS parameters in the layer 2 relay in the UE-to-network scenario.
  • the link quality of the PC5 link is obtained remotely, and when the quality of the PC5 link does not meet the QoS requirements, a Uu is sent to the base station.
  • the QoS change request of the interface so that the base station can further send the obtained change request to the SMF, so that the network side can synchronize the QoS parameters of the Uu interface and the PC5 interface when the link quality of the PC5 link does not meet the requirements. changes, thereby ensuring end-to-end QoS requirements.
  • FIG. 11 shows another schematic flowchart of a QoS change request initiated by a remote UE in a layer 2 relay according to an embodiment of the present application.
  • the embodiment of the present application is similar to the embodiment in FIG. 10 , the difference is that in the embodiment of the present application, after obtaining the link quality of the PC5 link, the remote UE will directly send a QoS parameter modification request of the Uu interface to the SMF.
  • Figure 11 shows another schematic flowchart of a QoS change request initiated by a remote UE in a layer 2 relay according to an embodiment of the present application.
  • the embodiment of the present application is similar to the embodiment in FIG. 10 , the difference is that in the embodiment of the present application, after obtaining the link quality of the PC5 link, the remote UE will directly send a QoS parameter modification request of the Uu interface to the SMF.
  • Figure 11 shows that in the embodiment of the present application, after obtaining the link quality of the PC5 link, the remote UE will directly send a QoS parameter
  • S1101 is the same as S1001, and details are not described in this embodiment of the present application.
  • the remote UE sends a first message to the SMF.
  • the first message may be sent in the form of a PDU session modification message.
  • the first message may include an identifier of the QoS flow that needs to be changed (for example, an SDF identifier or a QFI identifier), QoS parameter information, and the cause of the request to change.
  • the QoS parameter information may include the target QoS parameters that need to be changed and their target requirements (such as target bandwidth, etc.), or may include an indication that the communication quality of the current data stream cannot meet the QoS parameter requirements (eg, GBR cannot meet the requirements), and the reason for the request may be
  • the QoS parameters for the QoS flow corresponding to the QFI logo in the PC5 link need to be changed.
  • the remote UE may send a PDU session modification message to the SMF through the NAS.
  • the remote UE sends a NAS message to the AMF, adding the N1 session management container and the PDU session ID to the NAS message.
  • the N1 session management container may include QoS parameter change request indication, PDU session ID, service flow information (eg SDF or QFI), QoS parameter information and change reason (Cause) and the like.
  • the AMF can use the Nsmf_PDUSession_UpdateSMContext service to forward the message to the SMF network element.
  • the remote UE may also forward the first message to the SMF network element through the UPF network element.
  • the embodiment of this application involves the modification of QoS parameters in the layer 2 relay in the UE-to-network scenario, obtains the link quality of the PC5 link through the remote UE, and directly reports to the SMF when the quality of the PC5 link does not meet the QoS requirements Initiate the QoS change request of the Uu interface, so that the network side can change the QoS parameters of the Uu interface and the PC5 interface synchronously when the link quality of the PC5 link does not meet the requirements, thereby ensuring the end-to-end QoS requirements.
  • FIG. 12 shows a schematic diagram of a quality of service control apparatus according to an embodiment of the present application.
  • the apparatus 1200 includes a processing module 1201 and a sending module 1202 .
  • the apparatus 1200 may be used to implement the function of quality of service control involved in any of the foregoing method embodiments.
  • the apparatus 1200 may be a terminal device or an access network device.
  • the apparatus 1200 can process messages as a terminal device (such as a remote UE or a relay device) or an access network device, and execute the method described in the foregoing method embodiments by the terminal device (such as a remote UE or a relay device) or an access network device.
  • the processing module 1201 can be configured to support the apparatus 1200 to perform the processing actions in the above-mentioned methods, for example, perform the processing actions performed by the terminal device (such as a remote UE or relay device) or the access network device in FIG.
  • the sending module 1202 may be configured to support the apparatus 1200 to communicate, for example, to perform the receiving action performed by a terminal device (eg, a remote UE or a relay device) or an access network device in FIG. 4 or FIG. 5 .
  • a terminal device eg, a remote UE or a relay device
  • an access network device in FIG. 4 or FIG. 5 .
  • the processing module 1201 is configured to determine that the quality of service of the first communication link does not meet the quality of service requirements or determine that the quality of service of the first communication link is changed, and the first communication link is the connection between the relay device and the first terminal device.
  • the second communication link is the communication link between the relay device and the access network device or the communication link between the relay device and the second terminal device, and the first terminal device passes
  • the relay device communicates with the access network device or with the second terminal device through the relay device;
  • the sending module 1202 is configured to send a first message, where the first message is used to request to change the parameters of the quality of service of the second communication link.
  • the processing module is specifically configured to: detect that the service quality of the first communication link is lower than a first threshold, and the first threshold corresponds to the service quality requirement.
  • the processing module is specifically configured to: receive a second message from the first terminal device, where the second message is used to instruct to reduce the quality of service of the first communication link.
  • the processing module is specifically configured to: receive a third message from the first terminal device or the relay device, where the third message is used to indicate the quality of service of the first communication link; It is determined that the quality of service of the first communication link is below a first threshold, the first threshold corresponding to the quality of service requirement.
  • the sending module is specifically configured to: send the first message to the session management network element, where the first message is used to reduce the quality of service of the second communication link.
  • the first message includes a cause value
  • the cause indicated by the cause value is that the quality of service of the first communication link is to be changed.
  • the first message includes first indication information, where the first indication information is used to indicate that the reason for the change of the second communication link is that the quality of service of the first communication link is to be changed.
  • the sending module is specifically configured to: send the first message to the access network device, where the first message is used to instruct to reduce the quality of service of the second communication link.
  • the first message further includes at least one of the following: QoS flow identifier QFI, service data flow SDF information, PC5 link QoS flow identifier PFI identifier, data radio bearer DRB identifier, side link radio bearer SLRB logo.
  • the processing module is specifically configured to: determine that the service quality of the first link is higher than a second threshold, and the second threshold corresponds to the service quality requirement.
  • the first message is used to instruct to improve the quality of service of the second communication link.
  • the determining that the quality of service of the first communication link is changed includes: receiving a fourth message from the first terminal device, where the fourth message is used to instruct adding or removing the first service flow.
  • the fourth message includes at least one of the following: service data flow SDF information, PC5 link QoS flow identifier PFI.
  • the first message is used to instruct adding or removing the first service flow.
  • the first message includes first indication information, where the first indication information is used to indicate that the reason for changing the second communication link is that a service flow is added or removed from the first communication link.
  • FIG. 13 shows a schematic diagram of another quality of service control apparatus according to an embodiment of the present application.
  • the apparatus 1300 includes a second processing module 1301 and a second sending module 1302 .
  • the apparatus 1300 may be used to implement the function of quality of service control involved in any of the foregoing method embodiments.
  • the apparatus 1300 may be a terminal device or an access network device.
  • the apparatus 1300 can process the message as a terminal device (such as a remote UE or a relay device) or an access network device, and execute the method described above by the terminal device (such as a remote UE or a relay device) or an access network device.
  • the processing module 1301 can be used to support the apparatus 1300 to perform the processing actions in the above method, for example, perform the processing actions performed by the terminal device (such as a remote UE or relay device) or the access network device in FIG. 4 or 5; the The sending module 1302 may be configured to support the apparatus 1300 to communicate, for example, to perform the receiving action performed by a terminal device (eg, a remote UE or a relay device) or an access network device in FIG. 4 or FIG. 5 .
  • a terminal device eg, a remote UE or a relay device
  • FIG. 4 or FIG. 5 Specifically, refer to the following description:
  • the second processing module 1301 is configured to determine that the quality of service of the first communication link does not meet the quality of service requirement or determine that the quality of service of the first communication link is changed, and the first communication link is the relay device and the device
  • the second sending module 1302 is configured to send a first message to the relay device, where the first message is used to request to change the parameters of the quality of service of the first communication link.
  • FIG. 14 shows a schematic structural diagram of a quality of service control apparatus according to an embodiment of the present application.
  • the communication apparatus 1400 can be used to implement the methods described in the foregoing method embodiments for terminal equipment (eg, remote UE or relay equipment) or access network equipment.
  • the communication device 1400 may be a chip.
  • the communication device 1400 includes one or more processors 1401 , and the one or more processors 1401 can support the communication device 1400 to implement the quality of service control method in FIG. 4 or FIG. 5 .
  • the processor 1401 may be a general purpose processor or a special purpose processor.
  • the processor 1401 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor may be used to process communication data, and the CPU may be used to control communication devices (eg, network equipment, terminal equipment, or chips), execute software programs, and process data of software programs.
  • the communication device 1400 may further include a transceiving unit 1405 to implement signal input (reception) and output (transmission).
  • the communication device 1400 may be a chip, and the transceiver unit 1405 may be an input and/or output circuit of the chip, or the transceiver unit 1405 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication components of the device.
  • the communication device 1400 may include one or more memories 1402 on which a program 1404 is stored.
  • the program 1404 can be executed by the processor 1401 to generate instructions 1403, so that the processor 1401 executes the methods described in the above method embodiments according to the instructions 1403.
  • data may also be stored in the memory 1402 .
  • the processor 1401 may also read data stored in the memory 1402 , and the data may be stored at the same storage address as the program 1404 , or the data may be stored at a different storage address from the program 1404 .
  • the processor 1401 and the memory 1402 can be provided separately or integrated together, for example, integrated on a single board or a system on chip (system on chip, SOC).
  • SOC system on chip
  • the communication device 1400 may further include a transceiver unit 1405 and an antenna 1406 .
  • the transceiver unit 1405 may be referred to as a transceiver, a transceiver circuit or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 1406 .
  • the steps in the above method embodiments may be implemented by logic circuits in the form of hardware or instructions in the form of software in the processor 1401 .
  • the processor 1401 may be a CPU, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , for example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FIG. 15 shows a schematic structural diagram of a quality of service control apparatus according to an embodiment of the present application.
  • the communication apparatus 1500 can be used to implement the methods described in the foregoing method embodiments for terminal equipment (eg, remote UE or relay equipment) or access network equipment.
  • the communication device 1500 may be a chip.
  • the communication device 1500 includes one or more processors 1501 , and the one or more processors 1501 can support the communication device 1500 to implement the quality of service control method in FIG. 4 or FIG. 5 .
  • the processor 1501 may be a general purpose processor or a special purpose processor.
  • the processor 1501 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor may be used to process communication data, and the CPU may be used to control communication devices (eg, network equipment, terminal equipment, or chips), execute software programs, and process data of software programs.
  • the communication device 1500 may further include a transceiving unit 1505 for implementing signal input (reception) and output (transmission).
  • the communication device 1500 may be a chip, and the transceiver unit 1505 may be an input and/or output circuit of the chip, or the transceiver unit 1505 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication components of the device.
  • the communication device 1500 may include one or more memories 1502 on which a program 1504 is stored.
  • the program 1504 can be executed by the processor 1501 to generate instructions 1503, so that the processor 1501 executes the methods described in the above method embodiments according to the instructions 1503.
  • data may also be stored in the memory 1502 .
  • the processor 1501 may also read data stored in the memory 1502 , the data may be stored at the same storage address as the program 1504 , or the data may be stored at a different storage address from the program 1504 .
  • the processor 1501 and the memory 1502 may be provided separately or integrated together, for example, integrated on a single board or a system on chip (system on chip, SOC).
  • SOC system on chip
  • the communication device 1500 may further include a transceiver unit 1505 and an antenna 1506 .
  • the transceiver unit 1505 may be called a transceiver, a transceiver circuit or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 1506 .
  • the steps of the above method embodiments may be implemented by logic circuits in the form of hardware or instructions in the form of software in the processor 1501 .
  • the processor 1501 may be a CPU, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , for example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods in the embodiments of the present application are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solutions or technical solutions of the present application are A part may be embodied in the form of a software product, and the computer software product is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the various embodiments of the present application. all or part of the steps of the method.
  • the storage medium includes at least: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种服务质量的控制方法和装置。该方法包括:确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改,所述第一通信链路为中继设备与第一终端设备之间的通信链路,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中继设备与所述第二终端设备进行通信;发送第一消息。通过根据第一通信链路的服务质量更改第二通信链路服务质量的参数,使得第二通信链路服务质量的参数对应于第一通信链路的服务质量,从而更灵活、更准确地控制第二通信链路的服务质量。

Description

一种服务质量的控制方法和装置
本申请要求于2021年1月28日提交中国专利局、申请号为202110117244.8、申请名称为“一种服务质量的控制方法和装置”的中国专利申请的优先权,以及于2021年7月30日提交中国专利局、申请号为202110868093.X、申请名称为“一种服务质量的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种服务质量的控制方法和装置。
背景技术
为了提高无线频谱利用率并为蜂窝网络覆盖之外的终端提供蜂窝网络服务,蜂窝通信网络引入了邻近服务(proximity-based services,ProSe)通信,在ProSe通信中,距离邻近的终端设备(user equipment,UE)可以直接建立通信链路,而不用再通过基站转发通信。其中,在UE-to-Network Relay的架构,远程UE(remote UE)可以通过中继设备与无线接入网(radio access network,RAN)建立连接,在UE-to-UE Relay中,两个UE可以通过中继设备建立连接,中继设备通过PC5接口为两个UE转发各自的通信数据。
远程UE在通过中继设备连接到网络设备或者目标UE时,会存在两段通信链路,即远程UE与中继设备之间的通信链路,以及中继设备与基站RAN或者UE之间的通信链路,两段链路的数据流都是基于QoS流进行传输,目前,基站RAN或者目标UE可以对中继设备与其之间的通信链路的通信质量进行监测,当基站RAN或者目标UE监测到无线空口质量不能满足需求时,可以通知核心网网元SMF更改相应的QoS参数,或者更改目标UE和中继UE之间的QoS参数。
但是,基站RAN或目标UE对于中继设备和远程UE之间的链路的通信质量是无法感知的,当中继设备和远程UE之间的通信质量发生变化时,例如,基站或者目标UE获取的其与中继设备之间的通信质量是满足需求的,但是中继设备与远程UE之间的通信质量是不满足传输需求的,由于基站RAN或者目标UE无法获取另一段链路中的通信质量变化,网络设备或目标UE无法根据变化情况调整相应的QoS参数,从而不能保证端到端的QoS需求。
发明内容
本申请提供一种服务质量的控制方法和装置,通过根据第一通信链路的服务质量更改第二通信链路服务质量的参数,使得第二通信链路服务质量的参数对应于第一通信链路的服务质量,从而更灵活、更准确地控制第二通信链路的服务质量。
第一方面,提供了一种服务质量的控制方法,该方法包括:确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改,所述第一通信链路为 中继设备与第一终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中继设备与所述第二终端设备进行通信;发送第一消息,所述第一消息用于请求更改第二通信链路服务质量的参数,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路。
应理解,本申请实施例中的确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改可以分别对应于两种情况,第一种是PC5链路的服务质量不满足服务质量需求,即速率或时延等达不到阈值时触发;或者,第二种是PC5链路发生QoS需求更改,例如中继与远程UE的带宽需求变低导致的第一链路服务质量下降。
通过根据第一通信链路的服务质量更改第二通信链路服务质量的参数,使得第二通信链路服务质量的参数对应于第一通信链路的服务质量,从而更灵活、更准确地控制第二通信链路的服务质量。
结合第一方面,在第一方面的某些实现方式中,所述确定第一通信链路的服务质量不满足服务质量需求包括:检测到所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
本申请实施例可以通过直接检测第一通信链路的服务质量的方式确定第一通信链路的服务质量是否满足需求,从而可以进一步基于判断结果,确定向其他设备发起更改第二通信链路的请求,继而克服了网络侧无法获取第一通信链路的服务质量,而导致的不能满足链路的通信需求的问题。
结合第一方面,在第一方面的某些实现方式中,所述确定第一通信链路的服务质量不满足服务质量需求包括:接收来自所述第一终端设备的第二消息,所述第二消息用于指示降低所述第一通信链路的服务质量。
本申请实施例可以通过从其他设备发送的信息中确定第一通信链路的服务质量是否满足需求,从而可以进一步基于判断结果,确定向其他设备发起更改第二通信链路的请求,继而克服了网络侧无法获取第一通信链路的服务质量,而导致的不能满足链路的通信需求的问题。
结合第一方面,在第一方面的某些实现方式中,所述确定第一通信链路的服务质量不满足服务质量需求包括:接收来自所述第一终端设备或者所述中继设备的第三消息,所述第三消息用于指示所述第一通信链路的服务质量;确定所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
本申请实施例可以通过从其他设备发送的信息中确定第一通信链路的服务质量是否满足需求,从而可以进一步基于判断结果,确定向其他设备发起更改第二通信链路的请求,继而克服了网络侧无法获取第一通信链路的服务质量,而导致的不能满足链路的通信需求的问题。
结合第一方面,在第一方面的某些实现方式中,所述发送第一消息包括:向会话管理网元发送所述第一消息,所述第一消息用于降低所述第二通信链路的服务质量。
结合第一方面,在第一方面的某些实现方式中,所述第一消息包括原因值,所述原因值指示的原因为所述第一通信链路的服务质量待更改。
结合第一方面,在第一方面的某些实现方式中,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路的服务质量 待更改。
结合第一方面,在第一方面的某些实现方式中,所述发送第一消息包括:向所述接入网设备发送所述第一消息,所述第一消息用于指示降低所述第二通信链路的服务质量。
结合第一方面,在第一方面的某些实现方式中,所述第一消息还包括以下中的至少一种:QoS流标识QFI、服务数据流SDF信息、PC5链路QoS流标识PFI、数据无线承载DRB标识、侧链路无线承载SLRB标识。
应理解,本申请实施例中的SDF信息,即服务数据流(service data flow,SDF)信息仅仅是一种流描述,其可以是五元组,应用标识等等,其可以表示为SDF信息,或者也可以表示为业务描述traffic descriptior信息,具体可以包括应用描述application descriptor信息(例如应用标识),互联网协议(internet protocol,IP)或非IP描述IP/Non-IP descriptor信息(例如五元组)等。
结合第一方面,在第一方面的某些实现方式中,所述确定第一通信链路的服务质量不满足服务质量需求包括:确定所述第一链路的服务质量高于第二阈值,所述第二阈值对应于所述服务质量需求。
通过根据不同服务质量的要求,有针对性的更改通信链路的服务参数,从而可以提高传输效率,节约资源。
结合第一方面,在第一方面的某些实现方式中,所述第一消息用于指示提高所述第二通信链路的服务质量。
结合第一方面,在第一方面的某些实现方式中,所述确定第一通信链路的服务质量发生更改包括:接收来自所述第一终端设备的第四消息,所述第四消息用于指示增加或去除第一业务流。
结合第一方面,在第一方面的某些实现方式中,所述第四消息包括以下中的至少一种:服务数据流SDF信息、PC5链路QoS流标识PFI。
结合第一方面,在第一方面的某些实现方式中,所述第一消息用于指示增加或去除第一业务流。
结合第一方面,在第一方面的某些实现方式中,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路新增或去除业务流。
第二方面,提供了一种服务质量的控制方法,该方法包括:第一终端设备确定第一通信链路的服务质量不满足服务质量需求,所述第一通信链路为中继设备与所述第一终端设备之间的通信链路;向所述中继设备发送第一消息,所述第一消息用于请求更改所述第一通信链路服务质量的参数。
通过根据第一通信链路的服务质量情况,向中继设备发起更改请求,从而使得中继设备可以根据实际情况更改服务参数,更进一步地,可以发起更改第二通信链路的流程,使得第二通信链路服务质量的参数对应于第一通信链路的服务质量,从而更灵活、更准确地控制第二通信链路的服务质量。
第三方面,提供了一种服务质量的控制装置,该装置包括:处理模块,用于确定第一通信链路的服务质量不满足服务质量需求,所述第一通信链路为中继设备与第一终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中 继设备与所述第二终端设备进行通信;发送模块,用于发送第一消息,所述第一消息用于请求更改第二通信链路服务质量的参数,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路。
结合第三方面,在第三方面的某些实现方式中,所述处理模块具体用于:检测到所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
结合第三方面,在第三方面的某些实现方式中,所述处理模块具体用于:接收来自所述第一终端设备的第二消息,所述第二消息用于指示降低所述第一通信链路的服务质量。
结合第三方面,在第三方面的某些实现方式中,所述处理模块具体用于:接收来自所述第一终端设备或者所述中继设备的第三消息,所述第三消息用于指示所述第一通信链路的服务质量;确定所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
结合第三方面,在第三方面的某些实现方式中,所述发送模块具体用于:向会话管理网元发送所述第一消息,所述第一消息用于降低所述第二通信链路的服务质量。
结合第三方面,在第三方面的某些实现方式中,所述第一消息包括原因值,所述原因值指示的原因为所述第一通信链路的服务质量待更改。
结合第三方面,在第三方面的某些实现方式中,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路的服务质量待更改。
结合第三方面,在第三方面的某些实现方式中,所述发送模块具体用于:向所述接入网设备发送所述第一消息,所述第一消息用于指示降低所述第二通信链路的服务质量。
结合第三方面,在第三方面的某些实现方式中,所述第一消息还包括以下中的至少一种:QoS流标识QFI、服务数据流SDF信息、PC5链路QoS流标识PFI、数据无线承载DRB标识、侧链路无线承载SLRB标识。
结合第三方面,在第三方面的某些实现方式中,所述处理模块具体用于:确定所述第一链路的服务质量高于第二阈值,所述第二阈值对应于所述服务质量需求。
结合第三方面,在第三方面的某些实现方式中,所述第一消息用于指示提高所述第二通信链路的服务质量。
结合第三方面,在第三方面的某些实现方式中,所述处理模块具体用于:接收来自所述第一终端设备的第四消息,所述第四消息用于指示增加或去除第一业务流。
结合第三方面,在第三方面的某些实现方式中,所述第四消息包括以下中的至少一种:服务数据流SDF信息、PC5链路QoS流标识PFI。
结合第三方面,在第三方面的某些实现方式中,所述第一消息用于指示增加或去除第一业务流。
结合第三方面,在第三方面的某些实现方式中,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路新增或去除业务流。
第四方面,提供了一种服务质量的控制装置,该装置包括:第二处理模块,用于确定第一通信链路的服务质量不满足服务质量需求,所述第一通信链路为中继设备与所述装置之间的通信链路;第二发送模块,用于向所述中继设备发送第一消息,所述第一消息用于 请求更改所述第一通信链路服务质量的参数。
第五方面,提供了一种通信装置,该通信装置具有实现上述各个方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,用于从所述存储器中调用并运行计算机程序,以执行上述各个方面或各个方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行上述各个方面或各个方面的任意可能的实现方式中的方法。
第八方面,提供了一种装置(例如,该装置可以是芯片***),该装置包括处理器,用于支持通信装置实现上述各个方面中所涉及的功能。在一种可能的设计中,该装置还包括存储器,该存储器,用于保存通信装置必要的程序指令和数据。该装置是芯片***时,可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行如上述各个方面或各个方面的任意可能的实现方式中的方法的指令。
第十方面,提供了一种计算机程序产品,包括计算机程序,当其在计算机设备上运行时,使得所述计算机设备执行如上述各个方面所述的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是一种5G ProSe通信的架构示意图。
图2是UE-to-Network场景下使用层2中继的用户面协议栈的示意图。
图3是UE-to-Network场景下使用层3中继的用户面协议栈的示意图。
图4是本申请实施例的一个服务质量的控制方法的示意图。
图5是本申请实施例的另一个服务质量的控制方法的示意图。
图6是本申请实施例的一个由中继UE发起QoS更改请求的流程示意图。
图7是本申请实施例的另一个由中继UE发起QoS更改请求的流程示意图。
图8是本申请实施例的另一个由中继UE发起QoS更改请求的流程示意图。
图9是本申请实施例的一个由基站发起QoS更改请求的流程示意图。
图10是本申请实施例的一个由远程UE发起QoS更改请求的流程示意图。
图11是本申请实施例的另一个由远程UE发起QoS更改请求的流程示意图。
图12是本申请实施例的一个服务质量的控制装置的示意图。
图13是本申请实施例的另一个服务质量的控制装置的示意图。
图14是本申请实施例的一种服务质量的控制装置的一个结构示意图。
图15是本申请实施例的一种服务质量的控制装置的另一个结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***或新无线(new radio,NR),以及未来演进的通信***等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(nodeB,NB),还可以是LTE***中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
为了提高无线频谱利用率并为蜂窝网络覆盖之外的终端提供蜂窝网络服务,蜂窝通信网络引入了邻近服务(proximity-based services,ProSe)通信,在ProSe通信中,距离邻近的终端设备可以直接建立通信链路,而不用再通过基站转发通信。图1示出了现有技术中的一种5G ProSe通信的架构示意图,该网络架构中包括终端设备、接入网设备、接入管理网元、会话管理网元、用户面网元、策略控制网元、网络切片选择网元、网络仓库功能网元、网络数据分析网元、统一数据管理网元、统一数据存储网元、认证服务功能网元、网络能力开放网元、应用功能网元,以及连接运营商网络的数据网络(data network,DN)。终端设备可通过接入网设备、用户面网元向数据网络发送业务数据,以及从数据网络接收业务数据。
接入网设备,是网络中用于将终端设备接入到无线网络的设备。所述接入网设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可以包括长期演进(long term evolution,LTE)***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB,或者也可以 包括第五代移动通信技术(5th generation,5G)新无线(new radio,NR)***中的下一代节点B(next generation node B,gNB),或者还可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。在接入网设备包括CU和DU的分离部署场景中,CU支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU主要支持无线链路控制层(radio link control,RLC)、媒体接入控制层(media access control,MAC)和物理层协议。
接入管理网元,主要用于移动网络中的终端的附着、移动性管理、跟踪区更新流程,接入管理网元终结了非接入层(non access stratum,NAS)消息、完成注册管理、连接管理以及可达性管理、分配跟踪区域列表(track area list,TA list)以及移动性管理等,并且透明路由会话管理(session management,SM)消息到会话管理网元。在第五代(5th generation,5G)通信***中,接入管理网元可以是接入与移动性管理功能(access and mobility management function,AMF),在未来的通信***(如6G通信***)中,移动性管理网元可以仍是AMF网元,或者也可以具有其它名称,本申请并不限定。
会话管理网元,主要用于移动网络中的会话管理,如会话建立、修改、释放。具体功能如为终端分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元等。在5G通信***中,会话管理网元可以是会话管理功能(session management function,SMF),在未来的通信***(如6G通信***)中,会话管理网元可以仍是SMF网元,或者也可以具有其它名称,本申请并不限定。
用户面网元,主要用于对用户报文进行处理,如转发、计费、合法监听等。用户面网元也可以称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。在5G通信***中,用户面网元可以是用户面功能(user plane function,UPF),在未来的通信***(如6G通信***)中,用户面网元可以仍是UPF网元,或者也可以具有其它名称,本申请并不限定。
策略控制网元,包含用户签约数据管理功能、策略控制功能、计费策略控制功能、服务质量(quality of service,QoS)控制等。在5G通信***中,策略控制网元可以是策略控制功能(policy control function,PCF),在未来的通信***(如6G通信***)中,策略控制网元可以仍是PCF网元,或者也可以具有其它名称,本申请并不限定。
网络切片选择功能网元,主要用于为终端设备的业务选择合适的网络切片。在5G通信***中,网络切片选择网元可以是网络切片选择功能(network slice selection function,NSSF)网元,在未来的通信***(如6G通信***)中,网络切片选择网元可以仍是NSSF网元,或者也可以具有其它名称,本申请并不限定。
网络仓库功能网元,主要用于提供网元或网元所提供服务的注册和发现功能。在5G通信***中,网络仓库功能网元可以是网络仓库功能(network repository function,NRF), 在未来的通信***(如6G通信***)中,网络仓库功能网元可以仍是NRF网元,或者也可以具有其它名称,本申请并不限定。
网络数据分析网元,可以从各个网络功能(network function,NF),例如策略控制网元、会话管理网元、用户面网元、接入管理网元、应用功能网元(通过网络能力开放功能网元)收集数据,并进行分析和预测。在5G通信***中,网络数据分析网元可以是网络数据分析功能(network data analytics function,NWDAF),在未来的通信***(如6G通信***)中,网络数据分析网元可以仍是NWDAF网元,或者也可以具有其它名称,本申请并不限定。
统一数据管理网元,主要用于管理终端设备的签约信息。在5G通信***中,统一数据管理网元可以是统一数据管理(unified data management,UDM),在未来的通信***(如6G通信***)中,统一数据管理网元可以仍是UDM网元,或者也可以具有其它名称,本申请并不限定。
统一数据存储网元,主要用于存储结构化的数据信息,其中包括签约信息、策略信息,以及有标准格式定义的网络数据或业务数据。在5G通信***中,统一数据存储网元可以是统一数据存储(unified data repository,UDR),在未来的通信***(如6G通信***)中,统一数据存储网元可以仍是UDR网元,或者也可以具有其它名称,本申请并不限定。
认证服务功能网元,主要用于对终端设备进行安全认证。在5G通信***中,认证服务功能网元可以是认证服务器功能(authentication server function,AUSF),在未来的通信***(如6G通信***)中,认证服务功能网元可以仍是AUSF网元,或者也可以具有其它名称,本申请并不限定。
网络能力开放网元,可以将网络的部分功能有控制地暴露给应用。在5G通信***中,网络能力开放网元可以是网络能力开放功能(network exposure function,NEF),在未来的通信***(如6G通信***)中,网络能力开放网元可以仍是NEF网元,或者也可以具有其它名称,本申请并不限定。
应用功能网元,可以向运营商的通信网络的控制面网元提供各类应用的服务数据,或者从通信网络的控制面网元获得网络的数据信息和控制信息。在5G通信***中,应用功能网元可以是应用功能(application function,AF),在未来的通信***(如6G通信***)中,应用功能网元可以仍是AF网元,或者也可以具有其它名称,本申请并不限定。
数据网络,主要用于为终端设备提供数据传输服务。数据网络可以是私有网络,如局域网,也可以是公用数据网(public data network,PDN)网络,如因特网(Internet),还可以是运营商共同部署的专有网络,如配置的IP多媒体网络子***(IP multimedia core network subsystem,IMS)服务。
应理解,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
如图1所示的5G Prose通信架构示意图中,UE A、UE B以及NG-RAN之间的通信可以视为UE-to-Network Relay的架构下的通信连接,远程UE(即UE B)可以通过中继设备与无线接入网(Radio Access Network,RAN)建立连接,又例如,UE A、UE B以及 UE C可以视为在UE-to-UE Relay的架构中的通信连接,UE B作为远程UE(UE C)和UE A之间的中继设备(中继UE),通过PC5接口为两个UE转发各自的信令、数据。
在ProSe通信中,远程UE通过中继设备实现了与网络设备或者UE(target UE)之间的通信。如图2示出了UE-to-Network场景下使用层2中继实现的UE到网络的协议数据单元(protocol data unit,PDU)会话传输的用户面协议栈。如图2所示,远程UE与数据网络的PDU层直接对应相连,可以理解为应用数据包中的数据是在这两者直接编解码传输。PDU层中的数据在远程UE的PDU层下面的新空口-业务数据适配协议(new radio-service data adaptation protocol,NR-SDAP)层进行一次封装。在这个过程中,NR-SDAP层会根据数据包的服务质量(quality of service,QOS)参数(QoS流,(QOS flow))对应到用于物理层传输的承载上,即封装后,SDAP层的下层,即分组数据汇聚层协议(packet data convergence protocol,PDCP)层在处理这个数据包时,根据SDAP分配的QoS流,将这个数据包在与该QoS流对应的无线承载(radio bearer,RB)上进行传输。NR-SDAP和NR-PDCP协议是Uu接口使用的通信协议。从图2中可以看到,远程UE与NG-RAN的PDCP和SDAP是直接连接的(图中的SDAP层省略了连线,实际是同样的协议层名是相连的,例如远程UE的PC5-RLC和中继的PC5-RLC是对应相连的,中继的NR-RLC与NG-RAN的新空口-无线链路控制(NR-radio link control,NR-RLC)层是对应相连的,诸如此类。而中继转发功能只能在PDCP层以下进行PC5接口与Uu接口数据的编解码转发操作。
根据上述处理,UE在使用中继连接到网络时,可以确保远程UE和gNB之间的数据安全,而不会在UE-to-Network Relay处暴露原始数据。同时,gNB需要同时维护远程UE和中继的绑定关系,因为在gNB接收到由中继转发来的远程UE的数据包时,数据包的RLC层以下是中继的信息,而PDCP层以上是远程UE的信息,gNB在分配无线资源时需要告知中继UE使用的Uu接口和PC5接口的无线资源。
图3示出了UE-to-Network场景下使用层3中继实现的UE到网络的PDU会话传输的用户面协议栈。如图3所示,其中,远程UE与中继使用PC5-U接口进行数据传输。中继在接收到远程UE的数据包后,会对数据包的底层(层1和层2)进行解码,直到解码到IP层(IP层内的数据内容不进行解码)。之后,中继使用Uu接口的协议栈对远程UE的IP数据包进行层2和层1的打包操作,并使用Uu接口将数据包通过接入网设备发送至UPF,由UPF根据数据包指示的路由信息将数据包发送至相应的应用服务器。这个过程中,gNB并不感知中继是转发了远程UE的数据,可以理解为仅为中继提供传统的Uu接口蜂窝服务。
在层3中继中,与层2中继相同的是,一个中继UE可以连接多个远程UE并为这些远程UE提供层3中继转发。但是,与层2中继不同的是,层3中继为远程UE转发数据使用的PDU会话是中继UE自身的PDU会话。由中继UE维护远程UE与中继UE之间的PC5通信以及中继UE与gNB之间的Uu通信链路映射。
UE-to-UE场景下的层2和层3中继的用户面协议栈与上述UE-to-Network场景下的协议栈类似,具体请参考现有技术。
在上述ProSe中继通信中,以UE-to-network为例,远程UE在一个PDU会话中可能使用不同的应用(或业务),而不同的应用(或业务)所需要的服务质量(quality of service, QoS)参数是不同的,例如视频业务需要高带宽,而语音通信则需要保障可靠的低时延。因此,SMF会根据远程UE的通信需求,为不同业务的QoS需求建立不同的QoS流,每个QoS流用QoS流标识(QoS flow identifier,QFI)进行标识。同一个QoS流对应的QoS需求是相同的,这些需求可以用QoS参数进行量化,例如时延,带宽,丢包率等。为了便于QoS参数的表示,3GPP标准将时延,丢包率,数据包处理优先级等指标组合用一个标准化的标识表示,即5QI(5G QoS Identifier)。除了5QI中指示的QoS参数外,根据业务的需求,每个QoS Flow对应的QoS参数还包括分配和保持优先级(allocation and retention priority,ARP),流比特速率(对于带宽保障(guaranteed flow bit rate,GBR)的QoS Flow,包括保障速率和最大速率),流总和速率(对于带宽不需要保障(non-guaranteed flow bit rate,Non-GBR)的QoS flow)等等。
SMF在建立了PDU会话后,将该PDU会话中的下行数据使用的QFI及其对应的QoS参数通过N2消息发送给基站(例如gNB),通过N4接口配置给UPF,由此打通了DN到基站的下行数据传输链路。而UE使用的上行数据发送规则(QoS rule)和对应的QoS参数则由SMF通过N1消息发送给UE。这样,基站就能根据QoS参数为UE分配无线资源用于传输不同的QoS流。而且对于GBR QoS流来说,SMF还可以指示基站监测UE与基站件的信道质量,当UE与基站间的信道质量不满足QoS需求时,可以通知SMF调整相应的QoS参数。
具体地,对于保证比特率QoS流(guaranteed bit rate QoS flow,GBR QoS flow)而言,基站需要根据UE与基站间的信道质量判断无线侧的无线资源能否保障该GBR QoS Flow对应的带宽需求。当基站监测到无线空口质量不能保障GBR需求时,基站需要通知SMF更改相应的GBR QoS需求。具体地,AMF将N2 SM容器中的信息发送给基站,N2 SM信息可以包括:PDU会话标识,QoS配置信息(QFI及其对应的QoS参数)。对于QoS配置信息中,如果QFI所标识的QoS流是GBR QoS流,则SMF还可以在QoS配置中加入notification control指示,指示RAN侧基站监测该QoS流,当空口传输速率或带宽不能满足保证流比特率(guaranteed flow bit rate,GFBR)时,需要向SMF发送通知(告警)信息。基站在告知SMF当前GFBR不能满足的同时可以附上当前可以支持的GFBR值,以及可以支持的包延迟预算(packet delay budget,PDB)和包错误率(packet error rate,PER)。
此外,N2 SM信息也可以包括可选的QoS配置(alternative QoS profile,AQP)。其中,可选的QoS配置指的是,SMF针对同一个GBR QoS流可以为基站提供多组相应的QoS参数。例如对于GRB QoS流QFI 1,对应的QoS参数为AQP 1={5QI=1,GFBR=10Mbps},AQP 2={5QI=1,GFBR=8Mbps},AQP 3={5QI=2,GFBR=5Mbps}等。其中,5QI(5G QoS Identifier,5G QoS指示符)为标准化的QoS参数组,由PDB,PER等QoS参数组成。例如当5QI=1时,表示其中的QoS参数为:默认优先级为20,PDB为100ms,PER为0.01,默认平均窗为2000ms。SMF在为基站AQP时,会指示当前或默认使用的QoS参数组,例如指示基站默认AQP为AQP 1。
基站获取AQP后,当监测到空口速率或带宽无法满足当前AQP的QoS参数(例如AQP 1所指示的GFBR=10Mbps),但是可以满足AQP 2的QoS参数,则基站向SMF发送N2消息,其中包括QFI及可以满足的AQP信息(例如AQP 2)。
而在中继UE与远程UE之间的PC5链接中,数据流也是基于QoS流传输,即PC5 QoS flow。每个PC5 QoS flow由PC5链路QoS流标识(PC5 QoS flow indicator,PFI)标识。
上述描述中,由于基站可以检测到基站与UE之间的Uu接口的链路质量,所以当基站和UE之间的链路质量不满足通信需求时,基站可以通知SMF对Uu接口的QoS参数进行更改,但是,在远程UE使用中继UE与基站或者UE进行通信的场景中,即UE-to-Network或UE-to-UE场景中,基站或核心网网元SMF无法获知远程UE与中继UE之间的PC5链路的链路质量,所以,当远程UE与中继UE之间的PC5链路的链路质量不能保障GBR QoS需求时,基站无法通知SMF调整相应的Uu接口的QoS参数,从而不能保证远程UE的带宽需求或无法保证端到端的QoS需求。
类似地,在UE-to-UE场景中,targetUE也无法感知中继UE与远程UE之间的PC5链路的链路质量,从而在中继UE与远程UE之间链路质量发生变化时,也无法调整相应的中继UE和target UE之间的QoS参数,从而不能保证远程UE的带宽需求或无法保证端到端的QoS需求。
本申请提供了一种服务质量的控制方法,通过根据第一通信链路的服务质量更改第二通信链路服务质量的参数,使得第二通信链路服务质量的参数对应于第一通信链路的服务质量,从而更灵活、更准确地控制第二通信链路的服务质量。使得远程UE或中继UE或者基站可以根据PC5链路的通信质量情况发起Uu接口或者中继UE和target UE之间的PC5链路的QoS参数更改请求,从而在远程UE和中继UE之间的PC5链路的链路质量不满足传输需求时,使得网络侧或target UE侧可以同步更改Uu接口或第二PC5链路(中继设备和target UE之间的链路)和第一PC5链路(中继设备和远程UE之前的链路)的QoS参数,从而保证了端到端的QoS需求。
本申请的实施例中,第一PC5链路可以为中继设备和远程UE之间的PC5链路,第二PC5链路可以为中继设备和目标UE之间的PC5链路,或者,也可以使用其他名称代表两段不同的链路,本申请实施例对此不作限定。
图4示出了本申请实施例的一个服务质量QoS的更改方法,该方法400包括步骤S410至S420,下面对这两个步骤进行详细描述。
S410,确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改。
应理解,本申请实施例中的确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改可以分别对应于两种情况,第一种是PC5链路的服务质量不满足服务质量需求,即速率或时延等达不到阈值时触发;或者,第二种是PC5链路发生QoS需求更改,例如中继与远程UE的带宽需求变低导致的第一链路服务质量下降等。
可选地,本申请实施例可以应用于UE-to-UE场景中,即,远程UE(即本申请实施例中的第一终端设备)通过中继设备与目标UE(即本申请实施例中的第二终端设备)进行通信;也可以应用于UE-to-network场景中,即,远程UE通过中继设备与接入网设备(如基站)进行通信。
作为一个实施例,所述第一通信链路为中继设备与第一终端设备之间的通信链路,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中继设 备与所述第二终端设备进行通信。
可选地,本申请实施例中的第一通信链路可以为PC5链路,第二通信链路可以为Uu接口链路。
可选地,本申请实施例中的服务质量可以包括QoS参数在内的多种判断方法,例如GFBR、时延、丢包率等。
本申请实施例中在确定第一通信链路的服务质量时,可以采用不同的方法:
如第一种方法:通过直接检测第一通信链路的服务质量,具体地,所述确定第一通信链路的服务质量不满足服务质量需求包括:检测到所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
此种情况下,可以适用于层3中继的场景,此时,执行主体可以为中继设备,应理解,在层3中继中,第一终端设备与中继设备之间的通信链路对于接入网来说是不可知的,中继设备可以在PC5通信过程中,对PC5链路的质量进行监测。具体监测方法可以是,中继UE接收来自远程UE的数据包,通过接收到的信号功率强度是否降低到某个阈值(该阈值的具体值可以由基站预先配置,或设备上在制造终端时设定)判断PC5信道质量是否可以保障当前的PC5 QoS参数需求(例如GFBR,时延,丢包率等),或者是否可以支持更高的QoS参数需求(例如更高的GFBR,更低时延,更低丢包率等)。
或者,此种情况也可以适用于层2中继的场景中,此时,执行主体可以为第一终端设备(或者是远程UE),第一终端设备可以通过监测PC5链路质量,确定PC5链路质量无法保障当前QoS参数或PC5接口的信道质量可以支持更高的QoS参数需求,具体监测过程可以参照上述中继UE监测PC5链路的方法进行。
第二种方法,通过接收其他设备发送的信息,来确定第一链路的服务质量。具体地,所述确定第一通信链路的服务质量不满足服务质量需求包括:接收来自所述第一终端设备的第二消息,所述第二消息用于指示降低所述第一通信链路的服务质量。
此种情况下,可以适用于层3中继的场景中,执行主体可以为中继UE,层3中继中,第一终端设备与中继设备之间的通信链路对于接入网来说是不可知的,若层3中继中的第一终端设备获取了第一通信链路的服务质量后,并判断此时的服务质量不满足服务需求后,第一终端设备可以确定需要更改第一通信链路的服务质量,并将该需求通过第一消息发送给中继设备。
第三种方法,可以通过接收其他设备发送的第一通信链路的服务质量,间接判断第一通信链路的服务质量。具体地,接收来自所述第一终端设备或者所述中继设备的第三消息,所述第三消息用于指示所述第一通信链路的服务质量;确定所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
可选地,上述第一阈值可以对应于QoS参数的取值,例如GFBR、时延或丢包率等参数的取值等,上述第一阈值可以是预配置的,或者也可以是从网络侧获取的,本申请实施例对此不做限定。
此种情况可以适用于层2中继的场景中,执行主体可以为接入网设备,具体地,在通信过程中,基站可以接收来自于第一终端设备和/或中继设备上报的PC5链路的信道质量,对接收的PC5链路的信道质量进行评估,例如,基站可以判断PC5接口的信道质量是否无法保障当前QoS参数,或者,基站也可以判断PC5接口的信道质量是否可以支持更高 的QoS参数需求。
S420,发送第一信息,所述第一消息用于请求更改所述第二通信链路服务质量的参数。
本申请实施例中,可以通过向会话管理网元SMF发送上述第一消息,具体地,所述发送第一消息包括:向会话管理网元发送所述第一消息,所述第一消息用于降低所述第二通信链路的服务质量。
此时,可以对应于上述第一种情况,其中,当执行主体为层3中继场景中的中继设备时,中继设备可以向会话管理网元发送第一消息,可选地,中继设备可以通过PDU会话更改消息,向会话管理网元发送请求更改第二通信链路服务质量的QoS更改请求消息,即第一消息。
应理解,在中继设备与远程UE修改PC5(即本申请实施例中的第一通信链路)QoS参数前,中继设备需要先向网络侧修改Uu接口的QoS参数。因为在层3中继场景中,远程UE与网络侧不存在控制信令的交互,所以这里只能由中继设备发起Uu接口的QoS参数更改请求。当中继设备向SMF网元发送Uu接口的QoS更改请求前,需要确认更改那些业务流对应的QoS参数。中继设备可以通过在PC5链路监测过程中获取到的SDF或PFI对应的PC5 QoS更改情况,将PFI映射到QFI,PC5 QoS参数需求映射到Uu QoS参数需求。之后,中继设备通过基站向AMF网元发送NAS消息,消息中可以包括PDU会话标识和N1会话管理容器(N1 session management container,N1 SM container)。AMF在接收到NAS消息后,可以使用Nsmf_PDUSession_UpdateSMContext服务将消息转发给SMF网元。可选地,中继UE发送的第一消息中可以携带需要更改的数据流的业务数据流(service data flow,SDF)标识或QFI标识。更进一步地,该第一消息中还可以包括更改后的具体的参数信息。
或者,当执行主体为层2中继中的第一终端设备时,第一终端设备可以向会话管理网元发送第一消息,可选地,第一终端设备可以通过NAS向SMF发送PDU会话更改消息。具体地,第一终端设备可以向AMF发送NAS消息,AMF在接收到NAS消息后,可以使用Nsmf_PDUSession_UpdateSMContext服务将消息转发给SMF网元。或者,第一终端设备也可以将第一消息通过UPF网元转发给SMF网元,第一消息中可以携带需要更改的数据流的SDF标识或QFI标识。更进一步地,该第一消息中还可以包括更改后的具体的参数信息。
或者,此种情况还可以对应于上述第三种方法,此时,执行主体为层2中继场景中的接入网设备,接入网设备在S410中确定第一通信网络中的服务质量不满足服务要求后,可以发起QoS参数更改流程,并向会话管理网元发送第一消息,可选地,可以在第一消息中携带需要更改的数据流的QFI标识,更进一步地,该第一消息中还可以包括更改后的具体的参数信息。
作为一个实施例,上述在发送第一消息时,还可以在第一消息中携带原因值,具体地,所述第一消息包括原因值,所述原因值指示的原因为所述第一通信链路的服务质量待更改。
通过在第一消息中携带原因值,从而可以让接收端发起相应的更改第二通信链路服务质量的过程。
可选地,作为另一个实施例,上述发送第一消息时,第一消息可以包括第一指示信息,具体地,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路 更改的原因为所述第一通信链路的服务质量待更改。
通过在第一消息中携带第一指示信息,从而可以让接收端发起相应的更改第二通信链路服务质量的过程。所述第一指示信息可以是显示的指示信息,例如原因值(cause value)或某个信元,也可以是一个隐示的指示信息,例如在第一消息的名字中体现,如更改PC5链路对应的Uu链路请求消息等。
本申请实施例中,还可以向接入网设备发送第一消息,具体地,所述发送第一消息包括:向所述接入网设备发送所述第一消息,所述第一消息用于指示降低所述第二通信链路的服务质量。
此种情况下,也可以适用于上述第一种情况,当执行主体为层3中继场景中的中继UE时,中继设备在获知当前第一通信链路的服务质量不满足服务需求时,可以向接入网设备发送第一消息,在第一消息中,可以加入需要更改QoS参数的业务流所对应的数据无线承载(data radio bearer,DRB)信息,即无线侧的空口资源信息。进一步地,还可以在第一消息中,加入更改后的具体的参数信息。
或者,当执行主体为层2中继中的第一终端设备时,第一终端设备在PC5链路的监测过程中,发现第一通信链路的服务质量不能满足服务需求后,可以向接入网设备发送第一消息。第一消息中可以携带侧链路无线承载(sidelinkradio bearer,SLRB)或DRB或PFI或QFI标识。可选地,如果接入网本身已获取了PFI与QFI的映射关系,则第一终端设备可以仅提供PFI,接入网设备可以推导出PFI对应的QFI。此外,第一终端设备也可以提供需要更改QoS参数对应的无线资源信息,即SLRB或DRB,因为接入网设备如果维护着SLRB或DRB与QoS流的映射关系,那么接入网设备可以从这些资源信息中推导出第一终端设备需要更改的QoS流信息(QFI)。
作为一个实施例,所述第一消息还包括以下中的至少一种:QFI标识、SDF信息、PFI标识、DRB标识、SLRB标识。
可选地,本申请实施例中的不满足服务质量可以为当前信道质量不能保障链路QoS参数需求,或者,也可以为当前信道质量可以支持更高的QoS参数需求,本申请实施例对此不作限定。
具体地,所述确定第一通信链路的服务质量不满足服务质量需求包括:确定所述第一链路的服务质量高于第二阈值,所述第二阈值对应于所述服务质量需求。
对应地,第一消息用于请求提高第二通信链路的服务质量,具体地,所述第一消息用于指示提高所述第二通信链路的服务质量。
可选地,本申请实施例中的确定第一通信链路的服务质量可以包括不同的情况,例如,当前链路中的中继设备可以对应于多个第一终端设备,即一对多的情形,或者,中继设备也可以对应于一个第一终端设备,即一对一的情形,在两种情形中,第一终端设备、中继设备以及接入网设备都可以通过本申请实施例中的方法,实现对第一通信链路服务质量的判定,并执行更改第二通信链路服务质量的过程。
本申请实施例通过根据第一通信链路的服务质量更改第二通信链路服务质量的参数,使得第二通信链路服务质量的参数对应于第一通信链路的服务质量,从而更灵活、更准确地控制第二通信链路的服务质量。
图5示出了本申请实施例的一个服务质量QoS的更改方法,该方法500包括步骤S510 至S520,下面对这两个步骤进行详细描述。
S510,第一终端设备确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改。
作为一个实施例,所述第一通信链路为中继设备与所述第一终端设备之间的通信链路。
可选地,第一终端设备可以为远程UE。
S520,向中继设备发送第一消息。
作为一个实施例,所述第一消息用于请求更改所述第一通信链路服务质量的参数。
应理解,本申请实施例中的确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改可以分别对应于两种情况,第一种是PC5链路的服务质量不满足服务质量需求,即速率或时延等达不到阈值时触发;或者,第二种是PC5链路发生QoS需求更改,例如远程UE对于带宽的需求变低或停止使用某业务导致的带宽资源释放等,上述两种情况都可以触发第一终端设备向中继设备发送第一消息,从而可以更改第一通信链路的服务质量,继而使得链路服务质量满足传输需求。
本申请实施例通过第一终端设备在第一通信链路的服务质量不满足需求或第一终端设备的服务质量需求发生改变时,向中继设备发送请求消息,更改第一通信链路的服务质量,从而使得链路服务质量可以满足传输需求,提高数据传输效率。
下面给出了本申请的几个QoS更改的流程的描述,应理解,在本申请的实施例中,由远程UE或中继UE以及网络侧设备等对第一通信链路(或者是PC5链路)的服务质量进行判断以对PC5链路或Uu接口链路的服务质量进行更改的过程中,可以是基于PC5链路的服务质量不满足服务质量需求时,例如速率或时延等达不到阈值时触发的情形,或者,也可以是PC5链路发生QoS需求更改时,如中继与远程UE的带宽需求变低导致的PC5链路服务质量下降等,或者,也可以是远程UE本身的业务服务质量需求发生更改时,例如远程UE对于带宽的需求变低或停止使用某业务导致的带宽资源释放等的情形,本申请对PC5链路中触发更改请求的方式不做具体限定。
图6示出了UE-to-Network场景下的层3中继中的由中继UE发起QoS更改请求的流程示意图。
如图6所示,S610,远程UE通过中继UE与蜂窝网络建立数据通信连接,并在数据传输过程中对远程UE和中继UE之间的PC5链路进行质量监测。具体地,中继UE可以接收来自远程UE的数据包或远程UE在接收到来自中继UE转发的网络侧数据包时,通过接收到的信号功率强度或者是通过监测接收到的数据包的GFBR、时延、丢包率等是否降低到第一阈值(可选地,该第一阈值的具体值可以由基站预先配置,或网络侧网元,例如SMF通过N1消息配置给UE或PCF网元随用户策略配置信息发送给UE,或设备商在制造终端设备时设定的),以此判断PC5信道质量是否可以保障当前的PC5 QoS参数需求(例如GFBR,时延,丢包率等),或者是否可以支持更高的QoS参数需求。
S620,可选地,远程UE向中继UE发送PC5链路的QoS更改请求消息。具体地,当远程UE在步骤S660中发现PC5链路质量不能保证当前的QoS参数需求或者可以支撑更高的QoS需求(例如更高的传输速率)时,远程UE可以通过PC5信令消息通知中继UE发起PC5链路的QoS更改流程。在PC5链路的QoS更改请求消息中,远程UE需要指示PC5链路需要更改QoS的业务流信息(例如SDF,可以由Packet Filter表述)或PFI信息, 以及更改后的QoS参数值。
此外,除了更改QoS参数外,远程UE还可以增加或撤销(或去除)某个业务流。例如,远程UE停止使用该业务流所对应的应用时触发。
具体地,远程UE可以向中继UE发送第四消息,该第四消息用于指示增加或去除第一业务流。该第四消息中可以包括以下中的至少一种:服务数据流SDF信息、PC5链路QoS流标识PFI。
可选地,该第四消息可以为PC5链路更改请求消息。此时,远程UE可以向中继UE发送PC5链路的更改请求消息,该更改请求消息中可以包括想要增加或去除的业务流的流描述信息(例如,SDF,可以由Packet Filter表述)和增加或去除的指示(例如消息中携带的Operation设置为add or delete)。可选地,如果远程UE通过中继UE接入了N3IWF(Non-3GPP InterWorking Function,非3GPP互通功能网元),则业务流的流描述信息可以是N3IWF地址和SPI(Security Parameters Index,安全参数索引)的组合。更改请求消息中也可以包括想要增加或去除的业务流所对应的PC5QoS流标识(即PFI)。
步骤S660和S620属于现有技术,本申请实施例不做过多赘述。
S630,中继UE向SMF发送QoS参数更改请求消息。具体地,中继UE在步骤S660中监测到PC5链路的链路质量不满足当前的QoS参数需求或者可以支持更高的QoS需求,或中继UE在步骤S620中接收到远程UE的PC5链路的QoS更改请求,中继UE向SMF发起Uu链路的QoS更改流程。
或者可选地,对应于远程UE请求增加或去除第一业务流的情况,中继UE向SMF发送第一消息,该第一消息用于指示增加或去除第一业务流。
当接收端接收到第一消息之后,可以增加或者去除相关业务流,并且增加或者删除该业务流对应的QoS相关参数,即,该第一消息可以用于指示更改第二通信链路服务质量的参数。
可选地,该第一消息中还可以包括前文所述的第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为第一通信链路新增或去除业务流。
当中继UE向SMF网元发送Uu接口的QoS更改请求前,需要确认哪些业务流对应的QoS参数需要进行更改。具体地,中继UE通过步骤S610或步骤S620中获取到的SDF或PFI标识对应的PC5 QoS的更改情况,将PFI标识映射到QFI标识,PC5 QoS参数需求映射到Uu QoS参数需求。应理解,在层3中继的场景中,中继UE维护PFI标识和QFI标识的对应关系,以及其对应的PC5 QoS参数和UuQoS参数之间的映射关系,所以,中继UE在获取需要进行QoS更改的PFI标识或SDF标识之后,可以进行映射。
之后,中继UE向SMF网元发送Uu接口的QoS更改请求。可选地,该请求消息可以是中继UE通过基站向AMF网元发送NAS消息中携带的,该NAS消息中可以包括PDU会话标识和N1会话管理容器(N1 Session Management container,N1 SM container)。在N1会话管理容器中,包括QoS参数更改请求指示,Operation(add,modify or delete),PDU会话ID,业务流信息(例如SDF或QFI),请求的QoS参数信息和更改原因(Cause)等。其中Cause指示的原因为中继UE与远程UE的PC5链路QoS需要发生更改或者新增或去除了某个业务流。AMF在接收到NAS消息后,可以使用Nsmf_PDUSession_UpdateSMContext服务将消息转发给SMF网元。或者,可选地,中继 UE可以将Uu接口的QoS更改请求消息通过UPF网元转发给SMF网元,请求消息中携带:QoS参数更改指示,PDU会话ID,业务流信息(例如SDF或QFI),请求的QoS参数信息和更改原因(Cause)等。
应理解,上述中继UE通过AMF或者UPF将更改请求消息发送给SMF的具体过程属于现有技术,本申请中的改进之处在于此更改请求消息是由于PC5链路的链路质量不满足QoS需求而发起的,而不是具体的信令传输过程,所以本申请实施例对实施例中涉及到的具体的数据传输过程并不做过多赘述。
应理解,在中继UE与远程UE更改PC5 QoS参数前,中继UE需要先向网络侧更改Uu接口的QoS参数。因为在层3中继场景中,远程UE与网络侧不存在控制信令的交互,所以这里只能由中继UE发起Uu接口的QoS参数更改请求。
S640,SMF更改Uu接口的QoS参数。具体地,SMF接收到更改请求消息后,判断是否进行QoS参数更改。
具体地,SMF可以根据UE的签约会话数据判断,UE的更改请求是否符合签约信息(例如,UE请求的最大带宽是否超出签约限制等)。或者SMF可以根据本地的PCC规则或者从PCF获取的PCC规则中规定的业务(即,QFI或SDF所对应的业务)所对应的QoS参数(例如,该业务可以使用的最大带宽,或用于保障业务执行的最低带宽,时延,丢包率等等)判断UE请求更改的QoS参数是否符合PCC规则规定的QoS参数值。这里的UE可以是中继UE或者远程UE。如果是远程UE,则中继可能需要将远程UE的标识信息随QoS更改请求消息发送给SMF,如果该PDU会话由多个远程UE复用。
如果中继UE请求去除的业务流由某个GBR QoS流单独承载,则SMF可以通过N2消息通知RAN更新QoS配置(去除该QoS流)。如果该业务流与其他业务流复用某个GBR QoS流,则SMF需要更改该GBR QoS流的QoS参数(例如将该GBR QoS流的GFBR减去该业务流所占用的GFBR)。例如,该GBR QoS流原来用于承载两个业务流(业务1和业务2,业务1和业务2可以同时为远程UE使用,或者业务1由远程UE1使用,业务流2为远程UE2使用。业务1和业务2分别占用10Mbps和5Mbps的GFBR,即该GBR QoS流的GFBR为15Mbps),当中继UE请求SMF去除业务1时,SMF需要将该GBR QoS流的GFBR设置为5Mbps。
如果UE请求的更改的QoS参数满足UE的签约会话数据中限制的QoS参数值,或PPC规则中定义的业务所可以执行的QoS参数值,则SMF可以为UE进行QoS参数更改。
如果SMF接受QoS参数更改请求,则对步骤S630中的请求消息指示的SDF标识指示的业务流或QFI标识所对应的QoS流的QoS参数进行更改。更改之后,SMF网元对更改的QFI所涉及的UPF配置信息进行同步更新。
S650,SMF将更改后的PDU会话信息发送给AMF。具体的,SMF可以将N1 SM容器和N2 SM容器通过Nsmf_PDUSession_UpdateSMContext服务消息发送给AMF。
S660,AMF将N2 SM容器中的信息发送给基站,N2 SM信息包括:PDU会话标识,更改的QFI对应的QoS参数。
S670,AMF将N1 SM容器中的信息发送给中继UE,N1 SM信息包括:PDU会话标识,更改的QoS规则对应的QoS参数。
S680,基站在接收到步骤S660中的N2 SM消息后,对DRB与QFI所对应的QoS参 数映射进行更新,并将更改后的DRB配置信息(即,空口资源信息)通过RRC消息发送给中继UE。
S690,中继UE根据步骤S670和步骤S680中获取的更新后的Uu QoS信息,发起与远程UE之间的PC5 QoS更改流程。
应理解,步骤S640至S690属于现有技术,本申请实施例在此不做过多赘述。
本申请实施例涉及UE-to-network场景中的层3中继中的QoS参数更改,通过中继UE获取PC5链路的链路质量,并在PC5链路质量不满足QoS需求时,发起Uu接口的QoS更改请求,从而使得网络侧可以在PC5链路的链路质量不满足需求时,对Uu接口和PC5接口的QoS参数进行同步的更改,从而保证了端到端的QoS需求。
图7示出了本申请实施例的UE-to-Network场景下的层3中继中的由中继UE发起QoS更改请求的另一个流程示意图。如图7所示,与图6中的申请实施例不同之处在于,本申请实施例中,中继UE向基站发送更改Uu接口的QoS请求消息,然后由基站向SMF发送Uu接口的QoS参数更改请求。如图7所示:
S710和S770与图6中的S610和S620相同,本申请实施例不做过多赘述。
S730,中继UE向基站发送第一消息,用于请求更改Uu接口的QoS参数。具体地,中继UE可以通过RRC消息向基站上报包括PC5链路质量变化导致的Uu接口的QoS参数更改请求的第一消息。第一消息中,可以加入需要更改的QoS参数的业务流或QFI所对应的数据无线承载(Data Radio Bearer,DRB)信息,即无线侧的空口资源信息。在第一消息中,可以加入QoS参数信息,QoS参数信息可以包括需要更改的目QoS参数及其目标需求(例如目标带宽等),或者可以包括当前业务流或QoS流的通信质量无法QoS参数需求的指示(例如GBR无法满足)。
应理解,在层3中继的场景中,中继UE会维护有PFI标识和QFI标识及其对应到DRB之间的映射关系,所以,中继UE可以在从步骤S710或S770中获取的需要更改QoS参数的PFI标识或SDF标识后,将其映射到相应的DRB上。
S740,基站向SMF发送第二消息,用于请求更改Uu接口的QoS参数,指示QFI标识对应的QoS参数需要更改。具体地,RAN侧基站可以通过AMF向SMF发送第二消息,指示QFI标识对应的QoS参数需要更改。其中,上述QFI标识为当基站在步骤S730中接收到来自中继UE的第一消息后,根据第一消息中指示的DRB信息,确认的该DRB信息所对应的QFI标识(应理解,基站负责处理QFI与无线空口资源的映射关系,所以基站可以根据这个映射关系由DRB信息确认QFI)。基站在向SMF发送的第二消息中可以携带:PDU会话标识,QFI标识,QoS参数信息以及请求原因Cause。其中,QoS参数信息可以包括需要更改的目QoS参数及其目标需求(例如目标带宽等),或者可以包括当前业务流或QoS流的通信质量无法满足QoS参数需求的指示(例如GFBR无法满足),请求原因可以为PC5链路中对应于QFI标识的QoS参数需要更改。可选地,该请求消息可以通过N2消息的形式发送。
步骤S750至S7100与图6中的S640至S690类似,此处不再做过多赘述。
本申请实施例涉及UE-to-network场景下的层3中继中的QoS参数更改,通过中继UE获取PC5链路的链路质量,并在PC5链路质量不满足QoS需求时,向基站发起Uu接口的QoS参数更改请求,从而使得基站可以将获取的更改请求进一步发送给SMF,从而 使得网络侧可以在PC5链路的链路质量不满足需求时,对Uu接口和PC5接口的QoS参数进行同步的更改,从而保证了端到端的QoS需求。
图8示出了本申请实施例的UE-to-UE场景下的层3中继中的由中继发起QoS更改请求的一个流程示意图。如图8所示:
S810,远程UE与目标UE(targetUE)通过中继UE建立连接,远程UE和中继UE在数据传输过程中对远程UE和中继UE之间的第一PC5链路进行质量监测。具体地,中继UE可以接收来自远程UE的数据包或远程UE在接收到来自中继UE转发的网络侧数据包时,通过接收到的信号功率强度或者是通过监测接收到的数据包的GFBR、时延、丢包率等是否降低到第一阈值(可选地,该第一阈值的具体值可以由基站预先配置,或网络侧网元,例如SMF通过N1消息配置给UE或PCF网元随用户策略配置信息发送给UE,或设备商在制造终端设备时设定的),以此判断PC5信道质量是否可以保障当前的PC5QoS参数需求(例如GFBR,时延,丢包率等),或者是否可以支持更高的QoS参数需求。
类似的,远程UE与目标UE之间也可以新增或去除某个业务流,中继UE也需要将新增和去除操作在两端的UE同步。
本申请的实施例中,第一PC5链路为中继设备和远程UE之间的PC5链路,第二PC5链路为中继设备和目标UE之间的PC5链路,或者,也可以使用其他名称代表两段不同的链路,本申请实施例对此不作限定。
S820,可选地,远程UE向中继UE发送第一PC5链路的QoS更改请求消息。具体地,当远程UE在步骤S810中发现第一PC5链路质量不能保证当前的QoS参数需求或者可以支撑更高的QoS需求(例如更高的传输速率)时,远程UE可以通过PC5信令消息通知中继UE发起第一PC5链路的QoS更改流程。在第一PC5链路的QoS更改请求消息中,远程UE需要指示第一PC5链路需要更改QoS的业务流信息(例如SDF,可以由Packet Filter表述)或PFI信息,以及更改后的QoS参数值。
如果远程UE向中继UE发送第一PC5链路的更改请求消息,该更改请求消息可以包括需要新增或去除的业务流信息例如SDF,可以由Packet Filter表述),以及新增业务流所对应的QoS参数值。
步骤S810和S820属于现有技术,本申请实施例不做过多赘述。
S830,中继UE向目标UE发送第二PC5链路QoS更改请求消息。具体地,中继UE在步骤S810中监测到第一PC5链路的链路质量不满足当前的QoS参数需求或者可以支持更高的QoS需求,或中继UE在步骤S820中接收到远程UE的第一PC5链路的QoS更改请求,中继UE向目标UE发起第二PC5链路的QoS更改流程。
当中继UE向目标UE发送第二PC5链路的QoS更改请求前,需要确认哪些业务流对应的QoS参数需要进行更改。具体地,中继UE通过步骤S810或步骤S820中获取到的SDF或第一PFI标识对应的第一PC5 QoS的更改情况,将第一PFI标识映射到第二PFI标识,第一PC5 QoS参数需求映射到第二PC5 QoS参数需求。应理解,在层3中继的场景中,中继UE维护第一PFI标识和第二PFI标识的对应关系,以及其对应的第一PC5 QoS参数和第二PC5 QoS参数之间的映射关系,所以,中继UE在获取需要进行QoS更改的PFI标识或SDF标识之后,可以进行相应的映射。
当远程UE指示新增业务流时,中继UE需要确认该业务流是否可以复用现有的PC5 QoS流,如果不能复用,则中继UE需要新增一个PC5 QoS流(例如是第三PC5 QoS流)用于承载该新增的业务流,并将远程UE提供的新增业务流所对应的QoS值映射到该PC5QoS流参数(例如将QoS需求的时延,丢包率等映射到PQI上,将最低带宽需求映射到对应的GFBR上)。之后,中继UE需要向目标UE同步发送更新(新增)的业务流信息和QoS参数,并由中继UE或者目标UE新增一个PC5 QoS流(例如是第四PC5 QoS流)用于承载该业务流。
当远程UE指示去除业务流时,中继UE将去除业务流的消息通知给目标UE。如果该业务流仅由一个PC5 QoS流承载,则中继UE可以发起撤销这个PC5 QoS流。如果该业务流与其他业务流或者其他远程UE复用,且该PC5 QoS流为GBR QoS流,则中继UE需要将该业务流对应的GFBR从该PC5 QoS流中的GFBR相应减去。例如,有两个远程UE(UE1和UE2)分别通过同一个中继UE与一个目标UE进行通信。每个远程UE与中继UE各建立了一个GBR QoS流,UE1与中继UE的GBR QoS流(PFI 1)的GFBR为10Mbps,UE2与中继UE的GBR QoS流(PFI 2)的GFBR为5Mbps,且这两条QoS流可以复用中继UE与目标UE之间的一条GBR QoS流(PFI 3),该GBR QoS流的GFBR为15Mbps(及两条PC5 QoS流的带宽总和)。当UE1与中继UE的GBR QoS流(PFI 1)所承载的业务流撤销了,则中继UE需要同步更新中继UE与目标UE的GBR QoS流(PFI3)的GFBR设置为5Mbps。另一种情况是,UE1有两个不同的业务流承载在同一个GBR QoS流(PFI 4)上,业务1的GFBR为10Mbps,业务2的GFBR为5Mbps,业务1和业务2同时通过中继UE与目标UE的一条GBR QoS流(PFI 5)通信。则当远程UE撤销业务1时,UE1与中继UE更新PFI 4的GFBR为5Mbps,且中继UE与目标UE更新PFI5的GFBR为5Mpbs。
本申请的实施例中的第一PFI标识可以为数据流在第一PC5链路中的标识,第二PFI标识可以为数据流在第二PC5链路中的标识,或者,也可以使用其他名称代表数据流在两段链路中的标识,本申请实施例对此不作限定。
之后,中继UE向目标UE发送第二PC5链路的QoS更改请求。该请求消息可以包括QoS参数更改请求指示,PDU会话ID,业务流信息(例如SDF信息或第二PFI标识),请求的QoS参数信息和更改原因(Cause)等。QoS参数信息可以包括需要更改的目QoS参数及其目标需求(例如目标带宽等),或者可以包括当前第一PC5链路质量无法QoS参数需求的指示(例如GBR无法满足),请求原因可以为第一PC5链路中对应于第二PFI标识的QoS参数需要更改。
应理解,上述中继UE F将更改请求消息发送给目标UE的具体过程属于现有技术,本申请中的改进之处在于此更改请求消息是由于第一PC5链路的链路质量不满足QoS需求而发起的,而不是具体的信令传输过程,所以本申请实施例对实施例中涉及到的具体的数据传输过程并不做过多赘述。
应理解,在中继UE与远程UE更改第一PC5 QoS参数前,中继UE需要先向目标UE更改第二PC5链路的QoS参数。因为在层3中继场景中,远程UE与目标UE之间不存在控制信令的交互,所以这里只能由中继UE发起第二PC5链路的QoS参数更改请求。
S840,目标UE向中继UE发送第一消息。
作为一种可能的实现方式,该第一消息可以是更改请求确认消息,此时,目标UE接 收中继UE的更改请求,并完成与中继UE之间的PC5链路的QoS参数的更改。
或者,作为另一种可能的实现方式,该第一消息可以是更改请求拒绝消息,此时,目标UE决绝中继UE的更改请求。
S850,中继UE向远程UE发送第二消息。
作为一种可能的实现方式,当第一消息为更改请求确认消息时,第二消息也可以是更改请求确认消息,此时,中继UE与远程UE之间完成了第二PC5链路的QoS参数更改。
或者,作为另一种可能的实现方式,当第一消息为更改请求拒绝消息,该第二消息可以是更改请求拒绝消息,此时,中继UE与远程UE未进行第一PC5链路的QoS更改。可选地,远程UE可以选择与中继UE断开连接,或者选择其他中继UE进行连接。
本申请实施例涉及UE-to-UE场景中的层3中继中的QoS参数更改,通过中继UE获取第一PC5链路的链路质量,并在第一PC5链路质量不满足QoS需求时,发起第二PC5链路的QoS更改请求,从而使得目标UE可以在第一PC5链路的链路质量不满足需求时,对第二PC5链路和第一PC5链路的QoS参数进行同步的更改,从而保证了端到端的QoS需求。
图9示出了本申请实施例的层2中继中的由基站发起QoS更改请求的一个流程示意图。如图9所示:
S910,远程UE通过中继UE与蜂窝网络建立数据通信连接,并在数据传输过程中对远程UE和中继UE之间的PC5链路进行质量监测。具体地,中继UE可以接收来自远程UE的数据包或远程UE在接收到来自中继UE转发的网络侧数据包时,通过接收到的信号功率强度或者是通过监测接收到的数据包的GFBR、时延、丢包率等是否降低到第一阈值(可选地,该第一阈值的具体值可以由基站预先配置,或设备商在制造终端设备时设定的),以此判断PC5信道质量是否可以保障当前的PC5 QoS参数需求(例如GFBR,时延,丢包率等),或者是否可以支持更高的QoS参数需求。
S920,可选地,中继UE向基站发送第一消息。其中,第一消息中可以包括PC5链路的信道质量监测结果。
现有技术中,中继UE可以向基站上报Uu接口的信道质量。具体的,基站可以通过中继UE上传的数据包或在测量信道上接收到的参考信息的接收功率评估Uu接口的信道质量。
当基站为中继UE分配了DRB和侧链路无线承载(sidelinkradio bearer,SLRB)时,本申请实施例中的中继UE可以同时向基站上报Uu接口和PC5接口的信道质量信息。
S930,可选地,远程UE向基站发送第二消息,第二消息中可以包括PC5链路的信道质量监测结果,同时,第二消息还可以包括中继UE的标识信息。
应理解,本申请实施例中的PC5链路质量结果可以是只由中继UE发送给基站的,也可以是只由远程UE发送给基站的,或者可选地,中继UE或远程UE都可以向基站发送PC5链路的质量结果,本申请实施例对此不作限定。
S940,基站确定是否需要发起Uu接口的QoS参数更改请求。具体地,基站根据从步骤S920或S930中获取到的PC5接口和/或Uu接口的信道质量,评估当前QoS参数是否需要进行更改。具体地,当基站从步骤S920中接收到中继UE的PC5链路的信道质量监测结果时,根据结果中的信息(例如中继UE在PC5接口上接收到的远程UE数据包的信 号强度,或在接收远程UE的数据包传输过程中统计得到的当前PC5接口可以支持的带宽,时延或丢包率。)判断中继UE当前使用的PC5链路是否可以支持Uu链路的数据传输,即评估当前Uu接口的QoS参数是否需要进行更改。可能的情况比如,PC5链路当前可以支持的带宽小于Uu接口配置的带宽资源时,基站需要将Uu接口的带宽降低,调整到与PC5接口的带宽相匹配。此处,中继UE上报的PC5链路信息可以是SLRB标识,此时,基站需要对SLRB对应的DRB进行QoS参数更改。当该DRB承载了一个QFI时,基站对该QFI进行QoS更改处理,当该DRB承载了多个QFI,则基站需要对这些QFI同时进行处理。
如果基站在步骤S990从远程UE接收到第二消息,第二消息中PC5链路的信息可以是SLRB标识或DRB标识或QFI。基站如果接收到的是SLRB或DRB标识,则需要通过映射关系确认需要QoS更改处理的QFI,如果接收到的是QFI标识,则基站可以直接对该QFI进行QoS参数更改处理评估。具体的评估过程参考上述描述。
当PC5接口或Uu接口的信道质量至少一个无法保障当前QoS参数或PC5接口或Uu接口的信道质量可以支持更高的QoS参数需求时,基站发起QoS参数更改流程。具体地,以PC5链路为例,基站获取到的PC5接口的信道质量可以是以SLRB粒度进行监测的,或者也可以是以物理信道粒度进行监测的,基站根据获取到的PC5链路质量结果,判断链路质量结果是否满足第一阈值,(可选地,该阈值可以是基站本地配置的,或者可以是从网络侧获取的),如,基站判断当前PC5链路质量结果中的对应于SLRB1的监测结果不满足第一阈值(可以是GBR、时延或丢包率等),因此,可以确定需要发QoS参数更改请求。
S950,基站确定发起Uu接口的QoS参数更改请求,并发送第三消息。可选地,该第三消息可以以PDU会话更改请求消息的形式发送。
第三消息用于请求更改Uu接口的QoS参数。该第三消息中可以包括需要更改QoS参数的QFI标识、QoS参数信息以及更改请求的原因cause。具体地,例如基站在S950中确定SLRB1对应的QoS参数需要更改时,可以根据本地维护的SLRB和QFI的映射关系,将SLRB1映射到相应的QFI上,以此得到需要更改QoS参数的QFI标识。QoS参数信息可以包括需要更改的目QoS参数及其目标需求(例如目标带宽等),或者可以包括当前PC5链路质量无法QoS参数需求的指示(例如GBR无法满足),请求原因可以为PC5链路中对应于QFI标识的QoS参数需要更改。
S960,SMF更改Uu接口的QoS参数。具体地,SMF接收到更改请求消息后,判断是否进行QoS参数更改。如果接受QoS参数更改请求,则对步骤S950中的请求消息指示的QFI标识所对应的QoS流的QoS参数进行更改。更改之后,SMF网元对更改的QFI所涉及的UPF配置信息进行同步更新。
S970,SMF将更改后的PDU会话信息发送给AMF。具体的,SMF可以将N1 SM容器和N2 SM容器通过Nsmf_PDUSession_UpdateSMContext服务消息发送给AMF。
S980,AMF将N2 SM容器中的信息发送给基站,N2 SM信息包括:PDU会话标识,更改的QFI对应的QoS参数。
S990,AMF将N1 SM容器中的信息发送给远程UE,N1 SM信息可以包括:PDU会话标识,更改的QoS规则对应的QoS参数。
S9100,基站在接收到步骤S980中的N2 SM消息后,对DRB与QFI所对应的QoS参数映射进行更新,并将更改后的DRB配置信息(即,空口资源信息)通过RRC消息发送给中继UE。如果由基站进行SLRB配置,则同时,基站将DRB和SLRB的配置信息发送给远程UE和中继UE,或者仅发送给中继UE再由中继UE将SLRB配置信息转发给远程UE。
可选的,基站可以在RRC消息中指示中继UE发起PC5 QoS参数更新,具体更新步骤参考现有技术。
S9110,远程UE根据步骤S990中获取的更新后的Uu QoS信息,发起与中继UE之间的PC5 QoS更改流程,或者,中继UE根据步骤S9100中获取的PC5 QoS参数更新指示,发起与远程UE之间的PC5 QoS更改流程,具体更新步骤参考现有技术,本申请实施例在此不做过多赘述。
本申请实施例涉及UE-to-network场景中的层2中继中的QoS参数更改,通过基站获取PC5链路的链路质量,并在PC5链路质量不满足QoS需求时,向SMF发起Uu接口的QoS更改请求,从而使得网络侧可以在PC5链路的链路质量不满足需求时,对Uu接口和PC5接口的QoS参数进行同步的更改,从而保证了端到端的QoS需求。
图10示出了本申请实施例的层2中继中的由远程UE发起QoS更改请求的一个流程示意图。如图10所示:
S1001与图9中的S910的步骤相同,此处不做过多赘述。
S1002,远程UE向基站发送第一消息。该第一消息可以用于请求更改Uu接口和/或PC5接口的QoS参数。
具体地,远程UE在步骤S1001中监测PC5链路质量时,发现PC5链路质量无法保障当前QoS参数或PC5接口的信道质量可以支持更高的QoS参数需求时,远程UE可以通过RRC信令向基站发送QoS参数更改请求。
作为一种可能的实现方式,当由远程UE和中继UE协商维护PC5链路的资源时,该第一消息可以只用于请求更改Uu接口的QoS参数,因为远程UE维护有PC5链路的资源,所以,在Uu接口的QoS参数发生更改,并且网络侧将更改后的QoS参数信息重新配置给远程UE之后,远程UE可以根据自身维护的资源,发起PC5链路的QoS参数更改流程。
或者可选地,当PC5链路资源由基站维护时,此时,远程UE发送的第一消息要同时请求更改Uu接口和PC5接口的QoS。
第一消息中,远程UE需要告知基站哪些数据流对应的QoS参数需要更改,即基站需要获取两种信息:QoS流信息(如QFI)和目标QoS参数信息。如果基站本身已获取了PFI与QFI的映射关系,则远程UE可以仅提供PFI,基站可以推导出PFI对应的QFI。此外,远程UE也可以提供需要更改QoS参数对应的无线资源信息,即SLRB或DRB,因为基站如果维护着SLRB或DRB与QoS流的映射关系,所以基站可以从这些资源信息中推导出远程UE需要更改的QoS流信息(QFI)。或者可选地,远程UE也可以直接提供需要更改QoS参数的QFI标识。具体地,例如:远程UE根据现有技术的步骤对PC5链路的质量进行监测后,发现PFI1对应的QoS流的QoS参数不满足当前传输需求,由于层2中继场景中,远程UE可以感知到QFI粒度,所以,远程UE可以将该PFI1的标识映射到QFI的标识,并将该标识发送给基站。本申请实施例中的远程UE也可以采用其他形式, 将需要更改的QoS流的标识发送给基站,本申请实施例对此不做限定。
S1003,基站向SMF发送第二消息。
RAN侧基站可以通过AMF向SMF发送第二消息,指示QFI对应的QoS参数需要更改。
该第二消息中可以包括需要更改QoS流的QFI标识,(该QFI标识可以根据步骤S420中的方法获得)、QoS参数信息以及Cause。其中,QoS参数信息可以包括需要更改的QoS参数及其目标需求(例如目标带宽等),或者可以包括当前数据流的通信质量无法满足QoS参数需求的指示(例如GBR无法满足),请求原因可以为PC5链路中对应于QFI标识的QoS流的QoS参数需要更改。
作为一种可能的实现方式,该第二消息可以是以N2消息的形式发送的。
可选地,当基站接收到来自远程UE的QoS更改请求时,基站需要评估是否接受远程UE的请求。一种可行的评估情况为,远程UE请求提高通信带宽,则基站需要根据空口资源情况判断是否为远程UE向网络侧发起QoS参数更改请求。具体情况可以为基站是否有足够的资源提供给远程UE,或者UE在基站侧的最高带宽限制(UE-AMBR)是否允许远程UE提高带宽等。
S1004至S1009与图9中的S960至S9110相同,本申请实施例在此不做过多赘述。
本申请实施例涉及UE-to-network场景中的层2中继中的QoS参数更改,通过远程获取PC5链路的链路质量,并在PC5链路质量不满足QoS需求时,向基站发起Uu接口的QoS更改请求,从而使得基站可以将获取的更改请求进一步发送给SMF,从而使得网络侧可以在PC5链路的链路质量不满足需求时,对Uu接口和PC5接口的QoS参数进行同步的更改,从而保证了端到端的QoS需求。
图11示出了本申请实施例的层2中继中的由远程UE发起QoS更改请求的另一个流程示意图。本申请实施例与图10中的实施例类似,不同之处在于,本申请实施例中,远程UE在获取PC5链路的链路质量之后,会直接向SMF发送Uu接口的QoS参数更改请求。如图11所示:
S1101与S1001相同,本申请实施例不做过多赘述。
S1102,远程UE向SMF发送第一消息。可选地,该第一消息可以是通过PDU会话更改消息的形式发送。
第一消息中可以包括需要更改的QoS流的标识(例如可以是SDF标识或QFI标识),QoS参数信息以及请求更改的原因cause。其中,QoS参数信息可以包括需要更改的目QoS参数及其目标需求(例如目标带宽等),或者可以包括当前数据流的通信质量无法满足QoS参数需求的指示(例如GBR无法满足),请求原因可以为PC5链路中对应于QFI标识的QoS流的QoS参数需要更改。
具体地,远程UE可以通过NAS向SMF发送PDU会话更改消息。远程UE向AMF发送NAS消息,在NAS消息中加入N1会话管理容器,和PDU会话ID。N1会话管理容器中可以包括QoS参数更改请求指示,PDU会话ID,业务流信息(例如SDF或QFI),QoS参数信息和更改原因(Cause)等。AMF在接收到NAS消息后,可以使用Nsmf_PDUSession_UpdateSMContext服务将消息转发给SMF网元。
作为另一种可能的实现方式,远程UE还可以将第一消息通过UPF网元转发给SMF 网元。
其余步骤与图10中的申请实施例的对应步骤相同,本申请实施例不再做重复赘述。
本申请实施例涉及UE-to-network场景中的层2中继中的QoS参数更改,通过远程UE获取PC5链路的链路质量,并在PC5链路质量不满足QoS需求时,直接向SMF发起Uu接口的QoS更改请求,从而使得网络侧可以在PC5链路的链路质量不满足需求时,对Uu接口和PC5接口的QoS参数进行同步的更改,从而保证了端到端的QoS需求。
图12示出了本申请实施例的一个服务质量的控制装置的示意图。如图所示,该装置1200包括处理模块1201和发送模块1202。该装置1200可以用于实现上述任一方法实施例中涉及的服务质量控制的功能。例如,该装置1200可以是终端设备或接入网设备。
该装置1200可以作为终端设备(如远程UE或中继设备)或接入网设备对消息进行处理,并执行上述方法实施例中由终端设备(如远程UE或中继设备)或接入网设备对第一通信链路的服务质量进行处理的步骤。所述处理模块1201可用于支持该装置1200执行上述方法中的处理动作,例如执行图4或5中由终端设备(如远程UE或中继设备)或接入网设备执行的处理动作;所述发送模块1202可以用于支持该装置1200进行通信,例如执行图4或图5中由终端设备(如远程UE或中继设备)或接入网设备执行的接收的动作。具体地,可以参考如下描述:
处理模块1201,用于确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改,所述第一通信链路为中继设备与第一终端设备之间的通信链路,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中继设备与所述第二终端设备进行通信;发送模块1202,用于发送第一消息,所述第一消息用于请求更改所述第二通信链路服务质量的参数。
可选地,所述处理模块具体用于:检测到所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
可选地,所述处理模块具体用于:接收来自所述第一终端设备的第二消息,所述第二消息用于指示降低所述第一通信链路的服务质量。
可选地,所述处理模块具体用于:接收来自所述第一终端设备或者所述中继设备的第三消息,所述第三消息用于指示所述第一通信链路的服务质量;确定所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
可选地,所述发送模块具体用于:向会话管理网元发送所述第一消息,所述第一消息用于降低所述第二通信链路的服务质量。
可选地,所述第一消息包括原因值,所述原因值指示的原因为所述第一通信链路的服务质量待更改。
可选地,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路的服务质量待更改。
可选地,所述发送模块具体用于:向所述接入网设备发送所述第一消息,所述第一消息用于指示降低所述第二通信链路的服务质量。
可选地,所述第一消息还包括以下中的至少一种:QoS流标识QFI、服务数据流SDF信息、PC5链路QoS流标识PFI标识、数据无线承载DRB标识、侧链路无线承载SLRB 标识。
可选地,所述处理模块具体用于:确定所述第一链路的服务质量高于第二阈值,所述第二阈值对应于所述服务质量需求。
可选地,所述第一消息用于指示提高所述第二通信链路的服务质量。
可选地,所述确定第一通信链路的服务质量发生更改包括:接收来自所述第一终端设备的第四消息,所述第四消息用于指示增加或去除第一业务流。
可选地,所述第四消息包括以下中的至少一种:服务数据流SDF信息、PC5链路QoS流标识PFI。
可选地,所述第一消息用于指示增加或去除第一业务流。
可选地,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路新增或去除业务流。
图13示出了本申请实施例的另一个服务质量的控制装置的示意图。如图所示,该装置1300包括第二处理模块1301和第二发送模块1302。该装置1300可以用于实现上述任一方法实施例中涉及的服务质量控制的功能。例如,该装置1300可以是终端设备或接入网设备。
该装置1300可以作为终端设备(如远程UE或中继设备)或接入网设备对消息进行处理,并执行上述方法实施例中由终端设备(如远程UE或中继设备)或接入网设备对第一通信链路的服务质量进行处理的步骤。所述处理模块1301可用于支持该装置1300执行上述方法中的处理动作,例如执行图4或5中由终端设备(如远程UE或中继设备)或接入网设备执行的处理动作;所述发送模块1302可以用于支持该装置1300进行通信,例如执行图4或图5中由终端设备(如远程UE或中继设备)或接入网设备执行的接收的动作。具体地,可以参考如下描述:
第二处理模块1301,用于确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改,所述第一通信链路为中继设备与所述装置之间的通信链路;第二发送模块1302,用于向所述中继设备发送第一消息,所述第一消息用于请求更改所述第一通信链路服务质量的参数。
图14示出了本申请实施例的一种服务质量的控制装置的一个结构示意图。该通信装置1400可用于实现上述方法实施例中描述的关于终端设备(如远程UE或中继设备)或接入网设备的方法。该通信装置1400可以是芯片。
通信装置1400包括一个或多个处理器1401,该一个或多个处理器1401可支持通信装置1400实现图4或图5中的服务质量的控制方法。处理器1401可以是通用处理器或者专用处理器。例如,处理器1401可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据,CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置1400还可以包括收发单元1405,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置1400可以是芯片,收发单元1405可以是该芯片的输入和/或输出电路,或者,收发单元1405可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置1400中可以包括一个或多个存储器1402,其上存有程序1404,程序1404 可被处理器1401运行,生成指令1403,使得处理器1401根据指令1403执行上述方法实施例中描述的方法。可选地,存储器1402中还可以存储有数据。可选地,处理器1401还可以读取存储器1402中存储的数据,该数据可以与程序1404存储在相同的存储地址,该数据也可以与程序1404存储在不同的存储地址。
处理器1401和存储器1402可以单独设置,也可以集成在一起,例如,集成在单板或者***级芯片(system on chip,SOC)上。
该通信装置1400还可以包括收发单元1405以及天线1406。收发单元1405可以称为收发机、收发电路或者收发器,用于通过天线1406实现通信装置的收发功能。
应理解,上述方法实施例的各步骤可以通过处理器1401中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1401可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
图15示出了本申请实施例的一种服务质量的控制装置的一个结构示意图。该通信装置1500可用于实现上述方法实施例中描述的关于终端设备(如远程UE或中继设备)或接入网设备的方法。该通信装置1500可以是芯片。
通信装置1500包括一个或多个处理器1501,该一个或多个处理器1501可支持通信装置1500实现图4或图5中的服务质量的控制方法。处理器1501可以是通用处理器或者专用处理器。例如,处理器1501可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据,CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置1500还可以包括收发单元1505,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置1500可以是芯片,收发单元1505可以是该芯片的输入和/或输出电路,或者,收发单元1505可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置1500中可以包括一个或多个存储器1502,其上存有程序1504,程序1504可被处理器1501运行,生成指令1503,使得处理器1501根据指令1503执行上述方法实施例中描述的方法。可选地,存储器1502中还可以存储有数据。可选地,处理器1501还可以读取存储器1502中存储的数据,该数据可以与程序1504存储在相同的存储地址,该数据也可以与程序1504存储在不同的存储地址。
处理器1501和存储器1502可以单独设置,也可以集成在一起,例如,集成在单板或者***级芯片(system on chip,SOC)上。
该通信装置1500还可以包括收发单元1505以及天线1506。收发单元1505可以称为收发机、收发电路或者收发器,用于通过天线1506实现通信装置的收发功能。
应理解,上述方法实施例的各步骤可以通过处理器1501中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1501可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例中的方法,如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在计算机可读存储介质中,基于这样的理解,本申请的技术方案或技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。该存储介质至少包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种服务质量的控制方法,其特征在于,包括:
    确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改,所述第一通信链路为中继设备与第一终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中继设备与所述第二终端设备进行通信;
    发送第一消息,所述第一消息用于请求更改第二通信链路服务质量的参数,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路。
  2. 根据权利要求1所述的方法,其特征在于,所述确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改包括:
    检测到所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
  3. 根据权利要求1所述的方法,其特征在于,所述确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改包括:
    接收来自所述第一终端设备的第二消息,所述第二消息用于指示降低所述第一通信链路的服务质量。
  4. 根据权利要求1所述的方法,其特征在于,所述确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改包括:
    接收来自所述第一终端设备或者所述中继设备的第三消息,所述第三消息用于指示所述第一通信链路的服务质量;
    确定所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述发送第一消息包括:
    向会话管理网元发送所述第一消息,所述第一消息用于降低所述第二通信链路的服务质量。
  6. 根据权利要求5所述的方法,其特征在于,所述第一消息包括原因值,所述原因值指示的原因为所述第一通信链路的服务质量待更改。
  7. 根据权利要求5所述的方法,其特征在于,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路的服务质量待更改。
  8. 根据权利要求2所述的方法,其特征在于,所述发送第一消息包括:
    向所述接入网设备发送所述第一消息,所述第一消息用于指示降低所述第二通信链路的服务质量。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一消息还包括以下中的至少一种:
    QoS流标识QFI、服务数据流SDF信息、PC5链路QoS流标识PFI、数据无线承载 DRB标识、侧链路无线承载SLRB标识。
  10. 根据权利要求1所述的方法,其特征在于,所述确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改包括:
    确定所述第一链路的服务质量高于第二阈值,所述第二阈值对应于所述服务质量需求。
  11. 根据权利要求9所述的方法,其特征在于,所述第一消息用于指示提高所述第二通信链路的服务质量。
  12. 根据权利要求1所述的方法,其特征在于,所述确定第一通信链路的服务质量发生更改包括:
    接收来自所述第一终端设备的第四消息,所述第四消息用于指示增加或去除第一业务流。
  13. 根据权利要求12所述的方法,其特征在于,所述第四消息包括以下中的至少一种:
    服务数据流SDF信息、PC5链路QoS流标识PFI。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一消息用于指示增加或去除第一业务流。
  15. 根据权利要求14所述的方法,其特征在于,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路新增或去除业务流。
  16. 一种服务质量的控制装置,其特征在于,包括:
    处理模块,用于确定第一通信链路的服务质量不满足服务质量需求或确定第一通信链路的服务质量发生更改,所述第一通信链路为中继设备与第一终端设备之间的通信链路,所述第一终端设备通过所述中继设备与所述接入网设备或者通过所述中继设备与所述第二终端设备进行通信;
    发送模块,用于发送第一消息,所述第一消息用于请求更改第二通信链路服务质量的参数,所述第二通信链路为所述中继设备与接入网设备或者为所述中继设备与第二终端设备之间的通信链路。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块具体用于:
    检测到所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
  18. 根据权利要求16所述的装置,其特征在于,所述处理模块具体用于:
    接收来自所述第一终端设备的第二消息,所述第二消息用于指示降低所述第一通信链路的服务质量。
  19. 根据权利要求16所述的装置,其特征在于,所述处理模块具体用于:
    接收来自所述第一终端设备或者所述中继设备的第三消息,所述第三消息用于指示所述第一通信链路的服务质量;
    确定所述第一通信链路的服务质量低于第一阈值,所述第一阈值对应于所述服务质量需求。
  20. 根据权利要求16-19中任一项所述的装置,其特征在于,所述发送模块具体用于:
    向会话管理网元发送所述第一消息,所述第一消息用于降低所述第二通信链路的服务 质量。
  21. 根据权利要求20所述的装置,其特征在于,所述第一消息包括原因值,所述原因值指示的原因为所述第一通信链路的服务质量待更改。
  22. 根据权利要求20所述的装置,其特征在于,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路的服务质量待更改。
  23. 根据权利要求17所述的装置,其特征在于,所述发送模块具体用于:
    向所述接入网设备发送所述第一消息,所述第一消息用于指示降低所述第二通信链路的服务质量。
  24. 根据权利要求23所述的装置,其特征在于,所述第一消息还包括以下中的至少一种:
    QoS流标识QFI、服务数据流SDF信息、PC5链路QoS流标识PFI、数据无线承载DRB标识、侧链路无线承载SLRB标识。
  25. 根据权利要求16所述的装置,其特征在于,所述处理模块具体用于:
    确定所述第一链路的服务质量高于第二阈值,所述第二阈值对应于所述服务质量需求。
  26. 根据权利要求25所述的装置,其特征在于,所述第一消息用于指示提高所述第二通信链路的服务质量。
  27. 根据权利要求16所述的装置,其特征在于,所述处理模块具体用于:
    接收来自所述第一终端设备的第四消息,所述第四消息用于指示增加或去除第一业务流。
  28. 根据权利要求27所述的装置,其特征在于,所述第四消息包括以下中的至少一种:
    服务数据流SDF信息、PC5链路QoS流标识PFI。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一消息用于指示增加或去除第一业务流。
  30. 根据权利要求29所述的装置,其特征在于,所述第一消息包括第一指示信息,所述第一指示信息用于指示所述第二通信链路更改的原因为所述第一通信链路新增或去除业务流。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读介质存储用于设备执行的计算机程序,所述计算机程序包括用于执行如权利要求1-15中任一项所述的方法的程序指令。
  32. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的程序指令,以执行如权利要求1-15中任一项所述的方法。
PCT/CN2022/071136 2021-01-28 2022-01-10 一种服务质量的控制方法和装置 WO2022161148A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110117244 2021-01-28
CN202110117244.8 2021-01-28
CN202110868093.X 2021-07-30
CN202110868093.XA CN114828105A (zh) 2021-01-28 2021-07-30 一种服务质量的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2022161148A1 true WO2022161148A1 (zh) 2022-08-04

Family

ID=82526907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071136 WO2022161148A1 (zh) 2021-01-28 2022-01-10 一种服务质量的控制方法和装置

Country Status (2)

Country Link
CN (1) CN114828105A (zh)
WO (1) WO2022161148A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220095168A1 (en) * 2020-09-23 2022-03-24 Asustek Computer Inc. Method and apparatus for quality of service (qos) information modification in a wireless communication system
CN115580568A (zh) * 2022-11-16 2023-01-06 北京连星科技有限公司 基于IPv6流标签实现网络服务质量保障的方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045788A (zh) * 2010-01-25 2011-05-04 新邮通信设备有限公司 一种下行调度方法、一种中继节点和一种施主基站
CN107535011A (zh) * 2015-08-20 2018-01-02 华为技术有限公司 数据处理方法和设备
CN110120878A (zh) * 2018-02-05 2019-08-13 华为技术有限公司 获取链路质量的方法和装置
US20200374778A1 (en) * 2018-02-23 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and Controller for Controlling a Wireless Link

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045788A (zh) * 2010-01-25 2011-05-04 新邮通信设备有限公司 一种下行调度方法、一种中继节点和一种施主基站
CN107535011A (zh) * 2015-08-20 2018-01-02 华为技术有限公司 数据处理方法和设备
CN110120878A (zh) * 2018-02-05 2019-08-13 华为技术有限公司 获取链路质量的方法和装置
US20200374778A1 (en) * 2018-02-23 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and Controller for Controlling a Wireless Link

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220095168A1 (en) * 2020-09-23 2022-03-24 Asustek Computer Inc. Method and apparatus for quality of service (qos) information modification in a wireless communication system
US12010557B2 (en) * 2020-09-23 2024-06-11 Asustek Computer Inc. Method and apparatus for quality of service (QOS) information modification in a wireless communication system
CN115580568A (zh) * 2022-11-16 2023-01-06 北京连星科技有限公司 基于IPv6流标签实现网络服务质量保障的方法及***
CN115580568B (zh) * 2022-11-16 2023-03-24 北京连星科技有限公司 基于IPv6流标签实现网络服务质量保障的方法及***

Also Published As

Publication number Publication date
CN114828105A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11510223B2 (en) Wireless data priority services
KR102213905B1 (ko) 디바이스-대-디바이스(d2d) 선점 및 액세스 제어
JP7043506B2 (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
US11297535B2 (en) Methods and apparatus for integration of wireless wide area networks with wireless local area networks
WO2019228214A1 (zh) 一种无线承载建立、业务流的监测方法及装置
CN110650454B (zh) V2x通信方法、装置及***
EP3301966B1 (en) Radio access network device, data processing method and ip packet processing method
US20190124563A1 (en) Communication method and device
WO2022161148A1 (zh) 一种服务质量的控制方法和装置
CN113473541A (zh) 一种通信方法及装置
CN108605242B (zh) 数据传输方法、基站、数据传输方法和核心节点
WO2022052851A1 (zh) 一种服务质量QoS的监测方法
EP4044659B1 (en) Network resource acquisition method, device, and system
US20200059980A1 (en) Method and apparatus for managing a bearer configuration of a relay user equipment
US20220386164A1 (en) Device and method for supporting quality of service in wireless communication system
WO2018028636A1 (zh) Rrc连接控制方法及装置、***
WO2022033543A1 (zh) 一种中继通信方法及通信装置
JP2017507605A (ja) ビデオ通話サービス品質の増進方法及び装置
CN112335301A (zh) 用于寻呼策略区分的无线电网络节点、用户平面功能(upf)以及在其中执行的方法
CN114586405A (zh) 测量报告上报方法及装置
US20180255610A1 (en) Radio terminal, processor, and network device
CN115190541A (zh) 一种服务质量的控制方法和装置
CN107431940B (zh) 用于在无线通信***中控制上行链路的覆盖的方法和装置
CN111836406B (zh) 一种网络配置方法和装置
US11523321B1 (en) Method and system for cell prioritization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745026

Country of ref document: EP

Kind code of ref document: A1