WO2016104124A1 - レドックスフロー電池の運転方法、及びレドックスフロー電池システム - Google Patents

レドックスフロー電池の運転方法、及びレドックスフロー電池システム Download PDF

Info

Publication number
WO2016104124A1
WO2016104124A1 PCT/JP2015/084279 JP2015084279W WO2016104124A1 WO 2016104124 A1 WO2016104124 A1 WO 2016104124A1 JP 2015084279 W JP2015084279 W JP 2015084279W WO 2016104124 A1 WO2016104124 A1 WO 2016104124A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
electrolyte
ions
ion
Prior art date
Application number
PCT/JP2015/084279
Other languages
English (en)
French (fr)
Inventor
雍容 董
秀旗 宮脇
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/537,581 priority Critical patent/US10199672B2/en
Priority to CN201580070520.2A priority patent/CN107112570A/zh
Priority to EP15872693.5A priority patent/EP3240083A4/en
Publication of WO2016104124A1 publication Critical patent/WO2016104124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery system using a liquid containing manganese ions as a positive electrode electrolyte, and a method for operating the redox flow battery.
  • the present invention relates to a redox flow battery operating method and a redox flow battery system capable of suppressing the precipitation of manganese oxide in a positive electrode electrolyte over a long period of time.
  • RF battery redox flow battery
  • RF battery (i) Easy to increase the capacity of megawatt class (MW class), (ii) Long life, (iii) The state of charge (SOC) of the battery can be accurately monitored It has the characteristics that (iv) battery output and battery capacity can be designed independently, and the degree of freedom of design is high, and it is expected to be optimal as a storage battery for power system stabilization applications. .
  • the RF battery mainly includes a battery cell including a positive electrode to which a positive electrode electrolyte is supplied, a negative electrode to which a negative electrode electrolyte is supplied, and a diaphragm interposed between both electrodes.
  • an RF battery system including an RF battery and a circulation mechanism for circulating and supplying an electrolytic solution to the RF battery is constructed.
  • the circulation mechanism normally includes a positive electrode tank that stores a positive electrode electrolyte, a negative electrode tank that stores a negative electrode electrolyte, and pipes that connect the tanks of each electrode and the RF battery.
  • a solution containing a metal ion whose valence changes as a result of oxidation and reduction as an active material is used as the electrolyte solution for each electrode.
  • Typical examples are Fe-Cr RF batteries using iron (Fe) ions as the positive electrode active material and chromium (Cr) ions as the negative electrode active material, and V-based RF batteries using vanadium (V) ions as the active materials of both electrodes ( Paragraph 0003 of the specification of Patent Document 1).
  • Patent Document 1 discloses a Mn—Ti RF battery using manganese (Mn) ions as a positive electrode active material and titanium (Ti) ions as a negative electrode active material.
  • the Mn—Ti-based RF battery has advantages such as higher electromotive force than that of the conventional V-based RF battery and a relatively inexpensive raw material for the positive electrode active material.
  • Patent Document 1 by containing titanium ions in addition to the manganese ions in the positive electrode electrolyte, it is possible to suppress the generation of manganese oxide (MnO 2), can be performed stably reaction of Mn 2+ / Mn 3+ Is disclosed.
  • MnO 2 manganese oxide
  • SOC state of charge
  • the present invention has been made in view of the above circumstances, and one of its purposes is a redox flow battery system capable of suppressing the precipitation of manganese oxide in the positive electrode electrolyte over a long period of time, and a method for operating the redox flow battery. Is to provide.
  • a method for operating a redox flow battery is a redox method in which a positive electrode electrolyte in a positive electrode tank is circulated and supplied to a positive electrode, and a negative electrode electrolyte in a negative electrode tank is circulated and supplied to a negative electrode.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the operation method of the redox flow battery is such that when the metal deposit formed by reduction of the added metal ions moved from the cathode electrolyte to the circulation path of the anode electrolyte is included in the circulation path of the anode electrolyte, A dissolution step of dissolving and ionizing the metal deposit in the cathode electrolyte.
  • a redox flow battery system stores a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and a positive electrolyte that circulates and supplies the positive electrode.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects a presence state of a metal precipitate formed by reduction of the added metal ions moved from the positive electrode electrolyte to the circulation path of the negative electrode electrolyte, and the metal precipitate includes the A branch introduction pipe for supplying the positive electrode electrolyte from the positive electrode tank to the negative electrode when included in the circulation path of the negative electrode electrolyte, and a branch return pipe for returning the liquid that has passed through the negative electrode to the positive electrode tank .
  • a redox flow battery system stores a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and a positive electrolyte that circulates and supplies the positive electrode.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects a presence state of a metal precipitate formed by reduction of the added metal ions moved from the positive electrode electrolyte to the circulation path of the negative electrode electrolyte, and the metal precipitate includes the A communication pipe that allows the positive electrode tank and the negative electrode tank to communicate with each other when the negative electrode electrolyte circulation path is included, and allows the positive electrode electrolyte and the negative electrode electrolyte to be mixed, and is stored in the positive electrode tank. And a branch return pipe for returning the liquid that has passed through the negative electrode to the positive electrode tank.
  • a redox flow battery system stores a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and a positive electrolyte that circulates and supplies the positive electrode.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects a presence state of a metal precipitate formed by reduction of the added metal ions moved from the positive electrode electrolyte to the circulation path of the negative electrode electrolyte, and the metal precipitate includes the A communication pipe that allows the positive electrode tank and the negative electrode tank to communicate with each other when the negative electrode electrolyte circulation path is included, and allows the positive electrode electrolyte and the negative electrode electrolyte to be mixed, and is stored in the positive electrode tank.
  • a redox flow battery system stores a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and a positive electrolyte that circulates and supplies the positive electrode.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects an existence state of a metal precipitate formed by reduction of the added metal ions moved from the positive electrode electrolyte to the negative electrode electrolyte circulation path, and circulation of the negative electrode electrolyte.
  • a filter unit provided in the path for collecting the metal deposit.
  • the operation method of the above redox flow battery can suppress the precipitation of manganese oxide in the positive electrode electrolyte for a long period of time.
  • the above redox flow battery system can be suitably used for carrying out the above redox flow battery operation method.
  • precipitation of the manganese oxide in positive electrode electrolyte solution can be suppressed over a long period of time.
  • FIG. 1 It is explanatory drawing explaining the procedure when the operating method of the redox flow battery of Embodiment 1 is implemented by the redox flow battery system of Embodiment 1.
  • FIG. 2 It is explanatory drawing explaining the procedure which enforces the operating method of the redox flow battery of Embodiment 2 by the redox flow battery system of Embodiment 2.
  • FIG. It is explanatory drawing explaining the procedure which enforces the operating method of the redox flow battery of Embodiment 3 by the redox flow battery system of Embodiment 3, and shows to a mixing process.
  • FIG. 6 is a schematic diagram of a redox flow battery system according to Embodiment 4.
  • FIG. It is a graph which shows the relationship between the operation days which performed charging / discharging by the redox flow battery system of Embodiment 2, and battery capacity, and shows the case where collection
  • FIG. 3 is an explanatory diagram showing a basic configuration and basic operation principle of the redox flow battery system of Embodiments 1 to 4.
  • Redox flow battery system (RF battery system) 10, 16, 17 Branch introduction pipe 12, 18, 19 Branch return pipe 14 Communication pipe 20, 22, 24, 26, 27, 28, 29 Valve 30, 32, 34, 35, 36, 37 Valve 40 Detector 41, 42 SOC measurement unit 44 Flow meter 46 Transparent window unit 50 Filter unit 99 Metal precipitate 100 Battery cell 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 104 Positive electrode 105 Negative electrode 106 Positive electrode tank 107 Negative electrode tank 108, 109, 110, 111 Piping 112, 113 Pump 200 AC / DC converter 210 Substation equipment 300 Electric power generation 400 load
  • the above-described added metal ions are mixed into the negative electrode electrolyte from the positive electrode electrolyte due to liquid transfer that can occur over time (a phenomenon in which the electrolyte solution of one electrode moves to the other electrode via the diaphragm), and the like. It was found that the mixed additive metal ions might be reduced and deposited at the negative electrode. When additive metal ions are deposited on the negative electrode, there are the following problems.
  • (Positive electrode) The amount of added metal ions in the positive electrode electrolyte decreases, and the precipitation of manganese oxide (MnO 2 ) cannot be sufficiently suppressed, and MnO 2 is precipitated. As a result of the precipitation of MnO 2 , manganese ions as the positive electrode active material are reduced, resulting in a decrease in energy density.
  • a charged negative electrode active material hereinafter sometimes referred to as “charged negative electrode ion”) has a high reducing power and thus reduces added metal ions. The reduced added metal ion is precipitated as a solid metal.
  • the charged negative electrode ion becomes a discharged negative electrode active material (hereinafter sometimes referred to as “discharged negative electrode ion”), so that the charged negative electrode ion is reduced and the SOC of the negative electrode electrolyte is lowered.
  • discharged negative electrode ion a discharged negative electrode active material
  • the SOC of the negative electrode electrolyte is greatly reduced. If the difference in SOC between the electrolytes of both electrodes increases due to the decrease in the SOC of the negative electrode electrolyte, the battery characteristics will be degraded, such as a significant decrease in battery capacity compared to the initial operation state.
  • the deposition of the solid metal may clog the negative electrode, leading to a decrease in the flow rate of the electrolytic solution or a pressure loss due to an increase in the flow pressure.
  • a charged positive electrode active material for example, Mn 3+ , hereinafter sometimes referred to as charged Mn ion
  • the cathode electrolyte The liquid composition can be returned to the initial operation state including unused. In other words, the liquid composition of the positive electrode electrolyte can be maintained in a substantially unused state or an initial operation state.
  • a method for operating a redox flow battery (RF battery) is to circulate and supply a positive electrode electrolyte in a positive electrode tank to a positive electrode and to circulate and supply a negative electrode electrolyte in a negative electrode to a negative electrode.
  • the present invention relates to the operation of a redox flow battery that performs charging and discharging.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the RF battery is operated when the metal deposit formed by reduction of the added metal ions moved from the cathode electrolyte to the anode electrolyte circulation path is included in the anode electrolyte circulation path.
  • the circulation path of the negative electrode electrolyte typically includes a battery cell including the negative electrode, the negative electrode tank, and a pipe connecting the battery cell and the negative electrode tank.
  • the method of operating the above RF battery by containing a specific additive metal ions in the positive electrode electrolyte solution, can suppress the precipitation of manganese oxide in the positive electrode electrolyte solution (MnO 2).
  • the operation method of the RF battery described above is when the specific additive metal ion is mixed into the circulation path from the positive electrode electrolyte to the negative electrode electrolyte over time, and further becomes a metal precipitate, that is, the positive electrode.
  • the added metal ions in the electrolytic solution are reduced from the initial operation state, the metal deposit is dissolved in the positive electrode electrolytic solution and ionized.
  • the above-described RF battery operation method is typically a standby operation that is performed during charging / discharging by performing a simple operation of returning the metal deposits to the added metal ions, that is, dissolving them in the positive electrode electrolyte at appropriate intervals.
  • the liquid composition of the positive electrode electrolyte can be made substantially the same as the liquid composition of the unused or initial operation. Therefore, the operation method of the above RF battery can exert the effect of suppressing the precipitation of MnO 2 by containing a specific additive metal ion in the positive electrode electrolyte for a long time.
  • Standard oxidation-reduction potentials of the negative electrode metal ions serving as the negative electrode active material described above are as follows. Ti 3+ / Ti 4+ 0.1V V 2+ / V 3+ -0.26V Cr 2+ / Cr 3+ -0.42V
  • the standard oxidation potential of the additive metal ion can be almost nobler than the redox potential of the negative electrode metal ion.
  • Sb / Sb 3+ and Bi / Bi 3+ have a noble potential than any of the above negative electrode metal ions. That is, it can be said that the added metal ions are easily reduced.
  • added metal ions are mixed into the negative electrode electrolyte, they are reduced by charged negative electrode ions, for example, Ti 3+ , and tend to become solid metals (metal deposits) from the ions.
  • the charged negative ions are oxidized to discharge negative ions, for example, Ti 4+ . It is considered that the precipitation phenomenon due to the reduction of the added metal ions is likely to occur at the end of the charging where the most charged negative electrode ions may exist. Therefore, for example, when waiting at the end of charging, due to the precipitation phenomenon due to the reduction of the added metal ions, the charging negative electrode ions decrease, the discharge negative electrode ions increase, and the SOC of the negative electrode electrolyte decreases. As a result, the difference between the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte increases, leading to a decrease in battery capacity.
  • the SOC of the negative electrode electrolyte is high to some extent, for example, 50% or more
  • the SOC of the electrolyte of the bipolar electrode is similarly caused by the precipitation phenomenon due to the reduction of the added metal ions, although there are relatively many charged negative ions. The difference can be large.
  • the positive electrode cannot maintain the effect of suppressing the precipitation of manganese oxide for a long time due to the decrease of the added metal ions.
  • the negative electrode when the added metal ion is a solid metal and is present in the negative electrode electrolyte, the decrease in the SOC of the negative electrode electrolyte, the increase in the difference in SOC between the electrolytes of both electrodes, the decrease in battery capacity, This causes a decrease in the flow rate of the negative electrode electrolyte and an increase in flow resistance.
  • the above-described method for operating the RF battery can be performed to recover the added metal ions that have moved from the positive electrode electrolyte to the negative electrode electrolyte in the positive electrode electrolyte.
  • the above RF battery operation method by carrying out the above RF battery operation method at an appropriate time when the RF battery is used, it is possible to allow (to some extent) mixing and precipitation of added metal ions from the positive electrode electrolyte to the negative electrode electrolyte circulation path. However, it is possible to sufficiently maintain the liquid composition at the unused or initial stage of operation.
  • the positive electrode electrolyte at the end of charging sufficiently contains charged Mn ions. Charged Mn ions have a high oxidizing power.
  • the solubility of the metal precipitate is low, so that the added metal ion tends to exist as a metal precipitate.
  • the portion where the added metal ion mixed in the negative electrode electrolyte is likely to be reduced to become a metal precipitate includes the vicinity of the negative electrode where electrons are easily received.
  • the metal precipitates are dissolved and ionized, and the added metal ions are subjected to positive electrode electrolysis. It can be easily recovered in the liquid. Or the metal deposit adhering to a negative electrode can be pushed away to a positive electrode tank by pumping positive electrode electrolyte solution with a pump. Since the metal deposits collected in the positive electrode tank can be dissolved and ionized by charged Mn ions sufficiently present in the positive electrode tank, the added metal ions can be easily recovered in the positive electrode electrolyte.
  • the precipitation of manganese oxide in the positive electrode electrolyte can be satisfactorily suppressed over a long period of time.
  • This form can be suitably used when metal precipitates are likely to be present in the vicinity of the negative electrode, for example, while the elapsed time from the start of operation is relatively short. This is because the time when the added metal ions before the metal precipitates are likely to be present in the vicinity of the negative electrode is considered to be immediately after the liquid transfer and in the vicinity thereof.
  • the positive electrode electrolyte in the positive electrode tank and the negative electrode electrolyte in the negative electrode tank are mixed at the end of discharge before the melting step. And a charging step in which the mixed solution is charged and the added metal ions contained in the mixed solution in the negative electrode tank are deposited on the negative electrode.
  • the SOC of the negative electrode electrolyte is low and the solubility of the metal deposit tends to be high, and the added metal ions mixed in the negative electrode electrolyte tend to exist in an ionic state.
  • substantially only the added metal ions can be used.
  • metal precipitates may be included to some extent.
  • the SOC can be lowered by self-discharge, so that the solubility can be increased and the ratio of the added metal ions can be increased.
  • the added metal ions can be more surely present in the tanks of both electrodes.
  • the added metal ions can be deposited on the negative electrode. Since the charging potential of the battery cell is higher than the potential of the negative electrode electrolyte at the end of discharge, the reduction of the added metal ion has a higher standard redox potential than the redox reaction between the charged negative ion and the added metal ion in the negative electrode electrolyte. This is because the reaction is more likely to occur.
  • the added metal ions present in the negative electrode tank can be deposited on the negative electrode.
  • the added metal ions can be moved from the inside of the negative electrode tank or the like to the vicinity of the negative electrode.
  • the mixed liquid in the positive electrode tank is supplied to the metal deposit on the negative electrode, the charged Mn ions are increased in the mixed liquid in the positive electrode tank due to charging, so that the metal precipitate can be dissolved and ionized. That is, the said form can be easily collect
  • the added metal ions can be recovered more reliably. Since this form has common ions that can exist in the electrolyte solution of both electrodes after mixing, it is easy to use when the electrolyte solution of both electrodes contains manganese ions and negative electrode metal ions before mixing. In particular, when the negative electrode metal ion is a titanium ion, precipitation of manganese oxide can be suppressed also by this titanium ion. In addition, since the above-described form mixes the positive electrode electrolyte at the end of discharge and the negative electrode electrolyte at the end of discharge, the loss associated with self-discharge in which ions serving as active materials of both electrodes react can be reduced.
  • the above form (3) is easy to use when the added metal ion can exist in the negative electrode tank, for example, when the elapsed time from the start of operation is sufficiently long. This is because it is considered that a certain amount of time is required for the added metal ions mixed in the battery cell by the liquid transfer to be conveyed to the negative electrode tank through the pipe or the like. The point regarding this use time is the same also about the form of (4) mentioned later.
  • the positive electrode electrolyte in the positive electrode tank and the negative electrode electrolyte in the negative electrode tank are mixed, And a charging step of charging the mixed solution to precipitate added metal ions contained in the mixed solution in the negative electrode tank and causing the metal deposit to exist in the negative electrode tank,
  • the dissolution step includes a mode including charging the mixed liquid in the switched positive electrode tank using the negative electrode tank storing the mixed liquid containing the deposited metal deposit as the positive electrode tank.
  • the state of charge (SOC) 50% or more
  • the solubility of the metal deposit in the negative electrode electrolyte is low to some extent, so that the added metal ions mixed in the negative electrode electrolyte are reduced by the charged negative electrode ions and the state of the metal deposit It becomes easy to exist in. Since this metal deposit is heavier than the negative electrode metal ion, it is likely to precipitate and deposit in the negative electrode tank.
  • the negative electrode electrolyte in the negative electrode tank containing metal deposits and the positive electrode electrolyte in the positive electrode tank containing added metal ions are mixed, the added metal ions contained in the positive electrode electrolyte are mixed between the positive electrode tank and the negative electrode tank. Almost evenly distributed to both sides.
  • the added metal ions in the positive electrode electrolyte are present in the negative electrode tank rather than the metal precipitates are ionized and stably present by the oxidation-reduction reaction between the charged Mn ions contained in the positive electrode electrolyte and the metal precipitates in the negative electrode tank. This is because it is considered that the speed of diffusing into is faster. Therefore, in the negative electrode tank, a mixed liquid containing substantially half of the added metal ions introduced from the positive electrode tank while the metal deposit substantially remains as it is. When this mixed solution is charged, the added metal ions in the negative electrode tank are mainly reduced by the charged negative ions that may be present in the vicinity thereof to become metal deposits.
  • the mixing step and the charging step may be performed once, but if repeated a plurality of times, the total amount of added metal ions contained in the positive electrode electrolyte can be moved to the negative electrode tank and collected as metal deposits. .
  • the negative electrode tank After collecting metal deposits in the negative electrode tank as described above, if the negative electrode tank is switched to the positive electrode tank and the mixed liquid in the tank of each electrode is charged, the switched positive electrode tank These metal deposits can be oxidized to charged metal ions by charged Mn ions or the like that may be present around them. As a result, a mixed solution containing added metal ions can be used as a new positive electrode electrolyte. Therefore, by implementing the above embodiment, the precipitation of manganese oxide in the positive electrode electrolyte can be satisfactorily suppressed over a long period of time.
  • this form has common ions that can exist in the electrolyte solution of both electrodes after mixing, it is easy to use when the electrolyte solution of both electrodes contains manganese ions and negative electrode metal ions before mixing.
  • the negative electrode metal ion is a titanium ion, precipitation of manganese oxide can be suppressed also by this titanium ion.
  • the added metal ions can be sufficiently transferred from the positive electrode tank to the negative electrode tank, preferably substantially the entire amount is transferred. And can be efficiently collected as metal deposits in the negative electrode tank.
  • the said form makes the liquid composition of positive electrode electrolyte solution the state of unused or an initial stage of operation.
  • the form can be substantially unused.
  • the method includes a sampling step of collecting the metal deposit by a filter unit provided in the circulation path of the negative electrode electrolyte, and the melting step includes the collected metal deposit.
  • dissolving in the said positive electrode electrolyte solution is mentioned.
  • the added metal ions mixed in the negative electrode electrolyte become a metal precipitate and can be present in any location such as in the negative electrode, the negative electrode tank, or the pipe connecting the battery cell and the negative electrode tank.
  • metal deposits can be easily collected by circulating the negative electrode electrolyte. The collected metal deposit is placed in a positive electrode tank or the like and dissolved in the positive electrode electrolyte, whereby the metal deposit can be recovered in the positive electrode electrolyte as added metal ions.
  • the metal precipitate is charged at the end of the charging with sufficient charged Mn ions, the metal precipitate is easily dissolved in the positive electrode electrolyte.
  • a redox flow battery system (RF battery system) according to one embodiment of the present invention circulates in a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and the positive electrode.
  • a positive electrode tank for storing a positive electrode electrolyte to be supplied and a negative electrode tank for storing a negative electrode electrolyte to be circulated and supplied to the negative electrode are provided.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects an existence state of a metal precipitate formed by reduction of the added metal ion that has moved from the positive electrode electrolyte to the circulation path of the negative electrode electrolyte, and the metal precipitate includes the above-described metal precipitate.
  • a branch introduction pipe for supplying the positive electrolyte from the positive tank to the negative electrode when included in the circulation path of the negative electrolyte, and a branch return pipe for returning the liquid passed through the negative electrode to the positive tank .
  • the above-described RF battery system can be suitably used for the implementation of the above-described (2) RF battery operation method, for example. Since the RF battery system includes a detection unit, it is possible to easily determine the presence / absence of metal deposits and the amount of deposition in the negative electrode electrolyte using information obtained from the detection unit. For example, when it is considered that many metal deposits may be present, more specifically, when it is considered that metal deposits are deposited on the negative electrode at the end of charging, the RF battery system described above is The positive electrolyte solution can be supplied from the positive electrode tank to the negative electrode via the branch introduction pipe, and the liquid passed through the negative electrode can be returned to the positive electrode tank via the branch return pipe.
  • the liquid that has passed through the negative electrode contains metal precipitates that have been swept away from the negative electrode, or it contains added metal ions that have been ionized by the reaction between the metal precipitates and the charged Mn ions in the positive electrode electrolyte.
  • the metal deposit introduced into the positive electrode tank is ionized by the reaction with the charged Mn ions in the positive electrode tank as described above. Therefore, the above RF battery system can recover the metal deposit as an added metal ion in the positive electrode electrolyte.
  • said RF battery system can suppress precipitation of manganese oxide in a positive electrode electrolyte favorably over a long period of time by implementing the operation method of the above-mentioned (2) RF battery at an appropriate time.
  • a redox flow battery system (RF battery system) according to one embodiment of the present invention circulates in a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and the positive electrode.
  • a positive electrode tank for storing a positive electrode electrolyte to be supplied and a negative electrode tank for storing a negative electrode electrolyte to be circulated and supplied to the negative electrode are provided.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects an existence state of a metal precipitate formed by reduction of the added metal ion that has moved from the positive electrode electrolyte to the circulation path of the negative electrode electrolyte, and the metal precipitate includes the above-described metal precipitate.
  • the positive electrode tank and the negative electrode tank communicate with each other so that the positive electrode electrolyte and the negative electrode electrolyte can be mixed, and stored in the positive electrode tank.
  • the above-described RF battery system can be suitably used for the implementation of the above-described (3) RF battery operation method, for example. Since the RF battery system includes a detection unit, it is possible to easily determine the presence / absence of metal deposits and the amount of deposition in the negative electrode electrolyte using information obtained from the detection unit. For example, when it is considered that the additive metal can be present in the negative electrode electrolyte in a large amount in an ionic state, more specifically, at the end of discharge, the RF battery system described above is connected to the bipolar tank via the communication pipe. The electrolyte solution can be easily mixed, and the additional metal ions contained in the mixed solution on the negative electrode side can be deposited on the negative electrode by further charging the mixed solution after mixing.
  • the RF battery system supplies the liquid in the positive electrode tank from the positive electrode tank to the negative electrode via the branch introduction pipe and the negative electrode via the branch return pipe, similarly to the RF battery system of (7) above.
  • the liquid that has passed through the electrode can be returned to the positive electrode tank.
  • the liquid returned to the positive electrode tank contains metal precipitates and additive metal ions, and the metal precipitates are ionized, as in the RF battery system (7) described above. Therefore, the RF battery system described above can be recovered in a mixed solution in which the metal precipitate is added metal ions as the positive electrode electrolyte.
  • said RF battery system can suppress precipitation of manganese oxide in a positive electrode electrolyte favorably over a long period of time by implementing the operation method of above-mentioned (3) RF battery at an appropriate time.
  • a redox flow battery system (RF battery system) according to one embodiment of the present invention is provided with a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and circulates in the positive electrode.
  • a positive electrode tank for storing a positive electrode electrolyte to be supplied and a negative electrode tank for storing a negative electrode electrolyte to be circulated and supplied to the negative electrode are provided.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects an existence state of a metal precipitate formed by reduction of the added metal ion that has moved from the positive electrode electrolyte to the circulation path of the negative electrode electrolyte, and the metal precipitate includes the above-described metal precipitate.
  • the positive electrode tank and the negative electrode tank communicate with each other so that the positive electrode electrolyte and the negative electrode electrolyte can be mixed, and stored in the positive electrode tank.
  • a negative branching introduction pipe for supplying the mixed liquid to the negative electrode, a negative branch return pipe for returning the liquid that has passed through the negative electrode to the positive tank, and a mixed liquid stored in the negative tank.
  • the above-described RF battery system can be suitably used for, for example, the implementation of the above-described (4) RF battery operation method. Since the RF battery system includes a detection unit, it is possible to easily determine the presence / absence of metal deposits and the amount of deposition in the negative electrode electrolyte using information obtained from the detection unit. For example, when it is considered that a large amount of metal deposits may be present in the negative electrode tank, more specifically, when the SOC is 50% or more, the above-described RF battery system is connected to both electrodes via a communication pipe.
  • the electrolytic solution in the tank can be easily mixed, and the mixed solution containing approximately half of the added metal ions contained in the positive electrode electrolytic solution as described above can be stored in the tank of each electrode.
  • Metal deposits are substantially present in the negative electrode tank.
  • the above-described RF battery system can charge such a mixed solution, and as described above, the charged metal ions in the mixed solution in the negative electrode tank are collected as metal precipitates by this charging.
  • the RF battery system described above is included in the positive electrode electrolyte as described above by repeatedly mixing the electrolytes of both electrodes by opening the communication pipe and charging after mixing. Substantially all of the added metal ions were collected as metal deposits in the negative electrode tank.
  • the RF battery system described above includes a specific branch introduction pipe and a branch return pipe, so that after charging, the negative electrode tank storing the mixed liquid containing metal deposits can be switched to the positive electrode tank.
  • an electrolytic solution (mixed solution) containing metal deposits stored in the negative electrode tank can be regarded as a positive electrode electrolytic solution and introduced into the positive electrode through a branch introduction pipe for the positive electrode.
  • the liquid that has passed through the positive electrode can be returned to the negative electrode tank that is regarded as the positive electrode tank via the branch return pipe.
  • the metal deposit in the negative electrode tank regarded as the positive electrode tank can be made into added metal ions by reaction with charged Mn titanium or appropriate charging.
  • the electrolyte solution (mixed solution) in which the added metal ions stored in the positive electrode tank are reduced, preferably substantially removed, is regarded as the negative electrode electrolyte, and the branch introduction tube for the negative electrode is provided. Then, the liquid can be introduced into the negative electrode, and the liquid that has passed through the negative electrode can be returned to the positive electrode tank that is regarded as the negative electrode tank via the branch return pipe for the negative electrode. Therefore, the RF battery system described above can be recovered in a mixed solution in which the metal precipitate is added metal ions as the positive electrode electrolyte. Moreover, said RF battery system can suppress precipitation of manganese oxide in a positive electrode electrolyte favorably over a long period of time by implementing the operation method of above-mentioned (4) RF battery at an appropriate time.
  • a redox flow battery system (RF battery system) is a battery cell including a positive electrode, a negative electrode, and a diaphragm interposed between the two electrodes, and circulates in the positive electrode.
  • a positive electrode tank for storing a positive electrode electrolyte to be supplied and a negative electrode tank for storing a negative electrode electrolyte to be circulated and supplied to the negative electrode are provided.
  • the positive electrode electrolyte contains manganese ions and additive metal ions.
  • the negative electrode electrolyte contains at least one metal ion selected from titanium ions, vanadium ions, and chromium ions.
  • the additive metal ion is at least one selected from cadmium ion, tin ion, antimony ion, lead ion, and bismuth ion.
  • the redox flow battery system includes a detection unit that detects a presence state of a metal precipitate formed by reduction of the added metal ions moved from the positive electrode electrolyte to the negative electrode electrolyte circulation path, and circulation of the negative electrode electrolyte. And a filter unit provided in the path for collecting the metal deposit.
  • the above-described RF battery system can be suitably used for, for example, the implementation of the above-described (6) RF battery operation method. Since the RF battery system includes a detection unit, it is possible to easily determine the presence / absence of metal deposits and the amount of deposition in the negative electrode electrolyte using information obtained from the detection unit. For example, in the above RF battery system, when it is considered that a large amount of metal deposits may exist, the metal deposits collected by the filter unit can be put into a positive electrode tank or the like and dissolved. Since the above RF battery system can be appropriately charged after the metal deposit is charged, the metal deposit can be more reliably dissolved. Therefore, the above RF battery system can recover the metal deposit as an added metal ion in the positive electrode electrolyte.
  • said RF battery system can suppress precipitation of manganese oxide in positive electrode electrolyte favorably over a long period of time by implementing the above-mentioned (6) RF battery operating method at an appropriate time.
  • said RF battery system can also use a filter part as a detection part, it can be set as the form which is not provided with the detection part independent of the filter part.
  • the detection unit is provided in an SOC measurement unit that can measure the state of charge of the positive electrode electrolyte and the state of charge of the negative electrode electrolyte, and a circulation path of the negative electrode electrolyte. And a mode including at least one selected from a transparent window portion and a flow meter provided in the circulation path of the negative electrode electrolyte.
  • the RF battery system of the above embodiment can easily recognize the presence or absence and the amount of deposition of metal deposits that can be contained in the negative electrode electrolyte.
  • the RF battery system includes an SOC measuring unit, the SOC of the electrolytes of both electrodes is different, and when the difference is large, more specifically, when the difference of the SOC is equal to or more than a set threshold value, metal deposition is performed. It can be judged that there are many things. As described above, when metal deposits are present in the negative electrode electrolyte, the charged negative electrode ions are reduced, the discharge negative electrode ions are increased, the SOC of the negative electrode electrolyte is lowered, and the difference in the SOC is considered to increase. It is.
  • the RF battery system is preferably configured so that the SOC of the electrolyte solution of both electrodes is substantially reduced so that the difference of the SOC becomes small while appropriately checking the difference of the SOC when the SOC of the electrolyte solution of both electrodes is different.
  • the recovery operation of the metal ions added to the positive electrode electrolyte is performed so as to be equal.
  • the RF battery system includes an SOC measurement unit, the above-described recovery operation can be performed while confirming the SOC of the electrolyte solution in both electrodes.
  • Such an SOC measuring unit can be provided in a tank or a pipe of each electrode.
  • the RF battery system When the RF battery system is provided with a transparent window, it is possible to easily determine the presence or absence of metal deposits, for example, by visual confirmation. Alternatively, the RF battery system can measure the transparency of the transparent window. Since the transparency decreases due to the metal deposits adhering to the transparent window portion, it is possible to easily determine the presence / absence of the metal deposits and the degree of transparency based on the transparency. Then, an operation of recovering the metal ions added to the positive electrode electrolyte is performed until the metal deposits are not visible or until the transparency becomes high. When the RF battery system includes a transparent window, the above-described recovery operation can be performed while confirming the metal deposit.
  • a transparent window may be provided in a pipe or the like.
  • the RF battery system includes a flow meter
  • the flow rate of the negative electrode electrolyte is small, more specifically, when it is equal to or less than a set threshold value, it can be determined that there are many metal precipitates. This is because if the metal deposit is present in the negative electrode electrolyte, it is considered that the negative electrode electrolyte is difficult to flow due to inclusion of a heavy metal deposit or clogging of the negative electrode. Then, the RF battery system performs an operation of recovering the metal ions added to the positive electrode electrolyte until the flow rate increases, that is, the threshold value is exceeded.
  • the RF battery system includes a flow meter, the above-described recovery operation can be performed while confirming the flow rate state in this way.
  • a flow meter may be provided in a pipe or the like.
  • both the positive electrode electrolyte and the negative electrode electrolysis contain manganese ions and titanium ions.
  • the RF battery system of the above embodiment is a Mn—Ti RF battery system in which the positive electrode active material is manganese ions and the negative electrode active material is titanium ions.
  • the positive electrode electrolyte contains titanium ions, precipitation of manganese oxide can be further suppressed.
  • the said form overlaps with several ionic species which exist in a positive electrode electrolyte solution and a negative electrode electrolyte solution. Therefore, in the RF battery system of the above embodiment, (i) the manganese ion moves to the negative electrode and the titanium ion moves to the positive electrode, respectively, and the active material ions that react originally at each electrode are relatively reduced, thereby reducing the battery capacity.
  • the electrolytes of both electrodes are allowed to contain the additive metal ions. That is, in the RF battery system of the above embodiment, the electrolytes of both electrodes can be made the same, but it is preferable that only the cathode electrolyte contains an added metal ion.
  • the concentration of the added metal ions in the positive electrode electrolyte (total concentration in the case of plural types) is 0.001 M or more and 1 M or less.
  • M shown as a unit of concentration means volume molar concentration, that is, mol / L (mol / liter).
  • concentration mol / L (mol / liter).
  • the positive electrode electrolyte contains the added metal ions in the specific range described above, the generation of manganese oxide (MnO 2 ) can be effectively suppressed.
  • the concentration of the added metal ion in the positive electrode electrolyte can be reduced by liquid transfer over time, the RF battery system can recover the added metal ion in the positive electrode electrolyte.
  • the above RF battery system can be used for a long period from the initial operation. The above range can be satisfied.
  • At least one of the manganese ion concentration in the positive electrode electrolyte and the metal ion (negative electrode metal ion) concentration in the negative electrode electrolyte is 0.3 M or more and 5 M or less.
  • the metal ions (negative electrode metal ions) contained in the negative electrode electrolyte are plural kinds, the total concentration is used.
  • the RF battery system of the above-mentioned form contains a manganese element that functions as an active material for each electrode, and a negative electrode metal ion in the specific range described above, and (i) sufficiently contains a metal element that performs a valence change reaction, It has a high energy density. (Ii) Even when the electrolytic solution is an aqueous acid solution, it can be dissolved satisfactorily and the electrolytic solution is excellent in manufacturability.
  • ions shown in the positive electrode tank 106 and the negative electrode tank 107 are examples of ion species included in the electrolyte solution of each electrode.
  • a solid line arrow means charging, and a broken line arrow means discharging.
  • the RF battery system 1 includes an RF battery and a circulation mechanism that circulates and supplies an electrolytic solution to the RF battery.
  • the RF battery is typically connected to the power generation unit 300 and a load 400 such as a power system or a consumer via the AC / DC converter 200, the substation facility 210, or the like, and the power generation unit 300 is used as a power supply source. Charging is performed and discharging is performed with the load 400 as a power supply target.
  • Examples of the power generation unit 300 include a solar power generator, a wind power generator, and other general power plants.
  • the RF battery includes a positive electrode cell 102 containing a positive electrode 104, a negative electrode cell 103 containing a negative electrode 105, and a positive electrode 104 and a negative electrode 105 interposed between the positive electrode 104 and the negative electrode 105 and separating the positive electrode cell 102 and the negative electrode cell 103.
  • transmits this ion is made into a main structural member.
  • the circulation mechanism includes a positive electrode tank 106 that stores a positive electrode electrolyte that is circulated and supplied to the positive electrode 104, a negative electrode tank 107 that stores a negative electrode electrolyte that is circulated and supplied to the negative electrode 105, and a space between the positive electrode tank 106 and the battery cell 100. , Pipes 109 and 111 for connecting the negative electrode tank 107 and the battery cell 100, and pumps 112 and 113 provided on the upstream side (supply side) pipes 108 and 109. .
  • the positive electrode electrolyte is supplied from the positive electrode tank 106 to the positive electrode cell 102 via the upstream pipe 108, and the positive electrode electrolyte is supplied from the positive electrode cell 102 via the downstream (discharge side) pipe 110.
  • a circulation path of the positive electrode electrolyte solution that is returned to the tank 106 is established.
  • the negative electrode electrolyte is supplied from the negative electrode tank 107 to the negative electrode cell 103 via the upstream pipe 109, and from the negative electrode cell 103 to the downstream (discharge side) pipe 111.
  • a circulation path for the negative electrode electrolyte solution is constructed in which the negative electrode tank 107 is returned to the negative electrode tank 107.
  • the RF battery system 1 circulates and supplies the positive electrode electrolyte solution to the positive electrode cell 102 and circulates and supplies the negative electrode electrolyte solution to the negative electrode cell 103 using the circulation path of the positive electrode electrolyte and the negative electrode electrolyte. However, charging / discharging is performed in accordance with the valence change reaction of the metal ion that becomes the active material in the electrolyte solution of each electrode.
  • a form called a cell stack including a plurality of battery cells 100 is typically used for the RF battery.
  • the battery cell 100 includes a bipolar plate (not shown) in which the positive electrode 104 is disposed on one surface and the negative electrode 105 is disposed on the other surface, and a frame (not illustrated) formed on the outer periphery of the bipolar plate.
  • a configuration using a cell frame is typical.
  • the frame body has a liquid supply hole for supplying an electrolytic solution and a liquid discharge hole for discharging the electrolytic solution. By stacking a plurality of cell frames, the liquid supply hole and the liquid discharge hole can be connected to the flow of the electrolytic solution.
  • a path is formed, and pipes 108 to 111 are connected to the flow path.
  • the cell stack is configured by repeatedly stacking a cell frame, a positive electrode 104, a diaphragm 101, a negative electrode 105, a cell frame,.
  • a known configuration can be used as appropriate.
  • the positive electrode electrolyte contains manganese ions and the negative electrode electrolyte contains specific negative electrode metal ions.
  • the RF battery systems 1A to 1D of Embodiments 1 to 4 are characterized in that the positive electrode electrolyte contains a specific additive metal ion.
  • the positive electrode electrolyte solution provided in the RF battery systems 1A to 1D of Embodiments 1 to 4 contains manganese ions as a positive electrode active material.
  • Manganese ions can have various valences. Typically, a form containing at least one of a divalent manganese ion (Mn 2+ ) and a trivalent manganese ion (Mn 3+ , charged Mn ion) can be given.
  • the positive electrode electrolyte may contain tetravalent manganese ions. The tetravalent manganese ion is considered to be MnO 2 .
  • the MnO 2 is not a solid precipitate was present in a stable state as dissolved in the electrolyte, the discharge time, the two-electron reaction (Mn 4+ + 2e - ⁇ Mn 2+) Mn 2+ obtained by Can be used repeatedly as a positive electrode active material, which may contribute to an increase in battery capacity. That is, tetravalent manganese ions can be regarded as a positive electrode active material and are handled separately from manganese oxide, which is a solid precipitate. The content of tetravalent manganese ions in the positive electrode electrolyte is allowed to be a slight amount, for example, about 10% or less with respect to the total amount (mol) of manganese ions.
  • Mn concentration examples include 0.3 M or more and 5 M or less. If the Mn concentration is 0.3M or more, it can have a sufficient energy density (for example, about 10 kWh / m 3 ) as a large-capacity storage battery. Since the energy density can be increased as the Mn concentration increases, the Mn concentration can be set to 0.5 M or more, further 1.0 M or more, 1.2 M or more, 1.5 M or more.
  • the positive electrode electrolyte contains specific added metal ions, precipitation of precipitates such as manganese oxide can be satisfactorily suppressed even when the Mn concentration is increased. Ions can be present stably.
  • the positive electrode electrolyte further contains titanium ions, it is preferable because precipitation of manganese oxide can be sufficiently suppressed even when the Mn concentration is increased.
  • the Mn concentration is 5M or less, more preferably 2M or less, and the electrolyte solution is excellent in manufacturability.
  • the concentration of various metal ions contained in the electrolyte solution of each electrode can be measured by using, for example, ICP emission spectroscopy or ICP mass spectrometry.
  • the positive electrode electrolyte provided in the RF battery systems 1A to 1D of Embodiments 1 to 4 contains ions that are effective in suppressing the precipitation of manganese oxide formed by the precipitation of the main positive electrode active material.
  • the precipitation inhibiting ions are at least one metal ion selected from cadmium ions, tin ions, antimony ions, lead ions, and bismuth ions.
  • Each metal ion listed as the additive metal ion can have various valences as exemplified below. However, each metal ion listed as an additive metal ion may have other valences.
  • the positive electrode electrolyte contains at least one valence ion, which is the above-described additive metal ion.
  • the positive electrode electrolyte may contain ions of the same element but different valences. In the positive electrode electrolyte, a case where these elements exist as a solid metal in addition to ions is allowed.
  • the positive electrode electrolyte is a metal precipitate formed by reducing the added metal ions, that is, cadmium, tin, antimony, lead, and It may contain at least one solid metal selected from bismuth.
  • cadmium ion divalent cadmium ion
  • tin ion divalent tin ion
  • tetravalent tin ion antimony ion: trivalent antimony ion
  • pentavalent antimony ion lead ion : Divalent lead ion
  • tetravalent lead ion bismuth ion: trivalent bismuth ion, pentavalent bismuth ion
  • Each metal ion listed as the additive metal ion is effective in suppressing the precipitation of precipitates such as manganese oxide (MnO 2 ) even in a trace amount.
  • MnO 2 manganese oxide
  • each metal ion listed as an additive metal ion is expected to easily increase the ratio of the positive electrode active material in the positive electrode electrolyte, and to easily increase the energy density as a large-capacity storage battery.
  • Each of the metal ions listed above mainly functions as a manganese oxide precipitation inhibitor and is considered not to function substantially as a positive electrode active material, but may function as an active material depending on the ion species (for example, , Lead ions, etc.).
  • the added metal ion also functions as a positive electrode active material, the energy density can be further increased as a large-capacity storage battery.
  • the metal ions listed as the additive metal ions any of a form containing a single kind of additive metal ion and a form containing a plurality of kinds of additive metal ions can be used.
  • Examples of the concentration of the added metal ions in the positive electrode electrolyte include 0.001 M or more and 1 M or less.
  • concentration of the added metal ion in the positive electrode electrolyte is 0.001 M or more, generation of precipitates such as manganese oxide (MnO 2 ) can be effectively suppressed.
  • concentration of the added metal ions in the positive electrode electrolyte solution the higher the effect of suppressing manganese oxide, which is expected to be 0.005 M or more, and further 0.01 M or more.
  • the concentration of the added metal ion is preferably 0.8M or less, more preferably 0.5M or less.
  • the concentration of the added metal ion in the positive electrode electrolyte satisfies the above range not only before the unused operation but also at any time during use.
  • the added metal ions in the positive electrode electrolyte can be mixed into the negative electrode electrolyte due to liquid transfer over time.
  • the added metal ions in the positive electrode electrolyte may exist as metal precipitates at any position in the circulation path of the negative electrode electrolyte, for example, in the negative electrode 105, the negative electrode tank 107, and the pipes 109 and 111. That is, the concentration of the added metal ion in the positive electrode electrolyte changes with time and typically tends to decrease with time.
  • the operation method of the RF battery of the first to fourth embodiments is performed at an appropriate time, and the operation of recovering the added metal ions to the positive electrode electrolyte is performed.
  • the added metal ions transferred from the positive electrode electrolyte to the negative electrode electrolyte can be returned to the positive electrode electrolyte.
  • the liquid composition before operation and at the initial operation can be substantially maintained.
  • the concentration of the added metal ions in the positive electrode electrolyte before operation is adjusted so as to satisfy the above specific range, it will change over time, but by performing the above recovery operation appropriately, from before operation to after operation For a long period of time, the concentration can satisfy the specific range.
  • the concentration of the added metal ion in the positive electrode electrolyte is one of the above-described indicators for necessity of the recovery operation and one of the indicators for the completion of the operation. Available.
  • Titanium ions The positive electrode electrolyte provided in the RF battery systems 1A to 1D of Embodiments 1 to 4 can further contain titanium ions. Titanium ions in the positive electrode electrolyte function as a manganese oxide precipitation inhibitor and do not substantially function as a positive electrode active material. Titanium ions in the positive electrode electrolyte exist as at least one of tetravalent titanium ions (mainly Ti 4+ ) and trivalent titanium ions. Tetravalent titanium ions include TiO 2+ and the like.
  • Ti concentration of titanium ions in the positive electrode electrolyte (hereinafter sometimes referred to as Ti concentration) is, for example, 5 M or less (excluding 0).
  • the Ti concentration in the positive electrode electrolyte is 5M or less, preferably 2M or less, for example, even when the electrolyte is an aqueous acid solution, it can be dissolved satisfactorily, and the productivity of the electrolyte is excellent. It is considered that the Ti concentration in the positive electrode electrolyte is easily 0.3 to 2M, more preferably 0.5 to 1.5M. Either a form in which the Mn concentration and the Ti concentration are equal or different can be used. As described later, when the negative electrode electrolyte contains titanium ions, the Ti concentration in the positive electrode electrolyte corresponds to the concentration of titanium ions in the negative electrode electrolyte, 0.3 M or more, 0.5 M or more, Furthermore, it can be set to 1 M or more.
  • the negative electrode electrolyte provided in the RF battery systems 1A to 1D of Embodiments 1 to 4 is at least one metal ion (negative electrode metal ion) selected from titanium ions, vanadium ions, and chromium ions as a negative electrode active material. Containing. Any of these negative electrode metal ions can be combined with manganese ions of the positive electrode active material to form a redox pair having a high electromotive force. Any of the negative electrode metal ions can have various valences as exemplified below.
  • the negative electrode electrolyte contains at least one valence ion that is the negative electrode metal ion.
  • the negative electrode electrolyte contains ions of the same element but different valences. The case where these elements exist as a solid metal in addition to ions is allowed in the negative electrode electrolyte.
  • the negative electrode electrolyte any of a form containing a single type of negative electrode metal ion and a form containing a plurality of types of negative electrode metal ions among the metal ions listed as negative electrode metal ions can be used.
  • Titanium ion trivalent titanium ion, tetravalent titanium ion
  • vanadium ion divalent vanadium ion, trivalent vanadium ion
  • chromium ion divalent chromium ion, trivalent chromium ion
  • the negative electrode electrolyte contains a plurality of types of negative electrode metal ions
  • the negative electrode metal ions are combined in consideration of the standard oxidation-reduction potential of the negative electrode metal ions, that is, the combination of the noble potential and the base potential.
  • the utilization factor of the negative electrode metal ion in the electrolytic solution can be increased, and it can contribute to the improvement of energy density as a large capacity storage battery.
  • the negative electrode electrolyte can be in a form containing titanium ions and vanadium ions.
  • concentration of the negative electrode metal ions in the negative electrode electrolyte examples include 0.3 M or more and 5 M or less. If the density
  • the negative electrode electrolyte solution contains an added metal ion that has moved from the positive electrode electrolyte solution and a metal precipitate formed by reducing the added metal ion.
  • the inclusion of added metal ions and metal precipitates in the negative electrode electrolyte is preferably temporary.
  • the RF battery systems 1A to 1D according to the first to fourth embodiments perform the operation of the RF battery according to the first to fourth embodiments at an appropriate time, and perform a recovery operation of the metal ions added to the positive electrode electrolyte.
  • the effect of addition of added metal ions in the positive electrode electrolyte that is, the effect of suppressing the precipitation of manganese oxide can be sufficiently obtained. By performing this recovery operation, the inclusion of the added metal ions and metal precipitates in the negative electrode electrolyte can be made substantially temporary.
  • the positive electrode electrolyte preferably contains manganese ions, titanium ions, and added metal ions
  • the negative electrode electrolyte preferably contains titanium ions.
  • both the positive electrode electrolyte and the negative electrode electrolyte contain manganese ions and titanium ions, (i) it is easy to avoid a decrease in battery capacity due to a decrease in active material over time, (ii) due to liquid transfer Effects such as easy correction of variations in the amount of electrolyte in both electrodes, (iii) easy to prevent changes in concentration due to migration of manganese ions and titanium ions to the counter electrode, and (iv) easy to manufacture electrolyte. Play.
  • Both the concentration of manganese ions and the concentration of titanium ions in the electrolyte solution of both electrodes can be used in different forms in both electrodes or in the same form in both electrodes.
  • Both the valence of manganese ions and the valence of titanium ions in the electrolyte solution of both electrodes can be used in different forms in both electrodes or in the same form in both electrodes. Either a form in which the concentration of manganese ions and the concentration of titanium ions in the negative electrode electrolyte solution are equal or different can be used.
  • the concentration of manganese ions in the electrolyte solution of both electrodes is equal, the valence is also equal, the concentration of titanium ions in the electrolyte solution of both electrodes is equal, and the valence is also equal, the manufacturability of the electrolyte solution is excellent.
  • an aqueous solution containing water as a solvent can be suitably used for the positive electrode electrolyte and the negative electrode electrolyte.
  • an electrolytic solution is prepared using sulfuric acid or sulfate as a raw material to obtain an aqueous solution containing sulfuric acid, (i) improvement of stability of various metal ions, improvement of reactivity of metal ions serving as active materials, In some cases, improvement in solubility can be obtained.
  • the battery has a low internal resistance.
  • the acid aqueous solution (electrolytic solution) prepared using the above sulfuric acid or sulfate typically includes sulfuric acid (H 2 SO 4 ), sulfonic acid (R—SO 3 H, R is a substituent), and the like.
  • the electrolytic solution is an acid solution
  • the generation of precipitates such as manganese oxide can be suppressed to some extent by increasing the acid concentration.
  • an aqueous solution prepared using a known acid for example, phosphoric acid
  • a known salt for example, phosphate
  • the materials of the positive electrode 104 and the negative electrode 105 include those mainly composed of carbon fiber, for example, non-woven fabric (carbon felt) and paper.
  • carbon felt non-woven fabric
  • a known electrode can be used as the electrode.
  • ion exchange membranes such as a cation exchange membrane and an anion exchange membrane
  • the effect of the ion exchange membrane is that (i) the positive electrode active material ion and the negative electrode active material ion are excellent in isolation, and (ii) the H + ion that is the charge carrier in the battery cell 100 is excellent in permeability. And can be suitably used for the diaphragm 101.
  • a known diaphragm can be used as the diaphragm.
  • Embodiment 1 With reference to FIG. 1, the RF battery system 1A of Embodiment 1 and the operation method of the RF battery using the RF battery system 1A will be described.
  • the basic configuration of the RF battery system 1A and the composition of the electrolytic solution used are the same as those of the RF battery system 1 described above (see also FIG. 7).
  • the RF battery system 1A detects a presence state of a metal deposit 99 formed by reduction of added metal ions that have moved from the positive electrode electrolyte to the negative electrode electrolyte circulation path. 40, a branch introduction pipe 10 for supplying the positive electrode liquid in the positive electrode tank 106 from the positive electrode tank 106 to the negative electrode 105, and a branch return pipe 12 for returning the liquid that has passed through the negative electrode 105 to the positive electrode tank 106.
  • a branch introduction pipe 10 for supplying the positive electrode liquid in the positive electrode tank 106 from the positive electrode tank 106 to the negative electrode 105
  • a branch return pipe 12 for returning the liquid that has passed through the negative electrode 105 to the positive electrode tank 106.
  • the RF battery system 1A may include at least one detection unit among those described later.
  • the detection unit 40 includes an SOC measurement unit that can measure the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte.
  • SOC for example, a method of measuring the potential of the electrolytic solution, the absorption wavelength or absorbance of each ion in the electrolytic solution, and reading these measurement data into the SOC can be used.
  • the SOC measuring unit can be provided with a measuring instrument capable of measuring the above-described potential, absorption wavelength, and the like.
  • an SOC measuring unit 41 that is attached to a pipe 108 or a pipe 110 through which a positive electrode electrolyte is circulated to measure the potential of the positive electrode electrolyte, and a pipe 109 or a pipe 111 through which the negative electrode electrolyte is circulated.
  • the form provided with the SOC measurement part 42 which is attached and measures the electric potential of a negative electrode electrolyte solution is mentioned.
  • FIG. 1 and FIGS. 2 to 5 to be described later virtually show a state in which the SOC measuring units 41 and 42 are installed in the downstream pipes 110 and 111, respectively.
  • the correspondence relationship between the oxidation-reduction potential and the SOC in the electrolytic solution follows, for example, the Nernst equation.
  • the operator confirms the potential of the electrolyte solution at each electrode and uses the redox potential of the electrolyte solution at each electrode with respect to the reference electrode, or uses the open-circuit voltage between the positive electrode and the negative electrode.
  • the obtained potential can be read as SOC, and the SOC of the electrolyte of each electrode can be easily grasped. If the SOC measuring units 41 and 42 are equipped with a device having a mechanism for automatically replacing the potential of the electrolytic solution with the SOC, the operator can grasp the SOC more accurately.
  • the operator can easily grasp the SOC of the electrolyte solution of each electrode.
  • the SOC of the negative electrode electrolyte is lower than that of the positive electrode electrolyte, in other words, when the difference between the SOC of the positive electrode electrolyte and the SOC of the negative electrode electrolyte is large, an operator may have a large amount of metal deposits. I can judge. If an SOC measurement unit that automatically measures the above-described SOC difference and has a mechanism that can determine that the difference is equal to or greater than a set threshold is used, the worker has a large amount of metal deposits. Can be grasped more easily.
  • the flowmeter 44 provided in the circulation path of a negative electrode electrolyte solution is mentioned.
  • the flow meter 44 is attached to the pipe 109 or the pipe 111 through which the negative electrode electrolyte is circulated, and measures the flow rate of the negative electrode electrolyte.
  • FIG. 1 and FIGS. 2 to 5 described later virtually show a state in which the flow meter 44 is installed in the downstream pipe 111.
  • the flow rate of the negative electrode electrolyte is lower than the set value, it becomes difficult for metal precipitates to mix and flow, or the metal deposit 99 is clogged in the negative electrode 105 and a sufficient amount does not flow through the pipe 111. Can be judged. That is, it can be determined that a large amount of metal precipitates can exist. If a mechanism capable of determining that the flow rate is equal to or lower than the set threshold value is provided in addition to the flow meter 44, the operator can more easily understand that a large amount of metal deposits are present.
  • the detection unit 40 may include a transparent window 46 provided in the circulation path of the negative electrode electrolyte.
  • the transparent window part 46 is attached to the pipe 109 or the pipe 111 through which the negative electrode electrolyte is circulated so that the negative electrode electrolyte in the pipe 109 or the pipe 111 can be visually confirmed.
  • FIG. 1 and FIGS. 2 to 5 to be described later virtually show a state in which the transparent window portion 46 is installed in the downstream pipe 111. The operator can easily determine the presence or absence of metal precipitates by directly checking the presence or absence of metal precipitates in the negative electrode electrolyte from the transparent window 46. From such usage, the transparent window portion 46 is preferably made of a material having transparency that allows the inside of the pipes 109 and 111 to be visually confirmed and having resistance to the negative electrode electrolyte, such as transparent hard vinyl chloride. .
  • the operator can more accurately grasp the amount of metal deposits.
  • the transparency of the transparent window portion 46 decreases. Therefore, the degree of adhesion of metal deposits, that is, the number of metal deposits can be grasped by measuring the transparency.
  • the transparency can be measured using a transmittance measuring device that irradiates the transparent window 46 with transmitted light and measures the transmittance.
  • the transparent window portion 46 is provided so that a transparent region exists at a radially opposing position of the pipe 111 or the like so that the transmitted light can be irradiated.
  • a part of the pipe 111 or the like may be a transparent pipe. If a mechanism capable of determining that the transmittance is equal to or less than the set threshold value is provided in addition to the transmittance measuring device, the operator can more easily grasp that there are many metal precipitates.
  • the detection unit 40 include a concentration measurement unit that measures the concentration of added metal ions in the positive electrode electrolyte.
  • the concentration measuring unit may be an electrolytic solution extracting unit, and the extracted electrolytic solution may be analyzed by ICP emission spectroscopy or ICP mass spectroscopy. If a mechanism capable of determining that the measured concentration is equal to or less than the set threshold is further provided, the operator can more easily understand that a large amount of metal deposits are present.
  • a valence measurement unit that measures the valence of the negative electrode metal ions of the negative electrode electrolyte can be used.
  • the valence measuring unit may be an electrolytic solution extraction unit, and the extracted electrolytic solution may be analyzed by coulometry or the like.
  • the operator can determine that there are many metal deposits in the negative electrode electrolyte. If a mechanism capable of determining that the measured amount of discharged negative electrode ions is equal to or less than a set threshold value is further provided, the operator can more easily grasp the presence of a large amount of metal precipitates.
  • a computer can be used as the mechanism capable of determining the magnitude relationship with the above threshold.
  • a computer or the like may be used as the control unit of the RF battery system 1A.
  • a presence determination unit that determines whether or not the presence state of the metal precipitate is equal to or greater than a set threshold value, and commands execution / stop of the recovery operation of the added metal ions to the positive electrode electrolyte based on the determination result And a recovery command unit to be used.
  • the detection unit 40 is the SOC measurement unit 41, 42, etc.
  • the presence determination unit may be an SOC determination unit that performs determination based on a comparison between the measured SOC and a threshold value.
  • the detection unit 40 is a flow meter 44
  • the above-described transparency measuring device, concentration measuring unit, or valence measuring unit the measurement data is flow rate, transparency, concentration, valence, etc., and the measurement data is compared with a threshold value.
  • the presence determination unit that performs the determination may be a flow rate determination unit, a transparency determination unit, a concentration determination unit, or a valence determination unit, respectively.
  • the collection command unit may command opening and closing of valves 20, 22, 30, and 32 described later.
  • Branch introduction pipe / branch return pipe In the example shown in FIG. 1, one end is a pipe 108 upstream of the positive electrode and connected to the downstream side of the pump 112, and the other end is connected to the pipe 109 upstream of the negative electrode. And a branch return pipe 12 having one end connected to a pipe 110 on the downstream side of the positive electrode and the other end connected to a pipe 111 on the downstream side of the negative electrode.
  • the branch introduction pipe 10 and the branch return pipe 12 can be made of the same material, size (inner diameter, etc.) and thickness as the pipes 108 to 111.
  • Typical constituent materials for the branch introduction pipe 10, the branch return pipe 12, and the pipes 108 to 111 are resins such as vinyl chloride, polyethylene, polypropylene, and polytetrafluoroethylene.
  • the opening positions of the branch introduction pipe 10 and the branch return pipe 12, that is, the connection positions with the pipes 108 to 111 can be selected as appropriate, and FIG. 1 is an example.
  • the branch introduction pipe 10 and the branch return pipe 12 are provided with valves 20 and 22, respectively, which are opened when the positive electrode electrolyte flows through the negative electrode 105 (op, right figure in FIG. 1), and are closed at other times. (Cl, left figure of FIG. 1).
  • Valves 30 and 32 are also provided in the pipe 109 on the upstream side of the negative electrode and the pipe 111 on the downstream side of the negative electrode, respectively, and are closed when the positive electrolyte flows through the branch introduction pipe 10 and the branch return pipe 12 (cl, (Right figure in FIG. 1), it opens when the negative electrode electrolyte is circulated to perform normal charge / discharge (op, left figure in FIG. 1).
  • the valve 30 is provided between the connection point of the branch introduction pipe 10 in the pipe 109 on the upstream side of the negative electrode and the negative electrode tank 107.
  • the valve 32 is provided on the downstream side (closer to the negative electrode tank 107) than the connection point of the branch return pipe 12 in the pipe 111 on the downstream side of the negative electrode. Any of the valves 20, 22, 30, 32 and valves 24, 26 to 29, and 34 to 37, which will be described later, may be used as appropriate.
  • the RF battery system 1A is used for charging and discharging while circulating and supplying a positive electrode electrolyte and a negative electrode electrolyte, similarly to the conventional RF battery system. In general, a standby period is provided between the charging operation and the discharging operation. In general, the electrolytic solution prepared before operation is continuously used as it is, and charging and discharging are repeated.
  • a positive electrode active material containing manganese ions as the positive electrode active material and containing added metal ions that are effective in suppressing the precipitation of manganese oxide over time is used.
  • the added metal ions move from the positive electrode electrolyte to the negative electrode electrolyte, and the added metal ions are further reduced in the negative electrode electrolyte by a negative electrode active material or the like. May be present as precipitate 99.
  • the metal deposit 99 is collected as ions in the positive electrode electrolyte. This premise is the same for Embodiments 2 to 4 described later.
  • Ti 3+ , Ti 4+ titanium ions
  • Ti 3+ negative electrode metal ions
  • bismuth ions Bi 3+
  • bismuth Bi
  • the detection unit 40 detects the presence state of the metal precipitate formed by reducing the above-described added metal ions in the negative electrode electrolyte circulation path. If it is determined from the information from the detection unit 40 that the metal electrolyte is contained in the circulation path of the negative electrode electrolyte and it is better to perform the recovery operation to the positive electrode electrolyte, Perform the process.
  • the added metal ions mixed in the circulation path of the negative electrode electrolyte are deposited on the negative electrode 105 in the circulation path of the negative electrode electrolyte to form metal precipitates. It is believed that it can exist as 99.
  • SOC state of charge
  • the added metal ions are likely to exist as the metal precipitate 99 due to a decrease in the solubility of the metal precipitate 99 in the negative electrode electrolyte, and in the vicinity of the negative electrode 105, It is because it is thought that it is easy to receive.
  • the positive electrode electrolyte at the end of charging is supplied to the negative electrode 105 on which the metal deposit 99 is deposited, and the liquid passed through the negative electrode 105 is returned to the positive electrode tank 106. Then, the added metal ions are recovered in the positive electrode electrolyte.
  • both the valves 30 and 32 of the negative-side pipes 109 and 111 are closed (cl), and the valve 20 of the branch introduction pipe 10 and the branch return pipe are closed. All the 12 valves 22 are opened (op).
  • the positive electrode pump 112 is driven, and the positive electrode electrolyte is applied to the negative electrode 105 of the battery cell 100 through the positive electrode upstream pipe 108, the branch introduction pipe 10, and the negative electrode upstream pipe 109 in this order. Supply.
  • the positive electrode electrolyte solution that has passed through the negative electrode 105 is returned to the positive electrode tank 106 via a pipe 111 on the downstream side of the negative electrode, the branch return pipe 12, and a pipe 110 on the downstream side of the positive electrode in this order.
  • the positive electrode electrolyte can be supplied also to the positive electrode 104 using the pipes 108 and 110 on the positive electrode side.
  • the positive electrolyte solution that has passed through the negative electrode 105 is pushed into the positive electrode tank 106 in a state that the metal deposit 99 is included. Since the positive electrode tank 106 is sufficiently provided with charged Mn ions (Mn 3+ ) capable of reducing the metal precipitate 99, the metal precipitate 99 introduced into the positive electrode tank 106 is reduced by the charged Mn ions and added. Becomes a metal ion. For example, when the added metal ion is bismuth ion, the following redox reaction occurs. 3Mn 3+ + Bi ⁇ 3Mn 2+ + Bi 3+
  • the metal deposit 99 is reduced to charged Mn ions through the path after the battery cell 100 and introduced into the positive electrode tank 106.
  • the metal deposit 99 deposited on the negative electrode 105 as described above is dissolved and ionized in the positive electrode electrolyte, and the added metal ions are recovered in the positive electrode electrolyte. Can do.
  • the RF battery system 1A of Embodiment 1 sufficiently recovers the metal deposit 99 deposited on the negative electrode 105 by sufficiently supplying the positive electrode electrolyte, for example, by repeatedly circulating and supplying a plurality of times. it can.
  • the positive electrode electrolyte can be supplied until the metal deposit 99 substantially disappears in the negative electrode electrolyte.
  • the positive electrode electrolyte can be supplied until the SOC of the positive electrode electrolyte is substantially equal to the SOC of the negative electrode electrolyte, or until no metal deposit can be confirmed from the transparent window 46.
  • the negative electrode electrolyte contains the metal deposit 99, the negative electrode electrolyte at the end of charging cannot sufficiently charge electrons, that is, cannot be sufficiently charged, and may contain discharge negative ions. Therefore, the SOC of the negative electrode electrolyte at the end of charging tends to be lower than the SOC of the positive electrode electrolyte at the end of charging.
  • the positive electrode electrolyte contains discharged manganese ions (hereinafter sometimes referred to as “discharged Mn ions”), so that the SOC decreases.
  • discharged Mn ions discharged manganese ions
  • the RF battery system 1A of the first embodiment closes both the valve 20 of the branch introduction pipe 10 and the valve 22 of the branch return pipe 12 (cl).
  • the valves 30 and 32 of the pipes 109 and 111 on the negative electrode side are both closed and may be opened when charging / discharging (op).
  • the RF battery system 1A of Embodiment 1 can substantially maintain the liquid composition before operation by repeatedly performing the above-described metal deposit recovery operation at an appropriate interval during a standby period such as after charging. This also applies to Embodiments 2 to 4 described later.
  • the RF battery system 1A of Embodiment 1 can suppress precipitation of the manganese oxide by an additional metal ion by making positive electrode electrolyte into the specific liquid composition containing a manganese ion and an addition metal ion.
  • the RF battery system 1A according to the first embodiment performs the operation method of the RF battery according to the first embodiment, so that the added metal ions move from the positive electrode electrolyte to the negative electrode electrolyte over time, so that Even if the added metal ions are reduced and may exist as metal precipitates in the negative electrode electrolyte, the RF battery system 1A of Embodiment 1 can easily recover the added metal ions in the positive electrode electrolyte.
  • the RF battery system 1A according to the first embodiment performs the long-term effect of suppressing the precipitation of manganese oxide due to the inclusion of the added metal ions in the positive electrode electrolyte by performing the operation method of the RF battery according to the first embodiment. Can be obtained.
  • Embodiment 2 With reference to FIG. 2, the RF battery system 1B of Embodiment 2 and the operation method of the RF battery using the RF battery system 1B will be described.
  • the basic configuration of the RF battery system 1B and the composition of the electrolyte to be used are the same as those of the RF battery system 1 described above (see also FIG. 7).
  • the RF battery system 1B is similar to the RF battery system 1A of the first embodiment in that the detection unit 40, the branch introduction pipe 10, and the branch return pipe 12 are provided (the right figure in FIG. 2).
  • One of the features of the RF battery system 1 ⁇ / b> B is that the RF battery system 1 ⁇ / b> B includes a communication pipe 14 that communicates the positive electrode tank 106 and the negative electrode tank 107.
  • the branch introduction pipe 10 and the branch return pipe 12 are omitted in the left diagram of FIG.
  • the RF battery system 1B has one end connected to the positive electrode tank 106 and the other end connected to the negative electrode tank 107 so that the positive electrode tank 106 and the negative electrode tank 107 communicate with each other.
  • One communication pipe 14 is provided.
  • the communication pipe 14 communicates the positive electrode tank 106 and the negative electrode tank 107 so that the positive electrode electrolyte solution in the positive electrode tank 106 and the negative electrode electrolyte solution in the negative electrode tank 107 can be mixed and mixed in the positive electrode tank 106 and the negative electrode tank 107.
  • the constituent material of the communication pipe 14 the same constituent materials as the pipes 108 to 111 can be used.
  • the size (inner diameter, etc.) of the communication pipe 14 may be selected as appropriate. However, when the pipe is made larger (thicker) than the pipe 108, etc., the electrolyte solutions of both electrodes can be quickly mixed.
  • the opening position of the communication pipe 14, that is, the connection position between the positive electrode tank 106 and the negative electrode tank 107 can be selected as appropriate. As shown in FIG. 2, in the RF battery system 1B, when the opening position of the communication pipe 14 is provided at the bottom of the positive electrode tank 106 and the negative electrode tank 107, the entire liquid in the positive electrode tank 106 and the negative electrode tank 107 can be easily mixed.
  • the communication pipe 14 is provided with a valve 24, which is opened when the electrolytes of both electrodes are mixed, and closed otherwise (cl).
  • a valve 24 By providing the valve 24 in the communication pipe 14, both electrolytes can be mixed only when necessary, and the RF battery system 1B can reduce loss due to mixing, for example, loss of self-discharge.
  • the RF battery system 1B can include a plurality of communication pipes.
  • it can be set as RF battery system 1B provided with the following two communicating pipes (not shown).
  • One communication pipe has one end connected to the positive electrode tank 106 (for example, the bottom portion) and the other end connected to the negative electrode tank 107 (for example, the upper portion).
  • Another communication pipe has one end connected to the negative electrode tank 107 (for example, the bottom) and the other end connected to the positive electrode tank 106 (for example, the upper).
  • the RF battery system 1B and the point that the connecting pipe 14 described later includes a pump are the same as in the third embodiment described later.
  • a pump (not shown) can be provided in the communication pipe 14 or the like.
  • a pump By using a pump, it is possible to mix the electrolytes of both electrodes more quickly.
  • the degree of freedom of the opening position of the communication pipe 14 and the like can be increased. Even if a pump is not provided, sufficient mixing can be performed using the weight of the electrolytic solution by devising the opening position of the communication pipe 14 as described above.
  • Branch introduction pipe / branch return pipe The RF battery system 1B of the second embodiment also has one end connected to the pipe 108 upstream of the positive electrode and the other end of the negative electrode as shown by a two-dot chain line in the right diagram of FIG.
  • a branch introduction pipe 10 connected to the upstream pipe 109 is provided, one end is connected to the downstream pipe 110 of the positive electrode, and the other branch return pipe 12 is connected to the downstream pipe 111 of the negative electrode.
  • the branch introduction pipe 10 and the branch return pipe 12 are each provided with valves 20 and 22.
  • the mixed solution obtained by mixing the electrolytes of both electrodes using the communication pipe 14 is stored in the positive electrode tank 106 and the negative electrode tank 107, and is stored in the positive electrode tank 106.
  • the valves 20 and 22 of the branch introduction pipe 10 and the branch return pipe 12 are opened, and are closed otherwise. That is, the RF battery system 1B of the second embodiment is different from the first embodiment in that the liquid flowing through the branch introduction pipe 10 and the branch return pipe 12 is a mixed liquid.
  • valves 30 and 32 are provided in the pipe 109 on the upstream side of the negative electrode and the pipe 111 on the downstream side of the negative electrode, respectively.
  • the valves 30 and 32 are closed when the mixed liquid in the positive electrode tank 106 is circulated through the branch introduction pipe 10 and the branch return pipe 12, and are opened when the negative electrode electrolyte is circulated for normal charge / discharge.
  • the RF battery system 1B uses a positive electrode electrolyte containing manganese ions and added metal ions, and continuously uses the electrolyte prepared before the operation, so that the added metal ions are reduced. It moves from a positive electrode electrolyte solution to a negative electrode electrolyte solution, and may contain a metal deposit in the negative electrode electrolyte solution.
  • the operation method of the RF battery of Embodiment 2 is to collect this metal deposit as ions in the positive electrode electrolyte, and in particular, the following mixing step and charging step are performed before the dissolution step.
  • the RF battery system 1B of the second embodiment also uses the detection unit 40 to detect the presence state of the above-described metal deposits in the negative electrode electrolyte circulation path. If it is determined from the information from the detection unit 40 that the metal electrolyte is contained in the circulation path of the negative electrode electrolyte and the recovery operation to the positive electrode electrolyte is preferable, the above-described normal charge / discharge operation is not performed. The dissolution process is performed through the following mixing process and charging process during a waiting period.
  • the added metal ions mixed into the circulation path of the negative electrode electrolyte are oxidized as metal precipitates. It is thought that it exists easily in the state of ions. Further, in the RF battery system 1B of Embodiment 2, since the negative electrode electrolyte at the end of discharge has high solubility of the metal precipitate, when the metal precipitate is oxidized and ionized by the charged negative electrode ions, it is likely to exist as ions as it is. It is considered that added metal ions are likely to exist.
  • the added metal ions are sufficiently present in the negative electrode cell 103, the negative electrode tank 107, the negative electrode side pipes 109 and 111, and the like. Therefore, in the operation method of the RF battery according to the second embodiment, first, the additive metal ions present in the circulation path of the negative electrode electrolyte are deposited on the negative electrode 105, and the metal deposit 99 is surely present on the negative electrode 105. Are positively formed (the right figure of FIG. 2).
  • the positive electrode electrolyte is supplied to the negative electrode 105, and the liquid that has passed through the negative electrode 105 is returned to the positive electrode tank 106, whereby the added metal ions are recovered in the positive electrode electrolyte.
  • the valve 24 of the communication tube 14 is opened, and the positive electrode electrolyte in the positive electrode tank 106 and the negative electrode electrolysis in the negative electrode tank 107
  • the liquid is mixed and stored in the positive electrode tank 106 and the negative electrode tank 107.
  • the added metal ions contained in the positive electrode electrolyte can move to the negative electrode tank 107, but are allowed because they can be recovered by the subsequent charging operation.
  • the mixed metal ions at the end of the discharge are mixed so that the added metal ions can be present in the positive electrode tank 106 and the negative electrode tank 107 more reliably.
  • the valve 24 of the communication pipe 14 is closed (cl).
  • the mixed liquid containing the added metal ions is stored in the positive electrode tank 106 and the negative electrode tank 107.
  • the above-mentioned mixed solution is charged with the valve 24 of the communication pipe 14 closed.
  • the charging voltage at this time can be the same as the charging end voltage during normal charging operation, but can be adjusted to the extent that the added metal ions are deposited.
  • the charging potential of the battery cell 100 is higher than the potential of the above-described mixed solution obtained by mixing the electrolyte solution at the end of discharge. Therefore, as shown in the right diagram of FIG. 2, the added metal ions contained in the mixed liquid in the negative electrode tank 107 receive electrons at the negative electrode 105 and become metal precipitates 99. That is, the metal deposit 99 is deposited on the negative electrode 105. It is preferable to perform charging until substantially all of the added metal ions existing in the circulation path of the negative electrode electrolyte are deposited on the negative electrode 105 as the metal precipitate 99.
  • charging negative electrode ions for example, Ti 4+
  • the potential of the mixed liquid is lower than the charging potential of the battery cell 100.
  • the oxidation-reduction reaction between the metal deposit 99 and the charged negative electrode ions hardly occurs, and the metal deposit 99 can substantially maintain the state of adhering to the negative electrode 105.
  • charged Mn ions increase in the mixed liquid in the positive electrode tank 106.
  • the dissolution step is performed in the same manner as in the first embodiment in order to ionize the metal deposit 99 adhering to the negative electrode 105 and collect it in the positive electrode electrolyte.
  • the valves 30 and 32 of the pipes 109 and 111 on the negative electrode side are both closed, and the valve 20 of the branch introduction pipe 10 and the valve 22 of the branch return pipe 12 are both opened.
  • the pump 112 on the positive electrode side is driven, and the positive electrode tank 106 is connected to the negative electrode 105 of the battery cell 100 through the pipe 108 upstream of the positive electrode, the branch introduction pipe 10, and the pipe 109 upstream of the negative electrode in this order.
  • Supply the mixed solution The mixed solution that has passed through the negative electrode 105 is returned to the positive electrode tank 106 through the pipe 111 on the downstream side of the negative electrode, the branch return pipe 12, and the pipe 110 on the downstream side of the positive electrode in this order.
  • the mixed solution that has passed through the negative electrode 105 is pushed into the positive electrode tank 106 in a state containing the metal deposit 99 and is dissolved and ionized in the positive electrode tank 106, It is ionized in the route and is collected as added metal ions in the positive electrode tank 106.
  • the metal deposit 99 deposited on the negative electrode 105 as described above is dissolved and ionized in the positive electrode electrolyte, and the added metal ions are recovered in the positive electrode electrolyte. Can do. Also in the operation method of the RF battery according to the second embodiment, the metal precipitate 99 is circulated and supplied multiple times while the presence of the metal precipitate 99 is appropriately confirmed by the detection unit 40. It can be collected more reliably.
  • the operation method of the RF battery of the second embodiment closes both the valve 20 of the branch introduction pipe 10 and the valve 22 of the branch return pipe 12.
  • the valves 30 and 32 of the negative pipes 109 and 111 and the valve 24 of the communication pipe 14 are kept closed.
  • the valves 30 and 32 of the pipes 109 and 111 may be opened.
  • Embodiment 2 makes the positive electrode electrolyte solution into a specific liquid composition containing manganese ions and additive metal ions, as in Embodiment 1, so that manganese oxides by additive metal ions In addition to being able to suppress the precipitation, by performing the operation method of the RF battery of Embodiment 2, the added metal ions that have moved from the positive electrode electrolyte to the negative electrode electrolyte can be easily recovered in the positive electrode electrolyte.
  • the negative electrode 105 and the vicinity thereof are disposed.
  • Collect metal deposit 99 (perform charging step).
  • the RF battery system 1B of the second embodiment is used to perform the operation method of the RF battery of the second embodiment, so that the added metal ions included in the circulation path of the negative electrode electrolyte are deposited on the negative electrode 105, and the negative electrode 105 And the metal deposit 99 is efficiently collected in the vicinity thereof.
  • the RF battery system 1B of Embodiment 2 can efficiently recover the added metal ions in the positive electrode electrolyte.
  • the RF battery system 1B according to the second embodiment has a long-term effect of suppressing the precipitation of manganese oxide due to the inclusion of the added metal ions in the positive electrode electrolyte by performing the operation method of the RF battery according to the second embodiment. Can be obtained.
  • the electrolyte solution of each electrode used for charging / discharging is a mixed solution. That is, the positive electrode electrolyte includes manganese ions, negative electrode metal ions (for example, titanium ions), and additive metal ions, and the negative electrode electrolyte includes manganese ions and negative electrode metal ions (for example, titanium ions). As described above, in the unused state, the ions in the electrolytes of both electrodes can be overlapped. This also applies to the RF battery system 1C of the third embodiment that performs mixing.
  • Embodiment 3 With reference to FIGS. 3 and 4, the RF battery system 1 ⁇ / b> C of Embodiment 3 and the method of operating the RF battery using the RF battery system 1 ⁇ / b> C will be described.
  • the basic configuration of the RF battery system 1C and the composition of the electrolyte to be used are the same as those of the RF battery system 1 described above (see also FIG. 7).
  • the RF battery system 1C is similar to the RF battery system 1B of the second embodiment in that the detection unit 40 and the communication tube 14 are provided.
  • the RF battery system 1C includes a negative branch introduction pipe 16 that supplies the liquid in the positive electrode tank 106 to the negative electrode 105, a negative branch return pipe 18 that returns the liquid that has passed through the negative electrode 105 to the positive electrode tank 106, and a negative electrode tank 107.
  • the branch introduction pipe 17 for positive electrode that supplies the liquid inside to the positive electrode 104
  • a branch return pipe 19 for positive electrode that returns the liquid that has passed through the positive electrode 104 to the negative electrode tank 107 (right diagram in FIG. 4).
  • the characteristic points of the RF battery system 1C will be described in detail, and detailed descriptions of other components, the composition of the electrolytic solution, and the like will be omitted.
  • the branch introduction pipes 16 and 17 and the branch return pipes 18 and 19 are omitted for easy understanding.
  • the RF battery system 1 ⁇ / b> C is connected to the downstream side of the pump 112 with the pipe 108 on the upstream side of the positive electrode, The other end is a pipe 109 on the upstream side of the negative electrode and is provided with a branch introduction pipe 16 on the negative electrode side connected to the downstream side of the pump 113 and a branch introduction pipe 17 on the positive electrode side, and one end is connected to the pipe 110 on the downstream side of the positive electrode.
  • a negative return branch pipe 18 and a positive branch return pipe 19 are connected, the other end of which is connected to a pipe 111 downstream of the negative electrode.
  • the branch introduction pipes 16 and 17 and the branch return pipes 18 and 19 are provided with valves 26, 27, 28, and 29, respectively. Regarding the constituent materials, size (inner diameter), thickness, opening position (connection position) of the branch introduction pipes 16 and 17 and the branch return pipes 18 and 19, the branch introduction pipe 10 and the branch return pipe 12 of the first embodiment are used. You can refer to it.
  • valves 34, 35, 36, and 37 are also provided in the pipes 108 to 111, respectively.
  • the valve 34 is provided between the connecting portions of the bifurcated branch introduction pipes 16 and 17 in the pipe 108 on the upstream side of the positive electrode.
  • the valve 35 is provided between the connection locations of the bifurcated branch introduction pipes 16 and 17 in the pipe 109 on the upstream side of the negative electrode.
  • the valve 36 is provided between the connection points of the bifurcated branch return pipes 18 and 19 in the pipe 110 on the downstream side of the positive electrode.
  • the valve 37 is provided between the connection locations of the bifurcated branch return pipes 18 and 19 in the pipe 111 on the downstream side of the negative electrode.
  • valves 26 to 29 provided in the branch introduction pipes 16 and 17, the branch return pipes 18 and 19 and the valves 34 to 37 provided in the pipes 108 to 111 are opened and closed as follows.
  • a mixed liquid in which electrolytes of both electrodes are mixed is stored in both the positive electrode tank 106 and the negative electrode tank 107, and the mixed liquid in the positive electrode tank 106 is regarded as a negative electrode electrolyte.
  • the valves 26 to 29 provided in the branch introduction pipes 16 and 17 and the branch return pipes 18 and 19 are opened (op), and the pipes 108 to 111 are opened.
  • the valves 34 to 37 provided for the above are closed (cl).
  • the valves 26 to 29 provided in the branch introduction pipes 16 and 17 and the branch return pipes 18 and 19 are closed, and the pipes 108 to 111 are connected.
  • the valves 34 to 37 provided are opened, and normal charge / discharge is performed using the liquid in the positive electrode tank 106 as the positive electrode electrolyte and the liquid in the negative electrode tank 107 as the negative electrode electrolyte.
  • this normal charging / discharging as shown in the right figure of FIG. 3, it is the same as the state where the branch introduction pipes 16, 17, the branch return pipes 18, 19, and the valves 26-29, 34-37 are omitted. It can be said.
  • the RF battery system 1 ⁇ / b> C has one end connected to the positive electrode tank 106 and the other end connected to the negative electrode tank 107.
  • One communication pipe 14 communicating with the negative electrode tank 107 is provided, and the communication pipe 14 is provided with a valve 24.
  • the valve 24 opens when the electrolytes of both electrodes are mixed (op, right diagram in FIG. 3), and closes otherwise (cl, left diagram in FIG. 3, FIG. 4).
  • the RF battery system 1C also uses a positive electrode electrolyte containing manganese ions and added metal ions, and continuously uses the electrolyte prepared before operation as it is.
  • the added metal ions may move from the positive electrode electrolyte to the negative electrode electrolyte, and metal deposits may be included in the negative electrode electrolyte.
  • the operation method of the RF battery of Embodiment 3 is to collect the metal deposit as ions in the positive electrode electrolyte, and the following mixing step and charging step are performed before the dissolution step. Similar.
  • the operation method of the RF battery according to the third embodiment is characterized in that after the charging step, the positive electrode tank 106 is used as a negative electrode tank and the negative electrode tank 107 is switched to the positive electrode tank so that the subsequent charge / discharge operation is performed.
  • the positive electrode tank 106 is used as a negative electrode tank and the negative electrode tank 107 is switched to the positive electrode tank so that the subsequent charge / discharge operation is performed.
  • the RF battery system 1C detects the presence state of the metal deposit in the negative electrode electrolyte circulation path by the detecting unit 40. If it is determined from the information from the detection unit 40 that the metal electrolyte is contained in the circulation path of the negative electrode electrolyte and the recovery operation to the positive electrode electrolyte is preferable, the above-described normal charge / discharge operation is not performed. The dissolution process is performed through the following mixing process and charging process during a waiting period.
  • the RF battery system 1C is charged in a certain amount, for example, when the state of charge (SOC) is 50% or more, the negative electrode electrolyte contains charged negative ions (for example, Ti 4+ ) are present and are stored in the negative electrode tank 107. Therefore, in the RF battery system 1C, after a certain amount of time has passed after the added metal ions mixed in the circulation path of the negative electrode electrolyte are introduced into the negative electrode tank 107, they are reduced by the charged negative ions to become metal deposits 99, Accumulated in the negative electrode tank 107.
  • SOC state of charge
  • FIG. 3 illustrates a state where Bi is deposited as the metal precipitate 99 on the bottom of the negative electrode tank 107.
  • the RF battery system 1C cannot sufficiently recover the metal deposit 99 accumulated at the bottom of the negative electrode tank 107 as described above by simply mixing the electrolytes in the positive electrode tank 106 and the negative electrode tank 107 as in the second embodiment. there is a possibility.
  • the metal deposit 99 is stored in the negative electrode tank 107, and the positive electrode tank 106, the negative electrode tank Replacing 107 is equivalent to collecting the added metal ions in the positive electrode electrolyte.
  • the mixing period may be such that the state of charge (SOC) is 50% or more, and can be 60% or more, 70% or more, 80% or more, or a charging end with sufficiently high SOC.
  • SOC state of charge
  • the added metal ions contained in the positive electrode electrolyte move to the negative electrode tank 107 by about half as shown in the right diagram of FIG. obtain.
  • the right diagram of FIG. 3 illustrates a state where the added metal ions in the positive electrode tank 106: 1 ⁇ Bi 3+ is divided into (1 ⁇ 2) ⁇ Bi 3+ in the positive electrode tank 106 and the negative electrode tank 107.
  • about half of the charged Mn ions (mainly Mn 3+ ) move from the positive electrode tank 106 to the negative electrode tank 107.
  • the diffusion of the added metal ions occurs faster than the metal precipitates 99 are oxidized by these charged Mn ions and charged negative electrode ions, and the metal precipitates 99 in the negative electrode tank 107 substantially remain as they are. In addition, since the solubility of the metal precipitate 99 is not so high as described above, it is considered that the oxidation reaction of the metal precipitate 99 does not occur so much.
  • the valve 24 of the communication pipe 14 is closed (cl). By this mixing step, the mixed liquid containing the added metal ions is stored in the positive electrode tank 106 and the negative electrode tank 107.
  • the above-mentioned mixed liquid is charged with the valve 24 closed (cl).
  • the charging voltage at this time may be the same as the charging end voltage during normal charging operation as in the second embodiment, but may be adjusted to such an extent that the added metal ions are deposited.
  • the charged negative ions increase in the mixed liquid in the negative electrode tank 107 by charging. That is, in the mixed liquid in the negative electrode tank 107, charged negative electrode ions and charged Mn ions introduced by the mixing process are sufficiently present. By these charged ions, the added metal ions in the negative electrode tank 107 are reduced to deposit metal precipitates 99, and the metal precipitates 99 in the negative electrode tank 107 increase.
  • the left diagram of FIG. 4 exemplifies a state where Bi has increased as the metal precipitate 99 in the negative electrode tank 107. It is preferable to perform charging until substantially all of the added metal ions introduced into the negative electrode tank 107 in the mixing step are deposited as the metal precipitate 99.
  • the mixing step and the charging step described above may be performed once, but if repeated a plurality of times, the added metal ions in the positive electrode tank 106 are deposited in the negative electrode tank 107. More can be present as object 99. As the number of repetitions increases, substantially all of the added metal ions in the positive electrode tank 106 can be present as the metal precipitate 99 in the negative electrode tank 107. However, if the number of repetitions is excessive, it takes time. A practical number of repetitions is about 5 times or less, for example, about 2 to 4 times. The number of repetitions can be determined while appropriately checking the presence state of the metal deposit 99 by the detection unit 40.
  • the positive electrode tank 106 that stores a mixed liquid that is substantially free of added metal ions or sufficiently reduced in added metal ions, and before the operation Switching is made between the negative electrode tank 107 that stores the mixed liquid that substantially contains the added metal ions contained in the positive electrode electrolyte as the metal deposit 99. That is, the negative electrode tank 107 in which the metal deposit 99 is present is used as a positive electrode tank.
  • the positive electrode tank 106, the negative electrode tank 107, and the pipes 108 to 111 can be physically removed, and the tanks of both electrodes can be replaced.
  • the bipolar tanks are switched by using the branch introduction pipes 16 and 17, the branch return pipes 18 and 19, and the valves 26 to 29 and 34 to 37 described above. .
  • the valves 26 to 29 provided in the branch introduction pipes 16 and 17 and the branch return pipes 18 and 19 are opened (op),
  • the valves 34 to 37 provided in the pipes 108 to 111 are closed (cl).
  • the mixed liquid from the positive electrode tank 106 can be supplied to the negative electrode 105 through the upstream pipe 108 ⁇ the negative branch introduction pipe 16 ⁇ the upstream pipe 109.
  • the liquid passing through the negative electrode 105 can be returned to the positive electrode tank 106 via the downstream pipe 111 ⁇ the negative branching return pipe 18 ⁇ the downstream pipe 110. That is, the positive electrode tank 106 can be switched to the negative electrode tank.
  • the mixed liquid from the negative electrode tank 107 can be supplied to the positive electrode 104 via the upstream pipe 109 ⁇ the positive branch introduction pipe 17 ⁇ the upstream pipe 108.
  • the liquid that has passed through the positive electrode 104 can be returned to the negative electrode tank 107 via the downstream pipe 110 ⁇ the positive branching return pipe 19 ⁇ the downstream pipe 111. That is, the negative electrode tank 107 can be switched to the positive electrode tank.
  • the electrolyte solution is supplied from the positive electrode tank 106 (the negative electrode tank after switching) to the negative electrode 105, and the positive electrode 104 is supplied from the negative electrode tank 107 (the positive electrode tank after switching).
  • the battery is charged in a state where the electrolyte can be supplied to the battery.
  • the metal deposit 99 stored in the negative electrode tank 107 (the positive electrode tank after switching) is oxidized by charged Mn ions or the like to become added metal ions, and is collected in the switched positive electrode tank.
  • the positive / negative polarity of an output terminal (not shown) connected to the AC / DC converter 200 is switched to change the positive electrode cell 102 to the negative electrode cell and the negative electrode cell 103.
  • the operation method of the RF battery according to Embodiment 3 is charged after the negative electrode tank 107 is switched to the positive electrode tank through the process of positively moving the added metal ions from the positive electrode tank 106 to the negative electrode tank 107 as described above.
  • the metal deposit 99 in the switched tank can be dissolved and ionized in the positive electrode electrolyte (here, mixed solution), and the added metal ions can be recovered in the positive electrode electrolyte.
  • the positive electrode tank 106 which has been the negative electrode tank is switched again to the positive electrode tank.
  • the operation method of the RF battery according to the third embodiment repeats the switching operation of the tanks of each electrode in this way.
  • Embodiment 3 makes the positive electrode electrolyte solution a specific liquid composition containing manganese ions and additive metal ions, as in Embodiment 1, so that manganese oxides by additive metal ions can be reduced.
  • the added metal ions that have moved from the positive electrode electrolyte to the negative electrode electrolyte can be easily recovered in the positive electrode electrolyte.
  • the RF battery system 1C according to the third embodiment actively moves the added metal ions from the positive electrode tank 106 to the negative electrode tank 107 (after performing the mixing step), The added metal ions contained in the negative electrode electrolyte circulation path are deposited in the negative electrode tank 107 to collect the metal deposit 99 (perform the charging step). And this negative electrode tank 107 is utilized as a positive electrode tank (dissolving process is performed).
  • the RF battery system 1C according to the third embodiment can efficiently recover the added metal ions in the positive electrode electrolyte by performing the operation method of the RF battery according to the third embodiment.
  • the RF battery system 1C according to the third embodiment implements the method for operating the RF battery according to the third embodiment, thereby providing a long-term effect of suppressing the precipitation of manganese oxide by including the added metal ions in the positive electrode electrolyte. Can be obtained.
  • Embodiment 4 With reference to FIG. 5, the RF battery system 1D of Embodiment 4 and the operation method of the RF battery using the RF battery system 1D will be described.
  • the basic configuration of the RF battery system 1D and the composition of the electrolytic solution used are the same as those of the RF battery system 1 described above (see also FIG. 7).
  • One of the features of the RF battery system 1D is that it includes a filter unit 50 that collects the metal deposit 99 in the circulation path of the negative electrode electrolyte.
  • the characteristic points will be described in detail, and detailed descriptions of other components, the composition of the electrolytic solution, and the like will be omitted.
  • RF battery system 1D of Embodiment 4 has provided one filter part 50 in the piping 111 of the downstream of a negative electrode.
  • a metal deposit 99 typically an appropriate one capable of collecting fine metal particles can be used.
  • a porous filter made of a material having resistance to an electrolytic solution, particularly acid resistance can be used. Examples of the material include carbon, polyethylene, polypropylene, polytetrafluoroethylene, and polyvinylidene fluoride.
  • One filter unit 50 may be provided as shown in this example, but if a plurality of filter units 50 are provided, the metal deposit 99 can be collected more reliably.
  • the mounting position of the filter unit 50 can be selected as appropriate.
  • the filter unit 50 can be attached to the upstream pipe 109. As shown in this example, it is considered that the loss of the pump 113 can be easily reduced if the mounting position of the filter unit 50 is the downstream pipe 111.
  • the filter unit 50 Since the filter unit 50 directly collects the metal precipitate 99, it can be used for detecting the presence state of the metal precipitate 99. That is, the function of the detection unit 40 described in the first to third embodiments can also be used. Therefore, the RF battery system 1D of the fourth embodiment can be configured not to include the detection unit 40 separately. If it is set as RF battery system 1D provided with both the filter part 50 and the detection part 40, since the presence state of the metal deposit 99 can be confirmed first by the detection part 40, it is not necessary to remove the filter part 50 excessively and work. Excellent in properties.
  • the filter unit 50 can be provided instead of the detection unit 40 or in addition to the detection unit 40.
  • the RF battery system 1D uses a positive electrode electrolyte containing manganese ions and added metal ions, and continuously uses the electrolyte prepared before operation, so that the added metal ions are reduced. It moves from a positive electrode electrolyte solution to a negative electrode electrolyte solution, and may contain a metal deposit in the negative electrode electrolyte solution.
  • the operation method of the RF battery of Embodiment 4 is to collect this metal deposit as ions in the positive electrode electrolyte, and in particular, it is directly collected by the filter unit 50 and dissolved in the positive electrode electrolyte. I will. Hereinafter, this feature point will be described in detail, and detailed description of points that overlap with those of the first embodiment will be omitted.
  • the RF battery system 1D also detects the presence state of the metal deposit in the circulation path of the negative electrode electrolyte by the detection unit 40 or the filter unit 50, and the negative electrode electrolyte If it is determined that a metal deposit is contained in the circulation path and it is better to perform a recovery operation on the positive electrode electrolyte, the following dissolution process is performed during a standby period in which the normal charge / discharge operation is not performed. .
  • the RF battery system 1D also dissolves and ionizes the metal deposit 99 adhering to the filter unit 50 in, for example, the positive electrode tank 106. Particularly at the end of charging, the positive electrode tank 106 sufficiently contains charged Mn ions capable of oxidizing the metal deposit 99. Therefore, it is considered practical to collect the metal deposit 99 from the filter unit 50 at the end of charging and add it to the positive electrode tank 106.
  • the metal deposit 99 collected from the filter unit 50 is added to the positive electrode tank 106 in a state where the state of charge (SOC) is low or at the end of discharge, if charging is performed in the same manner as in Embodiment 3 after the addition, The metal precipitate 99 can be easily ionized by Mn ions.
  • the operation method of the RF battery of Embodiment 4 is as follows. After the metal deposit 99 deposited in the circulation path of the negative electrode solution is collected by the filter unit 50, it is added to the positive electrode electrolyte and dissolved and ionized. The added metal ions can be recovered in the electrolytic solution.
  • the RF battery system 1D according to the fourth embodiment is similar to the first embodiment in that the positive electrode electrolyte has a specific liquid composition containing manganese ions and added metal ions, so that In addition to being able to suppress the precipitation, by performing the operation method of the RF battery of Embodiment 4, the added metal ions that have moved from the positive electrode electrolyte to the negative electrode electrolyte can be easily recovered in the positive electrode electrolyte.
  • the metal precipitate 99 is directly collected by the filter unit 50, and the collected metal deposit 99 is added to the positive electrode electrolyte. Metal ions added to the liquid can be efficiently recovered.
  • RF battery system 1D of Embodiment 4 implements the method of operating the RF battery of Embodiment 4 to provide a long-term effect of suppressing the precipitation of manganese oxide by containing the added metal ions in the positive electrode electrolyte. Can be obtained.
  • the RF battery systems 1A to 1C of the first to third embodiments are combined with the fourth embodiment including the filter unit 50, and the RF battery system 1B of the second embodiment and the RF battery system 1C of the third embodiment are combined.
  • the branch introduction pipe 10 provided in the second embodiment is replaced with the branch introduction pipe 16 on the negative electrode side provided in the third embodiment
  • the branch return pipe 12 provided in the second embodiment is replaced with the branch return pipe 18 on the negative electrode side provided in the third embodiment. Good.
  • Embodiments 1 to 4 By constructing an RF battery system in which Embodiments 1 to 4 are appropriately combined, it becomes possible to combine the operation methods of the RF batteries of Embodiments 1 to 4, and added metal ions that have moved from the cathode electrolyte to the anode electrolyte Is expected to be recovered more effectively.
  • each sample used an aqueous solution of an acid containing manganese ions and titanium ions in both the positive electrode electrolyte and the negative electrode electrolyte.
  • manganese sulfate, titanium sulfate, and sulfuric acid were used as raw materials for all the samples, and bismuth sulfate was further used for samples containing added metal ions.
  • Sample No. The positive electrode electrolytes 1-1 and 1-2 were prepared containing bismuth ions (Bi 3+ ) as additive metal ions.
  • Sample No. The raw material of the positive electrode electrolyte 1-1 was adjusted so that the manganese ion concentration was 1.0M, the titanium ion concentration was 1.0M, the sulfate ion concentration was 5.15M, and the bismuth ion concentration was 0.1M.
  • Sample No. The raw material of the positive electrode electrolyte of 1-2 was adjusted so that the manganese ion concentration was 1.0 M, the titanium ion concentration was 1.0 M, the sulfate ion concentration was 5.03 M, and the bismuth ion concentration was 0.02 M.
  • This positive electrode electrolyte containing manganese ions and titanium ions and not containing bismuth ions.
  • This positive electrode electrolyte has a manganese ion concentration of 1.0M, a titanium ion concentration of 1.0M, and a sulfate ion concentration of 5.0M.
  • the negative electrode electrolytes 1-1 and 1-2 all contained bismuth ions in addition to manganese ions and titanium ions.
  • a carbon felt electrode (9 cm 2 ) and a cation exchange membrane were used for the battery cell.
  • the charging conditions were set such that the charging current was 315 mA and the charging end voltage was 2V.
  • the charging time was controlled, and the RF battery charged until the specified SOC shown in Table 1 was left at room temperature (25 ° C. in this case) to be in a standby state.
  • the system was visually observed over time for the occurrence of precipitates.
  • the precipitate is typically observed as a precipitate in the positive electrode electrolyte.
  • the SOC was determined by the following formula.
  • the Faraday constant is 96,485 (A ⁇ sec / mol).
  • the RF battery system 1 can suppress the precipitation of precipitates such as manganese oxide in the positive electrode electrolyte by containing the additive metal ions in addition to the manganese ions in the positive electrode electrolyte.
  • precipitates manganese oxides
  • the concentration of the added metal ion in the positive electrode electrolyte is preferably 0.01 M or more, more preferably 0.02 M or more, further 0.05 M or more, and 0.1 M or more.
  • an aqueous acid solution containing manganese ions and titanium ions was used for both the positive electrode electrolyte and the negative electrode electrolyte.
  • As the positive electrode electrolyte a solution containing bismuth ions as additional metal ions was prepared.
  • As raw materials manganese sulfate, titanium sulfate, and sulfuric acid were used for both electrodes, and bismuth sulfate was further used for the positive electrode.
  • the raw material of the positive electrode electrolyte was adjusted so that the manganese ion concentration was 1M, the titanium ion concentration was 1M, the sulfate ion concentration was 5.15M, and the bismuth ion concentration was 0.1M.
  • the raw material of the negative electrode electrolyte was adjusted so that the manganese ion concentration was 1M, the titanium ion concentration was 1M, and the sulfate ion concentration was 5M.
  • the charge / discharge conditions were set so that the SOC did not exceed 90%. Specifically, the charge / discharge conditions are: charge / discharge current 25A, charge end voltage 1.5V, discharge end voltage 1.0V, constant current charge / discharge (charge / discharge current value is fixed to the above value). Charging / discharging) was repeated. The charge / discharge test was performed at room temperature (here, 25 ° C.).
  • the battery capacity was measured over time by repeatedly charging and discharging. The result is shown in the graph of FIG.
  • the horizontal axis of the graph in FIG. 6 indicates the number of operating days (days) in which charging / discharging was performed, and the vertical axis indicates the battery capacity (Ah).
  • the RF battery system 1B of Embodiment 2 contains the added metal ions in the positive electrode electrolyte (here, 0.1 M of bismuth ions as in Sample No. 1-1 of Test Example 1). Although the precipitation of manganese oxide can be suppressed, as shown in FIG. 6, it can be seen that the battery capacity decreases with time. In this test, the battery capacity at the initial stage of operation was about 30 Ah. However, as a result of repeated charge and discharge, the battery capacity after 13 days was about 26 Ah. Therefore, when the concentration of bismuth ions in the positive electrode electrolyte solution after 13 days was measured by ICP emission spectroscopic analysis, it was 0.1 M before operation and 0.08 M after 13 days.
  • the RF battery system according to the second embodiment is in contrast to the state in which the added metal ions move from the positive electrode electrolyte to the negative electrode electrolyte and can be formed as metal deposits in the circulation path of the negative electrode electrolyte.
  • 1B implemented the operation
  • the above collection operation was performed during the 14th to 21st days when the graph was interrupted.
  • the concentration of bismuth ions in the positive electrode electrolyte solution was measured by ICP emission spectroscopic analysis after collecting the added metal ions to the positive electrode electrolyte solution (Bi recovery operation), it was 0.094M. That is, by the above recovery operation, the concentration of the added metal ion in the positive electrode electrolyte could be made substantially equal to the concentration before operation (0.1 M).
  • the concentration before operation 0.1 M.
  • the concentration of the added metal ion in the positive electrode electrolyte was set to 0.001M or more, preferably 0.01M or more, and the concentration decreased with time. Even if it maintains, 0.001M or more will be understood that the effect of precipitation suppression of manganese oxide is fully acquired. Conversely, until the concentration of the added metal ions in the positive electrode electrolyte reaches about 0.001M, the positive electrode suppresses the precipitation of manganese oxide even if the added metal ions move from the positive electrode electrolyte to the negative electrode electrolyte. I can say that. In consideration of securing a high battery capacity, it is considered preferable to maintain 0.01 M or more even if the concentration decreases with time.
  • the positive electrode electrolyte and the negative electrode electrolyte contain manganese ions and titanium ions
  • the positive electrode electrolyte does not contain titanium ions
  • the negative electrode electrolyte does not contain manganese ions.
  • the additive metal ions are antimony ions, or bismuth ions and antimony ions.
  • the negative electrode active material is changed to other ions. At this time, the additive metal ion is selected so that the standard oxidation-reduction potential of the additive metal ion is nobler than the standard oxidation-reduction potential of the ion of the negative electrode active material.
  • the added metal ion may be one or more selected from four types of ions other than cadmium ions among the five types of ions listed above.
  • the negative electrode active material when the negative electrode active material is cadmium ions, the negative electrode active material may be one or more selected from five types of ions. 4). At least one of the concentration of each metal ion, the type of acid used for the solvent, the concentration of the acid, the electrode material, the electrode size, and the diaphragm material is changed.
  • Test Example 2 the case where the recovery operation of the added metal ion to the positive electrode electrolyte solution is performed using the RF battery system of Embodiment 2 and the operation method of the RF battery of Embodiment 2 is described. 3 and 4 and the operation method of the RF battery, the same effect can be obtained.
  • the redox flow battery system of the present invention is a large-scale power generator for stabilizing the fluctuation of the power generation output, storing electricity when the generated power is surplus, and leveling the load with respect to the power generation of natural energy such as solar power generation and wind power generation. It can be used for storage batteries with a capacity. Further, the redox flow battery system of the present invention can be suitably used as a large-capacity storage battery that is provided in a general power plant and is intended for measures against instantaneous voltage drop / power failure and load leveling. The operating method of the redox flow battery of the present invention can be carried out during standby without performing normal charge / discharge in the redox flow battery system of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

正極電極に正極タンク内の正極電解液を循環供給し、負極電極に負極タンク内の負極電解液を循環供給して充放電を行うRF電池の運転方法であって、正極電解液はマンガンイオンと添加金属イオンとを含有し、負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有し、添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン及びビスマスイオンから選択される少なくとも一種であり、正極電解液から負極電解液の循環経路に移動した添加金属イオンが還元されてなる金属析出物が負極電解液の循環経路に含まれるときに、金属析出物を正極電解液に溶解してイオン化する溶解工程を含むRF電池の運転方法。

Description

レドックスフロー電池の運転方法、及びレドックスフロー電池システム
 本発明は、マンガンイオンを含む液を正極電解液に用いるレドックスフロー電池システム、及びレドックスフロー電池の運転方法に関するものである。特に本発明は、正極電解液中におけるマンガン酸化物の析出を長期に亘り抑制できるレドックスフロー電池の運転方法、及びレドックスフロー電池システムに関する。
 近年、電力不足の深刻化に伴って、世界規模での風力発電や太陽光発電などの自然エネルギーの急速導入や電力系統の安定化(例えば、周波数や電圧の維持など)が課題となっている。この対策技術の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが注目されている。
 大容量の蓄電池の一つにレドックスフロー電池(以下、RF電池と呼ぶことがある)がある。RF電池は、(i)メガワット級(MW級)の大容量化が容易である、(ii)長寿命である、(iii)電池の充電状態(SOC:State of Charge)が正確に監視可能である、(iv)電池出力と電池容量とを独立して設計でき、設計の自由度が高い、などの特徴を有しており、電力系統の安定化用途の蓄電池として最適であると期待される。
 RF電池は、正極電解液が供給される正極電極と、負極電解液が供給される負極電極と、両極の電極間に介在される隔膜とを備える電池セルを主体とする。代表的には、RF電池と、RF電池に電解液を循環供給するための循環機構とを備えるRF電池システムを構築する。循環機構は、通常、正極電解液を貯留する正極タンクと、負極電解液を貯留する負極タンクと、各極のタンクとRF電池とをそれぞれ接続する配管とを備える。
 各極の電解液には、代表的には、酸化還元により価数が変化する金属イオンを活物質として含有する溶液が利用される。正極活物質に鉄(Fe)イオン、負極活物質にクロム(Cr)イオンを用いるFe-Cr系RF電池、両極の活物質にバナジウム(V)イオンを用いるV系RF電池が代表的である(特許文献1の明細書の段落0003)。
 特許文献1は、正極活物質にマンガン(Mn)イオン、負極活物質にチタン(Ti)イオンなどを用いたMn-Ti系RF電池を開示している。Mn-Ti系RF電池は、従来のV系RF電池よりも高い起電力が得られる、正極活物質の原料が比較的安価である、といった利点を有する。また、特許文献1は、正極電解液にマンガンイオンに加えてチタンイオンを含有することで、マンガン酸化物(MnO)の発生を抑制でき、Mn2+/Mn3+の反応を安定して行えることを開示している。
国際公開第2011/111254号
 マンガンイオンを含む液を正極電解液に用いるレドックスフロー電池に対して、マンガン酸化物(MnO)の析出を長期に亘り抑制できることが望まれる。
 上述のようにMn-Ti系RF電池では、正極電解液にチタンイオンを加えれば、マンガン酸化物(MnO)の発生を抑制できる。しかし、マンガンイオンに加えてチタンイオンを添加した正極電解液であっても、長期の繰り返しの使用によって、MnOが発生し得る。即ち、MnOが経時的に生じ得る。例えば、正極電解液の充電状態(SOC)が高い状態で待機するなどといった運転を行うと、MnOが経時的に生じる場合がある。MnOが析出すると、正極活物質が少なくなり、エネルギー密度が低下するなどの電池特性の低下を招く。
 本発明は上述の事情を鑑みてなされたものであり、その目的の一つは、正極電解液中におけるマンガン酸化物の析出を長期に亘り抑制できるレドックスフロー電池システム、及びレドックスフロー電池の運転方法を提供することにある。
 本発明の一態様に係るレドックスフロー電池の運転方法は、正極電極に正極タンク内の正極電解液を循環供給し、負極電極に負極タンク内の負極電解液を循環供給して充放電を行うレドックスフロー電池の運転に係るものである。
 前記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池の運転方法は、前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物が前記負極電解液の循環経路に含まれるときに、前記金属析出物を前記正極電解液に溶解してイオン化する溶解工程を含む。
 本発明の一態様に係るレドックスフロー電池システムは、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 前記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、前記金属析出物が前記負極電解液の循環経路に含まれるときに、前記正極タンクから前記負極電極に前記正極電解液を供給する分岐導入管、及び前記負極電極を経た液を前記正極タンクに戻す分岐帰路管とを備える。
 本発明の一態様に係るレドックスフロー電池システムは、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 前記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、前記金属析出物が前記負極電解液の循環経路に含まれるときに、前記正極タンクと前記負極タンクとを連通して、前記正極電解液と前記負極電解液とを混合可能にする連通管と、前記正極タンク内に貯留される混合液を前記負極電極に供給する分岐導入管、及び前記負極電極を経た液を前記正極タンクに戻す分岐帰路管とを備える。
 本発明の一態様に係るレドックスフロー電池システムは、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 前記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、前記金属析出物が前記負極電解液の循環経路に含まれるときに、前記正極タンクと前記負極タンクとを連通して、前記正極電解液と前記負極電解液とを混合可能にする連通管と、前記正極タンク内に貯留される混合液を前記負極電極に供給する負極用の分岐導入管、及び前記負極電極を経た液を前記正極タンクに戻す負極用の分岐帰路管と、前記負極タンク内に貯留される混合液を前記正極電極に供給する正極用の分岐導入管、及び前記正極電極を経た液を前記負極タンクに戻す正極用の分岐帰路管とを備える。
 本発明の一態様に係るレドックスフロー電池システムは、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 前記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、前記負極電解液の循環経路に設けられて、前記金属析出物を採取するフィルタ部とを備える。
 上記のレドックスフロー電池の運転方法は、正極電解液中におけるマンガン酸化物の析出を長期に亘り抑制できる。
 上記のレドックスフロー電池システムは、上記のレドックスフロー電池の運転方法の実施に好適に利用できる。上記のレドックスフロー電池システムによって、上記のレドックスフロー電池の運転方法を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り抑制できる。
実施形態1のレドックスフロー電池システムによって、実施形態1のレドックスフロー電池の運転方法を実施するときの手順を説明する説明図である。 実施形態2のレドックスフロー電池システムによって、実施形態2のレドックスフロー電池の運転方法を実施する手順を説明する説明図である。 実施形態3のレドックスフロー電池システムによって、実施形態3のレドックスフロー電池の運転方法を実施する手順を説明する説明図であり、混合工程までを示す。 実施形態3のレドックスフロー電池システムによって、実施形態3のレドックスフロー電池の運転方法を実施する手順を説明する説明図であり、充電工程以降を示す。 実施形態4のレドックスフロー電池システムの模式図である。 実施形態2のレドックスフロー電池システムによって充放電を行った運転日数と、電池容量との関係を示すグラフであり、充放電運転途中に添加金属イオンの回収操作を行った場合を示す。 実施形態1~4のレドックスフロー電池システムの基本構成と、基本的な動作原理とを示す説明図である。
 1,1A,1B,1C,1D レドックスフロー電池システム(RF電池システム)
 10,16,17 分岐導入管 12,18,19 分岐帰路管 14 連通管
 20,22,24,26,27,28,29 バルブ
 30,32,34,35,36,37 バルブ
 40 検知部 41,42 SOC測定部 44 流量計 46 透明窓部
 50 フィルタ部 
 99 金属析出物
 100 電池セル 101 隔膜 102 正極セル 103 負極セル
 104 正極電極 105 負極電極 106 正極タンク 107 負極タンク
 108,109,110,111 配管 112,113 ポンプ
 200 交流/直流変換器 210 変電設備 300 発電部 400 負荷
 [本発明の実施の形態の説明]
 本発明者らは、正極活物質としてマンガンイオンを含む液を正極電解液に用いるレドックスフロー電池について、電解液の流路内に生成され得る析出物のうち、特にマンガン酸化物(MnO)の析出を抑制可能な構成を検討した。その結果、正極電解液に特定の金属イオンを添加すると、MnOの析出抑制に効果があるとの知見を得た。しかし、上述の添加金属イオンは、経時的に生じ得る液移り(一方の極の電解液が他方の極に隔膜を介して移動する現象)などによって正極電解液から負極電解液に混入し、更に混入した添加金属イオンは負極で還元されて析出することがあるとの知見を得た。負極で添加金属イオンが析出すると、以下の問題がある。
 (正極)正極電解液中の添加金属イオンの量が減少して、マンガン酸化物(MnO)の析出を十分に抑制できず、MnOが析出する。MnOの析出によって正極活物質であるマンガンイオンが少なくなる結果、エネルギー密度の低下を招く。
 (負極)充電された負極活物質(以下、充電負極イオンと呼ぶことがある)は還元力が高いため、添加金属イオンを還元する。還元された添加金属イオンは固体金属となって析出する。この還元によって充電負極イオンは放電された負極活物質(以下、放電負極イオンと呼ぶことがある)となるため、充電負極イオンが少なくなり、負極電解液のSOCの低下を招く。添加金属イオンの還元に多くの充電負極イオンが利用されると、負極電解液のSOCが大きく低下する。負極電解液のSOCの低下によって、両極の電解液のSOCの差が大きくなると、電池容量が運転初期の状態に比較して大きく減少するなど電池特性の低下を招く。また、上記固体金属の析出によって、負極電極が目詰まりして電解液の流量の低下や流通圧力の増大による圧損などを招き得る。
 一方、正極電解液に含まれる充電された正極活物質(例えばMn3+、以下充電Mnイオンと呼ぶことがある)は酸化力が高い。そのため、充電Mnイオンを含む正極電解液に、上述の添加金属イオンが析出してなる固体金属を溶解してイオン化すれば、即ち固体金属という析出物から添加金属イオンにすれば、正極電解液の液組成を、未使用を含む運転初期の状態に戻せる。換言すれば、正極電解液の液組成を実質的に未使用の状態又は運転初期の状態に維持できる。本発明は、上記の知見に基づくものである。
 最初に本発明の実施形態の内容を列記して説明する。
 (1) 本発明の一態様に係るレドックスフロー電池(RF電池)の運転方法は、正極電極に正極タンク内の正極電解液を循環供給し、負極電極に負極タンク内の負極電解液を循環供給して充放電を行うレドックスフロー電池の運転に係るものである。
 上記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 上記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 上記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このRF電池の運転方法は、上記正極電解液から上記負極電解液の循環経路に移動した上記添加金属イオンが還元されてなる金属析出物が上記負極電解液の循環経路に含まれるときに、上記金属析出物を上記正極電解液に溶解してイオン化する溶解工程を含む。
 上記の負極電解液の循環経路は、代表的には上記負極電極を含む電池セルと、上記負極タンクと、上記電池セルと上記負極タンクとを接続する配管とを含む。
 上記のRF電池の運転方法は、正極電解液に特定の添加金属イオンを含むことで、正極電解液中におけるマンガン酸化物(MnO)の析出を抑制できる。特に、上記のRF電池の運転方法は、上記特定の添加金属イオンが経時的に正極電解液から負極電解液の循環経路に混入されて、更には金属析出物となっている場合に、即ち正極電解液中の添加金属イオンが運転初期の状態よりも減少している場合に、金属析出物を正極電解液に溶解してイオン化する。上記のRF電池の運転方法は、金属析出物を添加金属イオンに戻す、即ち正極電解液に溶解するという簡単な操作を適宜な間隔で行うことで、代表的には充放電の間に設ける待機中などに行うことで、正極電解液の液組成を未使用や運転初期の液組成と実質的に同様にすることができる。従って、上記のRF電池の運転方法は、正極電解液に特定の添加金属イオンを含有することによるMnOの析出抑制効果を長期に亘り奏することができる。
 以下、添加金属イオンの析出メカニズムと、この析出に伴う負極での問題を詳細に説明する。まず、負極電解液に含まれて負極活物質として機能する上述の金属イオン(以下、負極金属イオンと呼ぶことがある)と、上述の添加金属イオンとについて、電位の関係を説明する。
 上述の負極活物質となる負極金属イオンの標準酸化還元電位はそれぞれ、以下の通りである。
 Ti3+/Ti4+   0.1V
 V2+/V3+   -0.26V
 Cr2+/Cr3+ -0.42V
 上述の添加金属イオンの標準酸化還元電位はそれぞれ、以下の通りである。
 Cd/Cd2+  -0.4V
 Sn/Sn2+  -0.14V
 Sb/Sb3+   0.21V
 Pb/Pb2+  -0.13V
 Bi/Bi3+   0.22V
 上記の負極金属イオンと上記の添加金属イオンとの組み合わせにもよるが、添加金属イオンの標準酸化電位は、負極金属イオンの酸化還元電位よりも概ね貴な電位をとり得る。例えば、Sb/Sb3+やBi/Bi3+は、上記のいずれの負極金属イオンよりも貴な電位をとる。即ち、添加金属イオンは還元され易いといえる。添加金属イオンは、負極電解液中に混入すると充電負極イオン、例えばTi3+によって還元されて、イオンから固体金属(金属析出物)になり易い。
 上述の添加金属イオンの還元によって、充電負極イオンは酸化されて放電負極イオン、例えばTi4+となる。添加金属イオンの還元による析出現象は、充電負極イオンが最も多く存在し得る充電末などで生じ易いと考えられる。そのため、例えば充電末で待機すると、添加金属イオンの還元による析出現象に起因して、充電負極イオンが減少して放電負極イオンが多くなり、負極電解液のSOCが低下する。その結果、正極電解液のSOCと負極電解液のSOCとの差が大きくなり、電池容量の低下を招く。負極電解液のSOCがある程度高い、例えば50%以上である場合も同様に、充電負極イオンが比較的多く存在するものの、添加金属イオンの還元による析出現象に起因して、両極の電解液のSOCの差が大きくなり得る。
 上述のように添加金属イオンが正極電解液から負極電解液に移動すると、正極では添加金属イオンの減少によって、マンガン酸化物の析出抑制効果を長期的に維持できない。負極では、添加金属イオンが固体金属となって負極電解液中に存在する場合には、負極電解液のSOCの低下や、両極の電解液のSOCの差の増大、電池容量の低下、その他、負極電解液の流量の低下や流通抵抗の増大などを引き起こす。このような金属析出物が存在するときに、上記のRF電池の運転方法を実施することで、正極電解液から負極電解液に移動した添加金属イオンを正極電解液中に回収できる。また、上記のRF電池の運転方法をRF電池の使用時の適宜な時期に実施することで、正極電解液から負極電解液の循環経路への添加金属イオンの混入及び析出を(ある程度)許容しつつ、未使用や運転初期の液組成を十分に維持できる。
 (2) 上記のRF電池の運転方法の一例として、上記溶解工程では、上記金属析出物が上記負極電極に析出しているときに、充電末の上記正極電解液を上記負極電極に供給して、上記負極電極に析出した上記金属析出物を溶解することを含む形態が挙げられる。
 充電末の正極電解液は、充電Mnイオンを十分に含む。充電Mnイオンは高い酸化力を有する。一方、充電末といった負極電解液のSOCが十分に高いときには、金属析出物の溶解度が低くなるため、添加金属イオンは金属析出物として存在し易い。特に、負極電解液中に混入した添加金属イオンが還元されて金属析出物となり易い箇所は、電子を受け取り易い負極電極近傍が挙げられる。上記形態は、このように金属析出物を保有し得る負極電極に、上述の充電Mnイオンを含む正極電解液を供給するため、金属析出物を溶解してイオン化して、添加金属イオンを正極電解液中に容易に回収できる。又は、正極電解液をポンプなどで圧送することで負極電極に付着する金属析出物を正極タンクに押し流せる。正極タンクに集められた金属析出物は、正極タンク内に十分に存在する充電Mnイオンによって溶解されてイオン化できるため、添加金属イオンを正極電解液中に容易に回収できる。従って、上記形態を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。この形態は、負極電極近傍に金属析出物が存在し易い時期、例えば運転開始からの経過時間が比較的短い間に好適に利用できる。金属析出物となる前の添加金属イオンが負極電極近傍に存在し易い時期は、液移りした直後及びその近傍であると考えられるからである。
 (3) 上記の(2)のRF電池の運転方法の一例として、上記溶解工程の前に、放電末に上記正極タンク内の正極電解液と上記負極タンク内の上記負極電解液とを混合して混合液とする混合工程と、上記混合液を充電して、上記負極タンク内の混合液に含まれる添加金属イオンを上記負極電極に析出させる充電工程とを含む形態が挙げられる。
 放電末では、負極電解液のSOCが低く、金属析出物の溶解度が高くなる傾向にあり、負極電解液中に混入した添加金属イオンはイオンの状態で存在し易い。放電条件によっては、実質的に添加金属イオンのみとすることができる。但し、添加金属イオンの負極への移動量が多くなって溶解度の限度を超えた場合には、金属析出物をある程度含み得る。しかし、このような場合でも、電解液を混合すれば、自己放電によってSOCを低くできるため、上記溶解度を高められて添加金属イオンの割合を多くできる。即ち、放電末に両極の電解液を混合することで、両極のタンク内に添加金属イオンをより確実に存在させられる。そして、この混合液を充電すると、負極電極に添加金属イオンを析出させられる。電池セルの充電電位は放電末の負極電解液の電位よりも高いため、負極電解液中の充電負極イオンと添加金属イオンとの酸化還元反応よりも、標準酸化還元電位が高い添加金属イオンの還元反応の方が生じ易いからである。上記形態は、負極タンク内に存在した添加金属イオンを負極電極に析出させられる。即ち、添加金属イオンを負極タンク内などから負極電極近傍に移動させられる。この負極電極の金属析出物に正極タンク内の混合液を供給すると、充電によって正極タンク内の混合液には充電Mnイオンが増加していることから、金属析出物を溶解してイオン化できる。即ち、上記形態は、上記の(2)のように添加金属イオンを正極電解液とする混合液中に容易に回収できる。従って、上記形態を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。上記混合工程と上記充電工程とを繰り返し複数回行うと、添加金属イオンをより確実に回収できる。この形態は、混合後の両極の電解液中に存在し得るイオンが共通するため、混合前において両極の電解液にマンガンイオン及び負極金属イオンを含む場合に利用し易い。特に、負極金属イオンがチタンイオンである場合には、このチタンイオンによっても、マンガン酸化物の析出を抑制できる。その他、上記形態は、放電末の正極電解液と放電末の負極電解液とを混合するため、両極の活物質となるイオンが反応する自己放電に伴う損失を低減できる。
 上記の(3)の形態は、負極タンク内に添加金属イオンが存在し得る時期、例えば運転開始からの経過時間が十分に長い場合に利用し易いと考えられる。液移りによって電池セル内に混入した添加金属イオンが配管などを介して負極タンクに搬送されるためには、ある程度の時間が必要であると考えられるからである。この利用時期に関する点は、後述する(4)の形態についても同様である。
 (4) 上記のRF電池の運転方法の一例として、充電状態が50%以上であるときに上記正極タンク内の正極電解液と上記負極タンク内の負極電解液とを混合して、混合液とする混合工程と、上記混合液を充電して、上記負極タンク内の混合液に含まれる添加金属イオンを析出させて、上記負極タンク内に上記金属析出物を存在させる充電工程とを含み、上記溶解工程は、析出した上記金属析出物を含む上記混合液を貯留する上記負極タンクを上記正極タンクとし、切り替えた上記正極タンク内の上記混合液を充電することを含む形態が挙げられる。
 充電状態(SOC)が50%以上である場合、負極電解液における金属析出物の溶解度がある程度低いため、負極電解液に混入した添加金属イオンは、充電負極イオンによって還元されて金属析出物の状態で存在し易くなる。この金属析出物は、負極金属イオンよりも重いため、負極タンク内に沈殿して堆積し易い。このように金属析出物を含む負極タンク内の負極電解液と、添加金属イオンを含む正極タンク内の正極電解液とを混合すると、正極電解液に含む添加金属イオンを正極タンクと負極タンクとの双方に概ね均等に分配できる。正極電解液に含む充電Mnイオンと、負極タンク内の金属析出物との酸化還元反応によって金属析出物がイオン化して安定して存在するよりも、正極電解液中の添加金属イオンが負極タンク内に拡散する速度の方が速いと考えられるからである。そのため、負極タンク内には、金属析出物が実質的にそのまま残存し、かつ正極タンクから導入された添加金属イオンの半量程度を含む混合液が貯留される。この混合液を充電すると、負極タンク内の添加金属イオンはその周囲に存在し得る充電負極イオンによって主として還元されて金属析出物となる。上記混合工程と上記充電工程とは1回でもよいが、繰り返し複数回行うと、正極電解液に含まれていた添加金属イオンの全量を実質的に負極タンクに移動でき、金属析出物として集められる。
 上述のようにして負極タンク内に金属析出物を集めた後、両極のタンクを切り替えて、負極タンクを正極タンクとし、各極のタンク内の混合液を充電すれば、切り替えられた正極タンク内の金属析出物をその周囲に存在し得る充電Mnイオンなどによって酸化して添加金属イオンにすることができる。その結果、添加金属イオンを含む混合液を新たな正極電解液として利用できる。従って、上記形態を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。この形態は、混合後の両極の電解液中に存在し得るイオンが共通するため、混合前において両極の電解液にマンガンイオン及び負極金属イオンを含む場合に利用し易い。特に、負極金属イオンがチタンイオンである場合には、このチタンイオンによっても、マンガン酸化物の析出を抑制できる。
 (5) 上記の(4)のRF電池の運転方法の一例として、上記混合工程と上記充電工程とを繰り返して複数回行う形態が挙げられる。
 上述の(4)の形態の場合に上記混合工程と上記充電工程との繰り返し回数を多くすることで、正極タンクから負極タンクに添加金属イオンを十分に移動でき、好ましくは実質的に全量を移動でき、負極タンク内に金属析出物として効率よく集められる。その結果、上記形態は、正極電解液の液組成を未使用や運転初期の状態に近付けられる。好ましくは上記形態は、実質的に未使用の状態にできる。
 (6) 上記のRF電池の運転方法の一例として、上記負極電解液の循環経路に設けたフィルタ部によって上記金属析出物を採取する採取工程を含み、上記溶解工程は、採取した上記金属析出物を上記正極電解液に溶解することを含む形態が挙げられる。
 上記形態は、負極電解液中に混入した添加金属イオンが金属析出物となって、負極電極や負極タンク内、電池セルと負極タンクとを接続する配管内などの任意の箇所に存在し得る場合でも、負極電解液を循環させることで、金属析出物を容易に採取できる。採取した金属析出物を正極タンクなどに入れて正極電解液に溶解することで、金属析出物を添加金属イオンとして正極電解液中に回収できる。金属析出物の投入は、充電Mnイオンが十分に存在する充電末にすると、金属析出物を正極電解液に溶解し易い。正極電解液中に充電Mnイオンが十分に存在しない場合でも、金属析出物の投入後に充電すれば容易に溶解できる。従って、上記形態を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。
 上述のRF電池の運転方法の実施に使用するRF電池システムとして、例えば、以下のRF電池システムが挙げられる。
 (7) 本発明の一態様に係るレドックスフロー電池システム(RF電池システム)は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、上記正極電極に循環供給する正極電解液を貯留する正極タンクと、上記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 上記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 上記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 上記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、上記正極電解液から上記負極電解液の循環経路に移動した上記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、上記金属析出物が上記負極電解液の循環経路に含まれるときに、上記正極タンクから上記負極電極に上記正極電解液を供給する分岐導入管、及び上記負極電極を経た液を上記正極タンクに戻す分岐帰路管とを備える。
 上記のRF電池システムは、例えば上述の(2)のRF電池の運転方法の実施に好適に利用できる。上記のRF電池システムは、検知部を備えるため、検知部から得られる情報を利用して、負極電解液中における金属析出物の有無や析出量を容易に判断できる。例えば、金属析出物が多く存在し得ると考えられるときに、より具体的には充電末であって負極電極に金属析出物が析出していると考えられるときに、上記のRF電池システムは、分岐導入管を介して正極タンクから負極電極に正極電解液を供給し、分岐帰路管を介して負極電極を経た液を正極タンクに戻すことができる。負極電極を経た液は、負極電極から押し流した金属析出物を含んでいたり、金属析出物と正極電解液中の充電Mnイオンとの反応によってイオン化した添加金属イオンを含んでいたりする。正極タンクに導入された金属析出物は、上述のように正極タンク内の充電Mnイオンとの反応によってイオン化する。従って、上記のRF電池システムは、金属析出物を添加金属イオンとして正極電解液中に回収できる。また、上記のRF電池システムは、適宜な時期に上述の(2)のRF電池の運転方法を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。
 (8) 本発明の一態様に係るレドックスフロー電池システム(RF電池システム)は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、上記正極電極に循環供給する正極電解液を貯留する正極タンクと、上記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 上記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 上記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 上記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、上記正極電解液から上記負極電解液の循環経路に移動した上記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、上記金属析出物が上記負極電解液の循環経路に含まれるときに、上記正極タンクと上記負極タンクとを連通して、上記正極電解液と上記負極電解液とを混合可能にする連通管と、上記正極タンク内に貯留される混合液を上記負極電極に供給する分岐導入管、及び上記負極電極を経た液を上記正極タンクに戻す分岐帰路管とを備える。
 上記のRF電池システムは、例えば上述の(3)のRF電池の運転方法の実施に好適に利用できる。上記のRF電池システムは、検知部を備えるため、検知部から得られる情報を利用して、負極電解液中における金属析出物の有無や析出量を容易に判断できる。例えば、添加金属がイオンの状態で負極電解液中に多く存在し得ると考えられるときに、より具体的には放電末に、上記のRF電池システムは、連通管を介して両極のタンク内の電解液を容易に混合でき、混合後更に混合液を充電することで、負極側の混合液に含まれる添加金属イオンを負極電極に析出させられる。そして、上記のRF電池システムは、上述の(7)のRF電池システムと同様に、分岐導入管を介して正極タンクから負極電極に正極タンク内の液を供給し、分岐帰路管を介して負極電極を経た液を正極タンクに戻すことができる。正極タンクに戻された液は、上述の(7)のRF電池システムと同様に、金属析出物や添加金属イオンを含み、金属析出物はイオン化する。従って、上記のRF電池システムは、金属析出物を添加金属イオンとして、正極電解液とする混合液中に回収できる。また、上記のRF電池システムは、適宜な時期に上述の(3)のRF電池の運転方法を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。
 (9) 本発明の一態様に係るレドックスフロー電池システム(RF電池システム)は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、上記正極電極に循環供給する正極電解液を貯留する正極タンクと、上記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 上記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 上記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 上記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、上記正極電解液から上記負極電解液の循環経路に移動した上記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、上記金属析出物が上記負極電解液の循環経路に含まれるときに、上記正極タンクと上記負極タンクとを連通して、上記正極電解液と上記負極電解液とを混合可能にする連通管と、上記正極タンク内に貯留される混合液を上記負極電極に供給する負極用の分岐導入管、及び上記負極電極を経た液を上記正極タンクに戻す負極用の分岐帰路管と、上記負極タンク内に貯留される混合液を上記正極電極に供給する正極用の分岐導入管、及び上記正極電極を経た液を上記負極タンクに戻す正極用の分岐帰路管とを備える。
 上記のRF電池システムは、例えば上述の(4)のRF電池の運転方法の実施に好適に利用できる。上記のRF電池システムは、検知部を備えるため、検知部から得られる情報を利用して、負極電解液中における金属析出物の有無や析出量を容易に判断できる。例えば、負極タンク内に金属析出物が多く存在し得ると考えられるときに、より具体的にはSOCが50%以上であるときなどに、上記のRF電池システムは、連通管を介して両極のタンク内の電解液を容易に混合でき、上述のように正極電解液に含まれていた添加金属イオンの概ね半量ずつを含む混合液を各極のタンクに貯留できる。負極タンクには金属析出物が実質的にそのまま存在する。上記のRF電池システムは、このような混合液を充電でき、上述のようにこの充電によって負極タンク内の混合液中の添加金属イオンを金属析出物として集められる。好ましくは上記のRF電池システムは、連通管の開放による両極の電解液の混合と、混合後の充電とを繰り返し行うことで、上記のRF電池システムは、上述のように正極電解液に含まれていた添加金属イオンの実質的に全量を負極タンク内に金属析出物として集められる。
 更に、上記のRF電池システムは、特定の分岐導入管及び分岐帰路管とを備えることで、充電後に、金属析出物を含む混合液を貯留する負極タンクを正極タンクに切り替えられる。詳しくは上記のRF電池システムは、負極タンクに貯留される金属析出物を含む電解液(混合液)を正極電解液とみなして、正極用の分岐導入管を経て正極電極に導入でき、正極用の分岐帰路管を介して、正極電極を経た液を正極タンクとみなす負極タンクに戻すことができる。正極タンクとみなす負極タンク内の金属析出物は、充電Mnチタンとの反応や適宜な充電によって添加金属イオンにできる。上記のRF電池システムは、正極タンクに貯留される添加金属イオンが低減された、好ましくは実質的に除去された電解液(混合液)を負極電解液とみなして、負極用の分岐導入管を経て負極電極に導入でき、負極用の分岐帰路管を介して、負極電極を経た液を負極タンクとみなす正極タンクに戻すことができる。従って、上記のRF電池システムは、金属析出物を添加金属イオンとして、正極電解液とする混合液中に回収できる。また、上記のRF電池システムは、適宜な時期に上述の(4)のRF電池の運転方法を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。
 (10) 本発明の一態様に係るレドックスフロー電池システム(RF電池システム)は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、上記正極電極に循環供給する正極電解液を貯留する正極タンクと、上記負極電極に循環供給する負極電解液を貯留する負極タンクとを備える。
 上記正極電解液は、マンガンイオンと、添加金属イオンとを含有する。
 上記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有する。
 上記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種である。
 このレドックスフロー電池システムは、上記正極電解液から上記負極電解液の循環経路に移動した上記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、上記負極電解液の循環経路に設けられて上記金属析出物を採取するフィルタ部とを備える。
 上記のRF電池システムは、例えば上述の(6)のRF電池の運転方法の実施に好適に利用できる。上記のRF電池システムは、検知部を備えるため、検知部から得られる情報を利用して、負極電解液中における金属析出物の有無や析出量を容易に判断できる。例えば上記のRF電池システムは、金属析出物が多く存在し得ると考えられるときに、フィルタ部によって採取した金属析出物を正極タンクなどに入れて溶解することができる。上記のRF電池システムは、金属析出物の投入後に適宜充電できるため、金属析出物をより確実に溶解できる。従って、上記のRF電池システムは、金属析出物を添加金属イオンとして正極電解液中に回収できる。また、上記のRF電池システムは、適宜な時期に上述の(6)のRF電池の運転方法を実施することで、正極電解液中におけるマンガン酸化物の析出を長期に亘り良好に抑制できる。その他、上記のRF電池システムは、フィルタ部を検知部に兼用できるため、フィルタ部とは独立した検知部を備えていない形態とすることができる。
 (11) 上記のRF電池システムの一例として、上記検知部は、上記正極電解液の充電状態及び上記負極電解液の充電状態をそれぞれ測定可能なSOC測定部、上記負極電解液の循環経路に設けられる透明窓部、及び上記負極電解液の循環経路に設けられる流量計から選択される少なくとも一つを含む形態が挙げられる。
 上記形態のRF電池システムは、負極電解液中に含まれ得る金属析出物の有無や析出量を容易に認識できる。RF電池システムがSOC測定部を備える場合には、両極の電解液のSOCが異なっており、その差が大きいとき、より具体的には上記SOCの差が設定した閾値以上であるときを金属析出物が多いときと判断できる。上述のように負極電解液中に金属析出物が存在すると充電負極イオンが還元して、放電負極イオンが多くなり、負極電解液のSOCが低下して、上記SOCの差が大きくなると考えられるからである。また、上記SOCの差が大きいときはRF電池システムは、負極電解液中に添加金属イオンが多いとも判断できる。そこでRF電池システムは、両極の電解液のSOCが異なっているとき、上記SOCの差を適宜確認しながら、上記SOCの差が小さくなるように、好ましくは両極の電解液のSOCが実質的に等しくなるように、正極電解液への添加金属イオンの回収操作を行う。RF電池システムがSOC測定部を備えると、このように両極の電解液のSOCを確認しながら、上述の回収操作を行える。このようなSOC測定部は、各極のタンクや配管などに設けることが挙げられる。
 RF電池システムが透明窓部を備える場合には、例えば目視確認にて、金属析出物の有無や多寡を容易に判断できる。又は、RF電池システムは透明窓部の透明度を測定することができる。透明窓部に金属析出物が付着することで透明度が低下するため、透明度によって金属析出物の有無や多寡を容易に判断できる。そして、金属析出物が見えなくなるまで、又は透明度が高くなるまで正極電解液への添加金属イオンの回収操作を行う。RF電池システムが透明窓部を備えると、このように金属析出物を確認しながら、上述の回収操作を行える。透明窓は配管などに設けることが挙げられる。
 RF電池システムが流量計を備える場合には、例えば負極電解液の流量が小さいとき、より具体的には設定した閾値以下であるときを金属析出物が多いときと判断できる。負極電解液中に金属析出物が存在すると、重い金属析出物を含んでいたり、負極電極に目詰まりしたりするなどして、負極電解液が流れ難くなると考えられるからである。そしてRF電池システムは、流量が大きくなるまで、即ち閾値を超えるまで正極電解液への添加金属イオンの回収操作を行う。RF電池システムが流量計を備えると、このように流量の状況を確認しながら、上述の回収操作を行える。流量計は配管などに設けることが挙げられる。
 (12) 上記のRF電池システムの一例として、上記正極電解液及び上記負極電解の双方が、マンガンイオンとチタンイオンとを含有する形態が挙げられる。
 上記形態のRF電池システムは、正極活物質をマンガンイオン、負極活物質をチタンイオンとするMn-Ti系RF電池システムである。上記形態のRF電池システムは、正極電解液がチタンイオンを含有するため、マンガン酸化物の析出を更に抑制できる。また、上記形態は、正極電解液及び負極電解液に存在する複数のイオン種が重複する。そのため、上記形態のRF電池システムは、(i)マンガンイオンが負極に、チタンイオンが正極にそれぞれ移動して、各極で本来反応する活物質イオンが相対的に減少することによる電池容量の減少を回避し易い、(ii)充放電に伴って経時的に液移りが生じて両極の電解液の液量にばらつきが生じた場合でも是正し易い、(iii)電解液の製造性に優れる、といった効果を奏する。これらの点から上記形態のRF電池システムは、実用的であり、利用し易いと期待される。特に上述の(8)、(9)のRF電池システムでは両極の電解液を積極的に混合するため、混合以降は上記形態とすることができる。上述の(8)、(9)のRF電池システムでは、混合前の両極の電解液として、マンガンイオン及び負極金属イオンの双方を含むものが利用し易い。なお、正極電解液に添加金属イオンを回収可能である上記のRF電池システムでは、両極の電解液が添加金属イオンを含むことを許容する。即ち上記形態のRF電池システムは、両極の電解液を同じものとすることができるが、正極電解液のみが添加金属イオンを含むことが好ましい。
 (13) 上記のRF電池システムの一例として、上記正極電解液における上記添加金属イオンの濃度(複数種の場合には合計濃度)が0.001M以上1M以下である形態が挙げられる。濃度の単位として示すMとは、体積モル濃度、即ちmol/L(モル/リットル)を意味する。以下、濃度について同様である。
 上記形態のRF電池システムは、正極電解液が添加金属イオンを上述の特定の範囲で含有するため、マンガン酸化物(MnO)の発生を効果的に抑制できる。経時的な液移りなどによって正極電解液中の添加金属イオンの濃度が低下し得るものの、上記のRF電池システムは、正極電解液に添加金属イオンを回収可能である。添加金属イオンの濃度の設定値を上述の範囲とし、この範囲を満たすように正極電解液への添加金属イオンの回収操作を行うことで、上記のRF電池システムは、運転初期から長期に亘り、上述の範囲を満たすことができる。
 (14) 上記のRF電池システムの一例として、上記正極電解液における上記マンガンイオンの濃度、及び上記負極電解液における上記金属イオン(負極金属イオン)の濃度の少なくとも一方が0.3M以上5M以下である形態が挙げられる。負極電解液に含む上記金属イオン(負極金属イオン)が複数種の場合、合計濃度とする。
 上記形態のRF電池システムは、各極の活物質として機能するマンガンイオン、負極金属イオンを上述の特定の範囲で含有することで、(i)価数変化反応を行う金属元素を十分に含み、高いエネルギー密度を有することができる、(ii)電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる、という効果を奏する。
 [本発明の実施形態の詳細]
 以下、図面を参照して、本発明の実施形態に係るレドックスフロー電池システム(RF電池システム)、及びRF電池の運転方法を詳細に説明する。図中、同一符号は同一名称物を示す。
 まず、図7を参照して、RF電池を備えるRF電池システム1の基本構成を説明し、次に実施形態に係るRF電池システムに用いる電解液を説明する。その後、実施形態1~4のRF電池システム1A~1D及びRF電池システム1A~1Dをそれぞれ用いた実施形態1~4のRF電池の運転方法を実施形態ごとに説明する。以下、図において正極タンク106内及び負極タンク107内に示すイオンは、各極の電解液中に含むイオン種の一例を示す。図7において、実線矢印は、充電、破線矢印は、放電を意味する。
 [基本構成]
 (全体構成)
 RF電池システム1は、RF電池と、RF電池に電解液を循環供給する循環機構とを備える。RF電池は、代表的には、交流/直流変換器200や変電設備210などを介して、発電部300と電力系統や需要家などの負荷400とに接続され、発電部300を電力供給源として充電を行い、負荷400を電力提供対象として放電を行う。発電部300としては例えば、太陽光発電機、風力発電機、その他一般の発電所などが挙げられる。
 RF電池は、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、正極電極104,負極電極105間に介在されて正極セル102,負極セル103を分離すると共に所定のイオンを透過する隔膜101とを備える電池セル100を主要構成部材とする。循環機構は、正極電極104に循環供給する正極電解液を貯留する正極タンク106と、負極電極105に循環供給する負極電解液を貯留する負極タンク107と、正極タンク106と電池セル100との間を接続する配管108,110と、負極タンク107と電池セル100との間を接続する配管109,111と、上流側(供給側)の配管108,109に設けられたポンプ112,113とを備える。
 RF電池システム1では、正極タンク106から上流側の配管108を介して正極セル102に正極電解液が供給され、正極セル102から下流側(排出側)の配管110を介して正極電解液が正極タンク106に戻される、という正極電解液の循環経路が構築される。
 また、RF電池システム1では、負極タンク107から上流側の配管109を介して負極セル103に負極電解液が供給され、負極セル103から下流側(排出側)の配管111を介して負極電解液が負極タンク107に戻される、という負極電解液の循環経路が構築される。
 RF電池システム1は、上述の正極電解液の循環経路及び負極電解液の循環経路を利用して、正極セル102に正極電解液を循環供給すると共に、負極セル103に負極電解液を循環供給しながら、各極の電解液中の活物質となる金属イオンの価数変化反応に伴って充放電を行う。
 RF電池には、代表的には、複数の電池セル100を備えるセルスタックと呼ばれる形態が利用される。電池セル100には、一面に正極電極104、他面に負極電極105が配置される双極板(図示せず)と、上記双極板の外周に形成された枠体(図示せず)とを備えるセルフレームを用いた構成が代表的である。枠体は、電解液を供給する給液孔及び電解液を排出する排液孔を有しており、複数のセルフレームを積層することで上記給液孔及び上記排液孔は電解液の流路を構成し、この流路に配管108~111が接続される。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、…と順に繰り返し積層されて構成される。RF電池システム1の基本構成は、公知の構成を適宜利用できる。
 以下に説明する実施形態1~4のRF電池システム1A~1Dでは、正極電解液がマンガンイオンを含有し、負極電解液が特定の負極金属イオンを含有する。特に実施形態1~4のRF電池システム1A~1Dでは、正極電解液が特定の添加金属イオンを含有することを特徴の一つとする。
 (電解液)
 ・正極電解液
 ・・マンガンイオン
 実施形態1~4のRF電池システム1A~1Dに備える正極電解液は、正極活物質としてマンガンイオンを含有する。マンガンイオンは種々の価数をとり得る。代表的には、2価のマンガンイオン(Mn2+)及び3価のマンガンイオン(Mn3+、充電Mnイオン)の少なくとも一方を含む形態が挙げられる。更に、正極電解液は4価のマンガンイオンを含有する場合がある。4価のマンガンイオンは、MnOと考えられる。但し、このMnOは、固体の析出物ではなく、電解液中に溶解したような安定な状態で存在し、放電時、2電子反応(Mn4++2e→Mn2+)によって得られたMn2+を正極活物質として繰り返し使用できて、電池容量の増加に寄与することがある。即ち、4価のマンガンイオンは正極活物質とみなすことができ、固体の析出物であるマンガン酸化物とは別物として取り扱う。正極電解液における4価のマンガンイオンの含有量は、若干量、例えばマンガンイオンの総量(mol)に対して10%以下程度であれば許容する。
 正極電解液中のマンガンイオンの濃度(以下、Mn濃度と呼ぶことがある)は、例えば、0.3M以上5M以下が挙げられる。Mn濃度が0.3M以上であれば、大容量の蓄電池として十分なエネルギー密度(例えば、10kWh/m程度)を有することができる。Mn濃度が高いほどエネルギー密度を高められることから、Mn濃度は0.5M以上、更に1.0M以上、1.2M以上、1.5M以上とすることができる。実施形態1~4のRF電池システム1A~1Dでは、正極電解液が特定の添加金属イオンを含有するため、Mn濃度を高めても、マンガン酸化物といった析出物の析出を良好に抑制でき、マンガンイオンを安定して存在させられる。正極電解液が更にチタンイオンをも含有する場合には、Mn濃度を高めた場合でもマンガン酸化物の析出を十分に抑制できて好ましい。溶媒に対する溶解度を考慮すると、Mn濃度は、5M以下、更に2M以下が利用し易く、電解液の製造性に優れる。各極の電解液に含まれる各種の金属イオンの濃度は、例えば、ICP発光分光法やICP質量分析法などを利用することで測定できる。
 ・・添加金属イオン
 実施形態1~4のRF電池システム1A~1Dに備える正極電解液は、主要な正極活物質が析出してなるマンガン酸化物の析出抑制に効果があるイオンを含有する。この析出抑制イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種の金属イオンとする。添加金属イオンとして列挙した各金属イオンは、以下に例示するように種々の価数をとり得る。しかし添加金属イオンとして列挙した各金属イオンは、その他の価数も有り得る。正極電解液には、上記の添加金属イオンであって、少なくとも一つの価数のイオンが存在する。正極電解液が、同一元素のイオンであって、価数が異なるイオンを含む場合がある。正極電解液には、これらの元素がイオンに加えて、固体金属として存在する場合を許容する。例えば、正極電解液への添加金属イオンの回収操作を行っている最中などでは、正極電解液は、添加金属イオンが還元されてなる金属析出物、即ち、カドミウム、錫、アンチモン、鉛、及びビスマスから選択される少なくとも一種の固体金属を含み得る。
(a)カドミウムイオン:2価のカドミウムイオン
(b)錫イオン:2価の錫イオン、4価の錫イオン
(c)アンチモンイオン:3価のアンチモンイオン、5価のアンチモンイオン
(d)鉛イオン:2価の鉛イオン、4価の鉛イオン
(e)ビスマスイオン:3価のビスマスイオン、5価のビスマスイオン
 添加金属イオンとして列挙した各金属イオンは、微量であっても、マンガン酸化物(MnO)といった析出物の析出抑制に効果がある。添加金属イオンの添加量を微量にできることで、正極電解液における添加金属イオンの含有に伴う正極活物質の割合の低下を抑制し易い。即ち添加金属イオンとして列挙した各金属イオンは、正極電解液中における正極活物質の割合を高め易く、大容量の蓄電池としてエネルギー密度を高め易いと期待される。上記列挙した各金属イオンは、主として、マンガン酸化物の析出抑制剤として機能し、正極活物質として実質的に機能しないと考えられるが、イオン種によっては、活物質として機能する場合がある(例えば、鉛イオンなど)。添加金属イオンが正極活物質としても機能する場合、大容量の蓄電池としてエネルギー密度を更に高められる。添加金属イオンとして列挙した金属イオンのうち、単一種の添加金属イオンを含有する形態、複数種の添加金属イオンを含有する形態のいずれも利用できる。
 正極電解液中の添加金属イオンの濃度(複数種の添加金属イオンを含む場合には合計濃度)は、例えば、0.001M以上1M以下が挙げられる。上記正極電解液中の添加金属イオンの濃度が0.001M以上であれば、マンガン酸化物(MnO)といった析出物の発生を効果的に抑制できる。上記正極電解液中の添加金属イオンの濃度が高いほどマンガン酸化物の抑制効果が高いと期待されることから、0.005M以上、更に0.01M以上とすることができる。添加金属イオンの濃度が高過ぎると、正極電解液中における正極活物質の割合の低下を招き、ひいては大容量の蓄電池としてエネルギー密度の低下を招く。従って、添加金属イオンの濃度は、0.8M以下、更に0.5M以下が好ましい。
 正極電解液中の添加金属イオンの濃度は、未使用である運転前だけでなく、使用途中の任意のときに上記範囲を満たすことが好ましい。正極電解液中の添加金属イオンは、経時的な液移りなどに起因して負極電解液中に混入し得る。更に正極電解液中の添加金属イオンは、負極電解液の循環経路の任意の位置、例えば、負極電極105、負極タンク107内、配管109,111内などで金属析出物となって存在し得る。即ち、正極電解液中の添加金属イオンの濃度は経時的に変化し、代表的には経時的に減少する傾向にある。実施形態1~4のRF電池システム1A~1Dでは、実施形態1~4のRF電池の運転方法を適宜な時期に実施して、正極電解液への添加金属イオンの回収操作を行うことで、正極電解液から負極電解液に移動した添加金属イオンを正極電解液に戻せる。その結果、運転前や運転初期の液組成を実質的に維持できる。特に運転前における正極電解液の添加金属イオンの濃度が上記の特定の範囲を満たすように調整していれば経時的に変動するものの、上述の回収操作を適宜行うことで、運転前から運転後の長期に亘り、上記濃度が上記の特定の範囲を満たすことができる。即ち、実施形態1~4のRF電池の運転方法の実施にあたり、正極電解液中の添加金属イオンの濃度は、上述の回収操作の要否の指標の一つや、操作終了の指標の一つに利用できる。
 ・・チタンイオン
 実施形態1~4のRF電池システム1A~1Dに備える正極電解液は、更に、チタンイオンを含有することができる。正極電解液中のチタンイオンは、マンガン酸化物の析出抑制剤として機能し、正極活物質として実質的に機能しない。正極電解液中のチタンイオンは、4価のチタンイオン(主としてTi4+)及び3価のチタンイオンの少なくとも一方として存在する。4価のチタンイオンは、TiO2+などを含む。正極電解液中のチタンイオンの濃度(以下、Ti濃度と呼ぶことがある)は、例えば、5M以下(0を除く)が挙げられる。正極電解液中のTi濃度が5M以下、好ましくは2M以下であれば、例えば、電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる。正極電解液中のTi濃度は、0.3M以上2M以下程度、更に0.5M以上1.5M以下程度が利用し易いと考えられる。Mn濃度とTi濃度とが等しい形態、異なる形態のいずれも利用できる。後述するように負極電解液がチタンイオンを含有する場合には、正極電解液中のTi濃度は、負極電解液中のチタンイオンの濃度に対応して、0.3M以上、0.5M以上、更に1M以上とすることができる。
 ・負極電解液
 実施形態1~4のRF電池システム1A~1Dに備える負極電解液は、負極活物質としてチタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオン(負極金属イオン)を含有する。これらの負極金属イオンはいずれも、正極活物質のマンガンイオンと組み合わせて、高い起電力を有するレドックス対を構成できる。負極金属イオンはいずれも、以下に例示するように種々の価数をとり得る。負極電解液には、上記の負極金属イオンであって、少なくとも一つの価数のイオンが存在する。負極電解液が同一元素のイオンであって、価数が異なるイオンを含む場合がある。負極電解液には、これらの元素がイオンに加えて、固体金属として存在する場合を許容する。負極電解液は負極金属イオンとして列挙した金属イオンのうち、単一種の負極金属イオンを含有する形態、複数種の負極金属イオンを含有する形態のいずれも利用できる。
(x)チタンイオン:3価のチタンイオン、4価のチタンイオン
(y)バナジウムイオン:2価のバナジウムイオン、3価のバナジウムイオン
(z)クロムイオン:2価のクロムイオン、3価のクロムイオン
 特に、負極活物質としてチタンイオンを含むMn-Ti系RF電池とすると、(i)1.4V程度の起電力が得られる、(ii)負極電解液から正極電解液にチタンイオンが経時的に移動した場合、このチタンイオンは正極電解液中でマンガン酸化物の析出抑制剤として機能できる、といった効果を奏する。
 負極電解液が複数種の負極金属イオンを含有する場合、各負極金属イオンの標準酸化還元電位を考慮した組み合わせとすると、即ち貴な電位のものと卑な電位のものとの組み合わせとすると、負極電解液での負極金属イオンの利用率を高められ、大容量の蓄電池としてエネルギー密度の向上に寄与できる。例えば負極電解液は、チタンイオンとバナジウムイオンとを含む形態とすることができる。
 負極電解液中における負極金属イオンの濃度(複数種の負極金属イオンを含む場合には合計濃度)は、例えば、0.3M以上5M以下が挙げられる。上記負極電解液中における負極金属イオンの濃度が0.3M以上であれば、大容量の蓄電池として十分なエネルギー密度(例えば、10kWh/m程度)を有することができる。上記負極電解液中における負極金属イオンの濃度が高いほどエネルギー密度が高められることから、0.5M以上、更に1.0M以上、1.2M以上、1.5M以上とすることができる。溶媒に対する溶解度を考慮すると、上記負極電解液中における負極金属イオンの濃度は、5M以下、更に2M以下が利用し易く、電解液の製造性に優れる。
 負極電解液は、正極電解液から移動してきた添加金属イオン、及び添加金属イオンが還元されてなる金属析出物を含むことを許容する。負極電解液における添加金属イオンや金属析出物の含有は、一時的であることが好ましい。実施形態1~4のRF電池システム1A~1Dは、実施形態1~4のRF電池の運転方法を適宜な時期に実施して、正極電解液への添加金属イオンの回収操作を行うことで、正極電解液における添加金属イオンの添加効果、即ちマンガン酸化物の析出抑制の効果を十分に得られる。この回収操作を行うことで、負極電解液における添加金属イオンや金属析出物の含有を実質的に一時的なものにすることができる。
 マンガン酸化物の析出抑制の効果を十分に得るためには、正極電解液は、マンガンイオンと、チタンイオンと、添加金属イオンとを含み、負極電解液は、チタンイオンを含むことが好ましい。更に、正極電解液及び負極電解液の双方が、マンガンイオンと、チタンイオンとを含むと、(i)経時的な活物質の低減による電池容量の減少を回避し易い、(ii)液移りによる両極の電解液の液量のばらつきを是正し易い、(iii)対極へのマンガンイオン及びチタンイオンの移動に起因する濃度の変化を防止し易い、(iv)電解液を製造し易い、といった効果を奏する。
 両極の電解液中のマンガンイオンの濃度及びチタンイオンの濃度は、両極で異なる形態、両極で等しい形態のいずれも利用できる。両極の電解液中におけるマンガンイオンの価数及びチタンイオンの価数は、両極で異なる形態、両極で等しい形態のいずれも利用できる。負極電解液中におけるマンガンイオンの濃度とチタンイオンの濃度とが等しい形態、異なる形態のいずれも利用できる。両極の電解液中のマンガンイオンの濃度が等しく、更に価数も等しく、両極の電解液中のチタンイオンの濃度が等しく、更に価数も等しいと、電解液の製造性に優れる。
 ・電解液の溶媒など
 上述の各極の電解液に含有する金属イオンは、いずれも水溶性イオンである。従って、正極電解液及び負極電解液には、溶媒を水とする水溶液を好適に利用できる。特に、原料に硫酸や硫酸塩を用いて電解液を作製して、硫酸を含む水溶液とすると、(i)各種の金属イオンの安定性の向上、活物質となる金属イオンの反応性の向上、溶解度の向上が得られる場合がある、(ii)マンガンイオンのような電位が高い金属イオンを用いる場合でも副反応が生じ難い(水の電気分解が生じ難い)、(iii)イオン伝導度が高く、電池の内部抵抗が小さくなる、(iv)塩酸を利用した場合と異なり、塩素ガスが発生しない、(v)硫酸塩などと水とを用いて電解液が容易に得られ、製造性に優れる、といった複数の効果が期待できる。上記硫酸や硫酸塩を用いて作製した酸の水溶液(電解液)は、代表的には、硫酸(HSO)やスルホン酸(R-SOH、Rは置換基)などを含む。電解液を酸溶液とする場合、酸の濃度を高めると、マンガン酸化物といった析出物の発生をある程度抑制できる。電解液には、硫酸や硫酸塩の他、公知の酸(例えば、リン酸)や公知の塩(例えば、リン酸塩)を用いて作製した水溶液を利用できる。
 (その他の構成部材の材質など)
 ・電極
 正極電極104及び負極電極105の材質は、炭素繊維を主体とするもの、例えば、不織布(カーボンフェルト)やペーパーが挙げられる。カーボンフェルト製の電極を利用すると、(i)電解液に水溶液を用いた場合において充電時に酸素発生電位になっても酸素ガスが発生し難い、(ii)表面積が大きい、(iii)電解液の流通性に優れる、といった効果を奏する。電極は公知の電極を利用できる。
 ・隔膜
 隔膜101としては、例えば、陽イオン交換膜や陰イオン交換膜といったイオン交換膜が挙げられる。イオン交換膜は、(i)正極活物質のイオンと負極活物質のイオンとの隔離性に優れる、(ii)電池セル100内での電荷担体であるHイオンの透過性に優れる、といった効果を奏し、隔膜101に好適に利用できる。隔膜は公知の隔膜を利用できる。
 [実施形態1]
 図1を参照して、実施形態1のRF電池システム1A、及びRF電池システム1Aを用いたRF電池の運転方法を説明する。
 RF電池システム1Aの基本構成、及び利用する電解液の組成は、上述のRF電池システム1と同様である(図7も参照)。RF電池システム1Aは、基本構成のRF電池システム1に加えて、正極電解液から負極電解液の循環経路に移動した添加金属イオンが還元されてなる金属析出物99の存在状態を検知する検知部40と、正極タンク106から負極電極105に正極タンク106内の正極電極液を供給する分岐導入管10と、負極電極105を経た液を正極タンク106に戻す分岐帰路管12とを備える点を特徴の一つとする。以下、特徴点を詳細に説明し、その他の構成部材、電解液の組成などについては詳細な説明を省略する。
 ・RF電池システム
 ・・検知部
 検知部40は、液移りなどによって、負極電解液の循環経路に混入した添加金属イオンが金属析出物99となって存在する状態を認識できる適宜なものが利用できる。RF電池システム1A(~1D)は後述するもののうち、少なくとも一つの検知部を備えていればよい。
 例えば、検知部40としては、正極電解液のSOC及び負極電解液のSOCをそれぞれ測定可能なSOC測定部が挙げられる。SOCの測定には、例えば、電解液の電位、電解液中の各イオンの吸収波長や吸光度などを測定し、これらの測定データをSOCに読み替える方法が利用できる。従って、SOC測定部には、上述の電位や吸収波長などを測定可能な測定器を備えるものが利用できる。例えばRF電池システムとして、正極電解液が流通される配管108又は配管110に取り付けられて、正極電解液の電位を測定するSOC測定部41と、負極電解液が流通される配管109又は配管111に取り付けられて負極電解液の電位を測定するSOC測定部42とを備える形態が挙げられる。図1、及び後述する図2~図5では、下流側の配管110,111にそれぞれSOC測定部41,42が設置された状態を仮想的に示す。電解液における酸化還元電位とSOCとの対応関係は、例えば、ネルンスト式に従う。
作業者は各極の電解液の電位を確認して、参照電極に対する各極の電解液の酸化還元電位を利用したり、正極と負極との間の開放電圧を利用したりすることで、測定した電位をSOCに読み替えて、各極の電解液のSOCを容易に把握できる。SOC測定部41,42として、電解液の電位をSOCに自動的に読み替える機構を備える機器を利用すれば、作業者はSOCをより正確に把握できる。SOC測定部41,42として、分光法を利用して各イオンの吸収波長や吸光度などを測定するものとする場合、各イオンの吸収波長や吸光度の違いを利用して検量線を作製し、検量線を参照して、測定した吸光波長などをSOCに読み替えることで、作業者は各極の電解液のSOCを容易に把握できる。負極電解液のSOCが正極電解液に比較して低い場合、換言すれば、正極電解液のSOCと負極電解液のSOCとの差が大きい場合、作業者は金属析出物が多く存在し得ると判断できる。SOC測定部として、上述のSOCの差を自動的に計測し、この差が設定した閾値以上であると判定可能な機構を備えるものを利用すれば、作業者は金属析出物が多く存在することをより簡単に把握できる。
 又は、検知部40としては、負極電解液の循環経路に設けられる流量計44が挙げられる。流量計44は、負極電解液が流通される配管109又は配管111に取り付けられて負極電解液の流量を測定する。図1、及び後述する図2~図5では、下流側の配管111に流量計44が設置された状態を仮想的に示す。負極電解液の流量が設定値よりも低い場合、金属析出物が混入して流れ難くなったり、負極電極105に金属析出物99が目詰まりして配管111に十分な量が流れなくなったりしていると判断できる。即ち、金属析出物が多く存在し得ると判断できる。流量計44に加えて、流量が設定した閾値以下であると判定可能な機構を併設すれば、作業者は金属析出物が多く存在することをより簡単に把握できる。
 又は、検知部40は、負極電解液の循環経路に設けられる透明窓部46が挙げられる。具体的には、透明窓部46は、負極電解液が流通される配管109又は配管111に取り付けられて、配管109又は配管111内の負極電解液を目視確認できるものが挙げられる。図1、及び後述する図2~図5では、下流側の配管111に透明窓部46が設置された状態を仮想的に示す。作業者は、透明窓部46から負極電解液中における金属析出物の有無を直接目視にて確認することで、金属析出物の有無及び多寡を容易に判断できる。透明窓部46は、このような使用法から、配管109,111内部を目視確認できる程度の透明性を有し、かつ負極電解液に対する耐性を有する材料、例えば透明硬質塩化ビニルなどによって構成するとよい。
 検知部40として透明窓部46に加えて透明度を測定可能な機構を併設すれば、作業者は金属析出物の多寡をより正確に把握できる。ここで、金属析出物が析出して透明窓部46に付着すると、透明窓部46の透明度が低下する。そのため、透明度を測定することで、金属析出物の付着度合い、即ち金属析出物の多寡を把握できる。透明度は、透明窓部46に透過光を照射して、その透過度を測定する透過度測定器などを利用して測定できる。この場合、透過光の照射が可能なように、配管111などの径方向の対向位置に透明領域が存在するように透明窓部46を設ける。例えば、配管111などの一部を透明配管とすることが挙げられる。透過度測定器に加えて、透過度が設定した閾値以下であると判定可能な機構を併設すれば、作業者は金属析出物が多く存在することをより簡単に把握できる。
 その他の検知部40として、正極電解液の添加金属イオンの濃度を測定する濃度測定部が挙げられる。濃度測定部は、電解液の抽出部とし、抽出した電解液をICP発光分光法やICP質量分光法などによって分析することが挙げられる。測定した濃度が設定した閾値以下であると判定可能な機構を更に備えれば、作業者は金属析出物が多く存在することをより簡単に把握できる。別の検知部40として、負極電解液の負極金属イオンの価数を測定する価数測定部が挙げられる。価数測定部は、電解液の抽出部とし、抽出した電解液をクーロメトリーなどによって分析することが挙げられる。例えば、充電末であれば、充電負極イオンが多いと考えられるが、測定した価数の多くが放電負極イオンであれば、作業者は負極電解液に金属析出物が多く存在すると判断できる。測定した放電負極イオンの量が設定した閾値以下であると判定可能な機構を更に備えれば、作業者は金属析出物が多く存在することをより簡単に把握できる。
 上述の閾値との大小関係を判定可能な機構には、例えばコンピュータなどが利用できる。コンピュータなどをRF電池システム1Aの制御部とすればよい。この制御部として、金属析出物の存在状態が設定した閾値以上か否かを判定する存在判定部と、この判定結果に基づいて正極電解液への添加金属イオンの回収操作の実行・停止を指令する回収指令部とを有するものが挙げられる。検知部40をSOC測定部41,42などとする場合、存在判定部は、測定したSOCと閾値との比較から判定を行うSOC判定部とすればよい。検知部40を流量計44、上述の透明度測定器、濃度測定部、又は価数測定部などとする場合、測定データを流量、透明度、濃度、価数などとし、測定データと閾値との比較から判定を行う存在判定部をそれぞれ、流量判定部、透明度判定部、濃度判定部、又は価数判定部などとすればよい。回収指令部は、後述するバルブ20,22,30,32の開閉を指令すればよい。
 ・・分岐導入管/分岐帰路管
 図1に示す例では、一端が正極の上流側の配管108であってポンプ112の下流側に接続され、他端が負極の上流側の配管109に接続される分岐導入管10を備え、一端が正極の下流側の配管110に接続され、他端が負極の下流側の配管111に接続される分岐帰路管12を備える。分岐導入管10,分岐帰路管12は、配管108~111と同様の構成材料、大きさ(内径など)、厚さのものなどを利用できる。分岐導入管10,分岐帰路管12,配管108~111の構成材料としては、塩化ビニル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンなどの樹脂が代表的である。分岐導入管10,分岐帰路管12の開口位置、即ち配管108~111との接続位置は適宜選択でき、図1は例示である。
 分岐導入管10、分岐帰路管12にはそれぞれ、バルブ20,22を設けており、正極電解液を負極電極105に流通するときに開き(op、図1の右図)、それ以外のときには閉じる(cl、図1の左図)。負極の上流側の配管109、負極の下流側の配管111にもそれぞれ、バルブ30,32を設けており、分岐導入管10,分岐帰路管12に正極電解液を流通するときに閉じ(cl、図1の右図)、通常の充放電を行うために負極電解液を流通するときには開く(op、図1の左図)。バルブ30は、負極の上流側の配管109における分岐導入管10の接続箇所と、負極タンク107との間に備える。バルブ32は、負極の下流側の配管111における分岐帰路管12の接続箇所よりも下流側(負極タンク107寄り)に備える。バルブ20,22,30,32、後述するバルブ24,26~29,34~37はいずれも、電解液の配管の開閉に使用されている適宜なものを利用するとよい。
 ・RF電池の運転方法
 実施形態1のRF電池システム1Aを用いて、正極電解液への添加金属イオンの回収操作を行う実施形態1のRF電池の運転方法の手順を説明する。
 RF電池システム1Aは、従来のRF電池システムと同様に、正極電解液、負極電解液を循環供給しながら充放電を行うことに使用される。充電運転と放電運転との間には、一般に、待機期間を設ける。また、一般に、運転前に用意した電解液をそのまま継続して利用して、繰り返し充放電を行う。RF電池システム1Aでは、正極活物質をマンガンイオンとし、経時的なマンガン酸化物の析出抑制に効果がある添加金属イオンを含有する正極電解液を使用する。上述のように同じ電解液を継続的に使用することで、添加金属イオンが正極電解液から負極電解液に移動し、更に添加金属イオンは負極電解液内で負極活物質などによって還元されて金属析出物99として存在し得る。実施形態1のRF電池の運転方法では、この金属析出物99を正極電解液にイオンとして回収する。この前提は、後述する実施形態2~4についても同様である。図1、及び後述する図2~図5は、負極金属イオンとしてチタンイオン(Ti3+、Ti4+)、添加金属イオンとしてビスマスイオン(Bi3+)、金属析出物99としてビスマス(Bi)を例示している。
 ・・検知工程
 具体的には、検知部40によって、負極電解液の循環経路における上述の添加金属イオンが還元されてなる金属析出物の存在状態を検知する。検知部40からの情報から、負極電解液の循環経路に金属析出物が含まれており、正極電解液への回収操作を行った方がよいと判断したら、上述の待機期間などに以下の溶解工程を行う。
 ・・溶解工程
 図1の左図に示すように、充電末では、負極電解液の循環経路に混入した添加金属イオンは負極電解液の循環経路のうち、負極電極105に析出して金属析出物99として存在し得ると考えられる。充電によって充電状態(SOC)が高くなることで、添加金属イオンは、負極電解液における金属析出物99の溶解度が低下して金属析出物99として存在し易い上に、負極電極105近傍では、電子を受け取り易いと考えられるからである。そこで、実施形態1のRF電池の運転方法では、金属析出物99が析出している負極電極105に充電末の正極電解液を供給して、負極電極105を経た液を正極タンク106に戻すことで、添加金属イオンを正極電解液中に回収する。
 具体的には、図1の右図に示すように、充電末に、負極側の配管109,111のバルブ30,32をいずれも閉じ(cl)、分岐導入管10のバルブ20、分岐帰路管12のバルブ22をいずれも開く(op)。この状態で、正極側のポンプ112を駆動して、正極の上流側の配管108、分岐導入管10、負極の上流側の配管109を順に介して、電池セル100の負極電極105に正極電解液を供給する。負極電極105を経た正極電解液を、負極の下流側の配管111、分岐帰路管12、正極の下流側の配管110を順に介して、正極タンク106に戻す。このとき、正極側の配管108,110を利用して、正極電極104にも正極電解液を供給することができる。
 負極電極105を経た正極電解液は、金属析出物99を含んだ状態で正極タンク106に押し流される。正極タンク106内には金属析出物99を還元しうる充電Mnイオン(Mn3+)を十分に備えることから、正極タンク106に導入された金属析出物99は、充電Mnイオンによって還元されて、添加金属イオンになる。例えば、添加金属イオンがビスマスイオンの場合には、以下の酸化還元反応が起こる。
       3Mn3++Bi⇒3Mn2++Bi3+
 又は、充電末の正極電解液は、上述のように充電Mnイオンを十分に含むため、電池セル100以降の経路で金属析出物99が充電Mnイオンに還元されて正極タンク106に導入される。
 実施形態1のRF電池の運転方法は、上述のように負極電極105に析出していた金属析出物99を正極電解液に溶解してイオン化し、正極電解液中に添加金属イオンを回収することができる。
 また実施形態1のRF電池システム1Aは、正極電解液を十分に供給することで、例えば、繰り返し複数回循環供給することで、負極電極105に析出していた金属析出物99をより確実に回収できる。例えば、正極電解液の供給時に検知部40を利用して金属析出物99の存在状態を確認し、負極電解液中に金属析出物99が実質的に無くなるまで、正極電解液を供給できる。具体的には、正極電解液のSOCと負極電解液のSOCとが実質的に等しくなるまでや、透明窓部46から金属析出物が確認できなくなったりするまで、正極電解液を供給できる。
 なお、負極電解液が金属析出物99を含むということから、充電末の負極電解液は、電子を十分に貰えずに、即ち十分に充電できず、放電負極イオンを含み得る。そのため、充電末の負極電解液のSOCは、充電末の正極電解液のSOCに比較して低くなる傾向にある。一方、上述の金属析出物の回収操作を行うと、正極電解液には放電されたマンガンイオン(以下、放電Mnイオンと呼ぶことがある)を含むため、SOCが低下する。その結果、上述の金属析出物の回収操作を行うことで、正極電解液のSOCと負極電解液のSOCとを実質的に等しくできる。
 添加金属イオンの回収操作が完了したら、実施形態1のRF電池システム1Aは、分岐導入管10のバルブ20、分岐帰路管12のバルブ22をいずれも閉じる(cl)。実施形態1のRF電池システム1Aは、負極側の配管109,111のバルブ30,32はいずれも閉じたままとし、充放電を行うときに開くとよい(op)。
 上述の金属析出物の回収操作を充電後などの待機期間に適宜な間隔で繰り返し行うことで、実施形態1のRF電池システム1Aは、運転前の液組成を実質的に維持できる。この点は、後述する実施形態2~4についても同様である。
 ・効果
 実施形態1のRF電池システム1Aは、正極電解液を、マンガンイオンと添加金属イオンとを含む特定の液組成とすることで、添加金属イオンによるマンガン酸化物の析出を抑制できる。特に、実施形態1のRF電池システム1Aによって、実施形態1のRF電池の運転方法を実施することで、経時的に正極電解液から負極電解液に添加金属イオンが移動して、正極電解液中の添加金属イオンが減り、負極電解液中に金属析出物として存在し得ることがあっても、実施形態1のRF電池システム1Aは、添加金属イオンを正極電解液中に容易に回収できる。従って、実施形態1のRF電池システム1Aは、実施形態1のRF電池の運転方法を実施することで、正極電解液中に添加金属イオンを含有することによるマンガン酸化物の析出抑制の効果を長期に亘り得ることができる。
 [実施形態2]
 図2を参照して、実施形態2のRF電池システム1B、及びRF電池システム1Bを用いたRF電池の運転方法を説明する。
 RF電池システム1Bの基本構成、及び利用する電解液の組成は、上述のRF電池システム1と同様である(図7も参照)。RF電池システム1Bは、検知部40と、分岐導入管10と、分岐帰路管12とを備える点(図2の右図)は、実施形態1のRF電池システム1Aに類似する。RF電池システム1Bは、正極タンク106と負極タンク107とを連通する連通管14を備える点を特徴の一つとする。以下、特徴点を詳細に説明し、その他の構成部材、電解液の組成などについては詳細な説明を省略する。図2の左図では分かり易いように、分岐導入管10,分岐帰路管12を省略している。
 ・RF電池システム
 ・・連通管
 図2に示す例では、RF電池システム1Bは、一端が正極タンク106に接続され、他端が負極タンク107に接続されて、正極タンク106,負極タンク107を連通する連通管14を一つ備える。連通管14は、正極タンク106,負極タンク107を連通することで、正極タンク106の正極電解液と負極タンク107の負極電解液との混合を可能にし、正極タンク106,負極タンク107内に混合液を貯留することに利用する。連通管14の構成材料は配管108~111と同様の構成材料が利用できる。連通管14の大きさ(内径など)は適宜選択するとよいが、配管108などよりも大きくする(太くする)と、両極の電解液の混合を速やかに行える。連通管14の開口位置、即ち正極タンク106,負極タンク107との接続位置は適宜選択できる。図2に示すように、RF電池システム1Bは、正極タンク106,負極タンク107の底部に、連通管14の開口位置を設けると、正極タンク106,負極タンク107内の液全体を混合し易い。
 連通管14には、バルブ24を設けており、両極の電解液を混合するときに開き、それ以外のときには閉じる(cl)。連通管14にバルブ24を設けることで、必要なときにのみ両電解液を混合でき、RF電池システム1Bは、混合に起因する損失、例えば自己放電の損失などを低減できる。
 その他、RF電池システム1Bは、複数の連通管を備えることができる。例えば、以下の二つの連通管(図示せず)を備えるRF電池システム1Bとすることができる。一つの連通管は、一端が正極タンク106(例えば底部)に接続され、他端が負極タンク107(例えば上部)に接続される。別の連通管は、一端が負極タンク107(例えば底部)に接続され、他端が正極タンク106(例えば上部)に接続される。このように複数の連通管を備えると、一方の極の電解液を他方の極のタンクに効率よく導入でき、より迅速に両電解液を混合し易い。この点、RF電池システム1Bは、及び後述する連結管14にポンプを備える点は、後述する実施形態3についても同様である。
 その他、連通管14などにポンプ(図示せず)を備えることができる。ポンプを利用することで、両極の電解液の混合をより迅速に行える。ポンプを備える場合には、連通管14などの開口位置の自由度を高められる。ポンプを備えていなくても、上述のように連通管14の開口位置を工夫することで電解液の自重などを利用して十分に混合できる。
 ・・分岐導入管/分岐帰路管
 実施形態2のRF電池システム1Bも、図2の右図に二点鎖線で示すように一端が正極の上流側の配管108に接続され、他端が負極の上流側の配管109に接続される分岐導入管10を備え、一端が正極の下流側の配管110に接続され、他端が負極の下流側の配管111に接続される分岐帰路管12を備える。また、分岐導入管10、分岐帰路管12はそれぞれ、バルブ20,22を備える。実施形態2のRF電池システム1Bでは、上述の連通管14を利用して両極の電解液を混合した混合液を正極タンク106,負極タンク107に貯留している状態で、正極タンク106内に貯留される混合液を負極電極105に供給するときに分岐導入管10,分岐帰路管12のバルブ20,22を開き、それ以外のときには閉じる。即ち、実施形態2のRF電池システム1Bでは、分岐導入管10、分岐帰路管12に流通される液が混合液である点が実施形態1とは異なる。この点から、RF電池システム1Bでは、正極電解液と負極電解液との双方にマンガンイオン及び負極金属イオンを含むものが好適に利用できる。図2の右図、及び後述する図3の右図では、両極の電解液がマンガンイオン及びチタンイオンを含む場合を例示する。
 また、実施形態2のRF電池システム1Bも、実施形態1と同様に負極の上流側の配管109、負極の下流側の配管111にそれぞれ、バルブ30,32を設けている。バルブ30,32は、分岐導入管10,分岐帰路管12に正極タンク106内の混合液を流通するときに閉じ、通常の充放電を行うために負極電解液を流通するときには開く。
 ・RF電池の運転方法
 実施形態2のRF電池システム1Bを用いて、正極電解液への添加金属イオンの回収操作を行う実施形態2のRF電池の運転方法の手順を説明する。
 RF電池システム1Bも、RF電池システム1Aと同様に、マンガンイオンと添加金属イオンとを含む正極電解液を用い、運転前に用意した電解液をそのまま継続的に使用することで、添加金属イオンが正極電解液から負極電解液に移動し、負極電解液内に金属析出物を含み得る。実施形態2のRF電池の運転方法は、この金属析出物を正極電解液にイオンとして回収するものであり、特に、溶解工程の前に、以下の混合工程と充電工程とを行うことを特徴の一つとする。以下、この特徴点を詳細に説明し、実施形態1と重複する点については詳細な説明を省略する。
 ・・検知工程
 実施形態1と同様に実施形態2のRF電池システム1Bも、検知部40によって、負極電解液の循環経路における上述の金属析出物の存在状態を検知する。検知部40からの情報から負極電解液の循環経路に金属析出物が含まれており、正極電解液への回収操作を行った方がよいと判断したら、上述の通常の充放電運転を行わない待機期間などに以下の混合工程及び充電工程を経て、溶解工程を行う。
 図2の左図に示すように、実施形態2のRF電池システム1Bは、放電末では、負極電解液の循環経路に混入した添加金属イオンは、金属析出物になっていたものが酸化されてイオンの状態で存在し易いと考えられる。また、実施形態2のRF電池システム1Bは、放電末の負極電解液は金属析出物の溶解度が高いため、金属析出物が充電負極イオンによって酸化されてイオン化すると、そのままイオンとして存在し易い、即ち添加金属イオンが存在し易いと考えられる。その結果、実施形態2のRF電池システム1Bは、負極セル103内、負極タンク107内、負極側の配管109,111内などには、添加金属イオンが十分に存在すると考えられる。そこで、実施形態2のRF電池の運転方法では、まず、負極電解液の循環経路に存在する添加金属イオンを負極電極105に析出させて、負極電極105に金属析出物99が確実に存在する状態を積極的に形成する(図2の右図)。その後に、実施形態1で説明したように正極電解液を負極電極105に供給して、負極電極105を経た液を正極タンク106に戻すことで、添加金属イオンを正極電解液中に回収する。
 ・・混合工程
 具体的には、実施形態2のRF電池の運転方法は、放電末に、連通管14のバルブ24を開き、正極タンク106内の正極電解液と、負極タンク107内の負極電解液とを混合して、正極タンク106,負極タンク107内に混合液を貯留する。このとき、正極電解液に含まれる添加金属イオンが負極タンク107に移動し得るが、次に行う充電操作によって回収できるため許容する。実施形態2のRF電池の運転方法は、放電末にある両極の電解液を混合することで、正極タンク106,負極タンク107内に添加金属イオンをより確実に存在させられる。十分に混合したら、連通管14のバルブ24を閉じる(cl)。この混合工程によって、正極タンク106,負極タンク107内に添加金属イオンを含んだ混合液が貯留される。なお、放電末の正極電解液と放電末の負極電解液とを混合することで、自己放電に伴う損失を低減し易い。上述の金属析出物の存在状態の検知は、放電末に行ってもよいが、検知後に通常の放電を行って放電末としてもよい。
 ・・充電工程
 実施形態2のRF電池の運転方法では、連通管14のバルブ24を閉じた状態で、上述の混合液を充電する。このときの充電電圧は、通常の充電運転時の充電終了電圧と同様とすることができるが、添加金属イオンが析出する程度に調整できる。混合液の充電を開始すると、電池セル100の充電電位は、放電末の電解液を混合してなる上述の混合液の電位よりも高い。そのため、図2の右図に示すように、負極タンク107内の混合液に含まれる添加金属イオンは、負極電極105で電子を受け取って金属析出物99となる。即ち、負極電極105に金属析出物99が析出する。負極電解液の循環経路に存在する添加金属イオンの実質的に全量が負極電極105に金属析出物99として析出するまで充電を行うことが好ましい。
 充電に伴い、負極タンク107内の混合液には、充電負極イオン(例えばTi4+)が増加していくが、上述のように電池セル100の充電電位よりも混合液の電位が低いことで、金属析出物99と充電負極イオンとの酸化還元反応が生じ難く、金属析出物99は負極電極105に付着した状態を実質的に維持できる。一方、充電に伴い、正極タンク106内の混合液には、充電Mnイオンが増加していく。
 ・・溶解工程
 実施形態2のRF電池の運転方法では、充電後、負極電極105に付着する金属析出物99をイオン化して正極電解液に回収するために、実施形態1と同様に溶解工程を行う。具体的には、負極側の配管109,111のバルブ30,32をいずれも閉じ、分岐導入管10のバルブ20、分岐帰路管12のバルブ22をいずれも開く。この状態で、正極側のポンプ112を駆動して、正極の上流側の配管108、分岐導入管10、負極の上流側の配管109を順に介して、電池セル100の負極電極105に正極タンク106内の混合液を供給する。負極電極105を経た混合液を、負極の下流側の配管111、分岐帰路管12、正極の下流側の配管110を順に介して、正極タンク106に戻す。
 負極電極105を経た混合液は、実施形態1と同様に、金属析出物99を含んだ状態で正極タンク106に押し流されて、正極タンク106内で溶解されてイオン化されたり、電池セル100以降の経路でイオン化されたりして、正極タンク106に添加金属イオンとして回収される。
 実施形態2のRF電池の運転方法は、上述のように負極電極105に析出していた金属析出物99を正極電解液に溶解してイオン化し、正極電解液中に添加金属イオンを回収することができる。実施形態2のRF電池の運転方法でも、検知部40によって金属析出物99の存在状態を適宜確認しながら、正極タンク106内の混合液を複数回、循環供給することで、金属析出物99をより確実に回収できる。
 添加金属イオンの回収操作が完了したら、実施形態2のRF電池の運転方法は、分岐導入管10のバルブ20、分岐帰路管12のバルブ22をいずれも閉じる。負極側の配管109,111のバルブ30,32及び連通管14のバルブ24は閉じたままにする。通常の充放電を行うときには、配管109,111のバルブ30,32を開くとよい。
 ・効果
 実施形態2のRF電池システム1Bは、実施形態1と同様に、正極電解液を、マンガンイオンと添加金属イオンとを含む特定の液組成とすることで、添加金属イオンによるマンガン酸化物の析出を抑制できる上に、実施形態2のRF電池の運転方法を実施することで、正極電解液から負極電解液に移動した添加金属イオンを正極電解液中に容易に回収できる。特に、実施形態2のRF電池の運転方法では、正極タンク106,負極タンク107に添加金属イオンがより確実に存在する状態とした後(混合工程を行った後)、負極電極105及びその近傍に金属析出物99を集める(充電工程を行う)。また、実施形態2のRF電池システム1Bによって、実施形態2のRF電池の運転方法を実施することで負極電解液の循環経路に含まれる添加金属イオンを負極電極105に析出させて、負極電極105及びその近傍に金属析出物99を効率よく集められる。その結果、実施形態2のRF電池システム1Bは、正極電解液に添加金属イオンを効率よく回収できる。従って、実施形態2のRF電池システム1Bは、実施形態2のRF電池の運転方法を実施することで、正極電解液中に添加金属イオンを含有することによるマンガン酸化物の析出抑制の効果を長期に亘り得ることができる。
 実施形態2のRF電池システム1Bでは、正極電解液への添加金属イオンの回収操作を行った以降、充放電に用いる各極の電解液はいずれも混合液となる。即ち、正極電解液は、マンガンイオンと、負極金属イオン(例えばチタンイオン)と、添加金属イオンを含み、負極電解液は、マンガンイオンと、負極金属イオン(例えばチタンイオン)とを含む。上述のように未使用の状態で、両極の電解液中のイオンが重複する形態とすることができる。この点は、混合を行う実施形態3のRF電池システム1Cも同様である。
 [実施形態3]
 図3,図4を参照して、実施形態3のRF電池システム1C、及びRF電池システム1Cを用いたRF電池の運転方法を説明する。
 RF電池システム1Cの基本構成、及び利用する電解液の組成は、上述のRF電池システム1と同様である(図7も参照)。RF電池システム1Cは、検知部40と、連通管14とを備える点は、実施形態2のRF電池システム1Bに類似する。RF電池システム1Cは、正極タンク106内の液を負極電極105に供給する負極用の分岐導入管16、負極電極105を経た液を正極タンク106に戻す負極用の分岐帰路管18、負極タンク107内の液を正極電極104に供給する正極用の分岐導入管17、及び正極電極104を経た液を負極タンク107に戻す正極用の分岐帰路管19を備える点(図4の右図)を特徴の一つとする。以下、RF電池システム1Cの特徴点を詳細に説明し、その他の構成部材、電解液の組成などについては詳細な説明を省略する。図3,図4の左図では、分かり易いように分岐導入管16,17、分岐帰路管18,19を省略している。
 ・RF電池システム
 ・・分岐導入管/分岐帰路管
 図4の右図に示す例では、RF電池システム1Cは、一端が正極の上流側の配管108であってポンプ112の下流側に接続され、他端が負極の上流側の配管109であってポンプ113の下流側に接続される負極側の分岐導入管16及び正極側の分岐導入管17を備え、一端が正極の下流側の配管110に接続され、他端が負極の下流側の配管111に接続される負極側の分岐帰路管18及び正極側の分岐帰路管19を備える。分岐導入管16,17、分岐帰路管18,19はそれぞれ、バルブ26,27,28,29を備える。分岐導入管16,17、分岐帰路管18,19の構成材料、大きさ(内径)、厚さ、開口位置(接続位置)などについては、実施形態1の分岐導入管10、分岐帰路管12を参照できる。
 更に、RF電池システム1Cでは、配管108~111にもそれぞれ、バルブ34,35,36,37を設けている。バルブ34は、正極の上流側の配管108における両極の分岐導入管16,17の接続箇所の間に備える。バルブ35は、負極の上流側の配管109における両極の分岐導入管16,17の接続箇所の間に備える。バルブ36は、正極の下流側の配管110における両極の分岐帰路管18,19の接続箇所の間に備える。バルブ37は、負極の下流側の配管111における両極の分岐帰路管18,19の接続箇所の間に備える。
 分岐導入管16,17、分岐帰路管18,19に備えるバルブ26~29、及び配管108~111に備えるバルブ34~37はそれぞれ、以下のように開閉する。図4の右図に示すように正極タンク106,負極タンク107の双方に、両極の電解液が混合された混合液が貯留されており、正極タンク106内の混合液を負極電解液とみなし、負極タンク107内の混合液を正極電解液とみなして充放電を行うときに、分岐導入管16,17、分岐帰路管18,19に備えるバルブ26~29を開き(op)、配管108~111に備えるバルブ34~37を閉じる(cl)。上述の正極タンク106と負極タンク107とを切り替えて充放電を行うとき以外のときは、分岐導入管16,17、分岐帰路管18,19に備えるバルブ26~29を閉じ、配管108~111に備えるバルブ34~37を開き、正極タンク106内の液を正極電解液とし、負極タンク107内の液を負極電解液とする通常の充放電を行う。この通常の充放電を行う場合には、図3の右図に示すように、分岐導入管16,17、分岐帰路管18,19やバルブ26~29,34~37が省略された状態と同様といえる。
 ・・連通管
 図3,図4に示す例では、実施形態2と同様に、RF電池システム1Cは、一端が正極タンク106に接続され、他端が負極タンク107に接続されて、正極タンク106,負極タンク107を連通する連通管14を一つ備え、連通管14にはバルブ24が設けられている。バルブ24は、両極の電解液を混合するときに開き(op、図3の右図)、それ以外のときには閉じる(cl、図3の左図、図4)。
 ・RF電池の運転方法
 実施形態3のRF電池システム1Cを用いて、正極電解液への添加金属イオンの回収操作を行う実施形態3のRF電池の運転方法の手順を説明する。
 RF電池システム1Cも、実施形態1のRF電池システム1Aと同様に、マンガンイオンと添加金属イオンとを含む正極電解液を用い、運転前に用意した電解液をそのまま継続的に使用することで、添加金属イオンが正極電解液から負極電解液に移動し、負極電解液内に金属析出物を含み得る。実施形態3のRF電池の運転方法は、この金属析出物を正極電解液にイオンとして回収するものであり、溶解工程の前に、以下の混合工程と充電工程とを行う点が実施形態2と類似する。特に、実施形態3のRF電池の運転方法では、充電工程後に、正極タンク106を負極タンクとし、負極タンク107を正極タンクに切り替えて、以降の充放電運転を行うようにする点を特徴の一つとする。以下、この特徴点を詳細に説明し、実施形態1,2と重複する点については詳細な説明を省略する。
 ・・検知工程
 実施形態1,2と同様に、RF電池システム1Cは、検知部40によって、負極電解液の循環経路における上述の金属析出物の存在状態を検知する。検知部40からの情報から負極電解液の循環経路に金属析出物が含まれており、正極電解液への回収操作を行った方がよいと判断したら、上述の通常の充放電運転を行わない待機期間などに以下の混合工程及び充電工程を経て、溶解工程を行う。
 図3の左図に示すように、RF電池システム1Cは、充電をある程度行った状態、例えば、充電状態(SOC)が50%以上である場合、負極電解液中には充電負極イオン(例えばTi4+)が多く存在し、負極タンク107内に貯留される。そのため、RF電池システム1Cは、負極電解液の循環経路に混入した添加金属イオンが負極タンク107に導入されて、ある程度時間が経つと、充電負極イオンによって還元されて金属析出物99になって、負極タンク107内に蓄積される。充電中の負極電解液は放電末の負極電解液に比較して金属析出物99の溶解度が低いため、上述の金属析出物99の析出反応が不可逆に起こり、金属析出物99が存在し易いと考えられる。金属析出物99は、負極活物質よりも比重が大きい傾向にあり、負極タンク107の底部などに堆積し得る。図3では、負極タンク107の底部に金属析出物99としてBiが堆積した状態を例示する。実施形態2のように正極タンク106,負極タンク107内の電解液を混合するだけでは、RF電池システム1Cは、上述のように負極タンク107の底部に溜まった金属析出物99を十分に回収できない可能性がある。
 そこで、実施形態3のRF電池の運転方法では、正極タンク106に添加金属イオンを含む電解液を回収するのではなく、負極タンク107に金属析出物99を溜めておき、正極タンク106,負極タンク107を入れ替えることで、添加金属イオンを正極電解液中に回収したことと同等とする。
 ・・混合工程
 具体的には、負極タンク107に金属析出物99が溜まっていると判断されたら、連通管14のバルブ24を開き(op)、正極タンク106内の正極電解液と、負極タンク107内の負極電解液とを混合して、正極タンク106,負極タンク107内に混合液を貯留する。混合時期は、充電状態(SOC)が50%以上であればよく、更に60%以上、70%以上、80%以上としたり、SOCが十分に高い充電末としたりできる。充電末に混合する場合には、後述するように切替後に充電を行うことを考慮すると、充電末のSOCが100%とならないように充電条件を調整することが好ましい。切替後の充電を考慮すると、混合時期は、SOCが50%以上70%以下程度のときが利用し易いと考えられる。
 実施形態3のRF電池の運転方法では、連通管14のバルブ24を開くことで、図3の右図に示すように、正極電解液に含まれる添加金属イオンが負極タンク107に半量程度移動し得る。図3の右図では、正極タンク106内の添加金属イオン:1×Bi3+が、正極タンク106と負極タンク107とに(1/2)×Bi3+ずつに分けられた状態を例示する。このとき、正極タンク106からは充電Mnイオン(主としてMn3+)も半量程度が負極タンク107に移動する。
これら充電Mnイオンや充電負極イオンによって金属析出物99が酸化されるよりも、添加金属イオンの拡散の方が速く生じ、負極タンク107内の金属析出物99は実質的にそのまま溜まっている。また、上述のように金属析出物99の溶解度がそれほど高くないことからも、金属析出物99の酸化反応がそれほど生じないと考えられる。十分に混合したら、連通管14のバルブ24を閉じる(cl)。この混合工程によって、正極タンク106,負極タンク107内に添加金属イオンを含んだ混合液が貯留される。
 ・・充電工程
 図4の左図に示すように、実施形態3のRF電池の運転方法では、バルブ24を閉じた状態で(cl)、上述の混合液を充電する。このときの充電電圧は、実施形態2と同様に、通常の充電運転時の充電終了電圧と同様としてもよいが、添加金属イオンが析出する程度に調整してもよい。充電によって、負極タンク107内の混合液には充電負極イオンが増加する。即ち、負極タンク107内の混合液中には、充電負極イオンや混合工程によって導入された充電Mnイオンが十分に存在する。これらの充電イオンによって、負極タンク107内の添加金属イオンが還元されて金属析出物99が析出され、負極タンク107内の金属析出物99が増加する。図4の左図は、負極タンク107内に金属析出物99としてBiが増加した状態を例示する。混合工程で負極タンク107に導入された添加金属イオンの実質的に全量が金属析出物99として析出するまで充電を行うことが好ましい。 
 実施形態3のRF電池の運転方法では、上述の混合工程と充電工程とは、1回でもよいが、繰り返し複数回行えば、正極タンク106内の添加金属イオンを、負極タンク107内に金属析出物99としてより多く存在させられる。繰り返し回数は多いほど、正極タンク106内の添加金属イオンの実質的に全量を負極タンク107内に金属析出物99として存在させられるが、多く過ぎると、時間が掛かる。実用的な繰り返し回数としては、5回以下程度、例えば2回~4回程度が挙げられる。検知部40によって金属析出物99の存在状態を適宜確認しながら、繰り返し回数を決定することができる。
 ・・溶解工程
 実施形態3のRF電池の運転方法では、充電後、添加金属イオンを実質的に含まない又は添加金属イオンが十分に低減された混合液を貯留する正極タンク106と、運転前の正極電解液に含有していた添加金属イオンを金属析出物99として実質的に含む混合液を貯留する負極タンク107とを切り替える。即ち、上記金属析出物99が存在する負極タンク107を正極タンクとする。例えば、上記の正極タンク106及び上記の負極タンク107と配管108~111とを物理的に取り外して、両極のタンクを付け替えることができる。但し、電解液(ここでは混合液)を貯留するタンクは大重量物であるため、この方法は、作業性に劣る。そこで、実施形態3のRF電池システム1Cでは、上述した分岐導入管16,17、分岐帰路管18,19と、バルブ26~29,34~37とを利用して、両極のタンクの切り替えを行う。
 実施形態3のRF電池の運転方法では、具体的には、図4の右図に示すように分岐導入管16,17及び分岐帰路管18,19に備えるバルブ26~29を開き(op)、配管108~111に備えるバルブ34~37を閉じる(cl)。こうすることで、正極タンク106からの混合液は、上流側の配管108→負極用の分岐導入管16→上流側の配管109を経て、負極電極105に供給できる。負極電極105を経た液は、下流側の配管111→負極用の分岐帰路管18→下流側の配管110を経て、正極タンク106に戻すことができる。即ち、正極タンク106を負極タンクに切り替えられる。負極タンク107からの混合液は、上流側の配管109→正極用の分岐導入管17→上流側の配管108を経て、正極電極104に供給できる。
正極電極104を経た液は、下流側の配管110→正極用の分岐帰路管19→下流側の配管111を経て、負極タンク107に戻すことができる。即ち、負極タンク107を正極タンクに切り替えられる。
 このように、実施形態3のRF電池の運転方法では、正極タンク106(切替後は負極タンク)から負極電極105への電解液の供給、負極タンク107(切替後は正極タンク)から正極電極104への電解液の供給を可能な状態で充電を行う。この充電によって、負極タンク107(切替後は正極タンク)に貯められた金属析出物99は、充電Mnイオンなどによって酸化されて添加金属イオンになって、切り替えられた正極タンクに回収される。
 その他、実施形態3のRF電池の運転方法では、交流/直流変換器200(図7)に接続する出力端子(図示せず)の正負を切り替えて、正極セル102を負極セルに、負極セル103を正極セルにすることができる。この端子の切り替えによっても、正極タンク106を負極タンクに、負極タンク107を正極タンクに切り替えた状態と同様の状態にすることができる。
 実施形態3のRF電池の運転方法は、上述のように正極タンク106から負極タンク107に積極的に添加金属イオンを移動させる過程を経て、負極タンク107を正極タンクに切り替えた後充電する。こうすることで、切り替えられたタンク内の金属析出物99を正極電解液(ここでは混合液)に溶解してイオン化し、正極電解液中に添加金属イオンを回収することができる。次に回収操作を行うときには、負極タンクとしていた正極タンク106を正極タンクに再び切り替える。実施形態3のRF電池の運転方法は、このように各極のタンクの切り替え操作を繰り返し行う。
 ・効果
 実施形態3のRF電池システム1Cは、実施形態1と同様に、正極電解液を、マンガンイオンと添加金属イオンとを含む特定の液組成とすることで、添加金属イオンによるマンガン酸化物の析出を抑制できる上に、実施形態3のRF電池の運転方法を実施することで、正極電解液から負極電解液に移動した添加金属イオンを正極電解液中に容易に回収できる。特に、実施形態3のRF電池の運転方法では、実施形態3のRF電池システム1Cは、正極タンク106から負極タンク107に添加金属イオンを積極的に移動した後(混合工程を行った後)、負極電解液の循環経路に含まれる添加金属イオンを負極タンク107内に析出させて金属析出物99を集める(充電工程を行う)。そして、この負極タンク107を正極タンクとして利用する(溶解工程を行う)。このように実施形態3のRF電池システム1Cによって、実施形態3のRF電池の運転方法を実施することで、正極電解液に添加金属イオンを効率よく回収できる。従って、実施形態3のRF電池システム1Cは、実施形態3のRF電池の運転方法を実施することで、正極電解液中に添加金属イオンを含有することによるマンガン酸化物の析出抑制の効果を長期に亘り得ることができる。
 [実施形態4]
 図5を参照して、実施形態4のRF電池システム1D、及びRF電池システム1Dを用いたRF電池の運転方法を説明する。
 RF電池システム1Dの基本構成、及び利用する電解液の組成は、上述のRF電池システム1と同様である(図7も参照)。RF電池システム1Dは、負極電解液の循環経路に金属析出物99を採取するフィルタ部50を備える点を特徴の一つとする。以下、特徴点を詳細に説明し、その他の構成部材、電解液の組成などについては詳細な説明を省略する。
 ・RF電池システム
 ・・フィルタ部
 図5に示す例では、実施形態4のRF電池システム1Dは、負極の下流側の配管111にフィルタ部50を一つ設けている。フィルタ部50は、金属析出物99、代表的には微細な金属粒を採取可能な適宜なものを利用できる。フィルタ部50は、例えば、電解液に対する耐性、特に耐酸性などを有する材料からなる多孔質フィルタを利用できる。上記材料として、カーボン、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどが挙げられる。
フィルタ部50は、この例に示すように一つでもよいが、複数設けると、金属析出物99をより確実に採取できる。但し、フィルタ部50が多過ぎると、負極電解液の流通抵抗となり、流量の低下などを招き得るため、フィルタ部50の大きさにもよるが、3個以下、更に2個以下が好ましいと考えられる。
 フィルタ部50の取付位置は適宜選択できる。例えば、フィルタ部50は上流側の配管109に取り付けることができる。この例に示すようにフィルタ部50の取付位置を下流側の配管111とすれば、ポンプ113の損失を低減し易いと考えられる。
 フィルタ部50は、金属析出物99を直接採取することから、金属析出物99の存在状態の検知にも利用できる。即ち、実施形態1~3で説明した検知部40の機能を兼ねることができる。従って、実施形態4のRF電池システム1Dでは、検知部40を別途備えていない形態とすることができる。フィルタ部50と検知部40との双方を備えるRF電池システム1Dとすると、検知部40によって金属析出物99の存在状態をまず確認できるため、フィルタ部50の取外しを過度に行う必要が無く、作業性に優れる。
 なお、実施形態1~3では、検知部40に代えて、又は検知部40に加えてフィルタ部50を備えることができる。
 ・RF電池の運転方法
 実施形態4のRF電池システム1Dを用いて、正極電解液への添加金属イオンの回収操作を行う実施形態4のRF電池の運転方法の手順を説明する。
 RF電池システム1Dも、RF電池システム1Aと同様に、マンガンイオンと添加金属イオンとを含む正極電解液を用い、運転前に用意した電解液をそのまま継続的に使用することで、添加金属イオンが正極電解液から負極電解液に移動し、負極電解液内に金属析出物を含み得る。実施形態4のRF電池の運転方法は、この金属析出物を正極電解液にイオンとして回収するものであり、特に、フィルタ部50で直接採取して、正極電解液に溶解することを特徴の一つとする。以下、この特徴点を詳細に説明し、実施形態1と重複する点については詳細な説明を省略する。
 ・・検知工程
 実施形態1と同様に、RF電池システム1Dも、検知部40によって、又はフィルタ部50によって負極電解液の循環経路における上述の金属析出物の存在状態を検知して、負極電解液の循環経路に金属析出物が含まれており、正極電解液への回収操作を行った方がよいと判断したら、上述の通常の充放電運転を行わない待機期間などに以下の溶解工程を行う。
 ・・溶解工程
 RF電池システム1Dも、フィルタ部50に付着する金属析出物99を例えば正極タンク106に入れて溶解しイオン化する。特に充電末であれば、正極タンク106内には、金属析出物99を酸化可能な充電Mnイオンを十分に含む。そのため、充電末にフィルタ部50から金属析出物99を採取して正極タンク106に添加することが実用的であると考えられる。フィルタ部50から採取した金属析出物99を充電状態(SOC)が低い状態や放電末などに、正極タンク106に添加する場合には、添加後、実施形態3と同様に充電を行えば、充電Mnイオンによって金属析出物99を容易にイオン化できる。
 実施形態4のRF電池の運転方法は、上述のように負極電極液の循環経路に析出する金属析出物99をフィルタ部50で採取した後、正極電解液に添加して溶解・イオン化し、正極電解液中に添加金属イオンを回収することができる。
 ・効果
 実施形態4のRF電池システム1Dは、実施形態1と同様に、正極電解液を、マンガンイオンと添加金属イオンとを含む特定の液組成とすることで、添加金属イオンによるマンガン酸化物の析出を抑制できる上に、実施形態4のRF電池の運転方法を実施することで、正極電解液から負極電解液に移動した添加金属イオンを正極電解液中に容易に回収できる。特に、実施形態4のRF電池の運転方法では、フィルタ部50で金属析出物99を直接採取し、採取した金属析出物99を正極電解液に添加する、という簡単な操作でありながら、正極電解液に添加金属イオンを効率よく回収できる。従って、実施形態4のRF電池システム1Dは、実施形態4のRF電池の運転方法を実施することで、正極電解液中に添加金属イオンを含有することによるマンガン酸化物の析出抑制の効果を長期に亘り得ることができる。
 [変形例1]
 上述のように、実施形態1~3のRF電池システム1A~1Cに対して、フィルタ部50を備える実施形態4を組み合わせる他、実施形態2のRF電池システム1Bと実施形態3のRF電池システム1Cとを組み合わせた形態とすることができる。この場合、実施形態2に備える分岐導入管10を実施形態3に備える負極側の分岐導入管16、実施形態2に備える分岐帰路管12を実施形態3に備える負極側の分岐帰路管18に読み替えるとよい。実施形態1~4を適宜組み合わせたRF電池システムを構築することで、実施形態1~4のRF電池の運転方法を組み合わせて実施可能になり、正極電解液から負極電解液に移動した添加金属イオンをより効果的に回収できると期待される。
 以下、試験例を挙げて、実施形態のRF電池システムにおけるマンガン酸化物の析出抑制効果、RF電池の運転方法による添加金属イオンの回収効果を具体的に説明する。
 [試験例1]
 図7で説明した基本構成のRF電池システム1を構築し、正極電解液にマンガンイオンに加えて、添加金属イオンを添加した効果を調べた。
 この試験では、いずれの試料も、正極電解液及び負極電解液の双方にマンガンイオンとチタンイオンとを含む酸の水溶液を用いた。また、いずれの試料も原料には、硫酸マンガン、硫酸チタン、硫酸を用い、添加金属イオンを含む試料については、硫酸ビスマスを更に用いた。
 試料No.1-1,1-2の正極電解液には、添加金属イオンとしてビスマスイオン(Bi3+)を含むものを用意した。
 試料No.1-1の正極電解液は、マンガンイオン濃度が1.0M、チタンイオン濃度が1.0M、硫酸イオン濃度が5.15M、ビスマスイオン濃度が0.1Mとなるように、原料を調整した。
 試料No.1-2の正極電解液は、マンガンイオン濃度が1.0M、チタンイオン濃度が1.0M、硫酸イオン濃度が5.03M、ビスマスイオン濃度が0.02Mとなるように、原料を調整した。
 試料No.1-100は、正極電解液として、マンガンイオンとチタンイオンとを含み、ビスマスイオンを含まないものを用意した。この正極電解液のマンガンイオン濃度は1.0M、チタンイオン濃度は1.0M、硫酸イオン濃度は5.0Mである。
 いずれの試料も、負極電解液には、正極電解液と同じものを用いた。即ち、試料No.1-1,1-2の負極電解液はいずれも、マンガンイオン及びチタンイオンに加えて、ビスマスイオンを含むものとした。
 図7に示すRF電池システム1に対して、用意した両極の電解液を用いて、以下の条件で充電を行って、正極電解液中に析出物(ここではマンガン酸化物)が析出するか否かを目視にて確認した。その結果を表1に示す。
 電池セルには、カーボンフェルト製の電極(9cm)と、陽イオン交換膜とを用いた。
 充電条件は、充電電流を315mA、充電終了電圧を2Vと設定した。但し、この試験では、充電時間を制御して、表1に示す規定のSOCとなるまで充電したRF電池を室温(ここでは25℃)に静置して待機状態とし、この待機状態のRF電池システムについて、析出物の発生の有無を経時的に目視観察した。析出物は、代表的には、正極電解液中に沈殿物として観察される。SOCは、以下の式によって求めた。ファラデーの定数は96,485(A・秒/mol)とする。
・充電状態(%)=(充電電気量/1電子反応の理論電気量)×100
・充電電気量(A・h)=充電電流(A)×充電時間(h)
・1電子反応の理論電気量(A・h)=電解液の体積(L)×マンガンイオンの濃度(mol/L)×ファラデーの定数×1(電子)/3600
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、RF電池システム1は、正極電解液にマンガンイオンに加えて添加金属イオンを含有することで、正極電解液中におけるマンガン酸化物といった析出物の析出を抑制できることが分かる。添加金属イオンを含有しない正極電解液を用いた試料No.1-100では、SOCが高くなると、析出物(マンガン酸化物)が早期に析出し得ることが分かる。これに対して、試料No.1-1,1-2をみれば、添加金属イオンの濃度が高いほど(含有量が多いほど)、析出抑制効果が高く、SOCを高めても、析出を十分に抑制できることが分かる。この試験では、添加金属イオンを0.1M含有すると、30日を経過した時点でも析出物(マンガン酸化物)が目視確認できなかった(試料No.1-1)。この試験から、正極電解液中の添加金属イオンの濃度は、0.01M以上、更に0.02M以上、更には0.05M以上、0.1M以上が好ましいといえる。
 [試験例2]
 図2で説明した実施形態2のRF電池システム1Bを構築し、正極電解液にマンガンイオンと添加金属イオンとを含むものを用いて充放電を行って、電池容量の経時的な変化を調べた。
 この試験では、正極電解液及び負極電解液の双方にマンガンイオンとチタンイオンとを含む酸の水溶液を用いた。正極電解液には、更に添加金属イオンとしてビスマスイオンを含むものを用意した。負極電解液は、マンガンイオンとチタンイオンとを含み、ビスマスイオンを含んでいないものを用意した。原料には、両極ともに硫酸マンガン、硫酸チタン、硫酸を用い、正極には硫酸ビスマスを更に用いた。
 正極電解液は、マンガンイオン濃度が1M、チタンイオン濃度が1M、硫酸イオン濃度が5.15M、ビスマスイオン濃度が0.1Mとなるように、原料を調整した。
 負極電解液は、マンガンイオン濃度が1M、チタンイオン濃度が1M、硫酸イオン濃度が5Mとなるように、原料を調整した。
 電池セルには、カーボンフェルト製の電極(500cm)と、陽イオン交換膜とを用いた。
 この試験では、SOCが90%を超えないように充放電条件を設定した。具体的には、充放電条件は、充放電電流を25A、充電終了電圧を1.5V、放電終了電圧を1.0Vとし、定電流の充放電(充放電電流値を上記の値に固定して充放電を行うこと)を繰り返した。充放電試験は室温(ここでは25℃)で実施した。
 充放電を繰り返し行って、経時的に電池容量を測定した。その結果を図6のグラフに示す。図6のグラフの横軸は、充放電を行った運転日数(日)を示し、縦軸は、電池容量(Ah)を示す。電池容量は、下記の式によって求めた。
 電池容量(A・h)=放電電流(A)×放電時間(h)
 実施形態2のRF電池システム1Bは、正極電解液に添加金属イオンを含有することで(ここでは試験例1の試料No.1-1と同様にビスマスイオンを0.1M含有することで)、マンガン酸化物の析出は抑制できるものの、図6に示すように、経時的に電池容量が低下していることが分かる。この試験では、運転初期の電池容量は30Ah程度であったが、充放電を繰り返し行った結果、13日後の電池容量は26Ah程度であった。そこで、13日後の正極電解液中のビスマスイオンの濃度をICP発光分光分析法によって測定したところ、運転前に0.1Mであったのが、13日後には0.08Mになっていた。一方、負極電解液を目視確認したところ、析出物が見られ、成分分析を行ったところ、固体ビスマス(Bi)であった。このことから、正極電解液中の添加金属イオン(ビスマスイオン)が経時的に負極電解液に移動して、負極電解液中で還元されて金属析出物(固体ビスマス)となった、と考えられる。また、負極電解液中における添加金属イオンの還元は、充電負極イオンによって行われて、負極電解液のSOCが正極電解液のSOCよりも低くなったことで、電池容量が運転初期よりも低下した、と考えられる。
 このように正極電解液から負極電解液に添加金属イオンが移動し、金属析出物となって負極電解液の循環経路に存在し得る、と考えられる状態に対して、実施形態2のRF電池システム1Bは、混合工程と充電工程と溶解工程とを備える実施形態2のRF電池の運転方法を実施して、正極電解液への添加金属イオンの回収操作(Bi回収操作)を行った。図6において、グラフが途切れている14日~21日の間に上記回収操作を行った。
 正極電解液への添加金属イオンの回収操作(Bi回収操作)を行った後に正極電解液中のビスマスイオンの濃度をICP発光分光分析法によって測定したところ、0.094Mになっていた。即ち、上記回収操作によって、正極電解液中の添加金属イオンの濃度を、運転前の濃度(0.1M)と実質的に等しくすることができた。上記回収操作後に、回収操作前と同様の条件で充放電を行ったところ、上記回収操作前と同様の傾向が見られた。即ち、上記回収操作直後の電池容量は、30Ah程度であるが、図6に示すように経時的に低下することが分かる。
 この試験から、正極電解液にマンガンイオンに加えて添加金属イオンを含有するものを用いる場合に、経時的に正極電解液から負極電解液に移動した添加金属イオンや金属析出物を正極電解液に回収することで、マンガン酸化物の析出抑制の効果を、長期に亘り、運転前の未使用の液や運転初期の液と同等程度に維持できることが確認できた。
 また、試験例1,2から、運転前の未使用の液について、正極電解液中の添加金属イオンの濃度を0.001M以上、好ましくは0.01M以上とし、経時的な濃度の低下があったとしても、0.001M以上を維持することで、マンガン酸化物の析出抑制の効果を十分に得られることが分かる。逆に、正極電解液中の添加金属イオンの濃度が0.001M程度になるまでは、正極電解液から負極電解液に添加金属イオンが移動していても、正極ではマンガン酸化物の析出を抑制できるといえる。高い電池容量の確保を考慮すると、経時的な濃度の低下があったとしても、0.01M以上を維持することが好ましいと考えられる。
 なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、試験例1,2では、正極電解液及び負極電解液の双方にマンガンイオンと、チタンイオンとを含む場合を示したが、以下のように変更できる。
 1.正極電解液にチタンイオンを含まず、かつ負極電解液にマンガンイオンを含まない。
 2.添加金属イオンをビスマスイオンに代えて、アンチモンイオンとする、又はビスマスイオンとアンチモンイオンとする。
 3.負極活物質をチタンイオンに代えて、別のイオンにする。このとき、添加金属イオンの標準酸化還元電位が負極活物質のイオンの標準酸化還元電位よりも貴な電位になるように添加金属イオンを選択する。
 例えば、負極活物質をバナジウムイオンとする場合、添加金属イオンは、上述の列挙した5種のイオンのうち、カドミウムイオンを除く4種のイオンから選択される1種以上とするとよい。例えば、負極活物質をカドミウムイオンとする場合は、5種のイオンから選択される1種以上とするとよい。
 4.各金属イオンの濃度、溶媒に用いる酸の種類、酸の濃度、電極の材質、電極の大きさ、及び隔膜の材質の少なくとも一つを変更する。
 例えば、試験例2では、実施形態2のRF電池システム及び実施形態2のRF電池の運転方法を用いて、正極電解液への添加金属イオンの回収操作を行う場合を示したが、実施形態1,3,4のRF電池システム及びRF電池の運転方法を用いても、同様の効果が得られる。
 本発明のレドックスフロー電池システムは、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に利用できる。また、本発明のレドックスフロー電池システムは、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用できる。本発明のレドックスフロー電池の運転方法は、本発明のレドックスフロー電池システムにおいて通常の充放電を行わない待機中などに実施できる。

Claims (14)

  1.  正極電極に正極タンク内の正極電解液を循環供給し、負極電極に負極タンク内の負極電解液を循環供給して充放電を行うレドックスフロー電池の運転方法であって、
     前記正極電解液は、マンガンイオンと、添加金属イオンとを含有し、
     前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有し、
     前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種であり、
     前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物が前記負極電解液の循環経路に含まれるときに、前記金属析出物を前記正極電解液に溶解してイオン化する溶解工程を含むレドックスフロー電池の運転方法。
  2.  前記溶解工程では、前記金属析出物が前記負極電極に析出しているときに、充電末の前記正極電解液を前記負極電極に供給して、前記負極電極に析出した前記金属析出物を溶解することを含む請求項1に記載のレドックスフロー電池の運転方法。
  3.  前記溶解工程の前に、
     放電末に、前記正極タンク内の正極電解液と前記負極タンク内の前記負極電解液とを混合して混合液とする混合工程と、
     前記混合液を充電して、前記負極タンク内の混合液に含まれる添加金属イオンを前記負極電極に析出させる充電工程とを含む請求項2に記載のレドックスフロー電池の運転方法。
  4.  充電状態が50%以上であるときに前記正極タンク内の正極電解液と、前記負極タンク内の負極電解液とを混合して、混合液とする混合工程と、
     前記混合液を充電して、前記負極タンク内の混合液に含まれる添加金属イオンを析出させて、前記負極タンク内に前記金属析出物を存在させる充電工程とを含み、
     前記溶解工程は、析出した前記金属析出物を含む前記混合液を貯留する前記負極タンクを前記正極タンクとし、切り替えた前記正極タンク内の前記混合液を充電することを含む請求項1~請求項3のいずれか1項に記載のレドックスフロー電池の運転方法。
  5.  前記混合工程と前記充電工程とを繰り返して複数回行う請求項4に記載のレドックスフロー電池の運転方法。
  6.  前記負極電解液の循環経路に設けたフィルタ部によって前記金属析出物を採取する採取工程を含み、
     前記溶解工程は、採取した前記金属析出物を前記正極電解液に溶解することを含む請求項1~請求項5のいずれか1項に記載のレドックフロー電池の運転方法。
  7.  正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備えるレドックスフロー電池システムであって、
     前記正極電解液は、マンガンイオンと、添加金属イオンとを含有し、
     前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有し、
     前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種であり、
     前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、
     前記金属析出物が前記負極電解液の循環経路に含まれるときに、前記正極タンクから前記負極電極に前記正極電解液を供給する分岐導入管、及び前記負極電極を経た液を前記正極タンクに戻す分岐帰路管とを備えるレドックスフロー電池システム。
  8.  正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備えるレドックスフロー電池システムであって、
     前記正極電解液は、マンガンイオンと、添加金属イオンとを含有し、
     前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有し、
     前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種であり、
     前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、
     前記金属析出物が前記負極電解液の循環経路に含まれるときに、前記正極タンクと前記負極タンクとを連通して、前記正極電解液と前記負極電解液とを混合可能にする連通管と、前記正極タンク内に貯留される混合液を前記負極電極に供給する分岐導入管、及び前記負極電極を経た液を前記正極タンクに戻す分岐帰路管とを備えるレドックスフロー電池システム。
  9.  正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備えるレドックスフロー電池システムであって、
     前記正極電解液は、マンガンイオンと、添加金属イオンとを含有し、
     前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有し、
     前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種であり、
     前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、
     前記金属析出物が前記負極電解液の循環経路に含まれるときに、前記正極タンクと前記負極タンクとを連通して、前記正極電解液と前記負極電解液とを混合可能にする連通管と、前記正極タンク内に貯留される混合液を前記負極電極に供給する負極用の分岐導入管、及び前記負極電極を経た液を前記正極タンクに戻す負極用の分岐帰路管と、前記負極タンク内に貯留される混合液を前記正極電極に供給する正極用の分岐導入管、及び前記正極電極を経た液を前記負極タンクに戻す正極用の分岐帰路管とを備えるレドックスフロー電池システム。
  10.  正極電極と、負極電極と、これら両電極間に介在される隔膜とを備える電池セルと、前記正極電極に循環供給する正極電解液を貯留する正極タンクと、前記負極電極に循環供給する負極電解液を貯留する負極タンクとを備えるレドックスフロー電池システムであって、
     前記正極電解液は、マンガンイオンと、添加金属イオンとを含有し、
     前記負極電解液は、チタンイオン、バナジウムイオン、及びクロムイオンから選択される少なくとも一種の金属イオンを含有し、
     前記添加金属イオンは、カドミウムイオン、錫イオン、アンチモンイオン、鉛イオン、及びビスマスイオンから選択される少なくとも一種であり、
     前記正極電解液から前記負極電解液の循環経路に移動した前記添加金属イオンが還元されてなる金属析出物の存在状態を検知する検知部と、
     前記負極電解液の循環経路に設けられて、前記金属析出物を採取するフィルタ部とを備えるレドックスフロー電池システム。
  11.  前記検知部は、前記正極電解液の充電状態及び前記負極電解液の充電状態をそれぞれ測定可能なSOC測定部、前記負極電解液の循環経路に設けられる透明窓部、及び前記負極電解液の循環経路に設けられる流量計から選択される少なくとも一つを含む請求項7~請求項10のいずれか1項に記載のレドックスフロー電池システム。
  12.  前記正極電解液及び前記負極電解の双方が、マンガンイオンとチタンイオンとを含有する請求項7~請求項11のいずれか1項に記載のレドックスフロー電池システム。
  13.  前記正極電解液における前記添加金属イオンの濃度は、0.001M以上1M以下である請求項7~請求項12のいずれか1項に記載のレドックスフロー電池システム。
  14.  前記正極電解液における前記マンガンイオンの濃度、及び前記負極電解液における前記金属イオンの濃度の少なくとも一方は、0.3M以上5M以下である請求項7~請求項13のいずれか1項に記載のレドックスフロー電池システム。
PCT/JP2015/084279 2014-12-22 2015-12-07 レドックスフロー電池の運転方法、及びレドックスフロー電池システム WO2016104124A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/537,581 US10199672B2 (en) 2014-12-22 2015-12-07 Method of operating redox flow battery, and redox flow battery system
CN201580070520.2A CN107112570A (zh) 2014-12-22 2015-12-07 氧化还原液流电池的运行方法和氧化还原液流电池***
EP15872693.5A EP3240083A4 (en) 2014-12-22 2015-12-07 Method of operating redox flow battery, and redox flow battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014259317A JP6414463B2 (ja) 2014-12-22 2014-12-22 レドックスフロー電池の運転方法、及びレドックスフロー電池システム
JP2014-259317 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104124A1 true WO2016104124A1 (ja) 2016-06-30

Family

ID=56150154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084279 WO2016104124A1 (ja) 2014-12-22 2015-12-07 レドックスフロー電池の運転方法、及びレドックスフロー電池システム

Country Status (6)

Country Link
US (1) US10199672B2 (ja)
EP (1) EP3240083A4 (ja)
JP (1) JP6414463B2 (ja)
CN (1) CN107112570A (ja)
TW (1) TWI669849B (ja)
WO (1) WO2016104124A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183301A1 (en) * 2017-03-27 2018-10-04 Danzi Angelo An advanced electrolyte mixing method for all vanadium flow batteries
WO2019139566A1 (en) * 2018-01-10 2019-07-18 United Technologies Corporation Regeneration of flow battery

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11237216B1 (en) * 2017-08-15 2022-02-01 Qnovo Inc. Method of detecting metal plating in intercalation cells
JP6931467B2 (ja) * 2017-11-28 2021-09-08 住友電気工業株式会社 レドックスフロー電池
JPWO2019117308A1 (ja) * 2017-12-14 2020-12-24 昭和電工株式会社 レドックスフロー電池の電池本体ユニット、及びこれを用いたレドックスフロー電池並びにレドックスフロー電池の運転方法
WO2019208431A1 (ja) * 2018-04-24 2019-10-31 昭和電工株式会社 レドックスフロー電池及びその運転方法
WO2020021611A1 (ja) * 2018-07-23 2020-01-30 住友電気工業株式会社 レドックスフロー電池の運転方法、及びレドックスフロー電池
CN111244517B (zh) * 2018-11-28 2021-02-26 中国科学院大连化学物理研究所 一种碱性锌镍液流电池性能的恢复方法
KR102195852B1 (ko) * 2018-12-03 2020-12-28 스탠다드에너지(주) 전해액의 전위측정이 가능한 레독스 흐름전지
KR102147948B1 (ko) * 2019-01-10 2020-08-25 스탠다드에너지(주) 레독스 흐름전지
CN110120543A (zh) * 2019-04-08 2019-08-13 江苏大学 一种用于液流电池的低共熔溶剂、电解质及液流电池
CN110649304A (zh) * 2019-09-25 2020-01-03 何国珍 锡-碘酸可充电电池
EP4060853A4 (en) * 2019-11-11 2023-07-19 LG Electronics Inc. ELECTRONIC DEVICE AND ELECTRONIC DEVICE CHARGE CONTROL METHOD
CN110729506A (zh) * 2019-11-26 2020-01-24 中国科学院金属研究所 一种含复合添加剂的铁铬液流电池电解液及其应用
US11271226B1 (en) * 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN112803046B (zh) * 2020-12-31 2024-04-19 大连融科储能装备有限公司 一种带有内置soc电池的液流电池电堆
CN112531192A (zh) * 2021-02-01 2021-03-19 深圳市寒暑科技新能源有限公司 一种锌锰单液流电池
CN113178608B (zh) * 2021-03-15 2024-06-04 大连海事大学 一种泥浆型钛锰液流电池
WO2022270108A1 (ja) * 2021-06-21 2022-12-29 住友電気工業株式会社 レドックスフロー電池システム
JPWO2022270107A1 (ja) * 2021-06-21 2022-12-29
US20230387431A1 (en) * 2022-05-25 2023-11-30 Uop Llc Filtration applications in a redox flow battery
DE102022113939B3 (de) * 2022-06-02 2023-08-31 Voith Patent Gmbh Verfahren zur Wiederherstellung der Leistungsfähigkeit
DE102022113934A1 (de) * 2022-06-02 2023-12-07 Voith Patent Gmbh Verfahren zum Entfernen von V2O5 Ablagerungen in einem Redox-Flow-Batteriemodul
US20240097172A1 (en) * 2022-09-15 2024-03-21 Uop Llc Inline sensors for electrolyte precipitation detection in redox flow battery system
CN116689395B (zh) * 2023-08-07 2023-10-17 纬景储能科技有限公司 一种液流电池的清洗装置以及液流电池
CN116960408B (zh) * 2023-09-21 2023-12-01 山西国润储能科技有限公司 一种全钒液流电池电解液调平混液***及其混液方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579073A (en) * 1980-06-17 1982-01-18 Agency Of Ind Science & Technol Bedox battery
JP2006147375A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The レドックスフロー電池およびその運転方法
JP2013008642A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2014137946A (ja) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
WO2015019972A1 (ja) * 2013-08-07 2015-02-12 住友電気工業株式会社 レドックスフロー電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502141A (zh) * 2000-08-16 2004-06-02 ˹���ն�ǻ�����޹�˾ 用不对称钒电解槽制备钒电解液和用不对称钒电解槽使工作态钒氧化还原电池电解液的充电状态重新平衡
US7820321B2 (en) * 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8642202B2 (en) * 2010-01-29 2014-02-04 Samsung Electronics Co., Ltd. Organic electrolyte solution and redox flow battery including the same
ES2413095T3 (es) * 2010-03-12 2013-07-15 Sumitomo Electric Industries, Ltd. Batería de flujo redox
JP5712688B2 (ja) * 2010-03-12 2015-05-07 住友電気工業株式会社 レドックスフロー電池
WO2011111717A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 レドックスフロー電池
JP5713186B2 (ja) * 2010-03-12 2015-05-07 住友電気工業株式会社 レドックスフロー電池
KR101819036B1 (ko) * 2010-12-31 2018-01-17 삼성전자주식회사 레독스 플로우 전지
KR101793205B1 (ko) * 2010-12-31 2017-11-03 삼성전자 주식회사 레독스 플로우 전지
KR101882861B1 (ko) * 2011-06-28 2018-07-27 삼성전자주식회사 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
KR102038619B1 (ko) * 2013-01-08 2019-10-30 삼성전자주식회사 레독스 플로우 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579073A (en) * 1980-06-17 1982-01-18 Agency Of Ind Science & Technol Bedox battery
JP2006147375A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The レドックスフロー電池およびその運転方法
JP2013008642A (ja) * 2011-06-27 2013-01-10 Sumitomo Electric Ind Ltd レドックスフロー電池
JP2014137946A (ja) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
WO2015019972A1 (ja) * 2013-08-07 2015-02-12 住友電気工業株式会社 レドックスフロー電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240083A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183301A1 (en) * 2017-03-27 2018-10-04 Danzi Angelo An advanced electrolyte mixing method for all vanadium flow batteries
CN110679023A (zh) * 2017-03-27 2020-01-10 斯托伦技术公司 所有钒液流电池的先进电解液混合方法
EP3602664A4 (en) * 2017-03-27 2021-01-20 D'Anzi, Angelo ADVANCED ELECTROLYTE MIXING PROCESS FOR ALL VANADIUM CIRCULATING BATTERIES
WO2019139566A1 (en) * 2018-01-10 2019-07-18 United Technologies Corporation Regeneration of flow battery
US11462761B2 (en) 2018-01-10 2022-10-04 Raytheon Technologies Corporation Regeneration of flow battery

Also Published As

Publication number Publication date
US10199672B2 (en) 2019-02-05
JP2016119258A (ja) 2016-06-30
TWI669849B (zh) 2019-08-21
EP3240083A4 (en) 2018-05-02
TW201635624A (zh) 2016-10-01
EP3240083A1 (en) 2017-11-01
JP6414463B2 (ja) 2018-10-31
US20180269512A1 (en) 2018-09-20
CN107112570A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6414463B2 (ja) レドックスフロー電池の運転方法、及びレドックスフロー電池システム
JP6390810B2 (ja) レドックスフロー電池
AU2014303614B2 (en) Redox flow battery
KR101574410B1 (ko) 레독스 플로우 전지 평가 방법 및 장치
CN105425164B (zh) 全钒液流电池荷电状态在线监测方法及***
WO2018123962A1 (ja) レドックスフロー電池システム及びレドックスフロー電池の運転方法
TWI716373B (zh) 氧化還原液流電池
JP6271742B2 (ja) フローバッテリにおける電解質の分配
CN105264704A (zh) 采用正电解质溶液中的氧化还原电对V+4/V+5和辅助氧化还原电对Ce+3/Ce+4的全钒氧化还原液流电池***
WO2015019973A1 (ja) レドックスフロー電池
JP2014137946A (ja) レドックスフロー電池の運転方法
JP2006147374A (ja) バナジウムレドックスフロー電池システムの運転方法
JP6153100B1 (ja) 電解液流通型電池用電解液、及び電解液流通型電池システム
CN105572594A (zh) 液流电池***荷电状态监测方法及其***
US20240097172A1 (en) Inline sensors for electrolyte precipitation detection in redox flow battery system
US20230387431A1 (en) Filtration applications in a redox flow battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872693

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15537581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE