WO2016103342A1 - Inertial sensor and method for manufacturing same - Google Patents

Inertial sensor and method for manufacturing same Download PDF

Info

Publication number
WO2016103342A1
WO2016103342A1 PCT/JP2014/084058 JP2014084058W WO2016103342A1 WO 2016103342 A1 WO2016103342 A1 WO 2016103342A1 JP 2014084058 W JP2014084058 W JP 2014084058W WO 2016103342 A1 WO2016103342 A1 WO 2016103342A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial sensor
electrode
layer
fixed electrode
mass body
Prior art date
Application number
PCT/JP2014/084058
Other languages
French (fr)
Japanese (ja)
Inventor
貴支 塩田
佐久間 憲之
礒部 敦
千咲紀 田窪
雄大 鎌田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/084058 priority Critical patent/WO2016103342A1/en
Publication of WO2016103342A1 publication Critical patent/WO2016103342A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position

Definitions

  • the present invention relates to an inertial sensor, for example, an acceleration sensor that detects minute acceleration smaller than gravity.
  • Patent Document 1 describes a technology relating to a MEMS (Micro Electrical Mechanical Systems) sensor in which both an upper electrode and a lower electrode are patterned and both the upper electrode and the lower electrode vibrate. Yes.
  • the convex portion of the upper electrode functions as a stopper that prevents adhesion with the lower electrode
  • the convex portion on the silicon substrate functions as a stopper that prevents adhesion with the lower electrode.
  • Reflection seismic exploration is a geophone that generates a shock wave or continuous wave on the ground surface, and reflects the reflected waves that return from the ground reflecting surface (boundary surface where the acoustic impedance changes) back to the ground.
  • This is a method for exploring the depth distribution and underground structure of the subsurface reflecting surface by measuring and analyzing the above.
  • this reflection seismic exploration is widely used as the main exploration method for oil and natural gas.
  • an acceleration sensor that detects vibration acceleration far smaller than gravitational acceleration has attracted attention. In order to put such an acceleration sensor into practical use, it is desired to develop an acceleration sensor with low noise and very high sensitivity.
  • the acceleration sensor connects the mass body to the fixed portion via a resiliently deformable beam in the cavity, and detects the change in physical quantity due to the displacement of the mass body when acceleration is applied. Is detected.
  • the mass body functions as a movable electrode
  • the fixed electrode is disposed at a position facing the mass body.
  • the objective of this invention is providing the technique which can suppress the etching damage in the sticking of an inertial sensor, or the manufacturing process of an inertial sensor.
  • An inertial sensor includes a first movable electrode that is displaceable in a first direction, a plurality of first openings that pass through the first movable electrode, and a first movable electrode that is spaced apart from the first movable electrode in the first direction.
  • a plurality of first protections formed on opposing surfaces of the first fixed electrode disposed opposite to the first fixed electrode facing the first movable electrode and provided corresponding to each of the plurality of first openings.
  • each of the plurality of first protection portions includes a first opening corresponding to each of the plurality of first protection portions.
  • the inertial sensor manufacturing method includes (a) a step of forming a fixed electrode inside the groove of the base layer having the groove, (b) a step of forming a plurality of protective portions on the fixed electrode, (C) After the step (b), a step of bonding the MEMS layer on the base layer is provided. Then, (d) by patterning the MEMS layer, a fixed portion fixed to the base layer, a beam connected to the fixed portion, a mass that is suspended by the beam and functions as a movable electrode that can be displaced in the first direction. And a step of forming a plurality of openings penetrating the mass portion.
  • a cap layer connected to the fixing portion formed on the MEMS layer is formed on the MEMS layer, so that the mass portion formed on the MEMS layer is changed between the base layer and the cap layer.
  • the plurality of openings are formed so that each of the plurality of protection portions includes an opening corresponding to each of the plurality of protection portions in a plan view as viewed from the first direction. To do.
  • the reliability of the inertial sensor can be improved. Specifically, according to the inertial sensor in one embodiment, sticking can be suppressed. Moreover, according to the manufacturing method of the inertial sensor in one embodiment, etching damage can be suppressed.
  • FIG. 3 is a cross-sectional view showing a cross section of the acceleration sensor in the first embodiment.
  • 3 is a plan view showing a planar layout configuration of a base layer in Embodiment 1.
  • FIG. 3 is a plan view showing a planar layout configuration of a MEMS layer in the first embodiment.
  • FIG. 10 is a plan view showing an example of a planar layout configuration of a base layer in a second embodiment. It is a top view which shows the plane layout structural example (modification) of a base layer.
  • FIG. 10 is a plan view showing a planar layout configuration of a MEMS layer in a second embodiment. It is a top view which shows the example of a plane layout structure (modification) of a MEMS layer. It is a graph which shows the relationship between sealing pressure and mechanical noise.
  • FIG. 9 is a diagram showing a cross-sectional configuration of an acceleration sensor in a third embodiment.
  • FIG. 10 is a cross-sectional view showing a cross section of an acceleration sensor in a fourth embodiment.
  • FIG. 10 is a plan view showing a planar layout configuration of a base layer that constitutes a part of an acceleration sensor according to a fourth embodiment.
  • FIG. 10 is a plan view showing a planar layout configuration of a MEMS layer that constitutes a part of the acceleration sensor in the fourth embodiment. It is sectional drawing which shows the manufacturing process of the acceleration sensor in Embodiment 4.
  • FIG. 18 is a cross-sectional view showing a manufacturing process of the acceleration sensor following FIG. 17. It is sectional drawing which shows the manufacturing process of the acceleration sensor following FIG.
  • FIG. 20 is a cross-sectional view showing a manufacturing step of the acceleration sensor following FIG. 19.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • Acceleration sensors are used in a wide range of fields such as automobile attitude control, smartphones, and game machines.
  • the acceleration sensor used in these fields is small and can detect acceleration several times as large as gravity in a low frequency band of several hundred Hz or less.
  • the field of use of the acceleration sensor is not limited to the above-mentioned field, but has been expanded to a field for exploring underground resources.
  • reflection seismic wave exploration which is a kind of geophysical exploration, artificially generates a seismic wave and then receives a geophone (acceleration sensor) installed on the ground surface.
  • the reflected waves that bounce off the ground are captured and the results are analyzed to reveal the underground structure.
  • Fig. 1 is a schematic cross-sectional view of the earth's surface showing an outline of the reflection elastic wave exploration.
  • the excitation source VB installed on the ground surface GND to the ground
  • the elastic waves reflected by the boundary BUD1 and the boundary BUD2 of the plurality of formations are grounded.
  • Sensing is performed by an acceleration sensor (vibrator) AS installed in the vehicle. Since a general excitation source VB oscillates in a direction perpendicular to the ground surface, a P wave is efficiently excited in a direction close to the vertical direction. For this reason, the P wave is used in the reflection elastic wave exploration.
  • the acceleration sensor AS needs to detect the elastic vibration in the vertical direction.
  • the elastic wave excited in various directions propagates in the ground with large attenuation, reflects at the boundary BUD1 and boundary BUD2 of a plurality of formations, and propagates again in the ground with large attenuation. It spreads over a wide area and returns to the ground surface GND.
  • the acceleration sensor AS in order to detect weak elastic vibration, the acceleration sensor AS needs to be highly sensitive in the vertical direction. Specifically, since the acceleration of weak elastic vibration is smaller than the gravitational acceleration, the acceleration sensor used in the reflection elastic wave exploration is required to detect acceleration smaller than the gravitational acceleration with high sensitivity. .
  • the mass of the mass body that is a component of the acceleration sensor is increased, And the structure which makes a spring constant small and the structure which provides a some opening part in a mass body and reduces air resistance are employ
  • side effects occur as described in the section “Problems to be Solved by the Invention”. Therefore, in the first embodiment, a device that can suppress this side effect is taken. Below, the technical idea in this Embodiment 1 which gave this device is demonstrated.
  • FIG. 2 is a sectional view showing one section of the acceleration sensor AS1 in the first embodiment.
  • the acceleration sensor AS1 in the first embodiment has a base layer BL made of, for example, silicon (Si), and a fixed electrode FE made of, for example, a polysilicon film is formed on the base layer BL. ing.
  • a plurality of protection parts PU are formed on the surface of the fixed electrode FE so as to be separated from each other.
  • the plurality of protection units PU1 are formed of an insulating film typified by a silicon oxide film, for example.
  • a MEMS layer ML made of, for example, silicon is disposed above the base layer BL, and the MEMS layer ML is formed by processing the MEMS layer ML.
  • Part FU is formed.
  • the mass body MS is formed on the MEMS layer ML, and the mass body MS is disposed at a position facing the fixed electrode FE formed on the base layer BL.
  • the mass body MS is connected to the fixed portion FU via a beam (not shown). That is, the mass body MS is suspended by a beam and can be displaced in the z direction of FIG. For example, the mass body MS is displaced in the z direction when acceleration is applied in the z direction from the outside.
  • a plurality of openings OP penetrating the mass body MS are formed in the mass body MS.
  • the plurality of openings OP are provided so as to correspond to the plurality of protection units PU formed on the fixed electrode FE. That is, the protection part PU is provided so as to correspond to each of the plurality of openings OP.
  • the mass body MS is made of conductive silicon and can be displaced in the z direction, it also functions as the movable electrode VE. Therefore, in the acceleration sensor AS1 in the first embodiment, a capacitance is formed by the fixed electrode FE formed on the base layer BL and the mass body MS (movable electrode VE) formed on the MEMS layer ML. Will be.
  • a cap layer CL made of silicon is disposed on the MEMS layer ML.
  • the MEMS layer ML is sandwiched between the base layer BL and the cap layer CL in a cross-sectional view, and the mass body MS formed in the MEMS layer ML includes the base layer BL, the fixing unit FU, and the cap layer CL. It will be arrange
  • the acceleration sensor AS1 includes the movable electrode VE (mass body MS) that can be displaced in the z direction, the plurality of openings OP that penetrate the movable electrode VE, and the movable electrode in the z direction.
  • a plurality of protection portions formed on the opposing surfaces of the fixed electrode FE spaced apart from the VE and the fixed electrode FE facing the movable electrode VE, and provided corresponding to each of the plurality of openings OP.
  • Each of the PUs are the movable electrode VE (mass body MS) that can be displaced in the z direction, the plurality of openings OP that penetrate the movable electrode VE, and the movable electrode in the z direction.
  • the acceleration sensor AS1 includes a base layer BL, a cap layer CL disposed above the base layer BL, a cavity CAV sandwiched between the base layer BL and the cap layer CL, a cavity And a MEMS layer ML disposed in the part CAV.
  • the fixed electrode FE is formed on the base layer BL in the cavity CAV1.
  • the MEMS layer ML has a fixed portion FU fixed to the base layer BL and the cap layer CL, a beam connected to the fixed portion FU, and is suspended in the cavity CAV by the beam and functions as the movable electrode VE. Mass body MS to be formed.
  • FIG. 3 is a plan view showing a planar layout configuration of the base layer BL in the first embodiment.
  • a cross section taken along line AA in FIG. 3 corresponds to the base layer BL in FIG.
  • a cavity CAV is formed inside the base layer BL, and a fixed electrode FE is formed inside the cavity CAV.
  • a plurality of protection units PU are formed on the fixed electrode FE.
  • a plurality of protection parts PU spaced apart from each other are provided on the surface of the fixed electrode FE, and an uneven shape is formed on the surface of the fixed electrode FE.
  • FIG. 4 is a plan view showing a planar layout configuration of the MEMS layer ML in the first embodiment.
  • a cross section taken along line AA in FIG. 4 corresponds to the MEMS layer ML in FIG.
  • a cavity CAV is formed inside the MEMS layer ML.
  • a fixed part FU Inside the cavity CAV, a fixed part FU, a beam BM connected to the fixed part FU, and the beam BM
  • a mass body MS to be connected is formed. That is, in the MEMS layer ML, the mass body MS is connected to the fixed portion FU via the beam BM, and the mass portion MS is suspended by the beam BM.
  • a plurality of openings OP are formed in the mass body MS.
  • each planar size of the plurality of protection units PU corresponds to each of the plurality of protection units PU.
  • the opening size OP is larger than the planar size.
  • each of the plurality of protection units PU is formed so as to include the opening OP corresponding to each of the plurality of protection units PU.
  • the acceleration sensor AS1 is an acceleration sensor that captures acceleration applied in the z direction as a change in capacitance of a variable capacitor including the movable electrode VE and the fixed electrode FE.
  • the acceleration sensor AS1 is an acceleration sensor that captures acceleration applied in the z direction as a change in capacitance of a variable capacitor including the movable electrode VE and the fixed electrode FE.
  • it is possible to detect acceleration by detecting a change in capacitance due to acceleration due to acceleration without applying a modulation signal.
  • the detection signal based on the capacitance change in the variable capacitance corresponding to the acceleration is a low-frequency signal, it is easily affected by 1 / f noise.
  • a modulation signal is used.
  • the detection signal based on the capacitance change in the variable capacitor corresponding to the acceleration is modulated by the modulation signal to become a high frequency signal, it is difficult to receive 1 / f noise. That is, since the 1 / f noise is smaller in the high-frequency signal than in the low-frequency signal, the S / N ratio can be improved. As a result, the detection sensitivity of the acceleration sensor AS1 can be improved. For this reason, in the first embodiment, first, a modulation signal is applied to a variable capacitor composed of the movable electrode VE and the fixed electrode FE.
  • the mass body MS is displaced in the z direction.
  • a change in the capacitance of the variable capacitor including the movable electrode VE (mass body MS) and the fixed electrode FE occurs.
  • This capacitance change is added to the modulation signal and output to the signal processing circuit.
  • a modulation signal to which a capacitance change due to acceleration is added is input to the CV conversion unit, and the capacitance change is converted into an analog voltage signal.
  • the converted analog voltage signal is converted into a digital voltage signal by the AD converter.
  • the demodulated signal is extracted by the synchronous detector.
  • the demodulated signal demodulated by the synchronous detection section passes through an LPF (low frequency band pass filter), and finally an acceleration signal (detection signal) corresponding to the acceleration is output from the output terminal.
  • LPF low frequency band pass filter
  • FIG. 5 is an enlarged view of a part of FIG.
  • the feature point in the first embodiment is that each of the plurality of protection units PU corresponds to each of the plurality of protection units PU in a plan view viewed from the z direction.
  • the point is to include the opening OP (see FIGS. 3 and 4). Reflecting this feature point, in FIG.
  • the width L1 in the x direction of the protection part PU is larger than the opening dimension L3 in the x direction of the opening OP, and the protection part PU
  • the non-overlapping region NOR that does not overlap with the opening OP is formed.
  • the first advantage in the first embodiment is that the mass body MS can be prevented from sticking to the fixed electrode FE.
  • the acceleration sensor AS1 in the first embodiment has a configuration in which the mass of the mass body MS is increased and the spring constant of the beam is decreased in order to realize a highly sensitive acceleration sensor.
  • the mass body MS is greatly displaced and comes into contact with the fixed electrode FE, sticking is likely to occur.
  • the surface of the fixed electrode FE is flat, when the mass body MS comes into contact with the fixed electrode FE, the contact area increases, and thus sticking is likely to occur.
  • the mass body MS does not return to the original position, and the acceleration sensor AS1 does not operate normally. That is, since sticking causes a decrease in the reliability of the acceleration sensor AS1, it is necessary to suppress the sticking from the viewpoint of improving the reliability of the acceleration sensor AS1.
  • the surface of the fixed electrode FE has an uneven shape. It is formed. Therefore, even when the mass body MS is in contact with the fixed electrode FE due to excessive displacement of the mass body MS, since the uneven shape is formed on the surface of the fixed electrode FE, the protection unit PU and the mass body MS The contact area becomes smaller and sticking is less likely to occur. This means that a reduction in reliability of the acceleration sensor AS1 due to sticking can be suppressed.
  • the reliability of acceleration sensor AS1 can be improved.
  • each of the plurality of protection units PU is provided corresponding to the opening OP1. Therefore, even if the mass body MS is displaced in the z direction so as to contact the fixed electrode FE, the mass body MS does not contact the entire width L3 of the protection portion PU, but instead of the protection portion PU and the opening OP. The contact is made within the range of the width L2 of the non-overlapping region NOR. This means that the contact area between the mass body MS and the protection part PU can be reduced.
  • the plurality of protection portions PU are provided on the surface of the fixed electrode FE so as to be separated from each other, and as a result, an uneven shape is formed on the surface of the fixed electrode FE.
  • Each of the plurality of protection units PU is provided so as to include the corresponding opening OP. As a result, the contact area between the mass body MS and the protection part PU is reduced due to the formation of an uneven shape on the surface of the fixed electrode FE, and each of the protection parts PU has a corresponding opening.
  • the length L2 in the x direction of the non-overlapping region NOR between each of the plurality of protection units PU and the opening OP corresponding to each of the plurality of protection units PU is equal to the plurality of protection units PU.
  • the protection part PU and the opening OP provided corresponding to the protection part PU when attention is paid to the protection part PU and the opening OP provided corresponding to the protection part PU, one end of the protection part PU from one end of the opening OP in the x direction in a plan view seen from the z direction.
  • the distance (L2) to the portion can be made smaller than the opening dimension L3 of the opening OP in the x direction.
  • the second advantage of the feature point in the first embodiment is an advantage in the manufacturing process.
  • the mass body MS and the opening OP penetrating the mass body MS are formed by patterning the MEMS layer ML, and this patterning step includes a step of dry etching the MEMS layer ML.
  • the fixed portion FU, the beam, the mass body MS, and the plurality of openings OP are formed by etching the MEMS layer ML.
  • these components are included in the MEMS layer ML.
  • regions having different opening areas are etched at the same time.
  • the etching time is determined in accordance with the opening OP having the smallest opening area. Furthermore, even in the wafer plane, the etching rate is different between the central portion and the peripheral portion of the wafer, so the etching time is set to be longer than the etching time necessary for the penetration of the MEMS layer ML. Therefore, overetching is performed. However, if over-etching is performed, the fixed electrode FE disposed below the MEMS layer ML is etched, and the fixed electrode FE may be damaged.
  • each of the plurality of protection units PU includes an opening OP corresponding to each of the plurality of protection units PU.
  • the protection unit PU covers the region. Therefore, the fixed electrode FE can be protected from over-etching within a necessary and sufficient range. This is the second advantage brought about by the feature points in the first embodiment. As described above, according to the first embodiment, it is possible to protect the fixed electrode FE from etching damage, thereby improving the reliability of the acceleration sensor AS1.
  • the width L2 of the non-overlapping region NOR shown in FIG. 5 becomes larger, the fixed electrode FE can be protected from side etching. From the viewpoint of reducing etching damage to the fixed electrode FE, the non-overlapping region is as much as possible. It would be desirable to increase the NOR width L2. Therefore, the requirement for the width L2 of the non-overlapping region NOR is contradictory between the case where attention is paid to the viewpoint of suppressing sticking and the case where attention is paid to the viewpoint of suppressing etching damage. As a realistic response in this regard, it is within a well-balanced range so that it is within a reasonable range from the viewpoint of suppressing sticking and within a reasonable range from the viewpoint of suppressing etching damage. It is desirable to set the width L2 of the non-overlapping area NOR.
  • the mass of the mass body MS of the acceleration sensor AS1 is increased in order to detect an acceleration smaller than the gravitational acceleration with high sensitivity without considering side effects.
  • the mass body MS can be provided with a plurality of openings OP. That is, according to the feature point in the first embodiment, the detection sensitivity of the acceleration sensor AS1 can be improved while effectively suppressing the side effect of the mass body MS sticking and the etching damage to the fixed electrode FE. An excellent effect can be obtained.
  • FIG. 6 is a plan view showing a planar layout configuration example of the base layer BL in the second embodiment.
  • a fixed electrode FE, a servo electrode SE1, and a servo electrode SE2 are formed in the base layer BL.
  • the servo electrode SE1, the fixed electrode FE, and the servo electrode SE2 are arranged so as to be aligned in the y direction, and the fixed electrode is sandwiched between the servo electrode SE1 and the servo electrode SE2 in plan view.
  • FE is arranged.
  • a plurality of protection parts PU are formed on the fixed electrode FE, and a plurality of protection parts PU are also formed on the servo electrodes SE1 and SE2.
  • the feature point that the plurality of protection parts PU spaced apart from each other is provided on the surface of the fixed electrode FE and the uneven shape is provided on the surface of the fixed electrode FE is realized.
  • not only the fixed electrode FE but also the servo electrode SE1 and the servo electrode SE2 are provided with a plurality of protective portions PU spaced from each other on the surfaces of the servo electrode SE1 and the servo electrode SE2, and the servo electrode Concave and convex shapes are provided on the surfaces of SE1 and servo electrode SE2. For this reason, the above-described feature points are also realized in the servo electrode SE1 and the servo electrode SE2.
  • the servo electrode SE1 and the servo electrode SE2 are formed on the base layer BL shown in FIG.
  • the base layer BL shown in FIG. 6 is formed of the same layer as the fixed electrode FE, and is disposed above the base layer BL in the z direction (upward direction in FIG. 6) (illustrated).
  • the servo electrode SE1 and the servo electrode SE2 that are arranged opposite to each other and generate an electrostatic force that cancels the displacement of the mass body in the z direction are formed.
  • a servo voltage is applied to the servo electrode SE1 and the servo electrode SE2, and the acceleration is caused by the Coulomb force (electrostatic force) generated by applying the servo voltage to the servo electrode SE1 and the servo electrode SE2.
  • the displacement in the z direction of the mass body based thereon is cancelled.
  • the mass body is hardly displaced in the z direction, but the servo electrode SE1 and the servo electrode SE2 have a servo voltage proportional to the magnitude of the acceleration.
  • this servo voltage it is possible to detect the acceleration applied to the acceleration sensor according to the second embodiment.
  • the advantage of providing the servo electrode SE1 and the servo electrode SE2 is that acceleration can be detected without displacing the mass body in the z direction. That is, by providing a servo mechanism, when a large acceleration is applied to the acceleration sensor, it is possible to prevent the mass body from contacting the fixed electrode FE due to an unexpected displacement of the mass body.
  • the mass body and the fixed electrode FE can be prevented by the servo mechanism as well as the anti-sticking effect due to the feature point in the first embodiment described above.
  • an anti-sticking effect can be obtained.
  • the configuration in which the servo electrode SE1 and the servo electrode SE2 are provided in the acceleration sensor has an effect of enhancing the effect of preventing sticking, and is a useful configuration from the viewpoint of suppressing the sticking and improving the reliability of the acceleration sensor. Recognize.
  • the servo mechanism works in the operating state of the acceleration sensor, it is possible to obtain the anti-sticking effect caused by the feature points in the first embodiment and the anti-sticking effect caused by the servo mechanism.
  • the servo mechanism does not work, so that it is not possible to obtain an anti-sticking effect caused by the servo mechanism.
  • the mass body will be displaced.
  • the servo mechanism Since it does not work, sticking may occur.
  • the effect of preventing sticking caused by the feature point in the first embodiment described above can be obtained. That is, the configuration in which the concavo-convex shape is provided by the plurality of protection units PU exists regardless of the operation state or non-operation state of the acceleration sensor. Therefore, even in the acceleration sensor according to the second embodiment, an effect of preventing sticking can be obtained not only when the acceleration sensor is in the operating state but also when the acceleration sensor is in the non-operating state. That is, unlike the servo mechanism, the feature point in the first embodiment described above is excellent in that an effect of preventing sticking can be obtained regardless of whether the acceleration sensor is in an operating state or a non-operating state. It can be said that
  • the wiring WL is drawn from the fixed electrode FE.
  • the wiring WL1 is drawn from the servo electrode SE1
  • the wiring WL2 is drawn from the servo electrode SE2.
  • a wiring protection unit WPU that covers a part of the wiring WL and a part of the wiring WL1 is formed.
  • a wiring protection part WPU that covers a part of the wiring WL and a part of the wiring WL2 is formed.
  • the wiring protection unit WPU is formed in the same layer as the plurality of protection units PU, and has a function of protecting the wiring WL, the wiring WL1, and the wiring WL2 from etching damage when the MEMS layer is etched. .
  • a through-hole penetrating the MEMS layer ML is also formed. Therefore, a part of the wiring may be arranged on the base layer BL below the MEMS layer ML so as to overlap the through hole in a plan view. In this case, a portion of the wiring that overlaps with the through hole in a plane is damaged by etching when the through hole is formed.
  • the wiring protection portion WPU is formed across a part of the wiring WL and the part of the wiring WL1 that overlaps the through-hole in a plan view
  • a wiring protection part WPU is formed across a part of the wiring WL and a part of the wiring WL2 overlapping each other.
  • the wiring protection part WPU is formed so as to include the through hole in a plan view.
  • FIG. 7 is a plan view showing a planar layout configuration example of the base layer BL.
  • a rectangular fixed electrode FE is formed on the base layer BL, and this fixed electrode FE also functions as a servo electrode SE. That is, in the planar layout configuration example of the base layer BL shown in FIG. 7, a configuration in which the fixed electrode FE also serves as the servo electrode SE is shown. In this case, the detection operation by the fixed electrode FE and the servo operation by the servo electrode SE are performed in a time division manner.
  • the planar layout configuration of the base layer BL can employ not only the planar layout configuration shown in FIG. 6 but also the planar layout configuration shown in FIG.
  • FIG. 8 is a plan view showing a planar layout configuration example of the base layer BL.
  • the fixed electrode FE and the servo electrode SE1 are separately formed on the base layer BL.
  • the fixed electrode FE and the servo electrode SE1 are arranged so as to be aligned in the x direction.
  • the planar layout configuration of the base layer BL can employ not only the planar layout configuration shown in FIGS. 6 and 7, but also the planar layout configuration shown in FIG.
  • FIG. 9 is a plan view illustrating a planar layout configuration example of the base layer BL.
  • the fixed electrode FE and the servo electrode SE1 are separately formed on the base layer BL.
  • the fixed electrode FE and the servo electrode SE1 are arranged so as to be aligned in the y direction.
  • the planar layout configuration of the base layer BL can employ not only the planar layout configuration shown in FIGS. 6 to 8, but also the planar layout configuration shown in FIG.
  • FIG. 10 is a plan view showing a planar layout configuration of the MEMS layer ML in the second embodiment.
  • the MEMS layer ML has a rectangular shape.
  • a fixed portion FU Inside the MEMS layer ML, a fixed portion FU, a beam BM connected to the fixed portion FU, and a mass body MS connected to the beam BM. And are formed. That is, in the MEMS layer ML, the mass body MS is connected to the fixed portion FU via the beam BM, and the mass portion MS is suspended by the beam BM.
  • a plurality of openings OP are formed.
  • the planar shape of each of the plurality of openings OP is a slit shape SL.
  • each of the plurality of protection units PU is formed so as to include an opening OP corresponding to each of the plurality of protection units PU. It can be seen that the feature points in 1 are realized.
  • FIG. 11 is a plan view illustrating a planar layout configuration example of the MEMS layer ML.
  • the mass body MS connected to the fixed portion FU via the beam BM is formed in the MEMS layer ML, and a plurality of openings are formed in the mass body MS so as to penetrate the mass body MS.
  • OP is formed.
  • the planar shape of each of the plurality of openings OP is a hole shape HL.
  • the planar layout configuration of the MEMS layer ML can adopt not only the planar layout configuration shown in FIG. 10 but also the planar layout configuration shown in FIG.
  • the mass body MS is provided with a plurality of openings OP to reduce the air resistance, and the mass body MS is sufficiently more than the atmospheric pressure. Sealed with low pressure. Thereby, mechanical noise can also be reduced in the second embodiment.
  • FIG. 12 is a graph showing the relationship between sealing pressure and mechanical noise.
  • the horizontal axis represents the sealing pressure (Pa)
  • the vertical axis represents the mechanical noise (ng / ⁇ Hz).
  • FIG. 12 corresponds to a graph corresponding to a configuration in which no opening is provided in the mass body ((a) no hole) and a configuration in which a rough slit-like opening is provided in the mass ((b) rough slit).
  • the configuration corresponding to the configuration in which the mass body is provided with a dense slit-shaped opening ((c) slit dense), and the configuration in which the mass body is provided with a hole-shaped opening ((d) hole) The graph is shown. As shown in FIG.
  • the mechanical noise decreases as the sealing pressure decreases. It can also be seen that the mechanical noise varies depending on the shape of the opening provided in the mass body. For example, when there is no opening, the mechanical noise is about 200 (ng / ⁇ Hz) when the sealing pressure is 1 (Pa), while when the opening is present, the sealing pressure is 1 (Pa). It can be seen that the mechanical noise is about 20 (ng / ⁇ Hz). Therefore, not only in the first embodiment but also in the second embodiment, the mass body MS is provided with a plurality of openings OP, and the mass body MS is sealed at a pressure sufficiently lower than the atmospheric pressure.
  • the acceleration detection sensitivity can be improved not only in the first embodiment but also in the second embodiment. That is, also in the second embodiment, the acceleration detection sensitivity can be improved without incurring the side effect of sticking the mass body MS and etching damage to the fixed electrode FE.
  • FIG. 13 is a diagram illustrating a cross-sectional configuration of the acceleration sensor AS1 according to the third embodiment, and corresponds to FIG. 2 illustrating the first embodiment.
  • a fixed electrode FE1 is formed on the base layer BL, and a plurality of protective portions PU1 are formed on the fixed electrode FE1.
  • each of the plurality of protection parts PU1 is formed so as to include the opening OP corresponding to each of the plurality of protection parts PU1.
  • the fixed electrode FE3 is formed on the lower surface of the cap layer CL, and the fixed surface of the fixed electrode FE3 facing the mass body MS is formed on the opposite surface.
  • Each of the plurality of protection units PU3 corresponding to each of the plurality of openings OP is formed. And in the planar view seen from z direction, each of several protection part PU3 is formed so that the opening part OP corresponding to each of several protection part PU3 may be included.
  • the contact area between the mass body MS and the protection unit PU3 is reduced due to the formation of the uneven shape on the surface of the fixed electrode FE3, and a plurality of protections.
  • Each of the parts PU3 is provided so as to include the corresponding opening OP.
  • the fixed electrode FE1 provided in the base layer BL not only suppression of sticking but also etching damage in the step of dry etching the MEMS layer ML disposed above the base layer BL may be received. It is necessary to design a plurality of protection units PU1 in consideration.
  • the fixed electrode FE3 provided in the cap layer CL is joined to the MEMS layer ML together with the cap layer CL after forming the MEMS layer ML. Therefore, it is not necessary to consider etching damage in the fixed electrode FE3. That is, the plurality of protection portions PU3 formed on the fixed electrode FE3 provided in the cap layer CL can be designed from the viewpoint of suppressing sticking without considering etching damage.
  • each of the plurality of protection units PU3 is formed so as to include an opening OP corresponding to each of the plurality of protection units PU3 in a plan view viewed from the z direction. It is only necessary to reduce the planar size of the plurality of protection units PU3 as much as possible within the range of this condition. This is because, according to this configuration, even if an unexpected large displacement occurs in the mass body MS, the contact area between the fixed electrode FE3 (specifically, the protection unit PU3) provided in the cap layer CL and the mass body MS. This is because sticking can be effectively suppressed as a result.
  • the acceleration sensor AS1 according to the third embodiment includes a first variable capacitor including a fixed electrode FE1 and a mass body MS, and a second variable capacitor including a fixed electrode FE3 and the mass body MS. Yes.
  • the capacitance change of the first variable capacitor and the capacitance change of the second variable capacitor when the acceleration in the z direction is applied have opposite characteristics. That is, when the capacitance of the first variable capacitor increases, the capacitance of the second variable capacitor decreases, while when the capacitance of the first variable capacitor decreases, the capacitance of the second variable capacitor decreases. To increase.
  • the acceleration sensor AS1 in the third embodiment the following advantages can be obtained.
  • a first variable capacitor and a second variable capacitor are connected in series between a first input terminal and a second input terminal, and CV conversion is performed at a connection portion (connection node) between the first variable capacitor and the second variable capacitor.
  • connection portion connection node
  • opposite-phase modulation signals having a phase difference of 180 ° are applied to the first input terminal and the second input terminal, respectively.
  • the capacitance of the first variable capacitance when no acceleration is applied is “C”
  • the capacitance of the second variable capacitance when no acceleration is applied is “C”. C ".
  • the mass body MS is common to the first variable capacitor and the second variable capacitor, and the distance between the mass body MS and the fixed electrode FE1 and the mass body MS are fixed. This is because the distance from the electrode FE3 can be made equal, and the plane size of the fixed electrode FE1 and the plane size of the fixed electrode FE3 can be designed to be equal.
  • the capacitance of the first variable capacitance increases to “C + ⁇ C”, while the capacitance of the second variable capacitance decreases to “C ⁇ C”.
  • the capacitance “C” of the first variable capacitor and the capacitance of the second variable capacitor are set to “ “C” is canceled, and the charge transfer amount includes only the component of the capacitance change 2 ⁇ C caused by the acceleration.
  • the signal includes only the component of capacitance change (2 ⁇ C) caused by acceleration.
  • FIG. 14 is a cross-sectional view showing one cross section of the acceleration sensor AS2 in the fourth embodiment.
  • the fixed electrode FE1 and the fixed electrode FE2 are disposed on the base layer BL so as to be spaced apart from each other.
  • a plurality of protection portions PU1 are formed on the surface of the fixed electrode FE1 so as to be separated from each other, and a plurality of protection portions PU2 are also formed on the surface of the fixed electrode FE2 so as to be separated from each other.
  • the MEMS layer ML is disposed above the base layer BL.
  • the MEMS layer ML has a fixed portion FU formed by processing the MEMS layer ML, and the MEMS layer ML is located above the base layer BL by bonding the fixed portion FU and the base layer BL. Will be placed.
  • the mass body MS1 is formed in the MEMS layer ML, and the mass body MS1 is disposed at a position facing the fixed electrode FE1 formed in the base layer BL.
  • the mass body MS2 is formed in the MEMS layer ML, and the mass body MS2 is disposed at a position facing the fixed electrode FE2 formed in the base layer BL.
  • the mass body MS1 and the mass body MS2 are connected to the fixed portion FU via a beam (not shown). That is, each of mass body MS1 and mass body MS2 is suspended by the beam.
  • a plurality of openings OP1 penetrating the mass body MS1 are formed in the mass body MS1.
  • the plurality of openings OP1 are provided so as to correspond to the plurality of protection units PU1 formed on the fixed electrode FE1. That is, the protection part PU1 is provided so as to correspond to each of the plurality of openings OP1.
  • a plurality of openings OP2 penetrating the mass body MS2 are formed in the mass body MS2, as shown in FIG.
  • the plurality of openings OP2 are provided so as to correspond to the plurality of protection units PU2 formed on the fixed electrode FE2. That is, the protection part PU2 is provided so as to correspond to each of the plurality of openings OP2.
  • the mass body MS1 also functions as the movable electrode VE1. That is, in the acceleration sensor AS2 in the fourth embodiment, a capacitance is formed by the fixed electrode FE1 formed on the base layer BL and the mass body MS1 (movable electrode VE1) formed on the MEMS layer ML. Will be. Similarly, the mass body MS2 also functions as the movable electrode VE2. That is, in the acceleration sensor AS2 in the fourth embodiment, a capacitance is formed by the fixed electrode FE2 formed on the base layer BL and the mass body MS2 (movable electrode VE2) formed on the MEMS layer ML. Will be.
  • the cap layer CL is disposed on the MEMS layer ML.
  • the MEMS layer ML is sandwiched between the base layer BL and the cap layer CL in a cross-sectional view, and the mass body MS1 formed in the MEMS layer ML includes the base layer BL, the fixed portion FU, and the cap layer CL. It is arrange
  • the mass body MS2 formed in the MEMS layer ML is disposed inside the cavity CAV2 surrounded by the base layer BL, the fixing part FU, and the cap layer CL.
  • the inside of the cavity CAV1 and the cavity CAV2 is filled with gas, and the pressure inside the cavity CAV1 and the cavity CAV2 is, for example, a pressure sufficiently lower than the atmospheric pressure.
  • each plane size of the plurality of openings OP1 is smaller than each plane size of the plurality of openings OP2, and each plane size of the plurality of protection units PU1 is equal to the plurality of protection units PU2. It is smaller than each plane size.
  • a mass difference is generated between the mass body MS1 and the mass body MS2.
  • the acceleration sensor AS2 in the fourth embodiment performs a “seesaw operation”.
  • each of the plurality of protection units PU1 includes an opening OP corresponding to each of the plurality of protection units PU in a plan view viewed from the z direction
  • Each of the protection parts PU2 includes an opening OP2 corresponding to each of the plurality of protection parts PU2.
  • the mass of the mass body MS1 and the mass of the mass body MS2 of the acceleration sensor AS2 are detected with high sensitivity in order to detect an acceleration smaller than the gravitational acceleration without considering side effects. And the spring constant of the beam can be reduced. Furthermore, in order to reduce mechanical noise, the mass body MS1 can be provided with a plurality of openings OP1, and the mass body MS2 can be provided with a plurality of openings OP2. That is, also in the fourth embodiment, it is possible to obtain an excellent effect that the detection sensitivity of the acceleration sensor AS2 can be improved while effectively suppressing the side effects of sticking and etching damage.
  • the acceleration sensor AS2 in the fourth embodiment includes a first variable capacitor composed of a fixed electrode FE1 and a mass body MS1, and a second variable capacitor composed of a fixed electrode FE2 and a mass body MS2. Yes.
  • the acceleration sensor AS2 in the fourth embodiment has a “seesaw structure”, and the capacitance change of the first variable capacitor and the capacitance change of the second variable capacitor when the acceleration in the z direction is applied are reversed. It becomes a characteristic. That is, when the capacitance of the first variable capacitor increases, the capacitance of the second variable capacitor decreases, while when the capacitance of the first variable capacitor decreases, the capacitance of the second variable capacitor decreases. To increase. As a result, according to the acceleration sensor AS2 in the fourth embodiment, the following advantages can be obtained.
  • a first variable capacitor and a second variable capacitor are connected in series between a first input terminal and a second input terminal, and CV conversion is performed at a connection portion (connection node) between the first variable capacitor and the second variable capacitor.
  • connection portion connection node
  • opposite-phase modulation signals having a phase difference of 180 ° are applied to the first input terminal and the second input terminal, respectively.
  • the capacitance of the first variable capacitor when no acceleration is applied is “C1”
  • the capacitance of the second variable capacitor when no acceleration is applied is “C2”.
  • the capacitance of the first variable capacitor increases to “C1 + ⁇ C1,” while the capacitance of the second variable capacitor decreases to “C2 ⁇ C2.”
  • the capacitance “C1” of the first variable capacitor and the capacitance of the second variable capacitor are expressed as “
  • the ratio of the component of the capacitance change ( ⁇ C1 + ⁇ C2) caused by the acceleration is increased in the charge transfer amount.
  • the influence of the capacitance “C1” and the capacitance “C2” unrelated to the capacitance change ( ⁇ C1 + ⁇ C2) due to acceleration is reduced in the amount of charge transfer (becomes C1-C2).
  • the component of capacitance change ( ⁇ C1 + ⁇ C2) caused by the acceleration included in the signal can be increased.
  • FIG. 15 is a plan view showing a planar layout configuration of the base layer BL constituting a part of the acceleration sensor according to the fourth embodiment.
  • a section taken along line AA in FIG. 15 corresponds to the base layer BL in FIG.
  • the base layer BL has a rectangular shape, and a fixed portion FU is formed at the center of the base layer BL.
  • a fixed electrode FE1, a servo electrode SE1A, and a servo electrode SE2A are formed in the left region from the center of the base layer BL. Specifically, as shown in FIG.
  • the servo electrode SE1A, the fixed electrode FE1, and the servo electrode SE2A are arranged so as to be aligned in the y direction, and are arranged on the servo electrode SE1A and the servo electrode SE2A in a plan view.
  • the fixed electrode FE1 is disposed so as to be sandwiched.
  • a plurality of protection portions PU1 are formed on the fixed electrode FE1, and a plurality of protection portions PU1 are also formed on the servo electrode SE1A and the servo electrode SE2A.
  • a plurality of protection portions PU1 that are spaced apart from each other are provided on the surfaces of the servo electrode SE1A and the servo electrode SE2A.
  • Concave and convex shapes are provided on the surfaces of SE1A and servo electrode SE2A. For this reason, the above-described feature points are also realized in the servo electrode SE1A and the servo electrode SE2A.
  • a fixed electrode FE2, a servo electrode SE1B, and a servo electrode SE2B are formed in a region on the right side from the center of the base layer BL. Specifically, as shown in FIG. 15, the servo electrode SE1B, the fixed electrode FE2, and the servo electrode SE2B are arranged so as to be aligned in the y direction, and the servo electrode SE1B and the servo electrode SE2B are arranged in a plan view.
  • the fixed electrode FE2 is disposed so as to be sandwiched.
  • a plurality of protection portions PU2 are formed on the fixed electrode FE2, and a plurality of protection portions PU2 are also formed on the servo electrode SE1B and the servo electrode SE2B.
  • the feature point that the plurality of protection parts PU2 spaced apart from each other is provided on the surface of the fixed electrode FE2, and the uneven shape is provided on the surface of the fixed electrode FE2.
  • a plurality of protection portions PU2 that are spaced apart from each other are provided on the surfaces of the servo electrode SE1B and the servo electrode SE2B. Concave and convex shapes are provided on the surfaces of SE1B and servo electrode SE2B. For this reason, the above-described feature points are also realized in the servo electrode SE1B and the servo electrode SE2B.
  • the respective planar sizes of the plurality of protection units PU1 are smaller than the respective plane sizes of the plurality of protection units PU2.
  • the base layer BL in the fourth embodiment has a planar layout configuration.
  • FIG. 16 is a plan view showing a planar layout configuration of the MEMS layer ML that constitutes a part of the acceleration sensor according to the fourth embodiment.
  • a section taken along line AA in FIG. 16 corresponds to the MEMS layer ML in FIG.
  • the MEMS layer ML has a rectangular shape, and a fixed portion FU and a beam BM are formed at the center of the MEMS layer ML.
  • a mass body MS1 suspended from the beam BM is formed in the left area of the central portion, and a mass body MS2 suspended from the beam BM is formed in the right area of the central portion.
  • each planar size of the plurality of openings OP1 is smaller than each planar size of the plurality of openings OP2.
  • each of the plurality of protection units PU1 corresponds to each of the plurality of protection units PU1. It is larger than the planar size of the opening OP1.
  • each of the plurality of protection units PU1 is formed so as to include an opening OP1 corresponding to each of the plurality of protection units PU1.
  • each of the plurality of protection units PU2 is larger than the plane size of the opening OP2 corresponding to each of the plurality of protection units PU2.
  • each of the plurality of protection units PU2 is formed so as to include an opening OP2 corresponding to each of the plurality of protection units PU2.
  • the MEMS layer ML according to the fourth embodiment has a planar layout configuration.
  • the acceleration sensor according to the fourth embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
  • a base layer BL made of a silicon wafer (semiconductor substrate) is prepared. Then, a pair of grooves DIT is formed on the surface of the base layer BL by using a photolithography technique and an etching technique. Subsequently, after a polysilicon film is formed on each bottom surface of the pair of grooves DIT, the fixed electrode FE1 is formed on the bottom surface of one groove DIT by using a photolithography technique and an etching technique, and the other groove A fixed electrode FE2 is formed on the bottom surface of the DIT.
  • an insulating film made of, for example, a silicon oxide film is formed on the surface of the fixed electrode FE1 and the surface of the fixed electrode FE2.
  • a plurality of island-shaped protective portions PU1 are formed on the surface of the fixed electrode FE1
  • a plurality of island-shaped protective portions PU2 are formed on the surface of the fixed electrode FE2 by using a photolithography technique and an etching technique.
  • a plurality of protection parts PU1 spaced apart from each other are formed on the surface of the fixed electrode FE1
  • a plurality of protection parts PU2 spaced apart from each other are formed on the surface of the fixed electrode FE2.
  • the protection unit PU1 and the protection unit PU2 are formed so that the respective planar sizes of the plurality of protection units PU1 are smaller than the respective plane sizes of the plurality of protection units PU2.
  • the MEMS layer (MEMS substrate) ML made of, for example, silicon is disposed on the surface of the base layer BL, and the base layer BL and the MEMS layer ML are formed by using a wafer bonding technique. And join. Thereafter, the surface of the MEMS layer ML is polished. Specifically, for example, polishing is performed so that the thickness of the MEMS layer ML is about 250 ⁇ m.
  • the MEMS layer ML is patterned by using a photolithography technique and a dry etching technique. Accordingly, a fixed portion FU fixed to the base layer BL, a beam (not shown) connected to the fixed portion FU, a mass portion MS1 that functions as a movable electrode that is suspended by the beam and is displaceable in the z-direction. A mass body MS2 is formed. In particular, the mass body MS1 is formed to face the fixed electrode FE1 formed on the base layer BL, and the mass body MS2 is formed to face the fixed electrode FE2 formed on the base layer BL. .
  • a plurality of openings OP1 penetrating the mass body MS1 and a plurality of openings OP2 penetrating the mass body MS2 are formed.
  • the planar size of the opening OP1 is smaller than the planar size of the opening OP2.
  • the mass of mass body MS1 can be made larger than the mass of mass body MS2.
  • the etching rate of the opening OP1 and the etching rate of the opening OP2 are different. Specifically, the etching rate of the opening OP1 having a small planar size is slower than the etching rate of the opening OP2 having a large planar size. Furthermore, since there is a distribution in the etching rate even within the wafer surface, over-etching is performed so as not to cause insufficient etching.
  • each of the plurality of protection units PU1 includes an opening OP1 corresponding to each of the plurality of protection units PU1, and each of the plurality of protection units PU2 includes a plurality of protection units PU2.
  • An opening OP2 corresponding to each of the protective parts PU2 is included.
  • the fixing unit FU formed on the MEMS layer ML and the cap layer CL are joined on the MEMS layer ML. Accordingly, the mass body MS1 formed in the MEMS layer ML is sealed in the cavity CAV1 sandwiched between the base layer BL and the cap layer CL, and the mass body MS2 formed in the MEMS layer ML is sealed with the base layer BL. It can be sealed in the cavity CAV2 sandwiched between the cap layers CL. At this time, the inside of the cavity part CAV1 and the inside of the cavity part CAV2 are sealed with a pressure sufficiently lower than the atmospheric pressure, for example. As described above, the acceleration sensor according to the fourth embodiment can be manufactured.
  • the method for manufacturing the acceleration sensor AS1 is not described.
  • the method for manufacturing the acceleration sensor AS2 is described.
  • the acceleration sensor AS1 in the first embodiment can be manufactured through substantially the same process as the manufacturing process described in the fourth embodiment.
  • an acceleration sensor has been described as an example of the inertial sensor.
  • the technical idea in the above-described embodiment is that the mass body is restrained from sticking between the fixed body and the mass body, and there are a plurality of mass sensors. This is made from the viewpoint of suppressing etching damage to the fixed electrode when the openings are provided. Therefore, any inertial sensor having a mass body and a fixed electrode and having a configuration in which a plurality of openings are formed in the mass body can be widely applied.
  • a configuration in which a mass body and a fixed electrode are provided and a plurality of openings are formed in the mass body may be employed. In addition, it can be widely applied to angular velocity sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

Provided is a technology whereby sticking of an inertial sensor and an etching damage of the inertial sensor in manufacturing steps can be suppressed. Specifically, in a plan view from the z direction, each of a plurality of protection units PU includes an opening OP corresponding to each of the protection units PU. Reflecting the configuration, for instance, the width L1 of the protection units PU, said width being in the x direction, is set larger than the opening dimension L3 of the opening OP, said opening dimension being in the x direction, and a non-overlapping region NOR not overlapping the opening OP is formed in each of the protection units PU.

Description

慣性センサおよびその製造方法Inertial sensor and manufacturing method thereof
 本発明は、慣性センサに関し、例えば、重力よりも小さい微小加速度を検出する加速度センサに関する。 The present invention relates to an inertial sensor, for example, an acceleration sensor that detects minute acceleration smaller than gravity.
 特開2009-28806号公報(特許文献1)には、上部電極と下部電極のいずれもがパターニングされ、上部電極と下部電極がともに振動するMEMS(Micro Electrical Mechanical Systems)センサに関する技術が記載されている。この技術では、上部電極の凸部が、下部電極との密着を防止するストッパとして機能し、シリコン基板上の凸部が、下部電極との密着を防止するストッパとして機能するとしている。 Japanese Unexamined Patent Application Publication No. 2009-28806 (Patent Document 1) describes a technology relating to a MEMS (Micro Electrical Mechanical Systems) sensor in which both an upper electrode and a lower electrode are patterned and both the upper electrode and the lower electrode vibrate. Yes. In this technique, the convex portion of the upper electrode functions as a stopper that prevents adhesion with the lower electrode, and the convex portion on the silicon substrate functions as a stopper that prevents adhesion with the lower electrode.
特開2009-28806号公報JP 2009-28806 A
 反射法地震探査は、地表で衝撃波または連続波を発生させることにより、地下の反射面(音響インピーダンスの変化する境界面)から反射して地上に戻ってくる反射波を、地表に展開した受振器で測定し、解析して地下反射面の深度分布や地下構造を探査する方法である。例えば、この反射法地震探査は、石油や天然ガスの主な探査方法として広く利用されている。特に、次世代の反射法地震探査用センサとして、重力加速度よりも遥かに微小な振動加速度を検知する加速度センサが注目されている。このような加速度センサを実用化するために、低ノイズで非常に高感度な加速度センサの開発が望まれている。 Reflection seismic exploration is a geophone that generates a shock wave or continuous wave on the ground surface, and reflects the reflected waves that return from the ground reflecting surface (boundary surface where the acoustic impedance changes) back to the ground. This is a method for exploring the depth distribution and underground structure of the subsurface reflecting surface by measuring and analyzing the above. For example, this reflection seismic exploration is widely used as the main exploration method for oil and natural gas. In particular, as a next-generation reflection seismic exploration sensor, an acceleration sensor that detects vibration acceleration far smaller than gravitational acceleration has attracted attention. In order to put such an acceleration sensor into practical use, it is desired to develop an acceleration sensor with low noise and very high sensitivity.
 加速度センサは、例えば、空洞部内において、質量体を弾性変形可能な梁を介して固定部に接続し、加速度が印加されたときの質量体の変位に起因する物理量の変化を検出することにより加速度を検出する。具体的には、質量体を可動電極として機能させ、かつ、この質量体と対向する位置に固定電極を配置する。これにより、加速度が印加された際の質量体の変位によって、質量体と固定電極からなる静電容量の容量変化が生じ、この容量変化に基づいて、加速度を検出することができる。 The acceleration sensor, for example, connects the mass body to the fixed portion via a resiliently deformable beam in the cavity, and detects the change in physical quantity due to the displacement of the mass body when acceleration is applied. Is detected. Specifically, the mass body functions as a movable electrode, and the fixed electrode is disposed at a position facing the mass body. As a result, the displacement of the mass body when the acceleration is applied causes a capacitance change of the capacitance composed of the mass body and the fixed electrode, and the acceleration can be detected based on the capacitance change.
 このような加速度センサの高感度化(S/N比の向上)を実現する観点からは、質量体の質量体を大きくし、かつ、梁のバネ定数を小さくすることが望ましい。また、機械雑音を低減するために、質量体に複数の開口部を設けて、空気抵抗を低減することが望ましい。 From the viewpoint of realizing such high sensitivity (improvement of S / N ratio) of the acceleration sensor, it is desirable to increase the mass body of the mass body and reduce the spring constant of the beam. In order to reduce mechanical noise, it is desirable to reduce the air resistance by providing a plurality of openings in the mass body.
 ところが、質量体の質量を大きくし、かつ、梁のバネ定数を小さくすると、質量体の変位によって、質量体が固定電極に接触したまま張り付くステッキングが発生しやすくなる。また、固定電極を形成した後、例えば、ドライエッチングを使用することにより、質量体に複数の開口部を形成するが、開口部を形成した後のオーバエッチングにより、固定電極がダメージを受けるおそれがある。つまり、加速度センサの高感度化を実現する構成に伴って、ステッキングやエッチングダメージが問題点として顕在化する。このため、ステッキングやエッチングダメージを抑制する観点から改善の余地が存在する。 However, when the mass of the mass body is increased and the spring constant of the beam is decreased, sticking in which the mass body sticks to the fixed electrode easily occurs due to the displacement of the mass body. In addition, after forming the fixed electrode, a plurality of openings are formed in the mass body by using, for example, dry etching, but the fixed electrode may be damaged by over-etching after the opening is formed. is there. In other words, sticking or etching damage becomes a problem as the acceleration sensor is configured to achieve high sensitivity. For this reason, there is room for improvement from the viewpoint of suppressing sticking and etching damage.
 本発明の目的は、慣性センサのステッキングや慣性センサの製造工程におけるエッチングダメージを抑制することができる技術を提供することにある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
The objective of this invention is providing the technique which can suppress the etching damage in the sticking of an inertial sensor, or the manufacturing process of an inertial sensor.
Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
 一実施の形態における慣性センサは、第1方向に変位可能な第1可動電極と、第1可動電極を貫通する複数の第1開口部と、第1方向において、第1可動電極と離間して対向配置された第1固定電極と、第1可動電極と対向する第1固定電極の対向面に形成され、かつ、複数の第1開口部のそれぞれに対応して設けられた複数の第1保護部のそれぞれと、を備える。ここで、第1方向から見た平面視において、複数の第1保護部のそれぞれは、複数の第1保護部のそれぞれに対応した第1開口部を内包する。 An inertial sensor according to an embodiment includes a first movable electrode that is displaceable in a first direction, a plurality of first openings that pass through the first movable electrode, and a first movable electrode that is spaced apart from the first movable electrode in the first direction. A plurality of first protections formed on opposing surfaces of the first fixed electrode disposed opposite to the first fixed electrode facing the first movable electrode and provided corresponding to each of the plurality of first openings. Each of the sections. Here, in a plan view as viewed from the first direction, each of the plurality of first protection portions includes a first opening corresponding to each of the plurality of first protection portions.
 また、一実施の形態における慣性センサの製造方法は、(a)溝を有するベース層の溝の内部に固定電極を形成する工程、(b)固定電極上に複数の保護部を形成する工程、(c)(b)工程後、ベース層上にMEMS層を接合する工程を備える。そして、(d)MEMS層をパターニングすることにより、ベース層に固定された固定部と、固定部と接続される梁と、梁で懸架され、第1方向に変位可能な可動電極として機能する質量部と、質量部を貫通する複数の開口部とを形成する工程を備える。さらに、(e)(d)工程後、MEMS層上に、MEMS層に形成された固定部と接続するキャップ層を形成することにより、MEMS層に形成された質量部をベース層とキャップ層で挟まれる空洞部内に封止する工程を備える。ここで、(d)工程は、第1方向から見た平面視において、複数の保護部のそれぞれが、複数の保護部のそれぞれに対応した開口部を内包するように、複数の開口部を形成する。 The inertial sensor manufacturing method according to the embodiment includes (a) a step of forming a fixed electrode inside the groove of the base layer having the groove, (b) a step of forming a plurality of protective portions on the fixed electrode, (C) After the step (b), a step of bonding the MEMS layer on the base layer is provided. Then, (d) by patterning the MEMS layer, a fixed portion fixed to the base layer, a beam connected to the fixed portion, a mass that is suspended by the beam and functions as a movable electrode that can be displaced in the first direction. And a step of forming a plurality of openings penetrating the mass portion. Further, after the steps (e) and (d), a cap layer connected to the fixing portion formed on the MEMS layer is formed on the MEMS layer, so that the mass portion formed on the MEMS layer is changed between the base layer and the cap layer. A step of sealing in the hollow portion to be sandwiched. Here, in the step (d), the plurality of openings are formed so that each of the plurality of protection portions includes an opening corresponding to each of the plurality of protection portions in a plan view as viewed from the first direction. To do.
 一実施の形態によれば、慣性センサの信頼性を向上することができる。具体的に、一実施の形態における慣性センサによれば、ステッキングを抑制することができる。また、一実施の形態における慣性センサの製造方法によれば、エッチングダメージを抑制することができる。 According to one embodiment, the reliability of the inertial sensor can be improved. Specifically, according to the inertial sensor in one embodiment, sticking can be suppressed. Moreover, according to the manufacturing method of the inertial sensor in one embodiment, etching damage can be suppressed.
反射法弾性波探査の概要を示した地表の断面模式図である。It is the cross-sectional schematic diagram of the ground surface which showed the outline | summary of the reflection method elastic wave exploration. 実施の形態1における加速度センサの一断面を示す断面図である。FIG. 3 is a cross-sectional view showing a cross section of the acceleration sensor in the first embodiment. 実施の形態1におけるベース層の平面レイアウト構成を示す平面図である。3 is a plan view showing a planar layout configuration of a base layer in Embodiment 1. FIG. 実施の形態1におけるMEMS層の平面レイアウト構成を示す平面図である。3 is a plan view showing a planar layout configuration of a MEMS layer in the first embodiment. FIG. 図2の一部を拡大して示す図である。It is a figure which expands and shows a part of FIG. 実施の形態2におけるベース層の平面レイアウト構成例を示す平面図である。FIG. 10 is a plan view showing an example of a planar layout configuration of a base layer in a second embodiment. ベース層の平面レイアウト構成例(変形例)を示す平面図である。It is a top view which shows the plane layout structural example (modification) of a base layer. ベース層の平面レイアウト構成例(変形例)を示す平面図である。It is a top view which shows the plane layout structural example (modification) of a base layer. ベース層の平面レイアウト構成例(変形例)を示す平面図である。It is a top view which shows the plane layout structural example (modification) of a base layer. 実施の形態2におけるMEMS層の平面レイアウト構成を示す平面図である。FIG. 10 is a plan view showing a planar layout configuration of a MEMS layer in a second embodiment. MEMS層の平面レイアウト構成例(変形例)を示す平面図である。It is a top view which shows the example of a plane layout structure (modification) of a MEMS layer. 封止圧力と機械雑音との関係を示すグラフである。It is a graph which shows the relationship between sealing pressure and mechanical noise. 実施の形態3における加速度センサの断面構成を示す図である。FIG. 9 is a diagram showing a cross-sectional configuration of an acceleration sensor in a third embodiment. 実施の形態4における加速度センサの一断面を示す断面図である。FIG. 10 is a cross-sectional view showing a cross section of an acceleration sensor in a fourth embodiment. 実施の形態4における加速度センサの一部を構成するベース層の平面レイアウト構成を示す平面図である。FIG. 10 is a plan view showing a planar layout configuration of a base layer that constitutes a part of an acceleration sensor according to a fourth embodiment. 実施の形態4における加速度センサの一部を構成するMEMS層の平面レイアウト構成を示す平面図である。FIG. 10 is a plan view showing a planar layout configuration of a MEMS layer that constitutes a part of the acceleration sensor in the fourth embodiment. 実施の形態4における加速度センサの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the acceleration sensor in Embodiment 4. 図17に続く加速度センサの製造工程を示す断面図である。FIG. 18 is a cross-sectional view showing a manufacturing process of the acceleration sensor following FIG. 17. 図18に続く加速度センサの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the acceleration sensor following FIG. 図19に続く加速度センサの製造工程を示す断面図である。FIG. 20 is a cross-sectional view showing a manufacturing step of the acceleration sensor following FIG. 19.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., unless otherwise specified, and in principle, it is considered that this is not clearly the case, it is substantially the same. Including those that are approximate or similar to the shape. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
 (実施の形態1)
 <加速度センサの適用分野例>
 加速度センサは、自動車の姿勢制御、スマートフォン、あるいは、ゲーム機等の幅広い分野で利用される。これらの分野で使用される加速度センサは、小型で数百Hz以下という低周波数帯域で、重力の数倍の大きさの加速度を検出することができる。
(Embodiment 1)
<Examples of application fields of acceleration sensors>
Acceleration sensors are used in a wide range of fields such as automobile attitude control, smartphones, and game machines. The acceleration sensor used in these fields is small and can detect acceleration several times as large as gravity in a low frequency band of several hundred Hz or less.
 一方、近年において、加速度センサの利用分野は、上述した分野に限らず、地中の資源探査を目的とする分野にも拡大している。このような地中の資源探査分野において、物理探査の一種である反射法弾性波探査(反射法地震探査)は、人工的に地震波を発生させた後、地表に設置した受振器(加速度センサ)で地下から跳ね返ってくる反射波を捉えることにより、その結果を解析して地下構造を解明する技術である。 On the other hand, in recent years, the field of use of the acceleration sensor is not limited to the above-mentioned field, but has been expanded to a field for exploring underground resources. In such subsurface resource exploration field, reflection seismic wave exploration (reflection seismic exploration), which is a kind of geophysical exploration, artificially generates a seismic wave and then receives a geophone (acceleration sensor) installed on the ground surface. In this technology, the reflected waves that bounce off the ground are captured and the results are analyzed to reveal the underground structure.
 図1は、反射法弾性波探査の概要を示した地表の断面模式図である。図1において、地表GNDに設置された起振源VBから地中に弾性波(図中の矢印)を伝播させた後、複数の地層の境界BUD1や境界BUD2で反射した弾性波を、地表GNDに設置された加速度センサ(受振器)ASでセンシングする。一般的な起振源VBは、地表に対して垂直方向に発振するため、鉛直方向に近い方向にP波が効率よく励振される。このため、反射法弾性波探査では、P波が用いられる。また、再び地表GNDに戻ってくる弾性波は、鉛直方向に近い方向から伝播してくるP波であるため、加速度センサASは、鉛直方向の弾性振動を検知する必要がある。図1に示すように、様々な方向に励振された弾性波は、減衰の大きい地中を伝播し、複数の地層の境界BUD1や境界BUD2で反射し、再び減衰の大きい地中を伝搬して、広い領域に拡散して地表GNDに戻ってくる。 Fig. 1 is a schematic cross-sectional view of the earth's surface showing an outline of the reflection elastic wave exploration. In FIG. 1, after elastic waves (arrows in the figure) are propagated from the excitation source VB installed on the ground surface GND to the ground, the elastic waves reflected by the boundary BUD1 and the boundary BUD2 of the plurality of formations are grounded. Sensing is performed by an acceleration sensor (vibrator) AS installed in the vehicle. Since a general excitation source VB oscillates in a direction perpendicular to the ground surface, a P wave is efficiently excited in a direction close to the vertical direction. For this reason, the P wave is used in the reflection elastic wave exploration. Further, since the elastic wave returning to the ground surface GND is a P wave propagating from a direction close to the vertical direction, the acceleration sensor AS needs to detect the elastic vibration in the vertical direction. As shown in FIG. 1, the elastic wave excited in various directions propagates in the ground with large attenuation, reflects at the boundary BUD1 and boundary BUD2 of a plurality of formations, and propagates again in the ground with large attenuation. It spreads over a wide area and returns to the ground surface GND.
 このように、反射法弾性波探査では、微弱な弾性振動を検知するため、加速度センサASには、鉛直方向に高感度である必要がある。具体的に、微弱な弾性振動の加速度は、重力加速度よりも小さいため、反射法弾性波探査で使用される加速度センサには、重力加速度よりも小さな加速度を高感度に検出することが要求される。 As described above, in the reflection elastic wave exploration, in order to detect weak elastic vibration, the acceleration sensor AS needs to be highly sensitive in the vertical direction. Specifically, since the acceleration of weak elastic vibration is smaller than the gravitational acceleration, the acceleration sensor used in the reflection elastic wave exploration is required to detect acceleration smaller than the gravitational acceleration with high sensitivity. .
 このことから、本実施の形態1では、重力加速度よりも小さな加速度を高感度に検出する(S/N比を向上する)観点から、加速度センサの構成要素である質量体の質量を大きくし、かつ、バネ定数を小さくする構成と、機械雑音を低減するために、質量体に複数の開口部を設けて空気抵抗を減らす構成とを採用している。ところが、本発明者が検討したところ、これらの構成を採用する場合、「発明が解決しようとする課題」の欄で説明したように副作用が生じる。そこで、本実施の形態1では、この副作用を抑制することができる工夫を施している。以下では、この工夫を施した本実施の形態1における技術的思想について説明することにする。 For this reason, in the first embodiment, from the viewpoint of detecting an acceleration smaller than the gravitational acceleration with high sensitivity (improving the S / N ratio), the mass of the mass body that is a component of the acceleration sensor is increased, And the structure which makes a spring constant small and the structure which provides a some opening part in a mass body and reduces air resistance are employ | adopted in order to reduce mechanical noise. However, as a result of studies by the present inventor, when these configurations are adopted, side effects occur as described in the section “Problems to be Solved by the Invention”. Therefore, in the first embodiment, a device that can suppress this side effect is taken. Below, the technical idea in this Embodiment 1 which gave this device is demonstrated.
 <加速度センサの断面構成>(片持ち構造)
 図2は、本実施の形態1における加速度センサAS1の一断面を示す断面図である。図2において、本実施の形態1における加速度センサAS1は、例えば、シリコン(Si)からなるベース層BLを有し、このベース層BL上に、例えば、ポリシリコン膜からなる固定電極FEが形成されている。そして、固定電極FEの表面に複数の保護部PUが互いに離間するように形成されている。この複数の保護部PU1は、例えば、酸化シリコン膜に代表される絶縁膜から形成されている。
<Cross-sectional configuration of acceleration sensor> (cantilever structure)
FIG. 2 is a sectional view showing one section of the acceleration sensor AS1 in the first embodiment. In FIG. 2, the acceleration sensor AS1 in the first embodiment has a base layer BL made of, for example, silicon (Si), and a fixed electrode FE made of, for example, a polysilicon film is formed on the base layer BL. ing. A plurality of protection parts PU are formed on the surface of the fixed electrode FE so as to be separated from each other. The plurality of protection units PU1 are formed of an insulating film typified by a silicon oxide film, for example.
 続いて、図2に示すように、ベース層BLの上方には、例えば、シリコンからなるMEMS層MLが配置されており、このMEMS層MLは、MEMS層MLを加工することにより形成された固定部FUが形成されている。この固定部FUとベース層BLとを接合することにより、MEMS層MLがベース層BLの上方に配置されることになる。そして、このMEMS層MLには、質量体MSが形成され、質量体MSは、ベース層BLに形成された固定電極FEと対向する位置に配置される。この質量体MSは、梁(図示せず)を介して、固定部FUと接続されている。すなわち、質量体MSは、梁によって懸架されており、図2のz方向に変位可能となっている。例えば、質量体MSは、外部からz方向に加速度が印加されると、z方向に変位することになる。 Subsequently, as shown in FIG. 2, a MEMS layer ML made of, for example, silicon is disposed above the base layer BL, and the MEMS layer ML is formed by processing the MEMS layer ML. Part FU is formed. By joining the fixing portion FU and the base layer BL, the MEMS layer ML is disposed above the base layer BL. The mass body MS is formed on the MEMS layer ML, and the mass body MS is disposed at a position facing the fixed electrode FE formed on the base layer BL. The mass body MS is connected to the fixed portion FU via a beam (not shown). That is, the mass body MS is suspended by a beam and can be displaced in the z direction of FIG. For example, the mass body MS is displaced in the z direction when acceleration is applied in the z direction from the outside.
 さらに、質量体MSには、図2に示すように、質量体MSを貫通する複数の開口部OPが形成されている。これらの複数の開口部OPは、固定電極FE上に形成された複数の保護部PUに対応するように設けられている。すなわち、複数の開口部OPのそれぞれに対応するように保護部PUが設けられている。 Furthermore, as shown in FIG. 2, a plurality of openings OP penetrating the mass body MS are formed in the mass body MS. The plurality of openings OP are provided so as to correspond to the plurality of protection units PU formed on the fixed electrode FE. That is, the protection part PU is provided so as to correspond to each of the plurality of openings OP.
 また、質量体MSは、導電性を有するシリコンから形成され、かつ、z方向に変位可能であることから、可動電極VEとしても機能する。したがって、本実施の形態1における加速度センサAS1では、ベース層BL上に形成された固定電極FEと、MEMS層MLに形成された質量体MS(可動電極VE)とによって、静電容量が形成されることになる。 Further, since the mass body MS is made of conductive silicon and can be displaced in the z direction, it also functions as the movable electrode VE. Therefore, in the acceleration sensor AS1 in the first embodiment, a capacitance is formed by the fixed electrode FE formed on the base layer BL and the mass body MS (movable electrode VE) formed on the MEMS layer ML. Will be.
 次に、図2に示すように、MEMS層ML上には、例えば、シリコンからなるキャップ層CLが配置されている。この結果、MEMS層MLは、断面視において、ベース層BLとキャップ層CLで挟まれることになり、MEMS層MLに形成されている質量体MSは、ベース層BLと固定部FUとキャップ層CLとで囲まれる空洞部CAVの内部に配置されることになる。このとき、空洞部CAVの内部には気体が充填されており、空洞部CAVの内部の圧力は、例えば、大気圧よりも充分に低い圧力となっている。 Next, as shown in FIG. 2, for example, a cap layer CL made of silicon is disposed on the MEMS layer ML. As a result, the MEMS layer ML is sandwiched between the base layer BL and the cap layer CL in a cross-sectional view, and the mass body MS formed in the MEMS layer ML includes the base layer BL, the fixing unit FU, and the cap layer CL. It will be arrange | positioned inside the cavity part CAV enclosed by these. At this time, the cavity CAV is filled with gas, and the pressure inside the cavity CAV is, for example, a pressure sufficiently lower than the atmospheric pressure.
 このように、本実施の形態1における加速度センサAS1は、z方向に変位可能な可動電極VE(質量体MS)と、可動電極VEを貫通する複数の開口部OPと、z方向において、可動電極VEと離間して対向配置された固定電極FEと、可動電極VEと対向する固定電極FEの対向面に形成され、かつ、複数の開口部OPのそれぞれに対応して設けられた複数の保護部PUのそれぞれとを備える。 As described above, the acceleration sensor AS1 according to the first embodiment includes the movable electrode VE (mass body MS) that can be displaced in the z direction, the plurality of openings OP that penetrate the movable electrode VE, and the movable electrode in the z direction. A plurality of protection portions formed on the opposing surfaces of the fixed electrode FE spaced apart from the VE and the fixed electrode FE facing the movable electrode VE, and provided corresponding to each of the plurality of openings OP. Each of the PUs.
 そして、本実施の形態1における加速度センサAS1は、ベース層BLと、ベース層BLの上方に配置されたキャップ層CLと、ベース層BLとキャップ層CLとで挟まれた空洞部CAVと、空洞部CAV内に配置されたMEMS層MLとを有する。このとき、空洞部CAV1内において、ベース層BL上に固定電極FEが形成されている。また、MEMS層MLに、ベース層BLとキャップ層CLとに固定された固定部FUと、固定部FUに接続された梁と、この梁によって空洞部CAV内に懸架され、可動電極VEとして機能する質量体MSとが形成されている。 The acceleration sensor AS1 according to the first embodiment includes a base layer BL, a cap layer CL disposed above the base layer BL, a cavity CAV sandwiched between the base layer BL and the cap layer CL, a cavity And a MEMS layer ML disposed in the part CAV. At this time, the fixed electrode FE is formed on the base layer BL in the cavity CAV1. The MEMS layer ML has a fixed portion FU fixed to the base layer BL and the cap layer CL, a beam connected to the fixed portion FU, and is suspended in the cavity CAV by the beam and functions as the movable electrode VE. Mass body MS to be formed.
 <加速度センサの平面構成>
 続いて、本実施の形態1における加速度センサの平面構成について説明する。以下では、まず、ベース層BLの平面構成について説明し、その後、MEMS層MLの平面構成について説明することにする。
<Planar configuration of acceleration sensor>
Next, the planar configuration of the acceleration sensor according to the first embodiment will be described. Hereinafter, the planar configuration of the base layer BL will be described first, and then the planar configuration of the MEMS layer ML will be described.
 <<ベース層の平面構成>>
 図3は、本実施の形態1におけるベース層BLの平面レイアウト構成を示す平面図である。図3のA-A線での断面が図2のベース層BLに対応する。図3において、ベース層BLの内部には、空洞部CAVが形成されており、この空洞部CAVの内部に固定電極FEが形成されている。そして、固定電極FE上には、複数の保護部PUが形成されている。これにより、互いに離間した複数の保護部PUを固定電極FEの表面に設けて、固定電極FEの表面に凹凸形状が形成されることになる。
<< Planar structure of base layer >>
FIG. 3 is a plan view showing a planar layout configuration of the base layer BL in the first embodiment. A cross section taken along line AA in FIG. 3 corresponds to the base layer BL in FIG. In FIG. 3, a cavity CAV is formed inside the base layer BL, and a fixed electrode FE is formed inside the cavity CAV. A plurality of protection units PU are formed on the fixed electrode FE. As a result, a plurality of protection parts PU spaced apart from each other are provided on the surface of the fixed electrode FE, and an uneven shape is formed on the surface of the fixed electrode FE.
 <<MEMS層の平面構成>>
 図4は、本実施の形態1におけるMEMS層MLの平面レイアウト構成を示す平面図である。図4のA-A線での断面が図2のMEMS層MLに対応する。図4において、MEMS層MLの内部には、空洞部CAVが形成されており、この空洞部CAVの内部に、固定部FUと、この固定部FUと接続される梁BMと、この梁BMと接続される質量体MSとが形成されている。つまり、MEMS層MLには、質量体MSが梁BMを介して固定部FUに接続されており、質量部MSは、梁BMによって懸架されていることになる。そして、質量体MSには、複数の開口部OPが形成されている。ここで、図3に示すベース層BLと図4に示すMEMS層MLとを平面的に重ねるとわかるように、複数の保護部PUのそれぞれの平面サイズは、複数の保護部PUのそれぞれに対応した開口部OPの平面サイズよりも大きくなっている。言い換えれば、平面視において、複数の保護部PUのそれぞれは、複数の保護部PUのそれぞれに対応した開口部OPを内包するように形成されることになる。
<< Planar structure of MEMS layer >>
FIG. 4 is a plan view showing a planar layout configuration of the MEMS layer ML in the first embodiment. A cross section taken along line AA in FIG. 4 corresponds to the MEMS layer ML in FIG. In FIG. 4, a cavity CAV is formed inside the MEMS layer ML. Inside the cavity CAV, a fixed part FU, a beam BM connected to the fixed part FU, and the beam BM A mass body MS to be connected is formed. That is, in the MEMS layer ML, the mass body MS is connected to the fixed portion FU via the beam BM, and the mass portion MS is suspended by the beam BM. A plurality of openings OP are formed in the mass body MS. Here, as can be seen when the base layer BL shown in FIG. 3 and the MEMS layer ML shown in FIG. 4 are overlapped in a plane, each planar size of the plurality of protection units PU corresponds to each of the plurality of protection units PU. The opening size OP is larger than the planar size. In other words, in the plan view, each of the plurality of protection units PU is formed so as to include the opening OP corresponding to each of the plurality of protection units PU.
 <加速度センサの動作>
 次に、本実施の形態1における加速度センサAS1の動作について説明する。本実施の形態1における加速度センサAS1は、z方向に印加される加速度を、可動電極VEと固定電極FEからなる可変容量の容量変化として捉える加速度センサである。例えば、原理的には、変調信号を印加しなくても加速度に起因する可変容量での容量変化を検出することにより、加速度を検出することは可能である。ただし、加速度に対応した可変容量での容量変化に基づく検出信号は、低周波信号であるため、1/fノイズの影響を受けやすくなる。すなわち、加速度に対応した可変容量での容量変化に基づく検出信号をそのまま使用する構成では、1/fノイズが大きくなる結果、S/N比が劣化して、加速度センサの検出感度が低下することになる。そこで、本実施の形態1では、変調信号を使用している。この場合、加速度に対応した可変容量での容量変化に基づく検出信号が変調信号で変調されて高周波信号となるため、1/fノイズを受けにくくなるのである。つまり、高周波信号では、低周波信号よりも1/fノイズが小さくなることから、S/N比を向上できる結果、加速度センサAS1の検出感度を向上することができるのである。このような理由から、本実施の形態1では、まず、可動電極VEと固定電極FEからなる可変容量に変調信号を印加する。
<Operation of acceleration sensor>
Next, the operation of the acceleration sensor AS1 in the first embodiment will be described. The acceleration sensor AS1 according to the first embodiment is an acceleration sensor that captures acceleration applied in the z direction as a change in capacitance of a variable capacitor including the movable electrode VE and the fixed electrode FE. For example, in principle, it is possible to detect acceleration by detecting a change in capacitance due to acceleration due to acceleration without applying a modulation signal. However, since the detection signal based on the capacitance change in the variable capacitance corresponding to the acceleration is a low-frequency signal, it is easily affected by 1 / f noise. In other words, in the configuration in which the detection signal based on the capacitance change in the variable capacitor corresponding to the acceleration is used as it is, the 1 / f noise increases, resulting in the deterioration of the S / N ratio and the detection sensitivity of the acceleration sensor. become. Therefore, in the first embodiment, a modulation signal is used. In this case, since the detection signal based on the capacitance change in the variable capacitor corresponding to the acceleration is modulated by the modulation signal to become a high frequency signal, it is difficult to receive 1 / f noise. That is, since the 1 / f noise is smaller in the high-frequency signal than in the low-frequency signal, the S / N ratio can be improved. As a result, the detection sensitivity of the acceleration sensor AS1 can be improved. For this reason, in the first embodiment, first, a modulation signal is applied to a variable capacitor composed of the movable electrode VE and the fixed electrode FE.
 ここで、例えば、z方向に加速度が印加されたとする。この場合、質量体MSは、z方向に変位する。この結果、可動電極VE(質量体MS)と固定電極FEからなる可変容量の容量変化が生じる。この容量変化は、変調信号に加わって信号処理回路へ出力される。具体的に、信号処理回路では、加速度に起因する容量変化が加わった変調信号がCV変換部に入力されて、容量変化がアナログ電圧信号に変換される。そして、変換されたアナログ電圧信号は、AD変換部でデジタル電圧信号に変換される。その後、同期検波部で復調信号が抽出される。続いて、同期検波部で復調された復調信号は、LPF(低周波数帯域通過フィルタ)を通過することにより、最終的に、加速度に対応した加速度信号(検出信号)が出力端子から出力される。以上のようにして、本実施の形態1における加速度センサAS1によれば、z方向の加速度を検出することができる。 Here, for example, it is assumed that acceleration is applied in the z direction. In this case, the mass body MS is displaced in the z direction. As a result, a change in the capacitance of the variable capacitor including the movable electrode VE (mass body MS) and the fixed electrode FE occurs. This capacitance change is added to the modulation signal and output to the signal processing circuit. Specifically, in the signal processing circuit, a modulation signal to which a capacitance change due to acceleration is added is input to the CV conversion unit, and the capacitance change is converted into an analog voltage signal. The converted analog voltage signal is converted into a digital voltage signal by the AD converter. Thereafter, the demodulated signal is extracted by the synchronous detector. Subsequently, the demodulated signal demodulated by the synchronous detection section passes through an LPF (low frequency band pass filter), and finally an acceleration signal (detection signal) corresponding to the acceleration is output from the output terminal. As described above, according to the acceleration sensor AS1 in the first embodiment, the acceleration in the z direction can be detected.
 <実施の形態1における特徴>
 次に、本実施の形態1における特徴点について説明する。図5は、図2の一部を拡大して示す図である。断面図である図5には示されないが、本実施の形態1における特徴点は、z方向から見た平面視において、複数の保護部PUのそれぞれは、複数の保護部PUのそれぞれに対応した開口部OPを内包する点にある(図3および図4参照)。この特徴点を反映して、断面図である図5では、例えば、保護部PUのx方向の幅L1が、開口部OPのx方向の開口寸法L3よりも大きくなり、かつ、保護部PUには、開口部OPと重ならない非重複領域NORが形成されることになる。
<Characteristics in Embodiment 1>
Next, feature points in the first embodiment will be described. FIG. 5 is an enlarged view of a part of FIG. Although not shown in FIG. 5 which is a cross-sectional view, the feature point in the first embodiment is that each of the plurality of protection units PU corresponds to each of the plurality of protection units PU in a plan view viewed from the z direction. The point is to include the opening OP (see FIGS. 3 and 4). Reflecting this feature point, in FIG. 5 which is a cross-sectional view, for example, the width L1 in the x direction of the protection part PU is larger than the opening dimension L3 in the x direction of the opening OP, and the protection part PU The non-overlapping region NOR that does not overlap with the opening OP is formed.
 これにより、本実施の形態1によれば、以下に示すような利点を得ることができる。まず、本実施の形態1における第1利点は、質量体MSが固定電極FEに張り付くステッキングを防止できることである。例えば、本実施の形態1における加速度センサAS1では、高感度な加速度センサを実現するために、質量体MSの質量を大きくし、かつ、梁のバネ定数を小さくする構成が取られている。この場合、質量体MSが大きく変位して、固定電極FEに接触するとステッキングが起こりやすくなる。特に、固定電極FEの表面が平坦であると、質量体MSが固定電極FEに接触した際、接触面積が大きくなるため、ステッキングが生じやすい。このようなステッキングが生じると、質量体MSが元の位置に戻らなくなるため、加速度センサAS1が正常に動作しなくなる。つまり、ステッキングは、加速度センサAS1の信頼性の低下を招く要因となるので、加速度センサAS1の信頼性を向上する観点から、ステッキングを抑制する必要がある。 Thereby, according to the first embodiment, the following advantages can be obtained. First, the first advantage in the first embodiment is that the mass body MS can be prevented from sticking to the fixed electrode FE. For example, the acceleration sensor AS1 in the first embodiment has a configuration in which the mass of the mass body MS is increased and the spring constant of the beam is decreased in order to realize a highly sensitive acceleration sensor. In this case, if the mass body MS is greatly displaced and comes into contact with the fixed electrode FE, sticking is likely to occur. In particular, if the surface of the fixed electrode FE is flat, when the mass body MS comes into contact with the fixed electrode FE, the contact area increases, and thus sticking is likely to occur. When such sticking occurs, the mass body MS does not return to the original position, and the acceleration sensor AS1 does not operate normally. That is, since sticking causes a decrease in the reliability of the acceleration sensor AS1, it is necessary to suppress the sticking from the viewpoint of improving the reliability of the acceleration sensor AS1.
 この点に関し、本実施の形態1における特徴点によれば、固定電極FEの表面に複数の保護部PUが設けられている結果、図5に示すように、固定電極FEの表面に凹凸形状が形成される。したがって、質量体MSの過剰な変位によって、質量体MSが固定電極FEに接触する場合であっても、固定電極FEの表面に凹凸形状が形成されているため、保護部PUと質量体MSとの接触面積が小さくなり、ステッキングが起きにくくなる。このことは、ステッキングに起因する加速度センサAS1の信頼性低下を抑制できることを意味する。つまり、本実施の形態1によれば、固定電極FEの表面に互いに離間する複数の保護部PUを設けることにより、固定電極FEの表面に凹凸形状を形成することができ、この凹凸形状によって、質量体MSと固定電極FEとのステッキングを効果的に抑制することができるのである。これにより、本実施の形態1によれば、加速度センサAS1の信頼性を向上することができる。 In this regard, according to the feature point of the first embodiment, as a result of the provision of the plurality of protective portions PU on the surface of the fixed electrode FE, as shown in FIG. 5, the surface of the fixed electrode FE has an uneven shape. It is formed. Therefore, even when the mass body MS is in contact with the fixed electrode FE due to excessive displacement of the mass body MS, since the uneven shape is formed on the surface of the fixed electrode FE, the protection unit PU and the mass body MS The contact area becomes smaller and sticking is less likely to occur. This means that a reduction in reliability of the acceleration sensor AS1 due to sticking can be suppressed. That is, according to the first embodiment, by providing a plurality of protective portions PU that are spaced apart from each other on the surface of the fixed electrode FE, it is possible to form an uneven shape on the surface of the fixed electrode FE. The sticking between the mass body MS and the fixed electrode FE can be effectively suppressed. Thereby, according to this Embodiment 1, the reliability of acceleration sensor AS1 can be improved.
 さらに、本実施の形態1では、図5に示すように、複数の保護部PUのそれぞれが、開口部OP1に対応して設けられている。したがって、質量体MSが固定電極FEに接触する程度に大きくz方向に変位したとしても、質量体MSは保護部PUの幅L3全体に接触するのではなく、保護部PUと開口部OPとの非重複領域NORの幅L2の範囲で接触することになる。このことは、質量体MSと保護部PUとの接触面積を低減することができることを意味する。すなわち、本実施の形態1における加速度センサAS1では、複数の保護部PUが互いに離間して固定電極FEの表面上に設けられている結果、固定電極FEの表面に凹凸形状が形成される点と、複数の保護部PUのそれぞれが、対応する開口部OPを内包するように設けられている点とが実現されている。これにより、固定電極FEの表面に凹凸形状が形成される点に起因して質量体MSと保護部PUとの接触面積が低減される点と、複数の保護部PUのそれぞれが、対応する開口部OPを内包するように設けられていることにより、保護部PUの表面全体で接触するのではなく、非重複領域NORでのみ接触する点との相乗効果を得ることができる。この結果、本実施の形態1によれば、上述した構成の相乗効果によって、加速度センサAS1におけるステッキングを効果的に抑制することができるという優れた効果を奏する。 Furthermore, in the first embodiment, as shown in FIG. 5, each of the plurality of protection units PU is provided corresponding to the opening OP1. Therefore, even if the mass body MS is displaced in the z direction so as to contact the fixed electrode FE, the mass body MS does not contact the entire width L3 of the protection portion PU, but instead of the protection portion PU and the opening OP. The contact is made within the range of the width L2 of the non-overlapping region NOR. This means that the contact area between the mass body MS and the protection part PU can be reduced. That is, in the acceleration sensor AS1 according to the first embodiment, the plurality of protection portions PU are provided on the surface of the fixed electrode FE so as to be separated from each other, and as a result, an uneven shape is formed on the surface of the fixed electrode FE. Each of the plurality of protection units PU is provided so as to include the corresponding opening OP. As a result, the contact area between the mass body MS and the protection part PU is reduced due to the formation of an uneven shape on the surface of the fixed electrode FE, and each of the protection parts PU has a corresponding opening. By being provided so as to include the portion OP, it is possible to obtain a synergistic effect with the point of contact only in the non-overlapping region NOR, not in contact with the entire surface of the protection portion PU. As a result, according to the first embodiment, there is an excellent effect that the sticking in the acceleration sensor AS1 can be effectively suppressed by the synergistic effect of the configuration described above.
 特に、図5に示す非重複領域NORの幅L2が小さくなればなるほど、質量体MSと保護部PUとの接触面積が小さくなることから、ステッキングを抑制する観点からは、なるべく、非重複領域NORの幅L2を小さくすることが望ましいことになる。例えば、図5に示すように、複数の保護部PUのそれぞれと複数の保護部PUのそれぞれに対応した開口部OPとの非重複領域NORのx方向の長さL2は、複数の保護部PUのそれぞれに対応した開口部OPのx方向の開口寸法L3よりも小さくすることができる。言い換えれば、保護部PUと保護部PUに対応して設けられた開口部OPとに着目した場合、z方向から見た平面視において、x方向における開口部OPの一端部から保護部PUの一端部までの距離(L2)は、x方向における開口部OPの開口寸法L3よりも小さくすることができる。 In particular, the smaller the width L2 of the non-overlapping region NOR shown in FIG. 5, the smaller the contact area between the mass body MS and the protection part PU. From the viewpoint of suppressing sticking, the non-overlapping region is as much as possible. It would be desirable to reduce the NOR width L2. For example, as illustrated in FIG. 5, the length L2 in the x direction of the non-overlapping region NOR between each of the plurality of protection units PU and the opening OP corresponding to each of the plurality of protection units PU is equal to the plurality of protection units PU. Can be made smaller than the opening dimension L3 in the x direction of the opening OP corresponding to each of the above. In other words, when attention is paid to the protection part PU and the opening OP provided corresponding to the protection part PU, one end of the protection part PU from one end of the opening OP in the x direction in a plan view seen from the z direction. The distance (L2) to the portion can be made smaller than the opening dimension L3 of the opening OP in the x direction.
 続いて、本実施の形態1における特徴点の第2利点は、製造工程中での利点である。具体的に、質量体MSおよびこの質量体MSを貫通する開口部OPは、MEMS層MLをパターニングすることにより形成され、このパターニング工程には、MEMS層MLをドライエッチングする工程が含まれる。ここで、実際には、MEMS層MLをエッチングすることにより、固定部FU、梁、質量体MS、および、複数の開口部OPを形成することになるが、MEMS層MLに、これらの構成要素を形成する際には、開口面積の異なる領域を同時にエッチングすることになる。特に、開口面積の小さな領域ほどエッチングに要する時間が長くなるため、開口面積の最も小さな開口部OPに合わせてエッチング時間が決められる。さらには、ウェハ面内においても、ウェハの中心部と周辺部とでは、エッチング速度が異なるため、MEMS層MLの貫通に必要なエッチング時間以上にエッチング時間を設定している。これらのことから、オーバエッチングが行なわれることになる。ところが、オーバエッチングを実施すると、MEMS層MLの下方に配置されている固定電極FEまでエッチングされて、固定電極FEがダメージを受けるおそれがある。 Subsequently, the second advantage of the feature point in the first embodiment is an advantage in the manufacturing process. Specifically, the mass body MS and the opening OP penetrating the mass body MS are formed by patterning the MEMS layer ML, and this patterning step includes a step of dry etching the MEMS layer ML. Here, in practice, the fixed portion FU, the beam, the mass body MS, and the plurality of openings OP are formed by etching the MEMS layer ML. However, these components are included in the MEMS layer ML. When forming the film, regions having different opening areas are etched at the same time. In particular, since the time required for etching becomes longer in a region having a smaller opening area, the etching time is determined in accordance with the opening OP having the smallest opening area. Furthermore, even in the wafer plane, the etching rate is different between the central portion and the peripheral portion of the wafer, so the etching time is set to be longer than the etching time necessary for the penetration of the MEMS layer ML. Therefore, overetching is performed. However, if over-etching is performed, the fixed electrode FE disposed below the MEMS layer ML is etched, and the fixed electrode FE may be damaged.
 この点に関し、本実施の形態1によれば、複数の保護部PUのそれぞれは、複数の保護部PUのそれぞれに対応した開口部OPを内包している。この結果、本実施の形態1によれば、開口部OPを形成後、オーバエッチングが実施されても、開口部OPを内包する保護部PUによって、固定電極FEをオーバエッチングから保護することができるのである。つまり、固定電極FEの表面領域のうち、開口部OP1と平面的に重なる領域がオーバエッチングによるダメージを受けることになりやすいが、本実施の形態1では、この領域を覆うように保護部PUが形成されているため、必要十分な範囲で、固定電極FEをオーバエッチングから保護することができるのである。この点が本実施の形態1における特徴点によってもたらされる第2利点である。このように、本実施の形態1によれば、固定電極FEをエッチングダメージから保護することができ、これによって、加速度センサAS1の信頼性を向上することができるのである。 In this regard, according to the first embodiment, each of the plurality of protection units PU includes an opening OP corresponding to each of the plurality of protection units PU. As a result, according to the first embodiment, even if the overetching is performed after the opening OP is formed, the fixed electrode FE can be protected from the overetching by the protection unit PU that includes the opening OP. It is. That is, of the surface region of the fixed electrode FE, a region that overlaps the opening OP1 in a plan view is likely to be damaged by overetching. In the first embodiment, the protection unit PU covers the region. Therefore, the fixed electrode FE can be protected from over-etching within a necessary and sufficient range. This is the second advantage brought about by the feature points in the first embodiment. As described above, according to the first embodiment, it is possible to protect the fixed electrode FE from etching damage, thereby improving the reliability of the acceleration sensor AS1.
 ここで、図5に示す非重複領域NORの幅L2が大きくなればなるほど、サイドエッチングから固定電極FEを保護できることから、固定電極FEへのエッチングダメージを低減する観点からは、なるべく、非重複領域NORの幅L2を大きくすることが望ましいことになる。したがって、ステッキングを抑制する観点に着目した場合とエッチングダメージを抑制する観点に着目した場合とでは、非重複領域NORの幅L2に対する要求が相反することになる。この点に関しての現実的な対応としては、ステッキングを抑制する観点からも妥当な範囲に収まり、かつ、エッチングダメージを抑制する観点からも妥当な範囲に収まるように、バランスの取れた範囲内に非重複領域NORの幅L2を設定することが望ましい。 Here, as the width L2 of the non-overlapping region NOR shown in FIG. 5 becomes larger, the fixed electrode FE can be protected from side etching. From the viewpoint of reducing etching damage to the fixed electrode FE, the non-overlapping region is as much as possible. It would be desirable to increase the NOR width L2. Therefore, the requirement for the width L2 of the non-overlapping region NOR is contradictory between the case where attention is paid to the viewpoint of suppressing sticking and the case where attention is paid to the viewpoint of suppressing etching damage. As a realistic response in this regard, it is within a well-balanced range so that it is within a reasonable range from the viewpoint of suppressing sticking and within a reasonable range from the viewpoint of suppressing etching damage. It is desirable to set the width L2 of the non-overlapping area NOR.
 以上のことから、本実施の形態1における特徴点によれば、副作用を考慮することなく、重力加速度よりも小さな加速度を高感度に検出するために、加速度センサAS1の質量体MSの質量を大きくし、かつ、梁のバネ定数を小さくし、かつ、機械雑音を低減するために、質量体MSに複数の開口部OPを設けることができる。すなわち、本実施の形態1における特徴点によれば、質量体MSのステッキングおよび固定電極FEへのエッチングダメージという副作用を効果的に抑制しながら、加速度センサAS1の検出感度を向上することができるという優れた効果を得ることができる。 From the above, according to the feature point in the first embodiment, the mass of the mass body MS of the acceleration sensor AS1 is increased in order to detect an acceleration smaller than the gravitational acceleration with high sensitivity without considering side effects. In order to reduce the spring constant of the beam and reduce mechanical noise, the mass body MS can be provided with a plurality of openings OP. That is, according to the feature point in the first embodiment, the detection sensitivity of the acceleration sensor AS1 can be improved while effectively suppressing the side effect of the mass body MS sticking and the etching damage to the fixed electrode FE. An excellent effect can be obtained.
 (実施の形態2)
 本実施の形態2では、前記実施の形態1とは別のレイアウト構成例(ベース層BLの平面レイアウト構成例およびMEMS層MLの平面レイアウト構成例)について説明する。
(Embodiment 2)
In the second embodiment, another layout configuration example (planar layout configuration example of the base layer BL and planar layout configuration example of the MEMS layer ML) different from the first embodiment will be described.
 <ベース層の平面構成例>
 (1)図6は、本実施の形態2におけるベース層BLの平面レイアウト構成例を示す平面図である。図6において、ベース層BLの内部に固定電極FEとサーボ電極SE1とサーボ電極SE2とが形成されている。具体的には、y方向に並ぶように、サーボ電極SE1と固定電極FEとサーボ電極SE2とが配置され、かつ、平面視において、サーボ電極SE1とサーボ電極SE2とに挟まれるように、固定電極FEが配置されている。
<Example of planar configuration of base layer>
(1) FIG. 6 is a plan view showing a planar layout configuration example of the base layer BL in the second embodiment. In FIG. 6, a fixed electrode FE, a servo electrode SE1, and a servo electrode SE2 are formed in the base layer BL. Specifically, the servo electrode SE1, the fixed electrode FE, and the servo electrode SE2 are arranged so as to be aligned in the y direction, and the fixed electrode is sandwiched between the servo electrode SE1 and the servo electrode SE2 in plan view. FE is arranged.
 そして、固定電極FE上には、複数の保護部PUが形成されているとともに、サーボ電極SE1およびサーボ電極SE2上にも、複数の保護部PUが形成されている。これにより、互いに離間した複数の保護部PUを固定電極FEの表面に設けて、固定電極FEの表面に凹凸形状を設けるという特徴点が実現されることになる。さらに、本実施の形態2では、固定電極FEだけでなく、サーボ電極SE1およびサーボ電極SE2においても、互いに離間した複数の保護部PUをサーボ電極SE1およびサーボ電極SE2の表面に設けて、サーボ電極SE1およびサーボ電極SE2の表面に凹凸形状を設けている。このため、サーボ電極SE1およびサーボ電極SE2においても、上述した特徴点が実現される。 A plurality of protection parts PU are formed on the fixed electrode FE, and a plurality of protection parts PU are also formed on the servo electrodes SE1 and SE2. Thereby, the feature point that the plurality of protection parts PU spaced apart from each other is provided on the surface of the fixed electrode FE and the uneven shape is provided on the surface of the fixed electrode FE is realized. Further, in the second embodiment, not only the fixed electrode FE but also the servo electrode SE1 and the servo electrode SE2 are provided with a plurality of protective portions PU spaced from each other on the surfaces of the servo electrode SE1 and the servo electrode SE2, and the servo electrode Concave and convex shapes are provided on the surfaces of SE1 and servo electrode SE2. For this reason, the above-described feature points are also realized in the servo electrode SE1 and the servo electrode SE2.
 このように、図6に示すベース層BLには、固定電極FEの他に、サーボ電極SE1およびサーボ電極SE2が形成されている。つまり、図6に示すベース層BLには、固定電極FEと同層で形成され、かつ、z方向(図6の紙面上側方向)において、ベース層BLの上方に配置される質量体(図示されず)と離間して対向配置され、かつ、z方向への質量体の変位を打ち消す静電気力を発生させるサーボ電極SE1およびサーボ電極SE2が形成されている。このサーボ電極SE1およびサーボ電極SE2には、サーボ電圧が印加されるようになっており、サーボ電極SE1およびサーボ電極SE2にサーボ電圧を印加することにより発生するクーロン力(静電気力)によって、加速度に基づく質量体のz方向の変位が打ち消されるようになっている。これにより、本実施の形態2における加速度センサに加速度が印加されても、質量体はz方向にほとんど変位しないが、サーボ電極SE1およびサーボ電極SE2には、加速度の大きさに比例したサーボ電圧が印加されることになるから、このサーボ電圧を出力することにより、結果的に、本実施の形態2における加速度センサに印加された加速度を検出することができる。 Thus, in addition to the fixed electrode FE, the servo electrode SE1 and the servo electrode SE2 are formed on the base layer BL shown in FIG. In other words, the base layer BL shown in FIG. 6 is formed of the same layer as the fixed electrode FE, and is disposed above the base layer BL in the z direction (upward direction in FIG. 6) (illustrated). The servo electrode SE1 and the servo electrode SE2 that are arranged opposite to each other and generate an electrostatic force that cancels the displacement of the mass body in the z direction are formed. A servo voltage is applied to the servo electrode SE1 and the servo electrode SE2, and the acceleration is caused by the Coulomb force (electrostatic force) generated by applying the servo voltage to the servo electrode SE1 and the servo electrode SE2. The displacement in the z direction of the mass body based thereon is cancelled. As a result, even if acceleration is applied to the acceleration sensor in the second embodiment, the mass body is hardly displaced in the z direction, but the servo electrode SE1 and the servo electrode SE2 have a servo voltage proportional to the magnitude of the acceleration. As a result, by outputting this servo voltage, it is possible to detect the acceleration applied to the acceleration sensor according to the second embodiment.
 このサーボ電極SE1およびサーボ電極SE2を設ける利点は、質量体をz方向に変位させることなく、加速度を検出することができる点にある。すなわち、サーボ機構を設けることにより、加速度センサに大きな加速度が印加された場合、質量体の想定外の変位によって、質量体と固定電極FEとが接触することを防止することができる。 The advantage of providing the servo electrode SE1 and the servo electrode SE2 is that acceleration can be detected without displacing the mass body in the z direction. That is, by providing a servo mechanism, when a large acceleration is applied to the acceleration sensor, it is possible to prevent the mass body from contacting the fixed electrode FE due to an unexpected displacement of the mass body.
 このことから、加速度センサにサーボ電極SE1およびサーボ電極SE2を設ける構成では、上述した前記実施の形態1における特徴点に起因するステッキング防止効果とともに、サーボ機構によっても、質量体と固定電極FEの接触が抑制される結果、ステッキング防止効果を得ることができる。すなわち、加速度センサにサーボ電極SE1およびサーボ電極SE2を設ける構成は、ステッキング防止効果を高める効果があり、ステッキングを抑制して加速度センサの信頼性を向上する観点から有用な構成であることがわかる。 Accordingly, in the configuration in which the servo electrode SE1 and the servo electrode SE2 are provided in the acceleration sensor, the mass body and the fixed electrode FE can be prevented by the servo mechanism as well as the anti-sticking effect due to the feature point in the first embodiment described above. As a result of the contact being suppressed, an anti-sticking effect can be obtained. In other words, the configuration in which the servo electrode SE1 and the servo electrode SE2 are provided in the acceleration sensor has an effect of enhancing the effect of preventing sticking, and is a useful configuration from the viewpoint of suppressing the sticking and improving the reliability of the acceleration sensor. Recognize.
 ここで、加速度センサの動作状態では、サーボ機構が働くため、前記実施の形態1における特徴点に起因するステッキング防止効果と、サーボ機構に起因するステッキング防止効果を得ることができる。一方、加速度センサの非動作状態では、サーボ機構も働かないため、サーボ機構に起因するステッキング防止効果を得ることはできない。つまり、加速度センサの非動作状態でも、梁によって懸架されている質量体に外力が加わると、質量体が変位することになるが、この場合、加速度センサが非動作状態にあると、サーボ機構が働かないため、ステッキングが生じる可能性がある。この点に関し、本実施の形態2によれば、加速度センサの非動作状態であっても、上述した前記実施の形態1における特徴点に起因するステッキング防止効果を得ることができる。すなわち、複数の保護部PUによって凹凸形状を設けるという構成は、加速度センサの動作状態あるいは非動作状態に関わらず存在する。このことから、本実施の形態2における加速度センサでも、加速度センサが動作状態にある場合だけでなく、非動作状態にある場合であっても、ステッキング防止効果を得ることができる。すなわち、サーボ機構とは異なり、上述した前記実施の形態1における特徴点は、加速度センサの動作状態と非動作状態のいずれの状態であっても、ステッキング防止効果を得ることができる点で優れているということができる。 Here, since the servo mechanism works in the operating state of the acceleration sensor, it is possible to obtain the anti-sticking effect caused by the feature points in the first embodiment and the anti-sticking effect caused by the servo mechanism. On the other hand, in the non-operating state of the acceleration sensor, the servo mechanism does not work, so that it is not possible to obtain an anti-sticking effect caused by the servo mechanism. In other words, even when the acceleration sensor is not in operation, if an external force is applied to the mass body suspended by the beam, the mass body will be displaced. In this case, if the acceleration sensor is in the non-operation state, the servo mechanism Since it does not work, sticking may occur. In this regard, according to the second embodiment, even if the acceleration sensor is in a non-operating state, the effect of preventing sticking caused by the feature point in the first embodiment described above can be obtained. That is, the configuration in which the concavo-convex shape is provided by the plurality of protection units PU exists regardless of the operation state or non-operation state of the acceleration sensor. Therefore, even in the acceleration sensor according to the second embodiment, an effect of preventing sticking can be obtained not only when the acceleration sensor is in the operating state but also when the acceleration sensor is in the non-operating state. That is, unlike the servo mechanism, the feature point in the first embodiment described above is excellent in that an effect of preventing sticking can be obtained regardless of whether the acceleration sensor is in an operating state or a non-operating state. It can be said that
 なお、図6では、固定電極FEとサーボ電極SE1とサーボ電極SE2とが別々の構成要素として設けられていることから、加速度の検出動作と質量体の変位を打ち消すサーボ動作とを同時に行なうことができる利点が得られる。 In FIG. 6, since the fixed electrode FE, the servo electrode SE1, and the servo electrode SE2 are provided as separate components, the acceleration detecting operation and the servo operation for canceling the displacement of the mass body can be performed simultaneously. Benefits that can be obtained.
 続いて、本実施の形態2では、図6に示すように、固定電極FEから配線WLが引き出されている。同様に、サーボ電極SE1から配線WL1が引き出され、サーボ電極SE2から配線WL2が引き出されている。このとき、例えば、図6に示すように、配線WLの一部分および配線WL1の一部分を覆う配線保護部WPUが形成されている。同様に、図6において、配線WLの一部分および配線WL2の一部分を覆う配線保護部WPUが形成されている。この配線保護部WPUは、複数の保護部PUと同層で形成されており、MEMS層をエッチング加工する際のエッチングダメージから、配線WL、配線WL1および配線WL2を保護する機能を有している。 Subsequently, in the second embodiment, as shown in FIG. 6, the wiring WL is drawn from the fixed electrode FE. Similarly, the wiring WL1 is drawn from the servo electrode SE1, and the wiring WL2 is drawn from the servo electrode SE2. At this time, for example, as illustrated in FIG. 6, a wiring protection unit WPU that covers a part of the wiring WL and a part of the wiring WL1 is formed. Similarly, in FIG. 6, a wiring protection part WPU that covers a part of the wiring WL and a part of the wiring WL2 is formed. The wiring protection unit WPU is formed in the same layer as the plurality of protection units PU, and has a function of protecting the wiring WL, the wiring WL1, and the wiring WL2 from etching damage when the MEMS layer is etched. .
 すなわち、例えば、MEMS層MLをエッチング加工する際、質量体MSに形成される開口部OPの他に、MEMS層MLを貫通する貫通孔も形成される。したがって、この貫通孔と平面的に重なるように、MEMS層MLの下層のベース層BLに配線の一部分が配置されることがある。この場合、貫通孔を形成する際のエッチングによって、貫通孔と平面的に重なる配線の一部分がエッチングダメージを受けることになる。 That is, for example, when etching the MEMS layer ML, in addition to the opening OP formed in the mass body MS, a through-hole penetrating the MEMS layer ML is also formed. Therefore, a part of the wiring may be arranged on the base layer BL below the MEMS layer ML so as to overlap the through hole in a plan view. In this case, a portion of the wiring that overlaps with the through hole in a plane is damaged by etching when the through hole is formed.
 そこで、本実施の形態1では、例えば、図6において、貫通孔と平面的に重なる配線WLの一部分と配線WL1の一部分とに跨って配線保護部WPUを形成し、かつ、貫通孔と平面的に重なる配線WLの一部分と配線WL2の一部分とに跨って配線保護部WPUを形成している。そして、図6では示されないが、平面視において、配線保護部WPUは、貫通孔を内包するように形成される。これにより、本実施の形態2によれば、保護部PUで固定電極FEをエッチングダメージから保護できるだけでなく、配線保護部WPUで、貫通孔と平面的に重なる配線WLの一部分、配線WL1の一部分、および、配線WL2の一部分をエッチングダメージから保護することができる。この結果、本実施の形態2によれば、加速度センサの信頼性向上を図ることができる。以上のようにして、本実施の形態2におけるベース層BLが平面レイアウト構成されていることになる。 Therefore, in the first embodiment, for example, in FIG. 6, the wiring protection portion WPU is formed across a part of the wiring WL and the part of the wiring WL1 that overlaps the through-hole in a plan view, and A wiring protection part WPU is formed across a part of the wiring WL and a part of the wiring WL2 overlapping each other. Although not shown in FIG. 6, the wiring protection part WPU is formed so as to include the through hole in a plan view. Thereby, according to the second embodiment, not only can the protective electrode PU protect the fixed electrode FE from etching damage, but also the wiring protection unit WPU includes a part of the wiring WL and a part of the wiring WL1 that overlaps the through hole in a plane. In addition, a part of the wiring WL2 can be protected from etching damage. As a result, according to the second embodiment, the reliability of the acceleration sensor can be improved. As described above, the base layer BL in the second embodiment has a planar layout configuration.
 (2)次に、ベース層BLの平面レイアウト構成の変形例について説明する。図7は、ベース層BLの平面レイアウト構成例を示す平面図である。図7において、ベース層BLには、矩形形状の固定電極FEが形成されており、この固定電極FEは、サーボ電極SEとしても機能する。すなわち、図7に示すベース層BLの平面レイアウト構成例では、固定電極FEがサーボ電極SEを兼ねている構成が示されている。この場合、固定電極FEによる検出動作とサーボ電極SEによるサーボ動作とは時分割で行なわれることになる。このようにベース層BLの平面レイアウト構成は、図6に示す平面レイアウト構成だけでなく、図7に示す平面レイアウト構成を採用することもできる。 (2) Next, a modified example of the planar layout configuration of the base layer BL will be described. FIG. 7 is a plan view showing a planar layout configuration example of the base layer BL. In FIG. 7, a rectangular fixed electrode FE is formed on the base layer BL, and this fixed electrode FE also functions as a servo electrode SE. That is, in the planar layout configuration example of the base layer BL shown in FIG. 7, a configuration in which the fixed electrode FE also serves as the servo electrode SE is shown. In this case, the detection operation by the fixed electrode FE and the servo operation by the servo electrode SE are performed in a time division manner. As described above, the planar layout configuration of the base layer BL can employ not only the planar layout configuration shown in FIG. 6 but also the planar layout configuration shown in FIG.
 (3)続いて、ベース層BLの平面レイアウト構成の別の変形例について説明する。図8は、ベース層BLの平面レイアウト構成例を示す平面図である。図8において、ベース層BLには、固定電極FEとサーボ電極SE1とが別体として形成されており、特に、図8において、固定電極FEとサーボ電極SE1とは、x方向に並ぶように配置されている。このようにベース層BLの平面レイアウト構成は、図6や図7に示す平面レイアウト構成だけでなく、図8に示す平面レイアウト構成を採用することもできる。 (3) Next, another modified example of the planar layout configuration of the base layer BL will be described. FIG. 8 is a plan view showing a planar layout configuration example of the base layer BL. In FIG. 8, the fixed electrode FE and the servo electrode SE1 are separately formed on the base layer BL. In particular, in FIG. 8, the fixed electrode FE and the servo electrode SE1 are arranged so as to be aligned in the x direction. Has been. As described above, the planar layout configuration of the base layer BL can employ not only the planar layout configuration shown in FIGS. 6 and 7, but also the planar layout configuration shown in FIG.
 (4)さらに、ベース層BLの平面レイアウト構成の別の変形例について説明する。図9は、ベース層BLの平面レイアウト構成例を示す平面図である。図9において、ベース層BLには、固定電極FEとサーボ電極SE1とが別体として形成されており、特に、図9において、固定電極FEとサーボ電極SE1とは、y方向に並ぶように配置されている。このようにベース層BLの平面レイアウト構成は、図6~図8に示す平面レイアウト構成だけでなく、図9に示す平面レイアウト構成を採用することもできる。 (4) Further, another modified example of the planar layout configuration of the base layer BL will be described. FIG. 9 is a plan view illustrating a planar layout configuration example of the base layer BL. In FIG. 9, the fixed electrode FE and the servo electrode SE1 are separately formed on the base layer BL. In particular, in FIG. 9, the fixed electrode FE and the servo electrode SE1 are arranged so as to be aligned in the y direction. Has been. As described above, the planar layout configuration of the base layer BL can employ not only the planar layout configuration shown in FIGS. 6 to 8, but also the planar layout configuration shown in FIG.
 <MEMS層の平面構成>
 (1)図10は、本実施の形態2におけるMEMS層MLの平面レイアウト構成を示す平面図である。図10において、MEMS層MLは、矩形形状をしており、MEMS層MLの内部に、固定部FUと、この固定部FUと接続される梁BMと、この梁BMと接続される質量体MSとが形成されている。つまり、MEMS層MLには、質量体MSが梁BMを介して固定部FUに接続されており、質量部MSは、梁BMによって懸架されていることになる。そして、質量体MSには、複数の開口部OPが形成されており、例えば、図10では、複数の開口部OPのそれぞれの平面形状は、スリット形状SLとなっている。そして、図6に示すベース層BLと図10に示すMEMS層MLとを平面的に重ねるとわかるように、複数の保護部PUのそれぞれの平面サイズは、複数の保護部PUのそれぞれに対応した開口部OPの平面サイズよりも大きくなっている。言い換えれば、平面視において、複数の保護部PUのそれぞれは、複数の保護部PUのそれぞれに対応した開口部OPを内包するように形成されており、本実施の形態2でも、前記実施の形態1における特徴点が実現されていることがわかる。
<Planar configuration of MEMS layer>
(1) FIG. 10 is a plan view showing a planar layout configuration of the MEMS layer ML in the second embodiment. In FIG. 10, the MEMS layer ML has a rectangular shape. Inside the MEMS layer ML, a fixed portion FU, a beam BM connected to the fixed portion FU, and a mass body MS connected to the beam BM. And are formed. That is, in the MEMS layer ML, the mass body MS is connected to the fixed portion FU via the beam BM, and the mass portion MS is suspended by the beam BM. In the mass body MS, a plurality of openings OP are formed. For example, in FIG. 10, the planar shape of each of the plurality of openings OP is a slit shape SL. Then, as can be seen when the base layer BL shown in FIG. 6 and the MEMS layer ML shown in FIG. 10 are planarly overlapped, the respective planar sizes of the plurality of protection units PU correspond to the plurality of protection units PU, respectively. It is larger than the planar size of the opening OP. In other words, in plan view, each of the plurality of protection units PU is formed so as to include an opening OP corresponding to each of the plurality of protection units PU. It can be seen that the feature points in 1 are realized.
 (2)次に、MEMS層MLの平面レイアウト構成の変形例について説明する。図11は、MEMS層MLの平面レイアウト構成例を示す平面図である。図11において、MEMS層MLには、梁BMを介して固定部FUに接続された質量体MSが形成されており、この質量体MSには、質量体MSを貫通するように複数の開口部OPが形成されている。特に、図11では、複数の開口部OPのそれぞれの平面形状は、ホール形状HLとなっている。このようにMEMS層MLの平面レイアウト構成は、図10に示す平面レイアウト構成だけでなく、図11に示す平面レイアウト構成を採用することもできる。 (2) Next, a modification of the planar layout configuration of the MEMS layer ML will be described. FIG. 11 is a plan view illustrating a planar layout configuration example of the MEMS layer ML. In FIG. 11, the mass body MS connected to the fixed portion FU via the beam BM is formed in the MEMS layer ML, and a plurality of openings are formed in the mass body MS so as to penetrate the mass body MS. OP is formed. In particular, in FIG. 11, the planar shape of each of the plurality of openings OP is a hole shape HL. As described above, the planar layout configuration of the MEMS layer ML can adopt not only the planar layout configuration shown in FIG. 10 but also the planar layout configuration shown in FIG.
 ここで、前記実施の形態1だけでなく、本実施の形態2でも、質量体MSに複数の開口部OPを設けて、空気抵抗を低減し、かつ、質量体MSを大気圧よりも充分に低い圧力で封止している。これにより、本実施の形態2でも、機械雑音を低減することができる。 Here, not only in the first embodiment but also in the second embodiment, the mass body MS is provided with a plurality of openings OP to reduce the air resistance, and the mass body MS is sufficiently more than the atmospheric pressure. Sealed with low pressure. Thereby, mechanical noise can also be reduced in the second embodiment.
 具体的に、図12は、封止圧力と機械雑音との関係を示すグラフである。図12において、横軸は封止圧力(Pa)を示しており、縦軸は機械雑音(ng/√Hz)を示している。図12には、質量体に開口部を設けない構成((a)穴なし)に対応したグラフと、質量体に粗いスリット状の開口部を設けた構成((b)スリット粗)に対応したグラフと、質量体に密なスリット状の開口部を設けた構成((c)スリット密)に対応したグラフと、質量体にホール状の開口部を設けた構成((d)ホール)に対応したグラフとが示されている。図12に示すように、封止圧力を小さくするほど、機械雑音が小さくなることがわかる。また、質量体に設けられる開口部の形状によっても機械雑音が変化することがわかる。例えば、開口部が存在しない場合、封止圧力が1(Pa)のとき、機械雑音は約200(ng/√Hz)となる一方、開口部が存在する場合、封止圧力が1(Pa)のとき、機械雑音は約20(ng/√Hz)となることがわかる。したがって、前記実施の形態1だけでなく、本実施の形態2でも、質量体MSに複数の開口部OPを設けるとともに、質量体MSを大気圧よりも充分に低い圧力で封止している。 Specifically, FIG. 12 is a graph showing the relationship between sealing pressure and mechanical noise. In FIG. 12, the horizontal axis represents the sealing pressure (Pa), and the vertical axis represents the mechanical noise (ng / √Hz). FIG. 12 corresponds to a graph corresponding to a configuration in which no opening is provided in the mass body ((a) no hole) and a configuration in which a rough slit-like opening is provided in the mass ((b) rough slit). Corresponding to the graph, the configuration corresponding to the configuration in which the mass body is provided with a dense slit-shaped opening ((c) slit dense), and the configuration in which the mass body is provided with a hole-shaped opening ((d) hole) The graph is shown. As shown in FIG. 12, it can be seen that the mechanical noise decreases as the sealing pressure decreases. It can also be seen that the mechanical noise varies depending on the shape of the opening provided in the mass body. For example, when there is no opening, the mechanical noise is about 200 (ng / √Hz) when the sealing pressure is 1 (Pa), while when the opening is present, the sealing pressure is 1 (Pa). It can be seen that the mechanical noise is about 20 (ng / √Hz). Therefore, not only in the first embodiment but also in the second embodiment, the mass body MS is provided with a plurality of openings OP, and the mass body MS is sealed at a pressure sufficiently lower than the atmospheric pressure.
 これにより、前記実施の形態1および本実施の形態2において、機械雑音を低減することができ、この結果、S/N比を向上することができる。すなわち、前記実施の形態1だけでなく本実施の形態2においても、加速度の検出感度を向上させることができる。つまり、本実施の形態2においても、質量体MSのステッキングおよび固定電極FEへのエッチングダメージという副作用を招くことなく、加速度の検出感度を向上できる。 Thereby, in the first embodiment and the second embodiment, mechanical noise can be reduced, and as a result, the S / N ratio can be improved. That is, the acceleration detection sensitivity can be improved not only in the first embodiment but also in the second embodiment. That is, also in the second embodiment, the acceleration detection sensitivity can be improved without incurring the side effect of sticking the mass body MS and etching damage to the fixed electrode FE.
 (実施の形態3)
 <加速度センサの断面構成>
 本実施の形態3では、前記実施の形態1における加速度センサAS1の変形例について説明する。図13は、本実施の形態3における加速度センサAS1の断面構成を示す図であり、前記実施の形態1を示す図2に対応した図である。図13において、本実施の形態3における加速度センサAS1でも、ベース層BL上に固定電極FE1が形成され、この固定電極FE1上に複数の保護部PU1が形成されている。そして、z方向から見た平面視において、複数の保護部PU1のそれぞれは、複数の保護部PU1のそれぞれに対応した開口部OPを内包するように形成されている。さらに、本実施の形態3における加速度センサAS1では、図13に示すように、キャップ層CLの下面に、固定電極FE3が形成され、かつ、質量体MSと対向する固定電極FE3の対向面には、複数の開口部OPのそれぞれに対応した複数の保護部PU3のそれぞれが形成されている。そして、z方向から見た平面視において、複数の保護部PU3のそれぞれは、複数の保護部PU3のそれぞれに対応した開口部OPを内包するように形成されている。
(Embodiment 3)
<Cross-sectional configuration of acceleration sensor>
In the third embodiment, a modification of the acceleration sensor AS1 in the first embodiment will be described. FIG. 13 is a diagram illustrating a cross-sectional configuration of the acceleration sensor AS1 according to the third embodiment, and corresponds to FIG. 2 illustrating the first embodiment. In FIG. 13, also in the acceleration sensor AS1 according to the third embodiment, a fixed electrode FE1 is formed on the base layer BL, and a plurality of protective portions PU1 are formed on the fixed electrode FE1. And in the planar view seen from the z direction, each of the plurality of protection parts PU1 is formed so as to include the opening OP corresponding to each of the plurality of protection parts PU1. Furthermore, in the acceleration sensor AS1 according to the third embodiment, as shown in FIG. 13, the fixed electrode FE3 is formed on the lower surface of the cap layer CL, and the fixed surface of the fixed electrode FE3 facing the mass body MS is formed on the opposite surface. Each of the plurality of protection units PU3 corresponding to each of the plurality of openings OP is formed. And in the planar view seen from z direction, each of several protection part PU3 is formed so that the opening part OP corresponding to each of several protection part PU3 may be included.
 これにより、本実施の形態3によれば、固定電極FE3の表面に凹凸形状が形成される点に起因して質量体MSと保護部PU3との接触面積が低減される点と、複数の保護部PU3のそれぞれが、対応する開口部OPを内包するように設けられていることになる。この結果、本実施の形態3によれば、ベース層BLに設けられている固定電極FE1へのステッキングを抑制できるだけでなく、キャップ層CLに設けられている固定電極FE3へのステッキングも抑制することができる。 Thus, according to the third embodiment, the contact area between the mass body MS and the protection unit PU3 is reduced due to the formation of the uneven shape on the surface of the fixed electrode FE3, and a plurality of protections. Each of the parts PU3 is provided so as to include the corresponding opening OP. As a result, according to the third embodiment, not only can the sticking to the fixed electrode FE1 provided in the base layer BL be suppressed, but also the sticking to the fixed electrode FE3 provided in the cap layer CL can be suppressed. can do.
 ここで、ベース層BLに設けられている固定電極FE1においては、ステッキングの抑制だけでなく、ベース層BLの上方に配置されるMEMS層MLをドライエッチングする工程でのエッチングダメージを受けることも考慮して、複数の保護部PU1を設計する必要がある。これに対し、キャップ層CLに設けられている固定電極FE3は、MEMS層MLを形成した後に、キャップ層CLとともにMEMS層MLに接合される。したがって、固定電極FE3においては、エッチングダメージを考慮する必要はなくなる。つまり、キャップ層CLに設けられる固定電極FE3上に形成される複数の保護部PU3は、エッチングダメージを考慮することなく、ステッキングを抑制する観点から設計することができる。例えば、ステッキングを抑制する観点からは、z方向から見た平面視において、複数の保護部PU3のそれぞれが、複数の保護部PU3のそれぞれに対応した開口部OPを内包するように形成されていればよく、この条件の範囲内で、なるべく、複数の保護部PU3の平面サイズを小さくすることが望ましい。なぜなら、この構成によれば、質量体MSに想定外の大きな変位が生じても、キャップ層CLに設けられている固定電極FE3(詳細には、保護部PU3)と質量体MSとの接触面積が低減される結果、ステッキングを効果的に抑制することができるからである。 Here, in the fixed electrode FE1 provided in the base layer BL, not only suppression of sticking but also etching damage in the step of dry etching the MEMS layer ML disposed above the base layer BL may be received. It is necessary to design a plurality of protection units PU1 in consideration. On the other hand, the fixed electrode FE3 provided in the cap layer CL is joined to the MEMS layer ML together with the cap layer CL after forming the MEMS layer ML. Therefore, it is not necessary to consider etching damage in the fixed electrode FE3. That is, the plurality of protection portions PU3 formed on the fixed electrode FE3 provided in the cap layer CL can be designed from the viewpoint of suppressing sticking without considering etching damage. For example, from the viewpoint of suppressing sticking, each of the plurality of protection units PU3 is formed so as to include an opening OP corresponding to each of the plurality of protection units PU3 in a plan view viewed from the z direction. It is only necessary to reduce the planar size of the plurality of protection units PU3 as much as possible within the range of this condition. This is because, according to this configuration, even if an unexpected large displacement occurs in the mass body MS, the contact area between the fixed electrode FE3 (specifically, the protection unit PU3) provided in the cap layer CL and the mass body MS. This is because sticking can be effectively suppressed as a result.
 <実施の形態3における加速度センサのさらなる利点>
 本実施の形態3における加速度センサAS1は、図13に示すように、固定電極FE1と質量体MSからなる第1可変容量と、固定電極FE3と質量体MSからなる第2可変容量とを備えている。このとき、本実施の形態3における加速度センサAS1では、z方向の加速度が印加された場合の第1可変容量の容量変化と第2可変容量の容量変化とが逆特性となる。すなわち、第1可変容量の静電容量が増加する場合、第2可変容量の静電容量が減少する一方、第1可変容量の静電容量が減少する場合、第2可変容量の静電容量が増加する。この結果、本実施の形態3における加速度センサAS1によれば、以下に示す利点を得ることができる。
<Additional Advantage of Acceleration Sensor in Embodiment 3>
As shown in FIG. 13, the acceleration sensor AS1 according to the third embodiment includes a first variable capacitor including a fixed electrode FE1 and a mass body MS, and a second variable capacitor including a fixed electrode FE3 and the mass body MS. Yes. At this time, in the acceleration sensor AS1 according to the third embodiment, the capacitance change of the first variable capacitor and the capacitance change of the second variable capacitor when the acceleration in the z direction is applied have opposite characteristics. That is, when the capacitance of the first variable capacitor increases, the capacitance of the second variable capacitor decreases, while when the capacitance of the first variable capacitor decreases, the capacitance of the second variable capacitor decreases. To increase. As a result, according to the acceleration sensor AS1 in the third embodiment, the following advantages can be obtained.
 例えば、第1入力端子と第2入力端子との間に第1可変容量と第2可変容量とを直列接続し、第1可変容量と第2可変容量との接続部分(接続ノード)にCV変換部を接続する構成を考える。まず、第1入力端子と第2入力端子に、それぞれ180°位相の異なる逆位相の変調信号を印加する。ここで、本実施の形態3では、加速度が印加されていない場合の第1可変容量の静電容量を「C」とし、加速度が印加されていない場合の第2可変容量の静電容量を「C」とすることができる。なぜなら、本実施の形態3によれば、第1可変容量と第2可変容量とにおいて、質量体MSが共通しており、かつ、質量体MSと固定電極FE1との距離と質量体MSと固定電極FE3との距離を等しくでき、かつ、固定電極FE1の平面サイズと固定電極FE3の平面サイズとを等しく設計することができるからである。そして、加速度が印加された場合、第1可変容量の静電容量が「C+ΔC」に増加する一方、第2可変容量の静電容量が「C-ΔC」に減少するとする。この場合、第1入力端子と第2入力端子とに互いに逆位相の変調信号(V)が印加されているため、第1可変容量には、Q1=(C+ΔC)Vの電荷が蓄積される一方、第2可変容量には、Q2=-(C-ΔC)Vの電荷が蓄積される。したがって、第1可変容量と第2可変容量全体での電荷移動量は、(C+ΔC)V-(C-ΔC)V=2ΔCVとなる。つまり、第1入力端子と第2入力端子とに互いに逆位相の変調信号が印加されている場合には、第1可変容量の静電容量「C」と第2可変容量の静電容量を「C」とがキャンセルされて、電荷移動量には、加速度に起因する容量変化2ΔCの成分だけが含まれることになる。この結果、電荷移動量において、加速度に起因する容量変化(2ΔC)とは無関係な静電容量「C」の影響を排除することができる。この結果、信号には、加速度に起因する容量変化(2ΔC)の成分だけが含まれることになる。これにより、本実施の形態3における加速度センサAS1によれば、加速度の検出感度を向上することができる。 For example, a first variable capacitor and a second variable capacitor are connected in series between a first input terminal and a second input terminal, and CV conversion is performed at a connection portion (connection node) between the first variable capacitor and the second variable capacitor. Consider a configuration that connects the parts. First, opposite-phase modulation signals having a phase difference of 180 ° are applied to the first input terminal and the second input terminal, respectively. Here, in the third embodiment, the capacitance of the first variable capacitance when no acceleration is applied is “C”, and the capacitance of the second variable capacitance when no acceleration is applied is “C”. C ". This is because, according to the third embodiment, the mass body MS is common to the first variable capacitor and the second variable capacitor, and the distance between the mass body MS and the fixed electrode FE1 and the mass body MS are fixed. This is because the distance from the electrode FE3 can be made equal, and the plane size of the fixed electrode FE1 and the plane size of the fixed electrode FE3 can be designed to be equal. When acceleration is applied, the capacitance of the first variable capacitance increases to “C + ΔC”, while the capacitance of the second variable capacitance decreases to “C−ΔC”. In this case, since the modulation signals (V) having opposite phases to each other are applied to the first input terminal and the second input terminal, the charge of Q1 = (C + ΔC) V is stored in the first variable capacitor. In the second variable capacitor, a charge of Q2 = − (C−ΔC) V is accumulated. Therefore, the amount of charge transfer in the entire first variable capacitor and second variable capacitor is (C + ΔC) V− (C−ΔC) V = 2ΔCV. That is, when modulation signals having opposite phases are applied to the first input terminal and the second input terminal, the capacitance “C” of the first variable capacitor and the capacitance of the second variable capacitor are set to “ “C” is canceled, and the charge transfer amount includes only the component of the capacitance change 2ΔC caused by the acceleration. As a result, it is possible to eliminate the influence of the capacitance “C” that is unrelated to the capacitance change (2ΔC) caused by the acceleration in the amount of charge transfer. As a result, the signal includes only the component of capacitance change (2ΔC) caused by acceleration. Thereby, according to acceleration sensor AS1 in this Embodiment 3, the detection sensitivity of an acceleration can be improved.
 (実施の形態4)(シーソ構造)
 <加速度センサの断面構成>
 次に、本実施の形態4における加速度センサAS2について説明する。図14は、本実施の形態4における加速度センサAS2の一断面を示す断面図である。図14において、ベース層BL上には、互いに離間して固定電極FE1および固定電極FE2が配置されている。そして、固定電極FE1の表面に互いに離間して複数の保護部PU1が形成され、かつ、固定電極FE2の表面にも互いに離間して複数の保護部PU2が形成されている。
(Embodiment 4) (Seesaw structure)
<Cross-sectional configuration of acceleration sensor>
Next, the acceleration sensor AS2 in the fourth embodiment will be described. FIG. 14 is a cross-sectional view showing one cross section of the acceleration sensor AS2 in the fourth embodiment. In FIG. 14, the fixed electrode FE1 and the fixed electrode FE2 are disposed on the base layer BL so as to be spaced apart from each other. A plurality of protection portions PU1 are formed on the surface of the fixed electrode FE1 so as to be separated from each other, and a plurality of protection portions PU2 are also formed on the surface of the fixed electrode FE2 so as to be separated from each other.
 続いて、図14に示すように、ベース層BLの上方には、MEMS層MLが配置されている。このMEMS層MLは、MEMS層MLを加工することにより形成された固定部FUが形成されており、この固定部FUとベース層BLとを接合することにより、MEMS層MLがベース層BLの上方に配置されることになる。そして、このMEMS層MLには、質量体MS1が形成され、質量体MS1は、ベース層BLに形成された固定電極FE1と対向する位置に配置される。同様に、本実施の形態4では、MEMS層MLに質量体MS2が形成され、質量体MS2は、ベース層BLに形成された固定電極FE2と対向する位置に配置される。これらの質量体MS1および質量体MS2は、梁(図示せず)を介して、固定部FUと接続されている。すなわち、質量体MS1および質量体MS2のそれぞれは、梁によって懸架されている。 Subsequently, as shown in FIG. 14, the MEMS layer ML is disposed above the base layer BL. The MEMS layer ML has a fixed portion FU formed by processing the MEMS layer ML, and the MEMS layer ML is located above the base layer BL by bonding the fixed portion FU and the base layer BL. Will be placed. The mass body MS1 is formed in the MEMS layer ML, and the mass body MS1 is disposed at a position facing the fixed electrode FE1 formed in the base layer BL. Similarly, in the fourth embodiment, the mass body MS2 is formed in the MEMS layer ML, and the mass body MS2 is disposed at a position facing the fixed electrode FE2 formed in the base layer BL. The mass body MS1 and the mass body MS2 are connected to the fixed portion FU via a beam (not shown). That is, each of mass body MS1 and mass body MS2 is suspended by the beam.
 さらに、質量体MS1には、図14に示すように、質量体MS1を貫通する複数の開口部OP1が形成されている。これらの複数の開口部OP1は、固定電極FE1上に形成された複数の保護部PU1に対応するように設けられている。すなわち、複数の開口部OP1のそれぞれに対応するように保護部PU1が設けられている。 Furthermore, as shown in FIG. 14, a plurality of openings OP1 penetrating the mass body MS1 are formed in the mass body MS1. The plurality of openings OP1 are provided so as to correspond to the plurality of protection units PU1 formed on the fixed electrode FE1. That is, the protection part PU1 is provided so as to correspond to each of the plurality of openings OP1.
 同様に、質量体MS2には、図14に示すように、質量体MS2を貫通する複数の開口部OP2が形成されている。これらの複数の開口部OP2は、固定電極FE2上に形成された複数の保護部PU2に対応するように設けられている。すなわち、複数の開口部OP2のそれぞれに対応するように保護部PU2が設けられている。 Similarly, a plurality of openings OP2 penetrating the mass body MS2 are formed in the mass body MS2, as shown in FIG. The plurality of openings OP2 are provided so as to correspond to the plurality of protection units PU2 formed on the fixed electrode FE2. That is, the protection part PU2 is provided so as to correspond to each of the plurality of openings OP2.
 そして、質量体MS1は、可動電極VE1としても機能する。すなわち、本実施の形態4における加速度センサAS2では、ベース層BL上に形成された固定電極FE1と、MEMS層MLに形成された質量体MS1(可動電極VE1)とによって、静電容量が形成されることになる。同様に、質量体MS2は、可動電極VE2としても機能する。すなわち、本実施の形態4における加速度センサAS2では、ベース層BL上に形成された固定電極FE2と、MEMS層MLに形成された質量体MS2(可動電極VE2)とによって、静電容量が形成されることになる。 The mass body MS1 also functions as the movable electrode VE1. That is, in the acceleration sensor AS2 in the fourth embodiment, a capacitance is formed by the fixed electrode FE1 formed on the base layer BL and the mass body MS1 (movable electrode VE1) formed on the MEMS layer ML. Will be. Similarly, the mass body MS2 also functions as the movable electrode VE2. That is, in the acceleration sensor AS2 in the fourth embodiment, a capacitance is formed by the fixed electrode FE2 formed on the base layer BL and the mass body MS2 (movable electrode VE2) formed on the MEMS layer ML. Will be.
 次に、図14に示すように、MEMS層ML上には、キャップ層CLが配置されている。この結果、MEMS層MLは、断面視において、ベース層BLとキャップ層CLで挟まれることになり、MEMS層MLに形成されている質量体MS1は、ベース層BLと固定部FUとキャップ層CLとで囲まれる空洞部CAV1の内部に配置されることになる。同様に、MEMS層MLに形成されている質量体MS2は、ベース層BLと固定部FUとキャップ層CLとで囲まれる空洞部CAV2の内部に配置されることになる。このとき、空洞部CAV1および空洞部CAV2の内部には気体が充填されており、空洞部CAV1および空洞部CAV2の内部の圧力は、例えば、大気圧よりも充分に低い圧力となっている。 Next, as shown in FIG. 14, the cap layer CL is disposed on the MEMS layer ML. As a result, the MEMS layer ML is sandwiched between the base layer BL and the cap layer CL in a cross-sectional view, and the mass body MS1 formed in the MEMS layer ML includes the base layer BL, the fixed portion FU, and the cap layer CL. It is arrange | positioned inside the cavity part CAV1 enclosed by these. Similarly, the mass body MS2 formed in the MEMS layer ML is disposed inside the cavity CAV2 surrounded by the base layer BL, the fixing part FU, and the cap layer CL. At this time, the inside of the cavity CAV1 and the cavity CAV2 is filled with gas, and the pressure inside the cavity CAV1 and the cavity CAV2 is, for example, a pressure sufficiently lower than the atmospheric pressure.
 そして、質量体MS1の質量は、質量体MS2の質量よりも重くなっている。具体的には、複数の開口部OP1のそれぞれの平面サイズは、複数の開口部OP2のそれぞれの平面サイズよりも小さく、かつ、複数の保護部PU1のそれぞれの平面サイズは、複数の保護部PU2のそれぞれの平面サイズよりも小さくなっている。これにより、質量体MS1と質量体MS2との間に質量差が生じる結果、例えば、+z方向に加速度が印加されると、重い質量体MS1が-z方向に変位する一方、軽い質量体MS2が+z方向に変位して、本実施の形態4における加速度センサAS2は、「シーソ動作」をすることになる。 And the mass of the mass body MS1 is heavier than the mass of the mass body MS2. Specifically, each plane size of the plurality of openings OP1 is smaller than each plane size of the plurality of openings OP2, and each plane size of the plurality of protection units PU1 is equal to the plurality of protection units PU2. It is smaller than each plane size. As a result, a mass difference is generated between the mass body MS1 and the mass body MS2. As a result, for example, when acceleration is applied in the + z direction, the heavy mass body MS1 is displaced in the −z direction, while the light mass body MS2 is displaced. By displacing in the + z direction, the acceleration sensor AS2 in the fourth embodiment performs a “seesaw operation”.
 ここで、本実施の形態4においても、z方向から見た平面視において、複数の保護部PU1のそれぞれは、複数の保護部PUのそれぞれに対応した開口部OPを内包し、かつ、複数の保護部PU2のそれぞれは、複数の保護部PU2のそれぞれに対応した開口部OP2を内包している。これにより、本実施の形態4によれば、前記実施の形態1と同様のメカニズムによって、質量体MS1および質量体MS2のステッキング並びに固定電極FE1および固定電極FE2へのエッチングダメージを抑制することができる。 Here, also in the fourth embodiment, each of the plurality of protection units PU1 includes an opening OP corresponding to each of the plurality of protection units PU in a plan view viewed from the z direction, and Each of the protection parts PU2 includes an opening OP2 corresponding to each of the plurality of protection parts PU2. Thereby, according to the fourth embodiment, the same mechanism as in the first embodiment can suppress the sticking of the mass body MS1 and the mass body MS2 and the etching damage to the fixed electrode FE1 and the fixed electrode FE2. it can.
 以上のことから、本実施の形態4においても、副作用を考慮することなく、重力加速度よりも小さな加速度を高感度に検出するために、加速度センサAS2の質量体MS1の質量および質量体MS2の質量を大きくし、かつ、梁のバネ定数を小さくすることができる。さらに、機械雑音を低減するために、質量体MS1に複数の開口部OP1を設けることができるとともに、質量体MS2に複数の開口部OP2を設けることができる。すなわち、本実施の形態4においても、ステッキングおよびエッチングダメージという副作用を効果的に抑制しながら、加速度センサAS2の検出感度を向上することができるという優れた効果を得ることができる。 From the above, also in the fourth embodiment, the mass of the mass body MS1 and the mass of the mass body MS2 of the acceleration sensor AS2 are detected with high sensitivity in order to detect an acceleration smaller than the gravitational acceleration without considering side effects. And the spring constant of the beam can be reduced. Furthermore, in order to reduce mechanical noise, the mass body MS1 can be provided with a plurality of openings OP1, and the mass body MS2 can be provided with a plurality of openings OP2. That is, also in the fourth embodiment, it is possible to obtain an excellent effect that the detection sensitivity of the acceleration sensor AS2 can be improved while effectively suppressing the side effects of sticking and etching damage.
 <実施の形態4における加速度センサの利点>
 本実施の形態4における加速度センサAS2は、図14に示すように、固定電極FE1と質量体MS1からなる第1可変容量と、固定電極FE2と質量体MS2からなる第2可変容量とを備えている。このとき、本実施の形態4における加速度センサAS2が「シーソ構造」をしており、z方向の加速度が印加された場合の第1可変容量の容量変化と第2可変容量の容量変化とが逆特性となる。すなわち、第1可変容量の静電容量が増加する場合、第2可変容量の静電容量が減少する一方、第1可変容量の静電容量が減少する場合、第2可変容量の静電容量が増加する。この結果、本実施の形態4における加速度センサAS2によれば、以下に示す利点を得ることができる。
<Advantages of the acceleration sensor in the fourth embodiment>
As shown in FIG. 14, the acceleration sensor AS2 in the fourth embodiment includes a first variable capacitor composed of a fixed electrode FE1 and a mass body MS1, and a second variable capacitor composed of a fixed electrode FE2 and a mass body MS2. Yes. At this time, the acceleration sensor AS2 in the fourth embodiment has a “seesaw structure”, and the capacitance change of the first variable capacitor and the capacitance change of the second variable capacitor when the acceleration in the z direction is applied are reversed. It becomes a characteristic. That is, when the capacitance of the first variable capacitor increases, the capacitance of the second variable capacitor decreases, while when the capacitance of the first variable capacitor decreases, the capacitance of the second variable capacitor decreases. To increase. As a result, according to the acceleration sensor AS2 in the fourth embodiment, the following advantages can be obtained.
 例えば、第1入力端子と第2入力端子との間に第1可変容量と第2可変容量とを直列接続し、第1可変容量と第2可変容量との接続部分(接続ノード)にCV変換部を接続する構成を考える。まず、第1入力端子と第2入力端子に、それぞれ180°位相の異なる逆位相の変調信号を印加する。ここで、加速度が印加されていない場合の第1可変容量の静電容量を「C1」とし、加速度が印加されていない場合の第2可変容量の静電容量を「C2」とする。そして、加速度が印加された場合、第1可変容量の静電容量が「C1+ΔC1」に増加する一方、第2可変容量の静電容量が「C2-ΔC2」に減少するとする。この場合、第1入力端子と第2入力端子とに互いに逆位相の変調信号(V)が印加されているため、第1可変容量には、Q1=(C1+ΔC1)Vの電荷が蓄積される一方、第2可変容量には、Q2=-(C2-ΔC2)Vの電荷が蓄積される。したがって、第1可変容量と第2可変容量全体での電荷移動量は、(C1+ΔC1)V-(C2-ΔC2)V=(C1-C2)V+(ΔC1+ΔC2)Vとなる。つまり、第1入力端子と第2入力端子とに互いに逆位相の変調信号が印加されている場合には、第1可変容量の静電容量「C1」と第2可変容量の静電容量を「C2」とが差分されて、電荷移動量には、加速度に起因する容量変化(ΔC1+ΔC2)の成分の割合が大きくなる。この結果、電荷移動量において、加速度に起因する容量変化(ΔC1+ΔC2)とは無関係な静電容量「C1」や静電容量「C2」の影響が低減される(C1-C2となる)。この結果、信号に含まれる加速度に起因する容量変化(ΔC1+ΔC2)の成分を大きくすることができる。これにより、本実施の形態4における加速度センサAS2によれば、加速度の検出感度を向上することができるのである。 For example, a first variable capacitor and a second variable capacitor are connected in series between a first input terminal and a second input terminal, and CV conversion is performed at a connection portion (connection node) between the first variable capacitor and the second variable capacitor. Consider a configuration that connects the parts. First, opposite-phase modulation signals having a phase difference of 180 ° are applied to the first input terminal and the second input terminal, respectively. Here, the capacitance of the first variable capacitor when no acceleration is applied is “C1”, and the capacitance of the second variable capacitor when no acceleration is applied is “C2”. When acceleration is applied, the capacitance of the first variable capacitor increases to “C1 + ΔC1,” while the capacitance of the second variable capacitor decreases to “C2−ΔC2.” In this case, since the modulation signals (V) having opposite phases to each other are applied to the first input terminal and the second input terminal, the charge of Q1 = (C1 + ΔC1) V is accumulated in the first variable capacitor. In the second variable capacitor, a charge of Q2 = − (C2−ΔC2) V is accumulated. Accordingly, the amount of charge transfer in the first variable capacitor and the second variable capacitor as a whole is (C1 + ΔC1) V− (C2−ΔC2) V = (C1−C2) V + (ΔC1 + ΔC2) V. That is, when modulation signals having opposite phases are applied to the first input terminal and the second input terminal, the capacitance “C1” of the first variable capacitor and the capacitance of the second variable capacitor are expressed as “ As a result, the ratio of the component of the capacitance change (ΔC1 + ΔC2) caused by the acceleration is increased in the charge transfer amount. As a result, the influence of the capacitance “C1” and the capacitance “C2” unrelated to the capacitance change (ΔC1 + ΔC2) due to acceleration is reduced in the amount of charge transfer (becomes C1-C2). As a result, the component of capacitance change (ΔC1 + ΔC2) caused by the acceleration included in the signal can be increased. Thereby, according to acceleration sensor AS2 in this Embodiment 4, the detection sensitivity of an acceleration can be improved.
 <加速度センサの平面構成>
 <<ベース層の平面構成>>
 図15は、本実施の形態4における加速度センサの一部を構成するベース層BLの平面レイアウト構成を示す平面図である。図15のA-A線での断面が図14のベース層BLに対応する。図15において、ベース層BLは、矩形形状をしており、ベース層BLの中央部に固定部FUが形成されている。そして、ベース層BLの中央部から左側の領域に固定電極FE1とサーボ電極SE1Aとサーボ電極SE2Aとが形成されている。具体的には、図15に示すように、y方向に並ぶように、サーボ電極SE1Aと固定電極FE1とサーボ電極SE2Aとが配置され、かつ、平面視において、サーボ電極SE1Aとサーボ電極SE2Aとに挟まれるように、固定電極FE1が配置されている。そして、固定電極FE1上には、複数の保護部PU1が形成されているとともに、サーボ電極SE1Aおよびサーボ電極SE2A上にも、複数の保護部PU1が形成されている。これにより、互いに離間した複数の保護部PU1を固定電極FE1の表面に設けて、固定電極FE1の表面に凹凸形状を設けるという特徴点が実現されることになる。さらに、本実施の形態4でも、固定電極FE1だけでなく、サーボ電極SE1Aおよびサーボ電極SE2Aにおいても、互いに離間した複数の保護部PU1をサーボ電極SE1Aおよびサーボ電極SE2Aの表面に設けて、サーボ電極SE1Aおよびサーボ電極SE2Aの表面に凹凸形状を設けている。このため、サーボ電極SE1Aおよびサーボ電極SE2Aにおいても、上述した特徴点が実現される。
<Planar configuration of acceleration sensor>
<< Planar structure of base layer >>
FIG. 15 is a plan view showing a planar layout configuration of the base layer BL constituting a part of the acceleration sensor according to the fourth embodiment. A section taken along line AA in FIG. 15 corresponds to the base layer BL in FIG. In FIG. 15, the base layer BL has a rectangular shape, and a fixed portion FU is formed at the center of the base layer BL. A fixed electrode FE1, a servo electrode SE1A, and a servo electrode SE2A are formed in the left region from the center of the base layer BL. Specifically, as shown in FIG. 15, the servo electrode SE1A, the fixed electrode FE1, and the servo electrode SE2A are arranged so as to be aligned in the y direction, and are arranged on the servo electrode SE1A and the servo electrode SE2A in a plan view. The fixed electrode FE1 is disposed so as to be sandwiched. A plurality of protection portions PU1 are formed on the fixed electrode FE1, and a plurality of protection portions PU1 are also formed on the servo electrode SE1A and the servo electrode SE2A. Thereby, the feature point that the plurality of protection parts PU1 spaced apart from each other is provided on the surface of the fixed electrode FE1 and the uneven shape is provided on the surface of the fixed electrode FE1 is realized. Further, also in the fourth embodiment, not only the fixed electrode FE1, but also the servo electrode SE1A and the servo electrode SE2A, a plurality of protection portions PU1 that are spaced apart from each other are provided on the surfaces of the servo electrode SE1A and the servo electrode SE2A. Concave and convex shapes are provided on the surfaces of SE1A and servo electrode SE2A. For this reason, the above-described feature points are also realized in the servo electrode SE1A and the servo electrode SE2A.
 一方、ベース層BLの中央部から右側の領域に固定電極FE2とサーボ電極SE1Bとサーボ電極SE2Bとが形成されている。具体的には、図15に示すように、y方向に並ぶように、サーボ電極SE1Bと固定電極FE2とサーボ電極SE2Bとが配置され、かつ、平面視において、サーボ電極SE1Bとサーボ電極SE2Bとに挟まれるように、固定電極FE2が配置されている。そして、固定電極FE2上には、複数の保護部PU2が形成されているとともに、サーボ電極SE1Bおよびサーボ電極SE2B上にも、複数の保護部PU2が形成されている。これにより、互いに離間した複数の保護部PU2を固定電極FE2の表面に設けて、固定電極FE2の表面に凹凸形状を設けるという特徴点が実現されることになる。さらに、本実施の形態4でも、固定電極FE2だけでなく、サーボ電極SE1Bおよびサーボ電極SE2Bにおいても、互いに離間した複数の保護部PU2をサーボ電極SE1Bおよびサーボ電極SE2Bの表面に設けて、サーボ電極SE1Bおよびサーボ電極SE2Bの表面に凹凸形状を設けている。このため、サーボ電極SE1Bおよびサーボ電極SE2Bにおいても、上述した特徴点が実現される。 On the other hand, a fixed electrode FE2, a servo electrode SE1B, and a servo electrode SE2B are formed in a region on the right side from the center of the base layer BL. Specifically, as shown in FIG. 15, the servo electrode SE1B, the fixed electrode FE2, and the servo electrode SE2B are arranged so as to be aligned in the y direction, and the servo electrode SE1B and the servo electrode SE2B are arranged in a plan view. The fixed electrode FE2 is disposed so as to be sandwiched. A plurality of protection portions PU2 are formed on the fixed electrode FE2, and a plurality of protection portions PU2 are also formed on the servo electrode SE1B and the servo electrode SE2B. Thereby, the feature point that the plurality of protection parts PU2 spaced apart from each other is provided on the surface of the fixed electrode FE2, and the uneven shape is provided on the surface of the fixed electrode FE2. Further, also in the fourth embodiment, not only the fixed electrode FE2, but also the servo electrode SE1B and the servo electrode SE2B, a plurality of protection portions PU2 that are spaced apart from each other are provided on the surfaces of the servo electrode SE1B and the servo electrode SE2B. Concave and convex shapes are provided on the surfaces of SE1B and servo electrode SE2B. For this reason, the above-described feature points are also realized in the servo electrode SE1B and the servo electrode SE2B.
 ここで、図15に示すように、本実施の形態4におけるベース層BLでは、複数の保護部PU1のそれぞれの平面サイズは、複数の保護部PU2のそれぞれの平面サイズよりも小さくなっている。以上のようにして、本実施の形態4におけるベース層BLが平面レイアウト構成されていることになる。 Here, as shown in FIG. 15, in the base layer BL according to the fourth embodiment, the respective planar sizes of the plurality of protection units PU1 are smaller than the respective plane sizes of the plurality of protection units PU2. As described above, the base layer BL in the fourth embodiment has a planar layout configuration.
 <<MEMS層の平面構成>>
 図16は、本実施の形態4における加速度センサの一部を構成するMEMS層MLの平面レイアウト構成を示す平面図である。図16のA-A線での断面が図14のMEMS層MLに対応する。図16において、MEMS層MLは、矩形形状をしており、MEMS層MLの中央部に固定部FUおよび梁BMが形成されている。そして、中央部の左側の領域に梁BMに懸架された質量体MS1が形成され、かつ、中央部の右側の領域に梁BMに懸架された質量体MS2が形成されている。
<< Planar structure of MEMS layer >>
FIG. 16 is a plan view showing a planar layout configuration of the MEMS layer ML that constitutes a part of the acceleration sensor according to the fourth embodiment. A section taken along line AA in FIG. 16 corresponds to the MEMS layer ML in FIG. In FIG. 16, the MEMS layer ML has a rectangular shape, and a fixed portion FU and a beam BM are formed at the center of the MEMS layer ML. A mass body MS1 suspended from the beam BM is formed in the left area of the central portion, and a mass body MS2 suspended from the beam BM is formed in the right area of the central portion.
 さらに、質量体MS1には、複数の開口部OP1が形成されており、質量体MS2には、複数の開口部OP2が形成されている。このとき、複数の開口部OP1のそれぞれの平面サイズは、複数の開口部OP2のそれぞれの平面サイズよりも小さくなっている。 Furthermore, a plurality of openings OP1 are formed in the mass body MS1, and a plurality of openings OP2 are formed in the mass body MS2. At this time, each planar size of the plurality of openings OP1 is smaller than each planar size of the plurality of openings OP2.
 ここで、図15に示すベース層BLと図16に示すMEMS層MLとを平面的に重ねるとわかるように、複数の保護部PU1のそれぞれの平面サイズは、複数の保護部PU1のそれぞれに対応した開口部OP1の平面サイズよりも大きくなっている。言い換えれば、平面視において、複数の保護部PU1のそれぞれは、複数の保護部PU1のそれぞれに対応した開口部OP1を内包するように形成されている。 Here, as seen when the base layer BL shown in FIG. 15 and the MEMS layer ML shown in FIG. 16 are planarly overlapped, the planar size of each of the plurality of protection units PU1 corresponds to each of the plurality of protection units PU1. It is larger than the planar size of the opening OP1. In other words, in plan view, each of the plurality of protection units PU1 is formed so as to include an opening OP1 corresponding to each of the plurality of protection units PU1.
 同様に、複数の保護部PU2のそれぞれの平面サイズは、複数の保護部PU2のそれぞれに対応した開口部OP2の平面サイズよりも大きくなっている。言い換えれば、平面視において、複数の保護部PU2のそれぞれは、複数の保護部PU2のそれぞれに対応した開口部OP2を内包するように形成されている。以上のようにして、本実施の形態4におけるMEMS層MLが平面レイアウト構成されていることになる。 Similarly, the plane size of each of the plurality of protection units PU2 is larger than the plane size of the opening OP2 corresponding to each of the plurality of protection units PU2. In other words, in plan view, each of the plurality of protection units PU2 is formed so as to include an opening OP2 corresponding to each of the plurality of protection units PU2. As described above, the MEMS layer ML according to the fourth embodiment has a planar layout configuration.
 <加速度センサの製造方法>
 本実施の形態4における加速度センサは、上記のように構成されており、以下に、その製造方法について図面を参照しながら説明する。
<Method for manufacturing acceleration sensor>
The acceleration sensor according to the fourth embodiment is configured as described above, and the manufacturing method thereof will be described below with reference to the drawings.
 まず、図17に示すように、例えば、シリコンウェハ(半導体基板)からなるベース層BLを用意する。そして、フォトリソグラフィ技術およびエッチング技術を使用することにより、ベース層BLの表面に一対の溝DITを形成する。続いて、一対の溝DITのそれぞれの底面にポリシリコン膜を成膜した後、フォトリソグラフィ技術およびエッチング技術を使用することにより、一方の溝DITの底面に固定電極FE1を形成し、他方の溝DITの底面に固定電極FE2を形成する。 First, as shown in FIG. 17, for example, a base layer BL made of a silicon wafer (semiconductor substrate) is prepared. Then, a pair of grooves DIT is formed on the surface of the base layer BL by using a photolithography technique and an etching technique. Subsequently, after a polysilicon film is formed on each bottom surface of the pair of grooves DIT, the fixed electrode FE1 is formed on the bottom surface of one groove DIT by using a photolithography technique and an etching technique, and the other groove A fixed electrode FE2 is formed on the bottom surface of the DIT.
 次に、図18に示すように、固定電極FE1の表面および固定電極FE2の表面に、例えば、酸化シリコン膜からなる絶縁膜を形成する。その後、フォトリソグラフィ技術およびエッチング技術を使用することにより、固定電極FE1の表面に複数の島状の保護部PU1を形成し、かつ、固定電極FE2の表面に複数の島状の保護部PU2を形成する。すなわち、固定電極FE1の表面には、互いに離間した複数の保護部PU1が形成され、固定電極FE2の表面には、互いに離間した複数の保護部PU2が形成される。このとき、複数の保護部PU1のそれぞれの平面サイズは、複数の保護部PU2のそれぞれの平面サイズよりも小さくなるように、保護部PU1および保護部PU2が形成される。 Next, as shown in FIG. 18, an insulating film made of, for example, a silicon oxide film is formed on the surface of the fixed electrode FE1 and the surface of the fixed electrode FE2. Thereafter, a plurality of island-shaped protective portions PU1 are formed on the surface of the fixed electrode FE1, and a plurality of island-shaped protective portions PU2 are formed on the surface of the fixed electrode FE2 by using a photolithography technique and an etching technique. To do. That is, a plurality of protection parts PU1 spaced apart from each other are formed on the surface of the fixed electrode FE1, and a plurality of protection parts PU2 spaced apart from each other are formed on the surface of the fixed electrode FE2. At this time, the protection unit PU1 and the protection unit PU2 are formed so that the respective planar sizes of the plurality of protection units PU1 are smaller than the respective plane sizes of the plurality of protection units PU2.
 続いて、図19に示すように、ベース層BLの表面上に、例えば、シリコンからなるMEMS層(MEMS基板)MLを配置し、ウェハ接合技術を使用することにより、ベース層BLとMEMS層MLとを接合する。その後、MEMS層MLの表面を研磨する。具体的には、例えば、MEMS層MLの厚さが、約250μmとなるように研磨する。 Subsequently, as shown in FIG. 19, the MEMS layer (MEMS substrate) ML made of, for example, silicon is disposed on the surface of the base layer BL, and the base layer BL and the MEMS layer ML are formed by using a wafer bonding technique. And join. Thereafter, the surface of the MEMS layer ML is polished. Specifically, for example, polishing is performed so that the thickness of the MEMS layer ML is about 250 μm.
 次に、図20に示すように、フォトリソグラフィ技術およびドライエッチング技術を使用することにより、MEMS層MLをパターニングする。これにより、ベース層BLに固定された固定部FUと、固定部FUと接続される梁(図示せず)と、梁で懸架され、z方向に変位可能な可動電極として機能する質量部MS1および質量体MS2を形成する。特に、質量体MS1は、ベース層BLに形成された固定電極FE1に対向するように形成され、かつ、質量体MS2は、ベース層BLに形成された固定電極FE2に対向するように形成される。さらに、この加工工程においては、質量体MS1を貫通する複数の開口部OP1と、質量体MS2を貫通する複数の開口部OP2とが形成される。このとき、質量体MS1と質量体MS2との間に質量差を設けるため、開口部OP1の平面サイズは、開口部OP2の平面サイズよりも小さくなっている。これにより、質量体MS1の質量を質量体MS2の質量よりも大きくすることができる。 Next, as shown in FIG. 20, the MEMS layer ML is patterned by using a photolithography technique and a dry etching technique. Accordingly, a fixed portion FU fixed to the base layer BL, a beam (not shown) connected to the fixed portion FU, a mass portion MS1 that functions as a movable electrode that is suspended by the beam and is displaceable in the z-direction. A mass body MS2 is formed. In particular, the mass body MS1 is formed to face the fixed electrode FE1 formed on the base layer BL, and the mass body MS2 is formed to face the fixed electrode FE2 formed on the base layer BL. . Further, in this processing step, a plurality of openings OP1 penetrating the mass body MS1 and a plurality of openings OP2 penetrating the mass body MS2 are formed. At this time, since a mass difference is provided between the mass body MS1 and the mass body MS2, the planar size of the opening OP1 is smaller than the planar size of the opening OP2. Thereby, the mass of mass body MS1 can be made larger than the mass of mass body MS2.
 ここで、開口部OP1の平面サイズと開口部OP2の平面サイズとが相違する結果、開口部OP1のエッチング速度と開口部OP2のエッチング速度が異なることになる。具体的には、平面サイズの小さな開口部OP1のエッチング速度が、平面サイズの大きな開口部OP2のエッチング速度よりも遅くなる。さらには、ウェハ面内でもエッチング速度に分布が存在するため、エッチング不足が発生しなうように、オーバエッチングが実施される。この点に関し、本実施の形態4においても、複数の保護部PU1のそれぞれは、複数の保護部PU1のそれぞれに対応した開口部OP1を内包し、かつ、複数の保護部PU2のそれぞれは、複数の保護部PU2のそれぞれに対応した開口部OP2を内包している。この結果、本実施の形態4によれば、開口部OP1および開口部OP2を形成後、オーバエッチングが実施されても、開口部OP1を内包する保護部PU1と開口部OP2を内包する保護部PU2によって、固定電極FE1および固定電極FE2をオーバエッチングから保護することができる。このように、本実施の形態4における加速度センサの製造方法によれば、固定電極FE1および固定電極FE2をエッチングダメージから保護することができ、これによって、加速度センサの信頼性を向上することができる。 Here, as a result of the difference between the planar size of the opening OP1 and the planar size of the opening OP2, the etching rate of the opening OP1 and the etching rate of the opening OP2 are different. Specifically, the etching rate of the opening OP1 having a small planar size is slower than the etching rate of the opening OP2 having a large planar size. Furthermore, since there is a distribution in the etching rate even within the wafer surface, over-etching is performed so as not to cause insufficient etching. In this regard, also in the fourth embodiment, each of the plurality of protection units PU1 includes an opening OP1 corresponding to each of the plurality of protection units PU1, and each of the plurality of protection units PU2 includes a plurality of protection units PU2. An opening OP2 corresponding to each of the protective parts PU2 is included. As a result, according to the fourth embodiment, even if overetching is performed after forming the opening OP1 and the opening OP2, the protection part PU1 that includes the opening OP1 and the protection part PU2 that includes the opening OP2 Thus, the fixed electrode FE1 and the fixed electrode FE2 can be protected from over-etching. Thus, according to the method for manufacturing the acceleration sensor in the fourth embodiment, it is possible to protect the fixed electrode FE1 and the fixed electrode FE2 from etching damage, thereby improving the reliability of the acceleration sensor. .
 その後、図14に示すように、MEMS層ML上に、MEMS層MLに形成された固定部FUとキャップ層CLとを接合する。これにより、MEMS層MLに形成された質量体MS1をベース層BLとキャップ層CLで挟まれる空洞部CAV1内に封止し、かつ、MEMS層MLに形成された質量体MS2をベース層BLとキャップ層CLで挟まれる空洞部CAV2内に封止することができる。このとき、空洞部CAV1の内部および空洞部CAV2の内部は、例えば、大気圧よりも充分に低い圧力で封止される。以上のようにして、本実施の形態4における加速度センサを製造することができる。 Thereafter, as shown in FIG. 14, the fixing unit FU formed on the MEMS layer ML and the cap layer CL are joined on the MEMS layer ML. Accordingly, the mass body MS1 formed in the MEMS layer ML is sealed in the cavity CAV1 sandwiched between the base layer BL and the cap layer CL, and the mass body MS2 formed in the MEMS layer ML is sealed with the base layer BL. It can be sealed in the cavity CAV2 sandwiched between the cap layers CL. At this time, the inside of the cavity part CAV1 and the inside of the cavity part CAV2 are sealed with a pressure sufficiently lower than the atmospheric pressure, for example. As described above, the acceleration sensor according to the fourth embodiment can be manufactured.
 なお、前記実施の形態1では、加速度センサAS1の製造方法について説明していない一方、本実施の形態4では、加速度センサAS2の製造方法について説明している。そして、本実施の形態4で説明した製造工程とほぼ同様の工程を経ることにより、前記実施の形態1における加速度センサAS1を製造することができる。 In the first embodiment, the method for manufacturing the acceleration sensor AS1 is not described. On the other hand, in the fourth embodiment, the method for manufacturing the acceleration sensor AS2 is described. The acceleration sensor AS1 in the first embodiment can be manufactured through substantially the same process as the manufacturing process described in the fourth embodiment.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 前記実施の形態では、慣性センサの一例として、加速度センサを例に挙げて説明したが、前記実施の形態における技術的思想は、質量体と固定電極とのステッキングの抑制と、質量体に複数の開口部を設ける際の固定電極へのエッチングダメージを抑制する観点からなされたものである。したがって、質量体と固定電極を有し、かつ、質量体に複数の開口部を形成する構成を有する慣性センサであれば、幅広く適用することができる。例えば、角速度センサにおいても、質量体と固定電極を有し、かつ、質量体に複数の開口部を形成する構成が採用される場合があるため、前記実施の形態における技術的思想は、加速度センサだけでなく、角速度センサにも幅広く適用することができる。 In the above-described embodiment, an acceleration sensor has been described as an example of the inertial sensor. However, the technical idea in the above-described embodiment is that the mass body is restrained from sticking between the fixed body and the mass body, and there are a plurality of mass sensors. This is made from the viewpoint of suppressing etching damage to the fixed electrode when the openings are provided. Therefore, any inertial sensor having a mass body and a fixed electrode and having a configuration in which a plurality of openings are formed in the mass body can be widely applied. For example, even in an angular velocity sensor, a configuration in which a mass body and a fixed electrode are provided and a plurality of openings are formed in the mass body may be employed. In addition, it can be widely applied to angular velocity sensors.
 FE 固定電極
 OP 開口部
 PU 保護部
 VE 可動電極
FE fixed electrode OP opening PU protection part VE movable electrode

Claims (15)

  1.  第1方向に変位可能な第1可動電極と、
     前記第1可動電極を貫通する複数の第1開口部と、
     前記第1方向において、前記第1可動電極と離間して対向配置された第1固定電極と、
     前記第1可動電極と対向する前記第1固定電極の対向面に形成された複数の第1保護部と、
     を備え、
     前記第1方向から見た平面視において、前記複数の第1保護部のそれぞれは、前記複数の第1保護部のそれぞれに対応して設けられた第1開口部を内包する、慣性センサ。
    A first movable electrode displaceable in a first direction;
    A plurality of first openings penetrating the first movable electrode;
    A first fixed electrode disposed opposite to the first movable electrode in the first direction;
    A plurality of first protection portions formed on a facing surface of the first fixed electrode facing the first movable electrode;
    With
    In the planar view seen from the first direction, each of the plurality of first protection portions includes a first opening provided corresponding to each of the plurality of first protection portions.
  2.  請求項1に記載の慣性センサにおいて、
     前記複数の第1保護部のそれぞれの平面サイズは、前記複数の第1保護部のそれぞれに対応して設けられた第1開口部の平面サイズよりも大きい、慣性センサ。
    The inertial sensor according to claim 1,
    Each of the plurality of first protection portions has a planar size larger than a planar size of a first opening provided corresponding to each of the plurality of first protection portions.
  3.  請求項2に記載の慣性センサにおいて、
     前記複数の第1保護部のうちの所定の第1保護部と、前記所定の第1保護部に対応して設けられた第1開口部とに着目した場合、前記第1方向から見た平面視において、前記第1方向と交差する第2方向における前記第1開口部の一端部から前記所定の第1保護部の一端部までの距離は、前記第2方向における前記第1開口部の開口寸法よりも小さい、慣性センサ。
    The inertial sensor according to claim 2,
    When attention is paid to a predetermined first protective portion of the plurality of first protective portions and a first opening provided corresponding to the predetermined first protective portion, a plane viewed from the first direction. In view, the distance from one end of the first opening in the second direction intersecting the first direction to the one end of the predetermined first protection part is the opening of the first opening in the second direction. Inertial sensor, smaller than dimensions.
  4.  請求項1に記載の慣性センサにおいて、
     前記慣性センサは、さらに、
     前記第1固定電極と同層で形成され、かつ、前記第1方向において、前記第1可動電極と離間して対向配置され、かつ、前記第1方向への前記第1可動電極の変位を打ち消す静電気力を発生させるサーボ電極を有する、慣性センサ。
    The inertial sensor according to claim 1,
    The inertial sensor further includes:
    It is formed in the same layer as the first fixed electrode, and is disposed opposite to the first movable electrode in the first direction, and cancels the displacement of the first movable electrode in the first direction. An inertial sensor having servo electrodes that generate electrostatic force.
  5.  請求項1に記載の慣性センサにおいて、
     前記複数の第1保護部は、前記第1可動電極が前記第1固定電極に張り付くステッキングを抑制する機能を有する、慣性センサ。
    The inertial sensor according to claim 1,
    The plurality of first protection parts are inertial sensors having a function of suppressing sticking of the first movable electrode sticking to the first fixed electrode.
  6.  請求項1に記載の慣性センサにおいて、
     前記複数の第1開口部のそれぞれの平面形状は、ホール形状、または、スリット形状のいずれかである、慣性センサ。
    The inertial sensor according to claim 1,
    The inertial sensor, wherein each of the plurality of first openings has a planar shape that is either a hole shape or a slit shape.
  7.  請求項1に記載の慣性センサにおいて、
     前記複数の第1保護部のそれぞれは、絶縁膜から形成される、慣性センサ。
    The inertial sensor according to claim 1,
    Each of the plurality of first protection parts is an inertial sensor formed of an insulating film.
  8.  請求項1に記載の慣性センサにおいて、
     前記慣性センサは、
     ベース層と、
     前記ベース層の上方に配置されたキャップ層と、
     前記ベース層と前記キャップ層とで挟まれた第1空洞部と、
     前記第1空洞部内に配置されたMEMS層と、
     を有し、
     前記第1空洞部内において、前記ベース層上に前記第1固定電極が形成され、
     前記MEMS層に、前記ベース層と前記キャップ層とに固定された固定部と、前記固定部に接続された第1梁と、前記第1梁によって前記第1空洞部内に懸架され、前記第1可動電極として機能する第1質量体とが形成される、慣性センサ。
    The inertial sensor according to claim 1,
    The inertial sensor is
    The base layer,
    A cap layer disposed above the base layer;
    A first cavity sandwiched between the base layer and the cap layer;
    A MEMS layer disposed in the first cavity,
    Have
    In the first cavity, the first fixed electrode is formed on the base layer,
    The MEMS layer is suspended in the first cavity by the first beam connected to the base layer and the cap layer, the first beam connected to the fixed unit, and the first beam. An inertial sensor in which a first mass body that functions as a movable electrode is formed.
  9.  請求項8に記載の慣性センサにおいて、
     前記慣性センサは、さらに、
     前記第1固定電極と接続される配線の一部分であって、前記MEMS層を貫通する貫通孔と平面的に重なる前記配線の一部分上に、前記複数の第1保護部と同層で形成された配線保護部が形成され、
     前記第1方向から見た平面視において、前記配線保護部は、前記貫通孔を内包する、慣性センサ。
    The inertial sensor according to claim 8.
    The inertial sensor further includes:
    A portion of the wiring connected to the first fixed electrode and formed in the same layer as the plurality of first protection portions on a portion of the wiring that overlaps the through hole penetrating the MEMS layer in a plane. A wiring protection part is formed,
    In the plan view seen from the first direction, the wiring protection part includes the through hole.
  10.  請求項8に記載の慣性センサにおいて、
     前記慣性センサは、さらに、
     前記ベース層と前記キャップ層とで挟まれ、前記第1空洞部と離間した第2空洞部と、
     前記第2空洞部内に配置された前記MEMS層と、
     を有し、
     前記第2空洞部内において、前記ベース層上に第2固定電極が形成され、
     前記MEMS層に、前記ベース層と前記キャップ層とに固定された前記固定部と、前記固定部に接続された第2梁と、前記第2梁によって前記第2空洞部内に懸架され、第2可動電極として機能する第2質量体とが形成され、
     前記第2可動電極は、前記第1方向に変位可能であり、
     前記第2可動電極には、前記第2可動電極を貫通する複数の第2開口部が形成され、
     前記第2可動電極と対向する前記第2固定電極の対向面には、複数の第2保護部が形成され、
     前記第1方向から見た平面視において、前記複数の第2保護部のそれぞれは、前記複数の第2保護部のそれぞれに対応して設けられた第2開口部を内包する、慣性センサ。
    The inertial sensor according to claim 8.
    The inertial sensor further includes:
    A second cavity sandwiched between the base layer and the cap layer and spaced apart from the first cavity,
    The MEMS layer disposed in the second cavity;
    Have
    A second fixed electrode is formed on the base layer in the second cavity,
    The MEMS layer is suspended in the second cavity by the second beam connected to the fixing portion, the second beam connected to the fixing portion, the second beam fixed to the base layer and the cap layer, A second mass that functions as a movable electrode is formed,
    The second movable electrode is displaceable in the first direction;
    The second movable electrode is formed with a plurality of second openings penetrating the second movable electrode,
    A plurality of second protective portions are formed on the facing surface of the second fixed electrode facing the second movable electrode,
    In the planar view seen from the first direction, each of the plurality of second protection portions includes a second opening provided corresponding to each of the plurality of second protection portions.
  11.  請求項10に記載の慣性センサにおいて、
     前記第1質量体の質量は、前記第2質量体の質量よりも重く、
     前記複数の第1開口部のそれぞれの平面サイズは、前記複数の第2開口部のそれぞれの平面サイズよりも小さく、
     前記複数の第1保護部のそれぞれの平面サイズは、前記複数の第2保護部のそれぞれの平面サイズよりも小さい、慣性センサ。
    The inertial sensor according to claim 10,
    The mass of the first mass body is heavier than the mass of the second mass body,
    Each plane size of the plurality of first openings is smaller than each plane size of the plurality of second openings,
    Each of the plurality of first protection parts has an inertial size that is smaller than each of the plurality of second protection parts.
  12.  請求項8に記載の慣性センサにおいて、
     前記キャップ層の下面には、第3固定電極が形成され、
     前記第1可動電極と対向する前記第3固定電極の対向面には、複数の第3保護部が形成され、
     前記第1方向から見た平面視において、前記複数の第3保護部のそれぞれは、前記複数の第3保護部のそれぞれに対応して設けられた第1開口部を内包する、慣性センサ。
    The inertial sensor according to claim 8.
    A third fixed electrode is formed on the lower surface of the cap layer,
    A plurality of third protective portions are formed on the facing surface of the third fixed electrode facing the first movable electrode,
    In the planar view seen from the first direction, each of the plurality of third protection portions includes a first opening provided corresponding to each of the plurality of third protection portions.
  13.  請求項1に記載の慣性センサにおいて、
     前記慣性センサは、前記第1方向に印加される加速度を、前記第1可動電極と前記第1固定電極からなる静電容量の容量変化として捉える加速度センサである、慣性センサ。
    The inertial sensor according to claim 1,
    The inertial sensor, wherein the inertial sensor is an acceleration sensor that captures acceleration applied in the first direction as a capacitance change of an electrostatic capacitance composed of the first movable electrode and the first fixed electrode.
  14.  (a)溝を有するベース層の前記溝の内部に固定電極を形成する工程、
     (b)前記固定電極上に複数の保護部を形成する工程、
     (c)前記(b)工程後、前記ベース層上にMEMS層を接合する工程、
     (d)前記MEMS層をパターニングすることにより、前記ベース層に固定された固定部と、前記固定部と接続される梁と、前記梁で懸架され、第1方向に変位可能な可動電極として機能する質量体と、前記質量体を貫通する複数の開口部とを形成する工程、
     (e)前記(d)工程後、前記MEMS層上に、前記MEMS層に形成された前記固定部と接続するキャップ層を形成することにより、前記MEMS層に形成された前記質量体を前記ベース層と前記キャップ層で挟まれる空洞部内に封止する工程、
     を備え、
     前記(d)工程は、前記第1方向から見た平面視において、前記複数の保護部のそれぞれが、前記複数の保護部のそれぞれに対応した開口部を内包するように、前記複数の開口部を形成する、慣性センサの製造方法。
    (A) forming a fixed electrode inside the groove of the base layer having the groove;
    (B) forming a plurality of protective portions on the fixed electrode;
    (C) a step of bonding a MEMS layer on the base layer after the step (b),
    (D) By patterning the MEMS layer, it functions as a fixed portion fixed to the base layer, a beam connected to the fixed portion, a movable electrode suspended by the beam and displaceable in the first direction. Forming a mass body and a plurality of openings penetrating the mass body,
    (E) After the step (d), by forming a cap layer connected to the fixing portion formed on the MEMS layer on the MEMS layer, the mass body formed on the MEMS layer is formed on the base. Sealing in a cavity sandwiched between a layer and the cap layer,
    With
    In the step (d), the plurality of openings are arranged so that each of the plurality of protection parts includes an opening corresponding to each of the plurality of protection parts in a plan view as viewed from the first direction. The manufacturing method of the inertial sensor which forms.
  15.  請求項14に記載の慣性センサの製造方法において、
     前記(d)工程は、ドライエッチングを使用し、
     前記複数の保護膜は、前記ドライエッチングから前記固定電極を保護する機能を有する、慣性センサの製造方法。
    In the manufacturing method of the inertial sensor according to claim 14,
    The step (d) uses dry etching,
    The method for manufacturing an inertial sensor, wherein the plurality of protective films have a function of protecting the fixed electrode from the dry etching.
PCT/JP2014/084058 2014-12-24 2014-12-24 Inertial sensor and method for manufacturing same WO2016103342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084058 WO2016103342A1 (en) 2014-12-24 2014-12-24 Inertial sensor and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084058 WO2016103342A1 (en) 2014-12-24 2014-12-24 Inertial sensor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016103342A1 true WO2016103342A1 (en) 2016-06-30

Family

ID=56149443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084058 WO2016103342A1 (en) 2014-12-24 2014-12-24 Inertial sensor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016103342A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186566A (en) * 1997-12-25 1999-07-09 Nissan Motor Co Ltd Manufacture of fine device
WO2000042666A1 (en) * 1999-01-13 2000-07-20 Mitsubishi Denki Kabushiki Kaisha Inertia force sensor and method for producing inertia force sensor
JP2002521695A (en) * 1998-07-31 2002-07-16 リットン システムズ インコーポレイテッド Micromechanical semiconductor accelerometer
WO2002103368A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Silicon device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186566A (en) * 1997-12-25 1999-07-09 Nissan Motor Co Ltd Manufacture of fine device
JP2002521695A (en) * 1998-07-31 2002-07-16 リットン システムズ インコーポレイテッド Micromechanical semiconductor accelerometer
WO2000042666A1 (en) * 1999-01-13 2000-07-20 Mitsubishi Denki Kabushiki Kaisha Inertia force sensor and method for producing inertia force sensor
WO2002103368A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Silicon device

Similar Documents

Publication Publication Date Title
US8096180B2 (en) Inertial sensor
US6591678B2 (en) Semiconductor dynamic quantity sensor for detecting dynamic quantity in two axes with X-shaped mass portion
JP6691882B2 (en) Acceleration sensor
JP4887034B2 (en) Inertial sensor
JP5301767B2 (en) Inertial sensor
US8943890B2 (en) Inertial sensor
US8726730B1 (en) Optically transduced MEMS gyro device
US20150068308A1 (en) Gyroscope structure and gyroscope
JP6262629B2 (en) Inertial sensor
JP6401868B2 (en) Acceleration sensor
US11650221B2 (en) MEMS tri-axial accelerometer with one or more decoupling elements
JP6606601B2 (en) Acceleration sensor
JP6330055B2 (en) Acceleration sensor
WO2017110272A1 (en) Acceleration sensor, geophone and seismic survey system
JP2009145321A (en) Inertial sensor
WO2016103342A1 (en) Inertial sensor and method for manufacturing same
JP6674397B2 (en) Acceleration sensor
JP2012242201A (en) Capacity type physical quantity detector
US20140283606A1 (en) Acceleration sensor
WO2016103344A1 (en) Acceleration sensor
US9964561B2 (en) Acceleration sensor
US20180188028A1 (en) Single-gap shock-stop structure and methods of manufacture for micro-machined mems devices
WO2015111416A1 (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP