WO2016101706A1 - 一种金属-树脂复合体及其制备方法和一种电子产品外壳 - Google Patents

一种金属-树脂复合体及其制备方法和一种电子产品外壳 Download PDF

Info

Publication number
WO2016101706A1
WO2016101706A1 PCT/CN2015/093247 CN2015093247W WO2016101706A1 WO 2016101706 A1 WO2016101706 A1 WO 2016101706A1 CN 2015093247 W CN2015093247 W CN 2015093247W WO 2016101706 A1 WO2016101706 A1 WO 2016101706A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
metal substrate
electronic product
weight
Prior art date
Application number
PCT/CN2015/093247
Other languages
English (en)
French (fr)
Inventor
章晓
陶乐天
孙剑
陈梁
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020177017329A priority Critical patent/KR101969920B1/ko
Priority to EP15871779.3A priority patent/EP3243651A4/en
Priority to JP2017534537A priority patent/JP6530492B2/ja
Publication of WO2016101706A1 publication Critical patent/WO2016101706A1/zh
Priority to US15/626,473 priority patent/US20170282424A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/38Alkaline compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/20Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Definitions

  • the invention relates to a metal-resin composite and a preparation method thereof, and to an electronic product casing.
  • a commonly used method of combining titanium and resin is the adhesive method.
  • the method combines a titanium material and a formed resin by a chemical adhesive to obtain a composite.
  • the bonding strength between the titanium material and the resin is poor, and the adhesive bonding layer is not resistant to acid and alkali, which affects the use of the composite.
  • the adhesive bonding layer has a certain thickness, it affects the size of the final product.
  • CN102794863A discloses a composite body of titanium or titanium alloy and plastic and a preparation method thereof, which comprises anodizing a titanium or titanium alloy substrate, forming a nanoporous oxide film on the surface of the titanium or titanium alloy substrate, and then The anodized titanium or titanium alloy substrate is placed in an injection molding mold, and the injection molded plastic part is combined with the nanoporous film to obtain a composite.
  • CN102794864A discloses a composite of titanium or titanium alloy and plastic and a preparation method thereof, the method comprising electrochemically cathodic treatment of a titanium or titanium alloy substrate, forming a titanium hydride layer on the surface of the titanium or titanium alloy substrate; Forming a titanium or titanium alloy substrate having a titanium hydride layer for anodizing, forming a nanoporous oxide film on the surface of the titanium or titanium alloy substrate; and placing the anodized titanium or titanium alloy substrate in an injection molding mold The injection molded plastic part is combined with the nanoporous film to obtain a composite body.
  • the pores in the anodized film formed by the anodization method are nanopores, the pores are small, and the anodized film is thin, resulting in insufficient depth of the nanopore, resulting in the metal substrate and the resin layer in the finally obtained composite.
  • the binding force between the two is low, and the utility of the composite is not strong.
  • CN101578170B discloses a composite of metal and resin and a method for producing the same, which comprises surface-treating a titanium alloy substrate by chemical etching, and injecting a resin composition onto the surface of the surface-treated substrate to obtain a composite body.
  • the chemical etchant may be a halogen acid, sulfuric acid, a high temperature aqueous phosphoric acid solution, hydrofluoric acid or ammonium hydrogen fluoride, preferably ammonium hydrogen fluoride.
  • the inventors of the present invention found in practice that after chemical etching of the surface of the titanium material using acid as an etchant In the composite formed by the injection molding resin, the bonding force between the titanium material and the resin still needs to be further improved.
  • the object of the present invention is to overcome the problem of low bonding force between a metal substrate and a resin layer existing in a composite of titanium or a titanium alloy and a resin, and to provide a metal-resin composite and a preparation method thereof, the composite There is a high bonding force between the metal substrate and the resin layer in the body.
  • a metal-resin composite the metal being titanium or a titanium alloy
  • the composite comprising a metal substrate and attached to at least a portion of a surface of the metal substrate a resin layer, a surface of the substrate to which the resin layer is attached is distributed with pits, and a part of the resin in the resin layer extends downward and is filled in the pit, and the surface layer oxygen content of the metal substrate It is 1% by weight or more.
  • a method of producing a metal-resin composite comprising an etching step and an injection molding step:
  • the metal substrate is immersed in the etching liquid to form pits on the surface of the metal substrate to obtain a surface-treated metal substrate, and the etching liquid contains at least one alkali metal hydroxide.
  • the surface treated metal substrate obtained after the etching has a surface layer oxygen element content of 1% by weight or more;
  • a resin-containing composition is injected onto the surface of the surface-treated metal substrate and a part of the composition is filled in the pit, and a resin layer is formed after molding.
  • a metal-resin composite prepared by the method of the invention.
  • an electronic product casing comprising a metal casing body and at least one resin member attached to at least a portion of the inner surface and/or at least a portion of the outer surface of the metal casing body
  • the metal shell body is made of titanium or a titanium alloy, wherein a surface of the metal shell body to which the resin member is attached is distributed with a pit, and a part of the resin in the resin member extends downward and fills the pit.
  • the surface layer oxygen element content is 1% by weight or more.
  • the bonding between the metal substrate and the resin layer is strong, the resin layer is not easily peeled off from the surface of the metal substrate, the structural stability is good, and the requirements for various use occasions can be satisfied, and it is suitable for use as A variety of electronic product enclosures.
  • the method for producing a metal-resin composite provided by the present invention uses an alkali metal hydroxide as an etchant. Compared with the surface treatment of the metal substrate by using the acidic etching solution, the metal substrate is etched by the method of the invention, and on the one hand, densely distributed pits can be formed on the surface of the metal substrate, and on the other hand, the metal base is not The surface of the material produces destructive corrosion such that the surface of the resulting surface treated metal substrate still has a relatively high strength.
  • the reason for the high bonding strength may be that the surface of the surface-treated metal substrate obtained by etching the metal substrate by the method of the present invention is not only densely distributed with uniformly uniform pits, thereby forming the resin layer.
  • these oxygen elements are not completely present in the form of metal oxides, some of which are in the form of hydroxides, when combined with the resin It can interact with the resin to have a higher bonding strength between the metal substrate and the resin layer in the finally prepared metal-resin composite.
  • the etching liquid used in the method for producing a metal-resin composite provided by the present invention has low toxicity and low volatility, high operational safety, and low environmental pollution.
  • the components in the etching solution used in the method for producing a metal-resin composite provided by the present invention are widely available and inexpensive, and the operating cost of the method of the present invention is lowered. Therefore, the method of the present invention is suitable for use in mass production.
  • FIG. 1 is a cross-sectional view for schematically explaining a casing of a mobile phone according to the present invention, including a front view and a plan view;
  • Fig. 2 is a cross-sectional view for schematically explaining a smart watch case according to the present invention.
  • opening 4 smart watch metal shell body
  • a metal-resin composite comprising a metal substrate and a resin layer attached to at least a part of a surface of the metal substrate to which the resin is attached
  • the surface of the metal substrate of the layer is distributed with pits, and a part of the resin in the resin layer extends downward and fills the pit.
  • the metal may be pure titanium or a titanium alloy.
  • the titanium alloy refers to an alloy formed by adding other elements to titanium as a base element, and may be various common titanium alloys.
  • the metal base material is various molded bodies formed of titanium or a titanium alloy, and may have various shapes depending on the use of the finally prepared metal-resin composite, and is not particularly limited.
  • the surface of the metal substrate to which the resin layer is attached is distributed with pits, and the pits are densely distributed on the surface of the substrate.
  • the pits may be formed by chemically etching the surface of the metal substrate. A part of the resin in the resin layer extends downward and is filled in the pit, and the resin layer is anchored in the metal substrate.
  • the pits may each have a width of 10 to 100,000 nm and a depth of 10 to 5000 nm each, and when the size of the pit is within the above range, on the one hand, The strength of the metal substrate itself is adversely affected, and on the other hand, the resin layer can be firmly anchored in the metal substrate, so that the resin layer and the metal substrate have a high bonding force, thereby making the metal-resin composite
  • the body has a high structural stability.
  • the widths of the pits are each preferably 300 to 30,000 nm, and the depths of the pits are each preferably 100 to 3,000 nm.
  • the width of the pit means between the two points on the contour line defined by the port of the pit on the surface of the substrate.
  • the maximum distance, “depth of the pit” refers to the vertical distance of the pit from the port on the surface of the substrate to the bottom of the pit. The width and depth of the pits can be determined by electron microscopy.
  • the content of the surface oxygen element of the metal substrate is 1% by weight or more.
  • the content of the surface oxygen element of the metal substrate is 1% by weight or more as compared with the surface layer oxygen content of the metal substrate of less than 1% by weight, the resin layer and the metal substrate in the composite can be significantly improved. Bond strength.
  • the metal substrate has a surface oxygen element content of from 1 to 10% by weight. More preferably, the metal substrate has a surface oxygen element content of from 2 to 8% by weight. Further preferably, the metal substrate has a surface oxygen element content of 5 to 7% by weight.
  • the elemental composition of the surface of the metal substrate can be determined by energy spectrum analysis, and the percentage of the oxygen element to the total amount of the surface layer is used as the surface oxygen element content.
  • the main resin in the resin layer can be selected according to specific use requirements as long as the resin can be combined with titanium or a titanium alloy.
  • the host resin in the resin layer may be selected from a thermoplastic resin, and may be, for example, one or more of polyphenylene sulfide, polyester, polyamide, polycarbonate, and polyolefin.
  • the polyester may be a common polymer obtained by condensing a dicarboxylic acid and a diol, and specific examples thereof may include, but are not limited to, polybutylene terephthalate and/or polyethylene terephthalate. ester.
  • the polyamide may be a common polymer obtained by condensing a diamine and a dicarboxylic acid, and specific examples thereof may include, but are not limited to, polyhexamethylene adipamide, polysebacyldiamine, polysuccinic acid.
  • polystyrene polystyrene
  • polypropylene polymethyl methacrylate
  • poly(acrylonitrile-butadiene-styrene) polystyrene
  • the resin layer may contain at least one filler in addition to the host resin.
  • the type of the filler can be selected according to specific use requirements.
  • the filler may be a fibrous filler and/or a powder filler.
  • the fibrous filler may be one or more selected from the group consisting of glass fibers, carbon fibers, and aramid fibers.
  • the powder type filler may be one or more selected from the group consisting of calcium carbonate, magnesium carbonate, silica, heavy barium sulfate, talc, glass, and clay.
  • the content of the filler may be a conventional selection.
  • the filler may be included in an amount of 10 to 150 parts by weight, preferably 15 to 100 parts by weight, more preferably 20 to 50 parts by weight based on 100 parts by weight of the main body resin.
  • the thickness of the metal substrate and the resin layer may be selected according to the specific application of the metal-resin composite to meet the requirements for use. Generally, the resin layer may have a thickness of 0.5 to 10 mm.
  • a method of producing a metal-resin composite comprising an etching step and an injection molding step.
  • the metal substrate is immersed in an etching solution to form pits on the surface of the metal substrate to obtain a surface-treated metal substrate containing at least one alkali metal hydroxide.
  • the surface of the surface-treated metal substrate obtained after the etching step is formed with pits which are densely distributed on the surface of the substrate.
  • the widths of the pits may each be from 10 to 100,000 nm, preferably from 300 to 30,000 nm each; the depth of the pits may each be from 10 to 5000 nm, preferably from 100 to 3000 nm each.
  • the surface-treated metal substrate obtained after the etching step has a surface layer oxygen content of 1% by weight or more, preferably 1 to 10% by weight, more preferably 2 to 8% by weight, further It is preferably 5 to 7% by weight.
  • the etchant contains at least one alkali metal hydroxide.
  • the alkali metal hydroxide is preferably sodium hydroxide and/or potassium hydroxide.
  • the content of the alkali metal hydroxide in the etching solution can be selected in accordance with the desired etching rate.
  • the concentration of the alkali metal hydroxide in the etching solution is 1-10 mol/L.
  • the concentration of the alkali metal hydroxide in the etching liquid is within the above range, not only dense pits can be formed on the surface of the metal substrate but also damage to the metal substrate can be made smaller. More preferably, the concentration of the alkali metal hydroxide in the etching solution is 5-8 mol/L.
  • the etching solution may further contain at least one buffer.
  • the etching liquid does not contain a buffering agent, a densely distributed pit can be formed on the surface of the metal substrate, but when the etching liquid contains a buffering agent, the concentration of hydroxide ions in the etching liquid can be made long. Stabilization within a certain period of time, thereby obtaining a stable etching effect, can not only meet the needs of large-scale production, but also further improve the bonding force between the metal substrate and the resin layer in the finally prepared metal-resin composite.
  • the buffer may be a variety of substances which are capable of stabilizing the concentration of hydroxide ions in the etching solution.
  • the buffering agent is one or more selected from the group consisting of boric acid, sodium borate, sodium carbonate, sodium dihydrocarbonate, trisodium phosphate, disodium hydrogen phosphate, and sodium citrate.
  • the buffer is present in an amount such that the hydroxide ion concentration can be stabilized within the expected range.
  • the concentration of the buffer is from 0.1 to 1.5 mol/L. More preferably, the buffer has a concentration of from 0.2 to 1 mol/L.
  • the solvent of the etching solution may be conventionally selected, typically water.
  • the temperature of the etching solution may be 15-70 °C.
  • the temperature of the etching liquid is 15 from the viewpoint of the bonding strength between the metal substrate and the resin layer. -35 ° C.
  • the temperature of the etching liquid is preferably 40 to 70 ° C from the viewpoint of further increasing the etching rate and shortening the soaking time of the metal substrate in the etching liquid, thereby reducing the influence of etching on the appearance and size of the metal substrate.
  • the soaking time of the metal substrate in the etching solution depends on the concentration of the etching solution and the temperature. Generally, the metal substrate may be soaked in the etching solution for 10 minutes to 5 hours, preferably 30 minutes to 2 hours.
  • the number of times the metal substrate is soaked in the etching solution and the soaking time can be selected according to the composition of the etching liquid and the temperature of the etching liquid. Generally, the number of times the metal substrate is soaked in the etching solution may be one time or multiple times, for example, 2-10. Times. After each soak, the surface treated metal substrate is typically washed with water (preferably deionized water) to remove the etchant attached to the surface treated metal substrate. The number of cleanings can be 2 to 10 times. The cleaning method may be that the surface-treated metal substrate is immersed in water for 1-5 minutes; the surface-treated metal substrate may also be rinsed with water, and the rinsing time may be 1-5 minutes. .
  • the entire surface of the metal substrate can be treated according to the method of the present invention, and a part of the surface of the metal substrate can also be treated.
  • a part of the surface of the metal substrate can also be treated.
  • only the surface to be treated may be immersed in the etching liquid, or the entire metal substrate may be immersed in the etching liquid after forming a mask on the surface that does not need to be processed. .
  • the surface-treated metal substrate obtained by the method of the present invention has only pits distributed on the surface and the color of the surface is deeper than before etching, and the size does not change much before and after etching. Further, the surface-treated metal substrate obtained by the method of the present invention has a shallow etching depth, and it is easy to eliminate pits and discoloration in the surface region where the resin layer is not formed, so that the finally obtained composite has a good appearance.
  • a resin-containing composition is injected into the surface of the surface-treated metal substrate and a part of the composition is filled in the pit, and a resin layer is formed after molding.
  • the resin in the resin-containing composition (hereinafter referred to as a host resin) can be selected according to specific use requirements as long as the resin can be combined with titanium or a titanium alloy.
  • the host resin in the resin layer may be selected from a thermoplastic resin, and may be, for example, one or more of polyphenylene sulfide, polyester, polyamide, polycarbonate, and polyolefin.
  • the polyester may be a common polymer obtained by condensing a dicarboxylic acid and a diol, and specific examples thereof may include, but are not limited to, polybutylene terephthalate and/or polyethylene terephthalate. Glycol ester.
  • the polyamide may be a common polymer obtained by condensing a diamine and a dicarboxylic acid, and specific examples thereof may include, but are not limited to, polyhexamethylene adipamide, polyphthalamide, polybutadiene. Dihexyldiamine, polydodecanediamine adipamide, polysebacyldiamine, polydecanoyldiamine, polyundecamide, polydodecamide, polyoctanoic acid, poly 9-amino Capric acid, polycaprolactam, polyparaphenylene diphenyl diamine, poly(phthalamide), poly(p-phenylene hexamethylene diamine) and poly(p-phenylene terephthalamide). Specific examples of the polyolefin may include, but are not limited to, polystyrene, polypropylene, polymethyl methacrylate, and poly(acrylonitrile-butadiene-styrene).
  • the resin-containing composition may contain, in addition to the host resin, at least one filler and/or at least one fluidity improver.
  • the type of the filler can be selected according to specific use requirements.
  • the filler may be a variety of fibrous fillers and/or powdered fillers.
  • the fibrous filler may be one or more selected from the group consisting of glass fibers, carbon fibers, and aramid fibers.
  • the powder type filler may be one or more selected from the group consisting of calcium carbonate, magnesium carbonate, silica, heavy barium sulfate, talc, glass, and clay.
  • the content of the filler may be a conventional selection.
  • the filler may be included in an amount of 10 to 150 parts by weight, preferably 15 to 100 parts by weight, more preferably 20 to 50 parts by weight, per 100 parts by weight of the main body resin.
  • the fluidity improver is used to improve the flowability of the host resin, further improve the bonding force between the metal substrate and the resin, and the processability of the resin.
  • the fluidity improver may be any of various substances capable of achieving the above effects, and is preferably a cyclic polyester.
  • the amount of the fluidity improver is based on the ability to increase the flowability of the host resin.
  • the fluidity improver is contained in an amount of from 1 to 5 parts by weight based on 100 parts by weight of the main body resin.
  • the resin-containing composition may further contain various conventional auxiliaries such as a colorant and/or an antioxidant in accordance with specific use requirements to improve the properties of the resin layer in the finally formed metal resin composite or to impart the resin. Layers with new performance.
  • the resin-containing composition can be obtained by uniformly mixing a host resin, an optional filler, an optional fluidity improver, and an optional adjuvant.
  • the host resin, the optional filler, the optional fluidity improver, and the optional auxiliary agent may be uniformly mixed and subjected to extrusion granulation.
  • the resin-containing composition can be injected into the surface of the surface-treated metal substrate by various conventional methods.
  • the surface-treated metal substrate is placed in a mold, and the resin-containing composition is injected into the surface of the surface-treated metal substrate by injection molding.
  • the conditions of the injection molding may be selected depending on the kind of the host resin in the resin-containing composition.
  • the conditions of the injection molding include: a mold temperature of 50-300 ° C, a nozzle temperature of 200-450 ° C, a dwell time of 1-50 seconds, an injection pressure of 50-300 MPa, and an injection time of 1-30 seconds.
  • the delay time is 1-30 seconds.
  • the amount of the resin-containing composition to be injected can be selected in accordance with the intended thickness of the resin layer. Generally, the resin-containing composition is injected in an amount such that the thickness of the formed resin layer is from 0.5 to 10 mm.
  • the surface on which the resin layer is not formed may be treated to remove surface pits and surface color change due to etching,
  • the treatment may be carried out before the injection molding step or after the injection molding step, and is not particularly limited.
  • a metal-resin composite prepared by the method of the invention comprises a metal substrate and a resin layer attached to at least a part of the surface of the metal substrate, and a surface of the metal substrate to which the resin layer is attached is distributed with pits. A part of the resin in the resin layer extends downward and fills the pit.
  • the bonding strength between the resin layer and the metal substrate is high, and thus the structural stability of the composite is good.
  • the metal-resin composite according to the present invention can be used in various applications where it is necessary to integrally form a metal with a resin, such as an outer casing of an electronic product.
  • the metal may be molded into various shapes, and the surface on which the resin layer needs to be formed is subjected to surface treatment, and then the resin is injection molded to form a resin layer.
  • an electronic product casing comprising a metal a shell body and at least one resin member attached to at least a portion of the inner surface and/or at least a portion of the outer surface of the metal shell body, the metal shell body being made of titanium or a titanium alloy, wherein the resin member is attached
  • the surface of the metal shell body is distributed with pits, and a part of the resin in the resin member extends downward and fills the pit.
  • the outer casing includes not only an outer casing which is a sheet-like structure but also various frame structures such as an outer frame.
  • the pit may have a width of 10 to 100,000 nm, preferably 300 to 30,000 nm; and the pit may have a depth of 10 to 5000 nm, preferably 100 to 3000 nm.
  • the content of the surface oxygen element of the metal shell body to which the resin member is attached may be 1% by weight or more, preferably 1 to 10% by weight, preferably 2 to 8% by weight, and more preferably 5 to 7% by weight.
  • At least one opening may be disposed on the metal casing body to cover the components of the metal casing body at a corresponding position of the opening.
  • the position of at least a portion of the opening may correspond to a mounting position of the component that emits and/or receives a signal (eg, an electromagnetic signal), wherein the opening position is preferably set.
  • a resin member is filled with a part of the resin in the resin member, and an element emitting and/or receiving a signal may be mounted on the resin member.
  • the metal shell body may be an integral structure or a splicing structure.
  • the splicing structure means that the metal shell body includes at least two portions that are disconnected from each other, and the two portions are spliced together to form a metal shell body.
  • the adjacent two portions may be bonded together with an adhesive.
  • the splicing positions of two adjacent portions are provided with the resin member, and the resin members respectively overlap the adjacent two portions and cover the splicing position (ie, the resin member bridges the adjacent two Partly), the bonding strength of the splicing position can be improved; and the metal shell body can be divided into a plurality of portions according to the internal structure of the electronic product, and the resin member functions to form the metal shell body as a whole. It can also be used as a mounting base for some electronic components.
  • At least a part of the outer surface of the metal shell body may be attached with a resin member, which may cover the entire outer surface, or may cover a part of the outer surface of the metal shell body to form a pattern, such as decoration. Sexual pattern.
  • the resin member when the inner surface of the metal shell body is attached with a resin member, the resin member can be disposed at one or more positions required.
  • the resin member is attached to the entire inner surface of the metal shell body, and the resin member is preferably a unitary structure. According to the preferred embodiment, it is particularly suitable for the case where the metal shell body is a spliced structure.
  • the electronic product casing according to the present invention may be any electronic product casing that requires a metal as a casing, such as a casing or a frame of a mobile terminal, a casing or a frame of the wearable electronic device.
  • the mobile terminal refers to a device that can be in a mobile state and has a wireless transmission function, such as a mobile phone, a portable computer (including a laptop and a tablet) computer).
  • the wearable electronic device refers to an intelligent wearable device, such as a smart watch or a smart bracelet.
  • the electronic product may specifically be, but not limited to, one or more of a mobile phone, a portable computer (such as a notebook computer and a tablet), a smart watch, and a smart wristband.
  • Fig. 1 shows a front view and a top view of an embodiment of the electronic product casing when it is a casing of a mobile phone.
  • a plurality of openings 3 are formed in the metal shell body 1 of the mobile phone.
  • the position of the opening 3 may correspond to the position where the antenna is mounted and the position at which various buttons are mounted.
  • the resin layer 2 is attached to the entire inner surface of the metal shell body 1 of the mobile phone, the resin layer 2 is an integral structure, and a part of the resin in the resin layer 2 is filled in the opening 3.
  • Fig. 2 shows a front view of an embodiment of the outer casing of the electronic product being a smart watch.
  • the smart watch metal shell body 4 is provided with a signal element opening 6 corresponding to the mounting signal emitting element and/or the signal receiving element, and the inner surface of the smart watch metal shell body 4 is adhered with a resin inner liner 5, resin A part of the resin in the inner liner 5 is filled in the signal element opening 6, and the signal element can be mounted at a corresponding position on the resin inner liner 5.
  • the average shear strength between the metal substrate and the resin layer in the metal resin composite was measured in a tensile mode on a universal tester model 3369 available from Inst.
  • the ratio between the tensile stress measured at the time of the fracture of the body and the bonded area is taken as the average shear strength, and the bonded area is the area of the joint between the metal substrate and the resin layer.
  • the surface and cross section of the surface-treated metal substrate were observed with a metallographic microscope and the width and depth of the formed pits were determined.
  • the metallographic microscope used was purchased from Zeiss, model Axio Imager A1m. .
  • the surface element content was measured by field emission scanning electron microscopy and an accessory energy spectrometer.
  • the energy spectrum meter was purchased from JEOL Ltd., model number JSM-7600F, in which 10 points were selected on the surface of the sample to be tested.
  • 10 points were distributed at different positions on the surface of the sample, and the average value of the oxygen content obtained from the 10 points was taken as the surface oxygen element content of the sample.
  • a commercially available pure titanium plate having a thickness of 0.8 mm was cut into a rectangular piece of 15 mm ⁇ 80 mm, which was placed in a polishing machine for polishing and polishing, followed by degreasing, water washing and drying.
  • the titanium piece obtained in the step (1) is immersed in a 500 mL etching solution at 25 ° C for 60 minutes, the titanium piece is taken out, washed three times with deionized water, and then dried in an oven at 65 ° C to obtain a surface. Treated titanium sheet.
  • the etching solution It is a mixed aqueous solution of sodium hydroxide and boric acid, the concentration of sodium hydroxide is 7 mol/L, and the concentration of boric acid is 0.5 mol/L.
  • the surface of the surface-treated titanium sheet was observed by a metallographic microscope, and it was confirmed that the surface of the obtained surface-treated titanium sheet was formed with densely distributed pits each having a width in the range of 300 to 30,000 nm, and a depth. Each is in the range of 100-3000 nm.
  • the surface of the surface-treated titanium sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content of the surface layer. The results are shown in Table 1.
  • the surface-treated titanium sheet obtained in the step (2) is placed in a mold, and then a composition containing polyphenylene sulfide (PPS) and glass fibers is injection molded into the mold to form a resin layer on one surface of the titanium sheet to obtain a metal.
  • a composition containing polyphenylene sulfide (PPS) and glass fibers is injection molded into the mold to form a resin layer on one surface of the titanium sheet to obtain a metal.
  • - Resin composite the thickness of the resin layer was 3 mm.
  • the content of the glass fiber was 20 parts by weight based on 100 parts by weight of the polyphenylene sulfide.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the etching solution is an aqueous solution of ammonium hydrogen fluoride, and the concentration of ammonium hydrogen fluoride is 1% by weight.
  • the surface of the surface-treated titanium sheet was observed by a metallographic microscope, and the surface of the obtained surface-treated titanium sheet was determined to have densely distributed pits each having a width in the range of 20000-150000 nm, and a depth. Each is in the range of 1000-10000 nm.
  • the surface of the surface-treated titanium sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content. The results are shown in Table 1.
  • composition containing the polyphenylene sulfide and the glass fiber was injection-molded onto the surface-treated titanium sheet obtained in the step (2) in the same manner as in the step (3) of Example 1 and molded to obtain a metal-resin composite.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the titanium piece obtained in the step (1) was placed in a 500 mL anodizing electrolytic solution for anodization.
  • the electrolytic solution was an aqueous solution of phosphoric acid
  • the concentration of phosphoric acid was 10% by weight
  • the anodization voltage was 20 V
  • the energization time was 10 minutes.
  • the anodized titanium sheet was washed 3 times with deionized water, and then dried in an oven at 65 ° C to obtain a surface-treated titanium sheet.
  • composition containing the polyphenylene sulfide and the glass fiber was injection-molded onto the surface-treated titanium sheet obtained in the step (2) in the same manner as in the step (3) of Example 1 and molded to obtain a metal-resin composite.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the etching solution is a mixed aqueous solution of sodium hydroxide and disodium hydrogen phosphate, the concentration of sodium hydroxide is 7 mol/L, and the concentration of disodium hydrogen phosphate is 1 mol/L.
  • the surface of the surface-treated titanium sheet was observed by a metallographic microscope, and it was confirmed that the surface of the obtained surface-treated titanium sheet was formed with densely distributed pits each having a width in the range of 300 to 30,000 nm, and a depth. Each is in the range of 100-3000 nm.
  • the surface of the surface-treated titanium sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content. The results are shown in Table 1.
  • the surface of the surface-treated titanium sheet obtained in the step (2) was injection-molded with a composition containing polyphenylene sulfide and glass fibers in the same manner as in the step (3) of Example 1, and molded to obtain a metal-resin. Complex.
  • the content of the glass fiber was 20 parts by weight based on 100 parts by weight of the polyphenylene sulfide.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the etching solution is a mixed aqueous solution of sodium hydroxide and sodium carbonate, the concentration of sodium hydroxide is 6 mol/L, and the concentration of sodium carbonate is 0.2 mol/L.
  • the surface of the surface-treated titanium sheet was observed by a metallographic microscope, and it was confirmed that the surface of the obtained surface-treated titanium sheet was formed with densely distributed pits each having a width in the range of 300 to 30,000 nm, and a depth. Each is in the range of 100-3000 nm.
  • the surface of the surface-treated titanium sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content. The results are shown in Table 1.
  • the surface of the surface-treated titanium sheet obtained in the step (2) was injection-molded with a composition containing polyphenylene sulfide and glass fibers in the same manner as in the step (3) of Example 1, and molded to obtain a metal-resin.
  • the composite wherein the content of the glass fibers is 20 parts by weight with respect to 100 parts by weight of the polyphenylene sulfide.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the titanium sheet obtained in the step (1) was subjected to surface treatment in the same manner as in the step (2) of the first embodiment to obtain a surface-treated titanium sheet, except that the etching liquid used was sodium hydroxide.
  • the surface of the surface-treated titanium sheet was observed by a metallographic microscope, and the surface of the obtained surface-treated titanium sheet was determined to have densely distributed pits each having a width in the range of 10 to 100,000 nm, and a depth. Each is in the range of 10-5000 nm.
  • the surface of the surface-treated titanium sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content of the surface layer. The results are shown in Table 1.
  • the surface of the surface-treated titanium sheet obtained in the step (2) was injection-molded with a composition containing polyphenylene sulfide and glass fibers in the same manner as in the step (3) of Example 1, and molded to obtain a metal-resin. Complex.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the titanium sheet was subjected to surface treatment in the same manner as in the step (1) of Example 1.
  • the titanium sheet obtained in the step (1) was subjected to surface treatment in the same manner as in the step (2) of the first embodiment to obtain a surface-treated titanium sheet, except that the temperature of the etching liquid was 70 ° C, soaked. The time is 30 minutes.
  • the surface of the surface-treated titanium sheet was observed by a metallographic microscope to determine the surface-treated titanium sheet.
  • the surface is formed with densely distributed pits each having a width in the range of 300 to 30,000 nm and a depth in the range of 100 to 3000 nm.
  • the surface of the surface-treated titanium sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content of the surface layer. The results are shown in Table 1.
  • the surface of the surface-treated titanium sheet obtained in the step (2) was injection-molded with a composition containing polyphenylene sulfide and glass fibers in the same manner as in the step (3) of Example 1, and molded to obtain a metal-resin. Complex.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • a commercially available titanium alloy with a thickness of 0.8 mm (purchased from Gangxiang Metal Materials Co., Ltd., model TC4) was cut into 15 mm ⁇ 80 mm rectangular pieces, which were placed in a polishing machine for polishing and polishing. Washed and dried.
  • the titanium alloy sheet obtained in the step (1) is immersed in a 500 mL etching solution at 25 ° C for 60 minutes, the titanium alloy sheet is taken out, washed three times with deionized water, and then dried in an oven at 65 ° C to obtain Surface treated titanium alloy sheet.
  • the etching solution is a mixed aqueous solution of potassium hydroxide and sodium citrate, the concentration of potassium hydroxide is 7 mol/L, and the concentration of sodium citrate is 1 mol/L.
  • the surface of the surface-treated titanium alloy sheet was observed by a metallographic microscope, and the surface of the obtained surface-treated titanium alloy sheet was determined to have densely distributed pits each having a width of 300-30000 nm. The depths are each in the range of 100-3000 nm.
  • the surface of the surface-treated titanium alloy sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content. The results are shown in Table 1.
  • the surface-treated titanium alloy sheet obtained in the step (2) is placed in a mold, and then a composition containing a polybutylene terephthalate (PBT) resin and a glass fiber is injection molded into the mold, in a titanium alloy sheet.
  • a resin layer was formed on the surface to obtain a metal-resin composite (the thickness of the resin layer was 3 mm).
  • the content of the glass fiber was 20% by weight based on 100 parts by weight of the polybutylene terephthalate.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • the titanium alloy sheet obtained in the step (1) was subjected to surface treatment in the same manner as in the step (2) of Example 6, to obtain a surface-treated titanium alloy sheet, except that the temperature of the etching liquid was 45 ° C.
  • the soaking time is 40 minutes.
  • the surface of the surface-treated titanium alloy sheet was observed by a metallographic microscope, and the surface of the obtained surface-treated titanium alloy sheet was determined to have densely distributed pits each having a width of 300-30000 nm. The depths are each in the range of 100-3000 nm.
  • the surface of the surface-treated titanium alloy sheet was subjected to energy spectrum analysis by scanning electron microscopy, and the content of each element was determined to determine the oxygen content. The results are shown in Table 1.
  • a surface-treated titanium alloy sheet obtained in the step (2) is surface-molded with a composition containing polybutylene terephthalate and glass fibers in the same manner as in the step (3) of the embodiment 6, and is molded.
  • a metal-resin composite was obtained.
  • the average shear strength between the metal substrate and the resin layer is listed in Table 2.
  • Example 1 Numbering Average shear strength / MPa Example 1 18.19 Comparative example 1 /* Comparative example 2 9.21 Comparative example 3 7.63 Example 2 17.57 Example 3 16.96 Example 4 15.21 Example 5 16.36 Example 6 14.32 Example 7 12.54
  • the metal-resin composite according to the present invention has good structural stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

一种金属-树脂复合体及其制备方法,所述金属为钛或钛合金,该复合体包括金属基材以及附着于金属基材的部分表面上的树脂层(2),附着有树脂层的金属基材的表面分布有凹坑,树脂层中的部分树脂向下延伸并填充于凹坑,金属基材的表层氧元素含量为1重量%以上。所述制备方法包括将金属基材浸泡于含有至少一种碱金属氢氧化物的蚀刻液中,在金属基材的表面形成凹坑;向得到的经表面处理的金属基材的表面注入树脂以形成树脂层。该金属-树脂复合体中适于用作电子产品外壳。

Description

一种金属-树脂复合体及其制备方法和一种电子产品外壳
相关申请的交叉引用
本申请基于申请号为201410821840.4、申请日为2014/12/25的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种金属-树脂复合体及其制备方法,本发明还涉及一种电子产品外壳。
背景技术
在汽车、家用电器制品、工业机器等的零件制造领域中,需要金属与树脂一体化成型技术。
目前常用的将钛材和树脂相结合的方法是胶粘剂法。该方法通过化学胶粘剂将钛材和已成型树脂结合在一起得到复合体。但是,由该方法得到的复合体中,钛材与树脂的结合力较差,且胶粘剂结合层不耐酸碱,影响复合体的使用场合。另外,由于胶粘剂结合层具有一定的厚度,因而会影响最终产品的尺寸。
针对胶粘剂法存在的上述不足,研究人员开发了多种用于将钛材与树脂结合的方法。
CN102794863A公开了一种钛或钛合金与塑料的复合体及其制备方法,该方法对钛或钛合金基材进行阳极氧化处理,在钛或钛合金基材表面形成纳米多孔氧化膜,然后将经阳极氧化处理的钛或钛合金基材置于注塑成型模具中,使注塑塑件与所述纳米多孔膜相结合,从而得到复合体。
CN102794864A公开了一种钛或钛合金与塑料的复合体及其制备方法,该方法包括对钛或钛合金基材进行电化学阴极处理,在该钛或钛合金基材表面形成氢化钛层;对形成有氢化钛层的钛或钛合金基材进行阳极氧化处理,在该钛或钛合金基材表面形成纳米多孔氧化膜;将经阳极氧化处理的钛或钛合金基材置于注塑成型模具中,使注塑塑件与纳米多孔膜相结合,从而得到复合体。
但是,采用阳极氧化方式形成的阳极氧化膜中的孔为纳米孔,孔洞较小,且阳极氧化膜较薄,造成纳米孔的深度不够,导致最终得到的复合体中金属基材与树脂层之间的结合力低,复合体的实用性不强。
CN101578170B公开了一种金属和树脂的复合体及其制造方法,该方法采用化学蚀刻的方法对钛合金基材进行表面处理,并向经表面处理的基材表面注射树脂组合物,从而得到复合体。其中,化学蚀刻剂可以为卤酸、硫酸、高温的磷酸水溶液、氢氟酸以及氟化氢铵,优选为氟化氢铵。
本发明的发明人在实践过程中发现,采用酸作为蚀刻剂对钛材表面进行化学蚀刻后 注塑树脂形成的复合体中,钛材与树脂之间的结合力仍然有待于进一步提高。
发明内容
本发明的目的在于克服现有的钛或钛合金与树脂的复合体存在的金属基材与树脂层之间的结合力低的问题,提供一种金属-树脂复合体及其制备方法,该复合体中金属基材与树脂层之间具有较高的结合力。
根据本发明的第一个方面,本发明提供了一种金属-树脂复合体,所述金属为钛或钛合金,该复合体包括金属基材以及附着于所述金属基材的至少部分表面上的树脂层,附着有所述树脂层的基材的表面分布有凹坑,所述树脂层中的部分树脂向下延伸并填充于所述凹坑中,所述金属基材的表层氧元素含量为1重量%以上。
根据本发明的第二个方面,本发明提供了一种金属-树脂复合体的制备方法,所述金属为钛或钛合金,该方法包括蚀刻步骤和注入成型步骤:
在蚀刻步骤中,将金属基材浸泡于蚀刻液中,在所述金属基材的表面形成凹坑,得到经表面处理的金属基材,所述蚀刻液含有至少一种碱金属氢氧化物,经过所述蚀刻的后得到的经表面处理的金属基材的表层氧元素含量为1重量%以上;
在注入成型步骤中,向经表面处理的金属基材的表面注入一种含树脂的组合物并使部分组合物填充于所述凹坑中,成型后形成树脂层。
根据本发明的第三个方面,本发明提供了一种由本发明的方法制备的金属-树脂复合体。
根据本发明的第四个方面,本发明提供了一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,所述金属壳本体的材质为钛或钛合金,其中,附着有所述树脂件的金属壳本体表面分布有凹坑,所述树脂件中的部分树脂向下延伸并填充于所述凹坑中,附着有所述树脂件的金属壳本体的表层氧元素含量为1重量%以上。
根据本发明的金属-树脂复合体,金属基材与树脂层之间的结合强,树脂层不易从金属基材表面脱落,结构稳定性好,能够满足多种使用场合的要求,适于用作各种电子产品外壳。
本发明提供的金属-树脂复合体的制备方法,使用碱金属氢氧化物作为蚀刻剂。与使用酸性蚀刻液对金属基材进行表面处理相比,采用本发明的方法对金属基材进行蚀刻,一方面能够在金属基材表面形成密集分布的凹坑,另一方面不会对金属基材的表面产生破坏性腐蚀,使得到的经表面处理的金属基材表面仍然具有较高的强度。并且,采用本发明的方法对金属基材进行蚀刻,并将树脂注入得到的经表面处理的金属基材表面后进行一体化成型而得到的金属-树脂复合体中,金属基材与树脂层之间具有较高的结合强度,其原因可能在于:采用本发明的方法对金属基材进行蚀刻而得到的经表面处理的金属基材表面不仅密集分布有尺寸较为均一的凹坑,从而将树脂层锚定在金属基材中;而且经处理的表面具有极高的氧含量,这些氧元素并不完全以金属氧化物的形式存在,其中的一部分以氢氧根的形式存在,在与树脂结合时能与树脂发生相互作用,使得最终制备的金属-树脂复合体中金属基材与树脂层之间具有更高的结合强度。
并且,本发明提供的金属-树脂复合体的制备方法所使用的蚀刻液的毒性低且挥发性小,操作的安全性高,对环境的污染小。
另外,本发明提供的金属-树脂复合体的制备方法所使用的蚀刻液中的各成分来源广泛且价格不高,降低了本发明方法的操作成本。因此,本发明的方法适用于进行大规模生产的场合。
附图说明
图1为用于示意性地说明根据本发明的手机外壳的剖视图,包括主视图和俯视图;
图2为用于示意性地说明根据本发明的智能表外壳的剖视图。
<附图标记说明>
1:手机金属壳本体              2:树脂层
3:开口                        4:智能表金属壳本体
5:树脂内衬层                  6:信号元件开口
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
根据本发明的第一个方面,本发明提供了一种金属-树脂复合体,该复合体包括金属基材以及附着于所述金属基材的至少部分表面上的树脂层,附着有所述树脂层的金属基材的表面分布有凹坑,所述树脂层中的部分树脂向下延伸并填充于所述凹坑中。
根据本发明的金属-树脂复合体,所述金属可以为纯钛,也可以为钛合金。所述钛合金是指以钛作为基础元素加入其它元素形成的合金,可以为常见的各种钛合金。所述金属基材是用钛或钛合金形成的各种成型体,根据最终制备的金属-树脂复合体的使用场合可以具有各种形状,没有特别限定。
所述金属基材的附着有树脂层的表面分布有凹坑,所述凹坑在基材表面呈密集分布。所述凹坑可以通过对金属基材的表面进行化学蚀刻而形成。所述树脂层中的部分树脂向下延伸并填充于所述凹坑中,将树脂层锚定于金属基材中。根据本发明的金属-树脂复合体,所述凹坑的宽度各自可以为10-100000nm,深度各自可以为10-5000nm,在所述凹坑的尺寸处于上述范围之内时,一方面不会对金属基材本身的强度产生不利影响,另一方面还能将树脂层稳固地锚定在金属基材中,使树脂层与金属基材之间具有较高的结合力,从而使得金属-树脂复合体具有较高的结构稳定性。从进一步提高树脂层与金属基材之间的结合力的角度出发,所述凹坑的宽度各自优选为300-30000nm,所述凹坑的深度各自优选为100-3000nm。本发明中,“凹坑的宽度”是指由凹坑位于基材表面的端口确定的轮廓线上的两个点之间的 最大距离,“凹坑的深度”是指凹坑位于基材表面的端口至凹坑底部的垂直距离。所述凹坑的宽度和深度可以采用电镜法测定。
根据本发明的金属-树脂复合体,所述金属基材的表层氧元素的含量为1重量%以上。与金属基材的表层氧元素含量为低于1重量%相比,在金属基材的表层氧元素的含量为1重量%以上时,能明显提高复合体中树脂层与金属基材之间的结合强度。优选地,所述金属基材的表层氧元素的含量为1-10重量%。更优选地,所述金属基材的表层氧元素的含量为2-8重量%。进一步优选地,所述金属基材的表层氧元素的含量为5-7重量%。可以采用能谱分析法测定金属基材表面的元素组成,并将氧元素占表层元素总量的百分比作为表层氧元素含量。
所述树脂层中的主体树脂可以根据具体的使用要求进行选择,只要该树脂能与钛或钛合金结合即可。一般地,所述树脂层中的主体树脂可以选自热塑性树脂,例如可以为聚苯硫醚、聚酯、聚酰胺、聚碳酸酯和聚烯烃中的一种或两种以上。所述聚酯可以为常见的由二羧酸与二醇缩合而成的聚合物,其具体实例可以包括但不限于聚对苯二甲酸丁二醇酯和/或聚对苯二甲酸乙二醇酯。所述聚酰胺可以为常见的由二胺与二羧酸缩合而成的聚合物,其具体实例可以包括但不限于聚己二酰己二胺、聚壬二酰己二胺、聚丁二酰己二胺、聚十二烷二酰己二胺、聚癸二酰己二胺、聚癸二酰癸二胺、聚十一酰胺、聚十二酰胺、聚辛酰胺、聚9-氨基壬酸、聚己内酰胺、聚对苯二甲酰苯二胺、聚间苯二甲酰己二胺、聚对苯二甲酰己二胺和聚对苯二甲酰壬二胺。所述聚烯烃的具体实例可以包括但不限于聚苯乙烯、聚丙烯、聚甲基丙烯酸甲酯和聚(丙烯腈-丁二烯-苯乙烯)。
所述树脂层除含有主体树脂外,还可以含有至少一种填料。所述填料的种类可以根据具体的使用要求进行选择。所述填料可以为纤维型填料和/或粉末型填料。所述纤维型填料可以为选自玻璃纤维、碳纤维和芳族聚酰胺纤维中的一种或两种以上。所述粉末型填料可以为选自碳酸钙、碳酸镁、二氧化硅、重质硫酸钡、滑石粉、玻璃和粘土中的一种或两种以上。所述填料的含量可以为常规选择。一般地,以100重量份主体树脂为基准,所述填料的含量可以为10-150重量份,优选为15-100重量份,更优选为20-50重量份。
所述金属基材和所述树脂层的厚度可以根据该金属-树脂复合体的具体应用场合进行选择,以能满足使用要求为准。一般地,所述树脂层的厚度可以为0.5-10mm。
根据本发明的第二个方面,本发明提供了一种金属-树脂复合体的制备方法,所述金属为钛或钛合金,该方法包括蚀刻步骤和注入成型步骤。
在蚀刻步骤中,将金属基材浸泡于蚀刻液中,在所述金属基材的表面形成凹坑,得到经表面处理的金属基材,所述蚀刻液含有至少一种碱金属氢氧化物。
根据本发明的方法,经过所述蚀刻步骤后得到的经表面处理的金属基材表面形成有凹坑,所述凹坑在基材表面为密集分布。所述凹坑的宽度各自可以为10-100000nm,优选各自为300-30000nm;所述凹坑的深度各自可以为10-5000nm,优选各自为100-3000nm。
根据本发明的方法,经过所述蚀刻步骤后得到的经表面处理的金属基材的表层氧元素含量为1重量%以上,优选为1-10重量%,更优选为2-8重量%,进一步优选为5-7重量%。
根据本发明的方法,所述蚀刻液含有至少一种碱金属氢氧化物。
所述碱金属氢氧化物优选为氢氧化钠和/或氢氧化钾。
所述蚀刻液中碱金属氢氧化物的含量可以根据预期的蚀刻速度进行选择。优选地,所述蚀刻液中,碱金属氢氧化物的浓度为1-10mol/L。在所述蚀刻液中碱金属氢氧化物的浓度处于上述范围之内时,不仅能够在金属基材表面形成密集的凹坑,而且对金属基材的破坏更小。更优选地,所述蚀刻液中,碱金属氢氧化物的浓度为5-8mol/L。
优选地,所述蚀刻液还可以含有至少一种缓冲剂。尽管所述蚀刻液不含有缓冲剂也可以在金属基材表面蚀刻形成密集分布的凹坑,但是在所述蚀刻液含有缓冲剂时,能够将蚀刻液中氢氧根离子的浓度在较长的时间内稳定在一定范围内,从而获得稳定的蚀刻效果,不仅能够满足大规模生产的需求,而且能够进一步提高最终制备的金属-树脂复合体中金属基材与树脂层之间的结合力。
所述缓冲剂可以为常见的各种能够稳定蚀刻液中氢氧根离子浓度的物质。优选地,所述缓冲剂为选自硼酸、硼酸钠、碳酸钠、碳酸二氢钠、磷酸三钠、磷酸氢二钠和柠檬酸钠中的一种或两种以上。
所述缓冲剂的含量以能够将氢氧根离子浓度稳定在预期范围内为准。优选地,所述缓冲剂的浓度为0.1-1.5mol/L。更优选地,所述缓冲剂的浓度为0.2-1mol/L。
所述蚀刻液的溶剂可以为常规选择,一般为水。
所述蚀刻液的温度可以为15-70℃。从进一步提高得到的经表面处理的金属基材与树脂一体化成型而得到的金属-树脂复合体中,金属基材与树脂层之间的结合强度的角度出发,所述蚀刻液的温度为15-35℃。从进一步提高蚀刻速度,缩短金属基材在蚀刻液中的浸泡时间,从而减小蚀刻对金属基材外观以及尺寸的影响的角度出发,所述蚀刻液的温度优选为40-70℃。
金属基材在蚀刻液中的浸泡时间随蚀刻液的浓度以及温度而定。一般地,金属基材在蚀刻液中的浸泡时间可以为10分钟至5小时,优选为30分钟至2小时。
金属基材在蚀刻液中的浸泡次数和浸泡时间可以根据蚀刻液的组成以及蚀刻液的温度进行选择。一般地,金属基材在蚀刻液中浸泡次数可以为1次,也可以为多次,例如2-10 次。每次浸泡后,一般用水(优选去离子水)对经表面处理的金属基材进行清洗,以除去附着在经表面处理的金属基材上的蚀刻液。清洗的次数可以为2到10次。清洗的方式可以是将经表面处理的金属基材浸泡于水中,浸泡的时间可以为1-5分钟;也可以用水对经表面处理的金属基材进行冲洗,冲洗的时间可以为1-5分钟。
根据本发明的方法可以对金属基材的整个表面进行处理,也可以对金属基材的部分表面进行处理。在将金属基材的部分表面进行处理时,可以仅将需要进行处理的表面浸泡于蚀刻液液中,也可以在无需进行处理的表面形成掩模后,将金属基材整体浸泡于蚀刻液中。
采用本发明的方法得到的经表面处理的金属基材与蚀刻前相比,仅表面分布有凹坑且表面的颜色有所加深,尺寸在蚀刻前后则变化不大。并且,本发明的方法得到的经表面处理的金属基材的腐蚀深度浅,易于消除无需形成树脂层的表面区域内的凹坑及变色,使最终得到的复合体具有较好的外观。
根据本发明的方法,在注入成型步骤中,向经表面处理的金属基材表面注入一种含树脂的组合物并使部分组合物填充于所述凹坑中,成型后形成树脂层。
所述含树脂的组合物中的树脂(以下称为主体树脂)可以根据具体的使用要求进行选择,只要该树脂能与钛或钛合金结合即可。一般地,所述树脂层中的主体树脂可以选自热塑性树脂,例如可以为聚苯硫醚、聚酯、聚酰胺、聚碳酸酯和聚烯烃中的一种或两种以上。所述聚酯可以为常见的各种由二羧酸与二醇缩合而成的聚合物,其具体实例可以包括但不限于聚对苯二甲酸丁二醇酯和/或聚对苯二甲酸乙二醇酯。所述聚酰胺可以为常见的各种由二胺与二羧酸缩合而成的聚合物,其具体实例可以包括但不限于聚己二酰己二胺、聚壬二酰己二胺、聚丁二酰己二胺、聚十二烷二酰己二胺、聚癸二酰己二胺、聚癸二酰癸二胺、聚十一酰胺、聚十二酰胺、聚辛酰胺、聚9-氨基壬酸、聚己内酰胺、聚对苯二甲酰苯二胺、聚间苯二甲酰己二胺、聚对苯二甲酰己二胺和聚对苯二甲酰壬二胺。所述聚烯烃的具体实例可以包括但不限于聚苯乙烯、聚丙烯、聚甲基丙烯酸甲酯和聚(丙烯腈-丁二烯-苯乙烯)。
所述含树脂的组合物除含有主体树脂外,还可以含有至少一种填料和/或至少一种流动性改进剂。
所述填料的种类可以根据具体的使用要求进行选择。所述填料可以为各种纤维型填料和/或粉末型填料。所述纤维型填料可以为选自玻璃纤维、碳纤维和芳族聚酰胺纤维中的一种或两种以上。所述粉末型填料可以为选自碳酸钙、碳酸镁、二氧化硅、重质硫酸钡、滑石粉、玻璃和粘土中的一种或两种以上。
所述填料的含量可以为常规选择。一般地,优选地,相对于100重量份主体树脂,所述填料的含量可以为10-150重量份,优选为15-100重量份,更优选为20-50重量份。
所述流动性改进剂用于提高主体树脂的流动能力,进一步提高金属基材与树脂之间的结合力以及树脂的加工性能。所述流动性改进剂可以为各种能够实现上述效果的物质,优选为环状聚酯。
所述流动性改进剂的用量以能够提高主体树脂的流动能力为准。优选地,相对于100重量份主体树脂,所述流动性改进剂的含量为1-5重量份。
所述含树脂的组合物根据具体使用要求还可以含有常见的各种助剂,如着色剂和/或抗氧剂,以改善最终形成的金属树脂复合体中树脂层的性能或者赋予所述树脂层以新的性能。
所述含树脂的组合物可以通过将主体树脂、任选的填料、任选的流动性改进剂以及任选的助剂混合均匀而获得。一般地,可以将主体树脂、任选的填料、任选的流动性改进剂以及任选的助剂混合均匀,并进行挤出造粒而得到。
可以采用常用的各种方法向经表面处理的金属基材的表面注入所述含树脂的组合物。在本发明的一种优选的实施方式中,将所述经表面处理的金属基材置于模具中,通过注塑的方法向经表面处理的金属基材的表面注入所述含树脂的组合物。
所述注塑的条件可以根据含树脂的组合物中主体树脂的种类进行选择。优选地,所述注塑的条件包括:模具温度为50-300℃,喷嘴温度为200-450℃,保压时间为1-50秒,射出压力为50-300MPa,射出时间为1-30秒,延迟时间为1-30秒。
所述含树脂的组合物的注入量可以根据预期的树脂层厚度进行选择。一般地,所述含树脂的组合物的注入量使得形成的树脂层的厚度为0.5-10mm。
根据本发明的方法,仅在经表面处理的金属基材的部分表面形成树脂层时,可以对无需形成树脂层的表面进行处理,以除去表面凹坑以及由于蚀刻而引起的表面颜色变化,该处理可以在注塑成型步骤之前进行,也可以在注塑成型步骤之后进行,没有特别限定。
根据本发明的第三个方面,本发明提供了一种由本发明的方法制备的金属-树脂复合体。由本发明的方法制备的金属-树脂复合体包括金属基材以及附着在所述金属基材的至少部分表面上的树脂层,附着有所述树脂层的金属基材的表面分布有凹坑,所述树脂层中的部分树脂向下延伸并填充于所述凹坑。
由本发明的方法制备的金属-树脂复合体中,树脂层与金属基材之间的结合力高,因而复合体的结构稳定性好。
根据本发明的金属-树脂复合体可以用于各种需要将金属与树脂一体成型的场合,例如电子产品的外壳。在具体应用时,可以将金属成型为各种形状,并对需要形成树脂层的表面进行表面处理,然后注塑树脂,形成树脂层。
由此,根据本发明的第四个方面,本发明提供了一种电子产品外壳,该外壳包括金属 壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,所述金属壳本体的材质为钛或钛合金,其中,附着有所述树脂件的金属壳本体表面分布有凹坑,所述树脂件中的部分树脂向下延伸并填充于所述凹坑中。本发明中,所述外壳不仅包括为片状结构的外壳,也包括各种框架结构,如外框。
所述凹坑的宽度可以为10-100000nm,优选为300-30000nm;所述凹坑的深度可以为10-5000nm,优选为100-3000nm。
附着有所述树脂件的金属壳本体的表层氧元素的含量可以为1重量%以上,优选为1-10重量%,优选为2-8重量%,更优选为5-7重量%。
根据本发明的电子产品外壳,根据具体需要,所述金属壳本体上可以设置有至少一个开口,以在该开口的对应位置安装电子产品的需要避开金属壳本体的元件。在一种实施方式中,由于金属对电磁信号具有屏蔽作用,因此至少部分开口的位置可以对应于发射和/或接受信号(如电磁信号)的元件的安装位置,此时所述开口位置优选设置树脂件,并使所述树脂件中的部分树脂填充于所述开口中,发射和/或接受信号的元件可以安装在所述树脂件上。
根据本发明的电子产品外壳,所述金属壳本体可以为一体结构,也可以为拼接结构。所述拼接结构是指所述金属壳本体包括相互断开的至少两个部分,两个部分相互拼接在一起形成金属壳本体。
在所述金属壳本体为拼接结构时,相邻两个部分可以用胶粘剂粘结在一起。在一种优选的实施方式中,相邻两部分的拼接位置设置有所述树脂件,该树脂件分别与相邻两部分搭接并覆盖所述拼接位置(即该树脂件桥接该相邻两部分),这样能够提高拼接位置的结合强度;并且,可以根据电子产品的内部结构,将金属壳本体分成多个部分,所述树脂件在起到使金属壳本体形成为一个整体的作用的同时,还能用作一些电子元件的安装基体。
根据本发明的电子产品外壳,所述金属壳本体的至少部分外表面可以附着有树脂件,所述树脂件可以覆盖整个外表面,也可以覆盖金属壳本体的部分外表面以形成图案,例如装饰性图案。
根据本发明的电子产品外壳,所述金属壳本体的内表面附着有树脂件时,所述树脂件可以设置在需要的一个或多个位置。在一种优选的实施方式中,所述树脂件附着于所述金属壳本体的整个内表面,此时所述树脂件优选为一体结构。根据该优选的实施方式,特别适用于金属壳本体为拼接结构的场合。
根据本发明的电子产品外壳,可以为各种需要以金属作为外壳的电子产品外壳,例如:移动终端的外壳或者外框,可穿戴电子设备的外壳或者外框。所述移动终端是指可以处于移动状态且具有无线传输功能的设备,例如:移动电话、便携式电脑(包括笔记本电脑和平板 电脑)。所述可穿戴电子设备是指智能化的穿戴设备,例如:智能表、智能手环。所述电子产品具体可以为但不限于移动电话、便携式电脑(如笔记本电脑和平板电脑)、智能表和智能手环中的一种或两种以上。
图1示出了所述电子产品外壳为手机外壳时的一种实施方式的主视图和俯视图。如图1所示,在手机金属壳本体1上开设有多个开口3,开口3的位置可以对应于安装天线的位置以及安装各种按键的位置。树脂层2附着在手机金属壳本体1的整个内表面,树脂层2为一体结构并且树脂层2中的部分树脂填充于开口3中。
图2示出了所述电子产品外壳为智能表的外壳的一种实施方式的主视图。如2所示,智能表金属壳本体4上设置有对应于安装信号发射元件和/或信号接收元件的信号元件开口6,智能表金属壳本体4的内表面附着有树脂内衬层5,树脂内衬层5中的部分树脂填充在信号元件开口6中,信号元件可以安装在树脂内衬层5上的相应位置。
以下结合实施例详细说明本发明,但并不因此限定本发明的范围。
以下实施例和对比例中,在购自英斯特的型号为3369的万能试验机上以拉伸模式测定金属树脂复合体中金属基材与树脂层之间的平均剪切强度,其中,将复合体发生断裂时测得的拉伸应力与结合面积之间的比值作为平均剪切强度,结合面积为金属基材与树脂层之间的结合面的面积。
以下实施例和对比例中,采用金相显微镜观察经表面处理的金属基材的表面和断面并确定形成的凹坑的宽度和深度,所使用的金相显微镜购自蔡司,型号为Axio Imager A1m。
以下实施例和对比例中,采用场发射扫描电镜及附件能谱仪测试表层元素含量,能谱仪购自日本电子株式会社,型号为JSM-7600F,其中,在被测样品表面选择10个点进行能谱分析,10个点分布在样品表面的不同位置,将由这10个点得到的氧元素含量的平均值作为该样品的表层氧元素含量。
实施例1-7用于说明本发明。
实施例1
1、前处理
将市售的厚度为0.8mm的纯钛板,切成15mm×80mm的长方形片,将其放入抛光机内打磨抛光,再依次进行除油、水洗和烘干。
2、表面处理
将步骤(1)得到的钛片置于500mL蚀刻液中于25℃浸泡60分钟后,将钛片取出,用去离子水洗涤3次,然后放入烘箱中于65℃烘干,得到经表面处理的钛片。其中,蚀刻液 为氢氧化钠和硼酸的混合水溶液,氢氧化钠的浓度为7mol/L,硼酸的浓度为0.5mol/L。
采用金相显微镜对经表面处理的钛片的表面进行观察,确定得到的经表面处理的钛片表面形成有密集分布的凹坑,所述凹坑的宽度各自在300-30000nm的范围内,深度各自在100-3000nm的范围内。采用扫描电镜对该经表面处理的钛片的表面进行能谱分析,测定各元素含量并确定表层氧元素含量,结果见表1。
3、注入成型
将步骤(2)得到的经表面处理的钛片放入模具中,然后向模具中注塑含聚苯硫醚(PPS)和玻璃纤维的组合物,在钛片的一个表面形成树脂层,得到金属-树脂复合体(树脂层的厚度为3mm)。其中,相对于100重量份聚苯硫醚,玻璃纤维的含量为20重量份。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
对比例1
(1)采用与实施例1步骤(1)相同的方法进行前处理。
(2)采用与实施例1步骤(3)相同的方法向经步骤(1)处理的钛片的表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,以得到金属-树脂复合体。该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
对比例2
(1)采用与实施例1步骤(1)相同的方法对钛片进行前处理。
(2)表面处理
将步骤(1)得到的钛片置于500mL蚀刻液中于25℃浸泡24分钟后,将钛片取出,用去离子水洗涤3次,然后放入烘箱中于65℃烘干,得到经表面处理的钛片,其平均表面硬度在表1中列出。其中,蚀刻液为氟化氢铵的水溶液,氟化氢铵的浓度为1重量%。
采用金相显微镜对经表面处理的钛片的表面进行观察,确定得到的经表面处理的钛片表面形成有密集分布的凹坑,所述凹坑的宽度各自在20000-150000nm的范围内,深度各自在1000-10000nm的范围内。采用扫描电镜对该经表面处理的钛片的表面进行能谱分析,测定各元素含量并确定氧元素含量,结果见表1。
(3)注入成型
采用与实施例1步骤(3)相同的方法向步骤(2)得到的经表面处理的钛片表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
对比例3
(1)采用与实施例1步骤(1)相同的方法对钛片进行前处理。
(2)表面处理
将步骤(1)得到的钛片置于500mL阳极氧化电解液中进行阳极氧化。其中,电解液为磷酸的水溶液,磷酸的浓度为10重量%;阳极氧化电压为20V,通电时间为10分钟。将经阳极氧化处理的钛片用去离子水洗涤3次,然后放入烘箱中于65℃烘干,得到经表面处理的钛片。
(3)注入成型
采用与实施例1步骤(3)相同的方法向步骤(2)得到的经表面处理的钛片表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
实施例2
(1)采用与实施例1步骤(1)相同的方法对钛片进行前处理。
(2)表面处理
将步骤(1)得到的钛片置于500mL蚀刻液中于35℃浸泡30分钟后,将钛片取出,用去离子水洗涤3次,然后放入烘箱中于65℃烘干,得到经表面处理的钛片。其中,蚀刻液为氢氧化钠和磷酸氢二钠的混合水溶液,氢氧化钠的浓度为7mol/L,磷酸氢二钠的浓度为1mol/L。
采用金相显微镜对经表面处理的钛片的表面进行观察,确定得到的经表面处理的钛片表面形成有密集分布的凹坑,所述凹坑的宽度各自在300-30000nm的范围内,深度各自在100-3000nm的范围内。采用扫描电镜对该经表面处理的钛片的表面进行能谱分析,测定各元素含量并确定氧元素含量,结果见表1。
(3)采用与实施例1步骤(3)相同的方法向步骤(2)得到的经表面处理的钛片表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体。其中,相对于100重量份聚苯硫醚,玻璃纤维的含量为20重量份。该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
实施例3
(1)采用与实施例1步骤(1)相同的方法对钛片进行前处理。
(2)表面处理
将步骤(1)得到的钛片置于500mL蚀刻液中于15℃浸泡120分钟后,将钛片取出,用去离子水洗涤3次,然后放入烘箱中于65℃烘干,得到经表面处理的钛片。其中,蚀刻液为氢氧化钠和碳酸钠的混合水溶液,氢氧化钠的浓度为6mol/L,碳酸钠的浓度为0.2mol/L。
采用金相显微镜对经表面处理的钛片的表面进行观察,确定得到的经表面处理的钛片表面形成有密集分布的凹坑,所述凹坑的宽度各自在300-30000nm的范围内,深度各自在100-3000nm的范围内。采用扫描电镜对该经表面处理的钛片的表面进行能谱分析,测定各元素含量并确定氧元素含量,结果见表1。
(3)采用与实施例1步骤(3)相同的方法向步骤(2)得到的经表面处理的钛片表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体,其中,相对于100重量份聚苯硫醚,玻璃纤维的含量为20重量份。该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
实施例4
(1)采用与实施例1步骤(1)相同的方法对钛片进行前处理。
(2)采用与实施例1步骤(2)相同的方法对步骤(1)得到的钛片进行表面处理,从而得到经表面处理的钛片,不同的是,所使用的蚀刻液为氢氧化钠的水溶液,其中,氢氧化钠的浓度7mol/L。
采用金相显微镜对经表面处理的钛片的表面进行观察,确定得到的经表面处理的钛片表面形成有密集分布的凹坑,所述凹坑的宽度各自在10-100000nm的范围内,深度各自在10-5000nm的范围内。采用扫描电镜对该经表面处理的钛片的表面进行能谱分析,测定各元素含量并确定表层氧元素含量,结果见表1。
(3)采用与实施例1步骤(3)相同的方法向步骤(2)得到的经表面处理的钛片表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
实施例5
(1)采用与实施例1步骤(1)相同的方法对钛片进行表面处理。
(2)采用与实施例1步骤(2)相同的方法对步骤(1)得到的钛片进行表面处理,得到经表面处理的钛片,所不同的是,蚀刻液的温度为70℃,浸泡时间为30分钟。
采用金相显微镜对经表面处理的钛片的表面进行观察,确定得到的经表面处理的钛片 表面形成有密集分布的凹坑,所述凹坑的宽度各自在300-30000nm的范围内,深度各自在100-3000nm的范围内。采用扫描电镜对该经表面处理的钛片的表面进行能谱分析,测定各元素含量并确定表层氧元素含量,结果见表1。
(3)采用与实施例1步骤(3)相同的方法向步骤(2)得到的经表面处理的钛片表面注塑含聚苯硫醚和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
实施例6
1、前处理
将市售的厚度为0.8mm的钛合金(购自港祥金属材料有限公司,型号为TC4),切成15mm×80mm的长方形片,将其放入抛光机内打磨抛光,再依次进行除油、水洗、烘干。
2、表面处理
将步骤(1)得到的钛合金片置于500mL蚀刻液中于25℃浸泡60分钟后,将钛合金片取出,用去离子水洗涤3次,然后放入烘箱中于65℃烘干,得到经表面处理的钛合金片。其中,蚀刻液为氢氧化钾和柠檬酸钠的混合水溶液,氢氧化钾的浓度为7mol/L,柠檬酸钠的浓度为1mol/L。
采用金相显微镜对经表面处理的钛合金片的表面进行观察,确定得到的经表面处理的钛合金片表面形成有密集分布的凹坑,所述凹坑的宽度各自在300-30000nm的范围内,深度各自在100-3000nm的范围内。采用扫描电镜对该经表面处理的钛合金片的表面进行能谱分析,测定各元素含量并确定氧元素含量,结果见表1。
3、注入成型
将步骤(2)得到的经表面处理的钛合金片放入模具中,然后向模具中注塑含聚对苯二甲酸丁二酯(PBT)树脂和玻璃纤维的组合物,在钛合金片的一个表面形成树脂层,得到金属-树脂复合体(树脂层的厚度为3mm)。其中,相对于100重量份聚对苯二甲酸丁二醇酯,玻璃纤维的含量为20重量。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
实施例7
(1)采用与实施例6步骤(1)相同的方法对钛合金进行前处理。
(2)采用与实施例6步骤(2)相同的方法对步骤(1)得到的钛合金片进行表面处理,得到经表面处理的钛合金片,所不同的是,蚀刻液的温度为45℃,浸泡时间为40分钟。
采用金相显微镜对经表面处理的钛合金片的表面进行观察,确定得到的经表面处理的钛合金片表面形成有密集分布的凹坑,所述凹坑的宽度各自在300-30000nm的范围内,深度各自在100-3000nm的范围内。采用扫描电镜对该经表面处理的钛合金片的表面进行能谱分析,测定各元素含量并确定氧元素含量,结果见表1。
(3)采用与实施例6步骤(3)相同的方法向步骤(2)得到的经表面处理的钛合金片表面注塑含聚对苯二甲酸丁二酯和玻璃纤维的组合物并进行成型,从而得到金属-树脂复合体。
该复合体中,金属基材与树脂层之间的平均剪切强度在表2中列出。
表1
Figure PCTCN2015093247-appb-000001
表2
编号 平均剪切强度/MPa
实施例1 18.19
对比例1 /*
对比例2 9.21
对比例3 7.63
实施例2 17.57
实施例3 16.96
实施例4 15.21
实施例5 16.36
实施例6 14.32
实施例7 12.54
*:脱模时,树脂层从金属基材表面脱落
从表2的结果可以看出,根据本发明的金属-树脂复合体中,金属基材与树脂层之间的平均剪切强度高,表明金属基材与树脂层之间具有较高的结合力,因而本发明的金属-树脂复合体的结构稳定性好。

Claims (25)

  1. 一种金属-树脂复合体,所述金属为钛或钛合金,该复合体包括金属基材以及附着于所述金属基材的至少部分表面上的树脂层,附着有所述树脂层的金属基材的表面分布有凹坑,所述树脂层中的部分树脂向下延伸并填充于所述凹坑中,所述金属基材的表层氧元素含量为1重量%以上。
  2. 根据权利要求1所述的复合体,其中,所述凹坑的宽度为10-100000nm,优选为300-30000nm,所述凹坑的深度为10-5000nm,优选为100-3000nm。
  3. 根据权利要求1或2所述的复合体,其中,所述金属基材的表层氧元素含量为1-10重量%,优选为2-8重量%,更优选为5-7重量%。
  4. 一种金属-树脂复合体的制备方法,所述金属为钛或钛合金,该方法包括蚀刻步骤和注入成型步骤:
    在蚀刻步骤中,将金属基材浸泡于蚀刻液中,在所述金属基材的表面形成凹坑,得到经表面处理的金属基材,所述蚀刻液含有至少一种碱金属氢氧化物,经过所述蚀刻后得到的经表面处理的金属基材的表层氧元素含量为1重量%以上;
    在注入成型步骤中,向经表面处理的金属基材表面注入一种含树脂的组合物并使部分组合物填充于所述凹坑中,成型后形成树脂层。
  5. 根据权利要求4所述的方法,其中,所述碱金属氢氧化物为氢氧化钠和/或氢氧化钾。
  6. 根据权利要求4或5所述的方法,其中,所述蚀刻液中,碱金属氢氧化物的浓度为1-10mol/L。
  7. 根据权利要求4-6中任意一项所述的方法,其中,所述蚀刻液还含有至少一种缓冲剂,所述缓冲剂能够稳定蚀刻液中氢氧根离子的浓度。
  8. 根据权利要求7所述的方法,其中,所述缓冲剂为选自硼酸、硼酸钠、碳酸钠、碳酸二氢钠、磷酸三钠、磷酸氢二钠和柠檬酸钠中的一种或两种以上。
  9. 根据权利要求7或8所述的方法,其中,所述缓冲剂的浓度为0.1-1.5mol/L。
  10. 根据权利要求4-9中任意一项所述的方法,其中,所述蚀刻液的温度为15-70℃。
  11. 根据权利要求4-10中任意一项所述的方法,其中,经过所述蚀刻步骤后得到的经表面处理的金属基材表面形成有凹坑,所述凹坑的宽度为10-100000nm,优选为300-30000nm;所述凹坑的深度为10-5000nm,优选为100-3000nm。
  12. 根据权利要求4-11中任意一项所述的方法,其中,经过所述蚀刻步骤后得到的经表面处理的金属基材表层的氧元素含量为1-10重量%,优选为2-8重量%,更优选为5-7重量%。
  13. 一种由权利要求4-12中任意一项所述的方法制备的金属-树脂复合体。
  14. 一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,所述金属壳本体的材质为钛或钛合金,其特征在于,附着有所述树脂件的金属壳本体表面分布有凹坑,所述树脂件中的部分树脂向下延伸并填充于所述凹坑中,附着有所述树脂件的金属壳本体的表层氧元素含量为1重量%以 上。
  15. 根据权利要求14所述的电子产品外壳,其中,所述凹坑的宽度为10-100000nm,优选为300-30000nm;所述凹坑的深度为10-5000nm,优选为100-3000nm。
  16. 根据权利要求14或15所述的电子产品外壳,其中,附着有所述树脂件的金属壳本体的表层氧元素的含量为1-10重量%,优选为2-8重量%,更优选为5-7重量%。
  17. 根据权利要求14-16中任意一项所述的电子产品外壳,其中,所述金属壳本体上设置有至少一个开口。
  18. 根据权利要求17所述的电子产品外壳,其中,至少部分开口的位置对应于发射和/或接受信号的元件的安装位置。
  19. 根据权利要求17或18所述的电子产品外壳,其中,所述开口位置设置有树脂件,所述树脂件中的部分树脂填充于所述开口中。
  20. 根据权利要求14-19中任意一项所述的电子产品外壳,其中,所述金属壳本体包括相互断开的至少两个部分,相邻两部分的拼接位置设置有所述树脂件,该树脂件分别与相邻两部分搭接并覆盖所述拼接位置。
  21. 根据权利要求14-20中任意一项所述的电子产品外壳,其中,所述金属壳本体的至少部分外表面附着有树脂件,所述树脂件在金属壳本体的外表面形成图案。
  22. 根据权利要求14-21中任意一项所述的电子产品外壳,其中,所述树脂件附着于所述金属壳本体的整个内表面。
  23. 根据权利要求22所述的电子产品外壳,其中,附着于所述金属壳本体的树脂件为一体结构。
  24. 根据权利要求14-23中任意一项所述的电子产品外壳,其中,所述电子产品为移动终端或者可穿戴电子设备。
  25. 根据权利要求14-23中任意一项所述的电子产品外壳,其中,所述电子产品为移动电话、便携式电脑、智能表或者智能手环。
PCT/CN2015/093247 2014-12-25 2015-10-29 一种金属-树脂复合体及其制备方法和一种电子产品外壳 WO2016101706A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177017329A KR101969920B1 (ko) 2014-12-25 2015-10-29 금속-수지 복합체 및 이의 제조방법 및 전자 제품의 쉘
EP15871779.3A EP3243651A4 (en) 2014-12-25 2015-10-29 Metal-resin composite and preparation method thereof and electronic product housing
JP2017534537A JP6530492B2 (ja) 2014-12-25 2015-10-29 金属−樹脂の複合体およびその製造方法、並びに電子製品のシェル
US15/626,473 US20170282424A1 (en) 2014-12-25 2017-06-19 Metal-resin composite and method of preparing the same and shell of electronic product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410821840.4A CN105522684B (zh) 2014-12-25 2014-12-25 一种金属-树脂复合体及其制备方法和一种电子产品外壳
CN201410821840.4 2014-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,473 Continuation US20170282424A1 (en) 2014-12-25 2017-06-19 Metal-resin composite and method of preparing the same and shell of electronic product

Publications (1)

Publication Number Publication Date
WO2016101706A1 true WO2016101706A1 (zh) 2016-06-30

Family

ID=55765374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093247 WO2016101706A1 (zh) 2014-12-25 2015-10-29 一种金属-树脂复合体及其制备方法和一种电子产品外壳

Country Status (6)

Country Link
US (1) US20170282424A1 (zh)
EP (1) EP3243651A4 (zh)
JP (1) JP6530492B2 (zh)
KR (1) KR101969920B1 (zh)
CN (1) CN105522684B (zh)
WO (1) WO2016101706A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574441A (zh) * 2016-07-04 2018-01-12 深圳市宏基真空镀膜有限公司 一种手机壳局部脱镀的方法
CN109845419A (zh) * 2017-01-23 2019-06-04 惠普发展公司,有限责任合伙企业 电子设备的外壳
CN106965374A (zh) * 2017-03-20 2017-07-21 歌尔股份有限公司 一种不锈钢和塑料的结合件及其加工方法
CN106985475A (zh) * 2017-04-01 2017-07-28 苏州焕欣化工科技有限公司 一种铝合金纳米电泳复合膜层及其制备工艺
JP6978910B2 (ja) * 2017-11-29 2021-12-08 三菱エンジニアリングプラスチックス株式会社 金属接合用樹脂組成物、金属樹脂複合体およびその製造方法
CN109889223B (zh) * 2017-12-06 2021-01-19 比亚迪股份有限公司 具有寻车功能的穿戴式设备
US11511519B2 (en) 2019-07-08 2022-11-29 Apple Inc. Titanium part having an etched surface
CN117279249A (zh) * 2019-07-08 2023-12-22 苹果公司 具有蚀刻表面的钛部件
CN112342603B (zh) * 2019-08-09 2022-08-02 富联裕展科技(深圳)有限公司 金属制品和金属复合体,及其制备方法
CN112775254A (zh) * 2021-01-21 2021-05-11 滁州市汇能鑫新能源科技有限公司 一种基于锂电池盖帽的冲压工艺
CN113604069A (zh) * 2021-06-17 2021-11-05 漳州市品源塑胶模具有限公司 一种电子产品塑胶外壳及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1757794A (zh) * 2005-11-15 2006-04-12 北京茵普兰科技发展有限公司 钛合金的化学蚀刻制备工艺及该工艺所用蚀刻药剂
CN103290450A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及铝合金树脂复合体
CN103297565A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种手机壳体及其制备方法
CN103286995A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108891B2 (ja) * 2007-09-05 2012-12-26 大成プラス株式会社 金属樹脂複合体の製造方法
CN101573008B (zh) * 2008-04-28 2012-05-16 富准精密工业(深圳)有限公司 电子装置壳体及其制造方法
WO2010016485A1 (ja) * 2008-08-06 2010-02-11 大成プラス株式会社 金属合金とポリアミド樹脂組成物の複合体とその製造方法
JP5426932B2 (ja) * 2009-05-29 2014-02-26 大成プラス株式会社 金属合金と熱硬化性樹脂の複合体及びその製造方法
JP5108904B2 (ja) * 2010-02-01 2012-12-26 大成プラス株式会社 金属とポリアミド樹脂組成物の複合体及びその製造方法
DE102011112117A1 (de) * 2010-12-14 2012-06-14 Airbus Operations Gmbh Haftvermitteln einer Fläche eines Titanwerkstoffs
EP2910371A4 (en) * 2012-10-17 2016-06-22 Sumitomo Bakelite Co METAL RESIN COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1757794A (zh) * 2005-11-15 2006-04-12 北京茵普兰科技发展有限公司 钛合金的化学蚀刻制备工艺及该工艺所用蚀刻药剂
CN103290450A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及铝合金树脂复合体
CN103297565A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种手机壳体及其制备方法
CN103286995A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及其制备的铝合金树脂复合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3243651A4 *

Also Published As

Publication number Publication date
JP2018506449A (ja) 2018-03-08
KR20170090448A (ko) 2017-08-07
KR101969920B1 (ko) 2019-04-17
CN105522684B (zh) 2018-11-09
EP3243651A1 (en) 2017-11-15
EP3243651A4 (en) 2018-08-08
CN105522684A (zh) 2016-04-27
JP6530492B2 (ja) 2019-06-12
US20170282424A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016101706A1 (zh) 一种金属-树脂复合体及其制备方法和一种电子产品外壳
WO2016101703A1 (zh) 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法
WO2016101705A1 (zh) 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法
KR101621224B1 (ko) 쉘, 그 제조 방법 및 전자 제품에서의 응용 방법
JP4600701B2 (ja) 樹脂金属接合体及びその製造方法
WO2016101694A1 (zh) 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法
CN1717323B (zh) 铝合金与树脂组合物的复合体及其制造方法
JP5960847B2 (ja) アルミニウム合金樹脂複合材及びそれを調製する方法
US20110297549A1 (en) Aluminum alloy-and-resin composite and method for making the same
KR101711769B1 (ko) 금속 수지 복합체 및 금속 수지 복합체의 제조 방법
WO2016101704A1 (zh) 超弹性镍钛合金-弹性树脂复合体和超弹性镍钛合金基材及其制备方法以及电子产品外壳
JP2012193448A (ja) ステンレス鋼と樹脂の複合体及びその製造方法
CN108367470B (zh) 在金属表面上塑料包覆成型的方法和塑料-金属混杂部件
US20190322077A1 (en) Housing and method for fabrication thereof and application thereof
CN105196652B (zh) 一种金属‑树脂复合体及其制备方法
CN105522683B (zh) 经表面处理的镍钛合金基材和镍钛合金‑树脂复合体及其制备方法和电子产品外壳
US20130157006A1 (en) Method for making magnesium/magnesium alloy-and-resin composite and magnesium/magnesium alloy-and-resin composite thereof
US20200171722A1 (en) Manufacturing method of metal-polymer resin bonded component
KR20200065334A (ko) 이종 접합형 수지 금속 복합재의 제조방법
CN105524465A (zh) 抗黄变组合物和树脂组合物和金属-树脂复合体及制备方法和应用以及电子产品外壳
US20120301704A1 (en) Titanium/titanium alloy-and-resin composite and method for making the same
JP2007154071A (ja) めっき用樹脂成形品とそれを用いた射出成形回路部品
KR102327770B1 (ko) 금속-수지 접합체 및 그 제조방법
JP2014128939A (ja) 金属樹脂複合体の製造方法
JP5965684B2 (ja) めっき加工されたプラスチックシャーシ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871779

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015871779

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177017329

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017534537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE