WO2016101184A1 - Solar cell module having antifouling layer - Google Patents

Solar cell module having antifouling layer Download PDF

Info

Publication number
WO2016101184A1
WO2016101184A1 PCT/CN2014/094844 CN2014094844W WO2016101184A1 WO 2016101184 A1 WO2016101184 A1 WO 2016101184A1 CN 2014094844 W CN2014094844 W CN 2014094844W WO 2016101184 A1 WO2016101184 A1 WO 2016101184A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
coating
cell module
glass
transparent substrate
Prior art date
Application number
PCT/CN2014/094844
Other languages
French (fr)
Inventor
Xu Han
Tian TANG
Jingzhong WANG
Gang ZUO
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Priority to PCT/CN2014/094844 priority Critical patent/WO2016101184A1/en
Publication of WO2016101184A1 publication Critical patent/WO2016101184A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • C09D183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the disclosure is related to a solar cell module having an antifouling layer.
  • a solar cell typically will have a front sheet made of a transparent substrate such as glass to protect it from mechanical damage and moisture.
  • Solar panels can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications.
  • Roof-mounted solar power systems consist of solar cell modules held in place by racks or frames attached to roof-based mounting supports and are commonly used for residential applications.
  • Ground mounted solar panel systems are usually for large, utility-scale solar power plants. Their solar cell modules are held in place by racks or frames that are attached to ground based mounting supports.
  • solar panel refers to a set of solar cell modules electrically connected and mounted on a supporting structure. Solar panels must withstand rain, hail, heavy snow load, and cycles of heat and cold for many years.
  • Solar panel conversion efficiency typically in the 20 percent range, is reduced by dust, grime, pollen, and other environmental debris that accumulate on the solar panel. This dirt and debris blocks sunlight from being absorbed into the panels, decreasing their power conversion efficiency (PCE) .
  • PCE power conversion efficiency
  • a dirty solar panel can reduce its PCE by up to 30 percent in high dust/pollen or desert areas. Rain showers may effectively remove the accumulated dust particles away, however, the solar power plants are typically stationed in places with plenty sunlight and much less chance for cloudy or rainy locations, e.g., in the Gobi desert areas.
  • drizzling rain or dew water can easily mixed with dirt, which after drying to form “water stains” or “water streaks” on the front panel.
  • the present invention provides a solar cell module having improved antifouling performance, comprising:
  • a solar cell layer comprising a solar cell component and having a front side and a back side, where said solar cell component comprises one or a plurality of solar cells;
  • a front sheet composed of a transparent substrate and an antifouling layer, where said front sheet is positioned on the front side of the solar cell layer, and the antifouling layer is located on the front side of the transparent substrate, and the antifouling layer comprises at least one perfluoropolyether silane of Formula 1:
  • R f is R 3 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) -, R 3 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 -, or R 3 O (CF 2 CF 2 O) r CF 2 -;
  • R 1 is hydroxy or C 1 -C 4 alkoxy
  • R 2 is H or C 1 -C 4 alkyl
  • R 3 is C 1 -C 6 perfluoroalkyl
  • n are each independently an integer ranging from 3 to 20;
  • x is 1, 2, or 3;
  • p, q and r are each independently an integer ranging from 5 to 60.
  • the present invention also provides a method for preparing a solar cell module having improved antifouling performance, comprising:
  • a solar cell module composed of a transparent substrate as the front sheet and a coating composition comprising at least one perfluoropolyether silane of Formula 1 described herein;
  • mol % refers to mole percent
  • the term “produced from” is synonymous to “comprising” .
  • the terms “includes” , “including” , “comprises” , “comprising” , “has” , “having” , “contains” or “containing” , or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a composition, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, process, method, article, or apparatus.
  • “or” refers to an inclusive “or” and not to an exclusive “or” .
  • condition A “or” B is satisfied by any one of the following: A is true (or present) and B is false (or not present) , A is false (or not present) and B is true (or present) , and both A and B are true (or present) .
  • fluorinated refers to a group or compound contains at least one fluorine atom attached to a carbon atom.
  • perfluorinated refers to a group or compound having all C-H bonds replaced with C-F bonds. Examples include perfluoropolyether (PFPE) groups or compounds, or perfluoroether groups or compounds, and perfluoroalkane groups or compounds. Perfluorinated groups of compounds are a subset of fluorinated groups or compounds.
  • ether refers to a group or compound having an oxygen group between two carbon atoms.
  • hydrofluorocarbon means a compound containing hydrogen, carbon, and fluorine, which is a “fluorinated” compound and has been partially fluorinated.
  • a hydrofluorocarbon in this disclosure can be saturated or unsaturated.
  • hydrofluoroolefin or “unsaturated hydrofluorocarbon” as used herein, means a compound containing hydrogen, carbon, fluorine, and at least one carbon-carbon double bond.
  • saturated hydrofluorocarbon ether means a compound containing hydrogen, carbon, fluorine, and at least one ether functional group.
  • unsaturated hydrofluorocarbon ether as used herein, means a compound containing hydrogen, carbon, fluorine, at least one carbon-carbon double bond, and at least one ether functional group.
  • fluorocarbon or “perfluorocarbon” , as used herein interchangeably, means a compound containing carbon and fluorine, which is a “perfluorinated” compound and has all C-H bonds replaced with C-F bonds completely.
  • a (per) fluorocarbon in this disclosure can be saturated or unsaturated.
  • unsaturated fluorocarbon means a compound containing carbon, fluorine, and at least one carbon-carbon double bond.
  • unsaturated fluorocarbon ether as used herein, means a compound containing carbon, fluorine, at least one carbon-carbon double bond, and at least one ether functional group.
  • Solar cell modules of the present invention comprise:
  • a solar cell layer comprising a solar cell component and having a front side and a back side, where said solar cell component comprises one or a plurality of solar cells;
  • a front sheet composed of a transparent substrate and an antifouling layer, where said front sheet is positioned on the front side of the solar cell layer, and the antifouling layer is located on the front side of the transparent substrate.
  • Solar cell is meant to include any article which can convert light into electrical energy.
  • the various forms of solar cells include, for example, single crystal silicon solar cells, polycrystal silicon solar cells, microcrystal silicon solar cells, amorphous silicon based solar cells, copper indium selenide solar cells, compound semiconductor solar cells, dye sensitized solar cells, and the like.
  • the most common types of solar cells include multi-crystalline solar cells, thin film solar cells, compound semiconductor solar cells and amorphous silicon solar cells.
  • the solar cell layer it is preferably comprises one or a plurality of solar cells that are electrically interconnected or arranged in a flat plane.
  • the solar cell layer may further comprise electric wirings, such as cross ribbons and bus bars.
  • Suitable solar cell layer typically have a front light-receiving side (which is also referred to as a front side and, when in actual use conditions, generally faces toward the sun) and a back non-light-receiving side (which is also referred to as a back side and, when in actual use conditions, generally faces away from the sun) .
  • the solar cells define the boundary between the front and back sides of the solar cell layer.
  • all the materials that are present in the laminate layers positioned to the front light-receiving side of the solar cell layer should have sufficient transparency to allow adequate sunlight to reach the solar cells, e.g., having an average light transmittance ⁇ 70% at wave length of 400 nm to 1100 nm (measured by, e.g., UV/VIS/NiR spectrophotometers, with the incident light vertical the surface of the object that need to be measured) .
  • the materials present in the laminate layers positioned to the back non-light-receiving side of the solar cell layer need not be transparent.
  • the solar cell component is covered by protective and encapsulating materials, including a front sheet, back sheet, encapsulating layer (s) , or the like, to form a packaged solar cell module that is suitable for use in the outdoor natural environment.
  • a solar cell module is a packaged, connected assembly composed of one or a plurality of solar cells. Because the solar cell modules use light energy (photons) from the sun to generate electricity through the photovoltaic effect, they are also known as photovoltaic (PV) modules.
  • PV photovoltaic
  • the term “solar cell module” is used interchangeably herein with “PV module. ”
  • the solar cell module as described herein comprises a front sheet composed of a transparent substrate.
  • Suitable front sheet which is positioned on the front side of the solar cell layer, is composed of a transparent substrate may be derived from any suitable sheets or films.
  • Suitable sheets may be glass or plastic sheets, such as polycarbonates, acrylics, polyacrylates, cyclic polyolefins (e.g., ethylene norbornene polymers) , polystyrenes (preferably metallocene-catalyzed polystyrenes) , polyamides, polyesters, fluoropolymers, or combinations of two or more thereof.
  • the front sheet is composed of glass.
  • the term ′′glass′′ includes not only window glass, plate glass, silicate glass, sheet glass, low iron glass, tempered glass, tempered CeO-free glass, and float glass, but also colored glass, specialty glass (such as those containing ingredients to control solar heating) , coated glass (such as those sputtered with metals (e.g., silver or indium tin oxide) for solar control purposes) , E-glass, Toroglass, SOLEX TM glass (PPG Industries (U.S.A. ) ) , STARPHIRE TM glass (PPG Industries) , GORILLA TM glass (Corning Inc) , i.e.
  • Such specialty glasses are disclosed in, e.g., U.S. Pat. Nos. 4,615,989; 5,173,212; 5,264,286; 6,150,028; 6,340,646; 6,461,736; and 6,468,934.
  • the type of glass to be selected for a particular assembly may depend on the intended use.
  • the transparent substrate is selected from soda-lime-silica glass, silicate glass, alkali-aluminosilicate glass, fluorosilicate glass, phosphosilicate glass, boronsilicate glass, boron-phosphorus-silicate glass, and lead glass.
  • the solar cell pre-lamination assemblies described herein may also comprise a back sheet, which is positioned on the back non-light-receiving side of the solar cell layer, and may be derived from any suitable sheets or films.
  • Suitable back sheet may be glass or plastic sheets or films, such as polycarbonates, acrylics, polyacrylates, cyclic polyolefins (e.g., ethylene norbornene polymers) , polystyrenes (preferably metallocene-catalyzed polystyrenes) , polyamides, polyesters, fluoropolymers, or combinations of two or more thereof.
  • the plastic films may be bi-axially oriented polyester films (preferably poly (ethylene terephthalate) film) or fluoropolymer films (e.g., and films, from DuPont) . Fluoropolymer-polyester-fluoropolymer (e.g., ′′TPT′′ ) films are also preferred for some applications.
  • metal sheets such as aluminum foil, steel foil, galvanized steel foil, or ceramic plates may be utilized in forming the back sheet.
  • Solar cell module of the present invention may further comprise two transparent encapsulant layers positioned between the front sheet and the solar cell layer, and between the back sheet and the solar cell layer.
  • Suitable materials for the encapsulant layers include, without limitation to, materials comprising EVA, ionomer, poly (vinyl butyral) (PVB) , polyurethane (PU) , polyvinylchloride (PVC) , polyethylene, polyolefin block elastomer, ethylene/alkyl (meth) acrylate copolymer, ethylene/ (meth) acrylic acid copolymer, silicone elastomer, epoxy resin, and the like. It is noted, though, the materials used in the front encapsulant layers need to be sufficiently transparent to allow enough sunlight to reach the solar cell layer.
  • the PV modules described herein may also comprise other functional film or sheet layers (e.g., dielectric layers or barrier layers) embedded within the module.
  • functional film or sheet layers e.g., dielectric layers or barrier layers
  • poly (ethylene terephthalate) films coated with a metal oxide coating such as those disclosed in U.S. Patents 6,521,825 and 6,818,819 and European Patent EP1182710, may function as oxygen and moisture barrier layers in the transparent multilayer film laminates or PV modules.
  • the solar cell modules described herein may be prepared by any suitable lamination process.
  • the lamination process may be an autoclave or non-autoclave process.
  • the component layers of a solar cell pre-lamination assembly are stacked up in the desired order to form a pre-lamination assembly.
  • the assembly is then placed into a bag capable of sustaining a vacuum ( ′′a vacuum bag′′ ) , the air is drawn out of the bag by a vacuum line or other means, the bag is sealed while the vacuum is maintained (e.g., about 689-711 mm Hg) , and the sealed bag is placed in an autoclave at a pressure of about 11.3-18.8 bar, a temperature of about 130-180°C, or about 135-160°C, or about 145-155°C, for about 5-50 minutes, or about 5-40 minutes, or about 5-20 minutes.
  • a vacuum ring may be substituted for the vacuum bag.
  • the pre-lamination assembly may be heated in an oven at about 80-120°C, or about 90-100°C, for about 20-40 minutes, and thereafter, the heated assembly is passed through a set of nip rolls so that the air in the void spaces between the individual layers may be squeezed out, and the edge of the assembly sealed.
  • the assembly at this stage is referred to as a pre-press.
  • the pre-press may then be placed in an air autoclave where the temperature is raised to about 130-180°C, or about 135-160°C, or about 145-155°C, at a pressure of about 6.9-20.7 bar, or about 13.8 bar.
  • the solar cell laminates or modules also may be produced through non-autoclave processes.
  • non-autoclave processes are disclosed, for example, within U.S. Pat. Nos. 3,234,062; 3,852,136; 4,341,576; 4,385,951; 4,398,979; 5,536,347; 5,853,516; 6,342,116; and 5,415,909, US20040182493, EP1235683 B1, WO9101880 and WO03057478.
  • the non-autoclave processes include heating the pre-lamination assembly and the application of vacuum, pressure or both. For example, the assembly may be successively passed through heating ovens and nip rolls.
  • the lamination condition may be set at a temperature of about 130-180°C, or about 135-160°C, or about 145-155°C, a pressure of about 0.2 to 2 bar, or 0.5 to 1.5 bar, and a duration of about 5-50 minutes, or about 5-40 minutes, or about 5-20 minutes.
  • the antifouling layer located on the front side of the transparent substrate of the solar cell module comprises at least one perfluoropolyether (hereunder is abbreviated as “PFPE” ) silane of Formula 1:
  • PFPE perfluoropolyether
  • R f is R 3 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) -, R 3 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 -, or
  • R 1 is hydroxy or C 1 -C 4 alkoxy
  • R 2 is H or C 1 -C 4 alkyl
  • R 3 is C 1 -C 6 perfluoroalkyl
  • n are each independently an integer ranging from 3 to 20;
  • x is 1, 2, or 3;
  • p, q and r are each independently an integer ranging from 5 to 60.
  • the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
  • R f is R 3 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) -or R 3 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 -;
  • R 1 is hydroxy or C 1 -C 4 alkoxy
  • R 2 is H or C 1 -C 4 alkyl
  • R 3 is C 1 -C 6 perfluoroalkyl
  • n are each independently an integer ranging from 3 to 20;
  • x is 1, 2, or 3;
  • p, q and r are each independently an integer ranging from 6 to 45.
  • the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
  • R 1 is-OCH 3 or-OC 2 H 5 ;
  • n are each independently an integer ranging from 3 to 10;
  • p, q and r are each independently an integer ranging from 6 to 45.
  • the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
  • p, q and r are each independently an integer ranging from 7 to 30.
  • the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
  • R f is R 3 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) -;
  • R 1 is C 1 -C 4 alkoxy
  • R 3 is C 1 -C 6 perfluoroalkyl
  • n are each independently an integer ranging from 3 to 10;
  • x 3;
  • p, q and r are each independently an integer ranging from 7 to 30.
  • the antifouling layer comprises at least one PFPE silanes of Formula 1 selected from the group consisting of:
  • p, q and r are each independently an integer ranging from 5 to 60.
  • PFPE silanes of Formula 1 suitable for coating compositions to form the antifouling layer on the transparent substrates of the present invention have a molecular weight of at least about 1,000, and preferably, at least about 1,500. Preferably, their molecular weights are no greater than about 10,000.
  • the PFPE silane of Formula 1 disclosed herein can be prepared by contacting a carbinol of Formula 2 with a hydrosilane of Formula 3 in the presence of a catalyst 4 as shown in Scheme 1.
  • R 1 , R 2 , R f , m, n and x are as previously defined for Formula 1.
  • hydrosilane 3 to the carbinol of Formula 2 may be effected using a catalyst 4 suitable for hydrosilylation.
  • Hydrosilylation of olefin was firstly reported by Sommer in 1947 using peroxide as catalyst. It has become an important synthetic route to organosilicon compounds since the discovery of Speier catalyst (hexachloroplatinic acid) in 1957 and Karstedt catalyst in 1973 (See references: Sommer, L.H.; Pietrusza, E.W.; Whitmore, F.C.J. Am. Chem. Soc. 1947, 69, 188; Speier, J.L.; Webster, J.A.; Barnes, G.H. J. Am. Chem. Soc.
  • the catalyst 4 is a late transition metal catalyst based on Pt, Rh, Pd, Ru, Ir and Fe. More preferably, the catalyst 4 is a Pt based catalyst, also known as Karstedt catalyst, i.e. platinum (0) -1, 3-divinyl-1, 1, 3, 3-tetramethyldisiloxane complex.
  • Karstedt catalyst i.e. platinum (0) -1, 3-divinyl-1, 1, 3, 3-tetramethyldisiloxane complex.
  • the above mentioned catalysts may be readily synthesized by know methods or are commercially available.
  • the carbinol of Formula 2 may be prepared by contacting a compound of Formula 5 at a temperature below 10°C with a mixture of a compound of Formula 6 and a compound of Formula 7 as shown in Scheme 2.
  • the compounds of Formula 6 and Formula 7 are the same.
  • R f , m, and n are as previously defined for Formula 1;
  • R 4 is H or C 1 -C 3 alkyl
  • M is Mg, Li, or Sn
  • Hal is Cl, Br, or I.
  • PFPE esters or acids of Formula 5 are commercially available or may be readily synthesized by known methods.
  • anionic polymerization of hexafluoropropylene epoxide (C 3 F 6 O, HFPO) as described by Moore in U.S. Pat. No. 3,322,826 can result in a PFPE carbonyl fluoride R f C (O) F, wherein R f is C 3 F 7 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) -.
  • the methyl ester can also be prepared by the method described in WO2013/074299 A9, preparative example 2.
  • PFPE esters of Formula 5 where R f is C 3 F 7 O (CF 2 CF 2 CF 2 O) q CF 2 CF 2 - can be produced by sequential oligomerization and fluorination of 2, 2, 3, 3-tetrafluorooxetane.
  • R f is C 2 F 5 O (CF 2 CF 2 O) r CF 2 -
  • C 2 F 4 O tetrafluoroethylene oxide
  • the carbonyl fluoride produced initially from polymerization may be converted into a corresponding acid or ester of Formula 5 by reactions well known to those skilled in the art.
  • Suitable fluorinated carboxylic acid are commercially available, for example, C 3 F 7 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) COOH under the trade name 157FS with different number average molecular weight (M n ) are available from E.I. DuPont de Nemours Co., Wilmington, DE, USA, hereunder is referred as “DuPont. ”
  • a mixture of perfluoropolyether acid or ester of Formula 5 may be used to yield a mixture of the fluorinated polyether silanes of Formula 1, and coating composition made therefrom.
  • the perfluoropolyether silanes of Formula 1 having a PFPE moiety with a number average molecular weight of at least more than about 1,000 and less than about 10,000; or from about 1,500 to about 8,000.
  • the present invention also provides a method for forming an antifouling layer on a solar cell module, comprising:
  • a solar cell module having a transparent substrate as the front sheet and a coating composition
  • coating composition comprising at least one perfluoropolyether silane of Formula 1 described herein.
  • Suitable coating composition to be applied to the solar cell modules may comprise:
  • R f , R 1 , R 2 , R 3 , m, n, x, p, q, and r are as defined herein.
  • weight % is based on the total weight of the coating composition.
  • the coating composition comprises at least one solvent.
  • a coating composition of the present invention for many transparent substrates may include one or more solvents.
  • the at least one solvent is a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
  • the solvent or mixture of solvents used must be capable of dissolving at least 0.01% by weight of the PFPE silane of Formula 1. If the solvent or mixture of solvents do not meet the criteria, it may not be possible to obtain a homogeneous composition having the PFPE silane of Formula 1, solvent (s) , and optional additives. Although such non-homogeneous compositions could be used to treat a substrate, the coating obtained therefrom will generally not have the desired oil/water repellency and will not have sufficient durability properties.
  • Suitable solvents have normal boiling points of from about 50°C to about 150°C; and preferably, from about 60°C to about 120°C and can be a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
  • the at least one solvent has normal boiling points of from about 50°C to about 150°C; or from about 60°C to about 120°C. In some embodiments of the present coating composition, the at least one solvent is a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
  • Suitable fluorinated solvents include hydrofluorocarbons, hydrofluorocarbon ether, fluorocarbons, fluorocarbon ether, and mixtures thereof. These fluorinated solvents can be saturated or unsaturated. In some embodiments of this invention, the fluorinated solvent is selected from the group consisting of hydrofluorocarbons, hydrofluorocarbon ethers, fluorocarbons, fluorocarbon ethers, and mixtures thereof.
  • fluorinated solvents examples include hydrofluorocarbons such as pentafluorobutane, available from Solvay Solexis, or 2, 3-dihydrodecafluoropentane (CF 3 CFHCFHCF 2 CF 3 ) available from DuPont as VERTREL TM ; hydrofluorocarbon ethers including alkyl perfluoroalkyl ether such as methyl perfluorobutyl ether or ethyl perfluorobutyl ether, available from 3M as NOVEC TM HFE 7100 and NOVEC TM HFE 7200, respectively; fluorocarbons such as perfluorohexane, perfluoroheptane, or perfluorooctane, available from 3M.
  • hydrofluorocarbons such as pentafluorobutane, available from Solvay Solexis, or 2, 3-dihydrodecafluoropentane (CF 3 CFHCFHCF 2 CF 3
  • the at least one solvent comprises, consists essentially of, or consists of a saturated hydrofluorocarbon. In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of CF 3 CHFCHFCF 2 CF 3 .
  • unsaturated fluorocarbons have lower global warming potentials (GWPs) than their saturated counterparts.
  • the unsaturated fluorocarbon include hydrofluoroolefins, alkyl perfluoroalkene ethers, and mixtures thereof.
  • the alkyl perfluoroalkene ether is methyl perfluoroalkene ether, ethyl perfluoroalkene ether, or mixtures thereof. More preferably, the methyl perfluoroalkene ether is methyl perfluoroheptene ether, methyl perfluoropentene ether, or mixtures thereof.
  • methyl perfluoroheptene ether or methyl perfluoropentene ether is a mixture of its isomers respectively.
  • the at least one solvent comprises, consists essentially of, or consists of an unsaturated fluorocarbon. In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of a hydrofluoroolefin. In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of an alkyl perfluoroalkene ether. In some embodiments of this invention, the alkyl perfluoroalkene ether is methyl perfluoroalkene ether, ethyl perfluoroalkene ether, or mixtures thereof. In some embodiments of this invention, the methyl perfluoroalkene ether is methyl perfluoroheptene ether, methyl perfluoropentene ether, or mixtures thereof.
  • Suitable non-fluorinated solvents include alcohols, ketones, nitriles, cyclic ethers, noncyclic ethers, and mixtures thereof.
  • the non-fluorinated solvent is selected from the group consisting of alcohols, ketones, nitriles, cyclic ethers, noncyclic ethers, and mixtures thereof.
  • non-fluorinated solvents examples include alcohols such as methanol, ethanol, 1-propyl alcohol, 2-propanol; ketones such as acetone or methyl ethyl ketone; nitriles such as acetonitrile, cyclic ethers such as tetrahydrofuran, noncyclic ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, and dipropylene glycol monomethyl ether, and mixtures thereof.
  • alcohols such as methanol, ethanol, 1-propyl alcohol, 2-propanol
  • ketones such as acetone or methyl ethyl ketone
  • nitriles such as acetonitrile
  • cyclic ethers such as tetrahydrofuran
  • noncyclic ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, and dipropylene
  • the non-fluorinated solvent is selected from the group consisting of methanol, ethanol, 1-proponol, 2-proponol, acetone, methyl ethyl ketone, acetonitrile, tetrahydrofuran, and mixtures thereof. In some embodiments of this invention, the non-fluorinated solvent is selected from the group consisting of methanol, ethanol, 1-proponol, 2-proponol, tetrahydrofuran, and mixtures thereof.
  • the amount of the at least one solvent used in the coating composition can be selected to provide the desired viscosity for application of the coating composition to a siliceous substrate.
  • the coating compositions based on the total weight of the coating compositions, may contain at least up to 95 weight %, up to 99.9 weight %, or up to 99.99 weight % of at least one solvent.
  • the coating compositions can comprise 95 to 99.99 weight %, 97 to 99.9 weight % of at least one solvent.
  • a coating composition of the present invention may further comprise additives such as curing catalysts, provided they do not react with the perfluoropolyether silane of Formula 1.
  • the curing catalysts can be any of the catalysts typically used to cure reactive organosilanes by hydrolysis and condensation. Suitable curing catalysts are those that are soluble in the coating composition (e.g., in the fluorinated solvent, non-fluorinated solvent, or mixtures thereof) .
  • the at least one curing catalyst comprises, consists essentially of, or consists of acids, bases, or water.
  • acids include inorganic acids, alkyl sulfonic acids, halogenated alkyl sulfonic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof.
  • inorganic acids include HCl, H 2 SO 4 , HNO 3 , and mixtures thereof.
  • carboxylic acids include formic acid, acetic acid, trifluoroacetic acid, and mixtures thereof.
  • bases include inorganic bases, substituted and unsubstituted trialkylamines, pyridine and its derivatives, and mixtures thereof.
  • inorganic bases include NaOH, KOH, and mixtures thereof.
  • the curing catalysts are used in amounts that are soluble in the coating compositions.
  • the curing agents are present in an amount ranging from about 0.001-5 weight %, about 0.01-3 weight %, or in a range of about 0.1-2 weight %, based on a total weight of the coating composition.
  • Suitable coating composition can be applied onto the transparent substrate by either wet coating methods or dry coating methods.
  • dry coating methods include chemical vapor deposition (CVD) and physical vapor deposition (PVD) .
  • PVD physical vapor deposition
  • wet coating methods include spray coating, knife coating, dip coating, spin coating, meniscus coating, flow coating, roll coating, gravure coating, or the like.
  • the coating composition is applied using a method selected from spray coating, knife coating, dip coating, spin coating, meniscus coating, flow coating, roll coating, and gravure coating.
  • the surface of the transparent substrate for the front sheet of the present PV modules should be extremely clean prior to applying the coating composition for optimum coating characteristics, particularly durability, to be obtained. That is, the surface of the transparent substrate to be coated should be substantially free of organic contamination prior to coating.
  • Cleaning techniques depend on the type of transparent substrate and include, for example, ultrasound cleaning in a solvent bath (e.g., ethanol/chloroform) , gas-phase discharge techniques such as air corona treatment, plasma treatment, UV ozone treatment, washing with detergent and/or hot water, or combinations of these techniques. Specific examples of support surface preparation are described in the Example section.
  • any coating composition comprising the PFPE silane of Formula 1 described herein can be used to form the antifouling layer on the front side of the transparent substrate for the front sheet of the solar cell module.
  • the preferred transparent substrate for the front sheet of the solar module is glass
  • the glass can be considered to be a subset of siliceous substrates.
  • the term ′′curing′′ refers to the reaction of the silyl group of the PFPE silane of Formula 1 with the transparent substrate.
  • the term ′′cured coating′′ refers to a layer of coating formed by a coating composition that has undergone curing. The curing reaction results in the formation of a -Si-O-Si-group (i.e. a siloxane group) and the covalent attachment of the PFPE silane to at least one surface of the siliceous substrate.
  • a si-Si-O-Si-group i.e. a siloxane group
  • the cured coating shall comprise a reaction product of the present coating composition with at least one surface of the siliceous substrate, said reaction product is covalently attached to the siliceous substrate surface.
  • a cured coating prepared from the coating composition containing the PFPE silane of Formula 1 may also include unreacted or uncondensed silyl groups. It is believed that the curing reaction is formed as a result of hydrolysis of the silyl groups of the PFPE silane with residual water, which is either in the coating composition or adsorbed to the substrate surface, for example, and then condensation of the hydrolyzed silyl groups on and to the siliceous substrate surface.
  • sufficient water is present for the preparation of a durable coating if the coating method is carried out at room temperature in the atmosphere, preferably, with a relative humidity (RH) of at least about 30% and up to 90% at an elevated temperature, such as at least about 30°C or higher.
  • RH relative humidity
  • the coating composition is dried to remove solvent and then cured at a temperature in a range of about 60°C to about 160°C for a time sufficient for curing to take place.
  • the coated substrate is often held at the curing temperature for at least 5 minutes and up to 24 hours. The drying and curing steps can occur concurrently or separately by adjustment of the temperature.
  • the present solar cell modules have an antifouling layer cured on the front panel of the solar cell module. Said antifouling layer effectively reduces dust accumulation and hot spots generation problems, thereby reduces PCE loss and prolong the utility life of the solar cell modules.
  • the antifouling layer of the present solar cell module can have any desired thickness.
  • the antifouling layer thickness is generally greater than a monolayer, which is typically greater than about 10 Angstroms thick. Generally, it is less than about 500 Angstroms thick, and preferably, less than about 400 Angstroms thick.
  • the layer thickness of the antifouling layer corresponds to at least one monolayer. This thickness is often in a range of 10 to 400 Angstroms. In some embodiments, the overall coating thickness of the cured coating composition can be in a range about 10 to 400, about 50 to 300, about 100 to 250, or about 150 to 200 Angstroms.
  • PE Preparative Example
  • E stands for “Example”
  • CE stands for “Comparative Example” is followed by a number indicating in which example the PFPE silanes and their precursors is synthesized, or prepared. The examples and comparative examples were all prepared and tested in a similar manner. Percentages are based by mole unless otherwise indicated.
  • Perfluoropolyether methyl ester C 3 F 7 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) C (O) OCH 3 , p is about 9, M n is approximately 1600, derived from 157FSL, which available from DuPont.
  • Allymagnesium chloride CAS Number: 2622-05-1, 2 M solution in THF, purchased from Sigma-Aldrich.
  • NOVEC TM 7100 methyl perfluorobutyl ether, CAS number: 163702-07-6, purchased from 3M Company (Saint Pual, MN, USA) , b.p. is 64.5°C.
  • Karstedt catalyst platinum (0) -1, 3-divinyl-1, 1, 3, 3-tetramethyldisiloxane complex, CAS number 68478-92-2, 2% Pt solution in xylene, purchased from Sigma-Aldrich.
  • 1,3-Bis (trifluoromethyl) benzene CAS Number: 402-31-3, purchased from Alfa Aesar.
  • Triethoxysilane CAS Number: 998-30-1, purchased from TCI.
  • Perfluoropolyether trimethoxysilylpropyl ether (Silyl ether-I) : CAS number: 211931-77-0, C 3 F 7 O (CF (CF 3 ) CF 2 O) b CF (CF 3 ) CH 2 O (CH 2 ) 3 Si (OCH 3 ) 3 , b is about 9, M n is approximately 1800, obtained from DuPont, and was used in Comparative Example 1.
  • VERTREL TM XF 2, 3-dihydrodecafluoropentane, CAS number: 138495-42-8, obtained from DuPont DC&F, b.p. is 55°C.
  • Mighty ZS-118 a detergent, obtained from Zhongsheng Rongtian (Beijing) International Technology and Trading Co., Ltd.
  • Glass slides Microscope slides with the size of 7.62 ⁇ 2.54 ⁇ 0.12cm 3 , purchased from Sinopharm Chemical Reagent Co., Ltd.
  • Solar cell module composed of a glass front sheet, a silicon solar cell, an EVA sheet and a TPT back sheet, were assembled in sequence as specified below with an aluminum frame.
  • the silicon solar cell was a 5-inch monocrystalline silicon solar cells, purchased from JA Solar Co., Ltd.
  • the glass (i.e. front sheet) was embossed glass with the size of 29.8x 27.8x0.32cm 3 , purchased from Suzhou Qinghua Optical Lenses Co., Ltd.
  • the EVA sheet was REVAX TM ethylene/vinyl acetate tablets with 0.45 mm thick, purchased from RuiYang photovoltaic materials Co., Ltd.
  • TPT back sheet was purchased from Taiflex Scientific Co., Ltd.
  • the aluminum frame purchased from Jiangyin Lu Tong Trade Co., Ltd.
  • the components of the solar cell modules were arranged in the sequence of glass/EVA sheet/solar cells/EVA sheet/back sheet to form a pre-assembly.
  • the pre-assembly was laminated using a laminator (Meier Solar Solutions GmbH (Germany) , model: ICOLAM 10/08) at 145°C under vacuum for 3 minutes, and was pressed under a pressure of 1 atm for 11 min. Then the laminated solar cell assembly was placed in an aluminum frame to complete the module.
  • Each of the prepared solar cell modules was composed of 4 monocrystalline silicon solar cells arranged in two rows ⁇ two columns.
  • Product 1a has a general formula of C 3 F 7 O (CF (CF 3 ) CF 2 O) p CF (CF 3 ) -C (OH) ( (CH 2 ) 3 Si (OCH 3 ) ) 2 and p is about 9.
  • the glass slides size: 7.62 ⁇ 2.54 ⁇ 0.12, were placed in a glass vertical staining jar containing 100 mL of a 5 weight% detergent solution and were sonicated in an ultrasonic bath (Shanghai Kudos Ultrasonic Instrument Co., Ltd. model: Kudos SK5210LHC) for 10 minutes, followed by deionized water rinsing for 4 times. Each rinsing step was consisted of placing the slides in 100 mL of fresh deionized water and sonicated for 3 minutes. The cleaned slides were dried in an oven at 100°C for 10 minutes, then treated with UV ozone in a UVO cleaner machine (Jelight Company Inc., Model No. 42-220) for 20 minutes.
  • a UVO cleaner machine Jelight Company Inc., Model No. 42-220
  • Coating compositions having either 0.2 weight % of a PFPE silane of Formula 1a (prepared according to PE1) , or the silyl ether-I (obtained from DuPont) in VERTREL TM XF were prepared and used in E1 and CE1, respectively.
  • the cleaned slides (4 slides per example) were then dipped in the respective coating composition (50 mL) for 5 minutes, and allowed to dry in ambient temperature for 10 minutes, and cured in an oven set at 130°C for 25 minutes, then at 85°C with 85% RH for 24 hours.
  • the front surface of the solar cell module was covered by cloth immersed with 2.5 mol/L NaOH solutions for 2 hours, then rinsed with deionized water, and dried.
  • Coating compositions having either 0.2 weight % of a PFPE silane of Formula 1a, prepared in PE1, or the silyl ether-I (obtained from DuPont) in VERTREL TM XF were prepared and used in E2 and CE2, respectively.
  • Each coating composition (20 mL) was applied to one surface-cleaned solar cell module, which were placed flat on bench top, with a spray gun (Anest Iwata, part number of RG-3L-3S (Yokohama, Japan) ) under a pressure of 0.1 MPa.
  • the wet solar cell module were then dried and cured in an oven set at 60°C with 60% RH for 1 hour, then kept at 55°C with 60% RH for overnight.
  • Contact angle measurements can be used to determine the surface energy of a substrate. Generally, a larger contact angle indicates a smaller surface energy.
  • contact angle means the angle formed between the liquid/substrate surface interface and the liquid/air interface.
  • static contact angle means the contact angle measured on a static sessile drop of liquid on a substrate surface.
  • WCA Static water contact angles
  • UV aging was tested using a BR-UV-PV tester, obtained from Shanghai B.R. SCI. Instrument Co., Ltd.
  • Anti-soiling test was conducted by spraying water on top of the front panels of tilted solar cell modules (tilted angle was about 35°) from squeezable wash bottle, and then sprinkling dry sand (150g, particle size ⁇ 550 ⁇ m) over the wetted front panels.
  • the module of E3 provided less reduction in PCE (1.2%) after the soiling test than that of CE3 (1.9%) , and it indicated that less dust particles were accumulated on the front glass surface of E3.
  • the data is in agreement with the WCA measured for E3 and CE3, that a larger WCA represents a lower surface energy, higher water repellency, thereby a better antifouling performance.
  • the data of working examples support that the present solar cell modules have an antifouling layer on the front panel can effectively reduce dust accumulation and unexpectedly also have a better resistance to UV aging, thereby reduces PCE loss and prolong the utility life of the solar cell modules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

This disclosure relates to a solar cell module comprising: (i) a solar cell layer, and (ii) a front sheet composed of a transparent substrate and an antifouling layer being located on the front side of the transparent substrate, wherein the antifouling layer comprises a perfluoropolyether silane of Formula (1), wherein Rf is R3O(CF(CF3)CF2O)pCF(CF3)-, R3O(CF2CF2CF2O)qCF2CF2-, or R3O(CF2CF2O)rCF2-; R1, R2, R3, m, n, x, p, q, and r are defined in the disclosure. Said antifouling layer not only improves the power conversion efficiency by reducing the accumulation of dust particles, but also prolongs the utility life of the solar cell module due to excellent UV stability.

Description

[根据细则37.2由ISA制定的发明名称] SOLAR CELL MODULE HAVING ANTIFOULING LAYER FIELD OF THE INVENTION
The disclosure is related to a solar cell module having an antifouling layer.
BACKGROUND OF THE INVENTION
In order to meet the growing demand for energy consumption needs, the development of solar energy has attracted wide attention. It uses a variety of technical solutions to convert solar energy into electricity. The most mature design is to use solar cell modules to serve the above purpose. Solar cell module is a packaged, connected assembly of solar cells.
To date, the majority of solar cell modules use wafer-based crystalline silicon cells or thin-film cells based on cadmium telluride or silicon. A solar cell typically will have a front sheet made of a transparent substrate such as glass to protect it from mechanical damage and moisture.
Solar panels can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Roof-mounted solar power systems consist of solar cell modules held in place by racks or frames attached to roof-based mounting supports and are commonly used for residential applications. Ground mounted solar panel systems are usually for large, utility-scale solar power plants. Their solar cell modules are held in place by racks or frames that are attached to ground based mounting supports. The term “solar panel” refers to a set of solar cell modules electrically connected and mounted on a supporting structure. Solar panels must withstand rain, hail, heavy snow load, and cycles of heat and cold for many years.
Solar panel conversion efficiency, typically in the 20 percent range, is reduced by dust, grime, pollen, and other environmental debris that accumulate on the solar panel. This dirt and debris blocks sunlight from being absorbed into the panels, decreasing their power conversion efficiency (PCE) . In some instance, a dirty solar panel can reduce its PCE by up to 30 percent in high dust/pollen or desert areas. Rain showers may effectively remove the accumulated dust particles away, however, the solar power plants are typically stationed in places with plenty sunlight and much less chance for cloudy or rainy locations, e.g., in the Gobi desert areas. Moreover, drizzling rain or dew water can easily mixed with dirt, which after drying to form “water stains” or “water streaks” on the front panel. These stains and/or streaks are difficult to clean, and can locally attract dust particles for further accumulation. These dust patches not only block the sunlight but also become hot spots to absorb more heat, that will accelerate the aging of the solar cells, and may even cause a fire. In fact, many solar power plants perform cleaning of the solar panels on a regular schedule which is labor intensive and costly.
Therefore, there is a need for technological solution that can reduce dust accumulation and hot spots generation problems with less frequent manual cleaning frequency to maintain acceptable PCE, and prolong the life of the solar cell modules.
SUMMARY OF THE INVENTION
The present invention provides a solar cell module having improved antifouling performance, comprising:
(i) a solar cell layer comprising a solar cell component and having a front side and a back side, where said solar cell component comprises one or a plurality of solar cells; and
(ii) a front sheet composed of a transparent substrate and an antifouling layer, where said front sheet is positioned on the front side of the solar cell layer, and the antifouling layer is located on the front side of the transparent substrate, and the antifouling layer comprises at least one perfluoropolyether silane of Formula 1:
Figure PCTCN2014094844-appb-000001
wherein
Rf is R3O (CF (CF3) CF2O) pCF (CF3) -, R3O (CF2CF2CF2O) qCF2CF2-, or R3O (CF2CF2O) rCF2-;
R1 is hydroxy or C1-C4 alkoxy;
R2 is H or C1-C4 alkyl;
R3 is C1-C6 perfluoroalkyl;
m and n are each independently an integer ranging from 3 to 20;
x is 1, 2, or 3; and
p, q and r are each independently an integer ranging from 5 to 60.
The present invention also provides a method for preparing a solar cell module having improved antifouling performance, comprising:
i. providing a solar cell module composed of a transparent substrate as the front sheet and a coating composition comprising at least one perfluoropolyether silane of Formula 1 described herein;
ii. applying the coating composition onto the front side of the transparent substrate of the solar cell module;
iii. curing the coated solar cell module at a temperature from about 60℃ to about 160℃ for about 5 min to about 24 hours; and
iv. cooling the solar cell module having an antifouling layer comprising the cured coating composition on the front side of the transparent substrate to ambient temperature.
Various other features, aspects, and advantages of the present invention will become more apparent with reference to the following description, examples, and appended claims.
DETAILS OF THE INVENTION
All publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
Unless stated otherwise, all percentages, parts, ratios, etc., are by weight.
“mol %” refers to mole percent.
When an amount, concentration, or other value or parameter is given as either a range, preferred range or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range.
As used herein, the term “produced from” is synonymous to “comprising” . As used herein, the terms “includes” , “including” , “comprises” , “comprising” , “has” , “having” , “contains” or “containing” , or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive “or” and not to an exclusive “or” . For example, a condition A “or” B is satisfied by any one of the following: A is true (or present) and B is false (or not present) , A is false (or not present) and B is true (or present) , and both A and B are true (or present) .
Also, the indefinite articles “a” and “an” preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore “a” or “an” should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.
When the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to.
The term ‘fluorinated” refers to a group or compound contains at least one fluorine atom attached to a carbon atom. The term ‘perfluorinated” refers to a group or compound having all C-H bonds replaced with C-F bonds. Examples include perfluoropolyether (PFPE) groups or compounds, or perfluoroether groups or compounds, and perfluoroalkane groups or compounds. Perfluorinated groups of compounds are a subset of fluorinated groups or compounds.
The term “ether” refers to a group or compound having an oxygen group between two carbon atoms.
The term “hydrofluorocarbon” , as used herein, means a compound containing hydrogen, carbon, and fluorine, which is a “fluorinated” compound and has been partially fluorinated. A hydrofluorocarbon in this disclosure can be saturated or unsaturated. The term “hydrofluoroolefin” or “unsaturated hydrofluorocarbon” as used herein, means a compound containing hydrogen, carbon, fluorine, and at least one carbon-carbon double bond. The term “saturated hydrofluorocarbon ether” , as used herein, means a compound containing hydrogen, carbon, fluorine, and at least one ether functional group. The term “unsaturated hydrofluorocarbon ether” , as used herein, means a compound containing hydrogen, carbon, fluorine, at least one carbon-carbon double bond, and at least one ether functional group.
The term “fluorocarbon” or “perfluorocarbon” , as used herein interchangeably, means a compound containing carbon and fluorine, which is a “perfluorinated” compound and has all C-H bonds replaced with C-F bonds completely. A (per) fluorocarbon in this disclosure can be saturated or unsaturated. The term “unsaturated fluorocarbon” , as used herein, means a compound containing carbon, fluorine, and at least one carbon-carbon double bond. The term “unsaturated fluorocarbon ether” , as used herein, means a compound containing carbon, fluorine, at least one carbon-carbon double bond, and at least one ether functional group.
The materials, methods, and examples herein are illustrative only and, except as specifically stated, are not intended to be limiting. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.
Solar cell module
Solar cell modules of the present invention comprise:
(i) a solar cell layer comprising a solar cell component and having a front side and a back side, where said solar cell component comprises one or a plurality of solar cells; and
(ii) a front sheet composed of a transparent substrate and an antifouling layer, where said front sheet is positioned on the front side of the solar cell layer, and the antifouling layer is located on the front side of the transparent substrate.
Solar cell is meant to include any article which can convert light into electrical energy. Examples of the various forms of solar cells include, for example, single crystal silicon solar cells, polycrystal silicon solar cells, microcrystal silicon solar cells, amorphous silicon based  solar cells, copper indium selenide solar cells, compound semiconductor solar cells, dye sensitized solar cells, and the like. The most common types of solar cells include multi-crystalline solar cells, thin film solar cells, compound semiconductor solar cells and amorphous silicon solar cells. Within the solar cell layer, it is preferably comprises one or a plurality of solar cells that are electrically interconnected or arranged in a flat plane. In addition, the solar cell layer may further comprise electric wirings, such as cross ribbons and bus bars.
Suitable solar cell layer typically have a front light-receiving side (which is also referred to as a front side and, when in actual use conditions, generally faces toward the sun) and a back non-light-receiving side (which is also referred to as a back side and, when in actual use conditions, generally faces away from the sun) . The solar cells define the boundary between the front and back sides of the solar cell layer. In the solar cell module, all the materials that are present in the laminate layers positioned to the front light-receiving side of the solar cell layer should have sufficient transparency to allow adequate sunlight to reach the solar cells, e.g., having an average light transmittance ≥70% at wave length of 400 nm to 1100 nm (measured by, e.g., UV/VIS/NiR spectrophotometers, with the incident light vertical the surface of the object that need to be measured) . The materials present in the laminate layers positioned to the back non-light-receiving side of the solar cell layer need not be transparent.
In applications, the solar cell component is covered by protective and encapsulating materials, including a front sheet, back sheet, encapsulating layer (s) , or the like, to form a packaged solar cell module that is suitable for use in the outdoor natural environment. In other words, a solar cell module is a packaged, connected assembly composed of one or a plurality of solar cells. Because the solar cell modules use light energy (photons) from the sun to generate electricity through the photovoltaic effect, they are also known as photovoltaic (PV) modules. The term “solar cell module” is used interchangeably herein with “PV module. ”
The solar cell module as described herein comprises a front sheet composed of a transparent substrate. Suitable front sheet, which is positioned on the front side of the solar cell layer, is composed of a transparent substrate may be derived from any suitable sheets or films. Suitable sheets may be glass or plastic sheets, such as polycarbonates, acrylics, polyacrylates, cyclic polyolefins (e.g., ethylene norbornene polymers) , polystyrenes (preferably metallocene-catalyzed polystyrenes) , polyamides, polyesters, fluoropolymers, or combinations of two or more thereof. Preferably, the front sheet is composed of glass.
The term ″glass″ includes not only window glass, plate glass, silicate glass, sheet glass, low iron glass, tempered glass, tempered CeO-free glass, and float glass, but also colored glass, specialty glass (such as those containing ingredients to control solar heating) , coated glass (such as those sputtered with metals (e.g., silver or indium tin oxide) for solar control purposes) , E-glass, Toroglass, SOLEXTM glass (PPG Industries (U.S.A. ) ) , STARPHIRETM glass (PPG Industries) , GORILLATM glass (Corning Inc) , i.e. a stressed alkali- aluminosilicate glass, and DRAGONTAILTM glass (Asahi Glass Co. ) . Such specialty glasses are disclosed in, e.g., U.S. Pat. Nos. 4,615,989; 5,173,212; 5,264,286; 6,150,028; 6,340,646; 6,461,736; and 6,468,934. The type of glass to be selected for a particular assembly may depend on the intended use.
In some embodiments, in the present solar cell module, the transparent substrate is selected from soda-lime-silica glass, silicate glass, alkali-aluminosilicate glass, fluorosilicate glass, phosphosilicate glass, boronsilicate glass, boron-phosphorus-silicate glass, and lead glass.
The solar cell pre-lamination assemblies described herein may also comprise a back sheet, which is positioned on the back non-light-receiving side of the solar cell layer, and may be derived from any suitable sheets or films.
Suitable back sheet may be glass or plastic sheets or films, such as polycarbonates, acrylics, polyacrylates, cyclic polyolefins (e.g., ethylene norbornene polymers) , polystyrenes (preferably metallocene-catalyzed polystyrenes) , polyamides, polyesters, fluoropolymers, or combinations of two or more thereof. The plastic films may be bi-axially oriented polyester films (preferably poly (ethylene terephthalate) film) or fluoropolymer films (e.g.,
Figure PCTCN2014094844-appb-000002
Figure PCTCN2014094844-appb-000003
and
Figure PCTCN2014094844-appb-000004
films, from DuPont) . Fluoropolymer-polyester-fluoropolymer (e.g., ″TPT″ ) films are also preferred for some applications. In addition, metal sheets, such as aluminum foil, steel foil, galvanized steel foil, or ceramic plates may be utilized in forming the back sheet.
Solar cell module of the present invention may further comprise two transparent encapsulant layers positioned between the front sheet and the solar cell layer, and between the back sheet and the solar cell layer. Suitable materials for the encapsulant layers include, without limitation to, materials comprising EVA, ionomer, poly (vinyl butyral) (PVB) , polyurethane (PU) , polyvinylchloride (PVC) , polyethylene, polyolefin block elastomer, ethylene/alkyl (meth) acrylate copolymer, ethylene/ (meth) acrylic acid copolymer, silicone elastomer, epoxy resin, and the like. It is noted, though, the materials used in the front encapsulant layers need to be sufficiently transparent to allow enough sunlight to reach the solar cell layer.
In addition, the PV modules described herein may also comprise other functional film or sheet layers (e.g., dielectric layers or barrier layers) embedded within the module. For example, poly (ethylene terephthalate) films coated with a metal oxide coating, such as those disclosed in U.S. Patents 6,521,825 and 6,818,819 and European Patent EP1182710, may function as oxygen and moisture barrier layers in the transparent multilayer film laminates or PV modules.
The solar cell modules described herein may be prepared by any suitable lamination process. The lamination process may be an autoclave or non-autoclave process.
In one suitable process, the component layers of a solar cell pre-lamination assembly are stacked up in the desired order to form a pre-lamination assembly. The assembly is then placed into a bag capable of sustaining a vacuum ( ″a vacuum bag″ ) , the air is drawn out of  the bag by a vacuum line or other means, the bag is sealed while the vacuum is maintained (e.g., about 689-711 mm Hg) , and the sealed bag is placed in an autoclave at a pressure of about 11.3-18.8 bar, a temperature of about 130-180℃, or about 135-160℃, or about 145-155℃, for about 5-50 minutes, or about 5-40 minutes, or about 5-20 minutes. A vacuum ring may be substituted for the vacuum bag. One type of suitable vacuum bag is disclosed within U.S. Pat. No. 3,311,517. Following the heat and pressure cycle, the air in the autoclave is cooled without adding additional gas to maintain pressure in the autoclave. After about 20-40 minutes of cooling, the excess air pressure is vented and the laminates are removed from the autoclave.
Alternatively, the pre-lamination assembly may be heated in an oven at about 80-120℃, or about 90-100℃, for about 20-40 minutes, and thereafter, the heated assembly is passed through a set of nip rolls so that the air in the void spaces between the individual layers may be squeezed out, and the edge of the assembly sealed. The assembly at this stage is referred to as a pre-press. The pre-press may then be placed in an air autoclave where the temperature is raised to about 130-180℃, or about 135-160℃, or about 145-155℃, at a pressure of about 6.9-20.7 bar, or about 13.8 bar. These conditions are maintained for about 5-50 minutes, or about 5-40 minutes, or about 5-20 minutes, and after which, the air is cooled while no more air is added to the autoclave. After about 20-40 minutes of cooling, the excess air pressure is vented, the laminats are removed from the autoclave.
The solar cell laminates or modules also may be produced through non-autoclave processes. Such non-autoclave processes are disclosed, for example, within U.S. Pat. Nos. 3,234,062; 3,852,136; 4,341,576; 4,385,951; 4,398,979; 5,536,347; 5,853,516; 6,342,116; and 5,415,909, US20040182493, EP1235683 B1, WO9101880 and WO03057478. Generally, the non-autoclave processes include heating the pre-lamination assembly and the application of vacuum, pressure or both. For example, the assembly may be successively passed through heating ovens and nip rolls. For example, if a vacuum lamination is used, the lamination condition may be set at a temperature of about 130-180℃, or about 135-160℃, or about 145-155℃, a pressure of about 0.2 to 2 bar, or 0.5 to 1.5 bar, and a duration of about 5-50 minutes, or about 5-40 minutes, or about 5-20 minutes.
The lamination processes described above, however, should not be considered limiting. Essentially any lamination process may be used, provided that the temperature, pressure, and duration conditions are met.
Antifouling layer
The antifouling layer located on the front side of the transparent substrate of the solar cell module comprises at least one perfluoropolyether (hereunder is abbreviated as “PFPE” ) silane of Formula 1:
Figure PCTCN2014094844-appb-000005
wherein
Rf is R3O (CF (CF3) CF2O) pCF (CF3) -, R3O (CF2CF2CF2O) qCF2CF2-, or 
R3O (CF2CF2O) rCF2-;
R1 is hydroxy or C1-C4 alkoxy;
R2 is H or C1-C4 alkyl;
R3 is C1-C6 perfluoroalkyl;
m and n are each independently an integer ranging from 3 to 20;
x is 1, 2, or 3; and
p, q and r are each independently an integer ranging from 5 to 60.
In one embodiment, the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
Rf is R3O (CF (CF3) CF2O) pCF (CF3) -or R3O (CF2CF2CF2O) qCF2CF2-;
R1 is hydroxy or C1-C4 alkoxy;
R2 is H or C1-C4 alkyl;
R3 is C1-C6 perfluoroalkyl;
m and n are each independently an integer ranging from 3 to 20;
x is 1, 2, or 3; and
p, q and r are each independently an integer ranging from 6 to 45.
In another embodiment, the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
R1 is-OCH3 or-OC2H5
m and n are each independently an integer ranging from 3 to 10; and
p, q and r are each independently an integer ranging from 6 to 45.
In yet another embodiment, the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
m and n are the same; and
p, q and r are each independently an integer ranging from 7 to 30.
In a further embodiment, the antifouling layer comprises at least one PFPE silane of Formula 1, wherein
Rf is R3O (CF (CF3) CF2O) pCF (CF3) -;
R1 is C1-C4 alkoxy;
R3 is C1-C6 perfluoroalkyl;
m and n are each independently an integer ranging from 3 to 10;
x is 3; and
p, q and r are each independently an integer ranging from 7 to 30.
Preferably, the antifouling layer comprises at least one PFPE silanes of Formula 1 selected from the group consisting of:
C3F7O (CF (CF3) CF2O) pCF (CF3) C (OH) (C3H6Si (OCH332
C3F7O (CF (CF3) CF2O) pCF (CF3) C (OH) (C3H6Si (OC2H532
C3F7O (CF (CF3) CF2O) pCF (CF3) C (OH) (C5H10Si (OCH332
C3F7O (CF (CF3) CF2O) pCF (CF3) C (OH) (C5H10Si (OC2H532
C3F7O (CF (CF3) CF2O) pCF (CF3) C (OH) (C7H14Si (OCH332
C3F7O (CF (CF3) CF2O) pCF (CF3) C (OH) (C7H14Si (OC2H532
C3F7O (CF2CF2CF2O) qCF2CF2C (OH) (C3H6Si (OCH332
C3F7O (CF2CF2CF2O) qCF2CF2C (OH) (C3H6Si (OC2H532
C3F7O (CF2CF2CF2O) qCF2CF2C (OH) (C5H10Si (OCH332
C3F7O (CF2CF2CF2O) qCF2CF2C (OH) (C5H10Si (OC2H532
C3F7O (CF2CF2CF2O) qCF2CF2C (OH) (C7H14Si (OCH332
C3F7O (CF2CF2CF2O) qCF2CF2C (OH) (C7H14Si (OC2H532
C2F5O (CF2CF2O) rCF2C (OH) (C3H6Si (oCH332
C2F5O (CF2CF2O) rCF2C (OH) (C3H6Si (OC2H532
C2F5O (CF2CF2O) rCF2C (OH) (C5H10Si (OCH332
C2F5O (CF2CF2O) rCF2C (OH) (C5H10Si (OC2H532
CF3O (CF2CF2O) rCF2C (OH) (C3H6 Si (OCH332, and
CF3O (CF2CF2O) rCF2C (OH) (C3H6 Si (OC2H532
wherein p, q and r are each independently an integer ranging from 5 to 60.
Further specific embodiments include any combination of the PFPE silanes of Formula 1 selected from the group immediately above.
PFPE silanes of Formula 1 suitable for coating compositions to form the antifouling layer on the transparent substrates of the present invention have a molecular weight of at least about 1,000, and preferably, at least about 1,500. Preferably, their molecular weights are no greater than about 10,000.
The PFPE silane of Formula 1 disclosed herein can be prepared by contacting a carbinol of Formula 2 with a hydrosilane of Formula 3 in the presence of a catalyst 4 as shown in Scheme 1.
Scheme 1
Figure PCTCN2014094844-appb-000006
wherein R1, R2, Rf, m, n and x are as previously defined for Formula 1.
The addition of the hydrosilane 3 to the carbinol of Formula 2 may be effected using a catalyst 4 suitable for hydrosilylation. Hydrosilylation of olefin was firstly reported by Sommer in 1947 using peroxide as catalyst. It has become an important synthetic route to organosilicon compounds since the discovery of Speier catalyst (hexachloroplatinic acid) in 1957 and Karstedt catalyst in 1973 (See references: Sommer, L.H.; Pietrusza, E.W.; Whitmore, F.C.J. Am. Chem. Soc. 1947, 69, 188; Speier, J.L.; Webster, J.A.; Barnes, G.H. J. Am. Chem. Soc. 1957, 79, 974-9; Karstedt, B.D.U.S. Pat. No. 3775452 A) . Since then, a variety of effective catalytic systems have been developed, such as late transition metals (e.g., Ir,Ru, Rh, Pd or Fe) , early transition metals (e.g., Y, Sm or Th) and Lewis acids (e.g., Al and B) . (See references: (1) Muchnij, J.A.; Kwaramba, F.B.; Rahaim, R.J. Org. Lett., 2014, 16(5) , 1330-1333; (2) Ge, S.; Meetsma A.; Hessen, B. Organometallics, 2008, 27 (13) , 3131-3135; and (3) Rubin, M.; Schwier, T.; Gevorgyan, V.J. Org. Chem., 2002, 67 (6) , 1936-1940) .
Preferably, the catalyst 4 is a late transition metal catalyst based on Pt, Rh, Pd, Ru, Ir and Fe. More preferably, the catalyst 4 is a Pt based catalyst, also known as Karstedt catalyst, i.e. platinum (0) -1, 3-divinyl-1, 1, 3, 3-tetramethyldisiloxane complex. The above mentioned catalysts may be readily synthesized by know methods or are commercially available.
The carbinol of Formula 2 may be prepared by contacting a compound of Formula 5 at a temperature below 10℃ with a mixture of a compound of Formula 6 and a compound of Formula 7 as shown in Scheme 2. In some embodiments, the compounds of Formula 6 and Formula 7 are the same.
Scheme 2
Figure PCTCN2014094844-appb-000007
wherein
Rf, m, and n are as previously defined for Formula 1;
R4 is H or C1-C3 alkyl;
M is Mg, Li, or Sn; and
Hal is Cl, Br, or I.
PFPE esters or acids of Formula 5 are commercially available or may be readily synthesized by known methods. For example, the anionic polymerization of hexafluoropropylene epoxide (C3F6O, HFPO) as described by Moore in U.S. Pat. No. 3,322,826 can result in a PFPE carbonyl fluoride RfC (O) F, wherein Rf is C3F7O (CF (CF3) CF2O) pCF (CF3) -. Alternatively, the methyl ester can also be prepared by the method described in WO2013/074299 A9, preparative example 2. For PFPE esters of Formula 5 where Rf is C3F7O (CF2CF2CF2O) qCF2CF2-, can be produced by sequential oligomerization and fluorination of 2, 2, 3, 3-tetrafluorooxetane. For PFPE esters of Formula 5 where Rf is C2F5O (CF2CF2O) rCF2-, can be produced similarly from polymerization of tetrafluoroethylene oxide (C2F4O) . The carbonyl fluoride produced initially from polymerization may be converted into a corresponding acid or ester of Formula 5 by reactions well known to those skilled in the art.
Suitable fluorinated carboxylic acid are commercially available, for example, C3F7O (CF (CF3) CF2O) pCF (CF3) COOH under the trade name
Figure PCTCN2014094844-appb-000008
157FS with different number average molecular weight (Mn) are available from E.I. DuPont de Nemours Co., Wilmington, DE, USA, hereunder is referred as “DuPont. ”
A review of
Figure PCTCN2014094844-appb-000009
available from DuPont, is found in Synthetic Lubricants and High-Performance Fluids, Rudnick and Shubkin, Eds., Marcel Dekker, New York, NY, 1999 (Chapter 8, pp. 215-237) . A review of FOMBLINTM and GALDENTM, available from Solvay Solexis (Italy) , is found in Organofluorine Chemistry, Banks et al, Eds., Plenum, New York, NY, 1994, Chapter 20, pp. 431-461; and for DEMNUMTM, available from Daikin (Carrollton, TX, USA) , in Organofluorine Chemistry, Chapter 21, pp. 463-467.
It will be evident to one skilled in the art that a mixture of perfluoropolyether acid or ester of Formula 5 may be used to yield a mixture of the fluorinated polyether silanes of Formula 1, and coating composition made therefrom. Preferably, the perfluoropolyether silanes of Formula 1 having a PFPE moiety with a number average molecular weight of at least more than about 1,000 and less than about 10,000; or from about 1,500 to about 8,000.
Method for forming the antifouling layer
The present invention also provides a method for forming an antifouling layer on a solar cell module, comprising:
i. providing a solar cell module having a transparent substrate as the front sheet and a coating composition;
ii. applying the coating composition onto the front side of the transparent substrate of the solar cell module;
iii. curing the coated solar cell module at a temperature from about 60℃ to about 160℃ for about 5 min to about 24 hours; and
iv. cooling the solar cell module having an antifouling layer comprising the cured coating composition on the front side of the transparent substrate to ambient temperature;
wherein the coating composition comprising at least one perfluoropolyether silane of Formula 1 described herein.
Suitable coating composition to be applied to the solar cell modules may comprise:
(a) about 0.01-5 weight % of at least one perfluoropolyether silane of Formula 1:
Figure PCTCN2014094844-appb-000010
wherein Rf, R1, R2, R3, m, n, x, p, q, and r are as defined herein.
(b) about 95-99.99 weight % of at least one solvent; and
(c) 0 to about 5 weight % of a curing catalyst;
wherein the weight % is based on the total weight of the coating composition.
Generally, at least one solvent is required to dissolve the PFPE silane of Formula 1 to make a coating solution for wet coating methods and some dry coating methods. Therefore, the coating composition comprises at least one solvent. A coating composition of the present invention for many transparent substrates may include one or more solvents. Preferably, the at least one solvent is a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
The solvent or mixture of solvents used must be capable of dissolving at least 0.01% by weight of the PFPE silane of Formula 1. If the solvent or mixture of solvents do not meet the criteria, it may not be possible to obtain a homogeneous composition having the PFPE silane of Formula 1, solvent (s) , and optional additives. Although such non-homogeneous compositions could be used to treat a substrate, the coating obtained therefrom will generally not have the desired oil/water repellency and will not have sufficient durability properties.
Suitable solvents have normal boiling points of from about 50℃ to about 150℃; and preferably, from about 60℃ to about 120℃ and can be a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
In some embodiments of the present coating composition, the at least one solvent has normal boiling points of from about 50℃ to about 150℃; or from about 60℃ to about 120℃. In some embodiments of the present coating composition, the at least one solvent is a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
Suitable fluorinated solvents include hydrofluorocarbons, hydrofluorocarbon ether, fluorocarbons, fluorocarbon ether, and mixtures thereof. These fluorinated solvents can be saturated or unsaturated. In some embodiments of this invention, the fluorinated solvent is  selected from the group consisting of hydrofluorocarbons, hydrofluorocarbon ethers, fluorocarbons, fluorocarbon ethers, and mixtures thereof.
Examples of fluorinated solvents include hydrofluorocarbons such as pentafluorobutane, available from Solvay Solexis, or 2, 3-dihydrodecafluoropentane (CF3CFHCFHCF2CF3) available from DuPont as VERTRELTM; hydrofluorocarbon ethers including alkyl perfluoroalkyl ether such as methyl perfluorobutyl ether or ethyl perfluorobutyl ether, available from 3M as NOVECTM HFE 7100 and NOVECTM HFE 7200, respectively; fluorocarbons such as perfluorohexane, perfluoroheptane, or perfluorooctane, available from 3M.
In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of a saturated hydrofluorocarbon. In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of CF3CHFCHFCF2CF3.
Generally, unsaturated fluorocarbons have lower global warming potentials (GWPs) than their saturated counterparts. Examples of the unsaturated fluorocarbon include hydrofluoroolefins, alkyl perfluoroalkene ethers, and mixtures thereof. Preferably, the alkyl perfluoroalkene ether is methyl perfluoroalkene ether, ethyl perfluoroalkene ether, or mixtures thereof. More preferably, the methyl perfluoroalkene ether is methyl perfluoroheptene ether, methyl perfluoropentene ether, or mixtures thereof.
Typically, methyl perfluoroheptene ether or methyl perfluoropentene ether is a mixture of its isomers respectively. For examples, methyl perfluoroheptene ether may be a mixture comprising CF3CF2CF=CFCF (OCH3) CF2CF3, CF3CF2C (OCH3) =CFCF2CF2CF3, and CF3CF=CFCF (OCH3) CF2CF2CF3. Methyl perfluoropentene ether may be a mixture comprising CF3CF=C (OCH3) CF2CF3, CF3C (OCH3) =CFCF2CF3, and CF3CF=CF-CF(OCH3) CF3.
In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of an unsaturated fluorocarbon. In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of a hydrofluoroolefin. In some embodiments of this invention, the at least one solvent comprises, consists essentially of, or consists of an alkyl perfluoroalkene ether. In some embodiments of this invention, the alkyl perfluoroalkene ether is methyl perfluoroalkene ether, ethyl perfluoroalkene ether, or mixtures thereof. In some embodiments of this invention, the methyl perfluoroalkene ether is methyl perfluoroheptene ether, methyl perfluoropentene ether, or mixtures thereof.
Suitable non-fluorinated solvents include alcohols, ketones, nitriles, cyclic ethers, noncyclic ethers, and mixtures thereof. In some embodiments of this invention, the non-fluorinated solvent is selected from the group consisting of alcohols, ketones, nitriles, cyclic ethers, noncyclic ethers, and mixtures thereof.
Examples of the non-fluorinated solvents include alcohols such as methanol, ethanol, 1-propyl alcohol, 2-propanol; ketones such as acetone or methyl ethyl ketone; nitriles such as  acetonitrile, cyclic ethers such as tetrahydrofuran, noncyclic ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, and dipropylene glycol monomethyl ether, and mixtures thereof.
In some embodiments of this invention, the non-fluorinated solvent is selected from the group consisting of methanol, ethanol, 1-proponol, 2-proponol, acetone, methyl ethyl ketone, acetonitrile, tetrahydrofuran, and mixtures thereof. In some embodiments of this invention, the non-fluorinated solvent is selected from the group consisting of methanol, ethanol, 1-proponol, 2-proponol, tetrahydrofuran, and mixtures thereof.
The amount of the at least one solvent used in the coating composition can be selected to provide the desired viscosity for application of the coating composition to a siliceous substrate. Generally, the coating compositions, based on the total weight of the coating compositions, may contain at least up to 95 weight %, up to 99.9 weight %, or up to 99.99 weight % of at least one solvent.
In some embodiments, the coating compositions can comprise 95 to 99.99 weight %, 97 to 99.9 weight % of at least one solvent.
A coating composition of the present invention may further comprise additives such as curing catalysts, provided they do not react with the perfluoropolyether silane of Formula 1. The curing catalysts can be any of the catalysts typically used to cure reactive organosilanes by hydrolysis and condensation. Suitable curing catalysts are those that are soluble in the coating composition (e.g., in the fluorinated solvent, non-fluorinated solvent, or mixtures thereof) .
In some embodiments of this invention, the at least one curing catalyst comprises, consists essentially of, or consists of acids, bases, or water.
Examples of acids include inorganic acids, alkyl sulfonic acids, halogenated alkyl sulfonic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. Examples of inorganic acids include HCl, H2SO4, HNO3, and mixtures thereof. Examples of carboxylic acids include formic acid, acetic acid, trifluoroacetic acid, and mixtures thereof. Examples of bases include inorganic bases, substituted and unsubstituted trialkylamines, pyridine and its derivatives, and mixtures thereof. Examples of inorganic bases include NaOH, KOH, and mixtures thereof.
When used, the curing catalysts are used in amounts that are soluble in the coating compositions. In some embodiments, the curing agents are present in an amount ranging from about 0.001-5 weight %, about 0.01-3 weight %, or in a range of about 0.1-2 weight %, based on a total weight of the coating composition.
Suitable coating composition can be applied onto the transparent substrate by either wet coating methods or dry coating methods. Examples of dry coating methods include chemical vapor deposition (CVD) and physical vapor deposition (PVD) . Examples of wet coating methods include spray coating, knife coating, dip coating, spin coating, meniscus coating, flow coating, roll coating, gravure coating, or the like.
In some embodiments, the coating composition is applied using a method selected from spray coating, knife coating, dip coating, spin coating, meniscus coating, flow coating, roll coating, and gravure coating.
Preferably, the surface of the transparent substrate for the front sheet of the present PV modules should be extremely clean prior to applying the coating composition for optimum coating characteristics, particularly durability, to be obtained. That is, the surface of the transparent substrate to be coated should be substantially free of organic contamination prior to coating. Cleaning techniques depend on the type of transparent substrate and include, for example, ultrasound cleaning in a solvent bath (e.g., ethanol/chloroform) , gas-phase discharge techniques such as air corona treatment, plasma treatment, UV ozone treatment, washing with detergent and/or hot water, or combinations of these techniques. Specific examples of support surface preparation are described in the Example section.
Any coating composition comprising the PFPE silane of Formula 1 described herein can be used to form the antifouling layer on the front side of the transparent substrate for the front sheet of the solar cell module. As the preferred transparent substrate for the front sheet of the solar module is glass, the glass can be considered to be a subset of siliceous substrates.
As used herein, the term ″curing″ refers to the reaction of the silyl group of the PFPE silane of Formula 1 with the transparent substrate. As used herein, the term ″cured coating″ refers to a layer of coating formed by a coating composition that has undergone curing. The curing reaction results in the formation of a -Si-O-Si-group (i.e. a siloxane group) and the covalent attachment of the PFPE silane to at least one surface of the siliceous substrate. In this siloxane group, one silicon atom is from the silyl group of the PFPE silane of Formula 1 and the other silicone atom is from the siliceous substrate. Therefore, the cured coating shall comprise a reaction product of the present coating composition with at least one surface of the siliceous substrate, said reaction product is covalently attached to the siliceous substrate surface.
Depending on how far the curing reaction goes, a cured coating prepared from the coating composition containing the PFPE silane of Formula 1 may also include unreacted or uncondensed silyl groups. It is believed that the curing reaction is formed as a result of hydrolysis of the silyl groups of the PFPE silane with residual water, which is either in the coating composition or adsorbed to the substrate surface, for example, and then condensation of the hydrolyzed silyl groups on and to the siliceous substrate surface.
Typically, sufficient water is present for the preparation of a durable coating if the coating method is carried out at room temperature in the atmosphere, preferably, with a relative humidity (RH) of at least about 30% and up to 90% at an elevated temperature, such as at least about 30℃ or higher.
Following application using any method described above, the coating composition is dried to remove solvent and then cured at a temperature in a range of about 60℃ to about 160℃ for a time sufficient for curing to take place. The coated substrate is often held at the  curing temperature for at least 5 minutes and up to 24 hours. The drying and curing steps can occur concurrently or separately by adjustment of the temperature.
The present solar cell modules have an antifouling layer cured on the front panel of the solar cell module. Said antifouling layer effectively reduces dust accumulation and hot spots generation problems, thereby reduces PCE loss and prolong the utility life of the solar cell modules.
The antifouling layer of the present solar cell module can have any desired thickness. The antifouling layer thickness is generally greater than a monolayer, which is typically greater than about 10 Angstroms thick. Generally, it is less than about 500 Angstroms thick, and preferably, less than about 400 Angstroms thick.
In some embodiments, the layer thickness of the antifouling layer corresponds to at least one monolayer. This thickness is often in a range of 10 to 400 Angstroms. In some embodiments, the overall coating thickness of the cured coating composition can be in a range about 10 to 400, about 50 to 300, about 100 to 250, or about 150 to 200 Angstroms.
Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative and not limiting of the disclosure in any way whatsoever.
EXAMPLES
The abbreviation “PE” stands for “Preparative Example” , “E” stands for “Example” and “CE” stands for “Comparative Example” is followed by a number indicating in which example the PFPE silanes and their precursors is synthesized, or prepared. The examples and comparative examples were all prepared and tested in a similar manner. Percentages are based by mole unless otherwise indicated.
All solvents and reagents were purchased from commercial sources and were used without further purification unless specified otherwise.
1H NMR spectra were recorded on a Varian VXL-400 NMR using
Figure PCTCN2014094844-appb-000011
coaxial NMR tube and sample was dissolved in fluorinated solvent using a deuterated solvent sealed in a capillary tube as an external lock. The resonances are reported in ppm downfield from tetramethylsilane; s means singlet, d means doublet, m means multiplet, br s means broad singlet.
Materials
Perfluoropolyether methyl ester: C3F7O (CF (CF3) CF2O) pCF (CF3) C (O) OCH3, p is about 9, Mn is approximately 1600, derived from
Figure PCTCN2014094844-appb-000012
157FSL, which available from DuPont.
Allymagnesium chloride: CAS Number: 2622-05-1, 2 M solution in THF, purchased from Sigma-Aldrich.
NOVECTM 7100: methyl perfluorobutyl ether, CAS number: 163702-07-6, purchased from 3M Company (Saint Pual, MN, USA) , b.p. is 64.5℃.
Karstedt catalyst: platinum (0) -1, 3-divinyl-1, 1, 3, 3-tetramethyldisiloxane complex, CAS number 68478-92-2, 2% Pt solution in xylene, purchased from Sigma-Aldrich.
1,3-Bis (trifluoromethyl) benzene: CAS Number: 402-31-3, purchased from Alfa Aesar.
Triethoxysilane: CAS Number: 998-30-1, purchased from TCI.
Perfluoropolyether trimethoxysilylpropyl ether (Silyl ether-I) : CAS number: 211931-77-0, C3F7O (CF (CF3) CF2O) bCF (CF3) CH2O (CH23Si (OCH33, b is about 9, Mn is approximately 1800, obtained from DuPont, and was used in Comparative Example 1.
VERTRELTM XF: 2, 3-dihydrodecafluoropentane, CAS number: 138495-42-8, obtained from DuPont DC&F, b.p. is 55℃.
Mighty ZS-118: a detergent, obtained from Zhongsheng Rongtian (Beijing) International Technology and Trading Co., Ltd.
Glass slides: Microscope slides
Figure PCTCN2014094844-appb-000013
with the size of 7.62×2.54×0.12cm3, purchased from Sinopharm Chemical Reagent Co., Ltd.
Solar cell module: composed of a glass front sheet, a silicon solar cell, an EVA sheet and a TPT back sheet, were assembled in sequence as specified below with an aluminum frame.
The silicon solar cell was a 5-inch monocrystalline silicon solar cells, purchased from JA Solar Co., Ltd. The glass (i.e. front sheet) was embossed glass with the size of 29.8x 27.8x0.32cm3, purchased from Suzhou Qinghua Optical Lenses Co., Ltd. The EVA sheet was REVAXTM ethylene/vinyl acetate tablets with 0.45 mm thick, purchased from RuiYang photovoltaic materials Co., Ltd. TPT back sheet was purchased from Taiflex Scientific Co., Ltd. The aluminum frame: purchased from Jiangyin Lu Tong Trade Co., Ltd.
The components of the solar cell modules were arranged in the sequence of glass/EVA sheet/solar cells/EVA sheet/back sheet to form a pre-assembly. The pre-assembly was laminated using a laminator (Meier Solar Solutions GmbH (Germany) , model: ICOLAM 10/08) at 145℃ under vacuum for 3 minutes, and was pressed under a pressure of 1 atm for 11 min. Then the laminated solar cell assembly was placed in an aluminum frame to complete the module. Each of the prepared solar cell modules was composed of 4 monocrystalline silicon solar cells arranged in two rows×two columns.
Preparative Example 1: Preparation of Perfluoropolyether Silane 1a
STEP A. Preparation of Carbinol 2a
To a 2-neck round-bottom flask (50mL) was added perfluoropolyether methyl ester (5 g,3mmol, Mn=1600) , NOVECTM 7100 (10mL) , and tetrahydrofuran (THF, 5mL) under nitrogen. The reaction mixture was cooled to 0-5℃. Allylmagnesium chloride (5mL, 2M solution in THF, 10mmol) was added dropwise at 0-5℃. After addition, the reaction mixture was stirred for 15 minutes and then poured into 1N aqueous HCl solution (10mL) at 0-5℃. The mixture was extracted with NOVECTM 7100 (10mL) twice. The combined  organic extracts were washed with 5% NaHCO3 aqueous solution (20mL) , brine (20mL) and then dried with anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to yield the carbinol 2a (4.2g, 82%) , having a general formula of C3F7O [CF (CF3) CF2O] pCF (CF3) COH (CH2CH=CH22 and p is about 9.
1H NMR (400MHz, CDCl3, ppm) : δ 5.65-5.59 (m, 2H) , 5.00 (t, 8 Hz, 2H) , 4.94 (d, 8 Hz,2H) , 2.42-2.34 (m, 2H) , 2.23-2.17 (m, 2H) .
STEP B. Preparation of Perfluoropolyether Silane 1a
To a 2-neck round-bottom flask (50mL) was added carbinol 2a (4g, 2.5mmol, Mn= 1,650) obtained from Step A, and 1, 3-bis (trifluoromethyl) benzene (10mL) under dry nitrogen. The mixture was heated to 60℃ and triethoxysilane (2g, 12mmol) was added. Karstedt catalyst (2% Pt solution in xylene, 50μL) was added. The solution was heated at 60℃ for four hours. The homogeneous solution was cooled to room temperature. The excess triethoxysilane was removed under reduced pressure and then washed with anhydrous methanol. The resulting mixture was concentrated under reduced pressure to give the perfluoropolyether silane 1a as clear liquid (3.9g, 80%) . Product 1a has a general formula of C3F7O (CF (CF3) CF2O) pCF (CF3) -C (OH) ( (CH23Si (OCH3) ) 2 and p is about 9.
Method for Preparing Example 1 and Comparative Example 1
The glass slides, size: 7.62×2.54×0.12, were placed in a glass vertical staining jar containing 100 mL of a 5 weight% detergent solution and were sonicated in an ultrasonic bath (Shanghai Kudos Ultrasonic Instrument Co., Ltd. model: Kudos SK5210LHC) for 10 minutes, followed by deionized water rinsing for 4 times. Each rinsing step was consisted of placing the slides in 100 mL of fresh deionized water and sonicated for 3 minutes. The cleaned slides were dried in an oven at 100℃ for 10 minutes, then treated with UV ozone in a UVO cleaner machine (Jelight Company Inc., Model No. 42-220) for 20 minutes.
Coating compositions having either 0.2 weight % of a PFPE silane of Formula 1a (prepared according to PE1) , or the silyl ether-I (obtained from DuPont) in VERTRELTM XF were prepared and used in E1 and CE1, respectively.
The cleaned slides (4 slides per example) were then dipped in the respective coating composition (50 mL) for 5 minutes, and allowed to dry in ambient temperature for 10 minutes, and cured in an oven set at 130℃ for 25 minutes, then at 85℃ with 85% RH for 24 hours.
Method for Preparing Example 2 and Comparative Example 2
The front surface of the solar cell module was covered by cloth immersed with 2.5 mol/L NaOH solutions for 2 hours, then rinsed with deionized water, and dried.
Coating compositions having either 0.2 weight % of a PFPE silane of Formula 1a, prepared in PE1, or the silyl ether-I (obtained from DuPont) in VERTRELTM XF were prepared and used in E2 and CE2, respectively.
Each coating composition (20 mL) was applied to one surface-cleaned solar cell module, which were placed flat on bench top, with a spray gun (Anest Iwata, part number of RG-3L-3S (Yokohama, Japan) ) under a pressure of 0.1 MPa. The wet solar cell module were then dried and cured in an oven set at 60℃ with 60% RH for 1 hour, then kept at 55℃ with 60% RH for overnight.
Method for Measuring Water Contact Angle
Contact angle measurements can be used to determine the surface energy of a substrate. Generally, a larger contact angle indicates a smaller surface energy.
The term “contact angle” , as used herein, means the angle formed between the liquid/substrate surface interface and the liquid/air interface. The term “static contact angle” , as used herein, means the contact angle measured on a static sessile drop of liquid on a substrate surface.
Static water contact angles (WCA) were measured on a Kruss DSA100, Tangent Method-1. Reported values are the averages of measurements on at least 3 drops of water. Each drop volume was 3μL.
Methods for UV Ageing Treatment
For glass slides: the UV aging was tested using a QUV/Spray Accelerated weathering Tester obtained from Q-lab (QUV/Spray) .
For solar cell modules: the UV aging was tested using a BR-UV-PV tester, obtained from Shanghai B.R. SCI. Instrument Co., Ltd.
Methods for Antifouling Test
Anti-soiling test was conducted by spraying water on top of the front panels of tilted solar cell modules (tilted angle was about 35°) from squeezable wash bottle, and then sprinkling dry sand (150g, particle size≤550μm) over the wetted front panels.
Table 1
Figure PCTCN2014094844-appb-000014
From the results of Table 1, the following are evident.
It is known that a 900 hours of accelerated UV aging treatment equals to approximate more than 5 years of field UV exposure. Comparing the water contact angle (WCA) data between CE1 and E1 after 908 hours of UV irradiation, the module of E1, that had an antifouling layer comprising the PFPE silane 1a, showed less reduction of WCA than that of the comparative PFPE ether (i.e. silyl ether-I) used in CE1. Therefore, the UV aging result suggests that the present solar cell module having an antifouling layer comprising PFPE silane of Formula 1 may maintain its antifouling performance for a longer field life since it can withstand longer UV exposure.
Table 2
Figure PCTCN2014094844-appb-000015
One can draw a similar conclusion by comparing the WCA data of solar cell modules of E2 versus CE2 after subjecting to a 500 hour of accelerated UV ageing treatment (see Table 2) .
Table 3
Figure PCTCN2014094844-appb-000016
Table 4
Figure PCTCN2014094844-appb-000017
From the results of Tables 3 and 4, the following are evident.
Comparing the power conversion efficiency (PCE) data of Table 3, the module of E2 provided less reduction in PCE (1.1%) after the soiling test than that of CE2 (1.5%) , and it indicated that less dust particles were accumulated on the front glass surface of E2. Noted that both modules of CE2 and E2 had their front glass surfaces with similar WCA data. The  results suggest that the present solar cell modules may have a slightly better antifouling performance.
In the antifouling performance evaluation of the modules of CE3 and E3, which were actually the modules of CE2 and E2 after 500 hours of UV aging test. As the solar cell modules are composed of multiple components, the accelerated UV aging treatment will affect more than one component. Therefore, one cannot compare the PCE data between E2 and E3 (or CE2 and CE3) directly, then attribute the PCE changes to the different UV stability of the respective antifouling layer solely.
Comparing the PCE data of Table 4, the module of E3 provided less reduction in PCE (1.2%) after the soiling test than that of CE3 (1.9%) , and it indicated that less dust particles were accumulated on the front glass surface of E3. The data is in agreement with the WCA measured for E3 and CE3, that a larger WCA represents a lower surface energy, higher water repellency, thereby a better antifouling performance.
The data of working examples support that the present solar cell modules have an antifouling layer on the front panel can effectively reduce dust accumulation and unexpectedly also have a better resistance to UV aging, thereby reduces PCE loss and prolong the utility life of the solar cell modules.
While the invention has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions are possible without departing from the spirit of the present invention. As such, modifications and equivalents of the invention herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the invention as defined by the following claims.

Claims (10)

  1. A solar cell module having improved antifouling performance, comprising:
    (i) a solar cell layer comprising a solar cell component and having a front side and a back side, where said solar cell component comprises one or a plurality of solar cells; and
    (ii) a front sheet composed of a transparent substrate and an antifouling layer, where said front sheet is positioned on the front side of the solar cell layer, and the antifouling layer is located on the front side of the transparent substrate, and the antifouling layer comprises at least one perfluoropolyether silane of Formula 1:
    Figure PCTCN2014094844-appb-100001
    wherein
    Rf is R3O (CF (CF3) CF2O) pCF (CF3) -, R3O (CF2CF2CF2O) qCF2CF2-, or R3O (CF2CF2O) rCF2-;
    R1 is hydroxy or C1-C4 alkoxy;
    R2 is H or C1-C4 alkyl;
    R3 is C1-C6 perfluoroalkyl;
    m and n are each independently an integer ranging from 3 to 20;
    x is 1, 2, or 3; and
    p, q and r are each independently an integer ranging from 5 to 60.
  2. The solar cell module according to Claim 1, wherein
    R1 is -OCH3 or -OC2H5
    m and n are each independently an integer ranging from 3 to 10; and
    p, q and r are each independently an integer ranging from 6 to 45.
  3. The solar cell module according to Claim 1 or Claim 2, wherein
    m and n are the same; and
    p, q and r are each independently an integer ranging from 7 to 30.
  4. The solar cell module according to any of Claims 1 to 3, wherein the transparent substrate is selected from soda-lime-silica glass, silicate glass, alkali-aluminosilicate glass,  fluorosilicate glass, phosphosilicate glass, boronsilicate glass, boron-phosphorus-silicate glass, and lead glass.
  5. A method for preparing the solar cell module according to any of Claims 1 to 3, comprising:
    i. providing a solar cell module composed of a transparent substrate as the front sheet and a coating composition;
    ii. applying the coating composition onto the front side of the transparent substrate;
    iii. curing the coated solar cell module at a temperature from about 60℃ to about 160℃ for about 5 min to about 24 hours; and
    iv. cooling the solar cell module having an antifouling layer comprising the cured coating composition on the front side of the transparent substrate to ambient temperature;
    wherein
    the coating composition comprises:
    (a) about 0.01-5 weight % of at least one perfluoropolyether silane of Formula 1:
    Figure PCTCN2014094844-appb-100002
    wherein
    Rf is R3O (CF (CF3) CF2O) pCF (CF3) -, R3O (CF2CF2CF2O) qCF2CF2-, or R3O (CF2CF2O) rCF2-;
    R1 is hydroxy or C1-C4 alkoxy;
    R2 is H or C1-C4 alkyl;
    R3 is C1-C6 perfluoroalkyl;
    m and n are each independently an integer ranging from 3 to 20;
    x is 1, 2, or 3; and
    p, q and r are each independently an integer ranging from 5 to 60;
    (b) about 95-99.99 weight % of at least one solvent; and
    (c) 0 to about 5 weight % of a curing catalyst;
    wherein the weight % is based on the total weight of the coating composition.
  6. The method according to Claim 5, wherein the coating composition is applied onto the front side of the transparent by spray coating, knife coating, dip coating, spin coating, meniscus coating, flow coating, roll coating, or gravure coating.
  7. The method according to Claim 5, wherein the at least one solvent has a boiling point of from about 50℃ to about 150℃ at 1 atmosphere, and is a fluorinated solvent, a non-fluorinated solvent, or a mixture thereof.
  8. The method according to claim 7, wherein the fluorinated solvent is selected from the group consisting of hydrofluorocarbons, hydrofluorocarbon ethers, fluorocarbons, fluorocarbon ethers, and mixtures thereof.
  9. The method according to claim 5, wherein the non-fluorinated solvent is selected from the group consisting of alcohols, ketones, nitriles, cyclic ethers, noncyclic ethers, and mixtures thereof.
  10. The method according to claim 9, wherein the non-fluorinated solvent is selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, acetone, methyl ethyl ketone, acetonitrile, tetrahydrofuran, and mixtures thereof.
PCT/CN2014/094844 2014-12-24 2014-12-24 Solar cell module having antifouling layer WO2016101184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094844 WO2016101184A1 (en) 2014-12-24 2014-12-24 Solar cell module having antifouling layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094844 WO2016101184A1 (en) 2014-12-24 2014-12-24 Solar cell module having antifouling layer

Publications (1)

Publication Number Publication Date
WO2016101184A1 true WO2016101184A1 (en) 2016-06-30

Family

ID=56148918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094844 WO2016101184A1 (en) 2014-12-24 2014-12-24 Solar cell module having antifouling layer

Country Status (1)

Country Link
WO (1) WO2016101184A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056543A1 (en) * 2016-09-21 2018-03-29 Samsung Sdi Co., Ltd. Method of forming electrode pattern for solar cell, electrode manufactured using the same and solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050121644A1 (en) * 2003-12-05 2005-06-09 3M Innovative Properties Company Coating compositions with perfluoropolyetherisocyanate derived silane and alkoxysilanes
US20080050600A1 (en) * 2006-08-28 2008-02-28 3M Innovative Properties Company Antireflective article
US20110081496A1 (en) * 2009-10-06 2011-04-07 3M Innovative Properties Company Perfluoropolyether Coating Composition for Hard Surfaces
US20120237777A1 (en) * 2011-02-02 2012-09-20 Ppg Industries Ohio, Inc. Process for forming an anti-fouling coating system
US20140309329A1 (en) * 2013-04-11 2014-10-16 Canon Kabushiki Kaisha Water-repellent antifouling coating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050121644A1 (en) * 2003-12-05 2005-06-09 3M Innovative Properties Company Coating compositions with perfluoropolyetherisocyanate derived silane and alkoxysilanes
US20080050600A1 (en) * 2006-08-28 2008-02-28 3M Innovative Properties Company Antireflective article
US20110081496A1 (en) * 2009-10-06 2011-04-07 3M Innovative Properties Company Perfluoropolyether Coating Composition for Hard Surfaces
US20120237777A1 (en) * 2011-02-02 2012-09-20 Ppg Industries Ohio, Inc. Process for forming an anti-fouling coating system
US20140309329A1 (en) * 2013-04-11 2014-10-16 Canon Kabushiki Kaisha Water-repellent antifouling coating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056543A1 (en) * 2016-09-21 2018-03-29 Samsung Sdi Co., Ltd. Method of forming electrode pattern for solar cell, electrode manufactured using the same and solar cell

Similar Documents

Publication Publication Date Title
Adak et al. A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices
Wang et al. Reducing the effect of dust deposition on the generating efficiency of solar PV modules by super-hydrophobic films
KR102610317B1 (en) Novel carbosiloxane polymer composition, method of making and use thereof
CN111032733B (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article, and method for producing same
EP2585548B1 (en) Fluorinated composition, method of coating the composition, and article thereby
US9353268B2 (en) Anti-reflective and anti-soiling coatings for self-cleaning properties
US9376593B2 (en) Multi-layer coatings
Agustín-Sáenz et al. Mechanical properties and field performance of hydrophobic antireflective sol-gel coatings on the cover glass of photovoltaic modules
US20140261673A1 (en) Tuning the anti-reflective, abrasion resistance, anti-soiling and self-cleaning properties of transparent coatings for different glass substrates and solar cells
EP3172260A2 (en) High gain durable anti-reflective coating
TWI546559B (en) Coating composition for enhancing light transmittance and coating layer formed therefrom
WO2016043969A1 (en) Glass coating specification library
US20160083620A1 (en) Optical enhancing durable anti-reflective coating
CN101257058A (en) Process and device to produce a solar panel with enhanced light capture
WO2016011071A2 (en) High gain durable anti-reflective coating
US8445309B2 (en) Anti-reflective photovoltaic module
CN102837467B (en) Transparent conductive film glass and preparation method thereof
CN202137995U (en) Transparent conductive film glass
JP7010294B2 (en) Laminated body and its manufacturing method
WO2016101184A1 (en) Solar cell module having antifouling layer
KR101239358B1 (en) washing apparatus of solar cell and solar cell comprising the same
CN114899277A (en) Method for preparing self-cleaning solar cell
CN104708882A (en) Silica coated antireflection film or plate
CN112147722A (en) Antireflection film for photovoltaic glass and preparation method and application thereof
CN113891919A (en) Substrate with water-repellent and oil-repellent layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908752

Country of ref document: EP

Kind code of ref document: A1