WO2016099169A1 - 반사시트 구조물 및 이를 구비한 백라이트 유닛 - Google Patents

반사시트 구조물 및 이를 구비한 백라이트 유닛 Download PDF

Info

Publication number
WO2016099169A1
WO2016099169A1 PCT/KR2015/013854 KR2015013854W WO2016099169A1 WO 2016099169 A1 WO2016099169 A1 WO 2016099169A1 KR 2015013854 W KR2015013854 W KR 2015013854W WO 2016099169 A1 WO2016099169 A1 WO 2016099169A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
reflective sheet
reflective
light
spacer
Prior art date
Application number
PCT/KR2015/013854
Other languages
English (en)
French (fr)
Inventor
이은미
오세진
이동철
이태준
김희정
조장희
민지홍
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Publication of WO2016099169A1 publication Critical patent/WO2016099169A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a reflective sheet structure and a backlight unit having the same, and more particularly, in the reflective sheet structure for reflecting and transmitting the light generated from the light source to the upper portion to form a separate internal space under the reflective sheet to dissipate heat and
  • the present invention relates to a reflective sheet structure having an increased moistureproof effect and a backlight unit having the same.
  • liquid crystal display requires a backlight unit that provides uniform light to the entire screen, unlike a conventional CRT.
  • the backlight unit is configured to provide uniform light at the rear side of the liquid crystal display device, and an LED, which is a light source, is disposed on one side of the light guide plate, and a lower part of the light guide plate reflects the light leaked from the light guide plate back to the top.
  • the sheet is arranged.
  • the light generated by the light source is reflected upward by the light guide plate and the reflective sheet, and the reflected light is uniformly transmitted through the light collecting sheet.
  • the backlight unit is configured such that the light generated from the light source provided on the side surface is reflected upward by the light guide plate and the reflective sheet, and the reflected light passes through the light collecting sheet and is uniformly collected.
  • the reflective sheet provided in the lower portion of the light guide plate to reflect light back is not simply composed of one sheet, but is provided in the lower portion of the light guide plate in a state in which a thin film is disposed and bonded in a stacked form.
  • the structural layer 10 the bonding layer 20, and the reflective layer 30 are stacked in this order to form one sheet.
  • the reflective sheet becomes thinner and thinner as the display becomes slim, and the final thickness is made to be 150 ⁇ m or less.
  • the bonding layer 20 is applied over the entire upper surface of the structural layer 10, and thus the reflective layer 30 is laminated and bonded to the upper surface of the bonding layer 20.
  • the entire lower surface of the reflective layer 30 is bonded by the bonding layer 20, and no separate space is formed therein.
  • the technical problem of the present invention is to solve the problems mentioned in the background art, by forming an internal space having a separate spacer on the reflective sheet provided in the backlight unit, thereby preventing the help of the reflective sheet and at the same time heat dissipation and It is to provide a reflective sheet structure and a backlight unit having the same that can increase the moisture-proof effect.
  • the reflective sheet structure provided under the light guide plate of the backlight unit including a light source, a light guide plate and a light collecting sheet, a structural sheet of a flat plate shape, which supports the whole; A reflective sheet stacked on top of the structural sheet and having a reflective coating applied to at least an upper surface thereof; And a plurality of spacers spaced apart from each other between the structural sheet and the reflective sheet to form a separate internal space between the structural sheet and the reflective sheet to facilitate heat dissipation and moisture proof.
  • the light is reflected by the reflective sheet to be transmitted upward.
  • a plurality of spacers may be provided and formed to have the same size or shape.
  • the spacer may be solidified by direct contact with the reflective sheet and the structural sheet and may serve as an adhesive.
  • the spacer may be formed in plural, and the heights of the spacers may be non-uniform with each other in a stacking direction with the reflective sheet, so that only a part of the spacers may contact the reflective sheet.
  • each of the spacers may be formed to extend in the longitudinal direction on the upper surface of the structural sheet.
  • the spacer may be characterized in that the height is changed in the longitudinal direction.
  • the spacer may be formed to have a predetermined pattern on the upper surface of the structural sheet may be characterized in that at least a portion is bonded to the lower surface of the reflective sheet.
  • the spacer may be configured to bend in response to the contraction and expansion of the reflective sheet.
  • the backlight unit according to another aspect of the present invention includes the above-described reflective sheet structure.
  • the reflective sheet structure only a part of the spacer for bonding the structural sheet and the reflective sheet is provided on the upper surface of the structural sheet, thereby preventing the occurrence of help in the reflective sheet during contraction and expansion of the structural sheet and the reflective sheet.
  • FIG. 1 is a view schematically showing a reflective sheet structure provided in a conventional backlight unit
  • FIG. 2 is an exploded perspective view showing the configuration of a backlight unit provided with a reflective sheet structure in an embodiment of the present invention
  • FIG. 3 is a view illustrating a state in which a reflective sheet structure is formed in the backlight unit of FIG. 2;
  • FIG. 4 is a side view illustrating a state in which a reflective sheet structure is coupled to the backlight unit of FIG. 2;
  • FIG. 5 is a view illustrating a process in which a reflective sheet is stacked on an upper surface of a structural sheet in the reflective sheet structure of FIG. 2;
  • FIG. 6 is a view illustrating a non-uniform height in a vertical direction of a plurality of spacers in the reflective sheet structure of FIG. 2;
  • FIG. 7 illustrates a modified form of a spacer in the reflective sheet structure of FIG. 2;
  • FIG. 8 is a view illustrating a form in which each height is changed along a length direction of a plurality of spacers in the reflective sheet structure of FIG. 2;
  • FIG. 9 is an exploded perspective view showing a state in which the reflective polarizing film is further included in the light collecting sheet of FIG. 2;
  • FIG. 10 is a view illustrating a state in which light is transmitted or reflected by the reflective polarizing film of FIG. 9.
  • a backlight unit including a reflective sheet structure according to an embodiment of the present invention will be described by taking an example that is applied to a flat panel liquid crystal display device such as an LCD or an LED panel.
  • the present invention is not necessarily limited thereto, and may be used alone as an optical sheet, or may be a backlight unit applied to other apparatuses other than the liquid crystal display device, or the characteristics and path of light such as a lighting apparatus. It may be applied to any device that changes the power.
  • FIGS. 2 to 4 a schematic configuration of a backlight unit to which a reflective sheet structure according to an exemplary embodiment of the present invention is applied is as follows.
  • FIG. 2 is an exploded perspective view showing a configuration of a backlight unit having a reflective sheet structure in an embodiment of the present invention
  • Figure 3 is a view showing a state in which the reflective sheet structure is formed in the backlight unit of Figure 2
  • Figure 4 is Figure 2 is a view showing a state in which the reflective sheet structure is coupled to the backlight unit.
  • a back light unit (BLU) for providing light to the liquid crystal panel must be provided in constructing the liquid crystal display.
  • a backlight unit includes a light source 110, a light guide plate 100, a diffusion sheet 300, a reflective sheet structure 200, and a light collecting sheet unit 400.
  • the light source 110 is generally composed of a light emitter that emits light and emits light from the side of the light guide plate 100 to transmit light toward the light guide plate 100.
  • the light guide plate 100 transmits light transmitted from the light source 110 toward the light collecting sheet part 400.
  • the diffusion sheet 300 is disposed on the light guide plate 100 to diffuse the light transmitted from the light guide plate 100, and the diffused light is evenly transmitted to the light collecting sheet part 400 described above.
  • the diffusion sheet 300 is shown as an example of diffusion means, and various diffusion means may be used.
  • the structure may include diffusing particles in an existing optical sheet or a separate optical sheet, and a sheet structure having a separate diffusion pattern is also possible.
  • the condensing sheet unit 400 collects and transmits light that is disposed on the light guide plate 100 and moves upward.
  • the light condensing sheet unit 400 is formed by stacking a pair of upper optical sheets 410 and lower optical sheets 420, and refracts the light transmitted from the light guide plate 100 to the upper portion.
  • the light collecting sheet part 400 is formed in a pair of prism sheets, and is configured to collect light.
  • the light collecting sheet part 400 may be formed in one form or may be formed in an inverted prism shape.
  • the light collecting sheet unit 400 includes the upper optical sheet 410 and the lower optical sheet 420 and is stacked on each other and disposed on the diffusion sheet 300. Is placed.
  • the upper optical sheet 410 is configured to have a first structured pattern 412 in which the first unit condenser whose cross sectional area decreases toward the upper portion is continuously repeated, and the lower optical sheet 420 crosses upward. The area is reduced and the upper portion has a second structured pattern 422 in which the second unit condenser bonded to the lower surface of the upper optical sheet 410 is continuously repeated.
  • cross sectional area means an area of a cross section of the first structured pattern 412 or the second structured pattern 422 in the transverse direction.
  • the upper optical sheet 410 includes a first base film 414 and the first structured pattern 412.
  • a light transmissive film is generally used so that light incident from the lower part may be easily transmitted.
  • An upper surface of the first base film 414 is formed such that the first structured pattern 412 that refracts and collects incident light is integrated with the first base film 414.
  • the first structured pattern 412 has a structure in which a plurality of first unit condensers are repeated on an upper surface of the first base film 414.
  • the first unit condenser may be formed to protrude upward and to have a smaller cross sectional area toward the top.
  • the first structured pattern 412 refracts and condenses the light transmitted through the first base film 414 and transmits the light to the upper portion.
  • a vertical cross section may have a triangular shape, and a plurality of prism structures may extend in one direction.
  • the lower optical sheet 420 includes a second base film 424 and the second structured pattern 422 similarly to the upper optical sheet 410 described above. .
  • the second structured pattern 422 is disposed under the upper optical sheet 410 and is formed on an upper surface of the second base film 424.
  • first base film 414 and the second base film 424 may be made of acryl, urethane, or the like, and have a high light transmittance to transmit the light transmitted from the diffusion sheet 300. It is preferably made of a material.
  • Each of the first structured pattern 412 and the second structured pattern 422 extends along the length direction, and the length direction of the first structured pattern 412 is the second structured pattern 422.
  • the upper optical sheet 410 and the lower optical sheet 420 are stacked to be disposed in a direction crossing the longitudinal direction of the upper optical sheet 410.
  • the upper optical sheet 410 and the lower optical sheet 420 are disposed such that the longitudinal directions of the first structured pattern 412 and the second structured pattern 422 vertically cross each other.
  • the upper optical sheet 410 and the lower optical sheet 420 may be disposed in a direction that is not perpendicular but simply crosses.
  • first structured pattern 412 or the second structured pattern 422 may be formed such that the height of the pattern is not uniformly changed along the longitudinal direction.
  • the light diffused and transmitted by the diffusion sheet 300 may be collected more effectively and transferred upward.
  • the light condensing sheet unit 400 configured as described above collects light in a direction orthogonal to the surface of the light condensing sheet unit 400 by a structured pattern formed on the upper optical sheet 410 and the lower optical sheet 420. .
  • the shape of the first structured pattern 412 and the second structured pattern 422 formed on the upper optical sheet 410 and the lower optical sheet 420 is not limited to a specific form, but the present invention.
  • the reflective sheet structure 200 is provided in the lower portion of the light guide plate 100 is configured to reflect the light emitted from the light source 110 from the light guide plate 100 in the upper direction, structure
  • the sheet 210, a reflective sheet 230, and a spacer 220 are included.
  • the structural sheet 210 is a base substrate that supports a structure in which the reflective sheet 230 and the spacer 220 are bonded to each other, and is formed in a thin flat plate shape.
  • the structural sheet 210 may be formed of a PET material.
  • the reflective sheet 230 is disposed in a stacked form by the spacer 220 on the upper portion of the structural sheet 210, and a reflective coating is applied to one surface of the reflective sheet 230 to reflect the light transmitted to the light guide plate 100 in an upward direction.
  • the reflective sheet 230 is formed in a thin flat form, and a reflective coating is applied to reflect light.
  • the reflective sheet 230 is bonded to the upper portion of the structural sheet 210 by the spacer 220. do.
  • the reflective sheet 230 is bonded or stacked on the lower surface of the light guide plate 100 in a state of being stacked on the structure sheet 210 to reflect the light transmitted to the light guide plate 100 and transmit the light to the top.
  • the light guide plate 100 may be formed of a resin layer through which light may pass, and the reflective sheet 230 may be formed to cover the entire lower surface of the light guide plate 100.
  • the reflective sheet 230 is stacked on the structural sheet 210 and is bonded to the structural sheet 210 by the spacer 220 to be described later to maintain the stacked state.
  • the spacer 220 is bonded to the structural sheet 210 and the reflective sheet 230 so as to maintain a laminated state and at the same time separate between the structural sheet 210 and the reflective sheet 230
  • the space 240 is formed.
  • the spacer 220 is composed of at least one or more is provided between the structural sheet 210 and the reflective sheet 230, each having a predetermined height of the structural sheet 210 and the reflective sheet ( 230) to be bonded.
  • the spacer 220 does not cover the entire upper surface of the structural sheet 210, but the structural sheet 210 is formed so that the internal space 240 is formed between the structural sheet 210 and the reflective sheet 230. Only part of the upper surface of 210 is formed.
  • the spacer 220 is composed of a plurality, each of which is spaced apart from the upper surface of the structural sheet 210 by a predetermined distance. At this time, the spacer 220 is configured to form a predetermined pattern by extending in the longitudinal direction on the upper surface of the structural sheet 210, respectively, as shown.
  • the spacer 220 is configured to have a plurality of the same shape or size as shown, it is configured to act as an adhesive by directly solidifying in contact with the reflective sheet 230 and the structural sheet 210.
  • the spacer 220 may be further provided with a separate adhesive without direct bonding to the upper sheet and the lower sheet.
  • the spacer 220 is composed of a plurality of spaced apart on the upper surface of the structural sheet 210, the spacer 220 is spaced apart from the space between the structural sheet 210 and the reflective sheet 230 by The inner space 240 may be formed in the.
  • the inner space 240 is in communication with the outside, the moisture generated in the structural sheet 210 and the reflective sheet 230 can be removed, or the heat generated can be discharged the reflective sheet according to the present invention To facilitate heat dissipation and moisture proof of the structure 200.
  • the reflective sheet by the contraction and expansion of the reflective sheet 230 and the structural sheet 210 Help may be prevented from occurring at 230.
  • the spacer 220 may be configured to bend in response to the contraction and expansion of the reflective sheet 230.
  • the reflective sheet 230 and the structural sheet 210 may contract and expand due to temperature or moisture, and the reflective sheet 230 may be broken or helped when the contraction and expansion ratios are different. May occur.
  • the spacer 220 is configured to bend in response to the contraction and expansion of the reflective sheet 230, the reflective sheet 230 and the structural sheet 210 may have different shrinkage / expansion rates. Even if the size is changed, it is possible to stably maintain the bonding state of the reflective sheet 230 and the structural sheet 210.
  • the reflective sheet structure 200 according to the present invention is laminated and bonded in the order of the structural sheet 210, the spacer 220, and the reflective sheet 230, and the reflective sheet structure 200 configured as described above.
  • the reflective sheet structure 200 By again bonding to the lower portion of the light guide plate 100, it is possible to stably reflect the light generated from the light source 110 in the upper direction.
  • FIG. 5 is a view illustrating a process of stacking the reflective sheet 230 on the top surface of the structural sheet 210 in the reflective sheet structure 200 of FIG.
  • the spacer sheet 210 having a predetermined thickness passes through the front roller portions R1 and R2 in the region A, and the spacer 220 is formed on an upper surface thereof.
  • the front roller parts R1 and R2 are configured by the first front roller R1 and the second front roller R2 at the upper and lower portions on the path through which the structural sheet 210 is transferred.
  • the first front roller (R1) is a predetermined pattern is formed on the outer peripheral surface and the end is disposed so as to contact the upper surface of the structural sheet 210, the second front roller (R2) is not formed a constant pattern on the outer peripheral surface and the outer peripheral surface It is disposed to contact the lower surface of the structural sheet 210.
  • the structural sheet 210 is a liquefaction (L) which is a raw material of the spacer 220 is injected from the liquefaction input unit (I) provided separately before passing through the front roller parts (R1, R2) on the movement path To be supplied.
  • the spacer 220 may be formed to have a shape by spraying and solidifying the upper surface of the structural sheet 210 in the form of a liquefaction (L), otherwise, the structure in the state already It may be bonded to the upper surface of the sheet 210.
  • L liquefaction
  • the liquid liquefied L injected into the upper surface of the structural sheet 210 passes through the area A and the spacer 220 is formed by a pattern formed in the first front roller R1.
  • the liquefaction (L) is cured at the same time as passing through the first front roller (R1) to form the spacer 220, the liquefaction (L) is not fully cured state, but only a part of the bonding strength in the hardened state It is kept at a certain level.
  • the spacer 220 is formed on the upper surface of the structural sheet 210 by passing through the first front roller R1 and the second front roller R2 disposed as described above.
  • the structural sheet 210 having the spacer 220 formed on the upper surface thereof is moved to the B region. Bonding of the structural sheet 210 and the reflective sheet 230 supplied from the outside occurs in the region B.
  • the structural sheet 210 and the reflective sheet 230 are bonded while passing through the rear roller portions R3 and R4 provided in the region B.
  • the rear rollers R3 and R4 are constituted by a pair of first rear rollers R3 and second rear rollers R4, each of which the reflective sheet 230 and the structural sheet 210 are stacked and moved. Placed on the path.
  • the reflective sheet 230 is moved along the first rear roller R3 and bonded to the structural sheet 210 in the B region.
  • the reflective sheet 230 is pressed by the first rear roller R3 and the second rear roller R4 while the lower surface contacts the upper end of the spacer 220 formed on the structural sheet 210. Are bonded.
  • the spacer 220 is not completely hardened, the upper end of the spacer 220 and the lower surface of the reflective sheet 230 are bonded by the pressing of the rear roller parts R3 and R4. As the structural sheet 210 and the reflective sheet 230 bonded by the spacer 220 pass through the region B, the spacer 220 is completely cured to be bonded to the reflective sheet 230. do.
  • the spacer 220 having a semi-cured state is first bonded to the top surface of the structural sheet 210, and then the upper portion of the spacer 220 is again bonded.
  • the pressure is bonded to each other.
  • the entire upper surface of the spacer 220 may be bonded to the lower surface of the reflective sheet 230 in the process of bonding the reflective sheet 230 and the spacer 220, only a portion of the spacer 220 It may be bonded to the lower surface of the reflective sheet 230.
  • the spacer 220 may be sized or shaped to have a predetermined pattern by a pattern formed on the first front roller R1, and at least a portion thereof may be bonded to the bottom surface of the reflective sheet 230.
  • the reflective sheet structure 200 is provided with the spacer 220 between the structural sheet 210 and the reflective sheet 230 through the above-described process to form the internal space 240 and Bonding each other at the same time, the inner space 240 formed by the spacer 220 is determined by the shape or size of the spacer 220.
  • FIG. 6 is a cross-sectional view illustrating a non-uniform height of the plurality of spacers 220 in the reflective sheet structure 200 of FIG. 2.
  • FIG. 7 is a cross-sectional view of the reflective sheet structure 200 of FIG. 2.
  • FIG. 4 illustrates a modified form of the spacer 220.
  • a plurality of spacers 220 are spaced apart from each other on the upper surface of the structural sheet 210, as described above.
  • each of the plurality of spacers 220 extends in the longitudinal direction on the top surface of the structural sheet 210 and is spaced apart from each other.
  • the plurality of spacers 220 may be formed to have a slightly different height in a vertical direction.
  • the plurality of spacers 220 are configured to have non-uniform vertical heights, so that only a portion of the plurality of spacers 220 when the structural sheet 210 and the reflective sheet 230 are bonded to the reflective sheet 230. It is bonded to the lower surface of 230.
  • FIG. 7 shows that the plurality of spacers 220 are formed on an upper surface of the structural sheet 210. It is spaced apart.
  • the spacer 220 is formed in a cylindrical shape, and the plurality of spacers 220 have a different size and are disposed at irregular intervals on the upper surface of the structural sheet 210.
  • the spacer 220 when the spacer 220 is irregularly disposed on the upper surface of the structural sheet 210, the spacer 220 is moved to the reflective sheet 230 by pressing a roller when the spacer 220 is bonded to the reflective sheet 230. This can minimize the occurrence.
  • a plurality of the spacers 220 are disposed to be spaced apart from each other in a state in which each of the spacers 220 extends in the longitudinal direction on the top surface of the structural sheet 210.
  • each of the plurality of spacers 220 has a different width and size and is spaced apart from each other, thereby changing a region where the spacer 220 and the reflective sheet 230 are bonded.
  • each of the plurality of spacers 220 may have a different width and size, but as shown, each of the spacers 220 may be arranged to have a regular pattern or may be irregularly disposed. .
  • FIG. 8 another modified example of the spacer 220 in the reflective sheet structure 200 is as follows.
  • FIG. 8 is a view illustrating a shape in which the heights of the plurality of spacers 220 vary in the length direction of the reflective sheet structure 200 of FIG. 2.
  • the spacer 220 is deformed on the upper surface of the structural sheet 210, and the plurality of spacers 220 are formed to extend in the longitudinal direction on the upper surface of the structural sheet 210. Each is arranged with a predetermined distance d.
  • the plurality of spacers 220 are formed in such a way that the height is uneven along the longitudinal direction, and only a part of the spacers 220 are bonded to the bottom surface of the reflective sheet 230.
  • the plurality of spacers 220 have a predetermined pattern and are uniformly spaced apart, and each of the spacers 220 is formed to have a non-uniform height along the longitudinal direction, thereby making it possible for one of the spacers 220. Only a portion of the reflective sheet 230 is bonded to the bottom surface.
  • each spacer 220 may be changed with a certain period, the height may be changed irregularly along the longitudinal direction.
  • FIG. 9 is an exploded perspective view showing a state in which the reflective polarizing film is further included in the light collecting sheet 400 of FIG. 2, and FIG. 10 is a view illustrating a state in which light is transmitted or reflected by the reflective polarizing film of FIG. 9. .
  • a separate reflective polarizing film 500 is further included on the upper optical sheet 410 and is provided in a stacked form, wherein the upper optical sheet 410 and the lower optical sheet 420 are provided. Selectively transmits the light collected by
  • the reflective polarizer 500 selectively transmits light in one polarization state according to the polarization state of light and returns the light having a different polarization state to the light guide plate 100.
  • An example of such a film is DBEF (Dual Brightness Enhancement Film).
  • the reflected light that does not pass through the DBEF is reflected back through the light guide plate 100 at the bottom of the BLU and is directed upward.
  • DBEF repeats the role of passing only the light that is polarized and reflecting the rest of the light.
  • the reflective polarization film 500 is stacked on the upper optical sheet 410 and disposed on the lower optical sheet 420 and the upper optical sheet 410.
  • the light collected while passing therethrough is directed to the reflective polarizing film 500.
  • the light directed toward the reflective polarizing film 500 is a state in which light of different polarizations are mixed, and the light of P1 and the reflective polarizing film 500 having polarization of the region transmitted by the reflective polarizing film 500 are It consists of the light of P2 which has the polarization of the area
  • the light passing through the upper optical sheet 410 and the lower optical sheet 420 is a mixed state of P1 and P2, but the reflective polarizing film 500 transmits only P1 light and the light of P2 is lower again. Reflect in the direction.
  • the light of P1 is emitted to the outside, but the light of P2 is reflected and returned to the bottom, is reflected by the reflective sheet structure 200, etc., is converted into light in a random state, and moves upward again.
  • the converted light is partially passed through the reflective polarization film 500 and partially reflected. This process minimizes the light that is lost. That is, by providing the reflective polarizing film 500, it is possible to reduce the loss of light, thereby increasing the brightness of the liquid crystal display.
  • the reflective polarization film 500 may not only be stacked and disposed on the upper optical sheet 410, but also may be stacked and disposed between the upper optical sheet 410 and the lower optical sheet 420. It may be.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

본 발명은 광원, 도광판, 확산시트 및 집광시트부를 포함하는 백라이트 유닛의 상기 도광판 하부에 구비되는 반사시트 구조물에 있어서, 전체를 지지하는 평판 형태의 구조시트, 상기 구조시트의 상부에 적층되며, 적어도 상면에 반사코팅이 적용된 반사시트 및 상기 구조시트와 상기 반사시트 사이에서 복수 개가 이격되어 구비되며, 상기 구조시트와 상기 반사시트 사이에 별도의 내부공간을 형성하여 방열 및 방습이 용이하도록 하는 스페이서; 를 포함하며, 상기 광원으로부터 전달되는 빛이 상기 반사시트에 의해 반사되어 상부로 전달되도록 하는 반사시트 구조물이 제공된다.

Description

반사시트 구조물 및 이를 구비한 백라이트 유닛
본 발명은 반사시트 구조물 및 이를 구비한 백라이트 유닛에 관한 것으로서, 좀 더 자세하게는, 광원으로부터 발생된 빛을 상부로 반사시켜 전달하는 반사시트 구조물에서 반사시트 하부에 별도의 내부공간을 형성하여 방열 및 방습효과를 증가시킨 반사시트 구조물 및 이를 구비한 백라이트 유닛에 관한 것이다.
근래에 들어 평판 디스플레이 패널의 사용이 확대되고 있으며, 그 중 대표적으로 액정표시장치가 있다.
일반적으로, 상기 액정표시장치(LCD)는 종래의 브라운관 방식(CRT)와는 달리 화면 전체에 균일한 빛을 제공하는 백라이트 유닛이 필요하다.
구체적으로 백라이트 유닛은, 액정표시장치의 후면에서 균일한 빛을 제공하는 구성으로서, 광원인 LED가 도광판의 한 측면에 배치되어 있고, 도광판의 하부에는 도광판에서 누출된 빛을 다시 상부로 반사시키는 반사시트가 배치되어 있다.
그리고 이와 같이 구성된 상태에서 광원에 의해 발생된 빛은 도광판과 반사시트에 의해 상부로 반사되고, 반사된 빛은 다시 집광시트를 거치며 균일하게 상부로 전달된다.
즉, 백라이트 유닛은 측면에 구비된 광원에서 발생된 빛은 도광판 및 반사시트에 의해 상부로 반사되고, 반사된 빛은 다시 집광시트를 거치며 균일하게 집광되도록 구성된다.
이와 같이 도광판 하부에 구비되어 빛을 재반사시키는 반사시트는 단순히 하나의 시트로 구성되지 않고 얇은 필름이 적층형태로 배치되어 접합된 상태로 도광판의 하부에 구비된다.
종래의 백라이트 유닛에 구비되는 반사시트에 대해서 살펴보면 도 1에 도시된 바와 같이 구조층(10), 접합층(20) 및 반사층(30) 순으로 적층되어 하나의 시트를 형성하게 된다.
실제로 반사시트의 경우 디스플레이의 슬림화에 따라 점점 얇아지게 되어 최종 두께는 150㎛ 이하로 이루어지게 된다.
하지만 종래의 반사시트에서는 구조층(10)의 상면 전체에 걸쳐 접합층(20)이 도포되어 있으며, 이에 따라 반사층(30)이 접합층(20) 상면에 적층되어 접합된다.
즉, 반사층(30)의 하면 전체가 접합층(20)에 의해 접합되고 내부에는 별도의 공간이 형성되지 않게 된다.
하지만 이와 같이 구성된 반사시트의 경우 액정표시장치에 적용되어 사용될 때 액정표시장치에 의해 열이 발생되고 이에 따라 팽창 및 수축을 하게된다.
이때, 구조층(10)과 반사층(30)의 수축/팽창률이 서로 다른 경우 반사층(30)에 움이 발생하게 되고 이에 따라 광원으로부터 발생된 빛을 상부로 반사시키는 효율이 저감된다.
뿐만 아니라, 반사층(30)에 움(curl)이 발생한 상태에서 지속적으로 액정표시장치를 사용하는 경우 습기나 열에 의해 접합층(20)과 반사층(30)이 박리되는 문제점이 발생한다.
본 발명의 기술적 과제는, 배경기술에서 언급한 문제점을 해결하기 위한 것으로, 백라이트 유닛에 구비되는 반사시트에 별도의 스페이서를 구비하여 내부공간을 형성함으로써, 반사시트의 움을 방지함과 동시에 방열 및 방습효과를 증가시킬 수 있는 반사시트 구조물 및 이를 구비한 백라이트 유닛을 제공함에 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일측면에 따르면 광원, 도광판 및 집광시트부를 포함하는 백라이트 유닛의 상기 도광판 하부에 구비되는 반사시트 구조물에 있어서, 전체를 지지하는 평판 형태의 구조시트, 상기 구조시트의 상부에 적층되며, 적어도 상면에 반사코팅이 적용된 반사시트; 및 상기 구조시트와 상기 반사시트 사이에서 복수 개가 이격되어 구비되며, 상기 구조시트와 상기 반사시트 사이에 별도의 내부공간을 형성하여 방열 및 방습이 용이하도록 하는 스페이서를 포함하며, 상기 광원으로부터 전달되는 빛이 상기 반사시트에 의해 반사되어 상부로 전달되도록 한다.
또한, 상기 스페이서는, 복수 개가 구비되며 서로 동일한 크기 또는 형상을 가지도록 형성되는 것을 특징으로 할 수 있다.
또한, 상기 스페이서는 상기 반사시트와 상기 구조시트에 직접 접촉하여 응고되며 접착제 역할을 하는 것을 특징으로 할 수 있다.
또한, 상기 스페이서는 복수 개로 형성되며, 상기 반사시트와의 적층방향에 따른 높이가 서로 불균일하게 형성되어 일부만 상기 반사시트와 접촉하는 것을 특징으로 할 수 있다.
또한, 상기 스페이서는 복수 개 각각이 상기 구조시트의 상면에 길이방향으로 연장되어 형성되는 것을 특징으로 할 수 있다.
여기서, 상기 스페이서는 길이방향을 따라 높이가 변화되는 것을 특징으로 할 수 있다.
또한, 상기 스페이서는 상기 구조시트의 상면에서 일정한 패턴을 가지도록 형성되어 적어도 일부가 상기 반사시트의 하면에 접합되는 것을 특징으로 할 수 있다.
또한, 상기 스페이서는 상기 반사시트의 수축과 팽창에 대응하여 휘어짐이 가능하도록 구성되는 것을 특징으로 할 수 있다.
한편, 상기와 같은 과제를 해결하기 위하여 본 발명의 다른 측면에 따른 백라이트 유닛은, 상술한 반사시트 구조물을 포함한다.
상기 문제점을 해결하기 위해 본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 백라이트 유닛에서 빛을 상부로 반사시키는 반사시트에 별도의 스페이서를 구비하여 내부공간을 형성함으로써, 방습 및 방열효과를 증가시켜 반사시트 구조물의 내구성을 증가시킬 수 있는 이점이 있다.
둘째, 반사시트 구조물에서 구조시트와 반사시트를 접합시키는 스페이서가 구조시트의 상면에 일부만 구비됨으로써 구조시트와 반사시트의 수축과 팽창 시 반사시트에 움이 발생하는 것을 방지할 수 있는 이점이 있다.
본 발명의 효과들은 상기 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 백라이트 유닛에 구비되는 반사시트 구조물을 개략적으로 나타낸 도면;
도 2는 본 발명의 실시예에 반사시트 구조물이 구비된 백라이트 유닛의 구성을 나타낸 분해사시도;
도 3은 도 2의 백라이트 유닛에서 반사시트 구조물이 형성된 상태를 나타낸 도면;
도 4는 도 2의 백라이트 유닛에 반사시트 구조물이 결합된 상태를 나타낸 측면도;
도 5는 도 2의 반사시트 구조물에서 구조시트의 상면에 반사시트가 적층되는 과정을 나타낸 도면;
도 6은 도 2의 반사시트 구조물에서 복수 개의 스페이서의 상하방향에 따른 높이가 불균일한 상태를 나타낸 도면;
도 7은 도 2의 반사시트 구조물에서 스페이서의 변형된 형태를 나타낸 도면;
도 8은 도 2의 반사시트 구조물에서 복수 개의 스페이서의 길이방향에 따른 각각의 높이가 변화하는 형태에 대해서 나타내는 도면;
도 9는 도 2의 집광시트부에서 반사편광필름이 더 포함된 상태를 나타낸 분해사시도; 및
도 10는 도 9의 반사편광필름에 의해서 빛이 투과 또는 반사되는 상태를 나타낸 도면이다.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
이하의 설명에서, 본 발명의 일 실시예에 따른 반사시트 구조물을 포함하는 백라이트 유닛은, LCD나 LED 패널 등의 평판 액정표시장치에 적용되는 것을 예로 들어 설명하기로 한다. 허나, 본 발명은 반드시 이에 한정되는 것은 아니며, 광학시트 단독으로 사용될 수도 있으며, 또는, 액정표시장치에 적용되는 것이 아닌 다른 기구에 적용되는 백라이트 유닛일 수도 있으며, 또는 조명기구 등 빛의 특성 및 경로를 변화시키는 장치라면 어느 것에도 적용될 수도 있다.
<구성>
먼저, 도 2 내지 도 4를 참조하여 본 발명의 실시예에 따른 반사시트 구조물이 적용된 백라이트 유닛의 개략적인 구성에 대해서 살펴보면 다음과 같다.
도 2는 본 발명의 실시예에 반사시트 구조물이 구비된 백라이트 유닛의 구성을 나타낸 분해사시도이고, 도 3은 도 2의 백라이트 유닛에서 반사시트 구조물이 형성된 상태를 나타낸 도면이며, 도 4는 도 2의 백라이트 유닛에 반사시트 구조물이 결합된 상태를 나타낸 도면이다.
도시된 바와 같이, 액정표시장치를 구성함에 있어서, 액정패널에 빛을 제공하는 백라이트 유닛(BLU: Back Light Unit)이 필수적으로 구비되어야 한다. 이와 같은 백라이트 유닛은 크게 광원(110), 도광판(100), 확산시트(300), 반사시트 구조물(200) 및 집광시트부(400)를 포함하여 구성된다.
상기 광원(110)은 일반적으로 빛을 발광하는 발광체로 구성되며 상기 도광판(100)의 측부에서 빛을 발광하여 상기 도광판(100) 방향으로 빛을 전달한다.
그리고 상기 도광판(100)은 상기 광원(110)으로부터 전달된 빛을 상기 집광시트부(400) 방향으로 전달한다.
상기 확산시트(300)는, 상기 도광판(100)의 상부에 배치되어 상기 도광판(100)에서 전달되는 빛을 확산시키고, 확산된 빛이 상술한 상기 집광시트부(400)로 고르게 전달되도록 한다. 도2에서는 상기 확산시트(300)는 확산 수단의 일례로서 나타낸 것으로, 다양한 확산 수단이 사용 가능하다. 예를 들어, 확산 입자를 기존 광학시트 또는 별도의 광학시트에 포함하는 구조일 수 있으며, 별도의 확산 패턴을 갖는 시트 구조도 가능하다.
상기 집광시트부(400)는 상기 도광판(100)의 상부에 배치되어 전달되는 빛을 집광하여 상부로 이동시킨다. 여기서 상기 집광시트부(400)는 한 쌍의 상부광학시트(410) 및 하부광학시트(420)가 적층된 형태로 형성되어 상기 도광판(100)으로부터 전달되는 빛을 굴절시켜 상부로 전달한다.
일반적으로 상기 집광시트부(400)는 한 쌍으로 구성된 프리즘시트 형태로 형성되며, 빛을 집광하도록 구성되어 있지만, 이와 달리 하나로 구성되거나, 역프리즘 형태로 형성될 수도 있다.
구체적으로 본 실시예에 따른 상기 집광시트부(400)를 살펴보면 상기 상부광학시트(410)와 상기 하부광학시트(420)를 포함하며 서로 적층되어 배치된 상태로 상기 확산시트(300)의 상부에 배치된다.
상기 상부광학시트(410)는 상부로 갈수록 횡단면적이 감소하는 제1단위집광체가 연속적으로 반복되는 제1구조화패턴(412)을 가지도록 구성되고, 상기 하부광학시트(420)는 상부로 갈수록 횡단면적이 감소하며 상부가 상기 상부광학시트(410)의 하면에 접합되는 제2단위집광체가 연속적으로 반복되는 제2구조화패턴(422)을 가지도록 구성된다.
여기서, 상술한 횡단면적은 상기 제1구조화패턴(412) 또는 상기 제2구조화패턴(422)의 횡방향에 따른 단면의 면적을 의미한다.
구체적으로 상기 상부광학시트(410)는 크게 제1베이스필름(414) 및 상기 제1구조화패턴(412)으로 구성된다.
상기 제1베이스필름(414)은 하부로부터 입사되는 빛이 용이하게 투과할 수 있도록 광투과성 필름이 사용되는 것이 일반적이다. 상기 제1베이스필름(414)의 상면에는 입사된 빛을 굴절 및 집광시키는 상기 제1구조화패턴(412)이 상기 제1베이스필름(414)과 일체화되도록 형성된다.
상기 제1구조화패턴(412)은 상기 제1베이스필름(414)의 상면에 복수 개의 제1단위집광체가 반복되는 구조이다. 상기 제1단위집광체는 상부방향으로 돌출되어 상부로 갈수록 횡단면적이 작아지도록 형성될 수 있다.
상기 제1구조화패턴(412)은 상기 제1베이스필름(414)을 투과한 빛을 굴절 및 집광시켜 상부로 전달한다.
상기 제1구조화패턴(412)의 일례로, 수직단면이 삼각형상이고, 일 방향을 따라 연장된 프리즘 구조물이 복수 개로 형성될 수 있다.
그리고, 본 발명의 실시예에 따른 상기 하부광학시트(420)는 상술한 상기 상부광학시트(410)와 유사하게 제2베이스필름(424) 및 상기 제2구조화패턴(422)을 포함하여 구성된다.
여기서, 상기 제2구조화패턴(422)은, 상기 상부광학시트(410)의 하부에 배치되며 상기 제2베이스필름(424)의 상면에 형성되어 있다.
이와 함께, 상기 제1베이스필름(414) 및 상기 제2베이스필름(424)은 아크릴이나 우레탄 등으로 구성될 수 있으며, 상기 확산시트(300)로부터 전달된 빛을 투과시킬 수 있도록 광 투과도가 높은 소재로 이루어지는 것이 바람직하다.
그리고 각각의 상기 제1구조화패턴(412) 및 상기 제2구조화패턴(422)은 길이방향을 따라 연장되어 형성되며, 상기 제1구조화패턴(412)의 길이방향은 상기 제2구조화패턴(422)의 길이방향과 교차되는 방향으로 배치되도록 상기 상부광학시트(410)와 상기 하부광학시트(420)가 적층된다.
본 실시예에서 상기 상부광학시트(410)와 상기 하부광학시트(420)는 상기 제1구조화패턴(412)과 상기 제2구조화패턴(422)의 길이방향이 수직으로 교차되도록 배치되며, 이와 달리 수직이 아니라 단순히 교차되는 방향으로도 상기 상부광학시트(410)와 상기 하부광학시트(420)가 배치될 수도 있다.
한편, 도면에 도시되지는 않았지만 상기 제1구조화패턴(412) 또는 상기 제2구조화패턴(422)은 길이방향을 따라 패턴의 높이가 균일하지 않게 변화되도록 형성될 수도 있다.
이에 따라 상기 확산시트(300)에 의해 확산되어 전달되는 빛을 보다 효과적으로 집광하여 상부방향으로 전달할 수 있다.
이와 같이 구성된 상기 집광시트부(400)는 상기 상부광학시트(410) 및 상기 하부광학시트(420)에 형성된 구조화패턴에 의해서 집광시트부(400)의 면에 대해 직교하는 방향으로 빛이 집광된다.
하지만, 도시된 상기 상부광학시트(410)와 상기 하부광학시트(420)에 형성된 상기 제1구조화패턴(412) 및 상기 제2구조화패턴(422)의 형상은 특정형태로 한정되는 것이 아니라 본 발명의 실시예에 따른 구성을 이해하기 쉽도록 선택한 것이다.
한편, 상기 반사시트 구조물(200)은 상기 도광판(100)의 하부에 구비되어 상기 광원(110)으로부터 발생된 빛이 상기 도광판(100)에서 누설된 빛을 상기 상부방향으로 반사시키는 구성으로서, 구조시트(210), 반사시트(230) 및 스페이서(Spacer)(220)를 포함한다.
상기 구조시트(210)는 상기 반사시트(230) 및 상기 스페이서(220)가 접합된 구조를 지지하는 베이스 기판으로 얇은 평판형태로 형성된다. 구체적으로 상기 구조시트(210)는 PET 재질로 형성될 수 있다.
상기 반사시트(230)는 상기 구조시트(210)의 상부에서 상기 스페이서(220)에 의해 적층형태로 배치되며 일면에 반사코팅이 적용되어 상기 도광판(100)으로 전달되는 빛을 상부방향으로 반사시킨다. 구체적으로 상기 반사시트(230)는 얇은 평판형태로 형성되어 빛을 반사할 수 있도록 반사코팅이 적용되어 있으며, 상술한 상기 스페이서(220)에 의해 상기 구조시트(210)의 상부에 적층 형태로 접합된다.
그리고 상기 반사시트(230)은 상기 구조시트(210)의 상부에 적층된 상태로 상기 도광판(100)의 하면에 접합 또는 적층되어 상기 도광판(100)으로 전달되는 빛을 반사시켜 상부로 전달한다. 여기서, 상기 도광판(100)은 빛이 투과될 수 있는 수지층으로 이루어질 수 있으며, 상기 반사시트(230)가 상기 도광판(100)의 하면 전체를 커버할 수 있도록 형성된다.
본 실시예에서 상기 반사시트(230)는 상기 구조시트(210)의 상부에 적층되며, 후술하는 상기 스페이서(220)에 의해 상기 구조시트(210)와 접합되어 적층상태를 유지할 수 있도록 구성된다.
한편, 상기 스페이서(220)는 상기 구조시트(210)와 상기 반사시트(230)가 적층 상태를 유지할 수 있도록 접합시켜줌과 동시에 상기 구조시트(210)와 상기 반사시트(230) 사이에 별도의 내부공간(240)을 형성되도록 한다.
구체적으로 상기 스페이서(220)는 적어도 하나 이상으로 구성되어 상기 구조시트(210)와 상기 반사시트(230) 사이에 구비되며, 각각이 소정의 높이를 가지고 상기 구조시트(210)와 상기 반사시트(230)가 접합되도록 한다. 이때, 상기 스페이서(220)는 상기 구조시트(210)의 상면 전체를 커버하는 것이 아니라 상기 구조시트(210)와 상기 반사시트(230) 사이에 상기 내부공간(240)이 형성되도록 상기 구조시트(210)의 상면 일부에만 형성된다.
본 실시예에서 상기 스페이서(220)는 복수 개로 구성되어 각각이 상기 구조시트(210)의 상면에 소정거리 이격되어 배치된다. 이때, 상기 스페이서(220)는 도시된 바와 같이 복수 개 각각이 상기 구조시트(210)의 상면에 길이방향으로 연장되어 일정한 패턴을 형성하도록 구성된다.
여기서, 상기 스페이서(220)는 도시된 바와 같이 복수 개가 동일한 형상 또는 크기를 가지도록 구성되며, 상기 반사시트(230)와 상기 구조시트(210)에 직접 접촉하여 응고됨으로써 접착제 역할을 하도록 구성된다.
물론, 상기 스페이서(220)가 상부시트와 하부시트에 직접 접합되도록 하지 않고 별도의 접착제를 더 구비할 수도 있다.
이와 같이 상기 스페이서(220) 복수 개로 구성되어 상기 구조시트(210)의 상면에 이격되어 배치됨으로써, 상기 스페이서(220)가 이격된 공간에 의해 상기 구조시트(210)와 상기 반사시트(230) 사이에 상기 내부공간(240)이 형성될 수 있다.
이와 같은 상기 내부공간(240)은 외부와 연통됨으로써, 상기 구조시트(210)와 상기 반사시트(230)에 발생하는 습기를 제거하거나, 발생되는 열을 배출할 수 있어 본 발명에 따른 상기 반사시트 구조물(200)의 방열 및 방습이 용이하도록 한다.
특히, 상기 내부공간(240)에 의해 본 발명에 따른 백라이트 유닛의 사용 시 발생되는 열 또는 습기를 제거함으로써, 상기 반사시트(230) 및 상기 구조시트(210)의 수축과 팽창에 의해 상기 반사시트(230)에 움이 발생하는 것을 방지할 수 있다.
한편, 본 발명에 따른 상기 스페이서(220)는 상기 반사시트(230)의 수축과 팽창에 대응하여 휘어짐이 가능하도록 구성될 수 있다. 구체적으로 상술한 상기 반사시트(230)와 상기 구조시트(210)는 온도나 습기에 의해 수축과 팽창이 발생할 수 있으며, 각각의 수축, 팽창률이 다른 경우 상기 반사시트(230)가 파손되거나 움이 발생할 수 있다.
이에 따라, 상기 스페이서(220)가 상기 반사시트(230)의 수축과 팽창에 대응하여 휘어짐이 가능하도록 구성됨에 따라, 상기 반사시트(230)와 상기 구조시트(210)가 서로 다른 수축/팽창률을 가지고 크기가 변화하더라도 안정적으로 상기 반사시트(230)와 상기 구조시트(210)의 접합상태를 유지시킬 수 있다.
이와 같이 본 발명에 따른 상기 반사시트 구조물(200)은 상기 구조시트(210), 상기 스페이서(220) 및 상기 반사시트(230) 순으로 적층되어 접합되고, 이와 같이 구성된 상기 반사시트 구조물(200)은 다시 상기 도광판(100)의 하부에 접합됨으로써, 상기 광원(110)으로부터 발생되는 빛을 안정적으로 상부방향으로 반사시킬 수 있다.
<제조공정>
이어서, 도 5를 참조하여 상기 구조시트(210)의 상면에 상기 스페이서(220) 및 상기 반사시트(230)가 접합되는 공정을 살펴보면 다음과 같다.
도 5는 도 2의 상기 반사시트 구조물(200)에서 상기 구조시트(210)의 상면에 상기 반사시트(230)가 적층되는 과정을 나타낸 도면이다.
구체적으로, 소정의 두께를 가지는 상기 구조시트(210)가 A영역에서 전방롤러부(R1, R2)를 통과함과 동시에 상면에 상기 스페이서(220)가 형성된다. 전방롤러부(R1, R2)는 상기 구조시트(210)가 이송되는 경로상에서 상하부에 각각의 제 1전방롤러(R1) 및 제 2전방롤러(R2)로 구성되어 배치된다.
제 1전방롤러(R1)는 외주면에 일정한 패턴이 형성되어 있으며 끝단부가 상기 구조시트(210)의 상면에 접하도록 배치되고, 제 2전방롤러(R2)는 외주면에 일정한 패턴이 형성되어 있지 않으며 외주면이 상기 구조시트(210)의 하면에 접하도록 배치된다.
그리고 상기 구조시트(210)는 이동 경로상에서 전방롤러부(R1, R2)를 통과하기 전에 별도로 구비된 액화물투입부(I)로부터 분사되는 상기 스페이서(220)의 원료인 액화물(L)을 공급받는다.
여기서, 상기 스페이서(220)는 일반적으로 액화물(L)형태로 상기 구조시트(210)의 상면에 분사되어 응고됨으로써 그 형태를 가지도록 형성할 수 있으며, 이와 달리 이미 형태를 가진 상태에서 상기 구조시트(210)의 상면에 접합될 수도 있다.
이후, 상기 구조시트(210)의 상면에 분사된 상기 액화물(L)은 A영역을 통과하며 제 1전방롤러(R1)에 형성된 패턴에 의해서 상기 스페이서(220)가 형성된다.
이때, 액화물(L)은 제 1전방롤러(R1)를 통과함과 동시에 경화되어 상기 스페이서(220)를 형성하며, 액화물(L)은 완전히 경화된 상태가 아닌 일부만 경화된 상태로 접합력을 일정수준 유지한 상태가 된다.
이와 같이 각각 배치된 제 1전방롤러(R1) 및 제 2전방롤러(R2)를 통과함으로써, 상기 구조시트(210)의 상면에 상기 스페이서(220)가 형성된다.
이후, 상면에 상기 스페이서(220)가 형성된 상기 구조시트(210)는 B영역으로 이동하게 된다. 상기 B영역에는 상기 A영역으로부터 전달된 상기 구조시트(210)와 외부에서 공급되는 상기 반사시트(230)의 접합이 일어난다.
상기 구조시트(210)와 상기 반사시트(230)는 상기 B영역에 구비된 후방롤러부(R3, R4)를 통과하며 접합된다. 후방롤러부(R3, R4)는 한 쌍의 제 1후방롤러(R3) 및 제 2후방롤러(R4)로 구성되며 각각이 상기 반사시트(230) 및 상기 구조시트(210)가 적층되어 이동하는 경로상에 배치된다.
그래서 상기 반사시트(230)가 상기 제 1후방롤러(R3)를 따라 이동되며 상기 B영역에서 상기 구조시트(210)와 접합된다. 상기 반사시트(230)는 하면이 상기 구조시트(210)의 상부에 형성된 상기 스페이서(220)의 상부방향 끝단부와 접하며 제 1후방롤러(R3) 및 제 2후방롤러(R4)에 의해서 가압되어 접합된다.
이때, 상기 스페이서(220)는 완전히 경화된 상태가 아니기 때문에 상기 후방롤러부(R3, R4)의 가압에 의해서 상기 스페이서(220)의 상부방향 끝단부와 상기 반사시트(230)의 하면이 접합된다 그리고 상기 스페이서(220)에 의해 접합된 상기 구조시트(210)와 상기 반사시트(230)가 상기 B영역을 통과되면서 상기 스페이서(220)는 완전히 경화되어 상기 반사시트(230)와 접합된 상태가 된다.
이와 같이 상기 구조시트(210)와 상기 반사시트(230)의 접합 시, 먼저 상기 구조시트(210)의 상면에 반 경화상태의 상기 스페이서(220)가 접합된 후 다시 상기 스페이서(220)의 상부에 상기 반사시트(230)가 적층된 상태로 상술한 후방롤러부(R3, R4)에 의해 가압되어 접합된다.
이때, 상기 반사시트(230)와 상기 스페이서(220)가 접합되는 과정에서 상기 스페이서(220)의 상면 전체가 상기 반사시트(230)의 하면에 접합될 수도 있고, 상기 스페이서(220) 중 일부만 상기 반사시트(230)의 하면에 접합될 수도 있다.
즉, 상기 스페이서(220)는 제1전방롤러(R1)에 형성된 패턴에 의해 일정한 패턴을 가지도록 크기나 형상이 결정되며, 적어도 일부가 상기 반사시트(230)의 하면에 접합될 수 있다
본 실시예에서 상기 반사시트 구조물(200)은 상술한 과정을 통해 상기 구조시트(210)와 상기 반사시트(230) 사이에 상기 스페이서(220)가 구비되어 상기 내부공간(240)을 형성함과 동시에 각각을 접합시키고, 상기 스페이서(220)에 의해 형성된 상기 내부공간(240)은 상기 스페이서(220)의 형상 또는 크기에 의해 결정된다.
<변형예>
이어서, 도 6 및 도 7을 참조하여 본 발명에 따른 상기 반사시트 구조물(200)에서 상기 스페이서(220)의 변형된 형태에 대해서 살펴보면 다음과 같다.
도 6은 도 2의 상기 반사시트 구조물(200)에서 복수 개의 상기 스페이서(220)의 상하방향에 따른 높이가 불균일한 상태를 나타낸 단면도이고, 도 7은 도 2의 상기 반사시트 구조물(200)에서 상기 스페이서(220)의 변형된 형태를 나타낸 도면이다.
먼저, 도 6을 살펴보면, 상기 스페이서(220)는 상술한 바와 달리 구조시트(210)의 상면에 복수 개가 이격되어 배치된다. 여기서, 도시되지는 않았지만 복수 개의 상기 스페이서(220) 각각은 상기 구조시트(210)의 상면에 길이방향으로 연장되어 형성되며 서로 이격되어 배치된다.
이때, 도시된 바와 같이 복수 개의 상기 스페이서(220)는 상하방향에 따른 높이가 균일하지 않고 다소 차이를 가지도록 형성될 수 있다.
이와 같이 복수 개의 상기 스페이서(220)가 균일하지 않은 상하방향 높이를 가지도록 구성됨으로써, 상기 구조시트(210)와 상기 반사시트(230)의 접합 시 복수 개의 상기 스페이서(220) 중 일부만 상기 반사시트(230)의 하면에 접합된다.
여기서, 복수 개의 상기 스페이서(220) 중 일부만 상기 반사시트(230)와 접합됨에 따라 상기 반사시트(230)와 상기 구조시트(210)가 수축 또는 팽창하더라도 상기 반사시트(230)에 움이 발생하지 않고 접합상태를 유지할 수 있다.
이어서 도 7을 살펴보면, 복수 개의 상기 스페이서(220)가 서로 다른 형상 및 크기를 가지도록 구성된 상태로서, 도 7의 (a)는 상기 구조시트(210)의 상면에 복수 개의 상기 스페이서(220)가 이격되어 배치된 상태이다.
구체적으로 도 7의 (a)에서는 상기 스페이서(220) 원통 형상으로 형성되어 복수 개가 서로 다른 크기를 가지며 상기 구조시트(210)의 상면에 불규칙적으로 이격되어 배치된다.
이와 같이 상기 스페이서(220)가 상기 구조시트(210)의 상면에 불규칙적으로 배치되는 경우 상기 스페이서(220)와 상기 반사시트(230)의 접합 시 롤러의 가압에 의해 상기 반사시트(230)에 움이 발생하는 것을 최소화 시킬 수 있다.
한편, 도 7의 (b)를 살펴보면 복수 개의 상기 스페이서(220)가 상기 구조시트(210)의 상면에서 각각이 길이방향으로 연장된 상태로 상호 이격되어 배치되어 있다.
이때, 복수 개의 상기 스페이서(220) 각각은 서로 다른 폭과 크기를 가지며 이격되어 배치되고, 이에 따라 상기 스페이서(220)와 상기 반사시트(230)가 접합되는 영역이 변화하게 된다.
물론 복수 개의 상기 스페이서(220) 각각은 서로 다른 폭 및 크기를 가지지만, 도시된 바와 같이 각각의 상기 스페이서(220)가 규칙적으로 일정한 패턴을 가지도록 배치될 수도 있고 이와 달리 불규칙적으로 배치될 수도 있다.
그리고, 도 8을 참조하여 본 발명에 따른 상기 반사시트 구조물(200)에서 상기 스페이서(220)의 또 다른 변형예를 살펴보면 다음과 같다.
도 8은 도 2의 상기 반사시트 구조물(200)에서 복수 개의 상기 스페이서(220)의 길이방향에 따른 각각의 높이가 변화하는 형태에 대해서 나타내는 도면이다.
도시된 도면은 상기 구조시트(210)의 상면에 상기 스페이서(220)가 변형된 행태를 나타낸 것으로서, 복수 개의 상기 스페이서(220)가 상기 구조시트(210)의 상면에 길이방향으로 연장되어 형성되며 각각이 소정의 이격거리(d)를 가지고 배치된다.
이때, 복수 개의 상기 스페이서(220)는 길이방향을 따라 높이가 불균일하게 형성되어 일부만 상기 반사시트(230)의 하면에 접합되도록 구성된다.
즉, 복수 개의 상기 스페이서(220)는 일정한 패턴을 가지며 균일하게 이격되어 배치되며, 각각의 상기 스페이서(220)는 길이방향을 따라 불균일한 높이를 가지도록 형성됨으로써, 하나의 상기 스페이서(220)에서 일부만 상기 반사시트(230)의 하면에 접합되는 형태가 된다.
이때 각각의 상기 스페이서(220)의 높이는 일정한 주기를 가지면서 변화될 수 있으나, 높이가 길이방향을 따라서 불규칙하게 변화될 수도 있다.
<반사편광필름추가>
다음으로, 도 9 및 도 10을 참조하여 본 발명에 따른 상기 반사시트 구조물(200)이 구비된 백라이트 유닛에서 상기 집광시트부(400)에 별도의 반사편광필름(500)이 더 포함된 상태에 대해서 살펴보면 다음과 같다.
도 9는 도 2의 상기 집광시트부(400)에서 반사편광필름이 더 포함된 상태를 나타낸 분해사시도이고, 도 10는 도 9의 반사편광필름에 의해서 빛이 투과 또는 반사되는 상태를 나타낸 도면이다.
도시된 도면을 살펴보면, 상기 상부광학시트(410)의 상부에 별도의 반사편광필름(500)이 더 포함되어 적층형태로 구비된 구성으로써, 상기 상부광학시트(410) 및 상기 하부광학시트(420)에 의해서 집광된 빛을 선택적으로 투과시킨다.
상기 반사편광필름(Reflective Polarizer: 500)이란 빛의 편광 상태에 따라 일 편광 상태의 빛을 선택적으로 투과시키고 편광 상태가 다른 빛은 상기 도광판(100)으로 되돌리는 역할을 한다. 이와 같은 필름의 일 예로 DBEF(Dual Brightness Enhancement Film: 이중 휘도 향상 필름)가 있다.
DBEF를 통과하지 못하고 반사된 빛은 BLU 하단의 상기 도광판(100)을 통해 재반사 되어 다시 상부로 향한다. DBEF는 이 가운데 편광이 맞는 빛만을 통과시킨 후 나머지 빛을 반사시키는 역할을 계속하여 반복한다.
이와 같은 과정의 반복을 통해서 원하는 편광의 빛만을 상부로 방출하기 때문에 방출되는 빛의 소실의 줄이고 디스플레이모듈의 휘도가 상승한다.
보다 구체적으로 살펴보면, 도 10에 도시된 바와 같이 상기 반사편광필름(500)은 상기 상부광학시트(410)의 상부에 적층되어 배치되며 상기 하부광학시트(420) 및 상기 상부광학시트(410)를 통과하면서 집광된 빛이 상기 반사편광필름(500)으로 향하게 된다. 여기서, 상기 반사편광필름(500)으로 향하는 빛은 서로 다른 편광의 빛이 혼합된 상태로써 상기 반사편광필름(500)이 투과시키는 영역의 편광을 가진 P1의 빛과 상기 반사편광필름(500)이 투과시키지 않는 영역의 편광을 가진 P2의 빛으로 구성된다.
도시된 바와 같이, 상기 상부광학시트(410) 및 상기 하부광학시트(420)를 통과한 빛은 P1 및 P2의 혼합상태이지만 상기 반사편광필름(500)은 P1 빛만 투과시키고 P2의 빛은 다시 하부방향으로 반사시킨다.
그래서 P1의 빛은 외부로 방출되지만 P2의 빛은 반사되어 하부로 되돌아가고 상기 반사시트 구조물(200) 등에 의해 반사되어 랜덤한 상태의 빛으로 변환되어 다시 상부로 이동한다. 상기 변환된 빛은 상기 반사편광필름(500)에서 일부 통과하게 되며 일부는 반사하게 된다. 이러한 과정을 통해 소실되는 빛을 최소화시킬 수 있게 된다. 즉, 상기 반사편광필름(500)을 구비함으로써 빛의 소실을 줄일 수 있게 되어 액정표시장치의 휘도를 증가시킬 수 있다.
한편, 상기 반사편광필름(500)은 상기 상부광학시트(410)의 상부에 적층되어 배치될 수 있을 뿐만 아니라 상기 상부광학시트(410)와 상기 하부광학시트(420)의 사이에 적층되어 배치될 수도 있다.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (9)

  1. 광원, 도광판, 확산시트 및 집광시트부를 포함하는 백라이트 유닛의 상기 도광판 하부에 구비되는 반사시트 구조물에 있어서,
    전체를 지지하는 평판 형태의 구조시트;
    상기 구조시트의 상부에 적층되며, 적어도 상면에 반사코팅이 적용된 반사시트; 및
    상기 구조시트와 상기 반사시트 사이에서 복수 개가 이격되어 구비되며, 상기 구조시트와 상기 반사시트 사이에 별도의 내부공간을 형성하여 방열 및 방습이 용이하도록 하는 스페이서; 를 포함하며,
    상기 광원으로부터 전달되는 빛이 상기 반사시트에 의해 반사되어 상부로 전달되도록 하는 반사시트 구조물.
  2. 제1항에 있어서,
    상기 스페이서는,
    복수 개가 구비되며, 서로 동일한 크기 또는 형상을 가지도록 형성되는 것을 특징으로 하는 반사시트 구조물.
  3. 제1항에 있어서,
    상기 스페이서는,
    상기 반사시트와 상기 구조시트에 직접 접촉하여 응고되며 접착제 역할을 하는 것을 특징으로 하는 반사시트 구조물.
  4. 제1항에 있어서,
    상기 스페이서는,
    복수 개로 형성되며, 각각의 높이가 불균일하게 형성되어 일부만 상기 반사시트와 접촉하는 것을 특징으로 하는 반사시트 구조물.
  5. 제1항에 있어서,
    상기 스페이서는,
    복수 개 각각이 상기 구조시트의 상면에 길이방향으로 연장되어 형성되는 것을 특징으로 하는 반사시트 구조물.
  6. 제5항에 있어서,
    상기 스페이서는,
    길이방향을 따라 높이가 변화되는 것을 특징으로 하는 반사시트 구조물.
  7. 제1항에 있어서,
    상기 스페이서는,
    상기 구조시트의 상면에서 일정한 패턴을 가지도록 형성되어 적어도 일부가 상기 반사시트의 하면에 접합되는 것을 특징으로 하는 반사시트 구조물.
  8. 제1항에 있어서,
    상기 스페이서는,
    상기 반사시트의 수축과 팽창에 대응하여 휘어짐이 가능하도록 구성되는 것을 특징으로 하는 반사시트 구조물.
  9. 제 1항 내지 제 8항 중 어느 한 항에 따른 반사시트 구조물을 포함하는 백라이트 유닛.
PCT/KR2015/013854 2014-12-17 2015-12-17 반사시트 구조물 및 이를 구비한 백라이트 유닛 WO2016099169A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0182475 2014-12-17
KR1020140182475A KR101833246B1 (ko) 2014-12-17 2014-12-17 반사시트 구조물 및 이를 구비한 백라이트 유닛

Publications (1)

Publication Number Publication Date
WO2016099169A1 true WO2016099169A1 (ko) 2016-06-23

Family

ID=56126964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013854 WO2016099169A1 (ko) 2014-12-17 2015-12-17 반사시트 구조물 및 이를 구비한 백라이트 유닛

Country Status (2)

Country Link
KR (1) KR101833246B1 (ko)
WO (1) WO2016099169A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110693A (ko) * 2017-03-29 2018-10-11 주식회사 네패스 퀀텀닷 반사시트, 이의 제조 방법, 이를 포함하는 백라이트 유닛 및 표시 장치
KR102465918B1 (ko) * 2020-11-05 2022-11-14 주식회사 엘엠에스 광학 필름

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060020345A (ko) * 2004-08-31 2006-03-06 삼성전자주식회사 광학유닛, 이를 갖는 백라이트 어셈블리 및 이를 이용한표시장치
KR20080037308A (ko) * 2006-10-25 2008-04-30 엘지전자 주식회사 프리즘 시트, 이를 구비한 백라이트 유닛 및 그 제조방법
KR20120014460A (ko) * 2010-08-09 2012-02-17 신화인터텍 주식회사 일체형 광학시트
KR20140024576A (ko) * 2012-08-20 2014-03-03 엘지디스플레이 주식회사 백라이트 유닛과 이를 포함한 액정표시장치
WO2014157905A1 (ko) * 2013-03-25 2014-10-02 엘지이노텍(주) 발광소자 패키지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271928B2 (ja) * 2001-11-16 2009-06-03 株式会社きもと 光反射材料及びそれを用いた光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060020345A (ko) * 2004-08-31 2006-03-06 삼성전자주식회사 광학유닛, 이를 갖는 백라이트 어셈블리 및 이를 이용한표시장치
KR20080037308A (ko) * 2006-10-25 2008-04-30 엘지전자 주식회사 프리즘 시트, 이를 구비한 백라이트 유닛 및 그 제조방법
KR20120014460A (ko) * 2010-08-09 2012-02-17 신화인터텍 주식회사 일체형 광학시트
KR20140024576A (ko) * 2012-08-20 2014-03-03 엘지디스플레이 주식회사 백라이트 유닛과 이를 포함한 액정표시장치
WO2014157905A1 (ko) * 2013-03-25 2014-10-02 엘지이노텍(주) 발광소자 패키지

Also Published As

Publication number Publication date
KR20160073759A (ko) 2016-06-27
KR101833246B1 (ko) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2016195300A1 (ko) 확산패턴을 가지는 반사편광모듈 및 이를 구비한 백라이트 유닛
WO2015105317A1 (ko) 광학시트 조립체 및 이를 포함하는 백라이트 유닛
WO2016126049A1 (en) Display apparatus
WO2011108848A2 (ko) 곡면 디스플레이 패널 제조 방법, 이를 이용한 곡면 디스플레이 패널, 및 이를 이용한 다중 영상 표시 장치
WO2011081351A2 (ko) 패턴 도광판, 그 제조방법 및 이를 이용한 액정표시장치 백라이트 유닛
WO2016098933A1 (ko) 절곡된 곡면형태의 백플레이트를 포함하는 백라이트유닛, 및 이를 이용한 곡면형 디스플레이장치
WO2016111466A1 (ko) 광학시트 및 이를 포함하는 광학표시장치
WO2016068549A1 (en) Display apparatus
WO2014003389A1 (ko) 적층형 광학시트모듈
WO2011065806A2 (en) Light guide plate and backlight unit
WO2012074167A1 (ko) 도광판 및 그 제조방법 및 제조장비
WO2014104772A1 (ko) 광학시트 모듈
WO2017008314A1 (zh) 液晶显示装置及其导光板的制造方法
WO2016208892A1 (ko) 벤딩 저감이 가능한 반사편광모듈 및 이를 구비한 백라이트 유닛
WO2013105683A1 (ko) 마이크로 렌즈 어레이 시트 및 이를 포함하는 백라이트 유닛
WO2016099169A1 (ko) 반사시트 구조물 및 이를 구비한 백라이트 유닛
EP2460049A1 (en) Backlight unit and display apparatus including the same
WO2019059605A2 (ko) 일체형 광학시트 모듈 및 이를 구비한 백라이트 유닛
WO2016082242A1 (zh) 显示装置、光学膜及其制造设备
WO2018221878A1 (ko) 차폐부가 형성된 광전달유닛, 이를 이용한 백라이트모듈 및 광전달유닛의 제조방법
WO2020017737A1 (ko) 액정표시장치
WO2020130497A1 (en) Display device
WO2009113833A2 (ko) 웨이퍼 스케일 렌즈 어레이, 그 성형장치 및 그 제조방법
WO2016204438A1 (ko) 벤딩 저감이 가능한 집광모듈 및 이를 구비한 백라이트 유닛
WO2013032053A1 (ko) 광학부재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870336

Country of ref document: EP

Kind code of ref document: A1