WO2016095397A1 - 信道检测方法、信道检测***、终端和基站 - Google Patents

信道检测方法、信道检测***、终端和基站 Download PDF

Info

Publication number
WO2016095397A1
WO2016095397A1 PCT/CN2015/077975 CN2015077975W WO2016095397A1 WO 2016095397 A1 WO2016095397 A1 WO 2016095397A1 CN 2015077975 W CN2015077975 W CN 2015077975W WO 2016095397 A1 WO2016095397 A1 WO 2016095397A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
terminal
detection
base station
data service
Prior art date
Application number
PCT/CN2015/077975
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
张晨璐
雷艺学
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016095397A1 publication Critical patent/WO2016095397A1/zh
Priority to US15/622,925 priority Critical patent/US10404389B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/19Self-testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel detection method when an LTE system operates in an unlicensed frequency band, a channel detection system when the LTE system operates in an unlicensed frequency band, a terminal, and a base station.
  • 3GPP is discussing how to use unlicensed spectrum, such as the 2.4 GHz and 5 GHz bands, with the help of licensed spectrum.
  • unlicensed spectrum are currently mainly used in systems such as Wi-Fi, Bluetooth, radar, and medical.
  • LAA LTE Assisted Access
  • SDL Supplemental Downlink
  • TDD TDD mode
  • LTE systems operating in unlicensed bands have the ability to provide higher spectral efficiency and greater coverage, while allowing data traffic to be in licensed bands and unlicensed based on the same core network. Seamless switching between right bands. For the user, this means a better broadband experience, higher speed, better stability and mobility.
  • Wi-Fi Wireless Fidelity
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the basic principle of this method is Wi-Fi. Before the AP (Access Point) or the terminal sends signaling or data, it must first monitor whether other APs or other terminals are transmitting/receiving signaling or data. If so, continue to listen until it is monitored. If not, a random number is generated as the backoff time. If no signaling or data transmission is detected during this backoff time, the AP or the terminal may start transmitting signaling or data after the end of the backoff time. The process is shown in Figure 2.
  • CSMA/CD Carrier Sense Multiple Access/Collision Detection
  • the LTE network has good orthogonality to ensure the interference level, the uplink and downlink transmissions between the base station and the user do not need to consider whether other base stations or other users are transmitting data. If LTE is used on an unlicensed band, it does not consider whether other devices are using unlicensed bands nearby, which will cause great interference to Wi-Fi devices. Because LTE transmits as long as there is traffic, there is no monitoring rule, then the Wi-Fi device cannot transmit when LTE has service transmission, and can only detect the channel idle state for data transmission after the LTE service transmission is completed.
  • LTE Long Before Talk
  • the previously laid LBT mechanism is a frame based LBT frame structure.
  • the LBT period is fixed, and the CCA (Clear Channel Assessment) time is the beginning of each cycle.
  • the CCA occupies the first one or more symbols of the #0 subframe in a period of 10 ms.
  • the #0 subframe can be used for CCA. If the data service arrives in the #1 subframe, the channel must be waited until the next period of the #0 subframe to perform CCA. Whether it can be occupied, which brings a lot of delay.
  • the present invention is based on the above problems, and proposes a new technical solution, and proposes a new channel detection method for the LTE system when operating in an unlicensed frequency band, which can ensure that the LTE system works normally under the unlicensed frequency band.
  • the delay of data service transmission caused by channel detection with a fixed detection period can be effectively reduced, thereby improving the data service transmission efficiency, and at the same time, the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • an aspect of the present invention provides a channel detection method when an LTE system operates in an unlicensed frequency band, including: when a data service arrives, determining a current subframe, in the current subframe, and/or The channel detection time is set in the backward adjacent subframe to perform channel state detection; when the channel state is idle, the data service transmission is performed.
  • a load (data service)-based LBT mechanism that is, when a data service arrives, the location of the current subframe when the data service arrives is determined, and in the current subframe or
  • the channel detection time is set in the adjacent subframes, whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, that is, when a data service arrives, channel state detection is performed immediately, and when detecting When the channel is idle, the data service is transmitted, so that the delay of the data service transmission caused by the channel detection by the fixed detection period can be effectively reduced under the premise that the LTE system works normally in the unlicensed band.
  • Improve the efficiency of data service transmission and at the same time achieve the peaceful coexistence of LTE system and other systems in the unlicensed frequency band.
  • a load-based LBT mechanism is defined, that is, when a data service arrives, the location of the current symbol of the current subframe when the data service arrives is determined, and is within or behind the current symbol.
  • Channel detection time is set in adjacent symbols, regardless of whether the subframe is on Whether a row subframe, a downlink subframe, or a special subframe, whether the symbol is a DwPTS (downlink pilot time slot), a GP (guard interval), or an UpPTS (uplink pilot time slot), that is, when a data service arrives
  • DwPTS downlink pilot time slot
  • GP Guard interval
  • UpPTS uplink pilot time slot
  • the LTE system can effectively reduce the channel detection band by using the fixed detection period on the premise that the LTE system works normally.
  • the delay of the data service transmission thereby improving the data service transmission efficiency, and at the same time achieving the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band.
  • the starting point of the channel detection time is set to: a start point or a midpoint of the current subframe and/or the backward adjacent subframe, or the current symbol sum And a starting point or a midpoint of the backward adjacent symbol; wherein the starting point or midpoint is located after the data service arrival time point.
  • the channel state detection may start at any time, and the starting point of the channel detection time may be set as the starting point or the midpoint of the current subframe and/or the backward adjacent subframe according to an actual situation. Or the starting point or midpoint of the current symbol and/or the backward adjacent symbol; of course, the starting point of the channel detecting time is after the time point when the data service arrives, and those skilled in the art should know that the foregoing conditions can also be met. Under the premise, set the starting point of the channel detection time according to the specific situation.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time may be repeatedly set according to a fixed detection period (for example, 10 ms) until data service is detected when the channel state is detected to be idle. Transmission can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the channel detection time is repeated in an indefinite detection period.
  • channel state detection when a data service arrives, channel state detection can be performed immediately even if it is not the channel detection time. If the first channel state detection is busy, the channel detection time may be repeatedly set according to a fixed detection period until the channel state is detected to be idle, and the data service transmission is performed, thereby further reducing the delay of the data service transmission, and further reducing the delay of the data service transmission. On the one hand, it can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the channel check is determined. The time is measured, and the channel state detection is performed once. When the channel state is an idle state, the data service transmission is performed; when the channel state is a busy state, the channel state detection is continued.
  • the performing the channel state detection specifically includes: randomly selecting an integer N between 1 and q, and detecting the time in the channel In the consecutive multiple subframes after the subframe, the channel state detection is performed according to the channel detection time, and when the channel state is detected as an idle state, the integer N is decremented by 1 when the detected When the channel state is a busy state, the integer N remains unchanged until the integer N is reduced to 0, and the data service transmission is performed.
  • a method for performing channel state detection by using an indefinite detection period is defined, that is, when a data service arrives, a channel detection time is set and a channel state detection is performed once, and if the channel state is idle, data is performed. If the channel status is busy, randomly select an integer N between 1 and q, and repeatedly set the channel detection time for channel state detection in consecutive multiple subframes after the subframe in which the channel detection time is set. When the channel state detection result is idle, N is decremented by 1. When the result is busy, N remains unchanged until N is reduced to 0, and data traffic is transmitted; that is, in this structure, the channel detection time is extended by one. The length of uncertainty, that is, the channel detection period is not fixed. With this technical solution, channel state detection can be performed in multiple consecutive subframes, which can further reduce the delay of data service transmission and improve data service transmission efficiency.
  • the value of q ranges from 4 to 32, and when the data transmission service is performed, the channel occupation time is less than (13/32)*q.
  • the channel detection time is repeatedly set according to a preset fixed detection period; when the data service arrives, after determining the channel detection time, performing The channel state detection is performed for the first time, and the data service transmission is performed when the channel state is an idle state; when the channel state is a busy state, the channel detection time of the preset fixed detection period is reached.
  • the channel detection is performed again, and the channel state detection is repeatedly performed according to the preset fixed detection period until the channel state is detected as an idle state, and the data service transmission is performed.
  • another channel state detection is performed with an indefinite detection period.
  • the method is: before the arrival of the data service, the system has a frame-based LBT frame structure, and repeatedly sets the channel detection time to perform channel state detection by using a preset fixed detection period (for example, 10 ms); when the data service arrives, Setting the channel detection time in the current subframe or the backward adjacent subframe in which the data service arrives, performing the first channel state detection, and if the detection result is busy, when the channel detection time of the frame-based LBT frame structure comes Performing channel state detection again, and performing subsequent channel state detection with the preset fixed detection period until channel idle is detected, that is, superimposing the load-based LBT frame structure and the frame-based LBT frame structure to make the system indeterminate detection
  • the channel state detection is performed periodically, so that the delay of data service transmission can be further reduced, and the data service transmission efficiency is improved.
  • the channel state detection method based on the variable detection period of the load includes but is not limited to the above two types; and the channel state detection may be performed in a fixed detection period or an indefinite detection period. Depending on the specific situation, the diversity of channel state detection methods and the flexibility of selection are also improved, and the applicability is enhanced.
  • the downlink channel state detection is performed by the base station; and when the data service is an uplink data service, the terminal or the base station performs an uplink channel state. Detection.
  • the terminal when the uplink channel detection is performed by the base station, determining whether the terminal and/or the base station knows that the uplink channel state is an idle state; when the terminal and/or Or the base station is configured to perform the uplink data service transmission when the uplink channel state is an idle state; and when the terminal and/or the base station does not know that the uplink channel state is an idle state, the terminal passes Transmitting the sounding reference signal, or transmitting the uplink scheduling request signal, or transmitting the buffer status report to the base station, to notify the base station that the uplink data service arrives, so that the base station performs the uplink channel state detection;
  • the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the base station when a downlink data service arrives, the base station performs downlink channel state detection according to the channel detection method described in any one of the foregoing technical solutions; when an uplink data service arrives, the base station may also be used by the terminal.
  • Channel detection according to any of the above technical solutions The method performs uplink channel state detection.
  • the uplink channel state detection When the uplink channel state detection is performed by the base station, it is first determined whether the terminal or the base station knows that the uplink channel state is an idle state. If it is known, for example, it is known that the downlink channel state is detected as an idle state, and the downlink channel state can represent In the uplink channel state, it can be regarded that the uplink channel state is also idle state, so that the terminal can immediately perform uplink data service transmission; if unknown, for example, the downlink channel state is idle state, but the downlink channel state cannot represent the uplink channel state. Or, there is no downlink data service at this time, and the downlink channel state is uncertain.
  • the terminal needs to inform the base station that the uplink data service arrives, and requests the base station to perform channel state detection, wherein the method for the terminal to notify the base station that the uplink data service arrives includes: The method is not limited to: sending the sounding reference signal to the base station, sending the uplink scheduling request to the base station, or sending the buffer status report to the base station in a short period, wherein the uplink scheduling request signal and the buffer status report may be sent on the unlicensed frequency band, or Sent on the licensed band.
  • the data service transmission is performed immediately, and the data service transmission start time includes: the symbol midpoint or The midpoint of the subframe.
  • the said start of the symbol or subframe adjacent to the symbol is started.
  • Data traffic transmission and transmitting a resource reservation signal or a channel idle indication signal between a midpoint of the symbol to a start of the symbol or a start of the subframe adjacent to the symbol.
  • the data service transmission start time may include the following two situations:
  • the data service transmission start time includes but is not limited to the midpoint of the symbol or subframe for channel detection, so that the delay of data service transmission can be further reduced; and the other is the symbol direction at the end of the channel detection time.
  • the start of the subsequent adjacent symbol or subframe starts data traffic transmission, and during this time, the channel occupation signal, such as the resource reservation signal or the channel idle indication signal, is transmitted, thus facilitating data transmission.
  • the channel detection time is set in the current subframe or in the current symbol to perform the channel detection, determining that the terminal or the base station performing the channel detection is compared with another terminal or Whether the base station belongs to the same carrier.
  • the terminal or the base station performing the channel detection belongs to the same operator and the other terminal or the base station, detecting from the terminal or the base station Subtracting the second power of the other terminal or the base station to obtain a third power, and comparing the third power with the first channel busy idle threshold to perform the channel state detection; or according to the attribution And configuring, by the deployment of all the base stations of the same carrier, a second channel busy idle threshold, and comparing the power detected by the terminal or the base station with the second channel busy idle threshold to perform the channel state.
  • the detecting, wherein the second channel busy idle threshold comprises power of the other terminal or base station.
  • the channel detection time when the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, when different operators and/or WIFIs occupy a channel, pass the Transmitting, by the different operators and/or the WIFI, channel occupancy signals on different subcarriers, and the subcarriers for transmitting the channel occupation signals are only used to transmit the channel occupation signals; and when the terminal or the base station
  • the detected power includes at the subcarriers of the channel occupation signal sent by other operators and/or WIFIs sent by the terminal or the same operator to which the base station belongs. Power; wherein the subcarrier distribution of the same operator may be centralized or distributed.
  • channel state detection can be avoided in the following three ways, because there are other terminals or base stations belonging to the same carrier.
  • the power detected by the terminal or the base station that performs the data service transmission and causes the channel state detection includes the power of other terminals or base stations, resulting in a misjudgment of the channel state.
  • the terminal or the base station performing the channel detection belongs to the same operator as the other terminal or the base station. If it is determined that the terminal belongs to the same operator, the following two methods may be adopted:
  • the power detected by the terminal or the base station performing channel state detection is subtracted from the power of other terminals or base stations belonging to the same operator of the terminal or the base station, and then compared with the channel busyness threshold, so that The accuracy of the channel state detection result is effectively improved, thereby avoiding misjudgment of the channel state.
  • a reasonable channel busyness threshold is set, for example, when all base stations belonging to the same carrier are far apart from each other. Then, the terminal or the base station that performs the channel state detection can receive the power value range of the other terminal or the base station, and the power value range is taken into account when the channel busyness threshold is set, and the terminal or the base station that performs the channel state detection is detected.
  • the channel state detection result can be made more accurate, thereby avoiding misjudgment of the channel state.
  • the third method can also be used to solve the above problem, that is, the channel occupying signal transmission method using orthogonal frequency, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the channel is used.
  • the transmission of the occupied signal represents that the carrier A occupies the full bandwidth.
  • the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel needs to be transmitted as long as the channel is occupied.
  • the channel occupies the signal, and the subcarrier used to transmit the channel occupation signal can no longer be used to transmit any other signal.
  • the terminal or the base station performs channel state detection, only other operators or Wi-Fi transmission channel occupancy signals can be detected.
  • the power at the subcarriers that is, the power of other terminals or base stations that belong to the same carrier or the base station to which the channel state detection is performed, effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the channel starts to be started after the downlink data service arrival time is less than or equal to 4 ms.
  • Status detection or when different operators and/or WIFIs occupy the channel, respectively transmit channel occupancy signals on different subcarriers by the different operators and/or the WIFI, and send the channel occupation signal
  • the subcarrier is only used to transmit the channel occupation signal, and when the base station performs the channel state detection, the detected power includes other operators than the same carrier to which the terminal or the base station belongs. And/or the channel transmitted by the WIFI occupies power at the subcarrier of the signal.
  • the terminal since the base station has already sent an uplink grant permission to the terminal having the uplink data service requirement before the base station has the downlink data service, that is, the terminal performs the uplink data service transmission (ie, transmission), in order to prevent the base station from doing the downlink channel.
  • the terminal performs uplink data service transmission, and the base station may perform channel state detection after the downlink data service arrives according to the actual situation delay of less than or equal to 4 ms, and ensure that the base station is no longer in the time period.
  • the terminal sends an uplink grant, and the base station can immediately perform channel state detection after the delay time arrives, wherein 4ms is the maximum allowed delay time, and thus, the accuracy of channel state detection can be effectively improved.
  • the channel-occupied signal transmission method using orthogonal frequency that is, when the operator A occupies the channel
  • the channel occupation signal is transmitted through the sub-carrier 1 therein, and the transmission of the channel occupation signal represents that the operator A is occupied.
  • Full bandwidth similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarriers can no longer be used to transmit any other signals. Therefore, when the terminal or the base station performs channel state detection, only the power at the subcarriers occupied by other operators or Wi-Fi transmission channels can be detected, that is, the following is not included.
  • the power of the terminal or base station that performs channel state detection belongs to other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the terminal when the terminal has the uplink data service arriving, and the base station to which the terminal belongs is performing downlink data transmission or other terminals adjacent to the terminal are performing uplink data service transmission, The terminal performs the uplink channel state detection, and subtracts power from the base station or power from the other terminal adjacent to the terminal in the power detected by the terminal to perform the uplink channel.
  • the terminal performs the uplink channel detection again; or, different operations
  • the channel occupation signal is sent on different subcarriers by the different operators or the WIFI, and the subcarrier used for transmitting the channel occupation signal is used only for the transmission station.
  • the channel occupancy signal, and when the terminal performs the uplink channel detection, the detected power includes the same operation to which the terminal belongs Other operators outside and / or WIFI send The channel occupies power at the subcarriers of the signal.
  • the base station to which the terminal belongs is transmitting (ie, transmitting) the downlink data service, or other terminals adjacent to the terminal are transmitting the uplink data service, and the terminal is sent by the terminal.
  • the uplink channel state detection is performed, the power detected by the terminal is increased, and the uplink channel state detection result is inaccurate.
  • the following methods can be used to avoid misjudgment of the channel state and improve the accuracy of the channel state detection result. .
  • the channel state determination is performed, and the accuracy of the channel state detection result can be improved.
  • the channel state detection is performed, thereby improving the accuracy of the channel state detection result.
  • the channel occupant signal transmission method using orthogonal frequency is used, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the transmission of the channel occupation signal represents that the operator A occupies the full Bandwidth, similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarrier can no longer be used to transmit any other signals. Therefore, when the terminal performs channel state detection, it can only detect the power at the subcarriers occupied by other operators or Wi-Fi transmission channels, that is, does not include the channel state.
  • the detected terminal or base station belongs to the power of other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • a channel detection system for an LTE system operating in an unlicensed frequency band including: a first setting module, configured to determine a current subframe when the data service arrives, in the current sub-frame A channel detection time is set in an intra-frame and/or a backward adjacent sub-frame to control channel state detection.
  • the data transmission module controls to perform the data service transmission when the channel state is an idle state.
  • an LBT mechanism based on load (data service) is defined, that is, when a data service arrives, the location of the current subframe when the data service arrives is determined, and The channel detection time is set in the current subframe or in the adjacent subframe, whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, that is, when a data service arrives, the channel is immediately performed.
  • Status detection and when the channel is detected to be idle, the data service is transmitted, so that the LTE system can effectively reduce the data service caused by the channel detection by the fixed detection period on the premise that the LTE system works normally.
  • the delay of transmission thereby improving the efficiency of data service transmission, and at the same time achieving the peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the first setting module is further configured to: when the data service arrives, determine a current symbol of the current subframe, within the current symbol and/or backward The channel detection time is set in adjacent symbols to control the channel state detection.
  • a load-based LBT mechanism that is, when a data service arrives, the location of the current symbol of the current subframe when the data service arrives is determined, and is within or behind the current symbol.
  • the channel detection time is set in the adjacent symbol, whether the subframe is an uplink subframe, a downlink subframe or a special subframe, and whether the symbol is DwPTS (downlink pilot time slot), GP (guard interval) or UpPTS ( The uplink pilot time slot), that is, when the data service arrives, the channel state detection is performed immediately, and when the channel is detected to be idle, the data service transmission is performed, thus ensuring that the LTE system works normally in the unlicensed band.
  • the delay of data service transmission caused by channel detection with a fixed detection period can be effectively reduced, thereby improving the data service transmission efficiency, and at the same time, the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • the first setting module is further configured to: set a starting point of the channel detection time as: a starting point or a middle of the current subframe and/or the other backward subframes Point, or the starting point or midpoint of the current symbol and/or the other backward symbols; wherein the starting point or midpoint is located after the data service arrival time point.
  • the channel state detection may start at any time, and the starting point of the channel detection time may be set as the starting point or the midpoint of the current subframe and/or the backward adjacent subframe according to an actual situation. Or the starting point or midpoint of the current symbol and/or the backward adjacent symbol; of course, the starting point of the channel detecting time is after the time point when the data service arrives, and those skilled in the art should know that the foregoing conditions can also be met. Under the premise, set the channel check according to the specific situation. The starting point of the time.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time may be repeatedly set according to a fixed detection period (for example, 10 ms) until data service is detected when the channel state is detected to be idle. Transmission can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the channel detection time is repeated in an indefinite detection period.
  • channel detection when a data service arrives, channel detection can be performed immediately even if it is not the channel detection time. If the first channel state detection is busy, the channel detection time may be repeatedly set according to a fixed detection period until the channel state is detected to be idle, and the data service transmission is performed, thereby further reducing the delay of the data service transmission, and further reducing the delay of the data service transmission. On the one hand, it can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the first setting module when a data service arrives, is configured to determine the channel detection time, and control to perform the channel state detection once, when the channel state is an idle state. And the data transmission module controls to perform the data service transmission; and when the channel state is a busy state, the first setting module is configured to control to continue the channel state detection.
  • the method further includes: a selecting module, when the channel state is a busy state, for randomly selecting an integer N between 1 and q, the first setting module is further configured to: Controlling the channel state detection according to the channel detection time in consecutive consecutive subframes after the subframe in which the channel detection time is located; and further comprising: a calculating module, when detecting that the channel state is an idle state, For decrementing the integer N by 1, and when detecting that the channel state is busy, controlling the integer N to remain unchanged until the integer N is reduced to 0, controlled by the data transmission module The data service is transmitted.
  • a selecting module when the channel state is a busy state, for randomly selecting an integer N between 1 and q
  • the first setting module is further configured to: Controlling the channel state detection according to the channel detection time in consecutive consecutive subframes after the subframe in which the channel detection time is located; and further comprising: a calculating module, when detecting that the channel state is an idle state, For decrementing the integer N by 1, and when detecting that the channel state is
  • a method for performing channel state detection by using an indefinite detection period is defined, that is, when a data service arrives, a channel detection time is set and a channel state detection is performed once, and if the channel state is idle, data is performed. If the channel status is busy, randomly select an integer N between 1 and q, and repeatedly set the channel detection time for channel state detection in consecutive multiple subframes after the subframe in which the channel detection time is set. Channel state detection junction If it is idle, N is decremented by 1. When the result is busy, N remains unchanged until N is reduced to 0, and data traffic is transmitted; that is, in this structure, the channel detection time is extended by an uncertainty. The length, that is, the channel detection period is not fixed. With this technical solution, channel state detection can be performed in multiple consecutive subframes, which can further reduce the delay of data service transmission and improve data service transmission efficiency.
  • the value of q ranges from 4 to 32, and when the data transmission service is performed, the channel occupation time is less than (13/32)*q.
  • the second setting module is configured to repeatedly set the channel state detection time according to a preset fixed detection period before the data service arrives; when the data service arrives, The first setting module is configured to control to perform the first channel state detection after determining the channel detection time, and when the channel state is an idle state, the data transmission module is configured to perform the Data service transmission; and the second setting module is further configured to: when the channel state is busy, control, when the channel detection time of the preset fixed detection period arrives, control to perform the channel detection again, and control The channel detection is repeated according to the preset fixed detection period until the channel state is detected as an idle state, and the data transmission module controls the data service transmission.
  • another method for performing channel state detection with an indefinite detection period is defined, that is, before the data service arrives, the system has a frame-based LBT frame structure and presets a detection period (for example, 10ms) repeatedly setting the channel detection time for channel state detection; when the data service arrives, setting the channel detection time in the current subframe or the backward adjacent subframe in which the data service arrives, and performing the first channel state detection, If the detection result is busy, when the channel detection time of the frame-based LBT frame structure comes, the channel state detection is performed again, and the subsequent channel state detection is performed with the preset fixed detection period until the channel idle is detected, that is, The load-based LBT frame structure is superimposed with the frame-based LBT frame structure, so that the system performs channel state detection with an indefinite detection period.
  • a detection period for example, 10ms
  • the channel state detection method based on the variable detection period of the load includes but is not limited to the above two types; and the channel state detection may be performed in a fixed detection period or an indefinite detection period. According to the specific situation It also improves the diversity of the channel state detection method and the flexibility of selection, and the applicability is enhanced.
  • the downlink channel state detection is performed by the base station; and when the data service is an uplink data service, the terminal or the base station performs an uplink channel state. Detection.
  • the method further includes: a determining module, when determining, by the base station, the uplink channel detection, whether the terminal and/or the base station knows that the uplink channel state is idle. a state; when the terminal and/or the base station knows that the uplink channel state is an idle state, the data transmission module controls to perform the uplink data service transmission; and when the terminal and/or the base station is unknown
  • the terminal sends a sounding reference signal, or sends an uplink scheduling request signal, or sends a buffer status report to the base station, to notify the base station that the uplink data service arrives. So that the base station performs the uplink channel state detection; wherein the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the base station when a downlink data service arrives, the base station performs downlink channel state detection according to the channel detection method described in any one of the foregoing technical solutions; when an uplink data service arrives, the base station may also be used by the terminal.
  • the channel state detection method according to any one of the above aspects is used to perform uplink channel state detection.
  • the uplink channel state detection When the uplink channel state detection is performed by the base station, it is first determined whether the terminal or the base station knows that the uplink channel state is an idle state. If it is known, for example, it is known that the downlink channel state is detected as an idle state, and the downlink channel state can represent In the uplink channel state, it can be regarded that the uplink channel state is also idle state, so that the terminal can immediately perform uplink data service transmission; if unknown, for example, the downlink channel state is idle state, but the downlink channel state cannot represent the uplink channel state. Or, there is no downlink data service at this time, and the downlink channel state is uncertain.
  • the terminal needs to inform the base station that the uplink data service arrives, and requests the base station to perform channel state detection, wherein the method for the terminal to notify the base station that the uplink data service arrives includes: The method is not limited to: sending the sounding reference signal to the base station in a short period, sending the uplink scheduling request to the base station, or sending the buffer status to the base station, where the uplink scheduling request signal and the buffer status report may be sent on the unlicensed frequency band, or Sent on the licensed band.
  • the data transmission module is further configured to: when the channel detection time ends, and detect that the channel state is an idle state, control to immediately perform the data service transmission, and data service transmission.
  • the start time includes: the midpoint of the symbol or the midpoint of the subframe.
  • the data transmission module is further configured to: when the channel detection time ends, and the end time is a midpoint of the symbol, control a symbol adjacent to the symbol backward Or starting the data service transmission at the beginning of the subframe; and further comprising: a signal transmission module, configured to control transmission between a midpoint of the symbol to a start of a symbol or a subframe adjacent to the symbol Resource reservation signal or channel idle indication signal.
  • the data service transmission start time may include the following two situations:
  • the data service transmission start time includes but is not limited to the midpoint of the symbol or subframe for channel detection, so that the delay of data service transmission can be further reduced; and the other is the symbol direction at the end of the channel detection time.
  • the start of the subsequent adjacent symbol or subframe starts data traffic transmission, and during this time, the channel occupation signal, such as the resource reservation signal or the channel idle indication signal, is transmitted, thus facilitating data transmission.
  • the determining module is further configured to: determine to perform the channel detection. Whether the terminal or base station and other terminals or base stations belong to the same carrier.
  • the calculating module is further configured to: use the terminal or Subtracting the second power of the other terminal or the base station to obtain a third power, and the determining module is further configured to compare the third power with the first channel busy idle threshold And performing the channel state detection; or further comprising: a third setting module, configured to set a second channel busyness threshold according to deployment of all base stations belonging to the same operator, and the determining module further uses And comparing the power detected by the terminal or the base station with the second channel busy idle threshold to control the channel state detection, where the second channel busy idle threshold includes the other terminal Or the power of the base station.
  • the channel detection time when the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, when different operators and/or WIFIs occupy a channel, pass the Transmitting, by the different operators and/or the WIFI, channel occupancy signals on different subcarriers, and the subcarriers for transmitting the channel occupation signals are only used to transmit the channel occupation signals; and when the terminal or the base station
  • the detected power includes powers of the other carriers other than the same operator to which the terminal or the base station belongs and/or the sub-carriers that the WIFI sends the channel occupation signal.
  • the subcarrier distribution of the same operator may be centralized or distributed.
  • channel state detection can be avoided in the following three ways, because there are other terminals or base stations belonging to the same carrier.
  • the power detected by the terminal or the base station that performs the data service transmission and causes the channel state detection includes the power of other terminals or base stations, resulting in a misjudgment of the channel state.
  • the terminal or the base station performing the channel detection belongs to the same operator as the other terminal or the base station. If it is determined that the terminal belongs to the same operator, the following two methods may be adopted:
  • the power detected by the terminal or the base station performing channel state detection is subtracted from the power of other terminals or base stations belonging to the same operator of the terminal or the base station, and then compared with the channel busyness threshold, so that The accuracy of the channel state detection result is effectively improved, thereby avoiding misjudgment of the channel state.
  • a reasonable channel busyness threshold is set. For example, when all the base stations belonging to the same operator are far apart from each other, the channel state detection terminal or The power value range of the base station receiving the other terminal or the base station may be determined, and the power value range is taken into account when the channel busy idle threshold is set, and the power detected by the terminal or the base station that performs channel state detection and the channel busy idle threshold When comparing, the channel state detection result can be made more accurate, thereby avoiding misjudgment of the channel state.
  • the third method can also be used to solve the above problem, that is, the channel occupying signal transmission method using orthogonal frequency, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the channel is used.
  • the transmission of the occupied signal means that the carrier A occupies the full bandwidth.
  • other operators or Wi-Fi occupy the channel, the same is in the subcarrier 2 or the subcarrier.
  • the wave 3 transmits the channel occupation signal, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and the subcarrier used for transmitting the channel occupation signal can no longer be used for transmitting any other signal, so when the terminal or the base station performs channel state detection, only
  • the accuracy of channel state detection is, the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the base station when the base station has the downlink data service arriving and the terminal is transmitting the uplink data service, after the downlink data service arrival time is less than or equal to 4 ms, start by the a setting module controls to perform the channel state detection; or, when different operators and/or WIFIs occupy a channel, respectively transmit channel occupancy signals on different subcarriers by using different operators and/or the WIFI, and use
  • the subcarriers for transmitting the channel occupation signal are only used to transmit the channel occupation signal, and when the base station performs the channel state detection, the detected power includes the same operator to which the base station belongs.
  • the other subcarriers and/or WIFIs transmit power at the subcarriers of the channel occupancy signal.
  • the terminal since the base station has already sent an uplink grant permission to the terminal having the uplink data service requirement before the base station has the downlink data service, that is, the terminal performs the uplink data service transmission (ie, transmission), in order to prevent the base station from doing the downlink channel.
  • the terminal performs uplink data service transmission, and the base station may perform channel state detection after the downlink data service arrives according to the actual situation delay of less than or equal to 4 ms, and ensure that the base station is no longer in the time period.
  • the terminal sends an uplink grant, and the base station can immediately perform channel state detection after the delay time arrives, wherein 4ms is the maximum allowed delay time, and thus, the accuracy of channel state detection can be effectively improved.
  • the channel-occupied signal transmission method using orthogonal frequency that is, when the operator A occupies the channel
  • the channel occupation signal is transmitted through the sub-carrier 1 therein, and the transmission of the channel occupation signal represents that the operator A is occupied.
  • Full bandwidth similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarriers can no longer be used to transmit any other signals. Therefore, when the terminal or the base station performs channel state detection, only the power at the subcarriers occupied by other operators or Wi-Fi transmission channels can be detected, that is, the following is not included.
  • the power of the terminal or base station that performs channel state detection belongs to other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the terminal when the terminal has the uplink data service arriving, and the base station to which the terminal belongs is performing downlink data transmission or other terminals adjacent to the terminal are performing uplink data service transmission, Performing, by the terminal, the uplink channel state detection, where the calculating module is configured to control, in the power detected by the terminal, the power from the base station or the power from the other terminal adjacent to the terminal.
  • the uplink channel state detection is controlled by the first setting module; or, when the base station completes the downlink data transmission or the other terminal adjacent to the terminal completes the uplink data transmission, The terminal performs the uplink channel detection again; or, when different carriers and/or WIFIs occupy the channel, the channel occupation signal is sent by different operators and/or WIFIs on different subcarriers, and is used for sending The subcarrier of the channel occupation signal is only used to transmit the channel occupation signal, and when the terminal performs the uplink channel detection again,
  • the detected power includes power at the other carrier other than the same operator to which the terminal belongs and/or the sub-carrier at which the WIFI transmits the channel occupancy signal.
  • the base station to which the terminal belongs is transmitting (ie, transmitting) the downlink data service, or other terminals adjacent to the terminal are transmitting the uplink data service, and the terminal is sent by the terminal.
  • the uplink channel state detection is performed, the power detected by the terminal is increased, and the uplink channel state detection result is inaccurate.
  • the following methods can be used to avoid misjudgment of the channel state and improve the accuracy of the channel state detection result. .
  • the channel state detection is performed, thereby improving the accuracy of the channel state detection result.
  • the channel occupant signal transmission method using orthogonal frequency is used, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the transmission of the channel occupation signal represents that the operator A occupies the full Bandwidth, similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarrier can no longer be used to transmit any other signals. Therefore, when the terminal performs channel state detection, it can only detect the power at the subcarriers occupied by other operators or Wi-Fi transmission channels, that is, does not include the channel state.
  • the detected terminal or base station belongs to the power of other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • a terminal including a communication bus, a network interface, a memory, and a processor, wherein:
  • the communication bus is configured to implement connection communication between the network interface, the memory, and the processor;
  • the network interface is configured to perform data service transmission
  • the memory stores a set of program codes, and the processor calls the program code stored in the memory to perform the following operations:
  • the data service transmission is performed when the channel state is an idle state.
  • the starting point of the channel detection time is set to: Determining a starting point or a midpoint of the current subframe and/or the backward adjacent subframe, or a starting point or a midpoint of the current symbol and/or the backward adjacent symbol;
  • the starting point or midpoint is located after the data service arrival time point.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time is repeated in an indefinite detection period.
  • the channel detection time is determined, and the channel state detection is performed once, and when the channel state is an idle state, the data service transmission is performed; When the channel state is busy, the channel state detection is continued.
  • the channel detection time is repeatedly set according to a preset fixed detection period before the data service arrives;
  • the data service When the data service arrives, after determining the channel detection time, performing the first channel state detection, and when the channel state is an idle state, performing the data service transmission; when the channel state is When in the busy state, the channel detection is performed again when the channel detection time of the preset fixed detection period arrives, and the channel state detection is repeatedly performed according to the preset fixed detection period until the channel state is detected.
  • the data service transmission is performed in an idle state.
  • downlink channel state detection is performed by the base station
  • the terminal or the base station performs uplink channel state detection.
  • the uplink channel detection is performed by the base station, determining, by the terminal and/or the base station, whether the uplink channel state is an idle state;
  • the terminal When the terminal and/or the base station does not know that the uplink channel state is an idle state, the terminal sends a sounding reference signal, or sends an uplink scheduling request signal, or sends a buffer status report to the base station by using a short period. Notifying the base station that the uplink data service arrives, so that the base station performs the uplink channel state detection;
  • the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the data service transmission is performed immediately, and the data service transmission start time includes: the symbol midpoint or The midpoint of the subframe.
  • the said start of the symbol or subframe adjacent to the symbol is started.
  • Data traffic transmission and transmitting a resource reservation signal or a channel idle indication signal between a midpoint of the symbol to a start of the symbol or a start of the subframe adjacent to the symbol.
  • the channel detection time is set in the current subframe or in the current symbol to perform the channel detection, determining that the terminal or the base station performing the channel detection is compared with another terminal or Whether the base station belongs to the same carrier.
  • the terminal or the base station performing the channel detection belongs to the same operator and the other terminal or the base station, detecting from the terminal or the base station Subtracting the second power of the other terminal or the base station to obtain a third power, and comparing the third power with the first channel busy idle threshold to perform the channel state detection; or
  • Second channel busy idle threshold Setting a second channel busy idle threshold according to deployment of all base stations belonging to the same operator, comparing the power detected by the terminal or the base station with the second channel busy idle threshold to perform the Channel state detection, wherein the second channel busy threshold includes power of the other terminal or base station.
  • the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection
  • when different operators and/or WIFIs occupy a channel pass the Transmitting, by the different operators and/or the WIFI, channel occupancy signals on different subcarriers, and the subcarriers for transmitting the channel occupancy signals are only used to transmit the channel occupation signals;
  • the detected power includes the channel occupancy signal sent by another operator other than the same operator to which the terminal or the base station belongs and/or WIFI. Power at the subcarrier;
  • the subcarrier distribution of the same operator may be centralized or distributed.
  • the channel starts to be started after the downlink data service arrival time is less than or equal to 4 ms. State detection; or,
  • the channel occupation signals are respectively transmitted on different subcarriers by the different operators and/or the WIFI, and the subcarriers used for transmitting the channel occupation signals are only For transmitting the channel occupation signal, and when the base station performs the channel state detection, the detected power includes other operators and/or WIFIs other than the terminal or the same operator to which the base station belongs.
  • the transmitted channel occupies power at the subcarrier of the signal.
  • the terminal when the terminal has the uplink data service arriving, and the base station to which the terminal belongs is performing downlink data transmission or other terminals adjacent to the terminal are performing uplink data service transmission, The terminal performs the uplink channel state detection, and subtracts power from the base station or power from the other terminal adjacent to the terminal in the power detected by the terminal to perform the uplink channel. State detection; or,
  • the terminal When the base station completes the downlink data transmission or the other terminal adjacent to the terminal completes the uplink data transmission, the terminal performs the uplink channel detection again; or
  • the channel occupation signals are respectively sent by different carriers or the WIFIs on different subcarriers, and the subcarriers used for transmitting the channel occupation signals are only used for Transmitting the channel occupation signal, and when the terminal performs the uplink channel detection, the detected power includes sending, by the other carrier and the WIFI, the channel occupation signal, other than the same operator to which the terminal belongs. The power at the subcarriers.
  • the terminal works through the LTE system in the unlicensed frequency band
  • the location of the current subframe when the data service arrives is determined, and the current subframe is in the current subframe.
  • the channel detection time in the backward adjacent subframe whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, and whether the symbol is a DwPTS (downlink pilot slot) or a GP (guard interval)
  • It is also an UpPTS (uplink pilot time slot) that is, when a data service arrives, channel state detection is performed immediately, and when the channel is detected to be idle, data traffic transmission is performed, thus ensuring that the LTE system is unauthorized.
  • the band works normally It can effectively reduce the delay of data service transmission caused by channel detection with a fixed detection period, thereby improving the efficiency of data service transmission, and at the same time achieving peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • a base station comprising a communication bus, a network interface, a memory, and a processor, wherein:
  • the communication bus is configured to implement connection communication between the network interface, the memory, and the processor;
  • the network interface is configured to perform data service transmission
  • the memory stores a set of program codes, and the processor calls the program code stored in the memory to perform the following operations:
  • the data service transmission is performed through the network interface.
  • the processor determines a current subframe, and sets a channel detection time in the current subframe and/or a backward adjacent subframe to perform Channel state detection, including:
  • the starting point of the channel detection time is set to: a start point or a midpoint of the current subframe and/or the backward adjacent subframe, or the current symbol sum / or the starting point or midpoint of the backward adjacent symbol;
  • the starting point or midpoint is located after the data service arrival time point.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time is repeated in an indefinite detection period.
  • the channel detection time is determined, and the channel state detection is performed once, and when the channel state is an idle state, the data service transmission is performed; When the channel status is busy, the message continues Road status detection.
  • the processor is further configured to perform the following operations before the data service arrives:
  • the data service When the data service arrives, after determining the channel detection time, performing the first channel state detection, and when the channel state is an idle state, performing the data service transmission; when the channel state is When in the busy state, the channel detection is performed again when the channel detection time of the preset fixed detection period arrives, and the channel state detection is repeatedly performed according to the preset fixed detection period until the channel state is detected.
  • the data service transmission is performed in an idle state.
  • downlink channel state detection is performed by the base station
  • the terminal or the base station performs uplink channel state detection.
  • the uplink channel detection is performed by the base station, determining, by the terminal and/or the base station, whether the uplink channel state is an idle state;
  • the terminal When the terminal and/or the base station does not know that the uplink channel state is an idle state, the terminal sends a sounding reference signal, or sends an uplink scheduling request signal, or sends a buffer status report to the base station by using a short period. Notifying the base station that the uplink data service arrives, so that the base station performs the uplink channel state detection;
  • the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the data service transmission is performed immediately, and the data service transmission start time includes: the symbol midpoint or The midpoint of the subframe.
  • the start of the symbol or subframe adjacent to the symbol is started. Performing the data traffic transmission and transmitting a resource reservation signal or a channel idle indication signal between a midpoint of the symbol to a start of the symbol or a start of the subframe adjacent to the symbol.
  • the channel detection time is set in the current subframe or in the current symbol to perform the channel detection, determining that the terminal or the base station performing the channel detection is compared with another terminal or Whether the base station belongs to the same carrier.
  • the terminal or the base station performing the channel detection belongs to the same operator and the other terminal or the base station, detecting from the terminal or the base station Subtracting the second power of the other terminal or the base station to obtain a third power, and comparing the third power with the first channel busy idle threshold to perform the channel state detection; or
  • Second channel busy idle threshold Setting a second channel busy idle threshold according to deployment of all base stations belonging to the same operator, comparing the power detected by the terminal or the base station with the second channel busy idle threshold to perform the Channel state detection, wherein the second channel busy threshold includes power of the other terminal or base station.
  • the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection
  • when different operators and/or WIFIs occupy a channel pass the Transmitting, by the different operators and/or the WIFI, channel occupancy signals on different subcarriers, and the subcarriers for transmitting the channel occupancy signals are only used to transmit the channel occupation signals;
  • the detected power includes the channel occupancy signal sent by another operator other than the same operator to which the terminal or the base station belongs and/or WIFI. Power at the subcarrier;
  • the subcarrier distribution of the same operator may be centralized or distributed.
  • the channel detection system when the base station works in the unlicensed frequency band by the LTE system, when a data service arrives, determines the location of the current subframe when the data service arrives, and is in the current subframe. Or setting the channel detection time in the backward adjacent subframe, whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, and whether the symbol is a DwPTS (downlink pilot slot) or a GP (guard interval) ) or UpPTS (uplink pilot time slot), that is, when there is a data service arriving, channel state detection is performed immediately, and when the channel is detected to be idle,
  • the data service transmission is performed, so that the delay of the data service transmission caused by the channel detection by the fixed detection period can be effectively reduced under the premise that the LTE system works normally in the unlicensed frequency band, thereby improving the data service transmission efficiency.
  • the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • the technical solution of the present invention can ensure that the delay of the data service transmission caused by the channel detection in the fixed detection period can be effectively reduced under the premise that the LTE system works normally in the unlicensed frequency band, thereby improving the data service transmission efficiency, and At the same time, the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • Figure 1 shows a schematic diagram of two modes of operation of an unlicensed spectrum
  • FIG. 2 is a schematic diagram showing an interference avoidance rule of a Wi-Fi system
  • Figure 3 shows a schematic diagram of a frame based LBT frame structure
  • FIG. 4 is a flow chart showing a channel detecting method when an LTE system operates in an unlicensed frequency band according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a frame structure for setting a channel detection time when a data service arrives according to an embodiment of the present invention
  • FIG. 6 is a diagram showing a frame structure in which a channel detection time is repeatedly set in a fixed detection period according to an embodiment of the present invention
  • FIG. 7 is a diagram showing a frame structure for setting a channel detection time according to an indefinite detection period according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing another frame structure for setting a channel detection time by an indefinite detection period according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a channel detecting system when an LTE system operates in an unlicensed frequency band according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a block diagram showing the structure of a base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • FIG. 13 shows a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing a channel detecting method when an LTE system operates in an unlicensed frequency band according to an embodiment of the present invention.
  • a channel detecting method when an LTE system operates in an unlicensed frequency band includes: Step 402: When a data service arrives, determine a current subframe, in the current subframe. And/or setting a channel detection time in a backward adjacent subframe to perform channel state detection; and step 404, performing the data service transmission when the channel state is an idle state.
  • a load (data service)-based LBT mechanism that is, when a data service arrives, the location of the current subframe when the data service arrives is determined, and in the current subframe or
  • the channel detection time is set in the adjacent subframes, whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, that is, when a data service arrives, channel state detection is performed immediately, and when detecting When the channel is idle, the data service is transmitted, so that the delay of the data service transmission caused by the channel detection by the fixed detection period can be effectively reduced under the premise that the LTE system works normally in the unlicensed band.
  • Improve the efficiency of data service transmission and at the same time achieve the peaceful coexistence of LTE system and other systems in the unlicensed frequency band.
  • FIG. 5 is a diagram showing a frame structure for setting a channel detection time when a data service arrives according to an embodiment of the present invention.
  • the frame structure of the channel detection time is set when the data service arrives according to the embodiment of the present invention, and the upper part of the figure performs LBT in the latest subframe (that is, the current subframe) when the downlink data service arrives.
  • Downstream channel state detection regardless of whether the subframe is an uplink subframe or a downlink subframe
  • the frame is also a special subframe; the lower part of the figure performs LBT uplink channel state detection in the latest subframe (that is, the current subframe) when the uplink data service arrives, regardless of whether the subframe is an uplink subframe, a downlink subframe, or a special subframe.
  • Subframe is also a special subframe.
  • a load-based LBT mechanism that is, when a data service arrives, the location of the current symbol of the current subframe when the data service arrives is determined, and is within or behind the current symbol.
  • the channel detection time is set in the adjacent symbol, whether the subframe is an uplink subframe, a downlink subframe or a special subframe, and whether the symbol is DwPTS (downlink pilot time slot), GP (guard interval) or UpPTS ( The uplink pilot time slot), that is, when the data service arrives, the channel state detection is performed immediately, and when the channel is detected to be idle, the data service transmission is performed, thus ensuring that the LTE system works normally in the unlicensed band.
  • the delay of data service transmission caused by channel detection with a fixed detection period can be effectively reduced, thereby improving the data service transmission efficiency, and at the same time, the peaceful coexistence of the LTE system and other systems in the unlicensed frequency band is realized.
  • the starting point of the channel detection time is set to: a start point or a midpoint of the current subframe and/or the backward adjacent subframe, or the current symbol sum And a starting point or a midpoint of the backward adjacent symbol; wherein the starting point or midpoint is located after the data service arrival time point.
  • the channel state detection may start at any time, and the starting point of the channel detection time may be set as the starting point or the midpoint of the current subframe and/or the backward adjacent subframe according to an actual situation. Or the starting point or midpoint of the current symbol and/or the backward adjacent symbol; of course, the starting point of the channel detecting time is after the time point when the data service arrives, and those skilled in the art should know that the foregoing conditions can also be met. Under the premise, set the starting point of the channel detection time according to the specific situation.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time may be repeatedly set according to a fixed detection period (for example, 10 ms) until the check is performed.
  • a fixed detection period for example, 10 ms
  • FIG. 6 is a diagram showing a frame structure in which channel detection time is repeatedly set in a fixed detection period according to an embodiment of the present invention.
  • the frame structure of the channel detection time is repeatedly set according to the fixed detection period according to the embodiment of the present invention.
  • the service arrives in the #1 subframe, then before the service is transmitted, All CCA detection times are repeated in a fixed detection period, such as the illustrated detection period of 10 ms, that is, CCA detection is performed in each #1 subframe.
  • This service arrives in subframe #5.
  • all CCA detection times are repeated in a fixed period.
  • the detection period is 10ms, that is, CCA detection is performed on each #5 subframe.
  • the channel detection time is repeated in an indefinite detection period.
  • channel state detection when a data service arrives, channel state detection can be performed immediately even if it is not the channel detection time. If the first channel state detection is busy, the channel detection time may be repeatedly set according to a fixed detection period until the channel state is detected to be idle, and the data service transmission is performed, thereby further reducing the delay of the data service transmission, and further reducing the delay of the data service transmission. On the one hand, it can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the channel detection time is determined, and the channel state detection is performed once, and when the channel state is an idle state, the data service transmission is performed; When the channel state is busy, the channel state detection is continued.
  • the performing the channel state detection specifically includes: randomly selecting an integer N between 1 and q, and detecting the time in the channel In the consecutive multiple subframes after the subframe, the channel state detection is performed according to the channel detection time, and when the channel state is detected as an idle state, the integer N is decremented by 1 when the detected When the channel state is a busy state, the integer N remains unchanged until the integer N is reduced to 0, and the data service transmission is performed.
  • a method for performing channel state detection with an indefinite detection period is defined, that is, when a data service arrives, a channel detection time is set and a channel state is performed once. Detecting, if the channel state is idle, performing data service transmission; if the channel state is busy, randomly selecting an integer N between 1 and q, and repeating setting in consecutive multiple subframes after the subframe in which the channel detection time is set.
  • the channel detection time is performed for channel state detection.
  • N is decremented by 1.
  • N remains unchanged until N is reduced to 0, and data service transmission is performed; that is, in this In the structure, the channel detection time is extended by an indeterminate length, that is, the channel detection period is indeterminate.
  • the value of q ranges from 4 to 32, and when the data transmission service is performed, the channel occupation time is less than (13/32)*q.
  • FIG. 7 shows a schematic diagram of a frame structure in which channel detection time is set in an indefinite detection period, according to an embodiment of the present invention.
  • a frame structure for setting a channel detection time according to an indefinite detection period where the above channel state detection is taken as an example, for UE#2, the service arrives in subframe #5, Then the first CCA detection is performed in the #5 subframe, if the channel state is detected to be idle, the data service is transmitted; if the channel state is detected to be busy, the extended CCA time is adopted, that is, randomly selected between 1 and q.
  • a number N that is, N CCA detection times. If the channel is detected to be idle at a certain CCA detection time, N is decremented by 1, otherwise N is unchanged. Data can be sent until N is reduced to zero.
  • the channel occupancy time is less than (13/32)*q.
  • the value of q ranges from 4 to 32. That is to say, in this configuration, the CCA detection time is extended by an indeterminate length, and the channel occupation time is also uncertain, so this period is not fixed.
  • the channel detection time is repeatedly set according to a preset fixed detection period; when the data service arrives, after determining the channel detection time, performing The channel state detection is performed for the first time, and the data service transmission is performed when the channel state is an idle state; when the channel state is a busy state, the channel detection time of the preset fixed detection period is reached.
  • the channel detection is performed again, and the channel state detection is repeatedly performed according to the preset fixed detection period until the channel state is detected as an idle state, and the data service transmission is performed.
  • another channel state detection is performed with an indefinite detection period.
  • the method is: before the arrival of the data service, the system has a frame-based LBT frame structure, and repeatedly sets the channel detection time to perform channel state detection by using a preset fixed detection period (for example, 10 ms); when the data service arrives, Setting the channel detection time in the current subframe or the backward adjacent subframe in which the data service arrives, performing the first channel state detection, and if the detection result is busy, when the channel detection time of the frame-based LBT frame structure comes Performing channel state detection again, and performing subsequent channel state detection with the preset fixed detection period until channel idle is detected, that is, superimposing the load-based LBT frame structure and the frame-based LBT frame structure to make the system indeterminate detection
  • the channel state detection is performed periodically, so that the delay of data service transmission can be further reduced, and the data service transmission efficiency is improved.
  • the channel state detection method based on the variable detection period of the load includes but is not limited to the above two types; and the channel state detection may be performed in a fixed detection period or an indefinite detection period. Depending on the specific situation, the diversity of channel state detection methods and the flexibility of selection are also improved, and the applicability is enhanced.
  • FIG. 8 is a diagram showing another frame structure for setting a channel detection time in an indefinite detection period according to an embodiment of the present invention.
  • another frame structure for setting a channel detection time according to an indefinite detection period first has a frame-based LBT frame structure in an LTE system, for example, an LBT detection period is 10 ms, each time.
  • the CCA (same as LBT) detection time is in subframe #0.
  • the first CCA detection is performed in the #5 subframe, and if the channel status is detected as idle, the data service is transmitted; if the channel status is detected to be busy , then does not transmit data services.
  • the downlink channel state detection is performed by the base station; and when the data service is an uplink data service, the terminal or the base station performs an uplink channel state. Detection.
  • the uplink channel detection when the uplink channel detection is performed by the base station, determining whether the terminal and/or the base station know that the uplink channel state is an idle state; When the terminal and/or the base station knows that the uplink channel state is an idle state, performing the uplink data service transmission; and when the terminal and/or the base station does not know that the uplink channel state is an idle state, Transmitting, by the terminal, a sounding reference signal, or transmitting an uplink scheduling request signal, or sending a buffer status report to the base station, to notify the base station that the uplink data service arrives, so that the base station performs the uplink Channel state detection; wherein the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the base station when a downlink data service arrives, the base station performs downlink channel state detection according to the channel detection method described in any one of the foregoing technical solutions; when an uplink data service arrives, the base station may also be used by the terminal.
  • the channel state detection method according to any one of the above aspects is used to perform uplink channel state detection.
  • the uplink channel state detection When the uplink channel state detection is performed by the base station, it is first determined whether the terminal or the base station knows that the uplink channel state is an idle state. If it is known, for example, it is known that the downlink channel state is detected as an idle state, and the downlink channel state can represent In the uplink channel state, it can be regarded that the uplink channel state is also idle state, so that the terminal can immediately perform uplink data service transmission; if unknown, for example, the downlink channel state is idle state, but the downlink channel state cannot represent the uplink channel state. Or, there is no downlink data service at this time, and the downlink channel state is uncertain.
  • the terminal needs to inform the base station that the uplink data service arrives, and requests the base station to perform channel state detection, wherein the method for the terminal to notify the base station that the uplink data service arrives includes: However, it is not limited to: transmitting the sounding reference signal to the base station, transmitting the uplink scheduling request to the base station, or transmitting the buffer status report to the base station in a short period.
  • the uplink scheduling request and the buffer status report may be sent on an unlicensed frequency band or on a licensed frequency band.
  • the data service transmission is performed immediately, and the data service transmission start time includes: the symbol midpoint or The midpoint of the subframe.
  • the said start of the symbol or subframe adjacent to the symbol is started.
  • Data traffic transmission and transmitting a resource reservation signal or a channel idle indication signal between a midpoint of the symbol to a start of the symbol or a start of the subframe adjacent to the symbol.
  • the data service transmission start time may include the following two situations:
  • the data service transmission start time includes but is not limited to the midpoint of the symbol or subframe for channel detection, so that the delay of data service transmission can be further reduced; and the other is the symbol direction at the end of the channel detection time.
  • the start of the subsequent adjacent symbol or subframe starts data traffic transmission, and transmits a channel occupation signal, such as a resource reservation signal or a channel idle indication signal, during this period of time, thus facilitating data transmission processing.
  • the channel detection time is set in the current subframe or in the current symbol to perform the channel detection, determining that the terminal or the base station performing the channel detection is compared with another terminal or Whether the base station belongs to the same carrier.
  • the terminal or the base station performing the channel detection belongs to the same operator and the other terminal or the base station, detecting from the terminal or the base station Subtracting the second power of the other terminal or the base station to obtain a third power, and comparing the third power with the first channel busy idle threshold to perform the channel state detection; or according to the attribution And configuring, by the deployment of all the base stations of the same carrier, a second channel busy idle threshold, and comparing the power detected by the terminal or the base station with the second channel busy idle threshold to perform the channel state.
  • the detecting, wherein the second channel busy idle threshold comprises power of the other terminal or base station.
  • the channel detection time when the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, when different operators and/or WIFIs occupy a channel, pass the Transmitting, by the different operators and/or the WIFI, channel occupancy signals on different subcarriers, and the subcarriers for transmitting the channel occupation signals are only used to transmit the channel occupation signals; and when the terminal or the base station
  • the detected power includes at the subcarriers of the channel occupation signal sent by other operators and/or WIFIs sent by the terminal or the same operator to which the base station belongs. Power; wherein the subcarrier distribution of the same operator may be centralized or distributed.
  • channel state detection can be avoided in the following three ways, because there are other terminals or base stations belonging to the same carrier. Performing data service transmission and causing channel status The detected power of the terminal or the base station includes the power of other terminals or base stations, resulting in misjudgment of the channel state.
  • the terminal or the base station performing the channel detection belongs to the same operator as the other terminal or the base station. If it is determined that the terminal belongs to the same operator, the following two methods may be adopted:
  • the power detected by the terminal or the base station performing channel state detection is subtracted from the power of other terminals or base stations belonging to the same operator of the terminal or the base station, and then compared with the channel busyness threshold, so that The accuracy of the channel state detection result is effectively improved, thereby avoiding misjudgment of the channel state.
  • a reasonable channel busyness threshold is set. For example, when all the base stations belonging to the same operator are far apart from each other, the channel state detection terminal or The power value range of the base station receiving the other terminal or the base station may be determined, and the power value range is taken into account when the channel busy idle threshold is set, and the power detected by the terminal or the base station that performs channel state detection and the channel busy idle threshold When comparing, the channel state detection result can be made more accurate, thereby avoiding misjudgment of the channel state.
  • the third method can also be used to solve the above problem, that is, the channel occupying signal transmission method using orthogonal frequency, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the channel is used.
  • the transmission of the occupied signal represents that the carrier A occupies the full bandwidth.
  • the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel needs to be transmitted as long as the channel is occupied.
  • the channel occupies the signal, and the subcarrier used to transmit the channel occupation signal can no longer be used to transmit any other signal.
  • the terminal or the base station performs channel state detection, only other operators or Wi-Fi transmission channel occupancy signals can be detected.
  • the power at the subcarriers that is, the power of other terminals or base stations that belong to the same carrier or the base station to which the channel state detection is performed, effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the channel starts to be started after the downlink data service arrival time is less than or equal to 4 ms.
  • Status detection; or different operators and / or WIFI in the occupation When the channel is used, the channel occupation signal is sent on different subcarriers by the different operators and/or the WIFI, and the subcarrier used for transmitting the channel occupation signal is only used to send the channel occupation signal.
  • the detected power includes the channel occupation signal sent by another operator and/or WIFI sent by the terminal or the same operator to which the base station belongs. The power at the subcarriers.
  • the terminal since the base station has already sent an uplink grant permission to the terminal having the uplink data service requirement before the base station has the downlink data service, that is, the terminal performs the uplink data service transmission (ie, transmission), in order to prevent the base station from doing the downlink channel.
  • the terminal performs uplink data service transmission, and the base station may perform channel state detection after the downlink data service arrives according to the actual situation delay of less than or equal to 4 ms, and ensure that the base station is no longer in the time period.
  • the terminal sends an uplink grant, and the base station can immediately perform channel state detection after the delay time arrives, wherein 4ms is the maximum allowed delay time, and thus, the accuracy of channel state detection can be effectively improved.
  • the channel-occupied signal transmission method using orthogonal frequency that is, when the operator A occupies the channel
  • the channel occupation signal is transmitted through the sub-carrier 1 therein, and the transmission of the channel occupation signal represents that the operator A is occupied.
  • Full bandwidth similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarriers can no longer be used to transmit any other signals. Therefore, when the terminal or the base station performs channel state detection, only the power at the subcarriers occupied by other operators or Wi-Fi transmission channels can be detected, that is, the following is not included.
  • the power of the terminal or base station that performs channel state detection belongs to other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the terminal when the terminal has the uplink data service arrived, When the base station to which the terminal belongs is performing downlink data transmission or another terminal adjacent to the terminal is performing uplink data service transmission, the terminal performs the uplink channel state detection, and the power detected by the terminal is subtracted.
  • the terminal Deactivating power from the base station or power from the other terminal adjacent to the terminal to perform the uplink channel state detection; or waiting for the base station to complete the downlink data transmission or with the terminal
  • the terminal performs the uplink channel detection again; or, when different operators and/or WIFIs occupy the channel, respectively, through the different operators or the WIFI Transmitting a channel occupation signal on different subcarriers, and the subcarrier for transmitting the channel occupation signal is only used to transmit the channel occupation signal, and when the terminal performs the uplink channel detection, detecting
  • the power includes the other carriers other than the same operator to which the terminal belongs and/or the subcarriers that the WIFI transmits the channel occupancy signal. Power.
  • the base station to which the terminal belongs is transmitting (ie, transmitting) the downlink data service, or other terminals adjacent to the terminal are transmitting the uplink data service, and the terminal is sent by the terminal.
  • the uplink channel state detection is performed, the power detected by the terminal is increased, and the uplink channel state detection result is inaccurate.
  • the following methods can be used to avoid misjudgment of the channel state and improve the accuracy of the channel state detection result. .
  • the channel state determination is performed, and the accuracy of the channel state detection result can be improved.
  • the channel state detection is performed, thereby improving the accuracy of the channel state detection result.
  • the channel occupant signal transmission method using orthogonal frequency is used, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the transmission of the channel occupation signal represents that the operator A occupies the full Bandwidth, similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarrier can no longer be used to transmit any other signals.
  • the terminal when the terminal performs channel state detection, it can only detect the power at the subcarriers occupied by other operators or Wi-Fi transmission channels, that is, it does not include
  • the power of the channel state detection terminal or the base station belonging to other terminals or base stations of the same operator effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • FIG. 9 is a block diagram showing the structure of a channel detecting system when an LTE system operates in an unlicensed band according to an embodiment of the present invention.
  • the channel detection system 500 when the LTE system operates in an unlicensed frequency band includes: a first setting module 502, when a data service arrives, is used to determine a current subframe, where Setting a channel detection time in the current subframe and/or a backward adjacent subframe to control channel state detection; and the data transmission module 504 controls the data service when the channel state is an idle state. transmission.
  • a load (data service)-based LBT mechanism that is, when a data service arrives, the location of the current subframe when the data service arrives is determined, and in the current subframe or
  • the channel detection time is set in the adjacent subframes, whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, that is, when a data service arrives, channel state detection is performed immediately, and when detecting When the channel is idle, the data service is transmitted, so that the delay of the data service transmission caused by the channel detection by the fixed detection period can be effectively reduced under the premise that the LTE system works normally in the unlicensed band.
  • Improve the efficiency of data service transmission and at the same time achieve the peaceful coexistence of LTE system and other systems in the unlicensed frequency band.
  • the first setting module 502 is further configured to: when the data service arrives, determine a current symbol of the current subframe, within the current symbol and/or backward The channel detection time is set in adjacent symbols to control the channel state detection.
  • a load-based LBT mechanism that is, when a data service arrives, the location of the current symbol of the current subframe when the data service arrives is determined, and is within or behind the current symbol.
  • the channel detection time is set in the adjacent symbol, whether the subframe is an uplink subframe, a downlink subframe or a special subframe, and whether the symbol is DwPTS (downlink pilot time slot), GP (guard interval) or UpPTS ( Uplink pilot time slot), that is, when a data service arrives, the channel state detection is performed immediately, and when the channel is detected to be idle, the data service is performed.
  • the first setting module 502 is further configured to: set a starting point of the channel detection time as: a start point of the current subframe and/or the other subframes that are backward or a midpoint, or a start or midpoint of the current symbol and/or the other backward symbols; wherein the start or midpoint is located after the data service arrival time point.
  • the channel state detection may start at any time, and the starting point of the channel detection time may be set as the starting point or the midpoint of the current subframe and/or the backward adjacent subframe according to an actual situation. Or the starting point or midpoint of the current symbol and/or the backward adjacent symbol; of course, the starting point of the channel detecting time is after the time point when the data service arrives, and those skilled in the art should know that the foregoing conditions can also be met. Under the premise, set the starting point of the channel detection time according to the specific situation.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time may be repeatedly set according to a fixed detection period (for example, 10 ms) until data service is detected when the channel state is detected to be idle. Transmission can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the channel detection time is repeated in an indefinite detection period.
  • channel detection when a data service arrives, channel detection can be performed immediately even if it is not the channel detection time. If the first channel state detection is busy, the channel detection time may be repeatedly set according to a fixed detection period until the channel state is detected to be idle, and the data service transmission is performed, thereby further reducing the delay of the data service transmission, and further reducing the delay of the data service transmission. On the one hand, it can achieve peaceful coexistence of LTE system and other systems in unlicensed frequency bands.
  • the first setting module 502 when a data service arrives, is configured to determine the channel detection time, and control to perform the channel state detection once, when the channel state is an idle state.
  • the data transmission module 504 controls to perform the data service transmission; and when the channel state is a busy state, the first setting module is used for controlling The channel state detection continues.
  • the method further includes: a selecting module 506, configured to randomly select an integer N between 1 and q when the channel state is in a busy state, where the first setting module 502 is further used to Controlling the channel state detection according to the channel detection time in consecutive multiple subframes after the subframe in which the channel detection time is located; and further comprising: a calculation module 508, when detecting that the channel state is idle a state for reducing the integer N by one, and when detecting that the channel state is a busy state, controlling the integer N to remain unchanged until the integer N is reduced to 0, by the data transmission Module 504 controls the data traffic transmission.
  • a selecting module 506 configured to randomly select an integer N between 1 and q when the channel state is in a busy state
  • the first setting module 502 is further used to Controlling the channel state detection according to the channel detection time in consecutive multiple subframes after the subframe in which the channel detection time is located
  • a calculation module 508 when detecting that the channel state is idle a state for reducing the integer N by one, and when
  • a method for performing channel state detection by using an indefinite detection period is defined, that is, when a data service arrives, a channel detection time is set and a channel state detection is performed once, and if the channel state is idle, data is performed. If the channel status is busy, randomly select an integer N between 1 and q, and repeatedly set the channel detection time for channel state detection in consecutive multiple subframes after the subframe in which the channel detection time is set. When the channel state detection result is idle, N is decremented by 1. When the result is busy, N remains unchanged until N is reduced to 0, and data traffic is transmitted; that is, in this structure, the channel detection time is extended by one. The length of uncertainty, that is, the channel detection period is not fixed. With this technical solution, channel state detection can be performed in multiple consecutive subframes, which can further reduce the delay of data service transmission and improve data service transmission efficiency.
  • the value of q ranges from 4 to 32, and when the data transmission service is performed, the channel occupation time is less than (13/32)*q.
  • the second setting module 510 is configured to repeatedly set the channel state detection time according to a preset fixed detection period before the data service arrives; when the data service arrives
  • the first setting module 502 is configured to control to perform the first channel state detection after determining the channel detection time, and when the channel state is an idle state
  • the data transmission module 504 is configured to control Performing the data service transmission
  • the second setting module 510 is further configured to: when the channel state is busy, control to perform the channel again when the channel detection time of the preset fixed detection period arrives Detecting, and controlling, repeating the channel detection according to the preset fixed detection period until detecting that the channel state is an idle state, and the data transmission module 504 controls the data service transmission.
  • another method for performing channel state detection with an indefinite detection period is defined, that is, before the data service arrives, the system has a frame-based LBT frame structure and presets a detection period (for example, 10ms) repeatedly setting the channel detection time for channel state detection; when the data service arrives, setting the channel detection time in the current subframe or the backward adjacent subframe in which the data service arrives, and performing the first channel state detection, If the detection result is busy, when the channel detection time of the frame-based LBT frame structure comes, the channel state detection is performed again, and the subsequent channel state detection is performed with the preset fixed detection period until the channel idle is detected, that is, The load-based LBT frame structure is superimposed with the frame-based LBT frame structure, so that the system performs channel state detection with an indefinite detection period.
  • a detection period for example, 10ms
  • the channel state detection method based on the variable detection period of the load includes but is not limited to the above two types; and the channel state detection may be performed in a fixed detection period or an indefinite detection period. Depending on the specific situation, the diversity of channel state detection methods and the flexibility of selection are also improved, and the applicability is enhanced.
  • the downlink channel state detection is performed by the base station; and when the data service is an uplink data service, the terminal or the base station performs an uplink channel state. Detection.
  • the method further includes: a determining module 512, configured to determine, by the base station, whether the uplink channel status is the terminal and/or the base station An idle state; when the terminal and/or the base station knows that the uplink channel state is an idle state, the data transmission module 504 controls to perform the uplink data service transmission; and when the terminal and/or the When the base station does not know that the uplink channel state is in an idle state, the terminal sends a sounding reference signal, or sends an uplink scheduling request signal, or sends a buffer status report to the base station, to notify the base station that the uplink data is available.
  • the service arrives to enable the base station to perform the uplink channel state detection; wherein the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the base station when a downlink data service arrives, the base station performs downlink channel state detection according to the channel detection method described in any one of the foregoing technical solutions; when there is uplink data service When the time is up, the base station or the terminal may perform the uplink channel state detection according to the channel detection method described in any one of the above aspects.
  • the uplink channel state detection When the uplink channel state detection is performed by the base station, it is first determined whether the terminal or the base station knows that the uplink channel state is an idle state. If it is known, for example, it is known that the downlink channel state is detected as an idle state, and the downlink channel state can represent In the uplink channel state, it can be regarded that the uplink channel state is also idle state, so that the terminal can immediately perform uplink data service transmission; if unknown, for example, the downlink channel state is idle state, but the downlink channel state cannot represent the uplink channel state. Or, there is no downlink data service at this time, and the downlink channel state is uncertain.
  • the terminal needs to inform the base station that the uplink data service arrives, and requests the base station to perform channel state detection, wherein the method for the terminal to notify the base station that the uplink data service arrives includes: However, it is not limited to: transmitting the sounding reference signal to the base station in a short period, transmitting the uplink scheduling request to the base station, or transmitting the buffer state to the base station.
  • the uplink scheduling request signal and the buffer status report may be sent on an unlicensed frequency band or on an authorized frequency band.
  • the data transmission module 504 is further configured to: when the channel detection time ends, and detect that the channel state is an idle state, control to immediately perform the data service transmission, and data service.
  • the transmission start time includes: a midpoint of the symbol or a midpoint of the subframe.
  • the data transmission module 504 is further configured to: when the channel detection time ends, and the end time is a midpoint of the symbol, control is adjacent to the symbol backward The beginning of the symbol or subframe begins the data traffic transmission; and further includes: a signal transmission module 514 for between a midpoint of the symbol to a start of a symbol or subframe adjacent to the symbol Controlling a transmission resource reservation signal or a channel idle indication signal.
  • the data service transmission start time may include the following two situations:
  • the data service transmission start time includes but is not limited to the midpoint of the symbol or subframe for channel detection, so that the delay of data service transmission can be further reduced; and the other is the symbol direction at the end of the channel detection time.
  • the start of the subsequent adjacent symbol or subframe starts data traffic transmission, and during this time, the channel occupation signal, such as the resource reservation signal or the channel idle indication signal, is transmitted, thus facilitating data transmission.
  • the determining module 512 is further configured to: determine to perform the channel. Whether the detected terminal or base station and other terminals or base stations belong to the same carrier.
  • the calculating module 508 is further configured to: use the terminal Or subtracting the second power of the other terminal or the base station from the first power detected by the base station to obtain a third power; and the determining module 512 is further configured to: use the third power and the first channel busy threshold Performing a comparison to perform the channel state detection; or further comprising: a third setting module 516, configured to set a second channel busyness threshold according to deployment of all base stations belonging to the same operator, and the determining The module 512 is further configured to: compare the power detected by the terminal or the base station with the second channel busy idle threshold to control the channel state detection, where the second channel busy idle threshold includes The power of the other terminal or base station.
  • the channel detection time when the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, when different operators and/or WIFIs occupy a channel, pass the Transmitting, by the different operators and/or the WIFI, channel occupancy signals on different subcarriers, and the subcarriers for transmitting the channel occupation signals are only used to transmit the channel occupation signals; and when the terminal or the base station
  • the detected power includes powers of the other carriers other than the same operator to which the terminal or the base station belongs and/or the sub-carriers that the WIFI sends the channel occupation signal.
  • the subcarrier distribution of the same operator may be centralized or distributed.
  • channel state detection can be avoided in the following three ways, because there are other terminals or base stations belonging to the same carrier.
  • the power detected by the terminal or the base station that performs the data service transmission and causes the channel state detection includes the power of other terminals or base stations, resulting in a misjudgment of the channel state.
  • the terminal or the base station performing the channel detection belongs to the same operator as the other terminal or the base station. If it is determined that the terminal belongs to the same operator, the following two methods may be adopted:
  • the power detected by the terminal or the base station performing channel state detection is subtracted from the power of other terminals or base stations belonging to the same operator of the terminal or the base station, and then compared with the channel busyness threshold, so that The accuracy of the channel state detection result is effectively improved, thereby avoiding misjudgment of the channel state.
  • a reasonable channel busyness threshold is set. For example, when all the base stations belonging to the same operator are far apart from each other, the channel state detection terminal or The power value range of the base station receiving the other terminal or the base station may be determined, and the power value range is taken into account when the channel busy idle threshold is set, and the power detected by the terminal or the base station that performs channel state detection and the channel busy idle threshold When comparing, the channel state detection result can be made more accurate, thereby avoiding misjudgment of the channel state.
  • the third method can also be used to solve the above problem, that is, the channel occupying signal transmission method using orthogonal frequency, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the channel is used.
  • the transmission of the occupied signal represents that the carrier A occupies the full bandwidth.
  • the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel needs to be transmitted as long as the channel is occupied.
  • the channel occupies the signal, and the subcarrier used to transmit the channel occupation signal can no longer be used to transmit any other signal.
  • the terminal or the base station performs channel state detection, only other operators or Wi-Fi transmission channel occupancy signals can be detected.
  • the power at the subcarriers that is, the power of other terminals or base stations that belong to the same carrier or the base station to which the channel state detection is performed, effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the base station when the base station has the downlink data service arriving and the terminal is transmitting the uplink data service, after the downlink data service arrival time is less than or equal to 4 ms, start by the a setting module controls to perform the channel state detection; or, when different operators and/or WIFIs occupy a channel, respectively transmit channel occupancy signals on different subcarriers by using different operators and/or the WIFI, and use
  • the subcarriers for transmitting the channel occupation signal are only used to transmit the channel occupation signal, and when the base station performs the channel state detection, the detected power includes the same operator to which the base station belongs.
  • the carrier and/or WIFI transmits the power at the subcarriers of the channel occupancy signal.
  • the terminal since the base station has already sent an uplink grant permission to the terminal having the uplink data service requirement before the base station has the downlink data service, that is, the terminal performs the uplink data service transmission (ie, transmission), in order to prevent the base station from doing the downlink channel.
  • the terminal performs uplink data service transmission, and the base station may perform channel state detection after the downlink data service arrives according to the actual situation delay of less than or equal to 4 ms, and ensure that the base station is no longer in the time period.
  • the terminal sends an uplink grant, and the base station can immediately perform channel state detection after the delay time arrives, wherein 4ms is the maximum allowed delay time, and thus, the accuracy of channel state detection can be effectively improved.
  • the channel-occupied signal transmission method using orthogonal frequency that is, when the operator A occupies the channel
  • the channel occupation signal is transmitted through the sub-carrier 1 therein, and the transmission of the channel occupation signal represents that the operator A is occupied.
  • Full bandwidth similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarriers can no longer be used to transmit any other signals. Therefore, when the terminal or the base station performs channel state detection, only the power at the subcarriers occupied by other operators or Wi-Fi transmission channels can be detected, that is, the following is not included.
  • the power of the terminal or base station that performs channel state detection belongs to other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • the terminal when the terminal has the uplink data service arriving, and the base station to which the terminal belongs is performing downlink data transmission or other terminals adjacent to the terminal are performing uplink data service transmission, Performing, by the terminal, the uplink channel state detection, where the calculating module is configured to control, in the power detected by the terminal, the power from the base station or the power from the other terminal adjacent to the terminal.
  • the terminal performs the uplink channel detection again.
  • the detected power includes an operator and/or a WIFI transmission station other than the same operator to which the terminal belongs. The power at the subcarrier of the channel occupancy signal.
  • the base station to which the terminal belongs is transmitting (ie, transmitting) the downlink data service, or other terminals adjacent to the terminal are transmitting the uplink data service, and the terminal is sent by the terminal.
  • the uplink channel state detection is performed, the power detected by the terminal is increased, and the uplink channel state detection result is inaccurate.
  • the following methods can be used to avoid misjudgment of the channel state and improve the accuracy of the channel state detection result. .
  • the channel state determination is performed, and the accuracy of the channel state detection result can be improved.
  • the channel state detection is performed, thereby improving the accuracy of the channel state detection result.
  • the channel occupant signal transmission method using orthogonal frequency is used, that is, when the operator A occupies the channel, the channel occupation signal is transmitted through the subcarrier 1 therein, and the transmission of the channel occupation signal represents that the operator A occupies the full Bandwidth, similarly, when other operators or Wi-Fi occupy the channel, the channel occupancy signal is also transmitted on the subcarrier 2 or the subcarrier 3, that is, the channel occupation signal needs to be transmitted as long as the channel is occupied, and is used for transmitting the channel occupation signal.
  • the subcarrier can no longer be used to transmit any other signals. Therefore, when the terminal performs channel state detection, it can only detect the power at the subcarriers occupied by other operators or Wi-Fi transmission channels, that is, does not include the channel state.
  • the detected terminal or base station belongs to the power of other terminals or base stations of the same operator, which effectively improves the accuracy of channel state detection.
  • the subcarrier distribution manner attributed to the same operator may be centralized or distributed.
  • FIG. 10 shows a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • a terminal 600 includes: a channel detecting system 500 when an LTE system according to any one of the above technical solutions operates in an unlicensed frequency band.
  • the terminal works through the LTE system in the unlicensed frequency band
  • the location of the current subframe when the data service arrives is determined, and the current subframe is in the current subframe.
  • the channel detection time in the backward adjacent subframe whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, and whether the symbol is a DwPTS (downlink pilot slot) or a GP (guard interval)
  • the symbol is a DwPTS (downlink pilot slot) or a GP (guard interval)
  • UpPTS uplink pilot time slot
  • the delay of data service transmission caused by channel detection with a fixed detection period can be effectively reduced, thereby improving the efficiency of data service transmission, and simultaneously realizing the LTE system and other systems in the unlicensed frequency band. Peace and coexistence.
  • FIG. 11 is a block diagram showing the structure of a base station according to an embodiment of the present invention.
  • a base station 700 includes: a channel detecting system 500 when an LTE system according to any one of the preceding technical solutions operates in an unlicensed frequency band.
  • the channel detection system when the base station works in the unlicensed frequency band by the LTE system, when a data service arrives, determines the location of the current subframe when the data service arrives, and is in the current subframe. Or setting the channel detection time in the backward adjacent subframe, whether the subframe is an uplink subframe, a downlink subframe, or a special subframe, and whether the symbol is a DwPTS (downlink pilot slot) or a GP (guard interval) It is also an UpPTS (uplink pilot time slot), that is, when a data service arrives, channel state detection is performed immediately, and when the channel is detected to be idle, data traffic transmission is performed, thus ensuring that the LTE system is unauthorized.
  • DwPTS downlink pilot slot
  • GP Guard interval
  • UpPTS uplink pilot time slot
  • the delay of data service transmission caused by channel detection with a fixed detection period can be effectively reduced, thereby improving the efficiency of data service transmission, and simultaneously realizing the LTE system and other systems in the unlicensed frequency band. Peace and coexistence.
  • FIG. 12 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the terminal may include: at least one network interface 1203, at least one processor 1201, For example, CPU, memory 1204 and at least one bus 1202, processor 1201
  • the channel detection system when the LTE system shown in FIG. 9 operates in an unlicensed band can be combined.
  • the bus 1202 is used to connect the network interface 1203, the processor 1201, and the memory 1204.
  • the network interface 1203 may include a standard wired interface or a wireless interface (such as a WI-FI interface), and is specifically configured to perform data service transmission.
  • the above memory 1204 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the above memory 1204 is further configured to store a set of program codes, and the processor 1201 is configured to call the program code stored in the memory 1204 to perform the following operations:
  • the data service transmission is performed when the channel state is an idle state.
  • determining a current symbol of the current subframe setting the channel detection time in the current symbol and/or a backward adjacent symbol, to perform the Channel status detection.
  • a starting point of the channel detection time as: a starting point or a midpoint of the current subframe and/or the backward neighboring subframe, or the current symbol and/or the direction The starting point or midpoint of the adjacent adjacent symbol;
  • the starting point or midpoint is located after the data service arrival time point.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time is repeated in an indefinite detection period.
  • determining the channel detection time, and performing the channel state detection once when the channel state is an idle state, performing the data service transmission; when the channel state is In the busy state, the channel state detection is continued.
  • the channel detection time is repeatedly set according to a preset fixed detection period before the data service arrives;
  • the data service arrives, after determining the channel detection time, performing the first channel state detection, and when the channel state is an idle state, performing the data service transmission; when the channel state is Channel check at the preset fixed detection period when it is busy The channel detection is performed again when the measurement time arrives, and the channel state detection is repeatedly performed according to the preset fixed detection period until the channel state is detected as an idle state, and the data service transmission is performed.
  • the data service is a downlink data service, performing downlink channel state detection by the base station;
  • the terminal or the base station performs uplink channel state detection.
  • the uplink channel detection when the uplink channel detection is performed by the base station, determining, by the terminal and/or the base station, whether the uplink channel state is an idle state;
  • the terminal When the terminal and/or the base station does not know that the uplink channel state is an idle state, the terminal sends a sounding reference signal, or sends an uplink scheduling request signal, or sends a buffer status report to the base station by using a short period. Notifying the base station that the uplink data service arrives, so that the base station performs the uplink channel state detection;
  • the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the data service transmission is performed immediately, where the data service transmission start time includes: the symbol midpoint or the subframe point.
  • the data service transmission is started at a start point of a symbol or a subframe adjacent to the symbol, and A resource reservation signal or a channel idle indication signal is transmitted between a midpoint of the symbol to a start of the symbol adjacent to the symbol or a start of the subframe.
  • the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, determining whether the terminal or the base station performing the channel detection is in the same state as other terminals or base stations Operator.
  • the terminal or the base station performing the channel detection belongs to the same operator and the other terminal or the base station, detecting from the terminal or the base station Subtracting the second power of the other terminal or the base station to obtain a third power, and comparing the third power with the first channel busy idle threshold to perform the channel state detection; or
  • Second channel busy idle threshold Setting a second channel busy idle threshold according to deployment of all base stations belonging to the same operator, comparing the power detected by the terminal or the base station with the second channel busy idle threshold to perform the Channel state detection, wherein the second channel busy threshold includes power of the other terminal or base station.
  • the channel detection time when the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, when different carriers and/or WIFIs occupy a channel, pass the different carriers and And/or the WIFI respectively transmits a channel occupation signal on different subcarriers, and the subcarrier for transmitting the channel occupation signal is only used to transmit the channel occupation signal;
  • the detected power includes the channel occupancy signal sent by another operator other than the same operator to which the terminal or the base station belongs and/or WIFI. Power at the subcarrier;
  • the subcarrier distribution of the same operator may be centralized or distributed.
  • the channel state detection is started after the downlink data service arrival time is less than or equal to 4 ms;
  • the channel occupation signals are respectively transmitted on different subcarriers by the different operators and/or the WIFI, and the subcarriers used for transmitting the channel occupation signals are only For transmitting the channel occupation signal, and when the base station performs the channel state detection, the detected power includes other operators and/or WIFIs other than the terminal or the same operator to which the base station belongs.
  • the transmitted channel occupies power at the subcarrier of the signal.
  • the terminal when the terminal has the uplink data service, and the base station to which the terminal belongs is performing downlink data transmission, or another terminal adjacent to the terminal is performing uplink data service transmission, the terminal performs the The uplink channel state detection, in which the power from the base station or the power from the other terminal adjacent to the terminal is subtracted from the power detected by the terminal, Performing the uplink channel state detection; or,
  • the terminal When the base station completes the downlink data transmission or the other terminal adjacent to the terminal completes the uplink data transmission, the terminal performs the uplink channel detection again; or
  • the channel occupation signals are respectively sent by different carriers or the WIFIs on different subcarriers, and the subcarriers used for transmitting the channel occupation signals are only used for Transmitting the channel occupation signal, and when the terminal performs the uplink channel detection, the detected power includes sending, by the other carrier and the WIFI, the channel occupation signal, other than the same operator to which the terminal belongs. The power at the subcarriers.
  • terminal introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiment introduced by the present invention in conjunction with FIG.
  • FIG. 13 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the terminal may include: at least one network interface 1303, at least one processor 1301, For example, the CPU, the memory 1304, and the at least one bus 1302, the processor 1301 may be combined with the channel detection system when the LTE system shown in FIG. 9 operates in an unlicensed band.
  • the bus 1302 is used to connect the network interface 1303, the processor 1301, and the memory 1304.
  • the network interface 1303 may include a standard wired interface or a wireless interface (such as a WI-FI interface), and is specifically configured to perform data service transmission.
  • the above memory 1304 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the above memory 1304 is further configured to store a set of program codes, and the processor 1301 is configured to call the program code stored in the memory 1304 to perform the following operations:
  • the data service transmission is performed through the network interface.
  • the processor determines a current subframe, and sets a channel detection time in the current subframe and/or a backward adjacent subframe to perform channel state detection, where Includes:
  • a starting point of the channel detection time as: a starting point or a midpoint of the current subframe and/or the backward neighboring subframe, or the current symbol and/or the direction The starting point or midpoint of the adjacent adjacent symbol;
  • the starting point or midpoint is located after the data service arrival time point.
  • the channel detection time is repeated in a fixed detection period.
  • the channel detection time is repeated in an indefinite detection period.
  • determining the channel detection time, and performing the channel state detection once when the channel state is an idle state, performing the data service transmission; when the channel state is In the busy state, the channel state detection is continued.
  • the processor is further configured to perform the following operations before the data service arrives:
  • the data service When the data service arrives, after determining the channel detection time, performing the first channel state detection, and when the channel state is an idle state, performing the data service transmission; when the channel state is When in the busy state, the channel detection is performed again when the channel detection time of the preset fixed detection period arrives, and the channel state detection is repeatedly performed according to the preset fixed detection period until the channel state is detected.
  • the data service transmission is performed in an idle state.
  • the data service is a downlink data service, performing downlink channel state detection by the base station;
  • the terminal or the base station performs uplink channel state detection.
  • the uplink channel detection is performed by the base station, determining, by the terminal and/or the base station, whether the uplink channel state is an idle state;
  • the terminal When the terminal and/or the base station does not know that the uplink channel state is an idle state, the terminal sends a sounding reference signal, or sends an uplink scheduling request signal, or sends a buffer status report to the base station by using a short period. Notifying the base station that the uplink data service arrives, so that the base station performs the uplink channel state detection;
  • the uplink scheduling request signal and the buffer status report are sent on the unlicensed frequency band or sent on a licensed frequency band.
  • the data service transmission is performed immediately, where the data service transmission start time includes: the symbol midpoint or the subframe point.
  • the data service transmission is started at a start point of a symbol or a subframe adjacent to the symbol, and A resource reservation signal or a channel idle indication signal is transmitted between a midpoint of the symbol to a start of the symbol adjacent to the symbol or a start of the subframe.
  • the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection, determining whether the terminal or the base station performing the channel detection is in the same state as other terminals or base stations Operator.
  • the first power detected from the terminal or the base station Subtracting the second power of the other terminal or the base station to obtain a third power, and comparing the third power with the first channel busy idle threshold to perform the channel state detection; or
  • Second channel busy idle threshold Setting a second channel busy idle threshold according to deployment of all base stations belonging to the same operator, comparing the power detected by the terminal or the base station with the second channel busy idle threshold to perform the Channel state detection, wherein the second channel busy threshold includes power of the other terminal or base station.
  • the channel detection time is performed in the current subframe or in the current symbol to perform the channel detection
  • different carriers and/or WIFIs occupy a channel
  • pass the different carriers and And/or the WIFI sends a channel occupation signal on different subcarriers
  • the subcarrier used to transmit the channel occupation signal is only used to send the channel occupation signal
  • the detected power includes the channel occupancy signal sent by another operator other than the same operator to which the terminal or the base station belongs and/or WIFI. Power at the subcarrier;
  • the subcarrier distribution of the same operator may be centralized or distributed.
  • terminal introduced in the embodiment of the present invention may be used to implement some or all of the processes in the method embodiment introduced by the present invention in conjunction with FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种LTE***在非授权频段工作时的信道检测方法、一种LTE***在非授权频段工作时的信道检测***、一种终端和一种基站,其中,LTE***在非授权频段工作时的信道检测方法包括:当有数据业务到达时,确定当前子帧,在当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;当信道状态为空闲状态时,进行数据业务传输。通过本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。

Description

信道检测方法、信道检测***、终端和基站
本申请要求于2014年12月19日提交中国专利局,申请号为CN 201410803213.8、发明名称为“信道检测方法、信道检测***、终端和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体而言,涉及一种LTE***在非授权频段工作时的信道检测方法、LTE***在非授权频段工作时的信道检测***、一种终端和一种基站。
背景技术
随着通信业务量的急剧增加,3GPP的授权频谱越来越不足以提供更高的网络容量。为了进一步提高频谱资源的利用率,3GPP正讨论如何在授权频谱的帮助下使用未授权频谱,如2.4GHz和5GHz频段。这些未授权频谱目前主要是Wi-Fi、蓝牙、雷达、医疗等***在使用。
通常情况下,为已授权频段设计的接入技术,如LTE(Long Term Evolution,长期演进)不适合在未授权频段上使用,因为LTE这类接入技术对频谱效率和用户体验优化的要求非常高。然而,载波聚合(Carrier Aggregation,CA)功能让将LTE部署于非授权频段变为可能。3GPP提出了LAA(LTE Assisted Access,LTE辅助接入)的概念,借助LTE授权频谱的帮助来使用未授权频谱。而未授权频谱可以有两种工作方式,一种是补充下行(SDL,Supplemental Downlink),即只有下行传输子帧;另一种是TDD模式,既包含下行传输子帧,也包含上行传输子帧。补充下行这种情况只能是借助载波聚合技术使用(如图1所示)。而TDD模式除了可以借助DC(Dual Connectivity,双连通)使用,也可以独立使用。
相比于Wi-Fi***,工作在非授权频段的LTE***有能力提供更高的频谱效率和更大的覆盖效果,同时基于同一个核心网让数据流量在授权频段和未授 权频段之间无缝切换。对用户来说,这意味着更好的宽带体验、更高的速率、更好的稳定性和移动便利。
现有的在非授权频谱上使用的接入技术,如Wi-Fi,具有较弱的抗干扰能力。为了避免干扰,Wi-Fi***设计了很多干扰避免规则,如CSMA/CD(Carrier Sense Multiple Access/Collision Detection,载波监听多路访问/冲突检测方法),这种方法的基本原理是Wi-Fi的AP(Access Point,接入点)或者终端在发送信令或者数据之前,要先监听检测周围是否有其他AP或者其他终端在发送/接收信令或数据,若有,则继续监听,直到监听到没有为止;若没有,则生成一个随机数作为退避时间,在这个退避时间内,如果没检测到有信令或数据传输,那么在退避时间结束之后,AP或终端可以开始发送信令或数据。该过程如图2所示。
但是,LTE网络中由于有很好的正交性保证了干扰水平,所以基站与用户的上下行传输不用考虑周围是否有其他基站或其他用户在传输数据。如果LTE在非授权频段上使用时也不考虑周围是否有其他设备在使用非授权频段,那么将对Wi-Fi设备带来极大的干扰。因为LTE只要有业务就进行传输,没有任何监听规则,那么Wi-Fi设备在LTE有业务传输时就不能传输,只能等到LTE业务传输完成,才能检测到信道空闲状态以进行数据传输。
所以,LTE网络在使用非授权频段时,最主要的关键点之一是确保LAA能够在公平友好的基础上和现有的接入技术(比如Wi-Fi)共存。而传统的LTE***中没有LBT(Listen Before Talk,先听后说)的机制来避免碰撞。为了与Wi-Fi***更好的共存,LTE***需要一种LBT机制。
然而,之前已布局的LBT机制都是frame based LBT帧结构,如图3所示,LBT的周期是固定的,CCA(Clear Channel Assessment,空闲信道评估)的时间是每个周期的最开始。例如,在LBT帧结构中,以10ms为周期,CCA占用#0号子帧的最前面的1个或多个symbol。在这种固定周期的帧结构下,只有#0号子帧才能做CCA,如果数据业务在#1号子帧到达,则必须等到下一个周期的#0号子帧进行CCA之后,才能判断信道是否可以占用,从而带来很大的时延。
因此,如何能够确保LTE***在非授权频段正常工作的前提下,有效地 减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,同时能实现LTE***与其他***在非授权频段的和平共存成为亟待解决的技术问题。
发明内容
本发明正是基于上述问题,提出了一种新的技术方案,提出了一种新的LTE***在非授权频段工作时的信道检测方法,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
有鉴于此,本发明的一方面提出了一种LTE***在非授权频段工作时的信道检测方法,包括:当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;当所述信道状态为空闲状态时,进行所述数据业务传输。
在该技术方案中,限定了一种基于负载(数据业务)的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
在该技术方案中,限定了一种基于负载的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的当前符号的位置,并在该当前符号内或者向后的相邻的符号内设置信道检测时间,不论该子帧是上 行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,所述起点或中点位于所述数据业务到达时间点之后。
在该技术方案中,当有数据业务到达时,信道状态检测可以随时开始,可以将信道检测时间的起点根据实际情况设置为当前子帧和/或向后的相邻子帧的起点或中点,或者当前符号和/或向后的相邻符号的起点或中点;当然该信道检测时间的起点在该数据业务到达的时间点之后,本领域技术人员应知晓,还可以在满足前述条件的前提下,根据具体情况设置信道检测时间的起点。
在上述技术方案中,优选地,所述信道检测时间按固定检测周期重复。
在该技术方案中,当有数据业务到达并在一次信道状态检测为忙碌时,之后可以按固定检测周期(比如,10ms)重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述信道检测时间按不定检测周期重复。
在该技术方案中,当有数据业务到达时,即使不是信道检测时间,也可以立即进行信道状态检测。如果第一次信道状态检测为忙碌时,之后可以按固定检测周期重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,一方面可以进一步减少数据业务传输的时延,另一方面可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,当有数据业务到达时,确定所述信道检 测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
在上述技术方案中,优选地,当所述信道状态为忙碌状态时,所述继续进行所述信道状态检测具体包括:在1~q之间随机选择一个整数N,并在所述信道检测时间所在的子帧之后的连续多个子帧内,按所述信道检测时间进行所述信道状态检测,以及当检测到所述信道状态为空闲状态时,将所述整数N减1,当检测到所述信道状态为忙碌状态时,所述整数N保持不变,直至所述整数N减为0时,进行所述数据业务传输。
在该技术方案中,限定了一种以不定检测周期进行信道状态检测的方法,即:当有数据业务到达时,即设置信道检测时间并进行一次信道状态检测,若信道状态为空闲则进行数据业务传输;若信道状态为忙碌则在1~q之间随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间进行信道状态检测,每信道状态检测结果为空闲时,将N减1,结果为忙碌时,N保持不变,直至N减为0,进行数据业务传输;也就是说,在这个结构中,信道检测时间被延长了一个不确定的长度,即信道检测周期不定。通过该技术方案,可以在多个连续的子帧内进行信道状态检测,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
在上述技术方案中,优选地,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于(13/32)*q。
在上述技术方案中,优选地,在有所述数据业务到达之前,按预设固定检测周期重复设置所述信道检测时间;当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
在该技术方案中,限定了另一种以不定检测周期进行信道状态检测的 方法,即:在数据业务到达之前,***存在一个基于frame的LBT帧结构,并以预设固定检测周期(比如,10ms)重复设置信道检测时间进行信道状态检测;在数据业务到达时,则即在数据业务到达的当前子帧或向后的相邻子帧内设置信道检测时间,进行第一次信道状态检测,若检测结果为忙碌,则在基于frame的LBT帧结构的信道检测时间到来时,再进行一次信道状态检测,并以该预设固定检测周期进行后续信道状态检测直至检测到信道空闲,也就是将基于负载的LBT帧结构与基于frame的LBT帧结构叠加,使***以不定检测周期进行信道状态检测,如此,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
当然本领域技术人员应当知晓,LTE***在非授权频段工作时,基于负载的不定检测周期的信道状态检测方法包括但不限于上述两种;以及以固定检测周期还是不定检测周期进行信道状态检测可以根据具体情况而定,同时也提高了信道状态检测方法的多样性及选择灵活性,适用性得到增强。
在上述技术方案中,优选地,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
在上述技术方案中,优选地,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
在该技术方案中,当有下行数据业务到达时,由基站按上述任一技术方案中记载的信道检测方法进行下行信道状态检测;当有上行数据业务到达时,既可以由基站也可以由终端按上述任一技术方案中记载的信道检测 方法进行上行信道状态检测。
当由基站进行上行信道状态检测时,首先判断终端或基站是否已知上行信道状态为空闲状态,若已知,比如已知此时已检测到下行信道状态为空闲状态,且下行信道状态可以代表上行信道状态时,则可视为上行信道状态也为空闲状态,如此,终端可以马上进行上行数据业务传输;若未知,比如此时下行信道状态为空闲状态,但下行信道状态不能代表上行信道状态,或者此时无下行数据业务,及下行信道状态不确定,如此,需要终端先告知基站有上行数据业务到达,请求该基站进行信道状态检测,其中,终端告知基站有上行数据业务到达的方法包括但不限于:短周期地发送探测参考信号至基站、发送上行调度请求至基站或发送缓存状态报告至基站,其中,上述上行调度请求信号和缓存状态报告既可以在非授权频段上发送,也可以在授权频段上发送。
在上述技术方案中,优选地,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
在上述技术方案中,优选地,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
在该技术方案中,当信道检测时间结束,并检测到信道状态为空闲状态时,此时可能是某个符号的中点,那么数据业务传输开始时间可以包括以下两种情况:一种是立即进行数据业务传输,数据业务传输开始时间包括但不限于进行信道检测的符号或子帧的中点,如此,可以进一步减少数据业务传输的时延;另一种是在信道检测时间结束的符号向后相邻的符号或子帧的起点开始进行数据业务传输,并在这段时间内传输信道占用信号,比如资源预留信号或信道空闲指示信号,如此,便于数据传输。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
在上述技术方案中,优选地,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,所述同一运营商的所述子载波分布可以是集中式的或分布式的。
在该技术方案中,当有数据业务到达,即在当前子帧或当前符号设置信道检测时间,可以通过以下三种方式避免进行信道状态检测时,因有归属于同一运营商的其他终端或基站进行数据业务传输而导致进行信道状态检测的终端或基站检测到的功率包含其他终端或基站的功率,而导致对信道状态的误判。
首先判断进行信道检测的终端或基站是否与其他终端或基站归属于同一运行商,若判定归属于同一运营商,则可以采用以下两种方式:
第一,在进行信道状态检测的终端或基站检测到的功率中减去与该终端或基站归属于同一运行商的其他终端或基站的功率,然后再与信道忙闲阈值进行比较,如此,可以有效地提高信道状态检测结果的准确性,从而避免对信道状态的误判。
第二,根据归属于同一运营商的所有基站的合理部署,设置合理的信道忙闲阈值,比如,当归属于同一运营商的所有基站相互之间距离较远时, 则进行信道状态检测的终端或基站接收到其他终端或基站的功率值范围可以确定,设置信道忙闲阈值时将该功率值范围考虑在内,则在将进行信道状态检测的终端或基站检测到的功率与该信道忙闲阈值进行比较时,可以使信道状态检测结果更加准确,从而避免对信道状态的误判。
当然,还可以通过第三种方法解决上述问题,即使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。
其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始进行所述信道状态检测;或者不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率。
在该技术方案中,当基站有下行数据业务到达需要进行信道状态检测,而此时正有终端发送上行数据业务,若此时基站进行下行信道检测则会使检测到的功率增加,进而导致下行信道状态检测结果不准确,此时可以通过以下两种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
第一,由于在基站有下行数据业务到达之前,基站已经对有上行数据业务需求的终端发送了上行授权许可,即终端会进行上行数据业务传输(即发送),则为了避免基站在做下行信道状态检测时终端进行上行数据业务传输,基站可以在该下行数据业务到达后根据实际情况延时小于或等于4ms的任一时间后再进行信道状态检测,且保证在这段时间内基站不再向终端发送上行授权许可,延时时间到达后则基站可以立即进行信道状态检测,其中4ms是最大的允许的延时时间,如此,可以有效地提高信道状态检测的准确性。
第二,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以进行所述上行信道状态检测;或者,待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,不同运营商和/或WIFI在占用信道时,通过所述不同运营商或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送 所述信道占用信号的所述子载波处的功率。
在该技术方案中,当终端有上行数据业务到达时,该终端归属的基站正有下行数据业务传输(即发送)或与该终端相邻的其他终端正有上行数据业务发送,且由该终端进行上行信道状态检测时,会使终端检测到的功率增加,进而导致上行信道状态检测结果不准确,此时可以通过以下几种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
在终端检测到的功率中减去来自该终端归属的基站的功率或者来自与该终端相邻的其他终端的功率后,再进行信道状态判断,可以提高信道状态检测结果的准确性。
或者,在该终端归属的基站完成下行数据业务传输或与该终端相邻的其他终端完成上行数据业务传输时,再进行信道状态检测,可以提高信道状态检测结果的准确性。
或者,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
根据本发明的另一方面提出了一种LTE***在非授权频段工作时的信道检测***,包括:第一设置模块,当有数据业务到达时,用于确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以控制进行信道状态检测;数据传输模块,当所述信道状态为空闲状态时,控制进行所述数据业务传输。
在该技术方案中,限定了一种基于负载(数据业务)的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在 该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述第一设置模块还用于:当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以控制进行所述信道状态检测。
在该技术方案中,限定了一种基于负载的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的当前符号的位置,并在该当前符号内或者向后的相邻的符号内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述第一设置模块还用于:将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的其他子帧的起点或中点,或者,所述当前符号和/或所述向后的其他符号的起点或中点;其中,所述起点或中点位于所述数据业务到达时间点之后。
在该技术方案中,当有数据业务到达时,信道状态检测可以随时开始,可以将信道检测时间的起点根据实际情况设置为当前子帧和/或向后的相邻子帧的起点或中点,或者当前符号和/或向后的相邻符号的起点或中点;当然该信道检测时间的起点在该数据业务到达的时间点之后,本领域技术人员应知晓,还可以在满足前述条件的前提下,根据具体情况设置信道检 测时间的起点。
在上述技术方案中,优选地,所述信道检测时间按固定检测周期重复。
在该技术方案中,当有数据业务到达并在一次信道状态检测为忙碌时,之后可以按固定检测周期(比如,10ms)重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述信道检测时间按不定检测周期重复。
在该技术方案中,当有数据业务到达时,即使不是信道检测时间,也可以立即进行信道检测。如果第一次信道状态检测为忙碌时,之后可以按固定检测周期重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,一方面可以进一步减少数据业务传输的时延,另一方面可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,当有数据业务到达时,所述第一设置模块用于确定所述信道检测时间,并控制进行一次所述信道状态检测,当所述信道状态为空闲状态时,所述数据传输模块控制进行所述数据业务传输;以及当所述信道状态为忙碌状态时,所述第一设置模块用于控制继续进行所述信道状态检测。
在上述技术方案中,优选地,还包括:选择模块,当所述信道状态为忙碌状态时,用于在1~q之间随机选择一个整数N,所述第一设置模块还用于:在所述信道检测时间所在的子帧之后的连续多个子帧内,控制按所述信道检测时间进行所述信道状态检测;以及还包括:计算模块,当检测到所述信道状态为空闲状态时,用于将所述整数N减1,以及当检测到所述信道状态为忙碌状态时,控制所述整数N保持不变,直至所述整数N减为0时,由所述数据传输模块控制进行所述数据业务传输。
在该技术方案中,限定了一种以不定检测周期进行信道状态检测的方法,即:当有数据业务到达时,即设置信道检测时间并进行一次信道状态检测,若信道状态为空闲则进行数据业务传输;若信道状态为忙碌则在1~q之间随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间进行信道状态检测,每信道状态检测结 果为空闲时,将N减1,结果为忙碌时,N保持不变,直至N减为0,进行数据业务传输;也就是说,在这个结构中,信道检测时间被延长了一个不确定的长度,即信道检测周期不定。通过该技术方案,可以在多个连续的子帧内进行信道状态检测,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
在上述技术方案中,优选地,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于(13/32)*q。
在上述技术方案中,优选地,第二设置模块,在有所述数据业务到达之前,用于控制按预设固定检测周期重复设置所述信道状态检测时间;当有所述数据业务到达时,所述第一设置模块用于在确定所述信道检测时间后,控制进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,所述数据传输模块用于控制进行所述数据业务传输;以及所述第二设置模块还用于:当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时,控制再次进行所述信道检测,并控制按所述预设固定检测周期重复进行所述信道检测,直至检测到所述信道状态为空闲状态,由所述数据传输模块控制进行所述数据业务传输。
在该技术方案中,限定了另一种以不定检测周期进行信道状态检测的方法,即:在数据业务到达之前,***存在一个基于frame的LBT帧结构,并以预设固定检测周期(比如,10ms)重复设置信道检测时间进行信道状态检测;在数据业务到达时,则即在数据业务到达的当前子帧或向后的相邻子帧内设置信道检测时间,进行第一次信道状态检测,若检测结果为忙碌,则在基于frame的LBT帧结构的信道检测时间到来时,再进行一次信道状态检测,并以该预设固定检测周期进行后续信道状态检测直至检测到信道空闲,也就是将基于负载的LBT帧结构与基于frame的LBT帧结构叠加,使***以不定检测周期进行信道状态检测,如此,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
当然本领域技术人员应当知晓,LTE***在非授权频段工作时,基于负载的不定检测周期的信道状态检测方法包括但不限于上述两种;以及以固定检测周期还是不定检测周期进行信道状态检测可以根据具体情况而 定,同时也提高了信道状态检测方法的多样性及选择灵活性,适用性得到增强。
在上述技术方案中,优选地,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
在上述技术方案中,优选地,还包括:判断模块,当由所述基站进行所述上行信道检测时,用于判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,所述数据传输模块控制进行所述上行数据业务传输;以及当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
在该技术方案中,当有下行数据业务到达时,由基站按上述任一技术方案中记载的信道检测方法进行下行信道状态检测;当有上行数据业务到达时,既可以由基站也可以由终端按上述任一技术方案中记载的信道检测方法进行上行信道状态检测。
当由基站进行上行信道状态检测时,首先判断终端或基站是否已知上行信道状态为空闲状态,若已知,比如已知此时已检测到下行信道状态为空闲状态,且下行信道状态可以代表上行信道状态时,则可视为上行信道状态也为空闲状态,如此,终端可以马上进行上行数据业务传输;若未知,比如此时下行信道状态为空闲状态,但下行信道状态不能代表上行信道状态,或者此时无下行数据业务,及下行信道状态不确定,如此,需要终端先告知基站有上行数据业务到达,请求该基站进行信道状态检测,其中,终端告知基站有上行数据业务到达的方法包括但不限于:短周期地发送探测参考信号至基站、发送上行调度请求至基站或发送缓存状态包括至基站,其中,上述上行调度请求信号和缓存状态报告既可以在非授权频段上发送,也可以在授权频段上发送。
在上述技术方案中,优选地,所述数据传输模块还用于:当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,控制立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
在上述技术方案中,优选地,所述数据传输模块还用于:当所述信道检测时间结束,且结束时间为所述符号的中点时,控制在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输;以及还包括:信号传输模块,用于在所述符号的中点至与所述符号向后相邻的符号或子帧的起点之间控制传输资源预留信号或信道空闲指示信号。
在该技术方案中,当信道检测时间结束,并检测到信道状态为空闲状态时,此时可能是某个符号的中点,那么数据业务传输开始时间可以包括以下两种情况:一种是立即进行数据业务传输,数据业务传输开始时间包括但不限于进行信道检测的符号或子帧的中点,如此,可以进一步减少数据业务传输的时延;另一种是在信道检测时间结束的符号向后相邻的符号或子帧的起点开始进行数据业务传输,并在这段时间内传输信道占用信号,比如资源预留信号或信道空闲指示信号,如此,便于数据传输。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,所述判断模块还用于:判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
在上述技术方案中,优选地,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于同一运营商,所述计算模块还用于:从所述终端或基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率;以及,所述判断模块还用于,将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者还包括:第三设置模块,根据归属于所述同一运营商的所有基站的部署,用于设置第二信道忙闲阈值,以及,所述判断模块还用于:将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以控制进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率;其中,所述同一运营商的所述子载波分布可以是集中式的或分布式的。
在该技术方案中,当有数据业务到达,即在当前子帧或当前符号设置信道检测时间,可以通过以下三种方式避免进行信道状态检测时,因有归属于同一运营商的其他终端或基站进行数据业务传输而导致进行信道状态检测的终端或基站检测到的功率包含其他终端或基站的功率,而导致对信道状态的误判。
首先判断进行信道检测的终端或基站是否与其他终端或基站归属于同一运行商,若判定归属于同一运营商,则可以采用以下两种方式:
第一,在进行信道状态检测的终端或基站检测到的功率中减去与该终端或基站归属于同一运行商的其他终端或基站的功率,然后再与信道忙闲阈值进行比较,如此,可以有效地提高信道状态检测结果的准确性,从而避免对信道状态的误判。
第二,根据归属于同一运营商的所有基站的合理部署,设置合理的信道忙闲阈值,比如,当归属于同一运营商的所有基站相互之间距离较远时,则进行信道状态检测的终端或基站接收到其他终端或基站的功率值范围可以确定,设置信道忙闲阈值时将该功率值范围考虑在内,则在将进行信道状态检测的终端或基站检测到的功率与该信道忙闲阈值进行比较时,可以使信道状态检测结果更加准确,从而避免对信道状态的误判。
当然,还可以通过第三种方法解决上述问题,即使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载 波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。
其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始由所述第一设置模块控制进行所述信道状态检测;或者,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
在该技术方案中,当基站有下行数据业务到达需要进行信道状态检测,而此时正有终端发送上行数据业务,若此时基站进行下行信道检测则会使检测到的功率增加,进而导致下行信道状态检测结果不准确,此时可以通过以下两种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
第一,由于在基站有下行数据业务到达之前,基站已经对有上行数据业务需求的终端发送了上行授权许可,即终端会进行上行数据业务传输(即发送),则为了避免基站在做下行信道状态检测时终端进行上行数据业务传输,基站可以在该下行数据业务到达后根据实际情况延时小于或等于4ms的任一时间后再进行信道状态检测,且保证在这段时间内基站不再向终端发送上行授权许可,延时时间到达后则基站可以立即进行信道状态检测,其中4ms是最大的允许的延时时间,如此,可以有效地提高信道状态检测的准确性。
第二,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,所述计算模块用于控制在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以由所述第一设置模块控制进行所述上行信道状态检测;或者,待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端再进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
在该技术方案中,当终端有上行数据业务到达时,该终端归属的基站正有下行数据业务传输(即发送)或与该终端相邻的其他终端正有上行数据业务发送,且由该终端进行上行信道状态检测时,会使终端检测到的功率增加,进而导致上行信道状态检测结果不准确,此时可以通过以下几种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
在终端检测到的功率中减去来自该终端归属的基站的功率或者来自与 该终端相邻的其他终端的功率后,再进行信道状态判断,可以提高信道状态检测结果的准确性。
或者,在该终端归属的基站完成下行数据业务传输或与该终端相邻的其他终端完成上行数据业务传输时,再进行信道状态检测,可以提高信道状态检测结果的准确性。
或者,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
根据本发明的又一方面,提出了一种终端,包括通信总线、网络接口、存储器以及处理器,其中:
所述通信总线,用于实现所述网络接口、存储器以及处理器之间的连接通信;
所述网络接口,用于进行数据业务传输;
所述存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
当所述信道状态为空闲状态时,进行所述数据业务传输。
在上述技术方案中,优选地,当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
在上述技术方案中,优选地,将所述信道检测时间的起点设置为:所 述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
所述起点或中点位于所述数据业务到达时间点之后。
在上述技术方案中,优选地,所述信道检测时间按固定检测周期重复。
在上述技术方案中,优选地,所述信道检测时间按不定检测周期重复。
在上述技术方案中,优选地,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
在上述技术方案中,优选地,在有所述数据业务到达之前,按预设固定检测周期重复设置所述信道检测时间;
当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
在上述技术方案中,优选地,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
在上述技术方案中,优选地,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
在上述技术方案中,优选地,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
在上述技术方案中,优选地,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
在上述技术方案中,优选地,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
所述同一运营商的所述子载波分布可以是集中式的或分布式的。
在上述技术方案中,优选地,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始进行所述信道状态检测;或者,
不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率。
在上述技术方案中,优选地,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以进行所述上行信道状态检测;或者,
待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,
不同运营商和/或WIFI在占用信道时,通过所述不同运营商或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
在该技术方案中,终端通过该LTE***在非授权频段工作时的信道检测***,当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前 提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
根据本发明的再一方面,提出了一种基站,所述基站包括通信总线、网络接口、存储器以及处理器,其中:
所述通信总线,用于实现所述网络接口、存储器以及处理器之间的连接通信;
所述网络接口,用于进行数据业务传输;
所述存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
当所述信道状态为空闲状态时,通过所述网络接口进行所述数据业务传输。
在上述技术方案中,优选地,当有数据业务到达时,所述处理器确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测,具体包括:
当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
在上述技术方案中,优选地,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
所述起点或中点位于所述数据业务到达时间点之后。
在上述技术方案中,优选地,所述信道检测时间按固定检测周期重复。
在上述技术方案中,优选地,所述信道检测时间按不定检测周期重复。
在上述技术方案中,优选地,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信 道状态检测。
在上述技术方案中,优选地,所述处理器在有所述数据业务到达之前,还用于执行以下操作:
按预设固定检测周期重复设置所述信道检测时间;
当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
在上述技术方案中,优选地,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
在上述技术方案中,优选地,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
在上述技术方案中,优选地,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
在上述技术方案中,优选地,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始 进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
在上述技术方案中,优选地,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
所述同一运营商的所述子载波分布可以是集中式的或分布式的。
在该技术方案中,基站通过该LTE***在非授权频段工作时的信道检测***,当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即 进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
通过本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
附图说明
图1示出了非授权频谱的两种工作方式的示意图;
图2示出了Wi-Fi***的干扰避免规则的示意图;
图3示出了frame based LBT帧结构的示意图;
图4示出了根据本发明的实施例的LTE***在非授权频段工作时的信道检测方法的流程示意图;
图5示出了根据本发明的实施例的数据业务到达时设置信道检测时间的帧结构的示意图;
图6示出了根据本发明的实施例的按固定检测周期重复设置信道检测时间的帧结构的示意图;
图7示出了根据本发明的实施例的一种按不定检测周期设置信道检测时间的帧结构的示意图;
图8示出了根据本发明的实施例的另一种按不定检测周期设置信道检测时间的帧结构的示意图;
图9示出了根据本发明的实施例的LTE***在非授权频段工作时的信道检测***的结构示意图;
图10示出了根据本发明的实施例的终端的结构示意图;
图11示出了根据本发明的实施例的基站的结构示意图;
图12示出了根据本发明的实施例的另一种终端的结构示意图;
图13示出了根据本发明的实施例的另一种基站的结构示意图。
具体实施方式
为了可以更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图4示出了根据本发明的实施例的LTE***在非授权频段工作时的信道检测方法的流程示意图。
如图4所示,根据本发明的实施例的LTE***在非授权频段工作时的信道检测方法,包括:步骤402,当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;步骤404,当所述信道状态为空闲状态时,进行所述数据业务传输。
在该技术方案中,限定了一种基于负载(数据业务)的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
图5示出了根据本发明的实施例的数据业务到达时设置信道检测时间的帧结构的示意图。
如图5所示,根据本发明的实施例的数据业务到达时设置信道检测时间的帧结构,图的上半部分为下行数据业务到达时,在最近的子帧(即当前子帧)执行LBT下行信道状态检测,不管这个子帧是上行子帧、下行子 帧还是特殊子帧;图的下半部分为上行数据业务到达时,在最近的子帧(即当前子帧)执行LBT上行信道状态检测,不管这个子帧是上行子帧、下行子帧还是特殊子帧。
在上述技术方案中,优选地,当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
在该技术方案中,限定了一种基于负载的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的当前符号的位置,并在该当前符号内或者向后的相邻的符号内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,所述起点或中点位于所述数据业务到达时间点之后。
在该技术方案中,当有数据业务到达时,信道状态检测可以随时开始,可以将信道检测时间的起点根据实际情况设置为当前子帧和/或向后的相邻子帧的起点或中点,或者当前符号和/或向后的相邻符号的起点或中点;当然该信道检测时间的起点在该数据业务到达的时间点之后,本领域技术人员应知晓,还可以在满足前述条件的前提下,根据具体情况设置信道检测时间的起点。
在上述技术方案中,优选地,所述信道检测时间按固定检测周期重复。
在该技术方案中,当有数据业务到达并在一次信道状态检测为忙碌时,之后可以按固定检测周期(比如,10ms)重复设置信道检测时间,直至检 测到信道状态为空闲时,进行数据业务传输,可以实现LTE***与其他***在非授权频段的和平共存。
图6示出了根据本发明的实施例的按固定检测周期重复设置信道检测时间的帧结构的示意图。
如图6所示,根据本发明的实施例的按固定检测周期重复设置信道检测时间的帧结构,对于cell#1此次业务在#1号子帧到来,那么在此次业务传完之前,所有的CCA检测时间都是以固定检测周期重复,比如图示的检测周期为10ms,也就是在每个#1号子帧进行CCA检测。对于UE#2也是如此,此次业务在#5号子帧到来,那么在此次业务传完之前,所有的CCA检测时间都是以固定周期重复,比如图示的检测周期为10ms,也就是在每个#5号子帧进行CCA检测。
在上述技术方案中,优选地,所述信道检测时间按不定检测周期重复。
在该技术方案中,当有数据业务到达时,即使不是信道检测时间,也可以立即进行信道状态检测。如果第一次信道状态检测为忙碌时,之后可以按固定检测周期重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,一方面可以进一步减少数据业务传输的时延,另一方面可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
在上述技术方案中,优选地,当所述信道状态为忙碌状态时,所述继续进行所述信道状态检测具体包括:在1~q之间随机选择一个整数N,并在所述信道检测时间所在的子帧之后的连续多个子帧内,按所述信道检测时间进行所述信道状态检测,以及当检测到所述信道状态为空闲状态时,将所述整数N减1,当检测到所述信道状态为忙碌状态时,所述整数N保持不变,直至所述整数N减为0时,进行所述数据业务传输。
在该技术方案中,限定了一种以不定检测周期进行信道状态检测的方法,即:当有数据业务到达时,即设置信道检测时间并进行一次信道状态 检测,若信道状态为空闲则进行数据业务传输;若信道状态为忙碌则在1~q之间随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间进行信道状态检测,每信道状态检测结果为空闲时,将N减1,结果为忙碌时,N保持不变,直至N减为0,进行数据业务传输;也就是说,在这个结构中,信道检测时间被延长了一个不确定的长度,即信道检测周期不定。通过该技术方案,可以在多个连续的子帧内进行信道状态检测,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
在上述技术方案中,优选地,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于(13/32)*q。
图7示出了根据本发明的实施例的一种按不定检测周期设置信道检测时间的帧结构的示意图。
如图7所示,根据本发明的实施例的一种按不定检测周期设置信道检测时间的帧结构,以上行信道状态检测为例,对于UE#2此次业务在#5号子帧到来,那么第一次CCA检测则在#5号子帧进行,如果检测到信道状态为空闲,则传输数据业务;如果检测到信道状态为忙碌,则采取extendedCCA时间,即在1~q之间随机选择一个数N,即N个CCA检测时间。如果接下来在某个CCA检测时间检测到信道空闲,则N减1,否则N不变。直到N减为0时,可发送数据。而信道占用时间,要小于(13/32)*q。q的取值范围为4~32。也就是说,在这种结构中,CCA检测时间被延长了一个不确定长度,信道占用时间也不确定,所以这个周期不固定。
在上述技术方案中,优选地,在有所述数据业务到达之前,按预设固定检测周期重复设置所述信道检测时间;当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
在该技术方案中,限定了另一种以不定检测周期进行信道状态检测的 方法,即:在数据业务到达之前,***存在一个基于frame的LBT帧结构,并以预设固定检测周期(比如,10ms)重复设置信道检测时间进行信道状态检测;在数据业务到达时,则即在数据业务到达的当前子帧或向后的相邻子帧内设置信道检测时间,进行第一次信道状态检测,若检测结果为忙碌,则在基于frame的LBT帧结构的信道检测时间到来时,再进行一次信道状态检测,并以该预设固定检测周期进行后续信道状态检测直至检测到信道空闲,也就是将基于负载的LBT帧结构与基于frame的LBT帧结构叠加,使***以不定检测周期进行信道状态检测,如此,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
当然本领域技术人员应当知晓,LTE***在非授权频段工作时,基于负载的不定检测周期的信道状态检测方法包括但不限于上述两种;以及以固定检测周期还是不定检测周期进行信道状态检测可以根据具体情况而定,同时也提高了信道状态检测方法的多样性及选择灵活性,适用性得到增强。
图8示出了根据本发明的实施例的另一种按不定检测周期设置信道检测时间的帧结构的示意图。
如图8所示,根据本发明的实施例的另一种按不定检测周期设置信道检测时间的帧结构,首先LTE***存在一个基于frame的LBT帧结构,比如,LBT检测周期为10ms,每次CCA(同LBT)检测时间在#0号子帧。对于UE#2此次数据业务在#5号子帧到来,那么第一次CCA检测则在#5号子帧进行,如果检测到信道状态为空闲,则传输数据业务;如果检测到信道状态忙碌,则不传输数据业务。等到下次基于frame的LBT帧结构中的CCA检测时间,即#0号子帧出现时,再次检测信道状态忙闲,之后一直以#0号子帧作为CCA检测时间,直至检测到信道状态空闲。
在上述技术方案中,优选地,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
在上述技术方案中,优选地,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;当所 述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
在该技术方案中,当有下行数据业务到达时,由基站按上述任一技术方案中记载的信道检测方法进行下行信道状态检测;当有上行数据业务到达时,既可以由基站也可以由终端按上述任一技术方案中记载的信道检测方法进行上行信道状态检测。
当由基站进行上行信道状态检测时,首先判断终端或基站是否已知上行信道状态为空闲状态,若已知,比如已知此时已检测到下行信道状态为空闲状态,且下行信道状态可以代表上行信道状态时,则可视为上行信道状态也为空闲状态,如此,终端可以马上进行上行数据业务传输;若未知,比如此时下行信道状态为空闲状态,但下行信道状态不能代表上行信道状态,或者此时无下行数据业务,及下行信道状态不确定,如此,需要终端先告知基站有上行数据业务到达,请求该基站进行信道状态检测,其中,终端告知基站有上行数据业务到达的方法包括但不限于:短周期地发送探测参考信号至基站、发送上行调度请求至基站或发送缓存状态报告至基站。其中,上述上行调度请求和缓存状态报告既可以在非授权频段上发送,也可以在授权频段上发送。
在上述技术方案中,优选地,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
在上述技术方案中,优选地,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
在该技术方案中,当信道检测时间结束,并检测到信道状态为空闲状态时,此时可能是某个符号的中点,那么数据业务传输开始时间可以包括以下两种情况:一种是立即进行数据业务传输,数据业务传输开始时间包括但不限于进行信道检测的符号或子帧的中点,如此,可以进一步减少数据业务传输的时延;另一种是在信道检测时间结束的符号向后相邻的符号或子帧的起点开始进行数据业务传输,并在这段时间内传输信道占用信号,比如资源预留信号或信道空闲指示信号,如此,便于数据传输处理。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
在上述技术方案中,优选地,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,所述同一运营商的所述子载波分布可以是集中式的或分布式的。
在该技术方案中,当有数据业务到达,即在当前子帧或当前符号设置信道检测时间,可以通过以下三种方式避免进行信道状态检测时,因有归属于同一运营商的其他终端或基站进行数据业务传输而导致进行信道状态 检测的终端或基站检测到的功率包含其他终端或基站的功率,而导致对信道状态的误判。
首先判断进行信道检测的终端或基站是否与其他终端或基站归属于同一运行商,若判定归属于同一运营商,则可以采用以下两种方式:
第一,在进行信道状态检测的终端或基站检测到的功率中减去与该终端或基站归属于同一运行商的其他终端或基站的功率,然后再与信道忙闲阈值进行比较,如此,可以有效地提高信道状态检测结果的准确性,从而避免对信道状态的误判。
第二,根据归属于同一运营商的所有基站的合理部署,设置合理的信道忙闲阈值,比如,当归属于同一运营商的所有基站相互之间距离较远时,则进行信道状态检测的终端或基站接收到其他终端或基站的功率值范围可以确定,设置信道忙闲阈值时将该功率值范围考虑在内,则在将进行信道状态检测的终端或基站检测到的功率与该信道忙闲阈值进行比较时,可以使信道状态检测结果更加准确,从而避免对信道状态的误判。
当然,还可以通过第三种方法解决上述问题,即使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。
其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始进行所述信道状态检测;或者不同运营商和/或WIFI在占 用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率。
在该技术方案中,当基站有下行数据业务到达需要进行信道状态检测,而此时正有终端发送上行数据业务,若此时基站进行下行信道检测则会使检测到的功率增加,进而导致下行信道状态检测结果不准确,此时可以通过以下两种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
第一,由于在基站有下行数据业务到达之前,基站已经对有上行数据业务需求的终端发送了上行授权许可,即终端会进行上行数据业务传输(即发送),则为了避免基站在做下行信道状态检测时终端进行上行数据业务传输,基站可以在该下行数据业务到达后根据实际情况延时小于或等于4ms的任一时间后再进行信道状态检测,且保证在这段时间内基站不再向终端发送上行授权许可,延时时间到达后则基站可以立即进行信道状态检测,其中4ms是最大的允许的延时时间,如此,可以有效地提高信道状态检测的准确性。
第二,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当终端有所述上行数据业务到达,且所 述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以进行所述上行信道状态检测;或者,待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,不同运营商和/或WIFI在占用信道时,通过所述不同运营商或所述WIFI分别在不同的的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
在该技术方案中,当终端有上行数据业务到达时,该终端归属的基站正有下行数据业务传输(即发送)或与该终端相邻的其他终端正有上行数据业务发送,且由该终端进行上行信道状态检测时,会使终端检测到的功率增加,进而导致上行信道状态检测结果不准确,此时可以通过以下几种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
在终端检测到的功率中减去来自该终端归属的基站的功率或者来自与该终端相邻的其他终端的功率后,再进行信道状态判断,可以提高信道状态检测结果的准确性。
或者,在该终端归属的基站完成下行数据业务传输或与该终端相邻的其他终端完成上行数据业务传输时,再进行信道状态检测,可以提高信道状态检测结果的准确性。
或者,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行 信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
图9示出了根据本发明的实施例的LTE***在非授权频段工作时的信道检测***的结构示意图。
如图9所示,根据本发明的实施例的LTE***在非授权频段工作时的信道检测***500,包括:第一设置模块502,当有数据业务到达时,用于确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以控制进行信道状态检测;数据传输模块504,当所述信道状态为空闲状态时,控制进行所述数据业务传输。
在该技术方案中,限定了一种基于负载(数据业务)的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述第一设置模块502还用于:当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以控制进行所述信道状态检测。
在该技术方案中,限定了一种基于负载的LBT机制,即当有数据业务到达时,则确定该数据业务到达时的当前子帧的当前符号的位置,并在该当前符号内或者向后的相邻的符号内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务 传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述第一设置模块502还用于:将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的其他子帧的起点或中点,或者,所述当前符号和/或所述向后的其他符号的起点或中点;其中,所述起点或中点位于所述数据业务到达时间点之后。
在该技术方案中,当有数据业务到达时,信道状态检测可以随时开始,可以将信道检测时间的起点根据实际情况设置为当前子帧和/或向后的相邻子帧的起点或中点,或者当前符号和/或向后的相邻符号的起点或中点;当然该信道检测时间的起点在该数据业务到达的时间点之后,本领域技术人员应知晓,还可以在满足前述条件的前提下,根据具体情况设置信道检测时间的起点。
在上述技术方案中,优选地,所述信道检测时间按固定检测周期重复。
在该技术方案中,当有数据业务到达并在一次信道状态检测为忙碌时,之后可以按固定检测周期(比如,10ms)重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,所述信道检测时间按不定检测周期重复。
在该技术方案中,当有数据业务到达时,即使不是信道检测时间,也可以立即进行信道检测。如果第一次信道状态检测为忙碌时,之后可以按固定检测周期重复设置信道检测时间,直至检测到信道状态为空闲时,进行数据业务传输,一方面可以进一步减少数据业务传输的时延,另一方面可以实现LTE***与其他***在非授权频段的和平共存。
在上述技术方案中,优选地,当有数据业务到达时,所述第一设置模块502用于确定所述信道检测时间,并控制进行一次所述信道状态检测,当所述信道状态为空闲状态时,所述数据传输模块504控制进行所述数据业务传输;以及当所述信道状态为忙碌状态时,所述第一设置模块用于控 制继续进行所述信道状态检测。
在上述技术方案中,优选地,还包括:选择模块506,当所述信道状态为忙碌状态时,用于在1~q之间随机选择一个整数N,所述第一设置模块502还用于:在所述信道检测时间所在的子帧之后的连续多个子帧内,控制按所述信道检测时间进行所述信道状态检测;以及还包括:计算模块508,当检测到所述信道状态为空闲状态时,用于将所述整数N减1,以及当检测到所述信道状态为忙碌状态时,控制所述整数N保持不变,直至所述整数N减为0时,由所述数据传输模块504控制进行所述数据业务传输。
在该技术方案中,限定了一种以不定检测周期进行信道状态检测的方法,即:当有数据业务到达时,即设置信道检测时间并进行一次信道状态检测,若信道状态为空闲则进行数据业务传输;若信道状态为忙碌则在1~q之间随机选择一个整数N,并在设置上述信道检测时间的子帧后的连续多个子帧内重复设置该信道检测时间进行信道状态检测,每信道状态检测结果为空闲时,将N减1,结果为忙碌时,N保持不变,直至N减为0,进行数据业务传输;也就是说,在这个结构中,信道检测时间被延长了一个不确定的长度,即信道检测周期不定。通过该技术方案,可以在多个连续的子帧内进行信道状态检测,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
在上述技术方案中,优选地,所述q的取值范围为:4~32,以及进行所述数据传输业务时,信道占用时间小于(13/32)*q。
在上述技术方案中,优选地,第二设置模块510,在有所述数据业务到达之前,用于控制按预设固定检测周期重复设置所述信道状态检测时间;当有所述数据业务到达时,所述第一设置模块502用于在确定所述信道检测时间后,控制进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,所述数据传输模块504用于控制进行所述数据业务传输;以及所述第二设置模块510还用于:当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时,控制再次进行所述信道检测,并控制按所述预设固定检测周期重复进行所述信道检测,直至检测到所述信道状态为空闲状态,由所述数据传输模块504控制进行所述数据业务传输。
在该技术方案中,限定了另一种以不定检测周期进行信道状态检测的方法,即:在数据业务到达之前,***存在一个基于frame的LBT帧结构,并以预设固定检测周期(比如,10ms)重复设置信道检测时间进行信道状态检测;在数据业务到达时,则即在数据业务到达的当前子帧或向后的相邻子帧内设置信道检测时间,进行第一次信道状态检测,若检测结果为忙碌,则在基于frame的LBT帧结构的信道检测时间到来时,再进行一次信道状态检测,并以该预设固定检测周期进行后续信道状态检测直至检测到信道空闲,也就是将基于负载的LBT帧结构与基于frame的LBT帧结构叠加,使***以不定检测周期进行信道状态检测,如此,可以进一步减少数据业务传输的时延,提升数据业务传输效率。
当然本领域技术人员应当知晓,LTE***在非授权频段工作时,基于负载的不定检测周期的信道状态检测方法包括但不限于上述两种;以及以固定检测周期还是不定检测周期进行信道状态检测可以根据具体情况而定,同时也提高了信道状态检测方法的多样性及选择灵活性,适用性得到增强。
在上述技术方案中,优选地,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
在上述技术方案中,优选地,还包括:判断模块512,当由所述基站进行所述上行信道检测时,用于判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,所述数据传输模块504控制进行所述上行数据业务传输;以及当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
在该技术方案中,当有下行数据业务到达时,由基站按上述任一技术方案中记载的信道检测方法进行下行信道状态检测;当有上行数据业务到 达时,既可以由基站也可以由终端按上述任一技术方案中记载的信道检测方法进行上行信道状态检测。
当由基站进行上行信道状态检测时,首先判断终端或基站是否已知上行信道状态为空闲状态,若已知,比如已知此时已检测到下行信道状态为空闲状态,且下行信道状态可以代表上行信道状态时,则可视为上行信道状态也为空闲状态,如此,终端可以马上进行上行数据业务传输;若未知,比如此时下行信道状态为空闲状态,但下行信道状态不能代表上行信道状态,或者此时无下行数据业务,及下行信道状态不确定,如此,需要终端先告知基站有上行数据业务到达,请求该基站进行信道状态检测,其中,终端告知基站有上行数据业务到达的方法包括但不限于:短周期地发送探测参考信号至基站、发送上行调度请求至基站或发送缓存状态包括至基站。其中,上述上行调度请求信号和缓存状态报告既可以在非授权频段上发送,也可以在授权频段上发送。
在上述技术方案中,优选地,所述数据传输模块504还用于:当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,控制立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
在上述技术方案中,优选地,所述数据传输模块504还用于:当所述信道检测时间结束,且结束时间为所述符号的中点时,控制在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输;以及还包括:信号传输模块514,用于在所述符号的中点至与所述符号向后相邻的符号或子帧的起点之间控制传输资源预留信号或信道空闲指示信号。
在该技术方案中,当信道检测时间结束,并检测到信道状态为空闲状态时,此时可能是某个符号的中点,那么数据业务传输开始时间可以包括以下两种情况:一种是立即进行数据业务传输,数据业务传输开始时间包括但不限于进行信道检测的符号或子帧的中点,如此,可以进一步减少数据业务传输的时延;另一种是在信道检测时间结束的符号向后相邻的符号或子帧的起点开始进行数据业务传输,并在这段时间内传输信道占用信号,比如资源预留信号或信道空闲指示信号,如此,便于数据传输。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,所述判断模块512还用于:判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
在上述技术方案中,优选地,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于同一运营商,所述计算模块508还用于:从所述终端或基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率;以及,所述判断模块512还用于,将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者还包括:第三设置模块516,根据归属于所述同一运营商的所有基站的部署,用于设置第二信道忙闲阈值,以及,所述判断模块512还用于:将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以控制进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
在上述技术方案中,优选地,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率;其中,所述同一运营商的所述子载波分布可以是集中式的或分布式的。
在该技术方案中,当有数据业务到达,即在当前子帧或当前符号设置信道检测时间,可以通过以下三种方式避免进行信道状态检测时,因有归属于同一运营商的其他终端或基站进行数据业务传输而导致进行信道状态检测的终端或基站检测到的功率包含其他终端或基站的功率,而导致对信道状态的误判。
首先判断进行信道检测的终端或基站是否与其他终端或基站归属于同一运行商,若判定归属于同一运营商,则可以采用以下两种方式:
第一,在进行信道状态检测的终端或基站检测到的功率中减去与该终端或基站归属于同一运行商的其他终端或基站的功率,然后再与信道忙闲阈值进行比较,如此,可以有效地提高信道状态检测结果的准确性,从而避免对信道状态的误判。
第二,根据归属于同一运营商的所有基站的合理部署,设置合理的信道忙闲阈值,比如,当归属于同一运营商的所有基站相互之间距离较远时,则进行信道状态检测的终端或基站接收到其他终端或基站的功率值范围可以确定,设置信道忙闲阈值时将该功率值范围考虑在内,则在将进行信道状态检测的终端或基站检测到的功率与该信道忙闲阈值进行比较时,可以使信道状态检测结果更加准确,从而避免对信道状态的误判。
当然,还可以通过第三种方法解决上述问题,即使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。
其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始由所述第一设置模块控制进行所述信道状态检测;或者,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述基站所归属的同一运营商以外的其 他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
在该技术方案中,当基站有下行数据业务到达需要进行信道状态检测,而此时正有终端发送上行数据业务,若此时基站进行下行信道检测则会使检测到的功率增加,进而导致下行信道状态检测结果不准确,此时可以通过以下两种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
第一,由于在基站有下行数据业务到达之前,基站已经对有上行数据业务需求的终端发送了上行授权许可,即终端会进行上行数据业务传输(即发送),则为了避免基站在做下行信道状态检测时终端进行上行数据业务传输,基站可以在该下行数据业务到达后根据实际情况延时小于或等于4ms的任一时间后再进行信道状态检测,且保证在这段时间内基站不再向终端发送上行授权许可,延时时间到达后则基站可以立即进行信道状态检测,其中4ms是最大的允许的延时时间,如此,可以有效地提高信道状态检测的准确性。
第二,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端或基站进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
在上述技术方案中,优选地,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,所述计算模块用于控制在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以由所述第一设置模块控制进 行所述上行信道状态检测;或者,待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端再进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
在该技术方案中,当终端有上行数据业务到达时,该终端归属的基站正有下行数据业务传输(即发送)或与该终端相邻的其他终端正有上行数据业务发送,且由该终端进行上行信道状态检测时,会使终端检测到的功率增加,进而导致上行信道状态检测结果不准确,此时可以通过以下几种方法避免对信道状态的误判,提高信道状态检测结果的准确性。
在终端检测到的功率中减去来自该终端归属的基站的功率或者来自与该终端相邻的其他终端的功率后,再进行信道状态判断,可以提高信道状态检测结果的准确性。
或者,在该终端归属的基站完成下行数据业务传输或与该终端相邻的其他终端完成上行数据业务传输时,再进行信道状态检测,可以提高信道状态检测结果的准确性。
或者,使用频率正交的信道占用信号发送方法,也就是说当运行商A占用信道时,通过其中的子载波1发送信道占用信号,且该信道占用信号的发送代表运营商A占用的是全带宽,同理,当其他运行商或Wi-Fi占用信道时,同样在子载波2或子载波3发送信道占用信号,即只要占用信道就需要发送信道占用信号,而且用于发送信道占用信号的子载波不能再用于发送其他任何信号,如此,当终端进行信道状态检测时,只能检测到其他运行商或Wi-Fi发送信道占用信号的子载波处的功率,即不包含跟进行信道状态检测的终端或基站归属于同一运营商的其他终端或基站的功率,有效地提高了信道状态检测的准确性。其中,归属于同一运行商的子载波分布方式可以是集中式的也可以是分布式的。
图10示出了根据本发明的实施例的终端的结构示意图。
如图10所示,根据本发明的实施例的终端600,包括:如上任一项技术方案所述的LTE***在非授权频段工作时的信道检测***500。
在该技术方案中,终端通过该LTE***在非授权频段工作时的信道检测***,当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
图11示出了根据本发明的实施例的基站的结构示意图。
如图11所示,根据本发明的实施例的基站700,包括:如上任一项技术方案所述的LTE***在非授权频段工作时的信道检测***500。
在该技术方案中,基站通过该LTE***在非授权频段工作时的信道检测***,当有数据业务到达时,则确定该数据业务到达时的当前子帧的位置,并在该当前子帧内或者向后的相邻的子帧内设置信道检测时间,不论该子帧是上行子帧、下行子帧还是特殊子帧,也不管该符号是DwPTS(下行导频时隙)、GP(保护间隔)还是UpPTS(上行导频时隙),也就是说,有数据业务到达时,马上进行信道状态检测,且当检测到信道空闲时,即进行数据业务传输,如此,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少因以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
本发明实施例还提供了一种终端,图12为本发明实施例中另一种终端的结构示意图,如图所示,所述终端可以包括:至少一个网络接口1203,至少一个处理器1201,例如CPU,存储器1204和至少一个总线1202,处理器1201 可以结合图9所示的LTE***在非授权频段工作时的信道检测***。
其中,上述总线1202用于连接上述网络接口1203、处理器1201和存储器1204。
其中,上述网络接口1203可以包括标准的有线接口或者无线接口(如WI-FI接口),具体用于进行数据业务传输。
上述存储器1204可以是高速RAM存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。上述存储器1204还用于存储一组程序代码,上述处理器1201用于调用存储器1204中存储的程序代码,执行如下操作:
当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
当所述信道状态为空闲状态时,进行所述数据业务传输。
可选的,当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
可信的,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
所述起点或中点位于所述数据业务到达时间点之后。
可选的,所述信道检测时间按固定检测周期重复。
可选的,所述信道检测时间按不定检测周期重复。
可选的,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
可选的,在有所述数据业务到达之前,按预设固定检测周期重复设置所述信道检测时间;
当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检 测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
可选的,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
可选的,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
可选的,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
可选的,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
可选的,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
进一步可选的,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测 到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
可选的,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
所述同一运营商的所述子载波分布可以是集中式的或分布式的。
可选的,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始进行所述信道状态检测;或者,
不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率。
可选的,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率, 以进行所述上行信道状态检测;或者,
待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,
不同运营商和/或WIFI在占用信道时,通过所述不同运营商或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
具体的,本发明实施例中介绍的终端可以用以实施本发明结合图4介绍的方法实施例中的部分或全部流程。
本发明实施例还提供了一种基站,图13为本发明实施例中另一种终端的结构示意图,如图所示,所述终端可以包括:至少一个网络接口1303,至少一个处理器1301,例如CPU,存储器1304和至少一个总线1302,处理器1301可以结合图9所示的LTE***在非授权频段工作时的信道检测***。
其中,上述总线1302用于连接上述网络接口1303、处理器1301和存储器1304。
其中,上述网络接口1303可以包括标准的有线接口或者无线接口(如WI-FI接口),具体用于进行数据业务传输。
上述存储器1304可以是高速RAM存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。上述存储器1304还用于存储一组程序代码,上述处理器1301用于调用存储器1304中存储的程序代码,执行如下操作:
当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
当所述信道状态为空闲状态时,通过所述网络接口进行所述数据业务传输。
可选的,当有数据业务到达时,所述处理器确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测,具体包括:
当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
可选的,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
所述起点或中点位于所述数据业务到达时间点之后。
可选的,所述信道检测时间按固定检测周期重复。
可选的,所述信道检测时间按不定检测周期重复。
可选的,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
可选的,所述处理器在有所述数据业务到达之前,还用于执行以下操作:
按预设固定检测周期重复设置所述信道检测时间;
当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
可选的,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
进一步可选的,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
可选的,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
可选的,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
可选的,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
进一步可选的,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
可选的,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号; 以及
当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
所述同一运营商的所述子载波分布可以是集中式的或分布式的。
具体的,本发明实施例中介绍的终端可以用以实施本发明结合图4介绍的方法实施例中的部分或全部流程。
以上结合附图详细说明了本发明的技术方案,能够确保LTE***在非授权频段正常工作的前提下,可以有效地减少以固定检测周期进行信道检测带来的数据业务传输的时延,进而提升数据业务传输效率,并且同时实现了LTE***与其他***在非授权频段的和平共存。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (63)

  1. 一种LTE***在非授权频段工作时的信道检测方法,其特征在于,包括:
    当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
    当所述信道状态为空闲状态时,进行所述数据业务传输。
  2. 根据权利要求1所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
  3. 根据权利要求2所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
    所述起点或中点位于所述数据业务到达时间点之后。
  4. 根据权利要求3所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,所述信道检测时间按固定检测周期重复。
  5. 根据权利要求3所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,所述信道检测时间按不定检测周期重复。
  6. 根据权利要求5所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
  7. 根据权利要求5所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,在有所述数据业务到达之前,按预设固定检测周期重复设置所述信道检测时间;
    当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务 传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
  8. 根据权利要求1至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
    当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
  9. 根据权利要求8所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
    当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
    当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
    其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
  10. 根据权利要求1至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
  11. 根据权利要求2至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
  12. 根据权利要求1至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
  13. 根据权利要求12所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
    根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
  14. 根据权利要求1至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
    当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
    所述同一运营商的所述子载波分布可以是集中式的或分布式的。
  15. 根据权利要求1至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始进行所述信道状态检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述 WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率。
  16. 根据权利要求1至7中任一项所述的LTE***在非授权频段工作时的信道检测方法,其特征在于,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以进行所述上行信道状态检测;或者,
    待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
  17. 一种LTE***在非授权频段工作时的信道检测***,其特征在于,包括:
    第一设置模块,当有数据业务到达时,用于确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以控制进行信道状态检测;
    数据传输模块,当所述信道状态为空闲状态时,控制进行所述数据业务传输。
  18. 根据权利要求17所述的LTE***在非授权频段工作时的信道检测***,其特征在于,所述第一设置模块还用于:当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以控制进行所述信道状态检测。
  19. 根据权利要求18所述的LTE***在非授权频段工作时的信道检测***,其特征在于,所述第一设置模块还用于:将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的其他子帧的起点或中点,或者,所述当前符号和/或所述向后的其他符号的起点或中点;其中,所述起点或中点位于所述数据业务到达时间点之后。
  20. 根据权利要求19所述的LTE***在非授权频段工作时的信道检测***,其特征在于,所述信道检测时间按固定检测周期重复。
  21. 根据权利要求19所述的LTE***在非授权频段工作时的信道检测***,其特征在于,所述信道检测时间按不定检测周期重复。
  22. 根据权利要求21所述的LTE***在非授权频段工作时的信道检测***,其特征在于,当有数据业务到达时,所述第一设置模块用于确定所述信道检测时间,并控制进行一次所述信道状态检测,当所述信道状态为空闲状态时,所述数据传输模块控制进行所述数据业务传输;以及当所述信道状态为忙碌状态时,所述第一设置模块用于控制继续进行所述信道状态检测。
  23. 根据权利要求21所述的LTE***在非授权频段工作时的信道检测***,其特征在于,还包括:
    第二设置模块,在有所述数据业务到达之前,用于控制按预设固定检测周期重复设置所述信道检测时间;
    当有所述数据业务到达时,所述第一设置模块用于在确定所述信道检测时间后,控制进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,所述数据传输模块用于控制进行所述数据业务传输;以及
    所述第二设置模块还用于:当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时,控制再次进行所述信道检测,并控制按所述预设固定检测周期重复进行所述信道检测,直至检测到所述信道状态为空闲状态,由所述数据传输模块控制进行所述数据业务传输。
  24. 根据权利要求17至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
    当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
  25. 根据权利要求24所述的LTE***在非授权频段工作时的信道检测***,其特征在于,还包括:判断模块,当由所述基站进行所述上行信道检测时,用于判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
    当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,所述数据传输模块控制进行所述上行数据业务传输;以及
    当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
    其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
  26. 根据权利要求17至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,所述数据传输模块还用于:当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,控制立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
  27. 根据权利要求18至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,所述数据传输模块还用于:当所述信道检测时间结束,且结束时间为所述符号的中点时,控制在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输;以及
    还包括:信号传输模块,用于在所述符号的中点至与所述符号向后相邻的符号或子帧的起点之间控制传输资源预留信号或信道空闲指示信号。
  28. 根据权利要求17至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,所述判断模块还用于:判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营 商。
  29. 根据权利要求28所述的LTE***在非授权频段工作时的信道检测***,其特征在于,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于同一运营商,所述计算模块还用于:从所述终端或基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率;以及,所述判断模块还用于,将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
    还包括:第三设置模块,根据归属于所述同一运营商的所有基站的部署,用于设置第二信道忙闲阈值,以及,所述判断模块还用于:将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以控制进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
  30. 根据权利要求17至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
    当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率;其中,
    所述同一运营商的所述子载波分布可以是集中式的或分布式的。
  31. 根据权利要求17至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始由所述第一设置模块控制进行所述信道状态检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述 信道状态检测时,检测到的功率包括除所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
  32. 根据权利要求17至23中任一项所述的LTE***在非授权频段工作时的信道检测***,其特征在于,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,所述计算模块用于控制在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以由所述第一设置模块控制进行所述上行信道状态检测;或者,
    待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端再进行所述上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
  33. 一种终端,其特征在于,所述终端包括通信总线、网络接口、存储器以及处理器,其中:
    所述通信总线,用于实现所述网络接口、存储器以及处理器之间的连接通信;
    所述网络接口,用于进行数据业务传输;
    所述存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
    当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
    当所述信道状态为空闲状态时,进行所述数据业务传输。
  34. 根据权利要求33所述的终端,其特征在于,当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
  35. 根据权利要求34所述的终端,其特征在于,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
    所述起点或中点位于所述数据业务到达时间点之后。
  36. 根据权利要求35所述的终端,其特征在于,所述信道检测时间按固定检测周期重复。
  37. 根据权利要求35所述的终端,其特征在于,所述信道检测时间按不定检测周期重复。
  38. 根据权利要求37所述的终端,其特征在于,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
  39. 根据权利要求37所述的终端,其特征在于,在有所述数据业务到达之前,按预设固定检测周期重复设置所述信道检测时间;
    当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
  40. 根据权利要求33至39中任一项所述的终端,其特征在于,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
    当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
  41. 根据权利要求40所述的终端,其特征在于,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
    当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
    当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
    其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
  42. 根据权利要求33至39中任一项所述的终端,其特征在于,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧中点。
  43. 根据权利要求34至39中任一项所述的终端,其特征在于,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
  44. 根据权利要求33至39中任一项所述的终端,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
  45. 根据权利要求44所述的终端,其特征在于,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
    根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
  46. 根据权利要求33至39中任一项所述的终端,其特征在于,当在 所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
    当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
    所述同一运营商的所述子载波分布可以是集中式的或分布式的。
  47. 根据权利要求33至39中任一项所述的终端,其特征在于,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始进行所述信道状态检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率。
  48. 根据权利要求33至39中任一项所述的终端,其特征在于,当终端有所述上行数据业务到达,且所述终端归属的基站正进行下行数据发送或与所述终端相邻的其他终端正进行上行数据业务发送时,由所述终端进行所述上行信道状态检测,在所述终端检测到的功率中减去来自所述基站的功率或来自与所述终端相邻的所述其他终端的功率,以进行所述上行信道状态检测;或者,
    待所述基站完成所述下行数据发送或与所述终端相邻的所述其他终端完成所述上行数据发送时,所述终端再进行所述上行信道检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述终端进行所述 上行信道检测时,检测到的功率包括除所述终端所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
  49. 一种基站,其特征在于,所述基站包括通信总线、网络接口、存储器以及处理器,其中:
    所述通信总线,用于实现所述网络接口、存储器以及处理器之间的连接通信;
    所述网络接口,用于进行数据业务传输;
    所述存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
    当有数据业务到达时,确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测;
    当所述信道状态为空闲状态时,通过所述网络接口进行所述数据业务传输。
  50. 根据权利要求49所述的基站,其特征在于,当有数据业务到达时,所述处理器确定当前子帧,在所述当前子帧内和/或向后的相邻子帧内设置信道检测时间,以进行信道状态检测,具体包括:
    当有所述数据业务到达时,确定所述当前子帧的当前符号,在所述当前符号内和/或向后的相邻符号内设置所述信道检测时间,以进行所述信道状态检测。
  51. 根据权利要求50所述的基站,其特征在于,将所述信道检测时间的起点设置为:所述当前子帧和/或所述向后的相邻子帧的起点或中点,或者,所述当前符号和/或所述向后的相邻符号的起点或中点;其中,
    所述起点或中点位于所述数据业务到达时间点之后。
  52. 根据权利要求51所述的基站,其特征在于,所述信道检测时间按固定检测周期重复。
  53. 根据权利要求51所述的基站,其特征在于,所述信道检测时间按不定检测周期重复。
  54. 根据权利要求53所述的基站,其特征在于,当有数据业务到达时,确定所述信道检测时间,并进行一次所述信道状态检测,当所述信道状态 为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,继续进行所述信道状态检测。
  55. 根据权利要求53所述的基站,其特征在于,所述处理器在有所述数据业务到达之前,还用于执行以下操作:
    按预设固定检测周期重复设置所述信道检测时间;
    当有所述数据业务到达时,确定所述信道检测时间后,进行第一次所述信道状态检测,以及当所述信道状态为空闲状态时,进行所述数据业务传输;当所述信道状态为忙碌状态时,在所述预设固定检测周期的信道检测时间到达时再次进行所述信道检测,并按所述预设固定检测周期重复进行所述信道状态检测,直至检测到所述信道状态为空闲状态,进行所述数据业务传输。
  56. 根据权利要求49至55中任一项所述的基站,其特征在于,当所述数据业务为下行数据业务时,由基站进行下行信道状态检测;以及
    当所述数据业务为上行数据业务时,由终端或所述基站进行上行信道状态检测。
  57. 根据权利要求56所述的基站,其特征在于,当由所述基站进行所述上行信道检测时,判断所述终端和/或所述基站是否已知所述上行信道状态为空闲状态;
    当所述终端和/或所述基站已知所述上行信道状态为空闲状态时,进行所述上行数据业务传输;以及
    当所述终端和/或所述基站未知所述上行信道状态为空闲状态时,所述终端通过短周期地发送探测参考信号、或者发送上行调度请求信号、或者发送缓存状态报告至所述基站,告知所述基站有所述上行数据业务到达,以使所述基站进行所述上行信道状态检测;
    其中,所述上行调度请求信号和所述缓存状态报告在所述非授权频段上发送或在授权频段上发送。
  58. 根据权利要求49至55中任一项所述的基站,其特征在于,当所述信道检测时间结束,并检测到所述信道状态为空闲状态时,立即进行所述数据业务传输,数据业务传输开始时间包括:所述符号中点或所述子帧 中点。
  59. 根据权利要求50至55中任一项所述的基站,其特征在于,当所述信道检测时间结束,且结束时间为所述符号的中点时,则在与所述符号向后相邻的符号或子帧的起点开始进行所述数据业务传输,以及在所述符号的中点至与所述符号向后相邻的所述符号或所述子帧的起点之间传输资源预留信号或信道空闲指示信号。
  60. 根据权利要求49至55中任一项所述的基站,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,判断进行所述信道检测的终端或基站与其他终端或基站是否归属于同一运营商。
  61. 根据权利要求60所述的基站,其特征在于,若判定进行所述信道检测的所述终端或所述基站与所述其他终端或基站归属于所述同一运营商,则从所述终端或所述基站检测到的第一功率中减去所述其他终端或基站的第二功率得到第三功率,并将所述第三功率与第一信道忙闲阈值进行比较,以进行所述信道状态检测;或者,
    根据归属于所述同一运营商的所有基站的部署,设置第二信道忙闲阈值,将所述终端或所述基站检测到的功率与所述第二信道忙闲阈值进行比较,以进行所述信道状态检测,其中,所述第二信道忙闲阈值包括所述其他终端或基站的功率。
  62. 根据权利要求49至55中任一项所述的基站,其特征在于,当在所述当前子帧内或所述当前符号内设置所述信道检测时间进行所述信道检测时,不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,以及用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号;以及
    当终端或基站进行所述信道状态检测时,检测到的功率包括除所述终端或所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送的所述信道占用信号的所述子载波处的功率;其中,
    所述同一运营商的所述子载波分布可以是集中式的或分布式的。
  63. 根据权利要求49至55中任一项所述的基站,其特征在于,当基站有所述下行数据业务到达时且终端正发送所述上行数据业务时,则在所述下行数据业务到达时间小于或等于4ms后,开始由所述第一设置模块控制进行所述信道状态检测;或者,
    不同运营商和/或WIFI在占用信道时,通过所述不同运营商和/或所述WIFI分别在不同的子载波发送信道占用信号,且用于发送所述信道占用信号的所述子载波仅用于发送所述信道占用信号,以及当所述基站进行所述信道状态检测时,检测到的功率包括除所述基站所归属的同一运营商以外的其他运营商和/或WIFI发送所述信道占用信号的所述子载波处的功率。
PCT/CN2015/077975 2014-12-19 2015-04-30 信道检测方法、信道检测***、终端和基站 WO2016095397A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/622,925 US10404389B2 (en) 2014-12-19 2017-06-14 Channel detection method, terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410803213.8A CN104486013B (zh) 2014-12-19 2014-12-19 信道检测方法、信道检测***、终端和基站
CN201410803213.8 2014-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/622,925 Continuation US10404389B2 (en) 2014-12-19 2017-06-14 Channel detection method, terminal and base station

Publications (1)

Publication Number Publication Date
WO2016095397A1 true WO2016095397A1 (zh) 2016-06-23

Family

ID=52760528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077975 WO2016095397A1 (zh) 2014-12-19 2015-04-30 信道检测方法、信道检测***、终端和基站

Country Status (3)

Country Link
US (1) US10404389B2 (zh)
CN (1) CN104486013B (zh)
WO (1) WO2016095397A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018184303A1 (en) * 2017-04-06 2018-10-11 Jrd Communication Inc. Method and apparatus for scheduling and communicating using unlicensed spectrum
US10524204B2 (en) * 2017-01-05 2019-12-31 Samsung Electronics Co., Ltd. Apparatus for communication using unlicensed band and method thereof
US10727962B2 (en) 2016-02-05 2020-07-28 Sony Corporation Electronic device in wireless communication system and wireless communication method

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486013B (zh) 2014-12-19 2017-01-04 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站
CN106160967A (zh) * 2015-03-30 2016-11-23 中兴通讯股份有限公司 一种非授权资源的传输方法和装置
US10485025B2 (en) * 2015-04-02 2019-11-19 Sharp Kabushiki Kaisha Systems and methods for performing channel sensing for license assisted access
BR112017020043A2 (pt) * 2015-04-06 2018-06-05 Fujitsu Limited estação base, terminal, sistema de comunicação sem fio, método de controle de estação base e método de controle de terminal
CN106060933B (zh) * 2015-04-08 2019-08-27 财团法人资讯工业策进会 基站、使用者装置、传输控制方法及数据传输方法
JP6705835B2 (ja) 2015-04-08 2020-06-03 インターデイジタル パテント ホールディングス インコーポレイテッド 非認可帯域におけるlte動作のためのシステムおよび方法
CN106161318B (zh) * 2015-04-09 2019-07-05 ***通信集团公司 一种信号处理方法、发送机、接收机及***
CN104717687B (zh) * 2015-04-09 2018-07-27 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整***和设备
CN106162695B (zh) * 2015-04-10 2020-04-28 上海诺基亚贝尔股份有限公司 用于非授权频段的干扰测量的方法及装置
WO2016161980A1 (zh) * 2015-04-10 2016-10-13 中兴通讯股份有限公司 非授权载波的竞争方法及装置
CN107466450B (zh) * 2015-04-10 2021-07-16 华为技术有限公司 一种数据传输方法、设备及***
CN104812032B (zh) * 2015-04-10 2018-09-07 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置
WO2016161639A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信道状态信息的确定方法和设备
US10021573B2 (en) * 2015-04-13 2018-07-10 Industrial Technology Research Institute Method and device for uplink transmission by using unlicensed spectrum
CN106162891A (zh) * 2015-04-14 2016-11-23 中兴通讯股份有限公司 非授权载波的抢占方法、基站及***
WO2016167563A1 (ko) * 2015-04-15 2016-10-20 엘지전자 주식회사 비면허 대역 상에서 단말이 데이터를 수신하는 방법 및 장치
CN106162911B (zh) * 2015-04-17 2021-12-07 索尼公司 用于无线通信的电子设备和方法
WO2016184331A1 (zh) * 2015-05-15 2016-11-24 中兴通讯股份有限公司 一种非授权载波处理的方法及装置
CN106304372B (zh) * 2015-05-15 2020-01-03 ***通信集团公司 一种上行调度方法、装置、设备和***
CN106304345A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种上行资源分配方法、基站和用户终端
CN106301722A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种信号处理方法、网络设备及***
CN106162898B (zh) 2015-05-15 2022-01-28 中兴通讯股份有限公司 非授权载波处理的方法及装置
CN105578573B (zh) * 2015-05-28 2019-02-01 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置
CN106255206A (zh) * 2015-06-09 2016-12-21 ***通信集团公司 使用非授权频谱进行通信的方法、装置及***
CN105636099A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 业务检测方法及业务检测***、终端和基站
CN105636225B (zh) * 2015-06-30 2019-03-22 宇龙计算机通信科技(深圳)有限公司 业务检测方法及业务检测***、终端和基站
CN105636090A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 业务检测方法及业务检测***、终端和基站
CN106332091B (zh) * 2015-07-01 2021-06-08 中兴通讯股份有限公司 一种非授权载波上图案的管理方法和装置
CN104994591B (zh) * 2015-07-08 2019-06-11 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整***和基站
CN106341828B (zh) * 2015-07-10 2020-04-03 华为技术有限公司 一种信道测量方法及sta
CN106376089B (zh) * 2015-07-24 2020-02-14 ***通信集团公司 一种数据传输方法、***、用户设备及基站
CA3032209A1 (en) * 2015-07-31 2017-02-09 Nec Corporation Method and apparatus for performing transmission
CN106413118B (zh) 2015-07-31 2020-01-17 电信科学技术研究院 一种数据传输方法和装置
CN106714327B (zh) * 2015-08-10 2019-11-22 上海诺基亚贝尔股份有限公司 用于实现多载波会话前侦听的方法和发射器
CN105050190B (zh) * 2015-08-14 2018-11-30 宇龙计算机通信科技(深圳)有限公司 基于非授权频段的发现参考信号配置方法、装置和基站
CN107113636B (zh) * 2015-08-14 2020-12-15 华为技术有限公司 一种确定信道质量的方法及装置
CN107852748B (zh) * 2015-08-14 2021-09-14 英特尔公司 多载波对话前监听
KR102234846B1 (ko) * 2015-08-14 2021-03-31 레노보 이노베이션스 리미티드 (홍콩) 무선 통신 시스템에서의 버스트-기반 전송 스케줄링
CN107852709B (zh) * 2015-08-17 2021-08-27 诺基亚技术有限公司 用于lte中的许可辅助接入的多信道先听后说布置
TWI611681B (zh) * 2015-08-26 2018-01-11 財團法人資訊工業策進會 全雙工無線電接收端網路裝置及其全雙工無線電資料傳輸方法
CN105101439B (zh) * 2015-08-28 2018-09-14 宇龙计算机通信科技(深圳)有限公司 一种传输的方法及终端
CN105072690B (zh) * 2015-09-06 2018-08-28 魅族科技(中国)有限公司 基于非授权频谱的数据传输方法及装置
US10264538B2 (en) * 2015-09-17 2019-04-16 Qualcomm Incorporated Listen-before-talk mechanism
WO2017049631A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种通信信号的处理方法、装置及通信服务器
EP3331310B1 (en) 2015-09-25 2020-11-11 Huawei Technologies Co., Ltd. User equipment, base station, and method for transmitting and receiving data channel
CN105338640B (zh) * 2015-09-25 2018-12-25 宇龙计算机通信科技(深圳)有限公司 一种基于上行复用的数据传输方法及装置
EP3202196B1 (en) * 2015-10-09 2021-09-29 Telefonaktiebolaget LM Ericsson (PUBL) Method and apparatus for data transmission
US9877344B2 (en) * 2015-10-12 2018-01-23 Qualcomm Incorporated Techniques for downlink scheduling and uplink scheduling in a shared radio frequency spectrum band
US10555339B2 (en) * 2015-10-29 2020-02-04 Apple Inc. Transmission of (E)PDCCH within partial subframe in licensed assisted access (LAA)
CN106658718A (zh) * 2015-10-30 2017-05-10 中国电信股份有限公司 提升laa上行传输性能的方法以及***
CN105491671B (zh) * 2015-11-19 2018-11-20 北京邮电大学 一种多终端上行调度方法及基于许可辅助访问的网络***
CN105636233B (zh) * 2015-12-11 2018-11-02 山东闻远通信技术有限公司 一种laa***中同时考虑上下行链路的lbt方法
CN105611540A (zh) * 2015-12-17 2016-05-25 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备
JP6731484B2 (ja) 2015-12-24 2020-07-29 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル予約信号を送信する方法、及び基地局
CN105657847A (zh) 2016-01-08 2016-06-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置、终端和基站
CN105722097B (zh) * 2016-01-21 2017-09-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置和终端
CN107026723B (zh) * 2016-02-02 2020-10-09 电信科学技术研究院 一种传输上行控制信息的方法和设备
WO2017132829A1 (zh) * 2016-02-02 2017-08-10 华为技术有限公司 数据传输的方法、用户设备和基站
CN108141855B (zh) 2016-02-02 2023-04-04 日本电气株式会社 用于执行上行链路传输和接收的方法和装置
WO2017134624A1 (en) 2016-02-05 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Listen before talk for uplink transmission
CN108781149B (zh) * 2016-03-22 2021-11-09 苹果公司 用于非授权上行链路和所调度的传输的共存的装置
CN107231688A (zh) * 2016-03-24 2017-10-03 北京信威通信技术股份有限公司 基于laa网络的上行数据传输方法及装置
CN105898873B (zh) * 2016-03-31 2019-06-07 北京邮电大学 数据帧的分配方法与装置以及数据传输方法与装置
CN107295677B (zh) * 2016-03-31 2023-10-17 中兴通讯股份有限公司 执行空闲信道评估的反馈方法及装置
WO2017166198A1 (en) * 2016-03-31 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Method for determining channel state and communication device
EP3435722B1 (en) * 2016-04-01 2020-08-12 Huawei Technologies Co., Ltd. Uplink information transmission method, terminal apparatus, and wireless communication system in unlicensed spectrum
CN105933099A (zh) * 2016-06-06 2016-09-07 深圳市金立通信设备有限公司 一种传输信道探测参考信号srs的方法、终端及基站
CN107734560B (zh) * 2016-08-12 2023-09-15 中兴通讯股份有限公司 信号传输方法、通信设备及通信***
CN109587703B (zh) * 2017-09-28 2022-05-24 阿里巴巴集团控股有限公司 信道优化方法及装置
CN109600854B (zh) * 2017-09-30 2021-02-23 华为技术有限公司 一种数据传输方法及相关设备
CN109862534B (zh) * 2017-11-30 2020-12-15 华为技术有限公司 资源配置方法和装置
KR20210003171A (ko) * 2018-04-25 2021-01-11 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 전송 방법 및 통신 기기
CN108600974B (zh) * 2018-04-28 2021-03-09 宇龙计算机通信科技(深圳)有限公司 一种信令指示方法、装置及存储介质
CN110769463A (zh) * 2018-07-27 2020-02-07 索尼公司 电子装置、无线通信方法和计算机可读介质
CN110890953B (zh) * 2018-09-11 2022-07-19 华为技术有限公司 使用免授权频段的通信方法和通信装置
US20220256372A1 (en) * 2019-01-30 2022-08-11 Beijing Xiaomi Mobile Software Co., Ltd. Downlink transmission detecting method and device, configuration information transmission method and device, and downlink transmission method and device
WO2020237424A1 (zh) * 2019-05-24 2020-12-03 北京小米移动软件有限公司 基于非授权频谱的通信方法、装置及存储介质
CN116887426A (zh) * 2019-06-25 2023-10-13 北京小米移动软件有限公司 下行传输的检测方法、装置、设备及存储介质
CN115236653B (zh) * 2022-07-29 2023-10-24 南京慧尔视智能科技有限公司 一种雷达探测方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130203458A1 (en) * 2012-02-02 2013-08-08 Renesas Mobile Corporation Power control for carrier aggregation on shared bands
CN103370896A (zh) * 2010-12-06 2013-10-23 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633332B1 (en) 1999-05-13 2003-10-14 Hewlett-Packard Development Company, L.P. Digital camera system and method capable of performing document scans
CN1274098C (zh) * 2002-06-06 2006-09-06 华为技术有限公司 基于时分双工的高速分组业务数据的传输方法
CN101179778A (zh) * 2006-11-07 2008-05-14 华为技术有限公司 一种共存性无线通信***中的信息传输方法及装置
CN101765122B (zh) * 2008-12-22 2012-02-01 鼎桥通信技术有限公司 一种调度方法
US20150334744A1 (en) * 2014-05-15 2015-11-19 Qualcomm Incorporated Load based lte/lte-a with unlicensed spectrum
CN111510928A (zh) * 2014-07-11 2020-08-07 株式会社Ntt都科摩 无线基站、用户终端以及无线通信方法
US10342031B2 (en) * 2014-11-07 2019-07-02 Huawei Technologies Co., Ltd. Data transmission method and device
CN105636230B (zh) * 2014-11-07 2019-11-22 上海诺基亚贝尔股份有限公司 一种用于实施会话前侦听的方法和装置
CN106161292B (zh) * 2014-11-07 2020-09-08 北京三星通信技术研究有限公司 一种传输数据的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370896A (zh) * 2010-12-06 2013-10-23 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
US20130203458A1 (en) * 2012-02-02 2013-08-08 Renesas Mobile Corporation Power control for carrier aggregation on shared bands
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727962B2 (en) 2016-02-05 2020-07-28 Sony Corporation Electronic device in wireless communication system and wireless communication method
US11405118B2 (en) 2016-02-05 2022-08-02 Sony Corporation Electronic device in wireless communication system and wireless communication method with multiple channel access determination
US10524204B2 (en) * 2017-01-05 2019-12-31 Samsung Electronics Co., Ltd. Apparatus for communication using unlicensed band and method thereof
WO2018184303A1 (en) * 2017-04-06 2018-10-11 Jrd Communication Inc. Method and apparatus for scheduling and communicating using unlicensed spectrum
CN108696940A (zh) * 2017-04-06 2018-10-23 捷开通讯(深圳)有限公司 使用非授权频谱的调度、通信的方法及装置
CN108696940B (zh) * 2017-04-06 2020-09-18 捷开通讯(深圳)有限公司 使用非授权频谱的调度、通信的方法及装置

Also Published As

Publication number Publication date
US20180091242A1 (en) 2018-03-29
CN104486013A (zh) 2015-04-01
US10404389B2 (en) 2019-09-03
CN104486013B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016095397A1 (zh) 信道检测方法、信道检测***、终端和基站
US11647542B2 (en) User equipment and signal transmission method
WO2016119302A1 (zh) 信道检测方法、信道检测***、基站和终端
US10405250B2 (en) RRM measurement method, measurement system, terminal and base station
WO2016161710A1 (zh) 信道占用概率的调整方法、调整***和设备
WO2016112588A1 (zh) 信道检测通知方法、***和基站
WO2017004901A1 (zh) 信道占用概率的调整方法、调整***和基站
WO2017028556A1 (zh) 基于非授权频段的发现参考信号配置方法、装置和基站
KR20160026555A (ko) 비인가 주파수 대역을 사용하는 이동통신 시스템에서의 통신 기법
CN104363657A (zh) 数据传输方法、***和具有基站功能的设备
CN104507108A (zh) 信道空闲状态的指示或资源预留方法、***、终端和基站
TW201701625A (zh) 共享的通訊媒體中的預留協調
EP3065470B1 (en) Procedure for selecting network discovery method
CN106162917B (zh) 一种非授权载波上传输资源的抢占方法及设备
EP3461198B1 (en) Communication method on unlicensed frequency band, terminal device, and network device
KR20130005195A (ko) 무선 접속 시스템에서 데이터 채널 예약 방법 및 장치
WO2016045107A1 (zh) 数据传输方法、***和具有基站功能的设备
US9854449B2 (en) Wireless communication method, access point, and station
WO2016179820A1 (zh) 检测免许可频谱信道的信号的方法、用户设备和基站
US20230217492A1 (en) Channel access for multi-link devices
CN113632580A (zh) 随机接入过程中消息3的cot共享指示符
CN109155986A (zh) 通信方法及终端
CN113826432A (zh) 用于上行链路传输的方法、终端设备和网络节点
CN109565692B (zh) 使用非授权频谱的上行传输方法、资源分配方法、用户设备及基站
WO2017020384A1 (zh) 基于负载的lbt信道检测方法及***、基站和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15868911

Country of ref document: EP

Kind code of ref document: A1