WO2016093644A1 - Polyolefin pellet for preparing fiber, and fiber comprising same - Google Patents

Polyolefin pellet for preparing fiber, and fiber comprising same Download PDF

Info

Publication number
WO2016093644A1
WO2016093644A1 PCT/KR2015/013529 KR2015013529W WO2016093644A1 WO 2016093644 A1 WO2016093644 A1 WO 2016093644A1 KR 2015013529 W KR2015013529 W KR 2015013529W WO 2016093644 A1 WO2016093644 A1 WO 2016093644A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
fiber
molecular weight
present
pellets
Prior art date
Application number
PCT/KR2015/013529
Other languages
French (fr)
Korean (ko)
Other versions
WO2016093644A8 (en
Inventor
엘지화학 주식회사
송낙규
박인규
최이영
Original Assignee
엘지화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150175284A external-priority patent/KR101783897B1/en
Application filed by 엘지화학 주식회사 filed Critical 엘지화학 주식회사
Priority to CN201580050649.7A priority Critical patent/CN106715480B/en
Priority to EP15867730.2A priority patent/EP3199556B1/en
Priority to JP2017515788A priority patent/JP6458137B2/en
Priority to US15/509,994 priority patent/US10570532B2/en
Publication of WO2016093644A1 publication Critical patent/WO2016093644A1/en
Publication of WO2016093644A8 publication Critical patent/WO2016093644A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins

Definitions

  • Polyolefin pellets for fiber production and fibers comprising the same
  • the present invention relates to polyolefin pellets for making fibers and to fibers comprising the same. More specifically, polyolefin pellets exhibiting high molecular weight and narrow molecular weight distribution, having reduced gel formation, high strength, excellent drawing characteristics, and high orientation are possible, and have high draw ratio and crystallinity when working with multifilament using various industrial products. Applicable to
  • the method for producing a high strength fiber polymer can be generally divided into two types. That is, a method of synthesizing a new polymer material having a rigid molecular structure and liquid crystal spinning, and spreading and reorganizing the polymer chain in the stretching direction as possible to maximize the strength of the existing general-purpose polymer material composed of a flexible molecular chain.
  • the latter method is used for high-density polyethylene for producing high-strength fibers such as ropes and fishing nets.
  • high density polyethylene is a polyethylene that can be produced at low temperature and pressure, unlike conventional low density polyethylene, refers to a polyethylene having a density of 94 g / cm 3 or more.
  • the molecular weight of the high density polyethylene can range from thousands to millions.
  • the high-density polyethylene has different physical properties such as layer strength, tear strength, environmental stress crack resistance, elongation, and other properties such as workability such as melt viscosity. Therefore, it is necessary to appropriately adjust these properties according to the application and application range of the high density polyethylene.
  • the narrower the molecular weight distribution of the high-density polyethylene in the fiber product is known to have excellent mechanical properties.
  • the draw ratio has a large characteristic, and the high draw enables high strength.
  • the molecular weight distribution of high density polyethylene is too narrow, there exists a problem that workability becomes very inferior.
  • high-density polyethylene produced using a general Ziegler-Natta catalyst, a chromium catalyst, etc. has a molecular weight distribution of 7 or more, which is excellent in processability but limited in high orientation stretching, and has a low strength.
  • the high density polypropylene produced is capable of highly oriented stretching, having a molecular weight distribution of 3 or less, which is excellent in strength but poor in workability.
  • Density is 0.94 to 0.96 g / cm 3 ;
  • PDI Molecular weight distribution
  • Melt index (Ml: 190 ° C., 2.16 kg) is 0.1-1.5 g / 10min;
  • polyolefin resin pellets having a particle size of 250; dPa and less than 650 dPa have a number of gels less than 50 per unit area (m 2 ).
  • another aspect of the present invention provides a fiber comprising the polyolefin pinet described above.
  • Yet another aspect of the invention provides a multifilament material comprising the fibers described above. - ⁇ Effects of the Invention ⁇
  • a polyolefin pinlet having a high molecular weight range and a narrow molecular weight distribution while reducing the formation of a gel that inhibits the quality and processability of the fiber.
  • the polyolefin pellets of the present invention exhibited an equivalent molecular weight and density and a narrower molecular weight distribution compared to the conventional polyolefin, and significantly reduced the number of gels.
  • the strength, stretching properties, processability, and high orientation are possible.
  • Elongation ratio and crystallinity in filament manufacturing can provide an extrusion molded article that can be applied to various industrial products.
  • the density is 0.94 to 0.96 g / cm 3
  • the molecular weight distribution (PDI) is 2.0 to 3.0
  • the melt index (MI: 190 ° C, 2.16 kg) group 0.1 to L5 g / 10 min ,.
  • the particle size is 250;
  • a polyolefin pellet for fiber production wherein the number of gels less than 650 is less than 50 per unit area (m 2 ).
  • polyolefm pellet or “polyolefm resin pellet” refers to a polyolefin resin in the form of fine particles obtained by polymerization by itself or after being mixed with other additives.
  • Granulated means granules having a larger particle size than polyolefin resins immediately after polymerization.
  • the resin pellets do not melt properly in the extrusion process is Unite _ i I 3 ⁇ 4_ ⁇ o is - (gel) is that a single yarn or thread trimming (cut fiber) occur in the drawing process of the resin pellets It becomes a cause and becomes a big obstacle in expressing the high strength performance of resin.
  • the number of the gel does not significantly affect the number of injection products, but in order to express the high-strength properties of the fiber in the case of the production of fiber (high strength yarn) of the extruded product! Since high orientation is required, the presence of a large number of gels in the polyolefin resin pellets causes single yarns due to the gels, making it impossible to manufacture high quality fiber products. Therefore, even if the other physical properties are excellent in the presence of a large number of gel in the polyolefin resin pellets can not produce a high-quality fiber products, it is required to suppress the gel formation (gel formation) for high orientation stretching.
  • There are various causes of gel formation such as physical property imbalance of polyolefin resin, imbalance in the polymerization process, contamination caused by polymerization, and contamination by catalyst.
  • the present invention provides a polyolefin pellet having a similar density and melt index as in the prior art, which enjoys the formation of a gel remarkably.
  • the polyolefin resin of the present invention is prepared by pellets by granulation by extrusion after polymerization. At this time, if necessary, it can be prepared into pellets by mixing with additives such as antioxidants, processing aids and the like.
  • the polyolefin resin may be made of fibers (Yarn / Film) and a multifilament material by a process such as extrusion, injection, etc. after the pellet is manufactured by pellets by extrusion.
  • the measurement of the number of gels in the polyolefin pellets more specifically using a single screw extruder to cast a gel analysis cast film (gel) film (gel film, 54mm * 33m) over 10 minutes at 190 ° C.
  • the number of gels generated in the median lm 2 area (about 30 mm * about 33 m) except for the edge of the film is measured with a laser analyzer attached to the extruder. This process is repeated three times and the average value is the number of gels.
  • the laser analyzer defines a region in which the refractive index difference is different from the rest of the film as a gel, and is determined by classifying the gel into a gel having a particle size of less than 250, a gel having a particle size of 250 ⁇ m or more and less than 650, and a gel having a particle size of 650 or more, Can be.
  • the number of gels having a particle size of 250 or more and less than 650 per unit area (lm 2 ) is less than 50, preferably 0 or more and less than 30, More preferably, it may be 0 or more and less than 20, and still more preferably 0 or more and less than 10.
  • the weight average molecular weight of the polyolefin of the present invention may be about 100,000 to about 300,000 g / mol, or about 100,000 to about 180,000 g / m.
  • the melt flow index (190 ° C., 2.16 kg loading condition) of the polyolefin according to the present invention may be about 0.1 to about 1.5 g / 10 minutes, and about 0.2 to about 1.0 g / 10 minutes harmonize molding processability and mechanical properties. It is preferable as the optimum point which can be made
  • polyolefins of the present invention may have a molecular weight distribution (PDI) of about 2.0 to about 3.0, or about 2.2 to about 2.8.
  • PDI molecular weight distribution
  • the number of gels can be remarkably enjoyed to produce fibers of excellent quality, and a polyolefin pinlet having a high molecular weight range and a very narrow molecular weight distribution can be provided.
  • the polyolefin pellet of the present invention exhibits high strength and high orientation by reducing the number of gels having a particle diameter of 250 m or more but less than 650, which exhibits high molecular weight and narrow molecular weight distribution but adversely affects the quality and processability of the fiber product. It can be used effectively for manufacture.
  • the characteristics of the density, melt index and molecular weight distribution is used in the manufacture of high strength fiber products Related to the elongation ratio, strength and processability expressed.
  • the draw ratio is better the narrower the molecular weight distribution of the polyolefin homopolymer.
  • the strength is excellent as the draw ratio is large, the density is high at the same draw ratio, and the greater the molecular weight is excellent.
  • the molecular weight distribution should be narrow. However, if the molecular weight distribution is too narrow, the workability may be inferior, and thus, as described above, when the molecular weight distribution is about 2.0 to about 3.0, high stretching and appropriate processability can be realized as more optimized characteristics.
  • the higher the molecular weight that is, the smaller the melt index, the higher the strength, but when the molecular weight is too large, there is a problem that the extrusion processability and productivity are very inferior due to a large load on the processing equipment.
  • the melt index is from about 0.1 to about 1.5 g / 10 min, more preferably from about 0.2 to about 1.0 g / 10 min, it may exhibit excellent workability properties.
  • the polyolefins according to the invention may be ethylene homopolymers or copolymers comprising ethylene and alpha olefinic comonomers.
  • alpha olefins include 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, i-nuxadecene, i ⁇ Octadecene or 1-eicosene, but is not limited thereto.
  • alpha olefins having 4 to 10 carbon atoms are preferable.
  • alpha olefins may be used together as a comonomer.
  • the content of alpha olefinic comonomer in the copolymer is preferably about 0.1 to about 45% by weight, more preferably about 0.1 to about 20% by weight, most preferably about 0.1 to about 4% by weight.
  • the polyolefin according to the present invention is excellent in processability, has a small number of gels per unit area, and is excellent in high elongation and high strength properties.
  • the polyolefin which exhibits the physical properties, is obtained by polymerizing an ollepin monomer in the presence of a metallocene catalyst, a hydrocarbyl aluminum scavenger, and hydrogen gas.
  • a metallocene catalyst e.g., platinum, palladium, platinum, palladium, and zinc.
  • the flushing of the reactor, the hydrocarbyl By controlling the ratio of aluminum scavenger to water (3 ⁇ 40), the concentration of the hydrocarbyl aluminum scavenger, and the input of hydrogen gas (H 2 ), high molecular weight and narrow Polyolefins having a molecular weight distribution can be polymerized.
  • the molar ratio of the hydrocarbyl aluminum scavenger and the water in the reactor may be about 0.8: 1 to about 1.2: 1, or about 0.9: 1 to about 1.1: 1.
  • the molar ratio of the hydrocarbyl aluminum scavenger and water is within the above range, there is an effect of suppressing the number of gels.
  • the dose of hydrogen gas may be an important factor in determining the melt flow index (MFI) of the product.
  • the dose of hydrogen gas may be about 30 to about 90 L / min, or about 45 to about 75 L / min.
  • the input amount of the hydrogen gas is within the above range, it is possible to polymerize polyolefin having a high molecular weight and a narrow molecular weight distribution.
  • the hydrocarbyl aluminum scavenger may improve the polymerization uniformity by stabilizing the water removal and the catalyst active point in the reaction.
  • the concentration of the hydrocarbyl aluminum scavenger may be in the range of about 0.1 to about 0.3 mM, when the concentration of the hydrocarbyl aluminum scavenger is in the range, high molecular weight and Polyolefins having a narrow molecular weight distribution can be polymerized.
  • the hydrocarbyl aluminum scavenger may include a compound represented by the following Formula 3, but is not limited thereto.
  • the three Rs may be the same or different from each other, and each independently have carbon atoms
  • Examples of the compound represented by Formula 3 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri-S-butyl aluminum, tricyclopentyl aluminum , Tripentyl aluminum, Triisopentyl aluminum, trinuclear silaluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, and the like. Is trimethylaluminum, triethylaluminum, or
  • the metallocene catalyst may be a common supported metallocene catalyst including at least two 'different first metallocene compounds and a second metallocene compound.
  • ihak i furnace can be eu pyoseu I -, and 10 to the second metallocene compound is a second metal to be represented by the formula (2) Can be.
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are inde cycloalkyl, pentadiene carbonyl, with the same or different and are each independently of the other carbonyl, 4,5,6,7-tetrahydro-1-inde from carbonyl, and fluorenyl group consisting of a carbonyl radical Any one selected, and they may be substituted with hydrocarbons having 1 to 20 carbon atoms;
  • R 1 and R 2 are the same as or different from each other, and are each independently hydrogen, C1 20 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy , C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 25 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkyl Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R 3 is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl Arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 2 is a halogen atom, ' C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkyl Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 alkoxy;
  • B is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 3 R 3 ring and J;
  • J is any one selected from the group consisting of NR 4 , O, PR 4 and S, wherein R 4 is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
  • the first metallocene compound mainly acts to make low molecular weight polyolefins
  • the second metallocene compound mainly acts to make high molecular weight polyolefins, thereby affecting the stable or polycrystalline molecular weight. It is possible to produce polyolefins with distribution.
  • the inherent polyolefins obtained by the first metallocene compound have a low molecular weight in the range of about 1,000 to about 100,000 g / mol, and the polyolefin obtainable by the second metallocene compound is about 10,000 to about It is preferred that the polyolefin having a high molecular weight in the range of 1,000,000 g / mol, wherein the polyolefin obtainable by the Crab 2 metallocene compound has a higher molecular weight than the polyolefin obtained by the first metallocene compound.
  • the common supported metallocene catalyst is a) at least one metallocene Preparing an activated supported metallocene catalyst by contacting a supported metallocene catalyst having a compound supported thereon with a promoter; And b) additionally supporting the metallocene compound and at least one metallocene compound on the activated supported metallocene catalyst.
  • one metallocene compound inducing low molecular weight polyolefin and one metallocene compound inducing high molecular weight polyolefin are impregnated with one carrier together with a cocatalyst and reacted in a single reactor.
  • a common supported metallocene catalyst having an easy molecular weight distribution control can be prepared.
  • cocatalysts that can be used to activate the metallocene compound include alkyl aluminum-based trimethylaluminum, triethylaluminum, triisobutylaluminum, trioctylaluminum, methylaluminoxane, ethylaluminoxane and isobutyl Aluminoxanes, butyl aluminoxanes, and the like, and the like, as the boron-based thickening or ionic compounds, tripentafluorophenylborone and tributylammonium tetrapentafluorophenylboron, but are not limited thereto.
  • the content of the Group 4 transition metal of the periodic table in the supported metallocene catalyst finally prepared in the present invention is preferably about 0.1 to about 20% by weight, more preferably about 0.1 to about 10% by weight, Most preferred is 1 to about 3 weight percent.
  • the catalyst may deviate from the carrier during polymerization of the olefin and cause problems such as fouling, and the production cost is increased.
  • the cocatalyst includes a Group 13 metal of the Periodic Table, and a molar ratio of the Group 13 metal / Group 4 metal of the Periodic Table Metallocene Catalyst in the common supported metallocene catalyst is preferably about 1 to about 10,000, more preferably about 1 to about 1,000. And about 10 to about 100 are most preferred.
  • the supporting amount of the second metallocene compound is preferably supported at various molar ratios of about 5 to about 2 based on 1 mole of the first metallocene compound to variously control the molecular weight distribution of the final polyolefin.
  • the loading amount of the promoter is based on the metal contained in the promoter, and the first and It is preferably in the range of about 1 to about 10,000 moles per mole of metal contained in the second metallocene compound.
  • the common supported metallocene catalyst may be used by itself for olefin polymerization, or may be used for prepolymerization by contacting with an olefin monomer such as ethylene, propylene, 1-butene, 1-nuxene, 1-octene, and the like.
  • an olefin monomer such as ethylene, propylene, 1-butene, 1-nuxene, 1-octene, and the like.
  • Common supported metallocene catalysts of the present invention include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as isobutane, pentane, nucleic acid, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene and benzene; Dilution in slurry form in hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene can be injected.
  • the solvent is preferably used by removing a small amount of water, air, etc., which act as a catalyst poison by treating a small amount of aluminum.
  • the hybrid supported metallocene catalyst can be used to prepare polyolefin copolymers having a molecular weight distribution curve of at least two.
  • the copolymerization with alpha olefins using a common supported metallocene catalyst is particularly advantageous in forming a high molecular weight moiety. Induced by metallocene compounds, it is possible to produce high performance polyolefin copolymers in which alpha olefin comonomers are concentrated at the high molecular chain side.
  • the polyolefin production can be carried out according to the conventional method by continuously supplying an alpha olefin having at least 4 carbon atoms as a ethylene and a comonomer at a constant rate using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor. have.
  • the polymerization silver when copolymerizing ethylene and an alpha olefin having 4 or more carbon atoms as a comonomer is preferably about 25 to about 500 ° C., and about 25 to about 200 ° C. More preferred, about 50 to about 150 ° C.
  • the polymerization pressure is about 1 to about
  • the polyolefin copolymer according to the present invention is obtained by copolymerization of an olefinic monomer with alpha olefins having 4 or more carbon atoms using the common supported metallocene compound as a catalyst, and has a bimodal or polycrystalline molecular weight distribution. Metallocene . It is well known that the polyolefin polymerized by the catalyst is superior in terms of physical properties because the side reactivity of the catalyst residue is significantly lower than the polyolefin polymerized by the Ziegler-Natta catalyst.
  • the molecular weight is usually uniform, the molecular weight distribution is narrow, and the distribution of alpha olefin comonomers is also uniform, resulting in poor workability.
  • the productivity is significantly reduced due to the extruded load and the like, and the appearance of the product is not good.
  • it is required to have high environmental stress cracking resistance (ESCR) and high impact strength resin such as blow molded parts, and it is necessary to increase the molecular weight in order to improve these properties. There was a difficulty in this regard.
  • a fiber comprising the polyolefin pellets.
  • the fiber comprising the polyolefin pinlet has a tenacity of about 9 gf / denier or more, for example, about 9 to about 20 gf / denier, as measured by ASTM D 638. Or about 10 to about 18 gf / denier, or about 13 to about 18 gf / denier.
  • Conventionally used general-purpose fiber has a strength (tenacity) of only about 4 to about 6 gf / denier, the fiber according to the present invention exhibits a high strength as described above, it can be seen that it has a high strength characteristics.
  • the fiber comprising the polyolefin pellet, the draw ratio (RPM2 / RPM1) is about 10 to about 24 times, or about 12 to about 24 times, or about 15 to about 22 By the way, it can have the property of higher drawing than the conventional polyolefin fiber.
  • the fiber manufacturing method may be applied to a conventional fiber production method, for example using a resin composition containing the polyolefin, may be to include a processing step by an extruder.
  • the multifilament material may be a variety of industrial products that require strength and resistance to trimming, specific examples include geo-fiber, such as geogrid, Fibrous gabions, protective gloves, marine ropes, fishing nets, or living fabrics.
  • geo-fiber such as geogrid, Fibrous gabions, protective gloves, marine ropes, fishing nets, or living fabrics.
  • t-Butyl-0- (CH 2 ) 6 -Cl was prepared by the method shown in Tetrahedron Lett. 2951 (1988), and reacted with NaCp.
  • t-Butyl-0- (CH 2 ) 6 -C 5 H 5 was obtained (yield 60%, bp 80 ° CI 0.1 mmHg).
  • ⁇ -8 -0- () 6 -3 ⁇ 43 ⁇ 4 at -78 ° C was dissolved in THF, and normal butyllithium (n-BuLi) was slowly added, and after heating to room temperature, the reaction was carried out for 8 hours.
  • TiCl 3 (THF) 3 (10 mmol) was rapidly added to the dilithium salt of -78 ° C ligand synthesized in THF solution from n-BuLi and ligand Dimethyl (tetramethylCpH) t-Butylaminosilane.
  • the reaction solution was stirred for 12 hours while slowly raising the temperature to -78 ° C.
  • an equivalent amount of PbCl 2 (10 mmol) was added to the reaction solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a blueish vaginal black solution was obtained.
  • nucleic acid was added to filter the product. After removing the nucleic acid from the obtained filter solution, it was confirmed from the 1H-NMR that the desired [methyl (6-t-buthoxyhexyl) silyl ⁇ 5-tetramethylCp) (t-butylamido)] TiCl 2 compound.
  • Silica (XPO 2412, manufactured by Grace Davison) was dehydrated under vacuum at 800 ° C. for 15 hours. 10 g of silica was added to three glass reactors, 10 mL of the nucleic acid solution in which the first metallocene compound O.lg obtained in Synthesis Example 1 was dissolved, and then stirred at 90 ° C. for 4 hours. Replied. After the reaction was completed, the stirring was stopped, the nucleic acid was separated by layer, and then washed three times with 20 mL of the nucleic acid solution. A powder was obtained. To this was added a solution of methylaluminoxane (MAO) containing 12 mmol aluminum in toluene solution, which was slowly reacted with stirring at 40 ° C. After washing with a sufficient amount of toluene to remove the unreacted aluminum compound and then decompression at 50 ° C to remove the remaining toluene.
  • MAO methylaluminoxane
  • the common supported metallocene catalyst obtained in Preparation Example 1 was introduced into a single loop slurry polymerization process to prepare a polyolefin.
  • the flushing of the reactor was carried out until the concentration of foreign substances in the nucleic acid was less than 50ppm ⁇ , the ratio of triethylaluminium (hydrocarbyl aluminum scavenger) and water in the reactor was 1: 1 molar ratio, The concentration of the hydrocarbyl aluminum scavenger was kept in the range 0.2 to 0.3 mM, hydrogen gas was added at a rate of 60mL / min. 1-nucleene was used as the comonomer.
  • Example 1 can be a multi-filament manufacturing Draw-Ratio draw ratio of the manufactured polyolefin from the 20-fold pelppeot * 3 ⁇ 4 3 ⁇ 4 oof-euje _ oeha 11 was repeated the same process as i _ room ⁇ 1 Example 1.
  • Example 3
  • Example 4 The same process as in Example 1 was repeated with respect to the polyolefin pelvis prepared in Example 1, except that 18 times the Draw-Ratio elongation ratio was performed when manufacturing the multifilament.
  • Example 4 The same process as in Example 1 was repeated with respect to the polyolefin pelvis prepared in Example 1, except that 18 times the Draw-Ratio elongation ratio was performed when manufacturing the multifilament.
  • Example 1 The same process as in Example 1 was repeated except that polyolefin was prepared in Example 1 with respect to the pellets, and the draw-ratio elongation ratio was 16 times when the multifilament was manufactured. Comparative Example 1
  • Example 1 the molar ratio of triethylaluminium, which is a hydrocarbyl aluminum scavenger, and water in the reactor is 0.5: 1, and the concentration of the hydrocarbyl aluminum scavenger is maintained at 0.01 mM, Polyolefin was prepared in the same manner as in Example 1 except that hydrogen gas was added at a rate of 20 mL / min.
  • Example 2 Except for preparing a multifilament composition by obtaining a polyolefin polymerized in Example 1 using a Ziegler-Natta catalyst (supported on a magnesium carrier, Ziegler-Natta having a TiC 4 active site) instead of a metallocene catalyst. The same process as in Example 1 was performed.
  • a Ziegler-Natta catalyst supported on a magnesium carrier, Ziegler-Natta having a TiC 4 active site
  • Molecular weight, molecular weight distribution The number average molecular weight, the weight average molecular weight, and the Z average molecular weight were measured using a measurement temperature of 160 ° C. and gel permeation chromatography (GPC). The molecular weight distribution was expressed as the ratio of the weight average molecular weight to the number average molecular weight.
  • denier is an international unit used to indicate the thickness of a yarn.
  • the denier is a unit weight lg with a standard length of 9,000m.
  • Fiber cut Whether or not fiber cut occurred during filament molding of the extruded product was measured.
  • a gel having a particle diameter of 250 or more and less than 650 occurred in less than 50 gels per unit area (lm 2 ), and the draw ratio was 16 to 22 times. It can be molded into a high strength, high-strength multifilament having a 12 to 18 g / denier.
  • Comparative Examples 1 and 2 a large number of gels having a particle size of 250 or more and less than 650 mi were formed at about 200 gels per unit area (kn 2 ), and thus the trimming, which is a phenomenon of breaking fibers when filaments were formed, resulted in an elongation ratio and strength. Measurement was not possible.

Abstract

The present invention relates to a polyolefin pellet for preparing a fiber, and a fiber comprising the same. According to the present invention, provided is a polyolefin, which exhibits a high molecular weight range and a narrow molecular weight distribution and in which the formation of a gel deteriorating the quality of a fiber is reduced. Therefore, the present invention has high strength and an excellent drawing characteristic and is capable of high orientation since the gel formation is reduced, while exhibiting a molecular weight, a density and a narrow molecular weight distribution, which are equivalent to those of a conventional polyolefin, by using the polyolefin pellet, and thus the present invention can be applied to various industrial products due to high drawing ratio and crystallinity during a multifilament operation using the same.

Description

【발명의 명칭】  [Name of invention]
섬유 제조용 폴리올레핀 펠렛 및 이를 포함하는 섬유  Polyolefin pellets for fiber production and fibers comprising the same
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 12월 10일자 한국 특허 출원 제 10-2014-0177145호 및 2015년 12월 9일자 한국 특허 출원 제 10-2015-0175284호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0177145 filed December 10, 2014 and Korean Patent Application No. 10-2015-0175284 filed December 9, 2015. All content disclosed in the literature is included as part of this specification.
【기술분야】  Technical Field
.본 발명은 섬유 제조용 폴리올레핀 펠렛 및 이를 포함하는 섬유에 관한 것이다. 보다 구체적으로, 고분자량 및 좁은 분자량 분포를 나타내며, 겔의 형성이 감소되어 고강도를 가지며 연신 특성이 우수하고 고배향이 가능한 폴리올레핀 펠렛에 대한 것으로, 이를 이용한 멀티필라멘트 작업시 연신비와 결정화도가 높아 다양한 산업용 제품에 적용 가능하다.  The present invention relates to polyolefin pellets for making fibers and to fibers comprising the same. More specifically, polyolefin pellets exhibiting high molecular weight and narrow molecular weight distribution, having reduced gel formation, high strength, excellent drawing characteristics, and high orientation are possible, and have high draw ratio and crystallinity when working with multifilament using various industrial products. Applicable to
【발명의 배경이 되는 기술】  [Technique to become background of invention]
고강도 섬유 고분자의 제조방법은 일반적으로 크게 두 가지로 나눌 수 있다. 즉, 강직한 분자 구조를 갖는 새로운 고분자 재료를 합성하여 액정방사하는 방법과, 유연한 분자 사슬로 구성된 기존의 범용성 고분자 재료를 그 강도가 최대한 발휘되도록 고분자 사슬을 가능한한 연신 방향으로 펼쳐서 재편성하는 것이다.  The method for producing a high strength fiber polymer can be generally divided into two types. That is, a method of synthesizing a new polymer material having a rigid molecular structure and liquid crystal spinning, and spreading and reorganizing the polymer chain in the stretching direction as possible to maximize the strength of the existing general-purpose polymer material composed of a flexible molecular chain.
이중에서 로프, 어망 등과 같은 고강력사의 섬유를 제조하기 위한 고밀도 폴리에틸렌은 후자의 방법이 사용되고 있다.  Among them, the latter method is used for high-density polyethylene for producing high-strength fibers such as ropes and fishing nets.
참고로, 고밀도 폴리에틸렌 (HDPE)은 기존의 저밀도 폴리에틸렌과는 달리 낮은 온도와 압력에서도 생산할 수 있는 폴리에틸렌으로서, 으94 g/cm3 이상의 밀도를 가지는 폴리에틸렌을 말한다. 상기 고밀도 폴리에틸렌의 분자량은 수천에서 수백만까지 분포할 수 있다. 상기 고밀도 폴리에틸렌은 분자량, 분자량 분포 및 밀도 등에 따라, 층격강도, 인열강도, 내환경 웅력균열성, 신율 등과 같은 물리적 성질뿐만 아니라, 용융 점도와 같은 가공성 등의 특성들이 서로 상이하게 변화하게 된다. 따라서, 고밀도 폴리에틸렌의 적용 및 활용 범위에 따라 상기 특성들을 적절하게 조절하는 것이 필요하다. 한편, 상기 섬유 제품에서는 고밀도 폴리에틸렌의 분자량 분포가 좁을수록 기계적 물성이 우수하다고 알려져 있다. 즉, 고밀도 폴리에틸렌의 분자량 분포가 좁으면 연신비가 큰 특성을 가지게 되고, 고연신에 의하여 높은 강도를 가질 수 있게 된다. 그러나, 고밀도 폴리에틸렌의 분자량 분포가 너무 좁으면, 가공성이 매우 열세해지는 문제점이 있다. 예컨대, 일반적인 지글러 -나타 촉매, 크롬 촉매 등을 이용하여 제조한 고밀도 폴리에틸렌은 분자량 분포가 7 이상으로서 가공성은 우수하나 고배향 연신에 제한적이며 강도가 낮은 문제점이 있고, 일반적인 메탈로센 촉매를 이용하여 제조한 고밀도 폴리에 ¾렌은 고배향 연신이 가능하고, 분자량 분포가 3 이하로서 강도는 우수하나, 가공성이 불량한 문제점이 있다. For reference, high density polyethylene (HDPE) is a polyethylene that can be produced at low temperature and pressure, unlike conventional low density polyethylene, refers to a polyethylene having a density of 94 g / cm 3 or more. The molecular weight of the high density polyethylene can range from thousands to millions. The high-density polyethylene has different physical properties such as layer strength, tear strength, environmental stress crack resistance, elongation, and other properties such as workability such as melt viscosity. Therefore, it is necessary to appropriately adjust these properties according to the application and application range of the high density polyethylene. On the other hand, the narrower the molecular weight distribution of the high-density polyethylene in the fiber product is known to have excellent mechanical properties. That is, when the molecular weight distribution of the high density polyethylene is narrow, the draw ratio has a large characteristic, and the high draw enables high strength. However, when the molecular weight distribution of high density polyethylene is too narrow, there exists a problem that workability becomes very inferior. For example, high-density polyethylene produced using a general Ziegler-Natta catalyst, a chromium catalyst, etc. has a molecular weight distribution of 7 or more, which is excellent in processability but limited in high orientation stretching, and has a low strength. The high density polypropylene produced is capable of highly oriented stretching, having a molecular weight distribution of 3 or less, which is excellent in strength but poor in workability.
이에, 고강력사의 섬유 제품에 있어서 분자량 분포가 좁고 가공성이 개선된 기술에 대한 연구가 더욱 필요한 상태이다.  Therefore, the research on the technology of narrow molecular weight distribution and improved workability in high-strength fiber products is in need of further research.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명의 목적은 고분자량 및 좁은 분자량 분포를 나타내어 연신 특성이 우수하고 고배향이 가능하며, 단사 발생의 원인이 되는 겔 (gel)의 형성을 저감시킴으로써 가공성이 향상된, 섬유 제조용 폴리을레핀 펠렛 (pellet)을 제공하는 것이다. 본 발명의 다른 목적은 상기 폴리올레핀 펠렛을 포함하는 섬유 및 이를 이용하는 멀티필라멘트 재료를 제공하는 것이다.  In order to solve the problems of the prior art as described above, an object of the present invention is to exhibit a high molecular weight and a narrow molecular weight distribution, excellent stretching properties, high orientation is possible, workability by reducing the formation of a gel (gel) that causes single yarn generation It is to provide an improved polyolefin pinlets for making fibers. Another object of the present invention is to provide a fiber comprising the polyolefin pellet and a multifilament material using the same.
【과제의 해결 수단】  [Measures of problem]
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은,  In order to achieve the above object, an aspect of the present invention,
밀도가 0.94 내지 0.96 g/cm3 이고; Density is 0.94 to 0.96 g / cm 3 ;
분자량 분포 (PDI)는 2.0 내지 3.0이고;  Molecular weight distribution (PDI) is from 2.0 to 3.0;
용융지수 (Ml: 190 °C, 2.16kg)가 0.1 내지 1.5 g/10min이며; Melt index (Ml: 190 ° C., 2.16 kg) is 0.1-1.5 g / 10min;
190°C에서 캐스팅 필름으로 제조하였을 때, 입경이 250;圖 이상 650卿 미만인 겔 (gel)의 개수가 단위 면적 (m2)당 50개 미만인 폴리을레핀 펠렛 (pellet)을 제공한다. When made into a casting film at 190 ° C., polyolefin resin pellets having a particle size of 250; dPa and less than 650 dPa have a number of gels less than 50 per unit area (m 2 ).
또한, 본 발명의 다른 일 측면은 상술한 폴리을레핀 펠렛을 포함하는 섬유를 제공한다. 또한, 본 발명의 또 다른 일 측면은 상술한 섬유를 포함하는 멀티필라멘트 재료를 제공한다. - 【발명의 효과】 In addition, another aspect of the present invention provides a fiber comprising the polyolefin pinet described above. Yet another aspect of the invention provides a multifilament material comprising the fibers described above. - 【Effects of the Invention】
본 발명에 따르면, 고분자량 범위 및 좁은 분자량 분포를 나타내면서, 섬유의 품질과 가공성을 저해하는 겔의 형성이 줄어든 폴리을레핀 펠렛을 제공할 수 있다.  According to the present invention, it is possible to provide a polyolefin pinlet having a high molecular weight range and a narrow molecular weight distribution while reducing the formation of a gel that inhibits the quality and processability of the fiber.
따라서, 본 발명의 폴리올레핀 펠렛은 종래의 폴리올레핀과 비교하여 동등한 분자량 및 밀도와, 보다 좁은 분자량 분포를 나타내면서 겔의 개수가 현저히 줄어들어 이에 따라 강도, 연신 특성 및 가공성이 우수하고 고배향이 가능하여 이를 이용한 멀티필라멘트 제조시 연신비와 결정화도가 높아 다양한 산업용 제품에 적용 가능한 압출 성형품을 제공할 수 있다.  Therefore, the polyolefin pellets of the present invention exhibited an equivalent molecular weight and density and a narrower molecular weight distribution compared to the conventional polyolefin, and significantly reduced the number of gels. Thus, the strength, stretching properties, processability, and high orientation are possible. Elongation ratio and crystallinity in filament manufacturing can provide an extrusion molded article that can be applied to various industrial products.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "having" are intended to indicate that there is a feature, number, step, component, or combination thereof that is practiced, and that one or more other features, numbers, steps, It should be understood that it does not exclude in advance the possibility of the presence or the addition of components, or combinations thereof.
또한 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  In addition, the present invention may be variously modified and may have various forms, and specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 본 발명을 상세히 설명한다. 본 발명의 일 구현예에 따르면, 밀도는 0.94 내지 0.96 g/cm3 이고, 분자량 분포 (PDI)는 2.0 내지 3.0이고, 용융 지수 (MI:190°C , 2.16kg)기 0.1 내지 L5g/10min이고, . 190°C에서 캐스팅 필름으로 제조하였을 때, 입경이 250;圆 이상 650 미만인 겔 (gel)의 개수가 단위 면적 (m2)당 50개 미만인, 섬유 제조용 폴리올레핀 펠렛을 제공한다. Hereinafter, the present invention will be described in detail. According to one embodiment of the invention, the density is 0.94 to 0.96 g / cm 3 , the molecular weight distribution (PDI) is 2.0 to 3.0, the melt index (MI: 190 ° C, 2.16 kg) group 0.1 to L5 g / 10 min ,. When prepared from the casting film at 190 ° C, the particle size is 250; Provided is a polyolefin pellet for fiber production, wherein the number of gels less than 650 is less than 50 per unit area (m 2 ).
본 발명의 명세서에 있어서, "폴리올레핀 펠렛 (polyolefm pellet)" 또는 "폴리올레핀 수지 펠렛 (polyolefm resin pellet)"이란, 중합에 의해 얻어진 미세 입자 형태의 폴리올레핀 수지를 그 자체로, 또는 다른 첨가제와 흔합한 후 제립하여 중합 직후의 폴리을레핀 수지보다 큰 입경을 갖는 입상 (granule) 형태로 만든 것을 의미한다.  In the specification of the present invention, the term "polyolefm pellet" or "polyolefm resin pellet" refers to a polyolefin resin in the form of fine particles obtained by polymerization by itself or after being mixed with other additives. Granulated means granules having a larger particle size than polyolefin resins immediately after polymerization.
고강도 섬유를 대체하기 위한 폴리올레핀 수지에서, 수지 펠렛이 압출 과정에서 제대로 녹지 않아 _ 뭉¾_거 ί 되어 는- (gel)은 수지 펠렛의 연신 공정에서 단사 또는 사절 (fiber cut)이 발생하는 원인이 되어 수지의 고강도 성능을 발현하는데 큰 방해 요소가 된다. In the polyolefin resin to replace the high-strength fiber, the resin pellets do not melt properly in the extrusion process is Unite _ i I ¾_ ί o is - (gel) is that a single yarn or thread trimming (cut fiber) occur in the drawing process of the resin pellets It becomes a cause and becomes a big obstacle in expressing the high strength performance of resin.
특히, 상기 겔은 사출 제품의 경우 그 개수가 크게 영향을 미치지 않으나, 압출 제품의 섬유 (고강력사) 생산의 경우 섬유의 고강도 물성을 발현시키기 위하! 고배향 연신이 필요하므로 폴리을레핀 수지 펠렛 내에 겔이 많이 존재하면 겔로 인한 단사가 발생하게 되어 고품질의 섬유 제품을 제조할 수 없게 된다. 따라서 다른 물성이 우수하더라도 폴리올레핀 수지 펠렛 내에 겔이 많이 존재하면 고품질의 섬유 제품을 제조할 수 없게 되므로 고배향 연신을 위해서는 겔 형성 (gel formation)을 억제할 것이 요구된다. 겔의 생성 원인은 폴리을레핀 수지의 물성 불균형, 중합 공정에서의 불균형, 증합시 발생하는 오염, 촉매로 인한 오염 등 여러 가지가 있다.  In particular, the number of the gel does not significantly affect the number of injection products, but in order to express the high-strength properties of the fiber in the case of the production of fiber (high strength yarn) of the extruded product! Since high orientation is required, the presence of a large number of gels in the polyolefin resin pellets causes single yarns due to the gels, making it impossible to manufacture high quality fiber products. Therefore, even if the other physical properties are excellent in the presence of a large number of gel in the polyolefin resin pellets can not produce a high-quality fiber products, it is required to suppress the gel formation (gel formation) for high orientation stretching. There are various causes of gel formation such as physical property imbalance of polyolefin resin, imbalance in the polymerization process, contamination caused by polymerization, and contamination by catalyst.
특히, 고분자 영역의 폴리을레핀을 포함하는 종래의 수지 펠렛이 압출 과정에서 제대로 녹지 않아 겔이 형성될 수 있다. 이러한 겔 형성의 문제점을 극복하기 위하여, 본 발명은 종래와 유사한 밀도와 용융 지수를 가지면서도 겔의 형성이 현저히 즐어든 폴리올레핀 펠렛을 제공한다.  In particular, conventional resin pellets containing polyolefin in the polymer region may not be properly melted in the extrusion process, thereby forming a gel. In order to overcome this problem of gel formation, the present invention provides a polyolefin pellet having a similar density and melt index as in the prior art, which enjoys the formation of a gel remarkably.
본 발명의 폴리올레핀 수지는 중합 후 압출 등에 의하여 제립하여 펠렛 (pellet)으로 제조된다. 이때, 필요에 따라 산화방지제, 가공조제 등과 같은 첨가제와 흔합하여 펠렛으로 제조할 수 있다. 또한, 상기 폴리올레핀 수지는 압출에 의하여 펠렛으로 제조된 후 제조된 펠렛을 압출, 사출 등의 가공에 의해 섬유 (Yarn/Film) 및 멀티필라맨트 재료로 제조될 수 있다. 상기 폴리올레핀 펠렛에서의 겔의 개수의 측정은, 보다 구체적으로 single screw extruder를 이용하여 상기 폴리을레핀 펠렛을 190 °C에서 10분에 걸쳐 겔 (gel) 분석용 캐스팅 필름 (casting film, 54mm * 33m)으로 제조하고, 필름의 가장 자리 부분을 제외하고 중간 lm2 면적 (약 30mm * 약 33m)에 발생한 겔의 개수를 extruder에 달린 레이저 분석기로 측정한다. 이러한 과정을 3회 반복한 후 평균값을 겔 개수로 한다. 이때, 상기 레이저 분석기에서 필름의 나머지 부분과 굴절율 차이가 발생하는 영역을 겔로 정의하며, 입경에 따라 입경이 250 미만인 겔, 입경이 250卿 이상 650 미만인 겔, 및 입경이 650 이상인 겔로 분류하여 측정할 수 있다. The polyolefin resin of the present invention is prepared by pellets by granulation by extrusion after polymerization. At this time, if necessary, it can be prepared into pellets by mixing with additives such as antioxidants, processing aids and the like. In addition, the polyolefin resin may be made of fibers (Yarn / Film) and a multifilament material by a process such as extrusion, injection, etc. after the pellet is manufactured by pellets by extrusion. The measurement of the number of gels in the polyolefin pellets, more specifically using a single screw extruder to cast a gel analysis cast film (gel) film (gel film, 54mm * 33m) over 10 minutes at 190 ° C. The number of gels generated in the median lm 2 area (about 30 mm * about 33 m) except for the edge of the film is measured with a laser analyzer attached to the extruder. This process is repeated three times and the average value is the number of gels. In this case, the laser analyzer defines a region in which the refractive index difference is different from the rest of the film as a gel, and is determined by classifying the gel into a gel having a particle size of less than 250, a gel having a particle size of 250 μm or more and less than 650, and a gel having a particle size of 650 or more, Can be.
본 발명의 일 실시예에 따르면, 상기와 같은 방법으로 측정하였을 때, 단위 면적당 (lm2) 입경이 250 이상 및 650 미만인 겔의 개수가 50개 미만으로, 바람직하게는 0개 이상 30개 미만, 보다 바람직하게는 0개 이상 20개 미만, 더욱 바람직하게는 0개 이상 10개 미만일 수 있다. According to one embodiment of the present invention, as measured by the above method, the number of gels having a particle size of 250 or more and less than 650 per unit area (lm 2 ) is less than 50, preferably 0 or more and less than 30, More preferably, it may be 0 or more and less than 20, and still more preferably 0 or more and less than 10.
본 발명의 폴리올레핀의 중량 평균 분자량은 약 10만 내지 약 30만 g/mol, 또는 약 10만 내지 약 18만 g/m이일 수 있다.  The weight average molecular weight of the polyolefin of the present invention may be about 100,000 to about 300,000 g / mol, or about 100,000 to about 180,000 g / m.
본 발명에 따른 폴리을레핀의 용융 흐름 지수 (190 °C , 2.16kg 하중 조건)는 약 0.1 내지 약 1.5g/10분일 수 있고, 약 0.2 내지 약 1.0 g/10분인 것이 성형 가공성과 기계적 물성을 조화시킬 수 있는 최적점으로서 바람직하다ᅳ The melt flow index (190 ° C., 2.16 kg loading condition) of the polyolefin according to the present invention may be about 0.1 to about 1.5 g / 10 minutes, and about 0.2 to about 1.0 g / 10 minutes harmonize molding processability and mechanical properties. It is preferable as the optimum point which can be made
또한, 본 발명의 폴리올레핀은 분자량 분포 (PDI)가 약 2.0 내지 약 3.0, 또는 약 2.2 내지 약 2.8일 수 있다.  In addition, the polyolefins of the present invention may have a molecular weight distribution (PDI) of about 2.0 to about 3.0, or about 2.2 to about 2.8.
본 발명에 따르면, 상기와 같이 겔의 개수가 현저히 즐어들어 우수한 품질의 섬유를 제조할 수 있고, 고분자량 범위를 가지며 분자량 분포가 매우 좁은 폴리을레핀 펠렛을 제공할 수 있다.  According to the present invention, as described above, the number of gels can be remarkably enjoyed to produce fibers of excellent quality, and a polyolefin pinlet having a high molecular weight range and a very narrow molecular weight distribution can be provided.
이처럼 본 발명의 폴리올레핀 펠렛은, 고분자량과 좁은 분자량 분포를 나타내면서도 섬유 제품의 품질과 가공성에 악영 을 미치는 입경이 250 m 이상 650 미만인 겔의 개수가 줄어들어 우수한 강도를 나타내고 고배향이 가능하여 고강력사 섬유 제조에 효과적으로 이용할 수 있다.  As described above, the polyolefin pellet of the present invention exhibits high strength and high orientation by reducing the number of gels having a particle diameter of 250 m or more but less than 650, which exhibits high molecular weight and narrow molecular weight distribution but adversely affects the quality and processability of the fiber product. It can be used effectively for manufacture.
이때, 본 발명에 따른 폴리올레핀에 있어서, 상기 밀도, 용융 지수 및 분자량 분포의 특성은 이를 이용하여 고강력사의 섬유 제품의 제조시 발현되는 연신비, 강도 및 가공성의 특성과 관련된다. At this time, in the polyolefin according to the present invention, the characteristics of the density, melt index and molecular weight distribution is used in the manufacture of high strength fiber products Related to the elongation ratio, strength and processability expressed.
상기 연신비는 폴리을레핀 단일 중합체의 분자량 분포가 좁을수록 우수하다. 또한, 상기 강도는 연신비가 클수록 우수하며, 동일 연신비에서는 밀도가 높고, 분자량이 클수록 우수하다.  The draw ratio is better the narrower the molecular weight distribution of the polyolefin homopolymer. In addition, the strength is excellent as the draw ratio is large, the density is high at the same draw ratio, and the greater the molecular weight is excellent.
즉, 고연신비를 구현하기 위해서는 분자량 분포가 좁아야 함을 알 수 있다. 그러나, 분자량 분포가 너무 좁으면, 가공성이 열세해질 수 있으므로, 전술한 바와 같이 분자량 분포가 약 2.0 내지 약 3.0 일 때 더욱 최적화된 특성으로서 고연신 및 적절한 가공성을 구현할 수 있다. 또한, 분자량이 클수록, 즉 용융 지수가 작을수록 강도가 우수하지만, 분자량이 너무 큰 경우에는 가공기기의 부하가 많이 걸려서 압출 가공성 및 생산성이 매우 열세한 문제점이 있다. 따라서, 용융 지수가 약 0.1 내지 약 1.5 g/10min, 더 바람직하게 약 0.2 내지 약 1.0 g/10min 인 경우에 우수한 가공성의 특성을 나타낼 수 있다.  That is, in order to realize a high draw ratio, it can be seen that the molecular weight distribution should be narrow. However, if the molecular weight distribution is too narrow, the workability may be inferior, and thus, as described above, when the molecular weight distribution is about 2.0 to about 3.0, high stretching and appropriate processability can be realized as more optimized characteristics. In addition, the higher the molecular weight, that is, the smaller the melt index, the higher the strength, but when the molecular weight is too large, there is a problem that the extrusion processability and productivity are very inferior due to a large load on the processing equipment. Thus, when the melt index is from about 0.1 to about 1.5 g / 10 min, more preferably from about 0.2 to about 1.0 g / 10 min, it may exhibit excellent workability properties.
본 발명에 따른 폴리올레핀은 에틸렌 호모증합체 또는 에틸렌 및 알파 올레핀계 공단량체를 포함하는 공중합체일 수 있다. 상기 알파 올레핀계로는 1-부텐, 1-펜텐, 1-핵센, 4-메틸 -1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, i -핵사데센, i -옥타데센, 또는 1-에이코센 등이 있으나, 이에만 한정되는 것은 아니다. 이 중 탄소수 4 내지 10의 알파 올레핀이 바람직하며, The polyolefins according to the invention may be ethylene homopolymers or copolymers comprising ethylene and alpha olefinic comonomers. Examples of the alpha olefins include 1-butene, 1-pentene, 1-nuxene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, i-nuxadecene, i − Octadecene or 1-eicosene, but is not limited thereto. Among these, alpha olefins having 4 to 10 carbon atoms are preferable,
1종 또는 여러 종류의 알파 올레핀이 함께 공단량체로 사용될 수도 있다. 상기 공중합체 내 알파 을레핀계 공단량체의 함량은 약 0.1 내지 약 45 중량 %가 바람직하고, 약 0.1 내지 약 20 중량%가 더욱 바람직하며, 약 0.1 내지 약 4 중량 %가 가장 바람직하다. One or several alpha olefins may be used together as a comonomer. The content of alpha olefinic comonomer in the copolymer is preferably about 0.1 to about 45% by weight, more preferably about 0.1 to about 20% by weight, most preferably about 0.1 to about 4% by weight.
본 발명에 따른 폴리올레핀은 가공성이 우수하고, 단위 면적당 겔의 개수가 적으며, 고연신 및 고강도 특성 등이 우수하여 고강력사인 섬유를 제조하는데 사용할 수 있다.  The polyolefin according to the present invention is excellent in processability, has a small number of gels per unit area, and is excellent in high elongation and high strength properties.
한편, 본 발명의 일 실시예에 따르면, 상기 물성 특성을 나타내는 폴리을레핀은 메탈로센 촉매, 하이드로카르빌 알루미늄 스캐빈져 (scavenger), 및 수소 가스의 존재 하에 을레핀 단량체를 중합시킴으로써 수득된 것일 수 있다.  On the other hand, according to one embodiment of the present invention, the polyolefin, which exhibits the physical properties, is obtained by polymerizing an ollepin monomer in the presence of a metallocene catalyst, a hydrocarbyl aluminum scavenger, and hydrogen gas. Can be.
보다 구체적으로는, 반응기의 풀러싱 (flushing), 상기 하이드로카르빌 알루미늄 스캐빈져와 수분 (¾0)의 비율, 상기 하이드로카르빌 알루미늄 스캐빈져의 농도, 및 수소 가스 (H2)의 투입량을 조절함으로써 경제적인 방식으로 겔 형성을 효율적으로 억제하면서 고분자량 및 좁은 분자량 분포를 갖는 폴리올레핀을 중합할 수 있다. More specifically, the flushing of the reactor, the hydrocarbyl By controlling the ratio of aluminum scavenger to water (¾0), the concentration of the hydrocarbyl aluminum scavenger, and the input of hydrogen gas (H 2 ), high molecular weight and narrow Polyolefins having a molecular weight distribution can be polymerized.
본 발명의 일 실시예에 따르면, 상기 하이드로카르빌 알루미늄 스캐빈져와 반응기 내 수분의 몰 비율은, 약 0.8:1 내지 약 1.2:1, 혹은 약 0.9:1 내지 약 1.1 :1일 수 있다. 상기 하이드로카르빌 알루미늄 스캐빈져와 수분의 몰 비율이 상기 범위일 때, 겔의 개수를 억제하는 효과가 있다.  According to one embodiment of the present invention, the molar ratio of the hydrocarbyl aluminum scavenger and the water in the reactor may be about 0.8: 1 to about 1.2: 1, or about 0.9: 1 to about 1.1: 1. When the molar ratio of the hydrocarbyl aluminum scavenger and water is within the above range, there is an effect of suppressing the number of gels.
상기 수소 가스의 투입량은 제품의 MFI(melt flow index) 결정에 중요한 인자가 될 수 있다. 본 발명의 일 실시예에 따르면, 상기 수소 가스의 투입량은, 약 30 내지 약 90 L/min, 혹은 약 45 내지 약 75 L/min일 수 있다. 상기 수소 가스의 투입량이 상기 범위일 때, 고분자량 및 좁은 분자량 분포를 갖는 폴리을레핀을 중합할 수 있다.  The dose of hydrogen gas may be an important factor in determining the melt flow index (MFI) of the product. According to one embodiment of the invention, the dose of hydrogen gas, may be about 30 to about 90 L / min, or about 45 to about 75 L / min. When the input amount of the hydrogen gas is within the above range, it is possible to polymerize polyolefin having a high molecular weight and a narrow molecular weight distribution.
상기 하이드로카르빌 알루미늄 스캐빈져는 반웅기 내 수분 제거 및 촉매 활성점을 안정화시켜 중합 균일성을 향상시킬 수 있다. 본 발명의 일 실시예에 따르면, 상기 하이드로카르빌 알루미늄 스캐빈져의 농도는 약 0.1 내지 약 0.3 mM 범위 내일 수 있고, 상기 하이드로카르빌 알루미늄 스캐빈져의 농도가 상기 범위일 때, 고분자량 및 좁은 분자량 분포를 갖는 폴리올레핀을 중합할 수 있다.  The hydrocarbyl aluminum scavenger may improve the polymerization uniformity by stabilizing the water removal and the catalyst active point in the reaction. According to one embodiment of the invention, the concentration of the hydrocarbyl aluminum scavenger may be in the range of about 0.1 to about 0.3 mM, when the concentration of the hydrocarbyl aluminum scavenger is in the range, high molecular weight and Polyolefins having a narrow molecular weight distribution can be polymerized.
상기 하이드로카르빌 알루미늄 스캐빈져는 하기 화학식 3으로 표시되는 화합물을 포함할 수 있으나, 이에만 한정되는 것은 아니다.  The hydrocarbyl aluminum scavenger may include a compound represented by the following Formula 3, but is not limited thereto.
[화학식 3]  [Formula 3]
A1(R)3 A1 (R) 3
상기 화학식 3에서,  In Chemical Formula 3,
3개의 R은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 탄소수 The three Rs may be the same or different from each other, and each independently have carbon atoms
1 내지 20의 탄화수소이다. 1 to 20 hydrocarbons.
상기 화학식 3으로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -S-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에록시드 등이 포함되며, 바람직하게는 트리메틸알루미늄, 트리에틸알루미늄, 또는Examples of the compound represented by Formula 3 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri-S-butyl aluminum, tricyclopentyl aluminum , Tripentyl aluminum, Triisopentyl aluminum, trinuclear silaluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxide, and the like. Is trimethylaluminum, triethylaluminum, or
5 트리이소부틸알루미늄일 수 있다. 5 triisobutylaluminum.
본 발명의 일 실시예에 따르면, 상기 메탈로센 촉매는 적어도 2종의 ' 서로 다른 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물을 포함하는 흔성 담지 메탈로센 촉매일 수 있다.  According to an embodiment of the present invention, the metallocene catalyst may be a common supported metallocene catalyst including at least two 'different first metallocene compounds and a second metallocene compound.
01때상-기 - 1 - 탈로센ᅳ희:할물ᅵ은하 Zjᅳ회:ᅵ학노로ᅳ표스 I될ᅵ수—있고, 10 상기 제 2 메탈로센 화합물은 하기 화학식 2로 표시될 수 있다. When i 0 1 o the 1-phthaloyl metallocene eu diluent: halmul i yo and Zj is euhoe: ihak i furnace can be eu pyoseu I -, and 10 to the second metallocene compound is a second metal to be represented by the formula (2) Can be.
[화학식 1] [Formula 1]
Figure imgf000009_0001
Figure imgf000009_0001
상기 화학식 1에서,  In Chemical Formula 1,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
15 Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로'펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; 15 Cp 1 and Cp 2 are inde cycloalkyl, pentadiene carbonyl, with the same or different and are each independently of the other carbonyl, 4,5,6,7-tetrahydro-1-inde from carbonyl, and fluorenyl group consisting of a carbonyl radical Any one selected, and they may be substituted with hydrocarbons having 1 to 20 carbon atoms;
R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 20 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 - 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R 1 and R 2 are the same as or different from each other, and are each independently hydrogen, C1 20 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy , C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 25 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기 , C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고; Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 25 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkyl Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
n은 1 또는 0 이고;  n is 1 or 0;
30 [화학식 2] (CpjRj)B(J)MzZ 2 30 [Formula 2] (Cp j R j ) B (J) M z Z 2
상기 화학식 2에서,  In Chemical Formula 2,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3은 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 3 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
R3은 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시 , C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R 3 is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl Arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z2는 할로겐 원자, ' C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기 , C2 내지 C20의 알킬알콕시, 또는 C7 내지 C40의 아뭘알콕시이고; Z 2 is a halogen atom, ' C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkyl Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 alkoxy;
B는 Cp3R3 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 3 R 3 ring and J;
J는 NR4, O, PR4 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 R4는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. J is any one selected from the group consisting of NR 4 , O, PR 4 and S, wherein R 4 is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
상기 흔성 담지 메탈로센 촉매 성분 중 제 1 메탈로센 화합물은 주로 저분자량 폴리을레핀을 만드는데 작용하고, 제 2 메탈로센 화합물은 주로 고분자량 폴리을레핀을 만드는데 작용하여, 이로 인해 아정 또는 다정 분자량 분포를 갖는 폴리을레핀 제조가 가능하다. Of the common supported metallocene catalyst components, the first metallocene compound mainly acts to make low molecular weight polyolefins, and the second metallocene compound mainly acts to make high molecular weight polyolefins, thereby affecting the stable or polycrystalline molecular weight. It is possible to produce polyolefins with distribution.
상기 제 1 메탈로센 화합물에 의해 얻을 수 있는 고유의 폴리을레핀은 약 1,000 내지 약 100,000 g/mol 범위의 저분자량을 갖고, 상기 제 2 메탈로센 화합물에 의해 얻을 수 있는 폴리올레핀은 약 10,000 내지 약 1,000,000 g/mol 범위의 고분자량을 가지며, 상기 게 2 메탈로센 화합물에 의해 얻을 수 있는 폴리올레핀이 상기 제 1 메탈로센 화합물에 의해 얻을 수 있는 폴리을레핀보다 높은 분자량을 갖는 것이 바람직하다.  The inherent polyolefins obtained by the first metallocene compound have a low molecular weight in the range of about 1,000 to about 100,000 g / mol, and the polyolefin obtainable by the second metallocene compound is about 10,000 to about It is preferred that the polyolefin having a high molecular weight in the range of 1,000,000 g / mol, wherein the polyolefin obtainable by the Crab 2 metallocene compound has a higher molecular weight than the polyolefin obtained by the first metallocene compound.
상기 흔성 담지 메탈로센 촉매는 a) 적어도 하나의 메탈로센 화합물이 담지된 담지 메탈로센 촉매와 조촉매를 접촉 반응시켜서 활성화된 담지 메탈로센 촉매를 제조하는 단계; 및 b) 상기 활성화된 담지 메탈로센 촉매에 상기 메탈로센 화합물과 다른 1종 이상의 메탈로센 화합물을 추가로 담지시키는 단계를 포함하는 제조방법으로 제조할 수 있다. The common supported metallocene catalyst is a) at least one metallocene Preparing an activated supported metallocene catalyst by contacting a supported metallocene catalyst having a compound supported thereon with a promoter; And b) additionally supporting the metallocene compound and at least one metallocene compound on the activated supported metallocene catalyst.
예를 들면, 저분자량의 폴레올레핀을 유도하는 메탈로센 화합물 1종 및 고분자량의 폴리올레핀을 유도하는 메탈로센 화합물 1종을 조촉매와 함께 하나의 담체에 함침시켜, 단일 반응기에서의 반웅으로도 분자량 분포 조절이 용이한 흔성 담지 메탈로센 촉매를 제조할 수 있다.  For example, one metallocene compound inducing low molecular weight polyolefin and one metallocene compound inducing high molecular weight polyolefin are impregnated with one carrier together with a cocatalyst and reacted in a single reactor. A common supported metallocene catalyst having an easy molecular weight distribution control can be prepared.
상기의 메탈로센 화합물을 활성화하는데 사용될 수 있는 대표적인 조촉매로는, 알킬알루미늄계의 '.트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리옥틸알루미늄, 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 보론계의 증성 또는 이온성 화합물로서 트리펜타플로로페닐보론, 트리부틸암모니움테트라펜타플로로페닐보론 있으나, 이에만 한정되는 것은 아니다.  Representative cocatalysts that can be used to activate the metallocene compound include alkyl aluminum-based trimethylaluminum, triethylaluminum, triisobutylaluminum, trioctylaluminum, methylaluminoxane, ethylaluminoxane and isobutyl Aluminoxanes, butyl aluminoxanes, and the like, and the like, as the boron-based thickening or ionic compounds, tripentafluorophenylborone and tributylammonium tetrapentafluorophenylboron, but are not limited thereto.
본 발명에서 최종적으로 제조되는 담지 메탈로센 촉매 내 주기율표 4족 전이금속의 함유량은 약 0.1 내지 약 20 중량 %인 것이 을레핀 중합에 바람직하며, 약 0.1 내지 약 10 중량%가 보다 바람직하고, 약 1 내지 약 3 중량 %가 가장 바람직하다. 상기 주기율표 4족 전이금속의 함유량이 20 중량%를 초과하는 경우에는 올레핀 중합시 촉매가 담체로부터 이탈하여 파울링 (fouling)과 같은 문제점을 일으킬 수 있고, 제조원가가 상승되므로 상업적인 면에서 바람직하지 않다ᅳ  The content of the Group 4 transition metal of the periodic table in the supported metallocene catalyst finally prepared in the present invention is preferably about 0.1 to about 20% by weight, more preferably about 0.1 to about 10% by weight, Most preferred is 1 to about 3 weight percent. When the content of the Group 4 transition metal of the periodic table exceeds 20% by weight, the catalyst may deviate from the carrier during polymerization of the olefin and cause problems such as fouling, and the production cost is increased.
또한, 상기 조촉매는 주기율표 13족 금속을 포함하고, 상기 흔성 담지 메탈로센 촉매 내 주기율표 13족 금속 /4족 금속의 몰비는 약 1 내지 약 10,000이 바람직하고, 약 1 내지 약 1,000이 보다 바람직하며, 약 10 내지 약 100이 가장 바람직하다.  In addition, the cocatalyst includes a Group 13 metal of the Periodic Table, and a molar ratio of the Group 13 metal / Group 4 metal of the Periodic Table Metallocene Catalyst in the common supported metallocene catalyst is preferably about 1 to about 10,000, more preferably about 1 to about 1,000. And about 10 to about 100 are most preferred.
또한, 상기 제 2 메탈로센 화합물의 담지량은 상기 제 1 메탈로센 화합물 1몰을 기준으로 약 으 5 내지 약 2의 몰 비율로 담지하는 것이 최종 폴리올레핀의 분자량 분포를 다양하게 조절하는데 바람직하다.  In addition, the supporting amount of the second metallocene compound is preferably supported at various molar ratios of about 5 to about 2 based on 1 mole of the first metallocene compound to variously control the molecular weight distribution of the final polyolefin.
조촉매의 담지량은 조촉매에 포함된 금속을 기준으로, 상기 제 1 및 제 2 메탈로센 화합물에 함유된 금속 1몰에 대하여 약 1 내지 약 10,000몰의 범위인 것이 바람직하다. The loading amount of the promoter is based on the metal contained in the promoter, and the first and It is preferably in the range of about 1 to about 10,000 moles per mole of metal contained in the second metallocene compound.
상기 흔성 담지 메탈로센 촉매는 그 자체로서 올레핀 중합에 사용될 수 있으며, 에틸렌, 프로필렌, 1-부텐, 1-핵센, 1-옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비중합하는데 사용할 수도 있다.  The common supported metallocene catalyst may be used by itself for olefin polymerization, or may be used for prepolymerization by contacting with an olefin monomer such as ethylene, propylene, 1-butene, 1-nuxene, 1-octene, and the like.
본 발명의 흔성 담지 메탈로센 촉매는, 아이소부탄, 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 탄소수 5 내지 12의 지방족 탄화수소 용매; 를루엔 및 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 및 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 슬러리 형태로 희석하여 주입이 가능하다. 상기 용매는 소량의 알루미늄 처리를 하여 촉매 독으로 작용하는 소량의 물, 공기 등을 제거하여 사용하는 것이 바람직하다. 상기 혼성 담지 메탈로센 촉매를 이용하여 이정 이상의 분자량 분포 곡선을 갖는 폴리을레핀 공중합체를 제조할 수 있다ᅳ 흔성 담지 메탈로센 촉매를 이용시 알파 올레핀과의 공중합은, 특히 고분자량 부분을 만드는 제 2 메탈로센 화합물에 의해 유도되어, 알파 올레핀 공단량체가 고분자량 사슬 쪽에 집중적으로 결합된 고성능의 폴리을레핀 공중합체 제조를 가능하게 한다.  Common supported metallocene catalysts of the present invention include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as isobutane, pentane, nucleic acid, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene and benzene; Dilution in slurry form in hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene can be injected. The solvent is preferably used by removing a small amount of water, air, etc., which act as a catalyst poison by treating a small amount of aluminum. The hybrid supported metallocene catalyst can be used to prepare polyolefin copolymers having a molecular weight distribution curve of at least two. The copolymerization with alpha olefins using a common supported metallocene catalyst is particularly advantageous in forming a high molecular weight moiety. Induced by metallocene compounds, it is possible to produce high performance polyolefin copolymers in which alpha olefin comonomers are concentrated at the high molecular chain side.
상기 폴리올레핀 제조는 하나의 연속식 슬러리 중합 반웅기, 루프 슬러리 반응기, 기상 반웅기, 또는 용액 반웅기를 이용하여 에틸렌과 공단량체로써 탄소수 4 이상의 알파 올레핀을 일정 비율로 연속 공급하면서 정법에 따라 수행할 수 있다.  The polyolefin production can be carried out according to the conventional method by continuously supplying an alpha olefin having at least 4 carbon atoms as a ethylene and a comonomer at a constant rate using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor. have.
본 발명의 흔성 담지 메탈로센 촉매를 이용하여, 에틸렌과 공단량체로서 탄소수 4 이상의 알파 올레핀을 공중합할 때의 중합 은도는 약 25 내지 약 500°C가 바람직하며, 약 25 내지 약 200°C가 보다 바람직하고, 약 50 내지 약 150°C가 더욱 바람직하다. 또한, 중합 압력은 약 1 내지 약Using the common supported metallocene catalyst of the present invention, the polymerization silver when copolymerizing ethylene and an alpha olefin having 4 or more carbon atoms as a comonomer is preferably about 25 to about 500 ° C., and about 25 to about 200 ° C. More preferred, about 50 to about 150 ° C. In addition, the polymerization pressure is about 1 to about
100 Kgf/cm2에서 수행하는 것이 바람직하며, 약 1 내지 약 50 Kgf/cm2가 보다 바람직하고, 약 5 내지 약 30 Kgf/cm2이 가장 바람직하다. It is preferably performed at 100 Kgf / cm 2 , more preferably about 1 to about 50 Kgf / cm 2 , most preferably about 5 to about 30 Kgf / cm 2 .
본 발명에 따른 폴리올레핀 공중합체는 상기 흔성 담지 메탈로센 화합물을 촉매로 사용하여, 을레핀계 단량체와 탄소수 4 이상의 알파 을레핀과의 공중합으로 얻은 것으로, 이정 또는 다정 분자량 분포를 갖는다. 메탈로센. 촉매로 중합한 폴리올레핀은 지글러 -나타 촉매로 중합한 폴리올레핀보다 촉매 잔사의 부반응성이 현저히 낮아 물성 측면에서 우수한 것은 이미 잘 알려진 사실이다. 그러나, 통상 분자량이 균일해 좁은 분자량 분포를 갖고 알파 올레핀 공단량체의 분포도 균일하여, 작업성이 불량한 단점이 있다. 특히, 압출 중공성형 등에서는 압출부하 등의 영향으로 생산성이 현저히 떨어지고 제품 외관이 좋지 않아 현장 적용이 어려운 문제가 있었다. 즉, 중공성형품과 같이 우수한 환경 응력 균열성 (ESCR) 및 고충격 강도의 수지가 요구되어 이러한 물성 개선을 위해 분자량을 높이는 것이 필수적인 곳에 사용하기에는, 고분자량 부분에 공단량체 함량이 절대적으로 부족하여 가공성 면에서의 어려움이 있었다. The polyolefin copolymer according to the present invention is obtained by copolymerization of an olefinic monomer with alpha olefins having 4 or more carbon atoms using the common supported metallocene compound as a catalyst, and has a bimodal or polycrystalline molecular weight distribution. Metallocene . It is well known that the polyolefin polymerized by the catalyst is superior in terms of physical properties because the side reactivity of the catalyst residue is significantly lower than the polyolefin polymerized by the Ziegler-Natta catalyst. However, there is a disadvantage in that the molecular weight is usually uniform, the molecular weight distribution is narrow, and the distribution of alpha olefin comonomers is also uniform, resulting in poor workability. In particular, in extrusion blow molding and the like, the productivity is significantly reduced due to the extruded load and the like, and the appearance of the product is not good. In other words, it is required to have high environmental stress cracking resistance (ESCR) and high impact strength resin such as blow molded parts, and it is necessary to increase the molecular weight in order to improve these properties. There was a difficulty in this regard.
한편, 본 발명의 또 다른 구현예에 따르면, 상기 폴리올레핀 펠렛을 포함하는 섬유를 제공한다.  On the other hand, according to another embodiment of the present invention, there is provided a fiber comprising the polyolefin pellets.
본 발명의 일 실시예 따르면, 상기 폴리을레핀 펠렛을 포함하는 섬유는, ASTM D 638 기준으로 측정한 강도 (tenacity)가 약 9 gf/denier 이상으로, 예를 들어 약 9 내지 약 20 gf/denier, 또는 약 10 내지 약 18 gf/denier, 또는 약 13 내지 약 18 gf/denier일 수 있다.  According to one embodiment of the present invention, the fiber comprising the polyolefin pinlet has a tenacity of about 9 gf / denier or more, for example, about 9 to about 20 gf / denier, as measured by ASTM D 638. Or about 10 to about 18 gf / denier, or about 13 to about 18 gf / denier.
기존에 사용되던 범용의 섬유는 강도 (tenacity)가 약 4 내지 약 6 gf/denier에 불과하였으나, 본 발명에 따른 섬유는 전술한 바와 같은 높은 강도를 나타내어, 고강도의 특성을 가짐을 알 수 있다.  Conventionally used general-purpose fiber has a strength (tenacity) of only about 4 to about 6 gf / denier, the fiber according to the present invention exhibits a high strength as described above, it can be seen that it has a high strength characteristics.
또한, 본 발명의 일 실시예 따르면, 상기 폴리올레핀 펠렛을 포함하는 섬유는, 연신비 (draw ratio, RPM2/RPM1)가 약 10 내지 약 24배, 또는 약 12 내지 약 24배, 또는 약 15 내지 약 22배로, 종래의 폴리올레핀 섬유보다 고연신의 특성을 가질 수 있다. ' In addition, according to one embodiment of the present invention, the fiber comprising the polyolefin pellet, the draw ratio (RPM2 / RPM1) is about 10 to about 24 times, or about 12 to about 24 times, or about 15 to about 22 By the way, it can have the property of higher drawing than the conventional polyolefin fiber. '
상기 섬유의 제조방법은, 통상의 섬유 제조 방법을 적용할 수 있고, 일례로 상기 폴리올레핀을 포함하는 수지 조성물을 이용하고, 압출기에 의한 가공 공정 단계를 포함하는 것일 수 있다.  The fiber manufacturing method may be applied to a conventional fiber production method, for example using a resin composition containing the polyolefin, may be to include a processing step by an extruder.
본 발명에 따르면, 상기 섬유를 포함하는 멀티필라멘트 재료를 제공할 수 있다.  According to the present invention, it is possible to provide a multifilament material comprising the fibers.
상기 멀티필라멘트 재료는 강도와 사절 저항성을 요구하는 다양한 산업용 제품일 수 있고, 구체적인 예로 지오그리드 등의 토목용 섬유, 섬유돌망태, 보호장갑, 해양용 로프, 어망, 또는 산자용 직물 등일 수 있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. The multifilament material may be a variety of industrial products that require strength and resistance to trimming, specific examples include geo-fiber, such as geogrid, Fibrous gabions, protective gloves, marine ropes, fishing nets, or living fabrics. Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
. <실시예 > . <Example>
제 1 메탈로센 촉매의 제조  Preparation of the First Metallocene Catalyst
합성예 1: rtBu-O-fCH^-CsH^ZrCh의 합성  Synthesis Example 1 Synthesis of rtBu-O-fCH ^ -CsH ^ ZrCh
6-클로로핵사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 t-Butyl-0-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반응시켜 t-Butyl-0-(CH2)6-C5H5를 얻었다 (수율 60%, b.p. 80 °C I 0.1 mmHg). 또한, -78 °C에서 {-8 -0-( )6-¾¾를 THF에 녹이고, 노말 부틸리튬 (n-BuLi)을 천천히 가한 후, 실온으로 승은시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78 °C에서 ZrCl4(THF)2(1.70 g, 4.50 mmol)/THF(30 mL)의 서스펜견 (suspension) 용액에 기 합성된 리튬염 (lithium salt) 용액을 천천히 가하고 실온에서 6시간 동안 더 반웅시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저온 (-20 °C )에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2 화합물을 얻었다 (수율 92%). Using 6-chlorohexanol, t-Butyl-0- (CH 2 ) 6 -Cl was prepared by the method shown in Tetrahedron Lett. 2951 (1988), and reacted with NaCp. t-Butyl-0- (CH 2 ) 6 -C 5 H 5 was obtained (yield 60%, bp 80 ° CI 0.1 mmHg). Further, {-8 -0- () 6 -¾¾ at -78 ° C was dissolved in THF, and normal butyllithium (n-BuLi) was slowly added, and after heating to room temperature, the reaction was carried out for 8 hours. The solution was slowly added to a pre-synthesized lithium salt solution at a suspension of ZrCl 4 (THF) 2 (1.70 g, 4.50 mmol) / THF (30 mL) at -78 ° C. The reaction was further reacted for 6 hours at room temperature. All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of a hexane solvent. The filtered solution was dried in vacuo and nucleic acid was added to induce precipitate at low temperature (-20 ° C.). The obtained precipitate was filtered at low temperature to give a [tBu-0- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound as a white solid (yield 92%).
1H NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H). 1 H NMR (300 MHz, CDC1 3 ): 6.28 (t, J = 2.6 Hz, 2H), 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t , J = 8 Hz), 1.7-1.3 (m, 8 H), 1.17 (s, 9 H).
13C NMR (CDC13): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14,13 C NMR (CDC1 3 ): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14,
29.18, 27.58, 26.00. 제 2 메탈로센 촉매의 제조 29.18, 27.58, 26.00. Preparation of Second Metallocene Catalyst
합성예 2 :  Synthesis Example 2:
fmethyli6-t-buthoxyhexyl)silyl(Ti5-tetramethylCp t-Butylamido ^ 합성 fmethyli6-t-buthoxyhexyl) silyl (Ti5-tetramethylCp t-Butylamido ^ synthesis
상온에서 50 g의 Mg(s)를 10L 반웅기에 가한 후, THF 300 mL을 가하였다. 12를 0.5g 정도 가한 후, 반응기 온도를 50°C로 유지하였다. 반웅기 온도가 안정화된 후 250 g의 6-t-부특시핵실클로라이드 (6-t-buthoxyhexyl chloride)를 주입 펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 6-t-부특시핵실클로라이드를 가함에 따라 반웅기 온도가 4 ~ 5 °C 정도 상승하는 것을 관찰할 수 있었다. 계속적으로 6-t-부톡시핵실클로라이드를 가하면서 12시간 교반하였다. 반응 12시간 후 검은색의 반웅 용액을 얻을 수 있었다. 생성된 검은색의 용액 2 mL을 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해50 g of Mg (s) was added to a 10 L reaction vessel at room temperature, followed by 300 mL of THF. After 0.5 g of 1 2 was added, the reactor temperature was maintained at 50 ° C. After the reaction temperature was stabilized, 250 g of 6-t-buthoxyhexyl chloride was added to the reaction vessel at a rate of 5 mL / min using a feeding pump. It was observed that the reaction temperature increased by 4-5 ° C. with the addition of 6-t-subspecific nucleosil chloride. Subsequently, the mixture was stirred for 12 hours while adding 6-t-butoxynuxylchloride. After 12 hours of reaction, a black reaction solution was obtained. Take 2 mL of the resulting black solution and add water to give an organic layer.
6-t-부특시핵산 (6-t-buthoxyhexane)을 확인할 수 있었으며,6-t-buthoxyhexane was identified,
6-t-부톡시핵산으로부터 그리냐드 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다. The Grignard reaction proceeded well from 6-t-butoxynucleic acid. Thus 6-t-butoxyhexyl magnesium chloride was synthesized.
MeSiCl3 500 g과 1 L의 THF를 반응기에 가한 후 반웅기 온도를After adding 500 g of MeSiCl 3 and 1 L of THF to the reactor, the reaction temperature was increased.
-20°C까지 넁각하였다ᅳ 합성한 6-t-부록시핵실마그네슴클로라이드 중 560 g을 주입 펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 그리냐드 시약의 주입이 끝난 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다ᅳ 반웅 12시간 후 흰색의 MgCl2 염이 생성되는 것을 확인하였다. 핵산 4 L를 가하여 실험용 가압 탈수 여과 장치 (labdori, (주) 한강엔지니어링)를 통해 염을 제거하여 필터 용액을 얻을 수 있었다. 얻을 필터 용액을 반응기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻을 수 있었다ᅳ 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t-부록시핵실)디클로로실란 화합물임을 확인할 수 있었다. Angled to -20 ° C. 560 g of the synthesized 6-t-butoxynuclear magnesium chloride was added to the reaction vessel at a rate of 5 mL / min using an infusion pump. After completion of the Grignard reagent injection, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, white MgCl 2 salt was formed. 4 L of nucleic acid was added to remove the salt through a laboratory pressure dewatering filtration apparatus (labdori, Han River Engineering Co., Ltd.) to obtain a filter solution. The resultant filter solution was added to the reactor, and the nucleic acid was removed at 70 ° C. to obtain a pale yellow liquid. there was.
IH-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m,IH-NMR (CDC1 3 ): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m,
2H), 0.7 (s, 3H). 2H), 0.7 (s, 3H).
테트라메틸시클로펜타디엔 1.2몰 (150 g)과 2.4 L의 THF를 반응기에 가한 후 반응기 은도를 -20°C로 냉각하였다. n-BuLi 480 mL을 주입 펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi를 가한 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 Methyl(6— t-buthoxy hexyl)dichlorosilane(326g, 350 mL)을 빠르게 반웅기에 가하였다. 반응기 온도를 천천히 상온으로 을리면서 12시간 교반한 후 다시 반응기 온도를 0°C로 냉각시킨 후 2 당량의 t-BuNH2을 가하였다. 반웅기 온도를 천천히 상은으로 올리면서 12시간 교반하였다. 반웅 12시간 후 THF를 제거하고 4 L의 핵산을 가하여 labdori을 통해 염을 제거한 필터 용액을 얻을 수 있었다. 필터 용액을 다시 반응기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻을 수 있었다. 얻은 노란색의 용액을 1 H-NMR을 통해 Methyl(6-t-buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane 화합물임을 확인할 수 있었다. 1.2 mol (150 g) of tetramethylcyclopentadiene and 2.4 L of THF were added to the reactor, and the reactor was cooled to -20 ° C. 480 mL of n-BuLi was added to the reactor at a rate of 5 mL / min using an infusion pump. After n-BuLi was added, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, Equivalent amount of Methyl (6—t-buthoxy hexyl) dichlorosilane (326 g, 350 mL) was added quickly to the reactor. After stirring the reactor temperature slowly to room temperature for 12 hours, the reactor temperature was further cooled to 0 ° C., and then 2 equivalents of t-BuNH 2 was added thereto. The reaction mixture was stirred for 12 hours while slowly raising the temperature to silver. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salt was removed through labdori. After adding the filter solution back to the reactor, the nucleic acid was removed at 70 ° C to obtain a yellow solution. The obtained yellow solution was confirmed to be Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane compound through 1 H-NMR.
' n-BuLi과 리간드 Dimethyl(tetramethylCpH)t-Butylaminosilane로부터 THF 용액에서 합성한 -78 °C의 리간드의 디리튬염에 TiCl3(THF)3(10mmol)을 빠르게 가하였다. 반응용액을 천천히 -78 °C에서 상온으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10 mmol)를 반웅 용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 질은 검은색의 용액을 얻을 수 있었다. TiCl 3 (THF) 3 (10 mmol) was rapidly added to the dilithium salt of -78 ° C ligand synthesized in THF solution from n-BuLi and ligand Dimethyl (tetramethylCpH) t-Butylaminosilane. The reaction solution was stirred for 12 hours while slowly raising the temperature to -78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the reaction solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a blueish vaginal black solution was obtained.
생성된 반응 용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터 용액에서 핵산을 제거한 후, 1H-NMR로부터 원하는 [methyl(6-t-buthoxyhexyl)silyl^5-tetramethylCp)(t-butylamido)]TiCl2 화합물임을 확인하였다. After removing THF from the resulting reaction solution, nucleic acid was added to filter the product. After removing the nucleic acid from the obtained filter solution, it was confirmed from the 1H-NMR that the desired [methyl (6-t-buthoxyhexyl) silyl ^ 5-tetramethylCp) (t-butylamido)] TiCl 2 compound.
1H-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s,1 H-NMR (CDC1 3 ): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 to 0.8 (m), 1.4 (s,
9H), 1.2 (s, 9H), 0.7 (s, 3H) 흔성 담지 메탈로센 촉매의 제조 9H), 1.2 (s, 9H), 0.7 (s, 3H) Preparation of Common Supported Metallocene Catalysts
제조예 1  Preparation Example 1
실리카 (Grace Davison사 제조 XPO 2412)를 800°C에서 15시간 진공을 가한 상태에서 탈수하였다. 실리카 l .Og을 3개의 유리 반응기에 넣고 여기에 핵산 10mL를 넣고 상기 합성예 1에서 수득된 제 1 메탈로센 화합물 O.lg이 녹아 있는 핵산 용액을 10mL씩 넣은 다음 90°C에서 4시간 교반하며 반웅을 시켰다. 반응이 끝난 후 교반을 멈추고 핵산을 층 분리하여 제거한 후 20 mL의 핵산 용액으로 세 차례 세척한 후 감압하여 핵산을 제거하여 고체 분말을 얻었다. 여기에 를루엔 용액 속에 12 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 , 40 °C에서 교반하며 천천히 반웅시켰다. 그 후 층분한 양의 를루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거한 후 50°C에서 감압하여 남아 있는 틀루엔을 제거하였다. Silica (XPO 2412, manufactured by Grace Davison) was dehydrated under vacuum at 800 ° C. for 15 hours. 10 g of silica was added to three glass reactors, 10 mL of the nucleic acid solution in which the first metallocene compound O.lg obtained in Synthesis Example 1 was dissolved, and then stirred at 90 ° C. for 4 hours. Replied. After the reaction was completed, the stirring was stopped, the nucleic acid was separated by layer, and then washed three times with 20 mL of the nucleic acid solution. A powder was obtained. To this was added a solution of methylaluminoxane (MAO) containing 12 mmol aluminum in toluene solution, which was slowly reacted with stirring at 40 ° C. After washing with a sufficient amount of toluene to remove the unreacted aluminum compound and then decompression at 50 ° C to remove the remaining toluene.
그런 다음 흔성 촉매를 제조하기 위하여, 상기에서 얻어진 담지 촉매에 합성예 2에서 제조한 제 2 메탈로센 화합물 O.lg이 녹아 있는 를루엔 용액을 유리 반응기에 가하여 40°C에서 교반하여 반웅시켰다. 그 후 충분한 양의 틀루엔으로 세척한 후 진공 건조하여 고체 분말을 얻었다. 이렇게 제조된 최종 촉매는 중합에 직접 사용하거나, 30psig의 에틸렌을 2분간 가하고 1시간 동안 상온에서 수행되는 예비 중합에 사용하였다. 폴리올레핀 펠렛와 제조 Then, to prepare a common catalyst, a toluene solution in which the second metallocene compound O.lg prepared in Synthesis Example 2 was dissolved in the supported catalyst obtained above was added to a glass reactor and stirred at 40 ° C. to react. Thereafter, the mixture was washed with a sufficient amount of toluene and dried in vacuo to obtain a solid powder. The final catalyst thus prepared was used directly for the polymerization, or 30 psig of ethylene was added for 2 minutes and used for the preliminary polymerization carried out at room temperature for 1 hour. Manufacture with polyolefin pellets
실시예 1  Example 1
상기 제조예 1에서 수득된 흔성 담지 메탈로센 촉매를 단일 루프 슬러리 중합 공정에 투입하여 폴리올레핀을 제조하였다.  The common supported metallocene catalyst obtained in Preparation Example 1 was introduced into a single loop slurry polymerization process to prepare a polyolefin.
반응기의 플러싱은 핵산 내 존재하는 이물질의 농도가 50ppm 이하가 될 때까지 수행하였고, 하이드로카르빌 알루미늄 스캐빈져인 트리에틸알루미늄 (triethylaluminium)과 반응기 내 수분의 비율은 1 :1 몰비로 하였고, 상기 하이드로카르빌 알루미늄 스캐빈져의 농도는 0.2 내지 0.3 mM 범위 내를 유지하도록 하였으며, 수소 가스는 60mL/min의 속도로 투입하였다. 공단량체로는 1-핵센을 사용하였다. The flushing of the reactor was carried out until the concentration of foreign substances in the nucleic acid was less than 50ppm , the ratio of triethylaluminium (hydrocarbyl aluminum scavenger) and water in the reactor was 1: 1 molar ratio, The concentration of the hydrocarbyl aluminum scavenger was kept in the range 0.2 to 0.3 mM, hydrogen gas was added at a rate of 60mL / min. 1-nucleene was used as the comonomer.
수득된 ' 폴리올레핀의 PDI(M Mn)을 측정하여 , 하기 표 1에 함께 정리하였다. By measuring the PDI (M Mn) of the obtained "polyolefin, and the product was summarized in Table 1.
상기 폴리을레핀 (PE)에 1차 산화방지제 (Irganox 1010, CIBA 사) 750ppm, 2차 산화방지제 (Irgafos 168, CIBA사) l,500ppm과 가공조제 (SC110, Ca-St, 두본유화 (주;)) 3,000ppm을 첨가하고 이축 압출기 (W&P Twin Screw Extruder, 75파이, L/D =36)를 사용하여 170 내지 22CTC의 압출 은도에서 제립하여 펠렛을 제조하였다.  750ppm of primary antioxidant (Irganox 1010, CIBA), l, 500ppm of secondary antioxidant (Irgafos 168, CIBA) and processing aid (SC110, Ca-St, Dubon Emulsion Co., Ltd.) ) Pellets were prepared by adding 3,000 ppm and granulating in an extruded silver of 170 to 22 CTC using a twin screw extruder (W & P Twin Screw Extruder, 75 pi, L / D = 36).
수지 펠렛의 가공성 압출 테스트는 Haake Single Screw Extruder(19파이, L/D = 25)를 사용하여, 240 내지 280 °C (Temp, profile ( C): 240/260/270/280)의 조건에서 하였다. 또한, 멀티필라멘트 성형은 단축압출기 (한국이엠 Monofilament M/C, 90파이, L/D=30)를 이용하여 연신비 (Draw-Ratio) 22배의 조건 하에 240 내지 280°C(Temp. profile(°C):The processability extrusion test of resin pellets was carried out using a Haake Single Screw Extruder (19 pi, L / D = 25) at a temperature of 240 to 280 ° C (Temp, profile (C): 240/260/270/280). Under conditions. In addition, multifilament molding is performed using a single screw extruder (Em Monofilament M / C, 90 pi, L / D = 30) at 240 to 2 8 0 ° C (Temp.profile) under a draw rate of 22 times. ( ° C):
240/260/270/280)의 압출 온도에서 500 데니어 (denier)의 멀티필라멘트 규격이 되도록 압출 성형하였다. 실시예 2 Extruded to a 500 denier multifilament specification at an extrusion temperature of 240/260/270/280). Example 2
상기 실시예 1에서 제조된 폴리올레핀 펠뻣에 대하여, 멀티필라멘트 제조시 Draw-Ratio 연신비를 20배로 수 * ¾ ¾웁—ᅳ제_외하11는 _실人1예 1과 동일한 공정을 반복하였다. 실시예 3 Example 1 can be a multi-filament manufacturing Draw-Ratio draw ratio of the manufactured polyolefin from the 20-fold pelppeot * ¾ ¾ oof-euje _ oeha 11 was repeated the same process as i _ room人1 Example 1. Example 3
상기 실시예 1에서 제조된 폴리올레핀 펠뻣에 대하여, 멀티필라멘트 제조시 Draw-Ratio 연신비를 18배로 수행한 것을 제외하고는 실시예 1과 동일한 공정을 반복하였다. 실시예 4  The same process as in Example 1 was repeated with respect to the polyolefin pelvis prepared in Example 1, except that 18 times the Draw-Ratio elongation ratio was performed when manufacturing the multifilament. Example 4
상기 실시예 1에서 제조된 폴리을레핀을 펠헷에 대하여, 멀티필라멘트 제조시 Draw-Ratio 연신비 16배로 수행한 것을 제외하고는 실시예 1과 동일한 공정을 반복하였다. 비교예 1  The same process as in Example 1 was repeated except that polyolefin was prepared in Example 1 with respect to the pellets, and the draw-ratio elongation ratio was 16 times when the multifilament was manufactured. Comparative Example 1
상기 실시예 1에서, 하이드로카르빌 알루미늄 스캐빈져인 트리에틸알루미늄 (triethylaluminium)과 반응기 내 수분의 몰비를 0.5: 1로 하고, 상기 하이드로카르빌 알루미늄 스캐빈져의 농도는 0.01 mM로 유지하며, 수소 가스를 20mL/min의 속도로 투입한 것을 제외하고는 실시예 1과 동일한 공정으로 폴리을레핀을 제조하였다.  In Example 1, the molar ratio of triethylaluminium, which is a hydrocarbyl aluminum scavenger, and water in the reactor is 0.5: 1, and the concentration of the hydrocarbyl aluminum scavenger is maintained at 0.01 mM, Polyolefin was prepared in the same manner as in Example 1 except that hydrogen gas was added at a rate of 20 mL / min.
이후 실시예 1과 동일한 과정으로 펠렛을 제조하고, Draw-Ratio 연신비를 16배로 하여 멀티필라멘트를 제조하였다. 비교예 2 Thereafter, pellets were manufactured by the same process as in Example 1, and multifilaments were prepared by increasing draw-ratio draw ratio to 16 times. Comparative Example 2
상기 실시예 1에서 메탈로센 촉매 대신 지글러 -나타 촉매 (마그네슘 담체에 담지되며, TiC4 활성점을 가진 지글러-나타)를 이용하여 중합한 폴리올레핀을 입수하여 멀티필라멘트 조성물을 제조한 것을 제외하고는 실시예 1과 동일한 공정을 수행하였다. <실험예 > Except for preparing a multifilament composition by obtaining a polyolefin polymerized in Example 1 using a Ziegler-Natta catalyst (supported on a magnesium carrier, Ziegler-Natta having a TiC 4 active site) instead of a metallocene catalyst. The same process as in Example 1 was performed. Experimental Example
상기 실시예 1 내지 4 및 비교예 1 내지 2의 수지 또는 섬유에 대하여 다음의 방법으로 물성을 평가하여 그 결과를 표 2에 나타내었다.  The physical properties of the resins or fibers of Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated by the following methods, and the results are shown in Table 2.
1) Gel counting 분석 : single screw extruder(Dr. Collin사 Teachline E20T)를 이용하여 폴리을레핀 펠렛을 190°C에서 10분에 걸쳐 겔 (gel) 분석용 캐스팅 필름 (casting film, 54mm * 33m)으로 제조하고, 필름의 가장 자리 부분을 제외하고 중간 lm2 면적 (약 30mm * 약 33m)에 발생한 겔의 개수를 extruder에 달린 레이저 분석기로 측정하였다. 이러한 과정을 3회 반복한 후 평균값을 겔 개수로 하였다. 이때, 겔은 상기 레이저 분석기에서 필름의 나머지 부분과 굴절율 차이가 발생하는 영역을 겔로 정의하였으며, 입경이 250 이상 650 미만인 겔와 개수를 카운트하였다. 1) Gel counting analysis: Using a single screw extruder (Teachline E20T from Dr. Collin), polyolefin pellets were prepared as a casting film for casting gel (cast film, 54mm * 33m) at 190 ° C for 10 minutes. The number of gels generated in the middle lm 2 area (about 30 mm * about 33 m) except for the edge of the film was measured by a laser analyzer attached to the extruder. This process was repeated three times and the average value was taken as the number of gels. In this case, the gel was defined as a gel region in which the refractive index difference occurs with the rest of the film in the laser analyzer, and counted the number of gels with a particle diameter of 250 or more and less than 650.
2) 밀도: ASTM D 1505  2) Density: ASTM D 1505
3) 용융지수 (Ml, 2.16 kg/1 Omin): 측정 온도 190°C , ASTM D 1238 3) Melt Index (Ml, 2.16 kg / 1 Omin): Measured temperature 190 ° C, ASTM D 1238
4) 분자량, 분자량분포: 측정 온도 160°C , 겔투과 크로마토그래피 (GPC)를 이용하여 수 평균 분자량, 중량 평균 분자량, Z 평균 분자량을 측정하였다. 분자량 분포는 증량 평균 분자량과 수 평균 분자량의 비로 나타내었다. 4) Molecular weight, molecular weight distribution: The number average molecular weight, the weight average molecular weight, and the Z average molecular weight were measured using a measurement temperature of 160 ° C. and gel permeation chromatography (GPC). The molecular weight distribution was expressed as the ratio of the weight average molecular weight to the number average molecular weight.
5) 강도 (tenacity, 단위: gf/denier): 강도는 실의 파단점 강도를 뜻하며, 5) Tenacity (unit: gf / denier): Strength refers to the breaking strength of the yarn.
ASTM D 638 기준으로 측정하였다. 이 때 시험속도는 200 mm/min으로 하였으며, 한 시편당 6회 측정하여 그 평균치를 취하였다. 참고로 데니어 (denier)는 실의 굵기를 표시하는데 사용되는 국제단위로 표준길이 9,000m에 단위중량 lg인 것을 1 데니어 (denier)로 한다. Measured based on ASTM D 638. At this time, the test speed was 200 mm / min, and the average of six measurements per specimen was taken. For reference, denier is an international unit used to indicate the thickness of a yarn. The denier is a unit weight lg with a standard length of 9,000m.
6) 연신비 (Draw-ratio): 인취를 회전속도 (RPM2)와 송취를 회전속도 (PRMl) 비율 (RPM2/RPM1)로 측정하였다. 6) Draw-ratio: draws the rotational speed (RPM2) Rotational speed (PRMl) ratio (RPM2 / RPM1) was measured.
6) 사절 (fiber cut): 압출 제품의 필라멘트 성형시 사절 (fiber cut)o 발생하는지 여부를 측정하였다.  6) Fiber cut: Whether or not fiber cut occurred during filament molding of the extruded product was measured.
【표 1 ] Table 1
Figure imgf000020_0001
Figure imgf000020_0001
【표 2】 Table 2
Figure imgf000020_0002
상기 표 1에서 보듯이, 본 발명에 따른 실시예 1 내지 4의 폴리을레핀 펠렛은 입경이 250 이상 650 미만인 겔이 단위 면적 (lm2) 당 50개 미만으로 발생하였고, 연신비 16 내지 22배, 강도가 12 내지 18 g/denier인 고강력사, 고연신 멀티필라멘트로 성형할 수 있다.
Figure imgf000020_0002
As shown in Table 1, in the polyolefin pins of Examples 1 to 4 according to the present invention, a gel having a particle diameter of 250 or more and less than 650 occurred in less than 50 gels per unit area (lm 2 ), and the draw ratio was 16 to 22 times. It can be molded into a high strength, high-strength multifilament having a 12 to 18 g / denier.
반면, 비교예 1 및 2에서는, 입경이 250 이상 650 mi 미만인 겔이 단위 면적 (kn2) 당 200 개 정도로 겔이 다수 발생하여 필라멘트 형성시 섬유가 끊어지는 현상인 사절이 발생하여 연신비와 강도는 측정이 불가능하였다. On the other hand, in Comparative Examples 1 and 2, a large number of gels having a particle size of 250 or more and less than 650 mi were formed at about 200 gels per unit area (kn 2 ), and thus the trimming, which is a phenomenon of breaking fibers when filaments were formed, resulted in an elongation ratio and strength. Measurement was not possible.
이와 같이 비교예ᅵ 1ᅳ및ᅵ 2은 다수의ᅳ겔—형성ᅵ으로ᅩ인 _하예 멀_티필라멘트 가공시 겔 (미용융 중합체)에 의해 고연신이 힘들고 최대 물성을 실현하기 전 임계점에서 이미 사절이 발생되는 것을 확인할 수 있었다. The same i Comparative Example i 1 eu and i 2 are a number of eu-gel to achieve the formation i to o the _ haye far _ maximum physical properties stretching difficult and by T filaments during processing gel (unmelted polymer) before the critical point We can see that the trimming already occurs in.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
밀도가 0.94 내지 0.96 g/cm3 이고; Density is 0.94 to 0.96 g / cm 3 ;
분자량 분포 (PDI)는 2.0 내지 3.0이고;  Molecular weight distribution (PDI) is from 2.0 to 3.0;
용융 지수( 1:1901;,  Melt index (1: 1901 ;,
2.161 )는 0.1 내지 1.5g/10min이며; 2.161) is 0.1 to 1.5 g / 10 min;
190°C에서 캐스팅 필름으로 제조하였을 때, 입경이 250 이상 650 미만인 겔 (gel)의 개수가 단위 면적 (m2)당 50개 미만인, 섬유 제조용 폴리올레핀 펠렛. 【청구항 2】 Polyolefin pellets for making fibers, when the number of gels having a particle size of 250 or more and less than 650 when produced in a casting film at 190 ° C is less than 50 per unit area (m 2 ). [Claim 2]
제 1항에 있어서, 중량 평균 분자량이 10만 내지 30만 g mol인, 섬유 제조용 폴리올레핀 펠렛.  The polyolefin pellets for making fibers according to claim 1, wherein the weight average molecular weight is 100,000 to 300,000 g mol.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 폴리올레핀은 메탈로센 촉매, 하이드로카르빌 알루미늄 스캐빈져, 및 수소 가스 하에 을레핀 단량체를 중합하여 수득된 것인, 섬유 제조용 폴리을레핀 펠렛.  According to claim 1, wherein the polyolefin is a metallocene catalyst, a hydrocarbyl aluminum scavenger, and obtained by polymerizing the relefin monomer under hydrogen gas, polyolefin pellets for making fibers.
【청구항 4] [Claim 4]
제 3항에 있어서, 상기 하이드로카르빌 알루미늄 스캐빈져 및 반응기 내 수분 (H20)의 몰 비율은 0.8:1 내지 1.2:1인, 섬유 제조용 폴리을레핀 펠렛. 4. The polyolefin pellets for making fibers according to claim 3, wherein the hydrocarbyl aluminum scavenger and the molar ratio of water (H 2 0) in the reactor are 0.8: 1 to 1.2: 1.
【청구항 5】 [Claim 5]
제 3항에 있어서, 상기 수소 가스의 투입량은 30 내지 90 L/min인, 섬유 제조용 폴리을레핀 펠렛.  According to claim 3, The hydrogen gas input amount of 30 to 90 L / min, polyolefin pellets for fiber production.
【청구항 6] [Claim 6]
거 13항에 있어서, 상기 메탈로센 촉매는 담체에 서로 다른 2종 이상의 메탈로센 촉매가 담지된 흔성 담지 메탈로센 촉매인, 섬유 제조용 폴리을레핀 펠벳. According to claim 13, wherein the metallocene catalyst is a common supported metallocene catalyst on which two or more different metallocene catalysts are supported on a carrier, polyolefin pinet for making fibers.
【청구항 7] [Claim 7]
제 1항 내지 제 6항 중 어느 한 항의 폴리을레핀을 포함하는 섬유. Fiber comprising the polyolefin of any one of claims 1 to 6 .
【청구항 8】 [Claim 8]
제 7항에 있어서, ASTM D 638에 따라 측정한 강도 (tenacity)가 9 내지 20 gf/denier인 섬유.  The fiber of claim 7 wherein the tenacity is measured in accordance with ASTM D 638 from 9 to 20 gf / denier.
【청구항 9】 [Claim 9]
게 7항에 있어서, 연신비 (draw ratio, RPM2/RPM1)가 10 내지 24배인 섬유.  The fiber of claim 7 wherein the draw ratio (RPM2 / RPM1) is 10 to 24 times.
【청구항 10】 [Claim 10]
제 8항의 섬유를 포함하는 멀티필라멘트 재료.  A multifilament material comprising the fibers of claim 8.
[청구항 11】 [Claim 11]
제 10항에 있어서, 상기 멀티필라멘트 재료는 지오그리드, 섬유돌망태, 보호장갑, 해양용 로프, 어망, 또는 산자용 직물인, 멀티필라멘트 재료.  The multifilament material of claim 10, wherein the multifilament material is a geogrid, fiber gabions, protective gloves, marine ropes, fishing nets, or textile fabrics.
PCT/KR2015/013529 2014-12-10 2015-12-10 Polyolefin pellet for preparing fiber, and fiber comprising same WO2016093644A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580050649.7A CN106715480B (en) 2014-12-10 2015-12-10 Polyolefin pellets for producing fibers and fibers comprising the same
EP15867730.2A EP3199556B1 (en) 2014-12-10 2015-12-10 Fiber comprising a polyolefin pellet
JP2017515788A JP6458137B2 (en) 2014-12-10 2015-12-10 Polyolefin pellets for fiber production and fibers containing the same
US15/509,994 US10570532B2 (en) 2014-12-10 2015-12-10 Polyolefin pellet for preparing fiber and fiber comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0177145 2014-12-10
KR20140177145 2014-12-10
KR1020150175284A KR101783897B1 (en) 2014-12-10 2015-12-09 Polyolefin pellet for preparing fiber and fiber comprising the same
KR10-2015-0175284 2015-12-09

Publications (2)

Publication Number Publication Date
WO2016093644A1 true WO2016093644A1 (en) 2016-06-16
WO2016093644A8 WO2016093644A8 (en) 2016-08-11

Family

ID=56107745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013529 WO2016093644A1 (en) 2014-12-10 2015-12-10 Polyolefin pellet for preparing fiber, and fiber comprising same

Country Status (1)

Country Link
WO (1) WO2016093644A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058979A1 (en) * 2003-12-11 2005-06-30 Basell Poliolefine Italia S.R.L. Liquid phase process for polymerizing olefins
KR20080030629A (en) * 2005-07-27 2008-04-04 바셀 폴리올레핀 이탈리아 에스.알.엘 Polymerization process for preparing polyolefins
JP2009543927A (en) * 2006-07-19 2009-12-10 エクソンモービル・ケミカル・パテンツ・インク Method for producing polyolefin using metallocene catalyst
JP2010138385A (en) * 2008-11-11 2010-06-24 Sumitomo Chemical Co Ltd ETHYLENE-alpha-OLEFIN COPOLYMER AND FORMED BODY
KR20100121449A (en) * 2009-05-07 2010-11-17 주식회사 엘지화학 Olefin-based polymer and fiber comprising the same
WO2014186381A1 (en) * 2013-05-15 2014-11-20 Fina Technology, Inc. Single pellet polymeric compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005058979A1 (en) * 2003-12-11 2005-06-30 Basell Poliolefine Italia S.R.L. Liquid phase process for polymerizing olefins
KR20080030629A (en) * 2005-07-27 2008-04-04 바셀 폴리올레핀 이탈리아 에스.알.엘 Polymerization process for preparing polyolefins
JP2009543927A (en) * 2006-07-19 2009-12-10 エクソンモービル・ケミカル・パテンツ・インク Method for producing polyolefin using metallocene catalyst
JP2010138385A (en) * 2008-11-11 2010-06-24 Sumitomo Chemical Co Ltd ETHYLENE-alpha-OLEFIN COPOLYMER AND FORMED BODY
KR20100121449A (en) * 2009-05-07 2010-11-17 주식회사 엘지화학 Olefin-based polymer and fiber comprising the same
WO2014186381A1 (en) * 2013-05-15 2014-11-20 Fina Technology, Inc. Single pellet polymeric compositions

Also Published As

Publication number Publication date
WO2016093644A8 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP5622841B2 (en) Olefin polymer and fiber containing the same
CN107428868B (en) Polyolefin for producing fibers and fibers comprising the same
US10865260B2 (en) Supported hybrid catalyst
US9732171B2 (en) Olefin-based polymer with excellent processability
JP6466566B2 (en) Method for producing polyolefin polymer for fiber production
KR101783897B1 (en) Polyolefin pellet for preparing fiber and fiber comprising the same
KR101362992B1 (en) Polyolefin with multi-modal molecular weight distributions and pipe comprising the same
CN111511783B (en) Ethylene/1-butene copolymer having excellent processability
KR101299650B1 (en) Polyolefin with multi-modal molecular weight distributions and preparation method thereof
WO2003037941A1 (en) Two-step polymerization process
KR101829884B1 (en) Polyolefin powder for preparing fiber and fiber comprising the same
WO2016093644A1 (en) Polyolefin pellet for preparing fiber, and fiber comprising same
US20190119421A1 (en) Ethylene/alpha-olefin Copolymer Having Excellent Processibility
WO2016204387A1 (en) Polyolefin for fiber preparation and fiber comprising same
WO2016052982A1 (en) Preparation method for polyolefin polymer for fiber production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867730

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015867730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015867730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15509994

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017515788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE