WO2016093526A1 - Touch screen panel - Google Patents

Touch screen panel Download PDF

Info

Publication number
WO2016093526A1
WO2016093526A1 PCT/KR2015/012871 KR2015012871W WO2016093526A1 WO 2016093526 A1 WO2016093526 A1 WO 2016093526A1 KR 2015012871 W KR2015012871 W KR 2015012871W WO 2016093526 A1 WO2016093526 A1 WO 2016093526A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sensor
screen panel
touch screen
sensor pattern
Prior art date
Application number
PCT/KR2015/012871
Other languages
French (fr)
Korean (ko)
Inventor
이성호
Original Assignee
주식회사지2터치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사지2터치 filed Critical 주식회사지2터치
Publication of WO2016093526A1 publication Critical patent/WO2016093526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to a touch screen panel for detecting a capacitive touch input of a finger or a touch input tool having a similar conductive property. More particularly, the present invention relates to a touch drive by differently arranging areas of a sensor pattern mounted on a touch panel. The present invention relates to a touch screen panel that can uniformize the magnitude of the touch signal received from the IC.
  • a touch screen panel is attached to a display device such as a liquid crystal display (LCD), a plasma display panel (PDP), an organic light emitting diode (OLED), an active matrix organic light emitting diode (AMOLED), or the like.
  • a display device such as a liquid crystal display (LCD), a plasma display panel (PDP), an organic light emitting diode (OLED), an active matrix organic light emitting diode (AMOLED), or the like.
  • a signal corresponding to a corresponding position is generated when an object such as a finger or a pen is touched.
  • Touch screen panels are used in a wide range of applications, such as small portable terminals, industrial terminals, and digital information devices (DIDs).
  • the capacitive touch screen panel has a high transmittance, it can recognize a soft touch (soft touch), and multi-touch and gesture recognition has the advantage of expanding the market gradually.
  • a transparent conductive film is formed on upper and lower surfaces of a transparent substrate 2 made of plastic, glass, or the like, and a voltage applying metal electrode 4 is formed at each of four corners of the transparent substrate 2.
  • the transparent conductive film is formed of a transparent metal such as indium tin oxide (ITO) or antimony tin oxide (ATO).
  • the metal electrodes 4 formed at four corners of the transparent conductive film are formed by printing a conductive metal having a low resistivity such as silver (Ag).
  • a resistance network is formed around the metal electrodes 4. The resistance network is formed in a linearization pattern in order to transmit control signals evenly over the entire surface of the transparent conductive film.
  • a protective film is coated on the transparent conductive film including the metal electrode 4.
  • the capacitive touch screen panel when an alternating current voltage of high frequency is applied to the metal electrode 4, the capacitive touch screen panel spreads on the front surface of the transparent substrate 2. At this time, if you lightly touch the transparent conductive film on the upper surface of the transparent substrate 2 with the finger 8 or the conductive touch input tool, a certain amount of current is absorbed into the body and the current sensor built in the controller 6 detects the change of current. The touch points are recognized by calculating the amount of current in each of the four metal electrodes 4.
  • the capacitive touch screen panel as shown in FIG. 1 is a method of detecting the magnitude of the micro current, and thus requires an expensive detection device, which increases the price and makes it difficult to multi-touch to recognize a plurality of touches.
  • the capacitive touch screen panel as shown in FIG. 2 is mainly used.
  • the touch screen panel of FIG. 2 includes a linear sensor pattern 5a in the horizontal direction, a linear sensor pattern 5b in the longitudinal direction, and a touch drive IC 7 for analyzing a touch signal.
  • the touch screen panel detects the magnitude of the capacitance formed between the linear sensor pattern 5 and the finger 8, and scans the linear sensor pattern 5a in the horizontal direction and the linear sensor pattern 5b in the longitudinal direction. By detecting the signal, a plurality of touch points can be recognized.
  • the touch screen panel as described above is mounted and used on a display device such as an LCD, a phenomenon in which signal detection is difficult due to noise occurs.
  • the LCD uses a common electrode, and in some cases, an AC common voltage Vcom is applied to the common electrode.
  • the common voltage Vcom of the common electrode acts as noise when detecting the touch point.
  • FIG. 3 shows an embodiment in which a conventional capacitive touch screen panel is installed on an LCD.
  • the display device 200 has a structure in which a liquid crystal is sealed between the lower TFT substrate 205 and the upper color filter 215 to form the liquid crystal layer 210.
  • the TFT substrate 205 and the color filter 215 are bonded by the sealant 230 at the outer portion thereof.
  • a polarizing plate is attached to the upper and lower sides of the liquid crystal panel, and in addition, a BLU (Back Light Unit) is installed.
  • BLU Back Light Unit
  • a touch screen panel is installed on the display device 200 as shown.
  • the touch screen panel has a structure in which the linear sensor pattern 5 is mounted on the upper surface of the substrate 1.
  • a protective panel 3 for protecting the linear sensor pattern 5 is attached on the substrate 1.
  • the touch screen panel is attached to an edge portion of the display device 200 through an adhesive member 9 such as a double adhesive tape (DAT), and forms an air gap 9a between the display device 200.
  • DAT double adhesive tape
  • a capacitance such as Ct is formed between the finger 8 and the linear sensor pattern 5.
  • a capacitance such as Cvcom is formed between the linear sensor pattern 5 and the common electrode 220 formed on the lower surface of the color filter 215 of the display device 200, and the linear sensor pattern 5 has a capacitance.
  • Cp which is an unknown parasitic capacitance due to capacitive coupling between patterns or manufacturing process factors, is also working.
  • a circuit such as the equivalent circuit of FIG. 4 is configured.
  • the conventional touch screen panel detects a touch by detecting a change amount of Ct, but Cvcom and Cp act as noise in detecting Ct.
  • an air gap 9a is disposed between the touch screen panel and the display device 200 as shown in FIG. 3.
  • a shielding layer is formed by applying ITO or the like to the lower surface of the substrate 1 of the touch screen panel, and the shielding layer is grounded with the ground signal.
  • the air gap 9a increases the thickness of the product and quality deterioration occurs.
  • a separate shielding layer and a manufacturing process are required to configure the shielding layer, an increase in manufacturing cost is caused.
  • the touch screen panel is embedded in the LCD, it is impossible to form the air gap 9a or the shielding layer, and thus it is impossible to manufacture the touch screen panel in the LCD or the like.
  • the sensor pattern of FIG. 5 is composed of only one sensor pattern 10, not the linear sensor pattern of FIG. 2.
  • the sensor pattern is connected to point P, which is a touch detection unit, connects an auxiliary capacitor (Caux) to point P, applies a driving voltage through the auxiliary capacitor, and touch capacitance between the sensor pattern 10 and the touch input tool.
  • (Ct) is added, the touch signal is detected by using a phenomenon that a difference occurs in the magnitude of the voltage or current detected by the touch detector according to the magnitude of the touch capacitance.
  • this detection method it is possible to detect a touch signal irrespective of noise by detecting a noise generated in a display device such as an LCD and avoiding a point of occurrence of the noise, or as shown in FIG. Since the amount of noise detected in one sensor pattern is smaller than the amount of noise detected in the plurality of sensor patterns, as shown in FIG. 5, the touch screen panel as shown in FIG. 6 may detect the touch signal less sensitive to noise. Do.
  • FIG. 5 illustrates an embodiment of a configuration of one sensor pattern, and a touch screen panel including a plurality of sensor patterns is configured as shown in FIG. 6.
  • the touch drive IC 30 includes a driver 31, a touch detector 14, a timing controller 33, a signal processor 35, and a memory 28, and a common voltage detector 43. ), A common voltage receiver 45, and an alternating voltage generator 37.
  • the touch drive IC 30 includes a common voltage detector 43, a common voltage receiver 45, and an alternating voltage generator 37 as shown in FIG. 6, and is selected by the selector 47.
  • the detector 43, the common voltage receiver 45, or the alternate voltage generator 37 may be configured to be selected.
  • the driving signal acquired by the touch drive IC 30 is transferred to the CPU 40.
  • the CPU 40 may be a CPU of a display device, a main CPU of a computer device, or a CPU of the touch screen panel itself.
  • a touch processor may be processed by embedding a microprocessor such as 8bit or 16bit.
  • the system configuration further includes a power supply unit for generating a high or low voltage of signals for detecting a touch input.
  • the microprocessor embedded in the touch drive IC 30 recognizes touch points, gestures such as zoom, rotation, and move by calculating touch input coordinates, and reference coordinates (or center point coordinates). ) And gestures can be transferred to the main CPU.
  • gestures such as zoom, rotation, and move by calculating touch input coordinates, and reference coordinates (or center point coordinates).
  • gestures can be transferred to the main CPU.
  • the timing controller 33 generates a time division signal of several tens of ms or less, and the signal processor 35 transmits and receives a signal to each sensor pattern 10 through the driver 31.
  • the driver 31 supplies the on / off control signal Vg of the charging means 12 and the precharge signal Vpre.
  • the on / off control signal Vg is time-divided by the timing controller 33 and is supplied sequentially or non-sequentially for each sensor pattern 10.
  • the memory unit 28 stores an initial value which is a signal when no touch occurs in each sensor pattern 10 or stores a signal when a touch occurs, and provides a unique absolute address for each sensor pattern 10.
  • the memory 28 may temporarily store the coordinate values obtained with only one, or may store the reference value when no touch occurs.
  • the plurality of memory means may be configured to separately store a reference value when no touch occurs and a detection value when a touch occurs.
  • the illustrated embodiment illustrates the case where the sensor pattern 10 has a resolution of 4 * 5, since the sensor pattern 10 actually has a higher resolution, a signal may be lost while processing many signals.
  • the signal processor 35 when the signal processor 35 is in a “busy” state, the signal may not be recognized because the touch driving signal is not recognized.
  • the memory unit 28 may prevent the loss of such a signal.
  • the signal processor 35 temporarily stores the detected touch signal in the memory unit 28. After scanning the entire sensor pattern 10, the memory unit 28 is referred to to determine whether there is a missing signal. If the touch coordinates are omitted in the signal processing but stored in the memory 28, the signal processor 35 recognizes the touch coordinates as a normal input.
  • the common voltage receiver 45 directly receives the common voltage information of the common electrode 220 from the display device 200.
  • information such as the start point, magnitude, rising section, and falling section of the common voltage can be obtained very easily, and the signal processing unit 35 can easily process signals in conjunction with the rising and falling sections of the common voltage.
  • a burden arises in that the display apparatus 200 needs to transmit common voltage information.
  • the alternating voltage generator 37 may apply the alternating voltage to the common electrode 220 by force.
  • the alternating voltage generation unit 37 applies a voltage level alternated at a predetermined frequency to the common electrode 220 according to the time division signal of the timing controller 33.
  • the frequency of the alternating voltage applied to the common electrode 220 can be adjusted by adjusting a resistor.
  • the signal processor 35 can easily process the signal in association with the rising and falling sections of the common voltage.
  • the burden of sending a common voltage to the display device 200 is generated.
  • the common voltage detector 43 automatically detects the common voltage information, it is not necessary to exchange information related to the common voltage with the display device.
  • the signal processor 35 applies a driving voltage delivered to the auxiliary capacitor while avoiding the rising or falling edge of the common voltage.
  • the common voltage detector 43 may have various circuit configurations.
  • the sensor signal line 22 is typically connected between the sensor patterns 10 in the active region in which the sensor patterns 10 are installed and connected to the touch drive IC 30. If the touch screen panel is separately installed on the display device or embedded in the display device, the sensor signal line 22 should be formed of ITO or indium zinc oxide (IZO), which is a transparent signal line, at least in the visible region.
  • ITO indium zinc oxide
  • IZO indium zinc oxide
  • the signal line connected to the sensor pattern 10 (1, 1) located at the top and the sensor pattern 10 (1, 5) located at the bottom thereof are provided. Since the length of the connected signal line is different, the wiring resistance of the signal line is different for each sensor pattern 10. When the resistance value increases, a delay occurs in the detection of the touch signal. Therefore, the width of the sensor signal line 22 that is wired to the top is wider than the width of the sensor signal line 22 that is wired to the bottom, so that the width of the sensor signal line 22 that is wired to the top is increased.
  • the touch processor detects the touch signal more easily.
  • the opposing area of the display device and the sensor signal line 22 connected to the sensor pattern and the sensor pattern increases, which leads to an increase in the common electrode capacitance Cvcom, so that the touch signal detected in each part of the touch screen panel is increased. Problems arise that are not even.
  • an application hereinafter referred to as an application that uses the area detected by the touch.
  • Such an application may be an application that steps on or accelerates the accelerator pedal of a vehicle by using a change in the touch area when the finger is touched and released. As described above, if the area detected in each part of the touch screen panel is changed in value, the speed or brake response of the vehicle by the touch will be changed in the area where the area is small and the area is detected.
  • the display device 200 has a common electrode 220.
  • the common electrode 220 may be a Vcom electrode of the LCD or another type of electrode. 10 illustrates an LCD among display devices.
  • the display device 200 illustrated in FIG. 7 has a structure in which a liquid crystal is encapsulated between a lower TFT substrate 205 and an upper color filter 215 to form a liquid crystal layer 210.
  • the TFT substrate 205 and the color filter 215 are bonded by the sealant 230 at the outer portion thereof.
  • a polarizing plate may be attached to the upper and lower sides of the liquid crystal panel, and in addition, optical sheets constituting a BLU and a brightness enhancement film may be installed together with the BLU.
  • a substrate 50 of the touch screen panel is installed on the display device 200.
  • the substrate 50 is attached to the upper portion of the display device 200 through an adhesive member 57 such as a double adhesive tape (DAT) at an outer portion thereof.
  • An air gap 58 is formed between the substrate 50 and the display device 200.
  • the common electrode 220 of the display device 200 is applied with a common voltage level that is alternately at a predetermined frequency and whose magnitude is changed or has a predetermined magnitude of DC.
  • a common voltage level that is alternately at a predetermined frequency and whose magnitude is changed or has a predetermined magnitude of DC.
  • the common voltage of the common electrode 220 is alternated as shown in FIG. 5, and an LCD such as a notebook or a monitor / TV that performs dot inversion uses a common voltage of DC level, which is a certain voltage.
  • a common electrode capacitance Cvcom is formed between the sensor pattern 10 and the common electrode 220 of the display device 200. If a precharge signal is applied to the sensor pattern 10, the common electrode capacitance Cvcom has a predetermined voltage level due to the charging voltage. At this time, since one end of the common electrode capacitance Cvcom is grounded with the common electrode 220, when the common electrode 220 is an alternating voltage, the common electrode capacitance Cvcom is changed by an alternating voltage applied to the common electrode 220. The potential at the other end of the sensor pattern 10 will alternate, and if the common electrode is DC, the potential at the sensor pattern 10 will not alternate.
  • FIG. 7 a protective layer 24 for protecting the sensor pattern 10 is illustrated.
  • the touch signal is detected by P in the circuit diagram of FIG. 5, that is, the touch detector 14 by the following equation.
  • ⁇ Equation 1> is a touch signal detected by the touch detector 14 when the touch is not touched
  • ⁇ Equation 2> is when the touch by the finger That is, the touch signal detected by the touch detector 14 when the finger and the sensor pattern 10 face each other.
  • the difference between ⁇ Equation 1> and ⁇ Equation 2> is the difference in the presence or absence of the touch capacitance Ct in the denominator.
  • the touch capacitance (Ct) occurs by touch, it is determined according to ⁇ Equation 2>. Since the magnitude of the detected signal is different, it is possible to calculate the magnitude of the touch signal by calculating it.
  • the width of the sensor signal line 22 varies for each position of the sensor pattern 10 so as to equalize the resistance of the sensor signal line 22.
  • the sum of the areas of the pattern 10 and the sensor signal line 22 becomes larger as the long distance from the touch drive IC 30.
  • the larger the distance detected from the touch drive IC is for the same touch area, and the shorter the distance from the touch drive IC, the larger the detected signal for the same touch area. Can cause different problems.
  • the present invention has been proposed in order to solve the problems of the conventional capacitive touch screen panel as described above, by changing the size of the sensor pattern 10 constituting the touch screen panel for each position facing the touch drive IC (
  • the present invention provides a touch detection method for equally acquiring a magnitude of a touch signal detected by varying the magnitude of Ct (or a second touch signal value obtained through calculation based on this) regardless of the position of the touch screen panel. There is a purpose.
  • the touch screen panel of the present invention since the magnitude of the touch signal detected at any point of the touch screen panel is constant regardless of the occupied area of the sensor signal line 22 connected to the sensor pattern 10, the application using the touch signal. In such an embodiment, it is possible to supply a stable signal in which the inflection point of the signal does not occur.
  • a uniform touch signal can be output regardless of the position of the touch screen panel, and ultimately, more accurate touch coordinates can be calculated.
  • FIG. 1 is a perspective view showing an example of a conventional touch screen panel.
  • FIG. 2 is a plan view showing another example of a conventional touch screen panel.
  • FIG. 3 is a side cross-sectional view illustrating an example in which the touch screen panel (including the linear sensor pattern 5) of FIG. 2 is installed on a display device.
  • FIG. 4 is an equivalent circuit diagram of detecting touch capacitance in FIG. 3.
  • FIG. 5 is an equivalent circuit diagram for extracting a touch in a panel having a sensor pattern 10 separated from each other in comparison to the touch screen panel of FIG. 2.
  • each sensor pattern 10 is separately formed.
  • FIG. 7 is a side cross-sectional view illustrating an example in which the touch screen panel (including separate sensor patterns 10) of FIG. 6 is installed on a display device.
  • FIG. 8 is a side cross-sectional view (FIG. 8A) and a plan view (FIG. 8B) of a touch screen panel according to an exemplary embodiment of the present invention.
  • FIG. 9 is a diagram schematically illustrating a configuration of a sensor pattern and a sensor signal line of a touch screen panel according to the present invention.
  • FIG. 10 is a diagram schematically illustrating a method for calculating capacitance generated by a touch according to the present invention.
  • FIG. 11 is a diagram schematically illustrating another exemplary embodiment of a configuration of a sensor pattern and a sensor signal line of a touch screen panel according to the present invention.
  • FIG. 12 is an embodiment of a method for interconnecting a sensor signal line and a touch drive IC according to the present invention.
  • a touch detector to detect whether a touch is detected by detecting a difference between voltage signals received according to whether the touch capacitance is formed;
  • the area of the sensor pattern may vary depending on a distance from the touch detector.
  • the area of the sensor pattern is increased in proportion to the distance from the touch detector.
  • the width of the sensor signal line is increased in proportion to each length, but the width of the sensor signal line is increased in proportion to the distance from the touch detector.
  • Spacing between two neighboring sensor signal lines may vary depending on the width of a wider sensor signal line among two neighboring sensor signal lines.
  • the size of the common electrode capacitance Cvcom at the position where the sensor pattern is disposed is considered.
  • the size of the sensor pattern is characterized in that the size of the parasitic capacitance (Cp) generated in the sensor pattern.
  • the sensor signal line and the sensor pattern may be formed in a single layer using a single mask as a transparent conductor.
  • the transparent conductor is characterized in that ITO.
  • the sensor signal line is formed of a metallic material, and the sensor pattern is formed of a transparent conductor.
  • connection pad portion of the sensor signal line connected to the touch detector is formed of a metal material.
  • the metal material is characterized in that one of gold, silver or aluminum.
  • the present invention relates to a touch screen panel, and more particularly, to a touch panel mounted on a display device, and is not limited to a specific type. That is, the present invention may be applied to both an on-cell touch device and an in-cell touch device.
  • the present invention relates to a touch screen panel having a sensor pattern having a different area, and unlike a conventional capacitive touch screen panel in which a touch signal is differently detected for each touch position, a value detected regardless of the touch position is the same. It is a way to make it a value.
  • the display device referred to in the present invention means any one of LCD, PDP, OLED, AMOLED, or any means for displaying other images.
  • the LCD requires a common voltage (Vcom) to drive the liquid crystal.
  • Vcom common voltage
  • a line inversion method in which a common voltage of a common electrode alternates with one or more gate lines is used to reduce current consumption.
  • a large LCD has a DC level at which the common voltage of the common electrode is constant.
  • some display devices form a shielding electrode common to the entire panel to block external ESD, and ground it with a ground signal.
  • the common electrode is located on the TFT substrate, and the common voltage detected on the upper surface of the color filter alternates up and down at an unspecified frequency with respect to the DC level.
  • common electrodes in addition to the electrode to which the common voltage Vcom is applied as described above, all electrodes which are commonly used in the display device are referred to as “common electrodes” and the alternating voltage, DC voltage, or unspecified applied to the common electrode of the display device Voltage in the form of alternating frequency is referred to as "common voltage”.
  • the present invention detects a non-contact touch input of a touch input tool having a finger or similar electrical characteristics.
  • non-contact touch input means that a touch input tool such as a finger makes a touch input while being spaced apart from the sensor pattern by a substrate at a predetermined distance.
  • the touch input tool may contact the outer surface of the substrate.
  • the touch input tool and the sensor pattern remain in a non-contact state. Accordingly, the touch action of the finger on the sensor pattern may be expressed by the term “access”.
  • the finger since the finger may be in contact with the outer surface of the substrate, the touch action of the finger against the substrate may be expressed by the term "contact”.
  • access and “contact” are commonly used as the meaning above.
  • configurations such as “ ⁇ ” described below are components that perform certain roles, and mean software components or hardware components such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • “ ⁇ part” may be included in a larger component or “ ⁇ part” or may include smaller components and “ ⁇ part”. Also, the " ⁇ part” may have its own CPU.
  • FIG. 8 is a side cross-sectional view (FIG. 8A) and a plan view (FIG. 8B) of a touch screen panel according to an exemplary embodiment of the present invention.
  • FIG. 8A as the sensor pattern 10 disposed on the touch screen panel is farther from the touch drive IC 30, the size or area of the sensor pattern 10 increases and the touch drive IC 30 is increased. The shorter the distance from ()), the smaller the size or area of the sensor pattern 10 is.
  • the sensor pattern 10-1 farthest from the touch drive IC 30 is much wider than the sensor pattern 10-8 farthest from the touch drive IC 30. Accordingly, the sensor pattern 10-1 is much larger than the sensor pattern 10-8 in the overall size, that is, area.
  • FIG. 8B is a plan view schematically illustrating a structure of a sensor pattern according to an exemplary embodiment of the touch screen panel according to the present invention.
  • the touch screen panel 800 of the present invention has the largest size of the sensor pattern 10-1 disposed in row 1 and is close to the touch drive IC 30.
  • the sensor pattern is configured to decrease in size from row 2-> row 3-> row 4-> row 5-> row 6-> row 7-> row 8.
  • the size of the sensor pattern 10-8 configured in row-8 is configured to have the smallest size.
  • FIG. 9 is a diagram schematically illustrating a configuration of a sensor pattern and a sensor signal line of the touch screen panel 900 according to the present invention.
  • the touch drive IC 30 of FIG. 9 includes a driver 31, a touch detector 14, a signal processor 47, and the like as shown in FIG. 6, and the touch drive IC 30 is mounted on the touch screen panel. Connected.
  • the touch drive IC 30 is connected to a touch screen panel by a chip on glass (COG) or a flexible circuit board such as a chip on film (COF) or an FPC, and has a sensor signal line 22 originating from the sensor pattern 10. Connected.
  • COG chip on glass
  • COF chip on film
  • FPC FPC
  • sensor signal lines 22 are connected to each sensor pattern 10 one by one, and each sensor signal line 22 is connected to the touch drive IC. If the finger is adjacent to the sensor pattern 10 at a distance of “d”, the touch capacitance Ct is proportional to the dielectric constant e of the material existing between the finger and the sensor pattern 10 as shown in FIG. 10. The touch capacitance is proportional to the opposing area of the finger 25 and the sensor pattern 10.
  • the sensor pattern 10 and the sensor signal line 22 are made of a transparent conductor such as indium ion oxide (ITO), the resistivity of the ITO is relatively large, so that the resistance of the sensor signal line 22 is about several hundred Kohm. do.
  • ITO indium ion oxide
  • the resistance of the sensor signal line 22 is about 833k ⁇ .
  • the resistance value of the sensor signal line 22 is proportional to the distance between the sensor pattern 22 and the touch drive IC 30, and as a result, each sensor It is proportional to the length of the signal line 22 itself.
  • the resistance value of the sensor signal line 22e connecting the touch drive IC 30 and the sensor pattern 10e at a short distance is the sensor pattern 10a located at a distance from the touch drive IC 30. ) Is smaller than the resistance value of the sensor signal line 22a.
  • the touch screen panel 900 does not constitute the same size (or area) of the sensor pattern and the width of the sensor signal line. It is characterized by the configuration differently.
  • the size (or area) of the sensor pattern and the width of the sensor signal line are proportional to the distance from the touch drive IC 30.
  • the size of the sensor pattern 10a distant from the touch drive IC 30 and the width of the sensor signal line 22a connected thereto are the size of the sensor pattern 10e at a short distance and the sensor connected thereto. Each larger than the width of the signal line 22e.
  • the size of the sensor pattern is configured in the order of 10a> 10b> 10c> 10d> 10e according to the distance from the touch drive IC 30.
  • the widths of the sensor signal lines connected to the respective sensor patterns are also arranged in the order of 22a> 22b> 22c> 22d> 22e.
  • the wiring width of the sensor signal line 22a is widened.
  • the wiring width “w” is widened.
  • the wiring width of the sensor signal line 22a connected to the remote sensor pattern 10a will be the widest, and according to the calculation result of Equation 3, As the width gradually narrows, it has already been discussed above.
  • the widths of the sensor signal lines 22 are different for each position, the sum of the area of the sensor pattern 10 and the area of the sensor signal lines 22 is equal to the sensor pattern 10 having the same area.
  • the position of the pattern 10 is different from each other.
  • the sum of the area of the sensor pattern 10 and the sensor signal line 22 at the same position in the touch drive IC 30 may be the same or similar.
  • the sum of the area of the sensor signal lines 22 and the sensor pattern 10 connected thereto is the same or almost similar. .
  • the area of the sensor signal line 22 connected to the sensor pattern 10 located at the left and right sides of the row may be slightly larger than the sensor signal line located at the center. Therefore, when the touch signal is used, the error caused by this magnitude difference is small enough to be negligible. Therefore, the sum of the area of the sensor signal line 22 and the area of the sensor pattern in the same row is It may be the same.
  • the common electrode capacitance causes a difference for each position of the sensor pattern 10.
  • the common electrode capacitance Cvcom is a capacitance formed between the common electrode 220 and the sensor pattern 10 of the display device. Since the sensor pattern 10 is connected to the sensor signal line 22, the size of the common electrode capacitance Cvcom of the sensor signal line 22a remote from the touch drive IC 30 is shorter than that of the touch drive IC 30. It becomes larger than the size of the sensor signal line 22e.
  • the touch signals are detected by the above-described Equations 1 and 2
  • the common electrode capacitance Cvcom since the common electrode capacitance Cvcom is located in the denominator of the equation, the position of the touch screen panel with respect to the same touch capacitance Ct. The difference occurs in the detection signal.
  • the magnitude of the signal detected by the sensor pattern (10e in FIG. 9) located at a short distance in the touch drive IC is obtained by ⁇ Equation 1> and ⁇ Equation 2>.
  • the size of the touch (hereinafter referred to as touch amount) can be extracted by the size difference of ⁇ Equation 2>, which is the signal size when the touch is generated, compared to the size of ⁇ Equation 1>, which is the signal when the touch does not occur. Can be.
  • the size of the touch is the area of the finger facing the sensor pattern 10 as shown in FIG. 10.
  • the size of the touch signal is increased, and if the touch is weak, the size of the touch signal is reduced.
  • the amount of touch detected by the touch drive IC and the sensor pattern 10 located near is a touch amount in a state where the common electrode capacitance Cvcom is small. Therefore, referring to Equation 2, the touch amount reacts sensitively even to a small change amount of the touch capacitance Ct.
  • the change amount of the touch capacitance Ct may be increased.
  • the change amount of the touch capacitance Ct should be larger as the far distance. For example, if the change in touch capacitance is near 0 ⁇ 10 at short distance, the change in Ct at 0 ⁇ 12 at medium distance and 0 ⁇ 14 at long distance will be 0 ⁇ 14. You can get it.
  • the opposing area of the finger 25 and the sensor pattern 10 should be increased.
  • the touch capacitance Ct determined by the equation of FIG. 10 is applied to Ct in the denominator of ⁇ Equation 1> and ⁇ Equation 2>.
  • the common electrode capacitance Cvcom according to different areas of the sensor signal line 22 connected to the sensor pattern 10 disposed at a long distance and at a short distance is also determined by the equation of FIG. 10, and Cvcom determined here is also ⁇ The same applies to Cvcom in the denominator of equations (1) and (2).
  • the magnitude of the touch capacitance Ct should be different in order to change the amount based on Equation 1 and Equation 2 as described above. Therefore, since the change amount of the touch capacitance Ct should be larger, the area of the sensor pattern 10 should be wider.
  • the area of the sensor pattern 10 is wider at a distance from the touch drive IC 30 and the area of the sensor pattern 10 is narrow at a short distance, that is, 10a> 10e.
  • the amount of change in the touch capacitance Ct detected by the sensor pattern 10 at a long distance is large and the amount of change in the touch capacitance Ct detected by the sensor pattern 10 at a short distance is small. It is possible to keep the amount of touch generated at any point of the touch screen panel constant.
  • the parasitic capacitance is generated between the sensor signal lines 22b disposed at a long distance between 22a and 22c surrounding the path.
  • Cp of the denominator is a parasitic capacitance
  • various parasitic capacitances are generated, one of which is a parasitic capacitance generated between the sensor signal lines 22.
  • the parasitic capacitance generated between the sensor signal lines 22 is inversely proportional to the opposing distance “d” and proportional to the “A” of the opposing area, referring to the equation of FIG. The narrower and longer the opposing length becomes, the larger the parasitic capacitance Cp becomes.
  • the wiring widths facing each other should be wider at a far distance.
  • 22b of FIG. 11 should make the width of “a”, the distance between 22a surrounding it, and “b”, the distance from 22c, as wide as possible.
  • the distance between the sensor signal line and the sensor signal line is farther away, the distance between the sensor signal lines may be different.
  • the sensor signal lines 22 connecting the sensor patterns 10 at the same distance from the touch drive IC may maintain the same distance from the sensor signal lines around the touch drive IC, and thus the same distance from the touch drive IC 30 may be maintained.
  • the parasitic capacitance Cp generated in the sensor pattern 10 and the sensor signal line 22 connected to each other can be kept constant.
  • 20 sensor signal lines 22 are connected to the touch drive IC 30, and the touch drive IC 30 is mounted on a flexible circuit board such as a form of COG or COF, or an FPC.
  • the sensor signal line 22 is connected.
  • the sensor signal lines and the touch drive IC are connected using the ACF.
  • the reference for determining the size of the sensor pattern may be the size of the common electrode capacitance Cvcom at the position where the sensor pattern is disposed.
  • the reference for determining the size of the sensor pattern may be the size of the parasitic capacitance Cp generated in the sensor pattern.
  • FIG. 12 is an embodiment of a method for interconnecting a touch drive IC having a sensor signal line 22 formed in a TSP and a COF package.
  • the sensor signal line 22 and the sensor pattern 10 may be made of a single transparent conductor such as ITO, or the sensor pattern 10 may be made of a transparent conductor, and the sensor signal line 22 may be formed of a transparent conductor. It may be composed of metal materials such as silver (Ag), gold (Au), or aluminum (Al).
  • the sensor signal line 22 is composed of a transparent conductor such as ITO
  • an ACF is used to connect (bond, bond) the touch drive IC 30 configured as a COF package, and the conductive ball included in the ACF is subjected to proper pressure and heat.
  • the connecting pad 1200 of the TSP and the COF 1300 are energized.
  • the conductive ball may break the transparent whole of the connection pad, which may cause a reliability problem that causes a problem in signal flow.
  • connection pad portion 1200 is preferably coated with a metal component such as gold, silver, or aluminum.
  • a metal component is included in the “connection pad” portion, and the metal component is positioned above or below the transparent conductor constituting the sensor signal line 22. If the metal component is positioned above the transparent conductor constituting the sensor signal line 22, the sensor pad 10 and the sensor signal line 22 are formed of the transparent conductor, and then a metal pad may be formed using a metal mask. After the metal pad is generated with the metal mask, the sensor pattern 10 and the sensor signal line 22 are formed on the upper surface of the metal pad using a transparent conductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a touch screen panel for detecting capacitive touch inputs by a finger or fingers of the body or a touch input means having conductive properties similar to those of the finger(s) and, more specifically, to a touch screen panel capable of equalizing the amplitudes of touch signals received by a touch driver IC by differently arranging the areas of sensor patterns mounted on the touch panel. The touch screen panel according to the invention of the present application has the effects of allowing touch signals to be uniformly output regardless of the position of the touch screen panel and ultimately allowing touch coordinates to be more accurately calculated.

Description

터치 스크린 패널 Touch screen panel
본 발명은 신체의 손가락 또는 이와 유사한 도전특성을 갖는 터치입력도구의 정전식 터치입력을 검출하는 터치 스크린 패널에 관한 것으로서, 보다 상세하게는 터치패널에 실장된 센서패턴의 면적을 다르게 배치함으로써 터치 드라이브 IC에서 수신되는 터치신호의 크기를 균일하게 할 수 있는 터치 스크린 패널에 관한 것입니다.The present invention relates to a touch screen panel for detecting a capacitive touch input of a finger or a touch input tool having a similar conductive property. More particularly, the present invention relates to a touch drive by differently arranging areas of a sensor pattern mounted on a touch panel. The present invention relates to a touch screen panel that can uniformize the magnitude of the touch signal received from the IC.
일반적으로, 터치스크린패널(Touch Screen Panel)은 LCD(Liquid Crystal Display), PDP(Plasma Display Panel), OLED(Organic Light Emitting Diode), AMOLED(Active Matrix Organic Light Emitting Diode) 등의 표시장치 위에 부착되는 것으로서, 손가락이나 펜 등의 물체가 터치될 때 해당 위치에 대응하는 신호를 발생시키는 입력장치의 하나이다. 터치스크린패널은 소형 휴대단말기, 산업용 단말기, DID(Digital Information Device) 등 매우 폭넓은 분야에서 이용되고 있다.In general, a touch screen panel is attached to a display device such as a liquid crystal display (LCD), a plasma display panel (PDP), an organic light emitting diode (OLED), an active matrix organic light emitting diode (AMOLED), or the like. As an input device, a signal corresponding to a corresponding position is generated when an object such as a finger or a pen is touched. Touch screen panels are used in a wide range of applications, such as small portable terminals, industrial terminals, and digital information devices (DIDs).
종래 터치스크린패널은 다양한 유형이 개시되어 있으나, 제조공정이 간단하고 제조코스트가 저렴한 저항방식의 터치스크린패널이 가장 널리 이용되고 있다. 그러나 저항방식의 터치스크린패널은 투과율이 낮고 압력을 인가해야 하므로 사용이 불편하고 멀티터치 및 제스처 인식이 곤란하고 검출오류가 발생하는 등의 문제점을 안고 있다.Conventionally, various types of touch screen panels have been disclosed, but a resistive touch screen panel having a simple manufacturing process and a low manufacturing cost is most widely used. However, since a resistive touch screen panel has low transmittance and pressure must be applied, it is inconvenient to use, difficulty in multi-touch and gesture recognition, and detection errors.
이에 반해, 정전식 터치스크린패널은 투과율이 높고 소프트 터치(soft touch)를 인식할 수 있고 멀티터치 및 제스처 인식이 양호한 장점을 갖고 있어 점차 시장을 넓혀가고 있다.On the other hand, the capacitive touch screen panel has a high transmittance, it can recognize a soft touch (soft touch), and multi-touch and gesture recognition has the advantage of expanding the market gradually.
도 1은 종래 정전식 터치스크린패널의 일예를 보여준다. 도 1을 참조하면, 플라스틱 또는 유리 등으로 제조된 투명기판(2)의 상하면에 투명도전막이 형성되며, 투명기판(2)의 네 모서리 각각에 전압인가용 금속전극(4)이 형성되어 있다. 상기 투명도전막은 ITO(Indium Tin Oxide) 또는 ATO(Antimony Tin Oxide) 등의 투명한 금속으로 형성된다. 그리고 상기 투명도전막의 네 모서리에 형성되는 금속전극(4)들은 은(Ag) 등의 저항률이 낮은 도전성 금속으로 프린팅하여 형성한다. 상기 금속전극(4)들의 주변에는 저항 네트워크가 형성된다. 상기 저항 네트워크는 상기 투명도전막의 표면 전체에 균등하게 컨트롤신호를 송출하기 위하여 선형성 패턴(Linearization Pattern)으로 형성된다. 그리고 금속전극(4)을 포함한 투명도전막의 상부에는 보호막이 코팅된다.1 shows an example of a conventional capacitive touch screen panel. Referring to FIG. 1, a transparent conductive film is formed on upper and lower surfaces of a transparent substrate 2 made of plastic, glass, or the like, and a voltage applying metal electrode 4 is formed at each of four corners of the transparent substrate 2. The transparent conductive film is formed of a transparent metal such as indium tin oxide (ITO) or antimony tin oxide (ATO). The metal electrodes 4 formed at four corners of the transparent conductive film are formed by printing a conductive metal having a low resistivity such as silver (Ag). A resistance network is formed around the metal electrodes 4. The resistance network is formed in a linearization pattern in order to transmit control signals evenly over the entire surface of the transparent conductive film. A protective film is coated on the transparent conductive film including the metal electrode 4.
위와 같은 정전식 터치스크린패널은 상기 금속전극(4)에 고주파의 교류 전압을 인가하면 이는 투명기판(2)의 전면에 퍼지게 된다. 이때 손가락(8)이나 도전성 터치입력도구로 투명기판(2) 상면의 투명도전막을 가볍게 터치하면, 일정량의 전류가 체내로 흡수되면서 컨트롤러(6)에 내장된 전류센서에서 전류의 변화를 감지하고 4개의 금속전극(4) 각각에서의 전류량을 연산하여 터치 지점을 인식하게 된다.In the capacitive touch screen panel as described above, when an alternating current voltage of high frequency is applied to the metal electrode 4, the capacitive touch screen panel spreads on the front surface of the transparent substrate 2. At this time, if you lightly touch the transparent conductive film on the upper surface of the transparent substrate 2 with the finger 8 or the conductive touch input tool, a certain amount of current is absorbed into the body and the current sensor built in the controller 6 detects the change of current. The touch points are recognized by calculating the amount of current in each of the four metal electrodes 4.
그런데, 도 1과 같은 정전식 터치스크린패널은 미소 전류의 크기를 검출하는 방식으로서, 고가의 검출장치를 필요로 하므로 가격이 상승하며 복수개의 터치를 인식하는 멀티터치가 어려운 문제점이 있다. However, the capacitive touch screen panel as shown in FIG. 1 is a method of detecting the magnitude of the micro current, and thus requires an expensive detection device, which increases the price and makes it difficult to multi-touch to recognize a plurality of touches.
이러한 문제점을 극복하기 위하여 근래에는 도 2와 같은 정전식 터치스크린패널이 주로 사용되고 있다. 도 2의 터치스크린패널은 횡방향의 선형센서패턴(5a) 및 종방향의 선형센서패턴(5b), 터치신호를 분석하는 터치드라이브IC(7)로 이루어져 있다. 이러한 터치스크린패널은 선형센서패턴(5)과 손가락(8) 사이에 형성되는 커패시턴스의 크기를 검출하는 방식으로서, 횡방향의 선형센서패턴(5a)과 종방향의 선형센서패턴(5b)을 스캔하여 신호를 검출하므로 복수개의 터치지점을 인식할 수 있다.In order to overcome this problem, the capacitive touch screen panel as shown in FIG. 2 is mainly used. The touch screen panel of FIG. 2 includes a linear sensor pattern 5a in the horizontal direction, a linear sensor pattern 5b in the longitudinal direction, and a touch drive IC 7 for analyzing a touch signal. The touch screen panel detects the magnitude of the capacitance formed between the linear sensor pattern 5 and the finger 8, and scans the linear sensor pattern 5a in the horizontal direction and the linear sensor pattern 5b in the longitudinal direction. By detecting the signal, a plurality of touch points can be recognized.
그런데, 위와 같은 터치스크린패널은 LCD와 같은 표시장치 위에 실장되어 사용될 때, 노이즈에 의해 신호 검출이 어려운 현상이 발생한다. 예컨대, LCD는 공통전극을 사용하며 경우에 따라 이 공통전극에 교류의 공통전압(Vcom)이 인가된다. 그리고 공통전극의 공통전압(Vcom)은 터치지점 검출시 노이즈로 작용한다.However, when the touch screen panel as described above is mounted and used on a display device such as an LCD, a phenomenon in which signal detection is difficult due to noise occurs. For example, the LCD uses a common electrode, and in some cases, an AC common voltage Vcom is applied to the common electrode. The common voltage Vcom of the common electrode acts as noise when detecting the touch point.
도 3은 LCD 위에 종래 정전식 터치스크린패널이 설치된 실시태양을 보여준다. 표시장치(200)는 하측의 TFT기판(205)과 상측의 칼라필터(215) 사이에 액정이 봉입되어 액정층(210)을 형성하는 구조를 갖는다. 액정의 봉입을 위하여 TFT기판(205)과 칼라필터(215)는 그 외곽부에서 실런트(230)에 의해 접합된다. 도시하지 않았지만, 액정패널의 상하로는 편광판이 부착되며, 그밖에도 BLU(Back Light Unit)가 설치된다.3 shows an embodiment in which a conventional capacitive touch screen panel is installed on an LCD. The display device 200 has a structure in which a liquid crystal is sealed between the lower TFT substrate 205 and the upper color filter 215 to form the liquid crystal layer 210. In order to seal the liquid crystal, the TFT substrate 205 and the color filter 215 are bonded by the sealant 230 at the outer portion thereof. Although not shown, a polarizing plate is attached to the upper and lower sides of the liquid crystal panel, and in addition, a BLU (Back Light Unit) is installed.
표시장치(200)의 상부에는 도시한 바와 같이 터치스크린패널이 설치된다. 터치스크린패널은 기판(1)의 상면에 상기한 선형센서패턴(5)이 올려진 구조를 갖는다. 기판(1)의 위에는 선형센서패턴(5)을 보호하기 위한 보호패널(3)이 부착된다. 터치스크린패널은 DAT(Double Adhesive Tape) 등과 같은 접착부재(9)를 매개로 표시장치(200)의 에지부에 접착되며, 표시장치(200)와의 사이에서 에어갭(9a)을 형성한다.A touch screen panel is installed on the display device 200 as shown. The touch screen panel has a structure in which the linear sensor pattern 5 is mounted on the upper surface of the substrate 1. On the substrate 1, a protective panel 3 for protecting the linear sensor pattern 5 is attached. The touch screen panel is attached to an edge portion of the display device 200 through an adhesive member 9 such as a double adhesive tape (DAT), and forms an air gap 9a between the display device 200.
이러한 구성에서 도 3에서와 같은 터치가 발생할 경우, 손가락(8)과 선형센서패턴(5) 사이에는 Ct와 같은 정전용량이 형성된다. 그런데, 도시한 바와 같이 선형센서패턴(5)과 표시장치(200)의 칼라필터(215) 하면에 형성된 공통전극(220) 사이에서도 Cvcom과 같은 정전용량이 형성되며, 선형센서패턴(5)에는 패턴 사이의 정전용량결합 또는 제조 공정요인 등에 의한 미지의 기생정전용량인 Cp도 작용하고 있다. 따라서, 도 4의 등가회로와 같은 회로가 구성된다.In this configuration, when a touch as shown in FIG. 3 occurs, a capacitance such as Ct is formed between the finger 8 and the linear sensor pattern 5. However, as illustrated, a capacitance such as Cvcom is formed between the linear sensor pattern 5 and the common electrode 220 formed on the lower surface of the color filter 215 of the display device 200, and the linear sensor pattern 5 has a capacitance. Cp, which is an unknown parasitic capacitance due to capacitive coupling between patterns or manufacturing process factors, is also working. Thus, a circuit such as the equivalent circuit of FIG. 4 is configured.
여기서, 종래 터치스크린패널은 Ct의 변화량을 검출해서 터치를 인식하는데, Cvcom 및 Cp는 Ct의 검출에 있어 노이즈로 작용한다.Here, the conventional touch screen panel detects a touch by detecting a change amount of Ct, but Cvcom and Cp act as noise in detecting Ct.
통상적으로 위와 같은 노이즈를 제거하기 위하여, 도 3에서와 같이 터치스크린패널과 표시장치(200) 사이에 에어갭(9a)을 둔다. 또한, 도시하지 않았지만, 터치스크린패널의 기판(1) 하면에 ITO 등을 도포하여 차폐층을 형성하고 이 차폐층을 그라운드 신호와 접지시킨다.Typically, in order to remove the noise as described above, an air gap 9a is disposed between the touch screen panel and the display device 200 as shown in FIG. 3. Although not shown, a shielding layer is formed by applying ITO or the like to the lower surface of the substrate 1 of the touch screen panel, and the shielding layer is grounded with the ground signal.
하지만, 에어갭(9a)에 의해 제품의 두께가 증가하며 품질저하가 발생된다. 또한 차폐층을 구성하기 위한 별도의 차폐층 및 제조공정을 필요로 하므로 제조단가의 상승이 유발된다. 특히 LCD 내에 터치스크린패널을 내장하는 경우 에어갭(9a)이나 차폐층의 형성이 불가능하므로 LCD 등의 표시장치에 터치스크린패널을 내장하여 제조하는 것이 불가능하였다.However, the air gap 9a increases the thickness of the product and quality deterioration occurs. In addition, since a separate shielding layer and a manufacturing process are required to configure the shielding layer, an increase in manufacturing cost is caused. In particular, when the touch screen panel is embedded in the LCD, it is impossible to form the air gap 9a or the shielding layer, and thus it is impossible to manufacture the touch screen panel in the LCD or the like.
이와 같은 문제점을 해결하기 위해 도 5와 같은 터치 검출방법이 제안되어 진다. 도 5를 참조하면, 도 5의 센서패턴은 도 2와 같은 선형센서패턴이 아니라 하나의 센서패턴(10)만으로 구성되어 있다. 이러한 센서패턴은 터치 검출부인 P점에 연결되어 있고, P점에는 보조커패시터(Caux)를 연결하고 이 보조커패시터를 통해 구동전압을 인가하며, 센서패턴(10)과 터치입력도구 사이에 터치정전용량(Ct)이 부가될 때 터치정전용량의 크기에 따라 터치검출부에서 검출되는 전압이나 전류의 크기에 차이가 발생하는 현상을 이용하여 터치신호를 검출한다. 이러한 검출방법을 사용하면, LCD와 같은 표시장치에서 발생하는 노이즈를 검출하고 노이즈의 발생시점을 회피하여 터치신호를 검출함으로써 노이즈에 무관하게 터치신호를 검출하는 것이 가능하며 또는 도 2와 같이 상호연결된 복수개의 센서패턴에서 검출된 노이즈의 크기보다 도 5와 같이 하나의 센서패턴에서 검출된 노이즈의 양이 작으므로 도 6과 같은 터치스크린패널의 구조에서는 노이즈에 덜 민감하게 터치신호를 검출하는 것이 가능하다. In order to solve this problem, a touch detection method as shown in FIG. 5 is proposed. Referring to FIG. 5, the sensor pattern of FIG. 5 is composed of only one sensor pattern 10, not the linear sensor pattern of FIG. 2. The sensor pattern is connected to point P, which is a touch detection unit, connects an auxiliary capacitor (Caux) to point P, applies a driving voltage through the auxiliary capacitor, and touch capacitance between the sensor pattern 10 and the touch input tool. When (Ct) is added, the touch signal is detected by using a phenomenon that a difference occurs in the magnitude of the voltage or current detected by the touch detector according to the magnitude of the touch capacitance. Using this detection method, it is possible to detect a touch signal irrespective of noise by detecting a noise generated in a display device such as an LCD and avoiding a point of occurrence of the noise, or as shown in FIG. Since the amount of noise detected in one sensor pattern is smaller than the amount of noise detected in the plurality of sensor patterns, as shown in FIG. 5, the touch screen panel as shown in FIG. 6 may detect the touch signal less sensitive to noise. Do.
도 5는 하나의 센서패턴에 대한 구성의 실시예이며 복수개의 센서패턴으로 이루어진 터치 스크린 패널은 도 6과 같이 구성된다. 도 6을 참고하면 도 6의 하단에는 터치 드라이브 IC(30)의 구성이 도시되어 있다. 터치 드라이브 IC(30)는 구동부(31)와, 터치검출부(14)와, 타이밍 제어부(33)와, 신호처리부(35)와, 메모리부(28)로 구성되며, 그 밖에 공통전압 검출부(43), 공통전압 수신부(45), 교번전압 생성부(37)를 구비한다. 또는, 터치 드라이브IC(30)는 도 6에 도시된 바와 같이 공통전압 검출부(43), 공통전압 수신부(45), 교번전압 생성부(37)를 모두 구비하고, 셀렉터(47)에 의해 공통전압 검출부(43), 공통전압 수신부(45) 또는 교번전압 생성부(37) 중 어느 하나를 선택하도록 구성될 수도 있다.5 illustrates an embodiment of a configuration of one sensor pattern, and a touch screen panel including a plurality of sensor patterns is configured as shown in FIG. 6. Referring to FIG. 6, the configuration of the touch drive IC 30 is illustrated at the bottom of FIG. 6. The touch drive IC 30 includes a driver 31, a touch detector 14, a timing controller 33, a signal processor 35, and a memory 28, and a common voltage detector 43. ), A common voltage receiver 45, and an alternating voltage generator 37. Alternatively, the touch drive IC 30 includes a common voltage detector 43, a common voltage receiver 45, and an alternating voltage generator 37 as shown in FIG. 6, and is selected by the selector 47. The detector 43, the common voltage receiver 45, or the alternate voltage generator 37 may be configured to be selected.
터치 드라이브IC(30)에서 획득한 구동신호는 CPU(40)로 전달된다. CPU(40)는 표시장치의 CPU 혹은 컴퓨터장치의 메인 CPU이거나, 터치스크린패널 자체의 CPU일 수 있다. 예컨대, 8bit 혹은 16bit 등의 마이크로프로세서를 내장(embedded)하여 터치신호를 처리할 수 있다. 도시하지 않았지만, 시스템 구성에는 터치입력 검출을 위한 신호들의 하이(HIGH)나 로우(LOW)전압을 생성하기 위한 전원부가 더 포함된다.The driving signal acquired by the touch drive IC 30 is transferred to the CPU 40. The CPU 40 may be a CPU of a display device, a main CPU of a computer device, or a CPU of the touch screen panel itself. For example, a touch processor may be processed by embedding a microprocessor such as 8bit or 16bit. Although not shown, the system configuration further includes a power supply unit for generating a high or low voltage of signals for detecting a touch input.
터치 드라이브IC(30)에 내장된 마이크로프로세서는 터치입력된 좌표들을 연산하여 터치 지점이나, 줌(zoom), 회전(rotation), 이동(move) 등의 제스처를 인식하고, 기준 좌표(또는 중심점 좌표)와 제스처 등의 데이터를 메인 CPU로 전달할 수 있다. 또한, 터치입력의 면적을 연산하여 주밍 신호를 생성하거나, 터치입력의 강도를 산출하거나, 복수의 GUI 객체가 동시에 터치된 경우 사용자가 원하는(예를 들어, 면적이 많이 검출된) GUI 객체만을 유효한 입력으로 인식하는 등 다양한 형태로 데이터를 가공하여 내보낼 수도 있다.The microprocessor embedded in the touch drive IC 30 recognizes touch points, gestures such as zoom, rotation, and move by calculating touch input coordinates, and reference coordinates (or center point coordinates). ) And gestures can be transferred to the main CPU. In addition, when generating a zooming signal by calculating the area of the touch input, calculating the intensity of the touch input, or when a plurality of GUI objects are touched at the same time, only the GUI object desired by the user (for example, a large area detected) is valid. You can also process and export the data in a variety of forms, including recognizing it as input.
타이밍 제어부(33)는 수십 ms 이하의 시분할 신호를 발생시키며, 신호처리부(35)는 구동부(31)를 통해 각각의 센서패턴(10)에 신호를 송수신한다. 구동부(31)는 충전수단(12)의 온/오프 제어신호 Vg와, 프리차지신호 Vpre을 공급한다. 온/오프 제어신호 Vg는 타이밍 제어부(33)에 의해 시분할 되어 각 센서패턴(10)별로 순차적으로 또는 비순차적으로 공급된다. 메모리부(28)는 각 센서패턴(10)에서의 터치 미발생시 신호인 초기값을 저장하거나, 또는, 터치 발생시의 신호를 저장하기 위한 것으로서, 각각의 센서패턴(10)별로 고유의 절대주소를 갖는다. The timing controller 33 generates a time division signal of several tens of ms or less, and the signal processor 35 transmits and receives a signal to each sensor pattern 10 through the driver 31. The driver 31 supplies the on / off control signal Vg of the charging means 12 and the precharge signal Vpre. The on / off control signal Vg is time-divided by the timing controller 33 and is supplied sequentially or non-sequentially for each sensor pattern 10. The memory unit 28 stores an initial value which is a signal when no touch occurs in each sensor pattern 10 or stores a signal when a touch occurs, and provides a unique absolute address for each sensor pattern 10. Have
이와 같이, 메모리부(28)는 하나만을 구비하여 획득된 좌표값을 일시 저장하거나 터치 미발생시의 기준값을 저장할 수 있다. 또는 복수의 메모리수단으로 구성되어 터치 미발생시의 기준값과 터치 발생시의 검출값을 각각 별도로 저장할 수도 있다.As described above, the memory 28 may temporarily store the coordinate values obtained with only one, or may store the reference value when no touch occurs. Alternatively, the plurality of memory means may be configured to separately store a reference value when no touch occurs and a detection value when a touch occurs.
도시된 실시예는 센서패턴(10)이 4*5의 해상도인 경우를 예시하였으나, 실제로는 더욱 높은 해상도를 갖기 때문에, 많은 신호들을 처리하는 과정에서 신호가 손실될 수 있다. 예를 들어, 신호처리부(35)가 “Busy” 상태일 경우, 터치 구동신호를 인식하지 못하여 신호를 놓칠 수 있다. 메모리부(28)는 이와 같은 신호의 손실을 방지할 수도 있다. 예컨대, 신호처리부(35)는 검출된 터치신호를 메모리부(28)에 일시 저장한다. 그리고 센서패턴(10) 전체를 스캐닝한 후에 메모리부(28)를 참조하여 누락된 신호가 있는지를 판단한다. 만약 신호처리 과정에서는 누락되었지만 메모리부(28)에는 저장되어 있는 터치 좌표가 있다면, 신호처리부(35)는 해당 터치 좌표를 정상 입력으로 인식하게 된다.Although the illustrated embodiment illustrates the case where the sensor pattern 10 has a resolution of 4 * 5, since the sensor pattern 10 actually has a higher resolution, a signal may be lost while processing many signals. For example, when the signal processor 35 is in a “busy” state, the signal may not be recognized because the touch driving signal is not recognized. The memory unit 28 may prevent the loss of such a signal. For example, the signal processor 35 temporarily stores the detected touch signal in the memory unit 28. After scanning the entire sensor pattern 10, the memory unit 28 is referred to to determine whether there is a missing signal. If the touch coordinates are omitted in the signal processing but stored in the memory 28, the signal processor 35 recognizes the touch coordinates as a normal input.
공통전압 수신부(45)는 표시장치(200)로부터 공통전극(220)의 공통전압 정보를 직접 수신한다. 이 경우 공통전압의 시작점, 크기, 상승구간 및 하강구간 등의 정보는 매우 쉽게 얻을 수 있으며, 신호처리부(35)가 공통전압의 상승구간 및 하강구간에 연동하여 신호를 처리하는 것이 용이하다. 다만, 표시장치(200)에서 공통전압 정보를 송신해야 한다는 부담이 발생한다.The common voltage receiver 45 directly receives the common voltage information of the common electrode 220 from the display device 200. In this case, information such as the start point, magnitude, rising section, and falling section of the common voltage can be obtained very easily, and the signal processing unit 35 can easily process signals in conjunction with the rising and falling sections of the common voltage. However, a burden arises in that the display apparatus 200 needs to transmit common voltage information.
한편, 표시장치(200)들 중 공통전극(220)이 일정 DC 레벨을 갖는 경우, 교번전압 생성부(37)가 공통전극(220)에 강제로 교번전압을 인가할 수 있다. 교번전압 생성부(37)는 타이밍 제어부(33)의 시분할 신호에 따라 공통전극(220)에 소정 주파수로 교번하는 전압레벨을 인가한다. 공통전극(220)에 인가되는 교번전압의 주파수는 레지스터를 조정하는 등으로 조정 가능하다. 이 경우에도 신호처리부(35)는 공통전압의 상승구간 및 하강구간에 연동하여 신호를 처리하는 것이 용이하다. 다만, 표시장치(200)측으로 공통전압을 보내야 하는 부담이 발생한다.Meanwhile, when the common electrode 220 of the display apparatuses 200 has a constant DC level, the alternating voltage generator 37 may apply the alternating voltage to the common electrode 220 by force. The alternating voltage generation unit 37 applies a voltage level alternated at a predetermined frequency to the common electrode 220 according to the time division signal of the timing controller 33. The frequency of the alternating voltage applied to the common electrode 220 can be adjusted by adjusting a resistor. Even in this case, the signal processor 35 can easily process the signal in association with the rising and falling sections of the common voltage. However, the burden of sending a common voltage to the display device 200 is generated.
그러나 공통전압 검출부(43)는 자동으로 공통전압 정보를 검출함으로써, 표시장치와 공통전압과 관련된 정보를 주고받을 필요가 없다. 공통전압 검출부(43)에서 검출된 공통전압이 교번하는 신호인 경우, 신호처리부(35)는 공통전압의 상승 에지나 하강 에지를 회피하여 보조커패시터에 전달되는 구동전압을 인가한다. 공통전압 검출부(43)는 다양한 회로 구성을 가질 수 있다.However, since the common voltage detector 43 automatically detects the common voltage information, it is not necessary to exchange information related to the common voltage with the display device. When the common voltage detected by the common voltage detector 43 is an alternating signal, the signal processor 35 applies a driving voltage delivered to the auxiliary capacitor while avoiding the rising or falling edge of the common voltage. The common voltage detector 43 may have various circuit configurations.
도 6과 같은 실시예에서 센서신호선(22)은 통상적으로 센서패턴(10)이 설치된 액티브영역내에서 센서패턴(10) 사이로 배선되어 터치 드라이브IC(30)와 연결된다. 만일 터치스크린패널이 표시장치 위에 별체로 설치되거나 또는 표시장치에 내장되는 경우에 있어서 센서신호선(22)은 적어도 가시영역에서는 투명신호선인 ITO나 IZO(Indium Zinc Oxide) 등으로 형성되어야 한다. 이러한 배선의 장점은 신호선들이 전체가 모여서 하나의 통로를 통해 터치 드라이브IC(30)로 전달되지 않으므로 신호선의 배선을 위한 별도의 영역이 필요없다는 점이다. 그러나, 센서패턴(10)과 센서패턴(10) 사이로 신호선이 배치되므로 센서패턴(10)간의 간격이 넓어지는 부담이 있다.6, the sensor signal line 22 is typically connected between the sensor patterns 10 in the active region in which the sensor patterns 10 are installed and connected to the touch drive IC 30. If the touch screen panel is separately installed on the display device or embedded in the display device, the sensor signal line 22 should be formed of ITO or indium zinc oxide (IZO), which is a transparent signal line, at least in the visible region. The advantage of such wiring is that since the signal lines are not collectively transferred to the touch drive IC 30 through one passage, a separate area for wiring of the signal lines is not necessary. However, since a signal line is disposed between the sensor pattern 10 and the sensor pattern 10, there is a burden of widening the interval between the sensor patterns 10.
한편, 도 6과 같은 센서신호선(22)의 배선방법에 있어서, 제일 상단에 위치한 센서패턴(10(1,1))에 연결된 신호선과 제일 하단에 위치한 센서패턴(10(1,5))에 연결된 신호선의 길이가 다르므로 신호선의 배선저항이 센서패턴(10)별로 달라진다. 저항값이 커지면 터치신호 검출에 지연이 발생하기 때문에, 상단으로 배선되는 센서신호선(22)의 폭은 하단으로 배선되는 센서신호선(22)의 폭보다 넓게 하여 상단으로 배선되는 센서신호선(22)의 저항값을 낮추고 하단으로 배선되는 센서신호선(22)의 배선 폭을 좁게 하여 저항값을 증가시키면 모든 센서패턴(10)에 대해 신호선들의 배선저항을 일치시키는 것이 가능하게 된다. 따라서 신호처리부(35)에서 터치신호 검출이 더 용이해진다. 그러나 이러한 과정에서 표시장치와 센서패턴 및 센서패턴에 접속된 센서신호선(22)의 대향면적이 증가하고 이는 공통전극정전용량(Cvcom)의 증가로 이어져 터치스크린패널의 각 부위에서 검출되는 터치신호가 균등하지 않게 되는 문제점이 발생하게 된다. 만일 터치에서 검출되는 면적을 이용하는 어플리케이션(이하 어플)이 있다고 가정해보자. 이러한 어플은 터치되는 손가락을 오무렸다 폈다할 때 터치면적의 변화를 이용하여 자동차의 가속페달을 밟거나 브레이크를 작동시키는 어플일 수도 있다. 상기와 같이 터치스크린패널의 각 부위에서 검출되는 면적이 값이 달라진다면 면적이 작에 검출되는 곳과 면적이 크게 검출되는 곳에서 터치에 의한 자동차의 속도 또는 브레이크 반응은 달라지게 될 것이다.Meanwhile, in the wiring method of the sensor signal line 22 as shown in FIG. 6, the signal line connected to the sensor pattern 10 (1, 1) located at the top and the sensor pattern 10 (1, 5) located at the bottom thereof are provided. Since the length of the connected signal line is different, the wiring resistance of the signal line is different for each sensor pattern 10. When the resistance value increases, a delay occurs in the detection of the touch signal. Therefore, the width of the sensor signal line 22 that is wired to the top is wider than the width of the sensor signal line 22 that is wired to the bottom, so that the width of the sensor signal line 22 that is wired to the top is increased. If the resistance value is increased by lowering the resistance value and narrowing the wiring width of the sensor signal line 22 to the lower end, it is possible to match the wiring resistance of the signal lines with respect to all the sensor patterns 10. Therefore, the touch processor detects the touch signal more easily. However, in this process, the opposing area of the display device and the sensor signal line 22 connected to the sensor pattern and the sensor pattern increases, which leads to an increase in the common electrode capacitance Cvcom, so that the touch signal detected in each part of the touch screen panel is increased. Problems arise that are not even. Suppose there is an application (hereinafter referred to as an application) that uses the area detected by the touch. Such an application may be an application that steps on or accelerates the accelerator pedal of a vehicle by using a change in the touch area when the finger is touched and released. As described above, if the area detected in each part of the touch screen panel is changed in value, the speed or brake response of the vehicle by the touch will be changed in the area where the area is small and the area is detected.
도 7은 표시장치(200) 상면에 실장된 터치스크린패널의 일 실시예이다.도 7 에 도시된 바와 같이 표시장치(200)는 공통전극(220)을 갖는다. AMOLED의 경우에는 화질을 표시하기 위해 기능이 부여된 공통전압을 갖지는 않으나, TFT기판과 센서패턴(10) 사이에는 공통전극정전용량(Cvcom)이 형성될 수 있는 가상의 전위층이 형성되며, 이 또한 공통전극으로 명명하기로 한다. 표시장치(200)는 앞서 언급한 다양한 형태의 표시장치일 수 있으며, 공통전극(220)은 LCD의 Vcom 전극이거나, 기타 다른 유형의 전극일 수 있다. 도 10의 실시예는 표시장치들 중 LCD를 예시하였다.7 illustrates an embodiment of a touch screen panel mounted on an upper surface of the display device 200. As shown in FIG. 7, the display device 200 has a common electrode 220. In the case of AMOLED, it does not have a common voltage provided with a function for displaying image quality, but a virtual potential layer in which a common electrode capacitance Cvcom is formed is formed between the TFT substrate and the sensor pattern 10. This will also be referred to as common electrode. The display device 200 may be the aforementioned various types of display devices, and the common electrode 220 may be a Vcom electrode of the LCD or another type of electrode. 10 illustrates an LCD among display devices.
도 7에 도시된 표시장치(200)는 하측의 TFT기판(205)과 상측의 칼라필터(215) 사이에 액정이 봉입되어 액정층(210)을 형성하는 구조를 갖는다. 액정의 봉입을 위하여 TFT기판(205)과 칼라필터(215)는 그 외곽부에서 실런트(230)에 의해 접합된다. 도시하지 않았지만, 액정패널의 상하로는 편광판이 부착되며, 그밖에도 BLU(Back Light Unit)와, BEF(Brightness Enhancement Film)를 구성하는 광학시트들이 BLU와 같이 설치될 수 있다.The display device 200 illustrated in FIG. 7 has a structure in which a liquid crystal is encapsulated between a lower TFT substrate 205 and an upper color filter 215 to form a liquid crystal layer 210. In order to seal the liquid crystal, the TFT substrate 205 and the color filter 215 are bonded by the sealant 230 at the outer portion thereof. Although not shown, a polarizing plate may be attached to the upper and lower sides of the liquid crystal panel, and in addition, optical sheets constituting a BLU and a brightness enhancement film may be installed together with the BLU.
표시장치(200)의 상부에는 도시한 바와 같이 터치스크린패널의 기판(50)이 설치된다. 도 7의 예시에서 기판(50)은 그 외곽부에서 DAT(Double Adhesive Tape) 등과 같은 접착부재(57)를 매개로 표시장치(200)의 상부에 부착된다. 그리고 기판(50)과 표시장치(200) 사이에는 에어갭(58)이 형성된다.As illustrated, a substrate 50 of the touch screen panel is installed on the display device 200. In the example of FIG. 7, the substrate 50 is attached to the upper portion of the display device 200 through an adhesive member 57 such as a double adhesive tape (DAT) at an outer portion thereof. An air gap 58 is formed between the substrate 50 and the display device 200.
표시장치(200)의 공통전극(220)에는 소정 주파수로 교번하며 크기가 변하거나 일정 크기의 DC인 공통전압 레벨이 인가된다. 예컨대, 라인반전을 하는 소형 LCD는 공통전극(220)의 공통전압이 도 5에서와 같이 교번하며, 도트반전을 하는 노트북이나 모니터/TV등의 LCD는 일정크기의 전압인 DC 레벨의 공통전압을 갖는다.The common electrode 220 of the display device 200 is applied with a common voltage level that is alternately at a predetermined frequency and whose magnitude is changed or has a predetermined magnitude of DC. For example, in a small LCD that performs line inversion, the common voltage of the common electrode 220 is alternated as shown in FIG. 5, and an LCD such as a notebook or a monitor / TV that performs dot inversion uses a common voltage of DC level, which is a certain voltage. Have
도시한 바와 같이, 센서패턴(10)과 표시장치(200)의 공통전극(220) 사이에는 공통전극정전용량(Cvcom)이 형성된다. 만약 센서패턴(10)에 어떤 프리차지신호를 인가하면 충전 전압에 의해 공통전극정전용량(Cvcom)은 소정의 전압 레벨을 갖게 된다. 이때, 공통전극정전용량(Cvcom)의 일단은 공통전극(220)과 접지되어 있으므로, 공통전극(220)이 교번 전압인 경우 공통전극(220)에 인가되는 교번 전압에 의해 공통전극정전용량(Cvcom)의 타단인 센서패턴(10)에서의 전위는 교번할 것이며, 공통전극이 DC인 경우 센서패턴(10)에서의 전위는 교번하지 않는다.As illustrated, a common electrode capacitance Cvcom is formed between the sensor pattern 10 and the common electrode 220 of the display device 200. If a precharge signal is applied to the sensor pattern 10, the common electrode capacitance Cvcom has a predetermined voltage level due to the charging voltage. At this time, since one end of the common electrode capacitance Cvcom is grounded with the common electrode 220, when the common electrode 220 is an alternating voltage, the common electrode capacitance Cvcom is changed by an alternating voltage applied to the common electrode 220. The potential at the other end of the sensor pattern 10 will alternate, and if the common electrode is DC, the potential at the sensor pattern 10 will not alternate.
한편, 도 7에서는 센서패턴(10)을 보호하기 위한 보호층(24)이 도시되어 있다.In FIG. 7, a protective layer 24 for protecting the sensor pattern 10 is illustrated.
도 7의 구조는 도 5에서의 회로도에서 P점, 즉 터치 검출부(14)에서는 다음과 같은 수학식에 의해 터치신호가 검출된다.In the structure of FIG. 7, the touch signal is detected by P in the circuit diagram of FIG. 5, that is, the touch detector 14 by the following equation.
Figure PCTKR2015012871-appb-M000001
Figure PCTKR2015012871-appb-M000001
Figure PCTKR2015012871-appb-M000002
Figure PCTKR2015012871-appb-M000002
(여기서,
Figure PCTKR2015012871-appb-I000001
는 터치검출부(14)에서 검출된 터치신호이며,
Figure PCTKR2015012871-appb-I000002
는 보조커패시터에 인가되는 하이(HIGH) 레벨 전압이며,
Figure PCTKR2015012871-appb-I000003
는 보조커패시터에 인가되는 로우(LOW) 레벨 전압이며,
Figure PCTKR2015012871-appb-I000004
는 보조커패시터정전용량이며,
Figure PCTKR2015012871-appb-I000005
은 공통전극정전용량이며,
Figure PCTKR2015012871-appb-I000006
는 기생정전용량이며,
Figure PCTKR2015012871-appb-I000007
는 터치정전용량임.)
(here,
Figure PCTKR2015012871-appb-I000001
Denotes a touch signal detected by the touch detector 14,
Figure PCTKR2015012871-appb-I000002
Is the high level voltage applied to the auxiliary capacitor,
Figure PCTKR2015012871-appb-I000003
Is the low level voltage applied to the auxiliary capacitor,
Figure PCTKR2015012871-appb-I000004
Is the auxiliary capacitor capacitance,
Figure PCTKR2015012871-appb-I000005
Is the common electrode capacitance,
Figure PCTKR2015012871-appb-I000006
Is the parasitic capacitance,
Figure PCTKR2015012871-appb-I000007
Is the touch capacitance.)
<수학식1>과 <수학식2>를 참조하면, <수학식1>은 터치가 안되었을 때 터치검출부(14)에서 검출되는 터치신호이며 <수학식2>는 손가락에 의해 터치가 되었을 때 즉, 손가락과 센서패턴(10)이 상호 대향할 때 터치검출부(14)에서 검출되는 터치신호이다. <수학식1>과 <수학식2>의 차이점은 분모에 터치정전용량인 Ct가 존재 유무의 차이로서 터치에 의해 터치정전용량(Ct)이 발생하면 이의 크기에 의해 <수학식2>에 따라 검출되는 신호의 크기가 달라지므로 이를 연산하여 터치신호의 크기를 검출하는 것이 가능하게 된다.Referring to <Equation 1> and <Equation 2>, <Equation 1> is a touch signal detected by the touch detector 14 when the touch is not touched, and <Equation 2> is when the touch by the finger That is, the touch signal detected by the touch detector 14 when the finger and the sensor pattern 10 face each other. The difference between <Equation 1> and <Equation 2> is the difference in the presence or absence of the touch capacitance Ct in the denominator. When the touch capacitance (Ct) occurs by touch, it is determined according to <Equation 2>. Since the magnitude of the detected signal is different, it is possible to calculate the magnitude of the touch signal by calculating it.
한편, 도 6과 도 7을 참조하면 센서패턴(10)의 크기가 일정한 경우 센서신호선(22)의 저항을 균등화 하기 위해 센서패턴(10)의 위치별로 센서신호선(22)의 폭이 달라지므로 센서패턴(10)과 센서신호선(22)의 면적의 합은 터치 드라이브 IC(30)에서 원거리(long distance)일수록 커지게 된다. Meanwhile, referring to FIGS. 6 and 7, when the size of the sensor pattern 10 is constant, the width of the sensor signal line 22 varies for each position of the sensor pattern 10 so as to equalize the resistance of the sensor signal line 22. The sum of the areas of the pattern 10 and the sensor signal line 22 becomes larger as the long distance from the touch drive IC 30.
센서패턴(10)과 센서신호선(22)의 면적이 넓을수록 이는 공통전극정전용량(Cvcom)을 크게 하므로, <수학식1>이나 <수학식2>를 참조하면 이는 동일한 터치정전용량(Ct)에 대해 검출되는 신호의 크기를 작게하는 효과가 있다. The larger the area of the sensor pattern 10 and the sensor signal line 22 is, the larger the common electrode capacitance Cvcom is. Therefore, referring to <Equation 1> or <Equation 2>, the same touch capacitance Ct is obtained. There is an effect of reducing the magnitude of the signal detected for.
이로인해 터치 드라이브 IC에서 원거리 일수록 동일한 터치면적에 대해 검출되는 신호의 크기가 작고 터치 드라이브 IC에서 단거리일수록 동일한 터치면적에 대해 검출되는 신호의 크기가 커서 터치스크린패널의 각 부위에서 검출되는 신호의 크기가 서로 달라지는 문제가 발생할 수 있다.As a result, the larger the distance detected from the touch drive IC is for the same touch area, and the shorter the distance from the touch drive IC, the larger the detected signal for the same touch area. Can cause different problems.
터치가 발생하기 전에는 수학식1에 의하여 터치 드라이브 IC로부터 센서패턴의 위치에 관계없이 모두 균일한 출력전압 값을 가져야 한다. 그러나,센서 패턴의 크기 또는 면적이 모두 동일한 구성을 가지는 터치 패널은 상기에서 검토한 바와 같이 그 위치에 따라 터치 드라이브 IC에서 검출되는 신호의 크기가 달라지고, 이는 결과적으로 정확한 터치 좌표의 산출을 막는 중요한 원인이 될 것이다.Before touch occurs, all of the sensor patterns must have a uniform output voltage value regardless of the position of the sensor pattern from the touch drive IC. However, as described above, touch panels having a configuration in which the size or area of the sensor pattern is the same have different magnitudes of signals detected by the touch drive IC according to their positions, which in turn prevents accurate calculation of touch coordinates. It will be an important cause.
본 발명은 상기와 같은 종래 정전식 터치스크린패널의 문제점을 해결하기 위하여 제안된 것으로서, 터치스크린패널을 구성하는 센서패턴(10)의 크기를 터치 드라이브 IC와 대향하는 위치별로 달리하여 터치정전용량(Ct)의 크기를 다르게 함으로써 검출되는 터치신호의 크기(또는 이를 근거로 연산을 통해 획득되는 제2의 터치신호값을) 터치스크린패널의 위치에 무관하게 균등하게 획득하는 터치검출방법을 제공함에 그 목적이 있다. The present invention has been proposed in order to solve the problems of the conventional capacitive touch screen panel as described above, by changing the size of the sensor pattern 10 constituting the touch screen panel for each position facing the touch drive IC ( The present invention provides a touch detection method for equally acquiring a magnitude of a touch signal detected by varying the magnitude of Ct (or a second touch signal value obtained through calculation based on this) regardless of the position of the touch screen panel. There is a purpose.
본원 발명의 터치스크린패널에 따르면, 센서패턴(10)과 접속된 센서신호선(22)의 점유면적과 무관하게 터치스크린패널의 임의의 지점에서 검출된 터치신호의 크기가 일정하므로 터치신호를 이용한 어플리케이션등의 실시예에서 신호의 변곡점이 발생하지 않는 안정적인 신호를 공급하는 것이 가능하다.According to the touch screen panel of the present invention, since the magnitude of the touch signal detected at any point of the touch screen panel is constant regardless of the occupied area of the sensor signal line 22 connected to the sensor pattern 10, the application using the touch signal. In such an embodiment, it is possible to supply a stable signal in which the inflection point of the signal does not occur.
본원 발명의 터치스크린 패널에 의하면, 터치스크린 패널의 위치에 관계없이 균일한 터치신호의 출력이 가능한바 종국적으로는 보다 정확한 터치 좌표의 산출이 가능한 효과가 있다.According to the touch screen panel of the present invention, a uniform touch signal can be output regardless of the position of the touch screen panel, and ultimately, more accurate touch coordinates can be calculated.
도 1은 종래 터치스크린패널의 일예를 보인 사시도이다.1 is a perspective view showing an example of a conventional touch screen panel.
도 2는 종래 터치스크린패널의 다른 예를 보인 평면구성도이다.2 is a plan view showing another example of a conventional touch screen panel.
도 3은 도 2의 터치스크린패널(선형 센서 패턴(5)포함)이 표시장치 위에 설치된 예를 도시한 측 단면도이다.3 is a side cross-sectional view illustrating an example in which the touch screen panel (including the linear sensor pattern 5) of FIG. 2 is installed on a display device.
도 4는 도 3에서 터치커패시턴스를 검출하는 등가 회로도이다.FIG. 4 is an equivalent circuit diagram of detecting touch capacitance in FIG. 3.
도 5는 도 2의 터치스크린 패널에 비해 각각 분리된 센서 패턴(10)을 가지는 패널에서의 터치를 추출하기 위한 등가회로도이다.FIG. 5 is an equivalent circuit diagram for extracting a touch in a panel having a sensor pattern 10 separated from each other in comparison to the touch screen panel of FIG. 2.
도 6은 각각의 센서 패턴(10)이 분리되어 구성된 터치스크린 패널의 개략도를 보여주는 도면이다.6 is a schematic view of a touch screen panel in which each sensor pattern 10 is separately formed.
도 7은 도 6의 터치스크린패널(각각 분리된 센서 패턴(10)포함)이 표시장치 위에 설치된 예를 도시한 측 단면도이다.FIG. 7 is a side cross-sectional view illustrating an example in which the touch screen panel (including separate sensor patterns 10) of FIG. 6 is installed on a display device.
도 8은 본 발명의 일 실시예에 따른 터치 스크린 패널의 측 단면도(도 8(a) ) 및 평면도(도 8(b))이다.8 is a side cross-sectional view (FIG. 8A) and a plan view (FIG. 8B) of a touch screen panel according to an exemplary embodiment of the present invention.
도 9는 본 발명에 따른 터치 스크린 패널의 센서 패턴과 센서신호선의 구성을 개략적으로 도시한 도면이다.9 is a diagram schematically illustrating a configuration of a sensor pattern and a sensor signal line of a touch screen panel according to the present invention.
도 10은 본 발명에 따른 터치에 의해 발생되는 커패시턴스를 계산하는 방법을 개략적으로 도시한 도면이다.10 is a diagram schematically illustrating a method for calculating capacitance generated by a touch according to the present invention.
도 11은 본 발명에 따른 터치 스크린 패널의 센서 패턴과 센서신호선의 구성을 개략적으로 도시한 다른 실시예의 도면이다.FIG. 11 is a diagram schematically illustrating another exemplary embodiment of a configuration of a sensor pattern and a sensor signal line of a touch screen panel according to the present invention.
도 12는 본 발명에 따른 센서신호선과 터치 드라이브 IC를 상호 연결하기 위한 방안의 일 실시예이다. 12 is an embodiment of a method for interconnecting a sensor signal line and a touch drive IC according to the present invention.
본 발명에 따른 터치스크린패널의 일 측면에 따라,According to one aspect of the touch screen panel according to the present invention,
손가락를 포함하는 터치입력도구의 접근에 의해 터치정전용량이 발생하는 것을 감지하는 터치스크린패널에 있어서,In the touch screen panel for detecting that the touch capacitance is generated by the approach of the touch input tool including a finger,
상기 터치입력도구와의 사이에서 상기 터치정전용량(Ct)을 형성하는 복수개의 센서패턴으로서, 상기 센서패턴은 배치 위치에 따라 서로 다른 면적을 가지는, 상기 센서 패턴;A plurality of sensor patterns forming the touch capacitance (Ct) between the touch input tool, wherein the sensor patterns have different areas according to an arrangement position;
상기 터치정전용량의 형성 유무에 따라 수신되는 전압신호의 차이를 검출하여 터치여부를 검출하는 터치 검출부; 및A touch detector to detect whether a touch is detected by detecting a difference between voltage signals received according to whether the touch capacitance is formed; And
각각의 상기 센서 패턴과 상기 터치 검출부를 연결하는 복수개의 센서 신호선;을 포함한다.And a plurality of sensor signal lines connecting each of the sensor patterns and the touch detector.
바람직하게는,Preferably,
상기 센서패턴의 면적은 상기 터치 검출부로부터 거리에 따라 달라지는 것을 특징으로 한다.The area of the sensor pattern may vary depending on a distance from the touch detector.
바람직하게는,Preferably,
상기 센서패턴의 면적은 상기 터치 검출부로부터 거리에 비례하여 커지는 것을 특징으로 한다.The area of the sensor pattern is increased in proportion to the distance from the touch detector.
바람직하게는,Preferably,
상기 센서신호선의 폭은 각각의 길이에 비례하여 증가하되, 상기 터치 검출부로부터의 거리에 비례하여 상기 센서신호선의 폭이 증가하는 것을 특징으로 한다.The width of the sensor signal line is increased in proportion to each length, but the width of the sensor signal line is increased in proportion to the distance from the touch detector.
바람직하게는,Preferably,
이웃하는 두개의 상기 센서신호선간의 간격(spacing)은 이웃하는 두개의 센서신호선 중 폭이 넓은 센서신호선의 폭에 따라 달라지는 것을 특징으로 한다.Spacing between two neighboring sensor signal lines may vary depending on the width of a wider sensor signal line among two neighboring sensor signal lines.
바람직하게는,Preferably,
상기 센서패턴의 크기를 결정하기 위해서 상기 센서패턴이 배치된 위치에서의 공통전극정전용량(Cvcom)의 크기를 고려하는 것을 특징으로 한다.In order to determine the size of the sensor pattern, the size of the common electrode capacitance Cvcom at the position where the sensor pattern is disposed is considered.
바람직하게는,Preferably,
상기 센서패턴의 크기를 결정하기 위해서 상기 센서패턴에서 발생하는 기생정전용량(Cp)의 크기를 고려하는 것을 특징으로 한다.In order to determine the size of the sensor pattern is characterized in that the size of the parasitic capacitance (Cp) generated in the sensor pattern.
바람직하게는,Preferably,
상기 센서신호선과 상기 센서패턴은 투명도전체로 하나의 마스크(mask)를 이용하여 단일층에 형성되는 것을 특징으로 한다.The sensor signal line and the sensor pattern may be formed in a single layer using a single mask as a transparent conductor.
바람직하게는,Preferably,
상기 투명도전체는 ITO인 것을 특징으로 한다.The transparent conductor is characterized in that ITO.
바람직하게는,Preferably,
상기 센서신호선은 금속 재료로 형성되고, 상기 센서패턴은 투명도전체로 형성되는 것을 특징으로 한다.The sensor signal line is formed of a metallic material, and the sensor pattern is formed of a transparent conductor.
바람직하게는,Preferably,
상기 터치검출부와 접속되는 상기 센서신호선의 연결패드 부분은 금속 재료로 형성되는 것을 특징으로 한다.The connection pad portion of the sensor signal line connected to the touch detector is formed of a metal material.
바람직하게는,Preferably,
상기 금속 재료는 금, 은 또는 알루미늄 중 하나인 것을 특징으로 한다.The metal material is characterized in that one of gold, silver or aluminum.
이하, 본 발명의 바람직한 실시예를 첨부된 도면 및 실시예를 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings and embodiments.
본원 발명은 터치 스크린 패널(Touch Screen Panel)에 관한 발명으로서, 보다 상세하게는 표시 장치위에 실장되는 터치 패널에 관한 것이며 구체적인 유형에 한정되지 아니한다. 즉, 온셀(On-Cell) 방식의 터치디바이스나 인셀(In-Cell) 방식의 터치 디바이스 모두에 적용될 수 있다.The present invention relates to a touch screen panel, and more particularly, to a touch panel mounted on a display device, and is not limited to a specific type. That is, the present invention may be applied to both an on-cell touch device and an in-cell touch device.
우선, 본 발명은 면적이 서로 다른 센서패턴을 가지는 터치스크린 패널에 관한 것으로서, 종래의 정전식 터치스크린패널이 터치위치별로 터치신호가 상이하게 검출되는것과는 달리 터치위치에 무관하게 검출되는 값이 동일한 값이 되도록 하는 방식이다.First, the present invention relates to a touch screen panel having a sensor pattern having a different area, and unlike a conventional capacitive touch screen panel in which a touch signal is differently detected for each touch position, a value detected regardless of the touch position is the same. It is a way to make it a value.
본 발명에서 언급되는 표시장치는 LCD, PDP, OLED, AMOLED 중 어느 하나이거나, 기타 화상을 표시하는 모든 수단을 의미한다. 위에 나열한 표시장치 중 LCD는 액정의 구동을 위해 공통전압(Vcom)을 필요로 한다. 일예로서, 휴대기기용 중소형 LCD에서는 소비전류를 감소시키기 위하여 공통전극의 공통전압이 하나 또는 복수의 게이트라인별로 교번하는 Line inversion 방식을 사용한다. 다른 예로서, 대형 LCD는 공통전극의 공통전압이 일정한 DC 레벨을 갖는다. 또 다른 예로서, 어떤 표시장치는 외부의 ESD를 차단하기 위해 패널 전체에 공통으로 작용하는 차폐전극을 형성하고 이를 그라운드 신호와 접지시킨다. 또는, 어떤 횡전계모드의 LCD에 있어서 공통전극은 TFT 기판에 위치하며 칼라필터 상면에서 검출되는 공통전압은, DC 레벨을 기준으로 상하로 불특정 주파수로 교번하는 형태를 갖기도 한다.The display device referred to in the present invention means any one of LCD, PDP, OLED, AMOLED, or any means for displaying other images. Among the display devices listed above, the LCD requires a common voltage (Vcom) to drive the liquid crystal. For example, in the small and medium-sized LCD for portable devices, a line inversion method in which a common voltage of a common electrode alternates with one or more gate lines is used to reduce current consumption. As another example, a large LCD has a DC level at which the common voltage of the common electrode is constant. As another example, some display devices form a shielding electrode common to the entire panel to block external ESD, and ground it with a ground signal. Alternatively, in some transverse electric field mode LCDs, the common electrode is located on the TFT substrate, and the common voltage detected on the upper surface of the color filter alternates up and down at an unspecified frequency with respect to the DC level.
본 발명에서는 위와 같이 공통전압(Vcom)이 인가되는 전극 이외에, 표시장치 내에서 공통으로 역할하는 모든 전극들을 “공통전극”이라 칭하기로 하며 표시장치의 공통전극에 인가되는 교번전압이나 DC 전압 또는 불특정 주파수로 교번하는 형태의 전압을 “공통전압”이라 칭하기로 한다.In the present invention, in addition to the electrode to which the common voltage Vcom is applied as described above, all electrodes which are commonly used in the display device are referred to as "common electrodes" and the alternating voltage, DC voltage, or unspecified applied to the common electrode of the display device Voltage in the form of alternating frequency is referred to as "common voltage".
본 발명은 손가락이나 이와 유사한 전기적 특성을 갖는 터치입력도구의 비접촉 터치입력을 검출한다. 여기서 “비접촉 터치입력”이라 함은 손가락 등의 터치입력도구가 기판에 의해 센서패턴과 소정 거리 이격된 상태에서 터치입력을 하는 것을 의미한다. 터치입력도구가 기판의 외면에 대하여는 접촉될 수 있다. 하지만 이 경우에도 터치입력도구와 센서패턴은 비접촉 상태를 유지한다. 따라서, 센서패턴에 대한 손가락의 터치 행위는 “접근”이라는 용어로 표현될 수 있다. 한편, 기판의 외면에 대하여는 손가락이 접촉된 상태일 수 있으므로, 기판에 대한 손가락의 터치 행위는 “접촉”이라는 용어로 표현될 수 있다. 본 명세서에서 “접근”과 “접촉”은 위와 같은 의미로 통용된다.The present invention detects a non-contact touch input of a touch input tool having a finger or similar electrical characteristics. Herein, the term "non-contact touch input" means that a touch input tool such as a finger makes a touch input while being spaced apart from the sensor pattern by a substrate at a predetermined distance. The touch input tool may contact the outer surface of the substrate. However, even in this case, the touch input tool and the sensor pattern remain in a non-contact state. Accordingly, the touch action of the finger on the sensor pattern may be expressed by the term “access”. On the other hand, since the finger may be in contact with the outer surface of the substrate, the touch action of the finger against the substrate may be expressed by the term "contact". In this specification, "access" and "contact" are commonly used as the meaning above.
또한, 이하에서 설명되는 “~부”와 같은 구성들은 어떤 역할들을 수행하는 구성요소이며, 소프트웨어 또는 FPGA(Field-Programmable Gate Array)나 ASIC(Application Specific Integrated Circuit)와 같은 하드웨어 구성요소를 의미한다. 또한, “~부”는 더 큰 구성요소 또는 “~부”에 포함되거나, 더 작은 구성요소들 및 “~부”들을 포함할 수 있다. 또한, “~부”는 자체적으로 독자적인 CPU를 가질 수도 있다.In addition, configurations such as "~" described below are components that perform certain roles, and mean software components or hardware components such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC). In addition, "~ part" may be included in a larger component or "~ part" or may include smaller components and "~ part". Also, the "~ part" may have its own CPU.
이하의 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께나 영역을 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면부호를 사용하였다. 층, 영역, 기판 등의 부분이 다른 부분 “위에” 또는 “상면” 있다고 할 때, 이는 다른 부분 “바로 위에” 있는 경우 뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 “바로 위에” 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 본 명세서에 기재된 신호는 특별한 언급이 없는 한, 전압 또는 전류를 총칭한다.In the drawings, thicknesses or regions are enlarged in order to clearly express various layers and regions. The same reference numerals are used for similar parts throughout the specification. When a part of a layer, region, substrate, etc. is said to be "on top" or "top" of another part, this includes not only the other part "directly" but also another part in the middle. On the contrary, when a part is “just above” another part, there is no other part in the middle. In addition, the signals described herein collectively refer to voltage or current, unless otherwise noted.
도 8은 본 발명의 일 실시예에 따른 터치 스크린 패널의 측 단면도(도 8(a) ) 및 평면도(도 8(b))이다. 도 8(a) 을 참조하여, 터치 스크린 패널에 배치된 각각의 센서 패턴(10)이 터치 드라이브 IC(30)으로부터 거리가 멀수록 센서 패턴(10)의 크기 또는 면적이 커지고 터치 드라이브 IC(30)으로부터 거리가 짧을수록 센서 패턴(10)의 크기 또는 면적이 작아지는 구조를 가진다.8 is a side cross-sectional view (FIG. 8A) and a plan view (FIG. 8B) of a touch screen panel according to an exemplary embodiment of the present invention. Referring to FIG. 8A, as the sensor pattern 10 disposed on the touch screen panel is farther from the touch drive IC 30, the size or area of the sensor pattern 10 increases and the touch drive IC 30 is increased. The shorter the distance from ()), the smaller the size or area of the sensor pattern 10 is.
구체적으로 터치 드라이브 IC(30)로부터 가장 원거리에 있는 센서 패턴(10-1)은 터치 드라이브 IC(30)로부터 가장 근거리에 있는 센서 패턴(10-8)에 비해 폭이 훨씬 넓다. 따라서 전체적인 크기 즉 면적에 있어서 센서 패턴(10-1)은 센서 패턴(10-8)보다 훨씬 크게 구성되어 있다.In detail, the sensor pattern 10-1 farthest from the touch drive IC 30 is much wider than the sensor pattern 10-8 farthest from the touch drive IC 30. Accordingly, the sensor pattern 10-1 is much larger than the sensor pattern 10-8 in the overall size, that is, area.
도 8(b)는 본원 발명에 따른 터치 스크린 패널의 일 실시예에 따른 센서 패턴의 구조를 개략적으로 도시한 평면도를 보여주는 도면이다.8B is a plan view schematically illustrating a structure of a sensor pattern according to an exemplary embodiment of the touch screen panel according to the present invention.
도 8(b)를 참조하면, 본원 발명의 터치 스크린 패널(800)은 로우 1(row-1)에 배치된 센서 패턴(10-1)의 크기가 가장 크고, 터치 드라이브 IC(30)에 근접할수록 즉, 로우 2 -> 로우 3 -> 로우 4 -> 로우 5 -> 로우 6 -> 로우 7 -> 로우 8로 갈수록 센서 패턴이 크기가 작아지도록 구성되어 있다.Referring to FIG. 8B, the touch screen panel 800 of the present invention has the largest size of the sensor pattern 10-1 disposed in row 1 and is close to the touch drive IC 30. In other words, the sensor pattern is configured to decrease in size from row 2-> row 3-> row 4-> row 5-> row 6-> row 7-> row 8.
따라서, 로우 8(row-8)에 구성된 센서패턴(10-8)의 크기는 가장 작은 크기를 갖도록 구성된다.Therefore, the size of the sensor pattern 10-8 configured in row-8 is configured to have the smallest size.
도 9는 본 발명에 따른 터치 스크린 패널(900)의 센서 패턴과 센서신호선의 구성을 개략적으로 도시한 도면이다.9 is a diagram schematically illustrating a configuration of a sensor pattern and a sensor signal line of the touch screen panel 900 according to the present invention.
도 9에서의 터치 드라이브 IC(30)는 도 6에 도시된 것과 같이 구동부(31),터치검출부(14),신호처리부(47)등을 포함하고 있으며 터치 드라이브 IC(30)는 터치스크린패널에 접속되어 있다.The touch drive IC 30 of FIG. 9 includes a driver 31, a touch detector 14, a signal processor 47, and the like as shown in FIG. 6, and the touch drive IC 30 is mounted on the touch screen panel. Connected.
터치 드라이브 IC(30)는 터치스크린패널에 COG(Chip On Glass)로 접속되거나 COF(Chip On Film)나 FPC등의 연성회로 기판으로 연결되며 센서패턴(10)에서 발원된 센서신호선(22)과 접속된다.The touch drive IC 30 is connected to a touch screen panel by a chip on glass (COG) or a flexible circuit board such as a chip on film (COF) or an FPC, and has a sensor signal line 22 originating from the sensor pattern 10. Connected.
도 9에 도시된 바와 같이 각각의 센서패턴(10)에는 센서신호선(22)이 하나씩 연결되며 각각의 센서신호선(22)은 터치 드라이브 IC에 연결된다. 만일 센서패턴(10)에 손가락이 인접하여 “d”라는 거리로 인접할 때 도 10과 같이 손가락과 센서패턴(10)사이에 존재하는 물질의 유전율(e)에 비례한 터치정전용량(Ct)이 형성되며 터치정전용량은 손가락(25)과 센서패턴(10)의 대향면적에도 비례한다. As shown in FIG. 9, sensor signal lines 22 are connected to each sensor pattern 10 one by one, and each sensor signal line 22 is connected to the touch drive IC. If the finger is adjacent to the sensor pattern 10 at a distance of “d”, the touch capacitance Ct is proportional to the dielectric constant e of the material existing between the finger and the sensor pattern 10 as shown in FIG. 10. The touch capacitance is proportional to the opposing area of the finger 25 and the sensor pattern 10.
예를들어 보호유리(도 7의 보호층(24)) 하측에 센서패턴(10)을 가지는 스마트폰의 경우 유리의 유전율이 6정도이고 대향면적이 5mm x 5mm인 경우 Ct는 쉽게 계산을 하는 것이 가능하다.For example, in the case of a smartphone having the sensor pattern 10 under the protective glass (protective layer 24 of FIG. 7), when the dielectric constant of the glass is about 6 and the opposing area is 5mm x 5mm, it is easy to calculate Ct. It is possible.
도 9의 실시예에서 센서패턴(10)과 센서신호선(22)이 ITO(Indium Tion Oxide)와 같은 투명도전체로 구성된 경우 ITO의 비저항이 비교적 크므로 센서신호선(22)의 저항은 수백Kohm정도가 된다. In the exemplary embodiment of FIG. 9, when the sensor pattern 10 and the sensor signal line 22 are made of a transparent conductor such as indium ion oxide (ITO), the resistivity of the ITO is relatively large, so that the resistance of the sensor signal line 22 is about several hundred Kohm. do.
예를들어 ITO의 비저항이 250Ωm이고 센서 신호선의 폭이 30um, 센서신호선의 길이가 10cm라고 가정하면 센서신호선(22)의 저항은 약 833kΩ이 된다. For example, assuming that the resistivity of ITO is 250Ωm, the width of the sensor signal line is 30um, and the length of the sensor signal line is 10cm, the resistance of the sensor signal line 22 is about 833kΩ.
센서신호선의 선폭이 센서패턴의 위치에 관계없이 모두 동일하다고 가정할 때, 센서 신호선(22)의 저항값은 센서패턴(22)과 터치 드라이브 IC(30)와의 거리에 비례하므로 결과적으로는 각 센서 신호선(22) 자체의 길이에 비례한다.Assuming that the line widths of the sensor signal lines are the same regardless of the position of the sensor pattern, the resistance value of the sensor signal line 22 is proportional to the distance between the sensor pattern 22 and the touch drive IC 30, and as a result, each sensor It is proportional to the length of the signal line 22 itself.
따라서, 도 9에서 터치 드라이브 IC(30)와 근거리(Short distance)에 있는 센서 패턴(10e)를 연결하는 센서신호선(22e)의 저항값은 터치 드라이브 IC(30)와 원거리에 위치한 센서 패턴(10a)를 연결하는 센서신호선(22a)의 저항값보다 크기가 작다.Therefore, in FIG. 9, the resistance value of the sensor signal line 22e connecting the touch drive IC 30 and the sensor pattern 10e at a short distance is the sensor pattern 10a located at a distance from the touch drive IC 30. ) Is smaller than the resistance value of the sensor signal line 22a.
센서패턴(10)에서 손가락(25)의 터치에 의해 발생한 터치신호를 검출하기 위해 터치정정용량(Ct)에 단위시간에 정전류를 인가하였다고 가정해보자. Assume that a constant current is applied to the touch capacitance Ct at a unit time in order to detect a touch signal generated by the touch of the finger 25 in the sensor pattern 10.
고전적인 수학식인 V=Q/C에 의해 터치정전용량인 Ct에는 전하량(Q)에 비례하는 전압(V)이 형성된다. 이때 센서신호선(22)의 저항에 의해 전압의 상승은 지연되며 저항이 클수록 지연되는 시간은 길어지게 된다. According to the classical equation V = Q / C, a voltage V proportional to the charge amount Q is formed in the touch capacitance Ct. At this time, the increase of the voltage is delayed by the resistance of the sensor signal line 22, and the longer the resistance is, the longer the delay becomes.
따라서 동일한 시간에, 저항이 작은 센서신호선(22e)을 경유한 전압의 상승분과 저항이 큰 센서신호선(22a)을 경유한 전압의 상승분은 차이가 발생하므로 동일한 터치면적에 의해 형성된 동일한 터치정전용량(Ct)에 따른 검출전압의 차이가 발생하게 된다. 이는 결과적으로 멀티 터치의 경우에 정확한 터치 좌표의 산출에서 오류 발생의 원인이 된다.Therefore, at the same time, the difference between the rise of the voltage through the sensor signal line 22e with the small resistance and the rise of the voltage through the sensor signal line 22a with the large resistance occurs, so that the same touch capacitance formed by the same touch area ( The difference in the detection voltage according to Ct) occurs. This, in turn, causes errors in the calculation of correct touch coordinates in the case of multi-touch.
상기와 같은 종래의 터치스크린 패널의 문제를 해결하기 위해 본원 발명의 일 실시예에 따른 터치 스크린 패널(900)은 센서패턴의 크기(또는 면적) 및 센서 신호선의 폭을 동일하게 구성하지 않고, 서로 상이하게 구성한다는 것에 특징이 있다.In order to solve the problem of the conventional touch screen panel as described above, the touch screen panel 900 according to an embodiment of the present invention does not constitute the same size (or area) of the sensor pattern and the width of the sensor signal line. It is characterized by the configuration differently.
구체적으로 일 실시예에 의하면, 센서패턴의 크기(또는 면적) 및 센서 신호선의 폭은 터치 드라이브 IC(30)로부터 거리에 비례한다.Specifically, according to an embodiment, the size (or area) of the sensor pattern and the width of the sensor signal line are proportional to the distance from the touch drive IC 30.
도 9에 도시된 바와 같이, 터치 드라이브 IC(30)으로부터 원거리에 있는 센서 패턴(10a)의 크기와 이에 연결된 센서 신호선 (22a)의 폭은 근거리에 있는 센서 패턴(10e)의 크기와 이에 연결된 센서 신호선(22e)의 폭보다 각각 더 크다.As shown in FIG. 9, the size of the sensor pattern 10a distant from the touch drive IC 30 and the width of the sensor signal line 22a connected thereto are the size of the sensor pattern 10e at a short distance and the sensor connected thereto. Each larger than the width of the signal line 22e.
도 9에서 센서 패턴의 크기는 터치 드라이브 IC(30)로부터 거리에 따라 10a > 10b > 10c > 10d > 10e의 순서로 구성된다.In FIG. 9, the size of the sensor pattern is configured in the order of 10a> 10b> 10c> 10d> 10e according to the distance from the touch drive IC 30.
동시에 각각의 센서 패턴에 연결되는 센서 신호선의 폭도 22a > 22b > 22c > 22d > 22e의 순서로 구성된다.At the same time, the widths of the sensor signal lines connected to the respective sensor patterns are also arranged in the order of 22a> 22b> 22c> 22d> 22e.
원거리의 센서패턴(10a)과 접속된 센서신호선(22a)의 저항을 줄이기 위해 센서신호선(22a)의 배선폭을 넓게 한다. 비저항의 크기가 “ρ”인 ITO로 배선폭이 “w”이고 길이가 “l”인 센서신호선(22)을 설계할 때 센서신호선의 저항의 크기인 “R”은 다음과 같이 결정된다.In order to reduce the resistance of the sensor signal line 22a connected to the remote sensor pattern 10a, the wiring width of the sensor signal line 22a is widened. When designing a sensor signal line 22 having a wiring width of "w" and a length of "l" with ITO having a specific resistance of "ρ", "R" of the resistance of the sensor signal line is determined as follows.
Figure PCTKR2015012871-appb-M000003
Figure PCTKR2015012871-appb-M000003
<수학식3>을 인용하면 센서신호선(22)의 저항을 줄이기 위해서는 배선폭인 “w”를 넓게 하는 것이다. Referring to Equation 3, in order to reduce the resistance of the sensor signal line 22, the wiring width “w” is widened.
도 9을 참조하면 원거리의 센서패턴(10a)에 접속된 센서신호선(22a)의 배선폭이 가장 넓을 것이며 <수학식3>에 의한 계산결과에 따라 센서신호선(22b)나 센서신호선(22c)의 폭은 점차로 좁아질 것은 상기에서 이미 검토한 바이다.Referring to FIG. 9, the wiring width of the sensor signal line 22a connected to the remote sensor pattern 10a will be the widest, and according to the calculation result of Equation 3, As the width gradually narrows, it has already been discussed above.
한편, 도 9을 참조하면, 센서신호선(22)의 폭이 위치별로 다르므로 동일한 면적을 가지는 센서패턴(10)에 대해 센서패턴(10)의 면적과 센서신호선(22)의 면적의 합은 센서패턴(10)의 위치에 따라 서로 다르게 된다. Meanwhile, referring to FIG. 9, since the widths of the sensor signal lines 22 are different for each position, the sum of the area of the sensor pattern 10 and the area of the sensor signal lines 22 is equal to the sensor pattern 10 having the same area. The position of the pattern 10 is different from each other.
단, 터치 드라이브 IC(30)에서 동일한 위치에 있는 센서패턴(10)과 센서신호선(22)의 면적의 합은 같거나 비슷할 수 있다. 예를 들어 도 9에서 동일 로우(row)에 존재하는 4개의 센서패턴(10)에 대해 이들과 접속된 센서신호선(22)과 센서패턴(10)을 더한 면적의 합은 같거나 거의 유사하게 된다.However, the sum of the area of the sensor pattern 10 and the sensor signal line 22 at the same position in the touch drive IC 30 may be the same or similar. For example, for the four sensor patterns 10 existing in the same row in FIG. 9, the sum of the area of the sensor signal lines 22 and the sensor pattern 10 connected thereto is the same or almost similar. .
터치 드라이브 IC(30)가 터치스크린패널의 중앙에 위치하는 경우 로우(Row)의 좌우측에 위치한 센서패턴(10)에 접속된 센서신호선(22)의 면적은 중앙에 위치한 센서신호선보다 조금은 더 클 수 있으므로 유사하다는 표현을 사용하였으며, 터치신호를 사용함에 있어서 이정도의 크기 차이로 인해 발생하는 오류가 무시할 수 있는 정도로 작다고 한다면 동일 로우에 존재하는 센서신호선(22)의 면적과 센서패턴의 면적의 합은 같다고 해도 무방하다.When the touch drive IC 30 is positioned at the center of the touch screen panel, the area of the sensor signal line 22 connected to the sensor pattern 10 located at the left and right sides of the row may be slightly larger than the sensor signal line located at the center. Therefore, when the touch signal is used, the error caused by this magnitude difference is small enough to be negligible. Therefore, the sum of the area of the sensor signal line 22 and the area of the sensor pattern in the same row is It may be the same.
종래기술에서 검토된 센서패턴(10)의 면적은 동일하나 센서신호선(22)의 면적이 다른 경우, 이러한 터치스크린패널이 표시장치(200)의 상면에 도 3과 같이 위치하면 공통전극정전용량(Cvcom)은 센서패턴(10)의 위치별로 차이가 발생하게 된다. When the area of the sensor pattern 10 examined in the prior art is the same but the area of the sensor signal line 22 is different, when the touch screen panel is positioned on the upper surface of the display device 200 as shown in FIG. 3, the common electrode capacitance ( Cvcom) causes a difference for each position of the sensor pattern 10.
공통전극정전용량(Cvcom)은, 도 3을 참조하면, 표시장치의 공통전극(220)과 센서패턴(10) 사이에 형성되는 정전용량이다. 센서패턴(10)은 센서신호선(22)과 접속되어 있으므로 터치 드라이브 IC(30)에서 원거리에 있는 센서신호선(22a)의 공통전극정전용량(Cvcom)의 크기는 터치 드라이브 IC(30)에서 단거리에 있는 센서신호선(22e)의 크기보다 크게 된다. 전술한 <수학식1> 및 <수학식2>로 터치 신호를 검출하는 경우, 수학식의 분모에 공통전극정전용량(Cvcom)이 위치하므로 동일한 터치정전용량(Ct)에 대해 터치스크린패널의 위치별로 검출신호에 차이가 발생하게 된다.Referring to FIG. 3, the common electrode capacitance Cvcom is a capacitance formed between the common electrode 220 and the sensor pattern 10 of the display device. Since the sensor pattern 10 is connected to the sensor signal line 22, the size of the common electrode capacitance Cvcom of the sensor signal line 22a remote from the touch drive IC 30 is shorter than that of the touch drive IC 30. It becomes larger than the size of the sensor signal line 22e. When the touch signals are detected by the above-described Equations 1 and 2, since the common electrode capacitance Cvcom is located in the denominator of the equation, the position of the touch screen panel with respect to the same touch capacitance Ct. The difference occurs in the detection signal.
*터치 드라이브 IC(30)에서 근거리에 위치한 센서패턴(10)에서의 검출신호* Detection signal from the sensor pattern 10 located close to the touch drive IC 30.
터치 드라이브 IC에서 근거리에 위치한 센서패턴(도 9의 10e)에서 검출된 신호의 크기는 <수학식1>과 <수학식2>에 의해 구해진다. 터치가 발생하지 않았을 때의 신호의 크기인 <수학식1>의 크기에 비해 터치가 발생했을 때의 신호의 크기인 <수학식2>의 크기차이로 터치의 크기(이하 터치량)를 추출 할 수 있다. The magnitude of the signal detected by the sensor pattern (10e in FIG. 9) located at a short distance in the touch drive IC is obtained by <Equation 1> and <Equation 2>. The size of the touch (hereinafter referred to as touch amount) can be extracted by the size difference of <Equation 2>, which is the signal size when the touch is generated, compared to the size of <Equation 1>, which is the signal when the touch does not occur. Can be.
터치의 크기는 도 10에서와 같이 센서패턴(10)과 대향하는 손가락의 면적으로서, 손가락에 힘을 주고 터치스크린패널을 세게 누르면 터치신호의 크기는 커지며 약하게 누르면 터치신호의 크기는 작아질 것이다.The size of the touch is the area of the finger facing the sensor pattern 10 as shown in FIG. 10. When the force is applied to the finger and the touch screen panel is pressed hard, the size of the touch signal is increased, and if the touch is weak, the size of the touch signal is reduced.
터치 드라이브 IC와 근거리에 위치한 센서패턴(10)에서 검출된 터치량은 공통전극정전용량(Cvcom)이 작은 상태에서의 터치량이다. 따라서 <수학식2>를 참조하면, 터치정전용량(Ct)의 작은 변화량에도 터치량은 민감하게 반응한다.The amount of touch detected by the touch drive IC and the sensor pattern 10 located near is a touch amount in a state where the common electrode capacitance Cvcom is small. Therefore, referring to Equation 2, the touch amount reacts sensitively even to a small change amount of the touch capacitance Ct.
예를들어 (Vh-Vl)=10, Caux=Cvcom=Cp=Ct=10이라고 가정하면 <수학식1>을 인용한 터치가 안된 상태에서 검출된 신호의 크기는 3.33이며 <수학식2>에서 검출된 신호의 크기는 2.5이다. 따라서 터치량은 (3.33-2.5)/3.33=0.25정도가 된다.For example, assuming that (Vh-Vl) = 10 and Caux = Cvcom = Cp = Ct = 10, the magnitude of the detected signal in the untouched state citing Equation 1 is 3.33. The magnitude of the detected signal is 2.5. Therefore, the touch amount is about (3.33-2.5) /3.33=0.25.
*터치 드라이브 IC(30)에서 원거리에 위치한 센서패턴(10)에서의 검출신호* Detection signal from the sensor pattern 10 located far from the touch drive IC 30
터치 드라이브 IC에서 원거리에 위치한 센서패턴(10e)에서 검출된 신호의 크기도 <수학식1>과 <수학식2>에 의해 구해지며 터치검출부(14)에서 검출되는 신호의 크기는 공통전극정전용량이 커지므로 동일한 터치정전용량(Ct)에 의한 터치량은 근거리의 터치량보다 작아진다. 예를들어 (Vh-Vl)=10, Caux=Cp=Ct=10, Cvcom=20이라고 가정하면 수학식1>을 인용한 터치가 안된 상태에서 검출된 신호의 크기는 2.5이며 <수학식2>에서 검출된 신호의 크기는 2이다. 따라서 터치량은 (2.5-2)/2.5=0.2로서 동일한 터치정전용량(Ct=10)에 대해 터치량의 감소가 발생한다.The magnitude of the signal detected by the sensor pattern 10e located at the far distance in the touch drive IC is also obtained by <Equation 1> and <Equation 2>, and the magnitude of the signal detected by the touch detection unit 14 is the common electrode capacitance. Since this becomes large, the amount of touch by the same touch capacitance Ct becomes smaller than that of the near distance. For example, assuming that (Vh-Vl) = 10, Caux = Cp = Ct = 10, and Cvcom = 20, the magnitude of the detected signal in the non-touch state citing Equation 1 is 2.5 and Equation 2 The magnitude of the detected signal is 2. Therefore, the touch amount is (2.5-2) /2.5=0.2, and the touch amount decreases with respect to the same touch capacitance (Ct = 10).
원거리에서 검출된 터치량을 근거리의 터치량과 동일한 2.5로 맞추기 위해서는 터치정전용량(Ct)의 변화량을 크게하면 된다. 예를들어 터치정전용량 Ct=13.3이라고 가정하면 (Vh-Vl)=10, Caux=Cp=10, Cvcom=20, Ct=13.3이므로 <수학식1>에서 검출된 신호의 크기는 2.5이고 <수학식2>에서 검출된 신호의 크기는 1.87로서 터치량은 (2.5-1.87)/2.5=0.25로서 근거리에서의 터치량과 동일하게 된다.In order to adjust the touch amount detected at a long distance to 2.5 which is the same as the touch value at a short distance, the change amount of the touch capacitance Ct may be increased. For example, assuming that the touch capacitance Ct = 13.3, (Vh-Vl) = 10, Caux = Cp = 10, Cvcom = 20, Ct = 13.3, the magnitude of the signal detected in Equation 1 is 2.5 and The magnitude of the signal detected in Equation 2> is 1.87 and the touch amount is (2.5-1.87) /2.5=0.25, which is the same as the touch amount at a short distance.
이와 같이 원거리의 터치량이 근거리의 터치량과 유사해지기 위해서는 원거리일수록 터치정전용량(Ct)의 변화량이 커야한다. 예를들어 근거리에서 터치정전용량의 변화량이 0~10정도라고 하면 중간정도의 거리에서는 0~12, 또한 원거리에서의 Ct의 변화량은 0~14정도가 될 것이며 정확한 변화량은 계산에 의해 다음과 같이 구할 수 있다.As described above, in order for the remote touch amount to be similar to the near touch amount, the change amount of the touch capacitance Ct should be larger as the far distance. For example, if the change in touch capacitance is near 0 ~ 10 at short distance, the change in Ct at 0 ~ 12 at medium distance and 0 ~ 14 at long distance will be 0 ~ 14. You can get it.
도 10의 수학식을 인용하면, 터치정전용량(Ct)을 크게 하기 위해서는 손가락(25)과 센서패턴(10)의 대향면적을 크게 해야 한다. 도 10의 수학식에 의해 결정된 터치정전용량(Ct)은 <수학식1>과 <수학식2>의 분모에 있는 Ct에 적용된다. 또한 원거리와 근거리에 배치된 센서패턴(10)에 접속된 센서신호선(22)의 서로 다른 면적에 따른 공통전극정전용량(Cvcom)도 도 10의 수학식에 의해 결정되며, 여기에서 결정된 Cvcom도 <수학식1> 및 <수학식2>의 분모에 있는 Cvcom에 그대로 적용된다. 거리별로 Cvcom의 크기가 다르므로 <수학식1>과 <수학식2>를 근거로한 변화량이 일정하기 위해서는 터치정전용량(Ct)의 크기가 달라져야 하는 것은 앞에서 설명한 바와 같다. 따라서 원거리 일수록 터치정전용량(Ct)의 변화량이 커야 하므로 센서패턴(10)의 면적이 넓어져야 한다. Referring to the equation of FIG. 10, in order to increase the touch capacitance Ct, the opposing area of the finger 25 and the sensor pattern 10 should be increased. The touch capacitance Ct determined by the equation of FIG. 10 is applied to Ct in the denominator of <Equation 1> and <Equation 2>. In addition, the common electrode capacitance Cvcom according to different areas of the sensor signal line 22 connected to the sensor pattern 10 disposed at a long distance and at a short distance is also determined by the equation of FIG. 10, and Cvcom determined here is also < The same applies to Cvcom in the denominator of equations (1) and (2). Since the size of Cvcom is different for each distance, the magnitude of the touch capacitance Ct should be different in order to change the amount based on Equation 1 and Equation 2 as described above. Therefore, since the change amount of the touch capacitance Ct should be larger, the area of the sensor pattern 10 should be wider.
도 9을 참조하면, 터치 드라이브 IC(30)에서 원거리일수록 센서패턴(10)의 면적이 넓고 근거리일수록 센서패턴(10)의 면적이 좁아진다 즉 10a > 10e와 같다. 이로인해 원거리의 센서패턴(10)에서 검출되는 터치정전용량(Ct)의 변화량은 크고 근거리에서 센서패턴(10)에서 검출되는 터치정전용량(Ct)의 변화량은 작으므로, 변화량의 크기조절을 통해 터치스크린패널의 임의의 지점에서 발생하는 터치량을 일정하게 유지하는 것이 가능하다.Referring to FIG. 9, the area of the sensor pattern 10 is wider at a distance from the touch drive IC 30 and the area of the sensor pattern 10 is narrow at a short distance, that is, 10a> 10e. As a result, the amount of change in the touch capacitance Ct detected by the sensor pattern 10 at a long distance is large and the amount of change in the touch capacitance Ct detected by the sensor pattern 10 at a short distance is small. It is possible to keep the amount of touch generated at any point of the touch screen panel constant.
한편, 도 11를 참조하면 원거리에 배치된 센서신호선(22b)는 그 행로를 감싸는 22a 및 22c사이에 기생정전용량이 생성된다. <수학식1>과 <수학식2>를 참조하면, 분모의 Cp는 기생정전용량으로서 다양한 기생정전용량이 생성되며 그중에 하나가 센서신호선(22) 사이에 발생하는 기생정전용량이다. 센서신호선(22) 상호간에 발생하는 기생정전용량은 도 10의 수학식을 참조하면 대향거리인 “d”에 반비례하고 대향면적인 “A”에 비례하므로, 센서신호선(22) 상호간 대향하는 거리가 좁을수록 또한 대향하는 길이가 길수록 기생정전용량(Cp)의 크기는 커지게 된다. Meanwhile, referring to FIG. 11, the parasitic capacitance is generated between the sensor signal lines 22b disposed at a long distance between 22a and 22c surrounding the path. Referring to Equations 1 and 2, Cp of the denominator is a parasitic capacitance, and various parasitic capacitances are generated, one of which is a parasitic capacitance generated between the sensor signal lines 22. The parasitic capacitance generated between the sensor signal lines 22 is inversely proportional to the opposing distance “d” and proportional to the “A” of the opposing area, referring to the equation of FIG. The narrower and longer the opposing length becomes, the larger the parasitic capacitance Cp becomes.
따라서 원거리에 배치된 센서신호선(22)일수록 기생정전용량(Cp)의 크기가 크므로 이를 줄이기 위해서는 원거리일수록 상호 대향하는 배선폭을 넓혀야 한다. 예를들어 도 11의 22b는 그 주위를 감싸는 22a와의 간격인 “a”의 폭과 22c와의 간격인 “b”를 최대한 넓게 하여야 한다. Therefore, since the parasitic capacitance Cp is larger in the sensor signal line 22 disposed at a far distance, the wiring widths facing each other should be wider at a far distance. For example, 22b of FIG. 11 should make the width of “a”, the distance between 22a surrounding it, and “b”, the distance from 22c, as wide as possible.
이러한 센서신호선과 센서신호선의 간격은 원거리일수록 더 넓게 벌리는 것이 바람직하므로 센서신호선간의 간격은 서로 다를 수 있다. 그러나 터치 드라이브 IC에서 동일한 거리에 있는 센서패턴(10)을 연결하는 센서신호선(22)은 그 주변의 센서신호선과의 간격을 동일하게 유지할 수 있으며, 이로 인해 터치 드라이브 IC(30)와 동일한 거리에 있는 센서패턴(10)과 접속된 센서신호선(22)에 발생하는 기생정전용량(Cp)의 크기를 상호 일정하게 유지할 수 있다.Since the distance between the sensor signal line and the sensor signal line is farther away, the distance between the sensor signal lines may be different. However, the sensor signal lines 22 connecting the sensor patterns 10 at the same distance from the touch drive IC may maintain the same distance from the sensor signal lines around the touch drive IC, and thus the same distance from the touch drive IC 30 may be maintained. The parasitic capacitance Cp generated in the sensor pattern 10 and the sensor signal line 22 connected to each other can be kept constant.
<수학식1>과 <수학식2>를 참조하면, 터치량을 TSP(Touch Screen Panel)의 위치별로 일정하게 유지하기 위해서는 공통전극정전용량(Cvcom)의 (TSP에서)위치별 변화량을 참조해야 할 뿐만 아니라 센서신호선(22)에 발생하는 기생정전용량(Cp)의 (TSP에서) 위치별 변화량도 참조해야 한다.Referring to <Equation 1> and <Equation 2>, in order to keep the touch amount constant for each position of the TSP (Touch Screen Panel), it is necessary to refer to the change amount for each position (at the TSP) of the common electrode capacitance (Cvcom). In addition, reference should also be made to the positional variation (in the TSP) of the parasitic capacitance Cp occurring in the sensor signal line 22.
도 6을 참조하면 20개의 센서신호선(22)이 터치 드라이브 IC(30)에 접속되며, 터치 드라이브 IC(30)는 COG의 형태나 COF에 실장된 형태 또는 FPC등의 연성회로기판에 실장된 형태로 센서신호선(22)과 연결된다. Referring to FIG. 6, 20 sensor signal lines 22 are connected to the touch drive IC 30, and the touch drive IC 30 is mounted on a flexible circuit board such as a form of COG or COF, or an FPC. The sensor signal line 22 is connected.
이때 센서신호선(22)의 개수가 많아져서 터치 드라이브 IC(30)와 연결되는 센서신호선의 피치(Pitch)가 좁아지면 ACF를 이용하여 센서신호선과 터치 드라이브 IC를 연결하게 된다.At this time, when the number of the sensor signal lines 22 increases and the pitch of the sensor signal lines connected to the touch drive IC 30 is narrowed, the sensor signal lines and the touch drive IC are connected using the ACF.
본 발명에 일 실시예에 따라 센서패턴의 크기를 결정하기 위한 기준은 센서패턴이 배치된 위치에서의 공통전극정전용량(Cvcom)의 크기가 될 수 있다.According to an embodiment of the present invention, the reference for determining the size of the sensor pattern may be the size of the common electrode capacitance Cvcom at the position where the sensor pattern is disposed.
다른 실시예에서 센서패턴의 크기를 결정하기 위한 기준은 센서패턴에서 발생하는 기생정전용량(Cp)의 크기가 될 수 있다.In another embodiment, the reference for determining the size of the sensor pattern may be the size of the parasitic capacitance Cp generated in the sensor pattern.
수학식 1 및 수학식 2에서 검토하였듯이 터치정전용량(Ct)의 존재유무를 제외한 모든 수학식에 포함되는 요인(factor)들은 센서패턴의 위치에 관계없이 동일하게 유지하는 것이 이상적이기 때문에, 센서패턴의 크기를 결정하는데 있어서 공통전극정전용량(Cvcom) 및 기생정전용량(Cp)의 값을 고려해야 하는 것이다.As discussed in Equations 1 and 2, the factors included in all equations except the presence of the touch capacitance Ct are ideally kept the same regardless of the position of the sensor pattern. In determining the size of, the values of the common electrode capacitance (Cvcom) and the parasitic capacitance (Cp) should be considered.
도 12는 TSP에 형성된 센서신호선(22) 및 COF package를 가지는 터치 드라이브 IC를 상호 연결하기 위한 방안의 일 실시예이다. FIG. 12 is an embodiment of a method for interconnecting a touch drive IC having a sensor signal line 22 formed in a TSP and a COF package.
도 12을 참조하면, 센서신호선(22)과 도시하지 않는 센서패턴(10)은 ITO등의 투명도전체로 하나의 마스크로 구성되거나 센서패턴(10)은 투명도전체로 구성되고 센서신호선(22)은 은(Ag)이나 금(Au) 또는 알루미늄(Al)등의 메탈소재로 구성되기도 한다. Referring to FIG. 12, the sensor signal line 22 and the sensor pattern 10 (not shown) may be made of a single transparent conductor such as ITO, or the sensor pattern 10 may be made of a transparent conductor, and the sensor signal line 22 may be formed of a transparent conductor. It may be composed of metal materials such as silver (Ag), gold (Au), or aluminum (Al).
센서신호선(22)이 ITO등의 투명도전체로 구성되는 경우 COF package로 구성된 터치 드라이브 IC(30)와 연결(이하 본딩, bonding)되기 위해서는 ACF를 사용하며 ACF에 포함된 도전볼은 적당한 압력과 열에 의해 TSP의 연결패드(1200)와 COF(1300)를 통전시키는 작용을 하게 된다.When the sensor signal line 22 is composed of a transparent conductor such as ITO, an ACF is used to connect (bond, bond) the touch drive IC 30 configured as a COF package, and the conductive ball included in the ACF is subjected to proper pressure and heat. As a result, the connecting pad 1200 of the TSP and the COF 1300 are energized.
이러한 구조에서 투명도전체로 구성된 연결패드와 COF의 대향하는 pad를 상호 얼라인(Align)시킬 때 투명도전체로 구성된 pad가 잘 보이지 않으므로 COF와 얼라인시키는게 어렵게 된다. 또한 도전볼이 연결패드의 투명도전체를 깨뜨리는 현상이 발생하여 신호흐름에 문제가 생기는 신뢰성 문제를 유발 할 수도 있다. In this structure, it is difficult to align with the COF because the pad made of the transparent conductor is difficult to see when aligning the connection pad composed of the transparent conductor and the opposing pads of the COF. In addition, the conductive ball may break the transparent whole of the connection pad, which may cause a reliability problem that causes a problem in signal flow.
이러한 문제를 해결하기 위해 연결패드부(1200)에는 상기 금이나 은 또는 알루미늄등의 메탈성분으로 코팅해주는 것이 바람직하다. In order to solve this problem, the connection pad portion 1200 is preferably coated with a metal component such as gold, silver, or aluminum.
도 12를 참조하면, “연결패드”부에는 메탈성분이 포함되어 있으며 메탈성분은 센서신호선(22)을 구성하는 투명도전체의 상부나 하부에 위치한다. 만일 메탈성분이 센서신호선(22)을 구성하는 투명도전체의 상부에 위치할 때는, 투명도전체로 센서패턴(10)과 센서신호선(22)을 생성한 후 메탈용 마스크를 사용하여 메탈패드를 구성할 것이고, 메탈용 마스크로 메탈용 패드를 생성한 후 투명도전체로 센서패턴(10)과 센서신호선(22)을 메탈패드 상면에 생성할 것이다. Referring to FIG. 12, a metal component is included in the “connection pad” portion, and the metal component is positioned above or below the transparent conductor constituting the sensor signal line 22. If the metal component is positioned above the transparent conductor constituting the sensor signal line 22, the sensor pad 10 and the sensor signal line 22 are formed of the transparent conductor, and then a metal pad may be formed using a metal mask. After the metal pad is generated with the metal mask, the sensor pattern 10 and the sensor signal line 22 are formed on the upper surface of the metal pad using a transparent conductor.
이와 같이 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이, 본 발명의 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.As such, the present invention is not limited to the above-described embodiments and the accompanying drawings, and it is common in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (12)

  1. 손가락를 포함하는 터치입력도구의 접근에 의해 터치정전용량이 발생하는 것을 감지하는 터치스크린패널에 있어서,In the touch screen panel for detecting that the touch capacitance is generated by the approach of the touch input tool including a finger,
    상기 터치입력도구와의 사이에서 터치정전용량(Ct)을 형성하며, 배치 위치에 따라 서로 다른 면적을 가지는 복수개의 센서패턴;A plurality of sensor patterns forming a touch capacitance (Ct) between the touch input tool and having different areas according to an arrangement position;
    상기 터치정전용량의 형성 유무에 따라 수신되는 전압신호의 차이를 검출하여 터치여부를 검출하는 터치 검출부; 및A touch detector to detect whether a touch is detected by detecting a difference between voltage signals received according to whether the touch capacitance is formed; And
    각각의 상기 센서 패턴과 상기 터치 검출부를 연결하는 복수개의 센서 신호선;을 포함하는, 터치스크린패널.And a plurality of sensor signal lines connecting each of the sensor patterns and the touch detection unit.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 센서패턴의 면적은 상기 터치 검출부로부터 거리에 따라 달라지는 것을 특징으로 하는, 터치스크린패널.The area of the sensor pattern is different depending on the distance from the touch detector, the touch screen panel.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 센서패턴의 면적은 상기 터치 검출부로부터 거리에 비례하여 커지는 것을 특징으로 하는, 터치스크린패널.The area of the sensor pattern is larger in proportion to the distance from the touch detector, the touch screen panel.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 센서 신호선의 폭은 각각의 길이에 비례하여 증가하되, 상기 터치 검출부로부터의 거리에 비례하여 상기 센서 신호선의 폭이 증가하는 것을 특징으로 하는, 터치스크린패널.The width of the sensor signal line is increased in proportion to each length, the width of the sensor signal line is increased in proportion to the distance from the touch detector, the touch screen panel.
  5. 청구항 4에 있어서,The method according to claim 4,
    이웃하는 두개의 상기 센서 신호선간의 간격(spacing)은 이웃하는 두개의 센서 신호선 중 폭이 넓은 센서 신호선의 폭에 따라 달라지는 것을 특징으로 하는, 터치스크린패널.The spacing between two neighboring sensor signal lines may vary depending on the width of a wider sensor signal line among two neighboring sensor signal lines.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 센서패턴의 크기를 결정하기 위해서 상기 센서패턴이 배치된 위치에서의 공통전극정전용량(Cvcom)의 크기를 고려하는 것을 특징으로 하는, 터치스크린패널.In order to determine the size of the sensor pattern, the touch screen panel, characterized in that considering the size of the common electrode capacitance (Cvcom) at the position where the sensor pattern is disposed.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 센서패턴의 크기를 결정하기 위해서 상기 센서패턴에서 발생하는 기생정전용량(Cp)의 크기를 고려하는 것을 특징으로 하는, 터치스크린패널.In order to determine the size of the sensor pattern, the touch screen panel, characterized in that considering the size of the parasitic capacitance (Cp) generated in the sensor pattern.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 센서 신호선과 상기 센서패턴은 투명도전체로 하나의 마스크(mask)를 이용하여 단일층에 형성되는 것을 특징으로 하는, 터치스크린패널.And the sensor signal line and the sensor pattern are formed on a single layer using a single mask as a transparent conductor.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 투명도전체는 ITO인 것을 특징으로 하는, 터치스크린패널.The transparent conductor is ITO, characterized in that the touch screen panel.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 센서 신호선은 금속 재료로 형성되고, 상기 센서패턴은 투명도전체로 형성되는 것을 특징으로 하는, 터치스크린패널.The sensor signal line is formed of a metallic material, and the sensor pattern is characterized in that the touch screen panel is formed of a transparent conductor.
  11. 청구항 8에 있어서,The method according to claim 8,
    상기 터치 검출부와 접속되는 상기 센서 신호선의 연결패드 부분은 금속 재료로 형성되는 것을 특징으로 하는, 터치스크린패널.And a connection pad portion of the sensor signal line connected to the touch detection unit is formed of a metal material.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 금속 재료는 금, 은 또는 알루미늄 중 하나인 것을 특징으로 하는, 터치스크린패널.The metal material is a touch screen panel, characterized in that one of gold, silver or aluminum.
PCT/KR2015/012871 2014-12-10 2015-11-27 Touch screen panel WO2016093526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140177766A KR101637422B1 (en) 2014-12-10 2014-12-10 Touch screen panel
KR10-2014-0177766 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016093526A1 true WO2016093526A1 (en) 2016-06-16

Family

ID=56107663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012871 WO2016093526A1 (en) 2014-12-10 2015-11-27 Touch screen panel

Country Status (2)

Country Link
KR (1) KR101637422B1 (en)
WO (1) WO2016093526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721554A (en) * 2022-06-09 2022-07-08 惠科股份有限公司 Touch panel, touch display assembly and touch display device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968271B1 (en) * 2016-11-01 2019-08-20 주식회사 지2터치 Display device having touch screen function
KR101953635B1 (en) * 2016-11-01 2019-05-17 주식회사지2터치 Display device having touch screen function
KR102205762B1 (en) * 2017-04-11 2021-01-21 주식회사 지2터치 Touch screen
KR102397356B1 (en) * 2021-03-10 2022-05-12 이성호 Detectors consisting of multiple different areas and object detection devices using them
KR20230042179A (en) 2021-09-19 2023-03-28 이성호 Object detection device and detection method composed of different CDA areas
KR20240020773A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020778A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020782A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020783A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020776A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020779A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020780A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor
KR20240020777A (en) 2022-08-09 2024-02-16 이성호 How to layout the signal lines on the upper layer of the conductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944519B1 (en) * 2009-03-04 2010-03-03 남동식 Touch panel sensor
WO2013183926A1 (en) * 2012-06-04 2013-12-12 주식회사 아이피시티 Touch detection apparatus having function for controlling parasitic capacitance, and touch detection method
US20140132335A1 (en) * 2012-11-15 2014-05-15 Nokia Corporation Apparatus
KR101399009B1 (en) * 2011-10-21 2014-05-27 주식회사 지2터치 Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
KR20140121658A (en) * 2013-04-08 2014-10-16 이성호 Capacitive type touch detecting means and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664392B2 (en) 2011-03-23 2015-02-04 ソニー株式会社 Semiconductor device, method for manufacturing semiconductor device, and method for manufacturing wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944519B1 (en) * 2009-03-04 2010-03-03 남동식 Touch panel sensor
KR101399009B1 (en) * 2011-10-21 2014-05-27 주식회사 지2터치 Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
WO2013183926A1 (en) * 2012-06-04 2013-12-12 주식회사 아이피시티 Touch detection apparatus having function for controlling parasitic capacitance, and touch detection method
US20140132335A1 (en) * 2012-11-15 2014-05-15 Nokia Corporation Apparatus
KR20140121658A (en) * 2013-04-08 2014-10-16 이성호 Capacitive type touch detecting means and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721554A (en) * 2022-06-09 2022-07-08 惠科股份有限公司 Touch panel, touch display assembly and touch display device

Also Published As

Publication number Publication date
KR101637422B1 (en) 2016-07-08
KR20160070597A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
WO2016093526A1 (en) Touch screen panel
WO2013051752A1 (en) Apparatus and method for detecting a touch
WO2016093524A1 (en) Touch detection sensor structure for capacitive touch screen panel
TWI601040B (en) Display device with integrated touch screen
KR101165456B1 (en) Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
WO2016129827A1 (en) Touch input device and electrode sheet
WO2011007995A2 (en) Display device having a built-in touch input means
WO2017074107A1 (en) Pressure detector for performing pressure detection accuracy correction, and touch input device
WO2017043829A1 (en) Touch input device capable of detecting touch pressure and comprising display module
WO2012030183A2 (en) Capacitive touch detection apparatus using level shift, detection method using level shift, and display device having the detection apparatus built therein
WO2010085070A2 (en) Input apparatus
WO2011021877A2 (en) Method and device for recognizing touch input
WO2010093162A2 (en) Touch screen input apparatus
WO2017039282A1 (en) Pressure detector enabling pressure sensitivity adjustment and touch input device comprising same
WO2012134026A1 (en) Apparatus and method for detecting contact
WO2011126214A2 (en) Touch sensing panel and device for detecting multi-touch signal
WO2016195308A1 (en) Method for correcting sensitivity of touch input device that detects touch pressure and computer-readable recording medium
WO2016093523A1 (en) Touch signal detection device and touch signal detection method
US20150355749A1 (en) Display device, touch screen device, and touch driver for the same
WO2015108290A1 (en) Touch window and touch device
KR101399009B1 (en) Capacitive type touch detecting means, method and touch screen panel using voltage changing phenomenon, and display device embedding said the capacitive type touch screen panel
WO2017135707A1 (en) Touch-pressure sensitivity correction method and computer-readable recording medium
WO2017204504A1 (en) Method for controlling behaviour of character in touch input device
WO2010067975A2 (en) Touch panel
KR20140087483A (en) Display Device With Integrated Touch Screen and Method for Manufacturing The Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866692

Country of ref document: EP

Kind code of ref document: A1