WO2016092760A1 - 検出装置と、これを用いた車両用制御装置 - Google Patents

検出装置と、これを用いた車両用制御装置 Download PDF

Info

Publication number
WO2016092760A1
WO2016092760A1 PCT/JP2015/005898 JP2015005898W WO2016092760A1 WO 2016092760 A1 WO2016092760 A1 WO 2016092760A1 JP 2015005898 W JP2015005898 W JP 2015005898W WO 2016092760 A1 WO2016092760 A1 WO 2016092760A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
detection device
vehicle
infrared
seat
Prior art date
Application number
PCT/JP2015/005898
Other languages
English (en)
French (fr)
Inventor
勝己 垣本
浩 山中
杉山 貴則
勲 服部
裕一 樋口
秀幸 新井
洋右 萩原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/522,138 priority Critical patent/US20170320457A1/en
Priority to EP15866693.3A priority patent/EP3232236A4/en
Priority to JP2016563401A priority patent/JPWO2016092760A1/ja
Publication of WO2016092760A1 publication Critical patent/WO2016092760A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • B60R21/01532Passenger detection systems using field detection presence sensors using electric or capacitive field sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00742Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by detection of the vehicle occupants' presence; by detection of conditions relating to the body of occupants, e.g. using radiant heat detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a detector that detects an object to be detected contactlessly, and a control apparatus for a vehicle including a detector in a vehicle compartment.
  • a detector using an infrared camera can detect an object without contact.
  • FIG. 33 is a top view of the conventional detector 201 disclosed in Patent Document 1.
  • the detector 201 includes an operation unit 207, an imaging unit 212, and an image processing unit.
  • the operation unit 207 is at a position where it can be operated by the driver 205 who sits on the driver's seat 203 near the vehicle centerline 202 and grips the steering wheel 204 and the non-driver 209 who sits on the non-driver's seat 206.
  • the photographing unit 212 puts both the left hand 208 of the driver 205 and the right hand 210 of the non-driver 209 extended from the driver's seat 203 and the non-driver's seat 206 to the operation unit 207 into the photographing range.
  • a predetermined range 211 on the near side is set so as to be able to be photographed.
  • the image processing unit processes the image data by the photographing unit 212 and determines whether the operator is the driver 205 or the non-driver 209 based on the determination result of the operator who has reached the operation unit 207. Do.
  • An occupant is detected in a non-contact manner by the detector, and the air conditioning control of the vehicle is performed based on the detection result of the detector.
  • FIG. 34 shows a conventional vehicle control device 1 disclosed in Patent Document 2. As shown in FIG. In the vehicle control device 1, two first infrared sensors are disposed in the sensor casing 2. Infrared sensors are shown as one sensitive surface 3, 4 respectively. The sensitive surface 3 detects the driver's area 5 and the sensitive surface 4 detects the passenger's area 6.
  • the sensor casing 7 with the second infrared sensor is located in the control unit or in the ceiling of the rear of the vehicle. It is placed inside.
  • the second infrared sensor comprises two beam sensors. Among them, the sensitive surface 8 of the first beam sensor detects the area behind the driver's seat in the direction of the rear window, and the sensitive surface 9 of the second beam sensor is the area between the passenger seat and the rear window To detect
  • Patent document 3 discloses the conventional infrared sensor which makes the length of a beam relatively long, for example by providing a plurality of bending parts in a beam.
  • Patent Document 4 and Patent Document 5 also disclose the same conventional infrared sensor as described above.
  • JP 2004-67031 A JP 2000-94923 A JP, 2006-170937, A JP, 2009-288066, A Unexamined-Japanese-Patent No. 2010-048803
  • the detection device is used with a vehicle having a cabin, a ceiling, a plurality of pillars, a driver's seat and a passenger seat.
  • the detection device includes a detector which is installed on a ceiling or a plurality of pillars of a vehicle and which detects an object to be detected in a vehicle compartment in a noncontact manner, and a scanning unit which scans the detector.
  • the detection device can accurately detect the temperature of the detection subject, and can control the air conditioning comfortably for the detection subject, for example.
  • FIG. 1 is a block diagram of a detection apparatus according to the first embodiment.
  • FIG. 2 is a front view of the detection device in the first embodiment.
  • FIG. 3A is a diagram for explaining the detection principle of the detection device in the first embodiment.
  • FIG. 3B is an enlarged view of a detector of the detection device in Embodiment 1.
  • FIG. 3C is an enlarged view of another detector of the detection device in Embodiment 1.
  • FIG. 4 is a diagram showing the configuration of the vehicle control device in the first embodiment.
  • FIG. 5A is a top view of a vehicle provided with the vehicle control device in the first embodiment.
  • FIG. 5B is a view showing the inside of the vehicle shown in FIG. 5A.
  • FIG. 6 is a front view of the vehicle control device in the first embodiment.
  • FIG. 5A is a top view of a vehicle provided with the vehicle control device in the first embodiment.
  • FIG. 5B is a view showing the inside of the vehicle shown in FIG. 5A.
  • FIG. 7 is a diagram showing an occupant operating the electronic device according to the first embodiment.
  • FIG. 8 is a block diagram of a control device for a vehicle in the second embodiment.
  • FIG. 9 is a front view of a detection device used for a vehicle control device according to a second embodiment.
  • FIG. 10A is a top view of a vehicle on which the detection device according to Embodiment 2 is installed.
  • FIG. 10B is a partially enlarged view of the inside of the vehicle shown in FIG. 10A.
  • FIG. 11 is a side view of the vehicle in the second embodiment.
  • FIG. 12 is a diagram showing a scanning unit of the vehicle control device in the second embodiment.
  • FIG. 13 is a diagram showing a detection area of the detection device in the second embodiment.
  • FIG. 14 is a diagram showing a dashboard in the second embodiment.
  • FIG. 15 is a block diagram of a control apparatus for a vehicle in the third embodiment.
  • FIG. 16 is a front view of the detection device of the vehicle control device in the third embodiment.
  • FIG. 17 is a top view of the detection device in the third embodiment.
  • FIG. 18 is a block diagram of a control device for a vehicle in the fourth embodiment.
  • FIG. 19 is a front view of a detection device of a vehicle control device in a fourth embodiment.
  • FIG. 20 is a top view of the detection device in the fourth embodiment.
  • FIG. 21 is a block diagram of a control device for a vehicle in the fifth embodiment.
  • FIG. 22 is a front view of a detection device of a vehicle control device in a fifth embodiment.
  • FIG. 22 is a front view of a detection device of a vehicle control device in a fifth embodiment.
  • FIG. 23 is a top view of the detection device in the fifth embodiment.
  • FIG. 24 is a block diagram showing a configuration of a vehicle control system in the sixth embodiment.
  • FIG. 25 is a front view of the detection device in the sixth embodiment.
  • FIG. 26 is a top view of the detection device in the sixth embodiment.
  • FIG. 27 is a schematic view of the infrared sensor in the seventh embodiment.
  • FIG. 28A is a top view of an infrared detection unit of the infrared sensor according to the seventh embodiment.
  • FIG. 28B is a cross-sectional view of the infrared detection unit shown in FIG. 28A taken along line 28B-28B.
  • FIG. 28C is a cross-sectional view taken along line 28C-28C of the infrared detection unit shown in FIG. 28A.
  • FIG. 29A is a top view of an infrared detection unit of the infrared sensor according to the eighth embodiment.
  • FIG. 29B is a cross-sectional view of the infrared detector shown in FIG. 29A, taken along line 29B-29B.
  • FIG. 29C is a cross-sectional view of the infrared detection unit shown in FIG. 29A taken along line 29C-29C.
  • FIG. 30A is a top view of the outside line detection unit of the infrared ray sensor according to Embodiment 9.
  • FIG. FIG. 30B is a cross-sectional view taken along line 30B-30B of the infrared detection unit shown in FIG. 30A.
  • FIG. 30C is a cross-sectional view taken along line 30C-30C of the infrared detection unit shown in FIG. 30A.
  • 31A is a top view of an infrared detection unit of the infrared sensor according to Embodiment 10.
  • FIG. 31B is a cross-sectional view taken along line 31B-31B of the infrared ray detection unit shown in FIG. 31A.
  • 31C is a cross-sectional view taken along line 31C-31C of the infrared ray detection unit shown in FIG. 31A.
  • 32A is a top view of an infrared detection unit of the infrared sensor according to Embodiment 11.
  • FIG. 32B is a cross-sectional view of the infrared detection unit shown in FIG.
  • FIG. 33 is a top view of a conventional detector.
  • FIG. 34 is a view showing a conventional vehicle control device.
  • FIG. 1 is a block diagram of the detection device 220 according to the first embodiment.
  • FIG. 2 is a front view of the detection device 220. As shown in FIG.
  • the detection device 220 includes a detector 221, a detector 222, and a processing unit 224.
  • the processing unit 224 processes the outputs of the detector 221 and the detector 222 to measure a to-be-detected object 223 that emits infrared light, such as a person, an object such as a beverage or an electronic device, or a pet.
  • the detection device 220 is a vehicle in which the object to be detected 223 moves such that the region to which the object to be detected 223 which is an occupant to be measured by the detection device 220 moves is the detection region of the detector 221 and the detection region of the detector 222 It is installed above the space such as a room or a house. That is, the detector 221 and the detector 222 are installed such that the detection subject 223 moves below the detector 221 and the detector 222 between the detector 221 and the detector 222.
  • the side on which the detector 221 and the detector 222 in FIG. 2 are present is referred to as the upper side
  • the side on which the object to be detected 223 is present is the downward side.
  • the detectors 221 and 222 are located in the upward direction D220a, and the detection object 223 is located in the downward direction D220b.
  • the object to be detected 223 is installed to be directed downward between the detector 221 and the detector 222 so that the object to be detected 223 enters each of the detection region 225 of the detector 221 and the detection region 226 of the detector 222.
  • the processing of the output of the detector 221 and the detector 222 installed in this way by the processing unit 224 makes it possible to determine which of the detector 221 and the detector 222 the position of the detection object 223 is closer to, the detector 221
  • the position of the object to be detected 223 projected in a direction perpendicular to the plane 228 is measured on the plane 228 where the straight line 227 connecting the sensor 222 and the detector 222 is a normal.
  • the straight line 227 is perpendicular to the upward and downward directions D220a and D220b, and thus the plane 228 is parallel to the upward and downward directions D220a and D220b.
  • the detector 221 and the detector 222 according to the first embodiment are formed of an infrared sensor, and can detect the object 223 without contact.
  • the infrared sensor has a thermal infrared detection unit in which a temperature sensing unit is embedded, and the temperature sensing unit includes a thermopile that converts thermal energy of infrared radiation emitted from the detection object 223 into electrical energy.
  • a thermoelectric converter is used.
  • the infrared sensor has a plurality of pixel units each having a temperature sensitive portion and a MOS transistor for taking out the output voltage of the temperature sensitive portion.
  • the number of the plurality of pixel portions is a ⁇ b, and they are arranged in a one-dimensional array shape or a two-dimensional array shape of a rows and b columns on one surface side of the semiconductor substrate.
  • the pixel portion is composed of a noncontact infrared detection element. Note that the number of pixel portions may be a ⁇ 1 and b ⁇ 1, and the pixel portions in the first embodiment are configured to be 8 ⁇ 8.
  • the effects of the first embodiment can be obtained by using a camera, a TOF sensor, or the like for the detectors 221 and 222, the use of an infrared sensor makes the detector 220 inexpensive and highly accurate. Can be provided.
  • FIG. 3A is an explanatory view of a detection principle in the detection device 220.
  • FIG. FIG. 3B is an enlarged view of the detector 221.
  • FIG. 3C is an enlarged view of detector 222.
  • the detectors 221 and 222 when installed without tilting are shown by broken lines.
  • the inclination of the detectors 221 and 222 will be specifically described.
  • the detectors 221 and 222 are infrared sensors 200 x having light receiving surfaces 221 a and 222 a for receiving infrared light, respectively.
  • the above-described plurality of pixel units 200p which are respectively composed of the non-contact infrared detection elements 200y, are disposed along the light receiving surfaces 221a and 222a.
  • Each of the detectors 221 and 222 has a detection range in which infrared light can be detected.
  • These detection ranges extend through the centers 221c and 222c of the light receiving surfaces 221a and 222a, respectively, centering on central axes 221b and 222b extending at right angles to the light receiving surfaces 221a and 222a, and thus the detectors 221 and 222 are respectively central axes 221b , 222b as a center.
  • Equation 1 By calculating the distance D from the detection device 220 to the object to be detected 223 using Equation 1, the position of the object to be detected 223 projected on the plane 228 in the direction perpendicular to the plane 228 can be calculated.
  • the detection device 220 uses the detector 221 and the detector 222 so that not only whether the object to be detected 223 is at the detector 221 side or at the detector 222 side, the plane 228 is perpendicular to the plane 228 The position of the to-be-detected body 223 projected in the direction can be detected. Further, the object to be detected 223 can be accurately detected by a simple algorithm using Equation 1.
  • FIG. 4 is a block diagram of the vehicle control device 230.
  • FIG. 5A is a top view of the vehicle 231.
  • FIG. FIG. 5B shows the inside of the vehicle 231.
  • FIG. 6 is a front view of the control device 230 for a vehicle.
  • the vehicle 231 has a cabin 231a, a ceiling 231b, a plurality of pillars 234a, 234b, 237a, 237b, a driver's seat 233, and a passenger seat 236.
  • the detector 221 is installed near the driver's seat 233 from the passenger seat 236, and the detector 222 is installed near the passenger seat 236 from the driver's seat 233.
  • detector 221 is installed on B pillar 234b on the side of driver's seat 233 where driver 232 of vehicle 231 sits, and another side of passenger's seat 236 on which passenger's seat passenger 235 sits.
  • the detector 222 is installed on the B-pillar 237b.
  • the detector 221 and the detector 222 are connected to the processing unit 224, and the processing unit 224 processes the outputs of the detector 221 and the detector 222 to control the electronic device 238.
  • the central axis 221b of the detector 221 and the central axis 222b of the detector 222 are directed to the seat 240 (driver's seat 233 and assistant seat 236) where the occupant 239 (the driver 232 and the assistant seat occupant 235) who is the detected object 223 sits.
  • the center 221c of the detector 221 and the center 222c of the detector 222 are separated by 1500 mm.
  • the seat 240 is centrally disposed in a front direction D231a (rear direction D231b) perpendicular to the upper direction D220a (lower direction D220b) of the vehicle 231.
  • central axis 221b of the detector 221 and the central axis 222b of the detector 222 are inclined toward the windshield 241 of the vehicle 231 with respect to the straight line 227 connecting the centers 221c and 222c of the detectors 221 and 222. , 222 are installed.
  • the detector 221 and the detector 222 are disposed at the center of the seat 240 in the forward direction D 231 a (rear direction D 231 b) so that the head 242 of the occupant 239 is within the detection region of the detector 221 or the detector closer to the detector 222. This makes it difficult for the entire body of the occupant 239 to enter the detection area on the far side of the detector 221 or the detector 222. Therefore, the detection accuracy of the occupant 239 of the vehicle control device 230 can be improved.
  • the detectors 221 and the detector 222 can not easily enter the field of vision of the occupant 239 and interfere with driving. do not become. Therefore, it is possible to detect the motion of the occupant 239 with high accuracy without impairing the comfort of the occupant 239.
  • the position of the detectors 221 and 222 in the forward direction D 231 a (backward direction D 231 b) to the B pillars 234 b and 237 b is preferably the center of the seat 240, but the detector 221 is closer to the windshield 241 than the center.
  • 222 can prevent the head 242 of the occupant 239 sitting nearer from getting in the way. That is, when the occupant 239 is at a position close to the detector 221 or the detector 222, the detection region of the detector 221 is occupied by the head 242 of the driver 232, or the detection region of the detector 222 is the occupant 239 of the passenger seat 236. It is possible to prevent false detection due to being occupied by the head 242 of the
  • the detectors 221 and 222 are installed with the central axes 221b and 222b inclined in the downward direction D220b where the seat 240 is located with respect to the horizontal direction H220, the detector 221 or 222 detects the entire body of the occupant 239 Can be detected, and the occupant 239 can be detected accurately.
  • the distance L between the center 221 c of the detector 221 and the center 222 c of the detector 222 is 1500 mm
  • the distance L can be appropriately changed depending on the vehicle 231 in which the vehicle control device 230 is installed.
  • the vehicle control device 230 can be adapted to a general passenger car, which is preferable.
  • the detectors 221 and 222 are installed with the central axes 221b and 222b inclined toward the windshield 241 of the vehicle 231 with respect to the straight line 227, the occupants 239 closer to the detectors 221 and 222 are Further, the factors that cause the detection error as the occupant 239 farther from the detectors 221 and 222 can be further reduced, and the occupant 239 can be accurately detected.
  • FIG. 7 shows an occupant 239 operating the electronic device 238.
  • the electronic device 238 controlled by the vehicle control device 230 is an air conditioner and a car navigation.
  • An operation panel 244 for car navigation is installed above the switch 243 of the air conditioner. Control of the electronic device 238 by the vehicle control device 230 in this state will be described. Control of the electronic device 238 of the vehicle control device 230 is shown in Table 1.
  • the processing unit 224 determines that the front passenger seat passenger 235 intends to operate the air conditioner. At this time, the processing unit 224 turns on the switch 243 of the air conditioner, and controls the switch 243 of the air conditioner so as to be easily operated.
  • the processing unit 224 detects that the hand 245 is closer to the operation panel 244 above the switch 243 of the air conditioner.
  • the control panel 244 controls the display of the operation panel 244 so that the passenger seat passenger 235 can easily operate, such as activating the operation panel 244 or displaying a necessary screen such as a search screen on the operation panel 244.
  • the vehicle control device 230 can detect the movement of the detection object 223 in the direction parallel to the flat surface 228, the occupant 239 determines which of the electronic devices 238 the electronic device 238 is to operate. It can be controlled to be easy to operate, and the comfort of the occupant 239 can be improved.
  • the driver 232 since it is possible to detect whether the object to be detected 223 is closer to or closer to the detector 221 among the detectors 221 and 222, the driver 232 operates the vehicle 231 while the vehicle 231 is traveling.
  • the electronic device 238 can be controlled so as not to be in a dangerous state, so the safety of the vehicle 231 can be improved.
  • the control method of the electronic device 238 is not limited to the above method.
  • the disk may be discharged by another method.
  • Electronics 238 may be controlled to improve the comfort of 239.
  • the detector 221 and the detector 222 are installed on the B pillars 234b and 237b, even if they are installed on the A pillars 234a and 237a instead of the B pillars 234b and 237b, the detector 221 and the visual field of the occupant 239 are visible. Since the detector 222 is hard to enter, the motion of the occupant 239 can be detected without giving a discomfort to the occupant 239.
  • the conventional detector 201 disclosed in Patent Document 1 can not distinguish between a driver and a non-driver with respect to electrical devices other than the operation unit in a vehicle equipped with a plurality of electronic devices in the vertical direction.
  • the vehicle control device 230 detects not only the discrimination of the detection object 340 in the left-right direction but also the movement of the upward D220a and the downward D220b to control the electronic device 238. Since it can be performed, it is particularly useful for control of the air conditioners of the vehicle 231 or a house.
  • the detector 221 is installed closer to the driver's seat 233 than the passenger's seat 236.
  • the detector 222 is installed near the passenger seat 236 from the driver's seat 233.
  • the detection device 220 detects the movement of the occupant 239 in the direction of the plane 228 in which a straight line 227 connecting the detector 221 and the detector 222 is a normal from the output of the detector 221 and the output of the detector 222 And 224.
  • Each of the detector 221 and the detector 222 is configured of an infrared sensor 200x having a plurality of infrared detection elements 200y arranged in a one-dimensional array or a two-dimensional array.
  • the processing unit 224 includes a distance L between the detector 221 and the detector 222, an inclination angle ⁇ of the detector 221, an inclination angle ⁇ of the detector 222, a focal distance f of the detector 221 and the detector 222,
  • the detector 221 and the detector are based on the distance Ca from the center 221c of the light receiving surface 221a of the detector 221 to the thermal center of gravity 221d of the occupant and the distance Cb from the center 222c of the light receiving surface of the detector 222 to the thermal center of gravity 222d of the occupant
  • the distance D in the direction orthogonal to the straight line connecting the detector 221 and the detector 222 from 222 to the occupant
  • the vehicle control device 230 is provided in a vehicle 231 in which the electronic device 238 is mounted.
  • the vehicle control device 230 includes a detection device 220, and a processing unit 224 that controls an electronic device by the output of the detector 221 and the output of the detector 222.
  • the detector 221 and the detector 222 It is provided in the chamber 231a.
  • the detector 221 and the detector 222 may be installed inclining toward the windshield 241 of the vehicle 231 with respect to a straight line 227 connecting the detector 221 and the detector 222.
  • the detector 221 and the detector 222 may be installed on a plurality of A pillars 234 a and 237 a or a plurality of B pillars 234 b and 237 b of the vehicle 231.
  • Detector 221 is installed such that when the occupant is on the side of detector 222, the entire occupant enters detection area 225 of detector 221, and detector 222 is on the side of detector 221 when the occupant is The entire occupant may be installed to enter the detection area 226 of the detector 222.
  • the distance between the detector 221 and the detector 222 may be 500 mm or more and less than 1500 mm.
  • the processing unit 224 may determine from the output of the detector 221 and the output of the detector 222 whether the occupant is on the side of the detector 221 or the side of the detector 222.
  • the processing unit 224 may control the electronic device and may not control the other electronic devices.
  • FIG. 8 is a block diagram of the vehicle control device 17 according to the second embodiment.
  • FIG. 9 is a front view of the detection device 11 used in the control device 17 for a vehicle.
  • FIG. 10A is a top view of the vehicle 12 in which the detection device 11 is installed.
  • FIG. 10B is an enlarged view showing the inside of the vehicle 12.
  • FIG. 11 is a side view of the vehicle 12.
  • the detection device 11 has a detector 13 installed in the vehicle 12 and a scanning unit 14 that scans the detector 13.
  • the detector 13 comprises a detector 15 and a detector 16.
  • the vehicle control device 17 has the detection device 11, a detector interface (I / F) circuit 18 connected to the detector 15, and a detector I / F circuit 19 connected to the detector 16. doing.
  • the control device 17 for a vehicle from the outputs of the detector I / F circuit 18 and the detector I / F circuit 19, a person, an object such as a beverage or an electronic device, an object such as a beverage or an electronic device such as a pet
  • the thermal sensation of the occupant 20 indicates the degree of heat or cold felt by the occupant 20.
  • the infrared sensor has a thermal infrared detection unit in which a temperature sensing unit is embedded, and the temperature sensing unit includes a thermopile configured to convert thermal energy by infrared radiation emitted from the detection object into electrical energy. A converter is used.
  • a ⁇ b pixel portions 24 each having a temperature sensitive portion and a MOS transistor for taking out the output voltage of the temperature sensitive portion are two-dimensional of a row b column on one surface side of the semiconductor substrate They are arranged in an array.
  • the pixel section 24 is composed of a noncontact infrared detection element.
  • the pixel portions 24 in the second embodiment are arranged in a matrix of 8 rows and 8 columns.
  • the vehicle 12 has a cabin 12a, a ceiling 30, a plurality of pillars 31a, 31b, 91a, 91b, a driver's seat 25, and a passenger's seat 26.
  • the direction connecting the driver's seat 25 and the assistant's seat 26 is defined as the direction of the X axis.
  • the direction from the passenger seat 26 to the driver's seat 25 is defined as the positive direction of the X axis
  • the direction from the driver's seat 25 to the passenger seat 26 is defined as the negative direction of the X axis.
  • the direction connecting the front glass 27 and the rear glass 28 is defined as the direction of the Y axis.
  • the direction from the rear glass 28 toward the windshield 27 is defined as the positive direction of the Y axis, and the direction from the windshield 27 toward the rear glass 28 is defined as the negative direction of the Y axis.
  • the direction connecting the floor surface 29 and the ceiling 30 is defined as the direction of the Z axis.
  • the direction from the floor surface 29 to the ceiling 30 is defined as the positive direction of the Z axis, and the direction from the ceiling 30 to the floor surface 29 is defined as the negative direction of the Z axis.
  • the X, Y and Z axes are at right angles to one another.
  • the detector 15 is installed on the B-pillar 31 b on the driver's seat 25 side of the vehicle 12, and the detector 16 is installed on the B-pillar 91 b on the passenger seat 26 side. As described above, the detector 15 is installed closer to the driver's seat 25 than the passenger seat 26, and the detector 16 is installed closer to the passenger seat 26 than the driver's seat 25.
  • the occupant 20 is installed in the detection area 32 of the detector 15 and the detector 16.
  • the detectors 15 and 16 are disposed at a central position in the direction of the Y axis of the seats (driver's seat 25 and passenger's seat 26).
  • detectors 15 and 16 are installed in the B-pillars 31b and 91b, it is difficult for the occupant 20 to enter the field of view of the occupant 20, and the occupant 20 can be detected without giving the occupant 20 a sense of discomfort.
  • the detectors 15 and 16 may be installed not on the B-pillars 31b and 91b but on the A-pillars 31a and 91a, but installing them on the B-pillars 31b and 91b makes it easier to detect the entire body of the occupant 20. .
  • detector 15 and detector 16 are arranged at the center position of the seat in the Y-axis direction, the present invention is not limited to this, and the positions to be arranged may be changed appropriately according to the structure of vehicle 12.
  • the detectors 15 and 16 respectively have light receiving surfaces 15a and 16a for detecting infrared rays.
  • the detectors 15, 16 each have a detection range capable of detecting infrared radiation.
  • the above-described plurality of pixel units 24 each formed of a noncontact infrared detection element are disposed along the light receiving surfaces 15a and 16a. These detection ranges extend through the centers 15c and 16c of the light receiving surfaces 15a and 16a, respectively, around the central axes 15b and 16b extending at right angles to the light receiving surfaces 15a and 16a, and thus the detectors 15 and 16 are central axes 15b, It has directivity centered on 16b.
  • the central axis 15 b of the detector 15 and the central axis 16 b of the detector 16 are 60 ° in the negative direction of the Z axis of the vehicle 12 with respect to the direction connecting the center 15 c of the detector 15 and the center 16 c of the detector 16 Detectors 15 and 16 are installed at an inclination. By installing in this manner, it is possible to detect the temperature of the hands and knees of the occupant 20, so it becomes easy to detect the entire body of the occupant 20.
  • the central axis 15b of the detector 15 and the central axis 16b of the detector 16 are inclined at an angle of 60 ° in the negative direction of the Z axis, the present invention is not limited to this. You may.
  • the angles of the detector 15 and the detector 16 can be changed according to the structure of the vehicle 12. Therefore, the detection device 11 can be applied to various vehicles 12.
  • FIG. 12 shows the scanning of the detector 15 by the scanning unit 14.
  • FIG. 13 shows the detection areas 32, 34 of the detector 15 scanned.
  • the pixel unit 24 is scanned by a half of the length Da of the long axis 33 direction of the pixel unit 24 of the detector 15 (the longest portion of the pixel unit 24), that is, Da / 2.
  • the detection area 34 of the detector 15 obtained as a result is indicated by a broken line.
  • the length Da is an example for the purpose of description, and is not limited to this. The length Da may be set appropriately according to the application condition of the detection device 11.
  • the scanning unit 14 is configured by a device such as a motor for rotating the detector 15 (16), and the detector 15 is moved in the direction of the long axis 33 of the pixel unit 24 every predetermined time around the rotation shaft 35. And scan for a predetermined distance.
  • the detector 15 detects an infrared ray each time it is scanned, and when the scanning is completed, the temperature distribution obtained by the detector I / F circuit 18 is added to obtain a temperature distribution. By adding the temperature distribution, the resolution of the obtained temperature distribution is increased.
  • the detector 15 which has completed the scanning is scanned in the reverse direction, and similarly, detects an infrared ray every time it is scanned by the distance Da, and acquires a high resolution temperature distribution when the reverse direction scanning is completed.
  • the temperature of the occupant 20 and the temperature of the background of the seat or the like can be separated, and the temperature of the occupant 20 can be accurately measured. Further, by obtaining the temperature distribution with high resolution, it is possible to discriminate the occupant 20, for example, to discriminate the driver 36 and the passenger seat occupant 37 with high accuracy. Moreover, the detection precision of the detector 15 and the detector 16 improves by this, the precision of estimation of a thermal sensation can be improved, and air conditioning can be controlled optimally. Since the air conditioning can be optimally controlled, the fuel consumption of the vehicle 12 can be improved, and the comfort of the occupant 20 can be improved.
  • the processing unit 21 calculates the thermal sensation based on the temperature distribution obtained by the detector 15 and the detector 16, and the setting unit 39 in which the threshold value used to estimate the thermal sensation is set. It consists of
  • the air conditioner 22 includes a control unit 23 that controls the air conditioner 22, a louver 40, a compressor 41, and a fan 42.
  • the louver 40, the compressor 41 and the fan 42 are connected to the control unit 23.
  • the control unit 23 controls the air conditioning by controlling the louver 40, the compressor 41, and the fan 42 according to the output of the calculation unit 38.
  • the calculation unit 38 obtains a temperature distribution from the output of the detector 15 and the output of the detector 16.
  • the calculation unit 38 determines the temperature of the occupant 20 and the background temperature of a seat or the like from the temperature distribution obtained from the detector 15 and the detector 16.
  • the calculation unit 38 calculates an average value of the temperature of the occupant 20 (hereinafter, described as the temperature of the occupant 20), and estimates the thermal sensation of the occupant 20 from the temperature of the occupant 20 and the background temperature.
  • the thermal sensation is set according to the thermal sensation of the occupant 20, such as "hot”, “very hot”, “cold”, “very cold”, “just right”, etc. Stage.
  • the air conditioner 22 is controlled in accordance with the estimation result of the thermal sensation. For example, when the computing unit 38 estimates that the thermal sensation of the occupant 20 is at a stage where the occupant 20 feels "hot", the arithmetic unit 38 controls the air conditioner 22 to lower the set temperature for cooling, or Do. The arithmetic unit 38 controls the air conditioner 22 in accordance with the thermal sensation estimation result, and then stands by for a predetermined time for the thermal sensation estimation process. If the thermal sensation of the occupant 20 is not in the stage of feeling "just right" after the predetermined time has elapsed, the air conditioner 22 is controlled in accordance with the estimation result of the thermal sensation at that time. Thus, the air conditioner 22 is frequently controlled by performing estimation of the thermal sensation and control of the air conditioner 22 according to the thermal sensation after a predetermined time has elapsed, and the occupant 20 feels discomfort. Can be prevented.
  • FIG. 14 shows a dashboard 43 of the vehicle 12 in the second embodiment.
  • the detection device 11 includes a detector 15 provided on the driver's seat 25 side, a detector 16 provided on the passenger's seat 26 side, a detector I / F circuit 18, and a detector I / F.
  • the detector 15 and the detector 16 are installed at an angle of 60 ° in the negative direction of the Z axis of the vehicle 12 with respect to the direction connecting the center 15 c of the detector 15 and the center 16 c of the detector 16 .
  • the detectors 15 and 16 are scanned in the direction of the Y axis. That is, the central axis 15b of the detector 15 and the central axis 16b of the detector 16 rotate on a plane including the Y axis.
  • an outlet 44, an outlet 45, an outlet 46, and an outlet 47 are provided in order from the driver's seat 25 to the assistant's seat 26.
  • the driver 36 and the passenger seat occupant 37 are determined from the output of the detector 15 and the output of the detector 16, and the thermal sensation of the driver 36 and the thermal sensation of the passenger seat occupant 37
  • the air conditioner 22 is controlled to be different between the driver 36 and the passenger seat occupant 37 according to the estimation result of the thermal sensation. That is, the air blowing from the air outlet 44 and the air outlet 45 on the driver 36 side is controlled according to the thermal sensation of the driver 36, and the air blowing from the air outlet 46 and the air outlet 47 on the passenger seat 26 side is the passenger seat Control is performed according to the thermal sensation of the occupant 37.
  • the comfort of the occupant 20 can be further improved.
  • the conventional vehicle control device 1 shown in FIG. 34 can not detect the entire body of the occupant, and it is difficult to control the air conditioning so that the occupant is comfortable.
  • the air blowing from the air outlet 44 and the air blowing from the air outlet 45 are controlled differently depending on the vehicle 12 to which the detection device 11 of the second embodiment is applied, and the air blowing from the air outlet 46 and the air blowing from the air outlet 47 May be controlled differently.
  • the comfort of the occupant 20 can be further improved by performing individual control also on the outlet located on the same side of the occupant 20.
  • FIG. 15 is a block diagram of a vehicle control device 52 in the third embodiment.
  • FIG. 16 is a front view of the detection device 51 of the vehicle control device 52.
  • FIG. 17 is a top view of the detection device 51.
  • the same parts as those of the control device 17 and the detection device 11 in the second embodiment shown in FIGS. 8 and 9 are designated by the same reference numerals.
  • the detector 51 in the third embodiment is different from the detector 11 in the second embodiment in the arrangement and scanning of the detectors 13 (the detectors 15 and 16).
  • the detection device 51 in the third embodiment has a detector 13 installed in the vehicle 12.
  • the detector 13 comprises a detector 15 and a detector 16.
  • the vehicle control device 52 further includes a detection device 51, a detector I / F circuit 18 connected to the detector 15, and a detector I / F circuit 19 connected to the detector 16. There is.
  • the detectors 15 and 16 are connected to the scanning unit 14.
  • the processing unit 21 that estimates the thermal sensation of the occupant 20 from the outputs of the detector I / F circuit 18 and the detector I / F circuit 19, and the control unit 23 that controls the air conditioner 22 based on the estimation result of the thermal sensation. And.
  • the detector 15 is installed on the B-pillar 31 b on the driver's seat 25 side of the vehicle 12, and the detector 16 is installed on the B-pillar 91 b on the passenger seat 26 side. Since the detectors 15 and 16 are installed in the B pillars 31b and 91b, it is difficult for the occupant 20 to enter the field of view of the occupant 20, and the occupant 20 can be detected without giving the occupant 20 a sense of discomfort. .
  • the central axis 15b of the detector 15 and the central axis 16b of the detector 16 are inclined at an angle of 10 to 15 ° in the positive direction of the Y axis, and the detectors 15 and 16 are installed. By installing in this manner, it is possible to prevent that the head of the occupant 20 closer to the detector 15 and the detector 16 becomes an obstacle and the occupant 20 on the opposite side can not be detected. As a result, the accuracy of the determination of the driver 36 and the front passenger seat occupant 37 is further improved.
  • the detectors 15 and 16 are scanned in the Z-axis direction by the scanning unit 14. That is, the central axis 15b of the detector 15 and the central axis 16b of the detector 16 rotate on a plane including the Z axis.
  • the thermal sensation of the occupant 20 is estimated from the output of the detector 15 and the output of the detector 16, and the air conditioner 22 is controlled according to the estimation result of the thermal sensation. As a result, the occupant 20 can control the comfortable air conditioner 22.
  • the detectors 15 and 16 are installed at an angle of 10 to 15 ° in the positive direction of the Y axis, the angle may be changed as appropriate depending on the structure of the vehicle 12.
  • the detection device 51 can change the angles of the detectors 15 and 16 depending on the structure of the vehicle 12, and therefore, can be applied to various vehicles 12.
  • the detection device 51 can detect the temperature of the hand of the occupant 20 and knees in detail. As a result, the detection accuracy of the detectors 15 and 16 can be improved, and the estimation accuracy of the thermal sensation can be improved. As a result, the air conditioning can be optimally controlled, so the fuel efficiency of the vehicle 12 can be improved, and the comfort of the occupant 20 can be improved.
  • the detection device 51 can measure the detailed temperature distribution of the occupant 20, it is possible to estimate the thermal sensation of each occupant 20 with respect to the driver 36 and the passenger 37 in the front passenger seat.
  • the air conditioner 22 may be controlled for each occupant 20 using the estimation result of the thermal sensation for each occupant 20. By controlling in this manner, the comfort of the occupant 20 can be improved.
  • FIG. 18 is a block diagram of a vehicle control device 62 according to the fourth embodiment.
  • FIG. 19 is a front view of the detection device 61 of the vehicle control device 62.
  • FIG. 20 is a top view of the detection device 61.
  • the detection device 61 in the fourth embodiment is different from the detection device 11 in the second embodiment in the arrangement and scanning of the detectors 13 (the detectors 15 and 16).
  • the detection device 61 in the fourth embodiment has a detector 13 installed in the vehicle 12, and the detector 13 comprises a detector 15 and a detector 16. Further, the vehicle control device 62 has a detection device 61, a detector I / F circuit 18 connected to the detector 15, and a detector I / F circuit 19 connected to the detector 16. .
  • the detectors 15 and 16 are connected to the scanning unit 14.
  • the processing unit 21 that estimates the thermal sensation of the occupant 20 from the outputs of the detector I / F circuit 18 and the detector I / F circuit 19, and the control unit 23 that controls the air conditioner 22 based on the estimation result of the thermal sensation. And.
  • the detectors 15 and 16 are installed near the center between the driver's seat 25 and the passenger's seat 26 and between the room mirror 30a and the room lamp 30b in a top view from the ceiling 30 of the vehicle 12.
  • the light receiving surface 15 a of the detector 15 is installed facing the driver's seat 25, and the light receiving surface 16 a of the detector 16 is installed facing the passenger seat 26. Since the detectors 15 and 16 are installed on the ceiling 30, they are difficult to enter the field of vision of the occupant 20, and the occupant 20 can be detected without giving the occupant 20 a sense of discomfort.
  • the central axis 15b of the detector 15 and the central axis 16b of the detector 16 are inclined at an angle of 45 ° in the negative direction of the Z axis with respect to the direction connecting the center 15c of the detector 15 and the center 16c of the detector 16 is set up.
  • the detectors 15 and 16 are scanned by the scanning unit 14 in the direction of the Y axis. That is, the central axis 15b of the detector 15 and the central axis 16b of the detector 16 rotate on a plane including the Y axis.
  • the processing unit 21 estimates the thermal sensation of the occupant 20 from the output of the detector 15 and the output of the detector 16, and the control unit 23 controls the air conditioner 22 according to the estimation result of the thermal sensation.
  • the occupant 20 can control the comfortable air conditioner 22.
  • the central axis 15b of the detector 15 and the central axis 16b of the detector 16 are inclined at an angle of 45 ° in the negative direction of the Z-axis, the present invention is not limited to this. You may change it.
  • the detector 61 can detect the temperature of the hand of the occupant 20 and knees in detail by scanning the detector 15 and the detector 16 in the direction of the Y axis. As a result, the detection accuracy of the detectors 15 and 16 can be improved, and the estimation accuracy of the thermal sensation can be improved. As a result, the air conditioning can be optimally controlled, so the fuel efficiency of the vehicle 12 can be improved, and the comfort of the occupant 20 can be improved.
  • the detection device 61 is installed near the center between the driver's seat 25 and the passenger seat 26 and between the rearview mirror 30a and the rear room lamp 30b in top view, the installation angle does not depend on the vehicle type. It can be installed in various vehicles 12.
  • the detection device 61 can measure the detailed temperature distribution of the occupant 20, it is also possible to estimate the thermal sensation of each occupant 20 of the driver 36 and the passenger 37 of the front passenger seat.
  • the air conditioner 22 may be controlled for each occupant 20 using the estimation result of the thermal sensation for each occupant 20. By controlling in this manner, the comfort of the occupant 20 can be improved.
  • FIG. 21 is a block diagram of a vehicle control device 72 according to the fifth embodiment.
  • FIG. 22 is a front view of the detection device 71 of the vehicle control device 72.
  • FIG. 23 is a top view of the detection device 71.
  • FIG. In FIGS. 21 to 23, the same parts as those of the control device 17 and the detection device 11 in the second embodiment shown in FIGS. 8 and 9 are given the same reference numerals.
  • the detector 71 in the fifth embodiment is different from the detector 11 in the second embodiment in the arrangement and scanning of the detectors 13 (the detectors 15 and 16).
  • the detection device 71 in the fifth embodiment has a detector 13 installed in the vehicle 12, and the detector 13 comprises a detector 15 and a detector 16. Further, the vehicle control device 72 has a detection device 71, a detector I / F circuit 18 connected to the detector 15, and a detector I / F circuit 19 connected to the detector 16. .
  • the detectors 15 and 16 are connected to the scanning unit 14.
  • the processing unit 21 that estimates the thermal sensation of the occupant 20 from the outputs of the detector I / F circuit 18 and the detector I / F circuit 19, and the control unit 23 that controls the air conditioner 22 based on the estimation result of the thermal sensation. And.
  • the detectors 15 and 16 are installed near the center between the driver's seat 25 and the passenger's seat 26 and between the room mirror 30a and the room lamp 30b in a top view of the ceiling 30 of the vehicle 12.
  • the light receiving surface 15 a of the detector 15 is installed facing the driver's seat 25, and the light receiving surface 16 a of the detector 16 is installed facing the passenger seat 26. Since the detectors 15 and 16 are installed on the ceiling 30, they are difficult to enter the field of vision of the occupant 20, and the occupant 20 can be detected without giving the occupant 20 a sense of discomfort.
  • the detectors 15 and 16 are scanned by the scanning unit 14 in the direction of the Z axis. That is, the central axis 15b of the detector 15 and the central axis 16b of the detector 16 rotate on a plane including the Z axis.
  • the processing unit 21 estimates the thermal sensation of the occupant 20 from the output of the detector 15 scanned by the scanning unit 14 and the output of the detector 16, and the control unit 23 controls the air conditioner 22 according to the estimation result of the thermal sensation. Control. As a result, the occupant 20 can control the comfortable air conditioner 22.
  • the angle of the detector 15 and the detector 16 can be changed according to the structure of the vehicle 12, so that the detection device 71 can be applied to various vehicles 12.
  • the detection device 71 can detect the temperature of the hand of the occupant 20 and knees in detail. As a result, the detection accuracy of the detectors 15 and 16 can be improved, and the estimation accuracy of the thermal sensation can be improved. As a result, the air conditioning can be optimally controlled, so the fuel efficiency of the vehicle 12 can be improved, and the comfort of the occupant 20 can be improved.
  • the detection device 71 can measure the detailed temperature distribution of the occupant 20, it is also possible to estimate the thermal sensation of each occupant 20 of the driver 36 and the passenger 37 of the front passenger seat.
  • the air conditioner 22 may be controlled for each occupant 20 using the estimation result of the thermal sensation for each occupant 20. By controlling in this manner, the comfort of the occupant 20 can be improved.
  • the detectors 15 and 16 may be installed on the rearview mirror 30a or the room lamp 30b.
  • the detectors 15 and 16 can look over the entire interior of the vehicle 12 by being installed on the room mirror 30 a and the room lamp 30 b.
  • the detector 15 and the detector 16 may be installed in front of the driver's seat 25 and the assistant's seat 26. By installing in front of the driver's seat 25 and the passenger's seat 26, the detector 15 and the detector 16 can detect the temperature of the face of the occupant 20 from the front, and can estimate the thermal sensation more accurately. .
  • FIG. 24 is a block diagram of a vehicle control device 83 according to the sixth embodiment.
  • FIG. 25 is a front view of the detection device 81 of the vehicle control device 83.
  • FIG. 26 is a top view of the detection device 81.
  • the detection device 81 in the sixth embodiment has a detector 82 installed in the vehicle 12.
  • the vehicle control device 83 has a detection device 81, a detector I / F circuit 84 connected to the detector 82, and a scanning unit 14 for scanning the detector 82.
  • the processing unit 21 estimates the thermal sensation of the occupant 20 from the output of the detector I / F circuit 84, and the control unit 23 controls the air conditioner 22 based on the estimation result of the thermal sensation.
  • the detector 82 is installed near the center between the driver's seat 25 and the passenger's seat 26 and between the room mirror 30 a and the room lamp 30 b in a top view of the ceiling 30 of the vehicle 12. Since the detector 82 is installed on the ceiling 30, it is difficult to enter the view of the occupant 20, and the occupant 20 can be detected without giving the occupant 20 a sense of discomfort.
  • the central axis 82 b of the detector 82 is scanned by the scanning unit 14 from the state of facing the driver's seat 25 side in the horizontal direction parallel to the ceiling 30 so as to face the driver's seat 25. It is scanned to face the direction, then scanned to face the passenger seat 26, and then scanned to face the passenger seat 26 in a direction parallel to the ceiling 30. From the state of facing the passenger seat 26 in the direction parallel to the ceiling 30, scanning is performed in the reverse direction until the driver's seat 25 in the direction parallel to the ceiling 30 is turned. Thus, the central axis 82 b of the detector 82 is scanned in the direction connecting the driver's seat 25 and the passenger's seat 26.
  • the processing unit 21 estimates the thermal sensation of the occupant 20 from the output of the detector 13 scanned by the scanning unit 14, and the control unit 23 controls the air conditioner 22 according to the estimation result of the thermal sensation. As a result, the air conditioner 22 can be controlled to make the occupant 20 comfortable.
  • the detection device 81 can detect the temperature of the hand of the occupant 20 and knees in detail by scanning the detector 82 in the direction of the X-axis. As a result, the detection accuracy of the detector 82 can be improved, and the estimation accuracy of the thermal sensation can be improved. Since the air conditioning can be optimally controlled, the fuel consumption of the vehicle 12 can be improved, and the comfort of the occupant 20 can be improved.
  • the vehicle control device 83 can be provided at low cost.
  • the detection device 81 can measure the detailed temperature distribution of the occupant 20, it is also possible to estimate the thermal sensation of each occupant 20 of the driver 36 and the passenger 37 of the front passenger seat.
  • the air conditioner 22 may be controlled for each occupant 20 using the estimation result of the thermal sensation for each occupant 20. By controlling in this manner, the comfort of the occupant 20 can be improved.
  • the vehicle 12 has the passenger compartment 12a, the ceiling 30, the plurality of pillars 31b, 91b (31a, 91a), the driver's seat 25, and the passenger's seat 26.
  • the detection devices 11, 51, 61, 71, 81 are used with the vehicle 12.
  • the detection device 11 includes a detector 13 which detects the occupant 20 in the passenger compartment 12 a in a noncontact manner, and a scanning unit 14 which scans the detector 13.
  • the detector 13 is installed on a ceiling 30 or a pillar 31 a (31 b) of the vehicle 12.
  • the detector 13 may have a detector 15 installed closer to the driver's seat 25 than the passenger's seat 26 and a detector 16 installed closer to the passenger's seat 26 than the driver's seat 25.
  • the plurality of pillars includes a plurality of B pillars 31 b and 91 b.
  • the detector 15 and the detector 16 are installed on a plurality of B-pillars 31 b and 91 b.
  • Vehicle 12 further includes a windshield 27 facing compartment 12a and a rear glass 28 facing compartment 12a.
  • the scanning unit 14 may scan the detectors 15 and 16 in a direction from the direction toward the windshield 27 toward the rear glass 28.
  • the detector 15 and the detector 16 may be inclined in a direction toward the windshield 27 with respect to a direction connecting the detector 15 and the detector 16.
  • the vehicle 12 further includes a floor surface 29 facing the passenger compartment 12a.
  • the scanning unit 14 may scan the detectors 15 and 16 in a direction from the direction toward the floor surface 29 toward the ceiling 30.
  • the detector 15 and the detector 16 may be installed between the driver's seat 25 and the passenger's seat 26 as viewed from the ceiling 30.
  • the scanning unit 14 may scan the detectors 15 and 16 in a direction from the direction toward the floor surface 29 toward the ceiling 30.
  • the scanning unit 14 may scan the detector 13 in a direction connecting the driver's seat 25 and the assistant's seat 26.
  • the vehicle control device 17 (52, 62, 72, 83) includes the detection device 11 (51, 61, 71, 81) and the control unit 23.
  • the control unit 23 estimates the thermal sensation of the occupant 20 from the output of the vehicle control detection device 11 (51, 61, 71, 81), and controls the air conditioner 22 provided in the vehicle according to the thermal sensation. Is configured as.
  • the air conditioner 22 may be provided on the driver's seat 25 side.
  • the control unit 23 estimates the thermal sensation of the occupant in the passenger seat, and the assistant of the vehicle 12 according to the estimated thermal sensation.
  • the air conditioner 22 provided on the side of the seat 26 may be configured to be controlled.
  • FIG. 27 is a schematic view of the infrared sensor 480 in the seventh embodiment.
  • the pixel unit 481 has an infrared detection unit 483a and a MOS transistor which is a pixel selection switching element.
  • a plurality of pixel portions 481 are arranged in a two-dimensional array (matrix) on one surface side of the substrate 403.
  • 8 ⁇ 8 pixel portions 481 are formed on one surface side of the substrate 403, but the number and arrangement of the pixel portions 481 are limited to this. It is not a thing.
  • the infrared sensor 480 functions as the detectors 221 and 222 in the first embodiment and the detectors 15 and 16 in the second to sixth embodiments.
  • the pixel portion 481 functions as the pixel portion 200p in Embodiment 1 and the pixel portion 24 in Embodiments 2 to 6.
  • the infrared sensor 480 has a vertical readout line for reading out the signal from the infrared detection unit 483a so as to correspond to the infrared detection unit 483a of each column.
  • the drain electrode of the MOS transistor is connected to the infrared detection unit 483a, and the source electrode of the MOS transistor is connected to the vertical readout line.
  • the respective vertical readout lines are commonly connected.
  • the infrared sensor 480 has a horizontal signal line that switches on / off of the switch of the MOS transistor so as to correspond to the infrared detection unit 483a of each row. That is, the gate electrode of the MOS transistor is connected to the horizontal signal line.
  • the respective horizontal signal lines are commonly connected.
  • each infrared detection unit 483a is connected to a reference potential via a reference bias line corresponding to the infrared detection unit 483a of each column.
  • the reference bias lines are commonly connected via a common ground line.
  • Each vertical readout line, each reference bias line, each horizontal signal line, and the common ground line are electrically connected to the pad 482. With such a connection, by controlling the potential of each pad 482 so that the MOS transistor is sequentially turned on, the output of each infrared detection unit 483a can be read out in time series. Then, the signal output from each infrared detection unit 483a is output to the signal processing circuit 499 and amplified by the signal processing circuit 499.
  • FIG. 28A is a top view of the infrared detection unit 483a.
  • FIG. 28B is a cross-sectional view taken along line 28B-28B of the infrared detection unit 483a shown in FIG. 28A.
  • FIG. 28C is a cross-sectional view taken along line 28C-28C of the infrared detection unit 483a shown in FIG. 28A.
  • the infrared sensor 480 includes a substrate 403 having a hollow portion 401 and a support portion 402, an infrared absorption portion 404 disposed on the hollow portion 401, and a support portion 402 and an infrared absorption portion 404 disposed on the hollow portion 401.
  • FIG. Beam portion 405 faces hollow portion 401.
  • the beam 405 is connected to the support 402 and has opposite ends 405a, 405b and extends in the direction D405 from the end 405a to the end 405b.
  • the connection portion 406 extends from the beam portion 405 toward the infrared ray absorbing portion 404 in a direction D406 different from the direction D405. By doing this, the lengths of the beam portion 405 and the connection portion 406 can be shortened, and the warpage of the infrared ray absorbing portion 404 can be reduced.
  • the connecting portion 406 preferably extends from the center 405 c of the beam portion 405 toward the infrared ray absorbing portion 404.
  • center and center mean the degree to which design deviation is allowed, meaning that they are substantially center and center.
  • the support 402 is provided with a cold junction 414 and a cold junction 415.
  • the beam portion 405 is provided with a hot contact 412 and a hot contact 413.
  • the infrared detection unit 483 a includes a thermocouple 416 connecting the cold junction 414 and the hot junction 412, and a thermocouple 417 connecting the cold junction 415 and the hot junction 413.
  • the cold junction 414 is connected to the MOS transistor through the wiring 418 and is further connected to the signal processing circuit 499.
  • the cold junction 415 is connected to the reference potential via the wiring 418.
  • the hot junction 412 and the hot junction 413 are connected by a wire 418.
  • the infrared absorbing unit 404 is surrounded by the slit 411.
  • the infrared detection unit 483a may further include an infrared absorption unit 409 disposed on the hollow portion 401. It is preferable that the infrared ray absorbing portion 404 and the infrared ray absorbing portion 409 be arranged so as to be line symmetrical with respect to the beam portion 405 as an axis. With this configuration, warpage of the infrared ray absorbing portion 404 and the infrared ray absorbing portion 409 can be further suppressed, and formation is easy in terms of process.
  • the infrared ray absorbing portions 404 and 409 of the infrared ray detection portion 483a absorb infrared rays, that is, heat.
  • the absorbed heat is transferred to beam 405 via connection 406.
  • the heat transferred to the beam portion 405 raises the temperature of the hot junctions 412 and 413. Since the substrate 403 does not absorb heat as large as the infrared absorbing portions 404 and 409, the temperature of the cold junctions 414 and 415 provided on the substrate 403 does not rise as much as the hot junctions 412 and 413.
  • thermocouples 416 and 417 According to the difference.
  • This potential difference is supplied to the signal processing circuit 499 from each of the plurality of infrared ray detection units 483 a provided in each of the plurality of pixel units 481 via the wiring 418 and the pad 482.
  • the signal processing circuit 499 can detect temperatures at the plurality of pixel portions 481 from these potential differences.
  • the direction D406 extending from the beam portion 405 to the infrared ray absorbing portion 404 in the connection portion 406 is preferably perpendicular to the extending direction D405 of the beam portion 405.
  • the infrared ray absorbing portion 404 can be easily made to be axisymmetric with respect to an axis extending in the direction D406, and the warpage of the infrared ray absorbing portion 404 can be further reduced.
  • perpendicular refers to a degree that allows design deviation, and means substantially perpendicular.
  • symmetry refers to a degree that allows for design deviation, and means being substantially symmetrical.
  • the infrared ray absorbing portion 404 be connected only to the beam portion 405. With this configuration, it is possible to increase the total surface area of the infrared absorption unit, and it is possible to improve the sensitivity of the infrared sensor 480.
  • the surface area of the infrared ray absorbing portion 404 be larger than the surface area of the beam portion 405. With this configuration, it is possible to increase the total surface area of the infrared absorption unit 404, and it is possible to improve the sensitivity of the infrared sensor 480.
  • the length of the thermocouple 416 connecting the cold contact 414 and the warm contact 412 be equal to the length of the thermocouple 417 connecting the cold contact 415 and the warm contact 413.
  • the longer the thermocouple length the better the heat insulation between the hot junction and the cold junction, so the detection sensitivity of the infrared sensor becomes higher.
  • the thermal conductivity of the material constituting the thermocouple 416 and the thermal conductivity of the material constituting the thermocouple 417 are equal, the sensitivity of the heat quantity detected by the infrared absorbing portion 404 is the length of the thermocouple 416 or 417. Depends strongly on the shorter thermocouple.
  • the beam portions 405 are preferably arranged in line symmetry with an axis extending in a direction perpendicular to the direction D405 in which the beam portion 405 extends as a symmetry axis. With this configuration, warpage of the infrared ray absorbing portion 404 and the beam portion 405 can be further suppressed, and formation in the process is easy.
  • the distance between the warm contact 412 and the warm contact 413 is preferably shorter than the length in the direction D405 of the connection portion 406.
  • the lengths of the thermocouples 416 and 417 can be increased, and the thermal insulation between the hot junction 412 and the cold junction 414 and the hot junction 413 and the cold junction 414 can be lengthened. Since the thermal insulation between the contacts 415 can be improved, the sensitivity of the infrared sensor 480 can be further enhanced.
  • the length in the direction D405 of the connection part 406 is shorter than the length of the direction D405 in the infrared rays absorption part 404.
  • the length in the direction D405 of the connection portion 406 is short, heat absorbed by the infrared absorption portion 404 can be less likely to be released than in the case where the length is long, and the sensitivity of the infrared sensor 480 can be further enhanced.
  • the slit 411 is provided between the beam part 405 and the infrared rays absorption part 404.
  • FIG. With this configuration, it is possible to make it difficult for the heat absorbed by the infrared absorption unit 404 to escape, and the sensitivity of the infrared sensor 480 can be further enhanced.
  • the infrared detecting unit 483a further includes an infrared absorbing unit 409 disposed on the cavity 401 and a connecting unit 410 for connecting the infrared absorbing unit 409 to the beam unit 405.
  • the infrared ray absorbing portion 404 and the infrared ray absorbing portion 409 be arranged so as to be line symmetrical with respect to the beam portion 405 as an axis. With this configuration, warpage of the infrared ray absorbing portion 404 and the infrared ray absorbing portion 409 can be further suppressed, and formation is easy in terms of process.
  • the thermocouple 416 and the thermocouple 417 are preferably made of a material having silicon germanium.
  • the silicon germanium is preferably made of, for example, Si 1-x Ge x (0.15 ⁇ x ⁇ 0.85).
  • the lengths of the beam portion 405 and the connecting portion 406 are shortened. Therefore, the lengths of the thermocouples 416 and 417 are also short.
  • the heat absorbed by the infrared ray absorbing portions 404 and 409 is easily transmitted to the cold junctions 414 and 415.
  • thermocouples 416 and 417 By setting the material of the thermocouples 416 and 417 to a material having silicon germanium, it is possible to lower the thermal conductivity as compared with a material having one of silicon and germanium, and the heat absorbed by the infrared absorbing portions 404 and 409 can be obtained. By making it difficult to transmit to the cold junctions 414 and 415, the sensitivity of the infrared sensor 480 can be kept good.
  • thermocouple 416 is preferably made of a material having an N-type conductivity
  • thermocouple 417 is preferably made of a material having a P-type conductivity.
  • the substrate 403 is preferably made of silicon, that is, it is made of silicon as its main component, and other substances may be mixed.
  • a wire 418 for connecting the warm contact 412 and the warm contact 413 is disposed on the warm contact 412 and the warm contact 413, and the cold contact 414 or the cold contact 415 is an infrared ray. It is preferably connected to a signal processing circuit 499 that processes a signal from the absorbing unit 404. Thereby, the signal processing circuit 499 can process the signal detected by the infrared absorption unit 404, which is preferable.
  • the infrared ray absorbing portion 404, the infrared ray absorbing portion 409, and the beam portion 405 have the same film configuration.
  • each of the infrared ray absorbing portion 404, the infrared ray absorbing portion 409, and the beam portion 405 preferably has a laminated structure of the film 407 and the film 408.
  • the film 407 preferably has a structure in which a silicon oxide film 407 a made of silicon oxide and a silicon nitride film 407 b made of silicon nitride are stacked.
  • a silicon oxide film 407a is stacked on the substrate 403, a silicon nitride film 407b is stacked on the silicon oxide film 407a, and a film 408 is stacked on the silicon nitride film 407b.
  • the material of the film 408 is preferably a silicon oxide film such as Boron-doped phosopho-Silicate Glass (BPSG) film.
  • the film 408 is preferably thicker than the film 407.
  • a passivation film may be formed over the film 408 so as to cover the wiring 418.
  • the passivation film has, for example, a laminated structure composed of a Phosopho-Silicate Glass (PSG) film and a Non-doped Silicate Glass (NSG) film on the PSG film.
  • PSG Phosopho-Silicate Glass
  • NSG Non-doped Silicate Glass
  • FIG. 29A is a top view of an infrared detection unit 483b of the infrared sensor according to the eighth embodiment.
  • 29B is a cross-sectional view of the infrared ray detection unit 483b shown in FIG. 29A, taken along line 29B-29B.
  • FIG. 29C is a cross-sectional view of the infrared ray detection unit 483b shown in FIG. 29A at line 29C-29C.
  • the same parts as those of the infrared detection unit 483a in the seventh embodiment shown in FIGS. 28A to 28C are denoted by the same reference numerals.
  • the infrared detection unit 483b is provided in the pixel unit 481 of the infrared sensor 480 shown in FIG. 27 and functions in the same manner as the infrared detection unit 483a, similarly to the infrared detection unit 483a in the seventh embodiment.
  • the length in the direction D405 in which the beam portion 405 of the connection portion 406 extends is the length in the direction D405 of the infrared ray absorbing portions 404 and 409. Is equal to
  • the lengths in the direction D405 of the infrared ray absorbing portions 404 and 409 are shorter than those in the seventh embodiment. With this configuration, warpage of the infrared ray absorbing portions 404 and 409 in the extending direction D405 of the beam portion 405 can be suppressed.
  • connection portion 406 is made longer than that in the seventh embodiment. Thereby, the strength of the connection portion 406 can be enhanced, and the reliability of the infrared sensor can be enhanced.
  • the infrared detection unit 483b according to the eighth embodiment can also adjust the structure in accordance with the sensitivity and the priority of the reliability.
  • FIG. 30A is a top view of an infrared detection unit 483c of the infrared sensor according to the ninth embodiment.
  • FIG. 30B is a cross-sectional view of the infrared detection unit 483c shown in FIG. 30A taken along line 30A-30A.
  • FIG. 30C is a cross-sectional view taken along line 30C-30C of the infrared detection unit 483c shown in FIG. 30A.
  • the same reference numerals as in the infrared detection unit 483a in the seventh embodiment shown in FIGS. 28A to 28C denote the same parts.
  • the infrared detection unit 483c is provided in the pixel unit 481 of the infrared sensor 480 shown in FIG. 27 and functions in the same manner as the infrared detection unit 483a.
  • the substrate 403 has a rectangular shape, and the beam portion 405 is disposed along the rectangular diagonal of the substrate 403. Therefore, the lengths of the thermocouple 416 and the thermocouple 417 can be made longer than those of the seventh embodiment.
  • the sensitivity depends not only on the length of the thermocouples 416 and 417, but also on the area of the infrared absorbing portions 404 and 409.
  • thermocouples 416 and 417 If it is difficult to relatively lower the thermal conductivity of the thermocouples 416 and 417, adjust the area of the infrared absorbing parts 404 and 409 and the length of the thermocouples 416 and 417 to obtain the optimum sensitivity. It can be set.
  • the infrared detection unit 483c according to the ninth embodiment can also adjust the material and the structure to obtain the optimum sensitivity.
  • Tenth Embodiment 31A is a top view of an infrared detection unit 483d of the infrared sensor according to Embodiment 10.
  • FIG. 31B is a cross-sectional view of the infrared ray detection unit 483d at line 31B-31B shown in FIG. 31A.
  • 31C is a cross-sectional view of the infrared detection unit 483d shown in FIG. 31A, taken along line 31C-31C.
  • FIGS. 31A to 31C the same parts as those of the infrared detection unit 483a in the seventh embodiment shown in FIGS. 28A to 28C are assigned the same reference numerals.
  • the infrared detection unit 483d is provided in the pixel unit 481 of the infrared sensor 480 shown in FIG. 27 and functions in the same manner as the infrared detection unit 483a.
  • the infrared detection unit 483d according to the seventh embodiment includes only the infrared absorption unit 404 of the infrared absorption units 404 and 409, and has a line symmetrical structure with the beam unit 405 as an axis. It is not arranged to be.
  • the entire area of the slit 411 can be smaller than that of the seventh embodiment. Therefore, the total area of the infrared absorbing portion 404 can be made larger than that of the seventh embodiment. With this configuration, the sensitivity of the infrared sensor 480 can be improved by an amount corresponding to an increase in the entire area of the infrared absorbing portion 404.
  • the infrared detection unit 483d As described above, in the infrared detection unit 483d according to the tenth embodiment, it is also possible to adjust the structure in order to obtain the optimum sensitivity.
  • FIG. 32A is a top view of an infrared detection unit 483e of the infrared sensor according to Embodiment 11.
  • FIG. 32B is a cross-sectional view of the infrared ray detection unit 483e shown in FIG. 32A, taken along line 32B-32B.
  • 32C is a cross-sectional view of the infrared ray detection unit 483e shown in FIG. 32A, taken along line 32C-32C.
  • 32D is a cross-sectional view of the infrared ray detection unit 483e shown in FIG. 32A, taken along line 32D-32D.
  • 32A to 32D the same reference numerals as in the infrared detection unit 483a in the seventh embodiment shown in FIGS.
  • the infrared detection unit 483e is provided in the pixel unit 481 of the infrared sensor 480 shown in FIG. 27 and functions in the same manner as the infrared detection unit 483a.
  • the infrared detection unit 483e further includes a beam portion 419 disposed on the hollow portion 401 and connecting the support portion 402 and the beam portion 405. .
  • the beam portion 419 surrounds the infrared ray absorbing portion 404 in plan view.
  • the length of the thermocouples 416 and 417 can be increased. Therefore, the sensitivity of the infrared sensor 480 can be improved by lengthening the thermocouples 416 and 417 while suppressing the warpage of the infrared absorbing portions 404 and 409.
  • the sensitivity depends not only on the lengths of the thermocouples 416 and 417, but also on the area of the infrared absorbing portion 404.
  • Optimal sensitivity can be set by adjusting the area of the infrared ray absorbing portion 404 and the lengths of the thermocouples 416 and 417.
  • the infrared detection unit 483e in the eleventh embodiment can also adjust the structure in order to obtain the optimum sensitivity.
  • the beam part 419 is enclosed by the slit 411a. It is preferable that the area of the slit 411 inside the slit 411a outside the beam 419 is small. Also, the beam portion 419 and the support portion 402 are connected via the connection portion 420. The length in the direction D406 perpendicular to the extending direction D405 of the beam portion 405 of the connection portion 406 is preferably shorter than the length of the direction D406 in the connection portion 420. Thereby, the warpage of the infrared ray absorbing portion 404 is further suppressed.
  • the beam portion and the infrared absorption portion have a hollow thin film structure composed of a plurality of laminated films, and warpage occurs due to residual stress generated in the manufacturing process.
  • the infrared absorbing portion is supported by two different beams, and the path between the two supporting portions is relatively long, so the warpage due to the residual stress becomes large, and as a result, the beam portion or the infrared absorbing portion May be damaged.
  • the infrared detecting units 483a to 483e according to the seventh to eleventh embodiments suppress the film breakage of the infrared absorbing units 404 and (409) by suppressing the warpage of the infrared absorbing units 404 and (409), so that the reliability is improved. It is possible to provide a highly sensitive infrared sensor 480.
  • the infrared sensor 480 includes a substrate 403 having a hollow portion 401 and a support portion 402, an infrared absorbing portion 404 disposed on the hollow portion 401, a beam portion 405 disposed on the hollow portion 401, a beam portion 405, and infrared rays. And a connection portion 406 for connecting the absorption portion 404.
  • the beam portion 405 connects the support portion 402 and the infrared ray absorbing portion 404 and extends in the direction D405.
  • the connection portion 406 extends from the center 405 c of the beam portion 405 toward the infrared ray absorbing portion 404 in a direction D 406 different from the direction D 405.
  • Direction D406 may be perpendicular to direction D405.
  • the infrared ray absorbing portion 404 may be connected only to the beam portion 405.
  • the surface area of the infrared absorbing portion 404 may be larger than the surface area of the beam portion 405.
  • connection portion 406 in the direction D405 may be shorter than the length of the infrared absorption portion 404 in the direction D405.
  • a slit 411 may be provided between the beam portion 405 and the infrared ray absorbing portion 404.
  • the infrared sensor 480 may further include an infrared absorbing unit 409 disposed on the cavity 401.
  • the infrared ray absorbing portion 404 and the infrared ray absorbing portion 409 are arranged so as to be line symmetrical about the beam portion 405 as an axis.
  • the beam portion 405 may be arranged so as to be axisymmetrical with an axis extending perpendicularly to the direction D405 as an axis of symmetry.
  • the infrared sensor may further include a thermocouple 416 and a thermocouple 417.
  • the thermocouple 416 has a cold junction 414 provided on the support portion 402 and a hot junction 412 provided on the beam portion 405.
  • the thermocouple 417 has a cold junction 415 provided on the support portion 402 and a hot junction 413 provided on the beam portion 405. The length of the thermocouple 416 from the cold junction 414 to the hot junction 412 and the length of the thermocouple 417 from the cold junction 415 to the hot junction 413 are equal.
  • the infrared sensor may further include a wire 418 connecting the hot junction 412 and the hot junction 413, and a signal processing circuit 499 processing a signal from the infrared absorbing unit 404.
  • thermocouple 416 and the thermocouple 417 may be made of a material having silicon germanium.
  • thermocouple 416 may be made of a material having an N-type conductivity
  • thermocouple 417 may be made of a material having a P-type conductivity
  • the distance between the hot contact 412 and the hot contact 413 may be shorter than the length of the direction D 405 of the connection 406.
  • the infrared sensor 480 may further include a beam portion 419 disposed on the hollow portion 401 and connecting the support portion 402 and the beam portion 405.
  • the beam portion 419 surrounds the infrared ray absorbing portion 404 in plan view.
  • the substrate 403 may be made of silicon.

Landscapes

  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Geophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

 検出装置は、車室と天井と複数のピラーと運転席と助手席とを有する車両と共に用いられる。この検出装置は、車両の天井または複数のピラーに設置されて車室内にある被検出体を非接触で検出する検出器と、検出器を走査する走査部とを備える。この検出装置は、被検出体の温度を精度良く検出し、例えば、被検出体に対して快適に空調を制御することができる。

Description

検出装置と、これを用いた車両用制御装置
 本発明は、被検出体を非接触で検出する検出器と、車室内に検出器を備えた車両用制御装置に関する。
 赤外線カメラを用いた検出器は被検出体を非接触で検出することができる。
 図33は特許文献1に開示されている従来の検出器201の上面図である。検出器201は操作部207と撮影手段212と画像処理部とを備える。操作部207は、車両左右中心線202付近の運転者席203に座りハンドル204を握った運転者205および非運転者席206に座った非運転者209から操作可能な位置にある。撮影手段212は、運転者席203および非運転者席206から操作部207へ伸ばされた運転者205の左手208と非運転者209の右手210を共に撮影範囲に入れて、操作部207から座席側手前の所定範囲211を撮影可能に設置されている。画像処理部は、撮影手段212による画像データを処理して、操作部207へ手を伸ばした操作者の判別結果に基づいた操作者が運転者205であるか非運転者209であるかを判別する。
 検出器によって非接触で乗員が検出され、検出器の検出結果に基づいて車両の空調制御が行われている。
 図34に特許文献2に開示されている従来の車両用制御装置1を示す。車両用制御装置1では、2個の第1の赤外線センサがセンサケーシング2内に配置されている。赤外線センサがそれぞれ1つの敏感な表面3、4として示されている。敏感な表面3は運転席の領域5を検出し、敏感な表面4は助手席の領域6を検出する。
 また、温度の割合を後部座席にいる同乗者の領域内で正確に定めることができるようにするために、第2の赤外線センサを備えたセンサケーシング7は、自動車の後方の制御ユニットまたは天井の中に配置されている。第2の赤外線センサは2個のビームセンサを備えている。そのうち第1のビームセンサの敏感な表面8は、リアウィンドウの方向に運転席の後方の領域を検出し、第2のビームセンサの敏感な表面9は、助手席とリアウィンドウとの間の領域を検出する。
 特許文献3は、例えば、梁に複数の屈曲部を設けることで、梁の長さを相対的に長くする従来の赤外線センサを開示している。特許文献4や特許文献5も上記と同様の従来の赤外線センサを開示している。
特開2004-67031号公報 特開2000-94923号公報 特開2006-170937号公報 特開2009-288066号公報 特開2010-048803号公報
 検出装置は、車室と天井と複数のピラーと運転席と助手席とを有する車両と共に用いられる。この検出装置は、車両の天井または複数のピラーに設置されて車室内にある被検出体を非接触で検出する検出器と、検出器を走査する走査部とを備える。
 この検出装置は、被検出体の温度を精度良く検出し、例えば、被検出体に対して快適に空調を制御することができる。
図1は実施の形態1における検出装置の構成図である。 図2は実施の形態1における検出装置の正面図である。 図3Aは実施の形態1における検出装置の検出原理を説明する図である。 図3Bは実施の形態1における検出装置の検出器の拡大図である。 図3Cは実施の形態1における検出装置の別の検出器の拡大図である。 図4は実施の形態1における車両用制御装置の構成を示す図である。 図5Aは実施の形態1における車両用制御装置が設けられる車両の上面図である。 図5Bは図5Aに示す車両内部を示す図である。 図6は実施の形態1における車両用制御装置の正面図である。 図7は実施の形態1における電子機器を操作する乗員を示す図である。 図8は実施の形態2における車両用制御装置のブロック図である。 図9は実施の形態2における車両用制御装置に用いられる検出装置の正面図である。 図10Aは実施の形態2における検出装置が設置される車両の上面図である。 図10Bは図10Aに示す車両の内部の一部拡大図である。 図11は実施の形態2における車両の側面図である。 図12は実施の形態2における車両用制御装置の走査部を示す図である。 図13は実施の形態2における検出装置の検出領域を示す図である。 図14は実施の形態2におけるダッシュボードを示す図である。 図15は実施の形態3における車両用制御装置のブロック図である。 図16は実施の形態3における車両用制御装置の検出装置の正面図である。 図17は実施の形態3における検出装置の上面図である。 図18は実施の形態4における車両用制御装置のブロック図である。 図19は実施の形態4における車両用制御装置の検出装置の正面図である。 図20は実施の形態4における検出装置の上面図である。 図21は実施の形態5における車両用制御装置のブロック図である。 図22は実施の形態5における車両用制御装置の検出装置の正面図である。 図23は実施の形態5における検出装置の上面図である。 図24は実施の形態6における車両用制御装置の構成を示すブロック図である。 図25は実施の形態6における検出装置の正面図である。 図26は実施の形態6における検出装置の上面図である。 図27は実施の形態7における赤外線センサの概略図である。 図28Aは実施の形態7における赤外線センサの赤外線検出部の上面図である。 図28Bは図28Aに示す赤外線検出部の線28B-28Bにおける断面図である。 図28Cは図28Aに示す赤外線検出部の線28C-28Cにおける断面図である。 図29Aは実施の形態8における赤外線センサの赤外線検出部の上面図である。 図29Bは図29Aに示す赤外線検出部の線29B-29Bにおける断面図である。 図29Cは図29Aに示す赤外線検出部の線29C-29Cにおける断面図である。 図30Aは実施の形態9における赤外線センサの外線検出部の上面図である。 図30Bは図30Aに示す赤外線検出部の線30B-30Bにおける断面図である。 図30Cは図30Aに示す赤外線検出部の線30C-30Cにおける断面図である。 図31Aは実施の形態10における赤外線センサの赤外線検出部の上面図である。 図31Bは図31Aに示す赤外線検出部の線31B-31Bにおける断面図である。 図31Cは図31Aに示す赤外線検出部の線31C-31Cにおける断面図である。 図32Aは実施の形態11における赤外線センサの赤外線検出部の上面図である。 図32Bは図32Aに示す赤外線検出部の線32B-32Bにおける断面図である。 図32Cは図32Aに示す赤外線検出部の線32C-32Cにおける断面図である。 図32Dは図32Aに示す赤外線検出部の線32D-32Dおける断面図である。 図33は従来の検出器の上面図である。 図34は従来の車両用制御装置を示す図である。
 (実施の形態1)
 図1は実施の形態1における検出装置220の構成図である。図2は検出装置220の正面図である。
 検出装置220は、検出器221と検出器222と処理部224とを有している。処理部224は、検出器221と検出器222の出力を処理して人や、飲料物・電子機器などの物、ペットなどの、赤外線を派する被検出体223を測定する。
 検出装置220は、検出装置220の測定対象の乗員である被検出体223が移動する領域が検出器221の検出領域と検出器222の検出領域になるように、被検出体223が移動する車室や家屋等の空間の上方に設置される。つまり、検出器221と検出器222の間で検出器221と検出器222の下方を被検出体223が移動するように、検出器221と検出器222とが設置される。なお、以降の説明において、図2における検出器221と検出器222がある側を上方、被検出体223がある側を下方として説明する。検出器221、222は上方向D220aに位置し、被検出体223は下方向D220bに位置する。
 検出器221の検出領域225と検出器222の検出領域226の夫々に被検出体223が入るように、検出器221と検出器222の間の下方を向くように傾けて設置されている。この様に設置された検出器221と検出器222の出力を処理部224で処理することで、被検出体223の位置が検出器221と検出器222のどちらに近いか、また、検出器221と検出器222とを結ぶ直線227が法線となる平面228上に平面228と直角の方向で投影した被検出体223の位置を測定している。直線227は上方向D220aと下方向D220bに直角であり、したがって、平面228は上方向D220aと下方向D220bと平行である。
 実施の形態1の検出器221と検出器222は赤外線センサよりなり、被検出体223を非接触で検出することができる。赤外線センサは、感温部が埋設された熱型赤外線検出部を有しており、感温部には被検出体223から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサは、感温部および感温部の出力電圧を取り出すためのMOSトランジスタをそれぞれ有した複数の画素部を有する。複数の画素部の数はa×b個であり、半導体基板の一表面側においてa行b列の1次元アレイ状または、2次元アレイ状に配置されている。画素部は非接触赤外線検知素子よりなる。なお、画素部の数は、a≧1、b≧1であればよく、実施の形態1における画素部は8×8に構成されている。なお、検出器221と検出器222にカメラやTOFセンサ等を用いても実施の形態1の効果を得ることができるが、赤外線センサを用いることによって、安価で、かつ、高精度な検出装置220を提供することができる。
 次に、検出装置220による被検出体223の検出について説明する。図3Aは検出装置220での検出原理の説明図である。図3Bは検出器221の拡大図である。図3Cは検出器222の拡大図である。なお、図3Bと図3Cにおいて、傾けずに設置したときの検出器221と検出器222を破線で示してある。
 検出器221、222の傾斜につき具体的に説明する。検出器221、222は赤外線を受光する受光面221a、222aをそれぞれ有する赤外線センサ200xである。非接触の赤外線検知素子200yよりそれぞれなる上述の複数の画素部200pは受光面221a、222aに沿って配置されている。検出器221、222は赤外線を検出できる検出範囲をそれぞれ有する。これらの検出範囲は、受光面221a、222aの中央221c、222cをそれぞれ通り、受光面221a、222aに直角に延びる中心軸221b、222bを中心に広がり、したがって検出器221、222はそれぞれ中心軸221b、222bを中心とする指向性を有する。
 検出器221の中央221cと検出器222の中央222cとの間の距離Lと、平面228に含まれて上方向D220a(下方向D220b)に延びる軸229aからの検出器221の中心軸221bの傾きの角度αと、平面228に含まれて上方向D220a(下方向D220b)に延びる軸229bからの検出器222の中心軸222bの傾きの角度βと、検出器221と検出器222の焦点距離fと、検出器221の受光面221aにおける中央221cから被検出体223の熱重心221dまでの距離Caと、検出器222の受光面222aにおける中央222cから被検出体223の熱重心222dまでの距離Cbとにより、検出器221の中央221cと検出器222の中央222cから被検出体223までの軸229a、229bの方向における距離Dは数1で表される。
Figure JPOXMLDOC01-appb-M000001
 数1を用いて検出装置220から被検出体223までの距離Dを算出することで、平面228に平面228と直角の方向で投影した被検出体223の位置を算出することができる。
 この様に、検出装置220は検出器221と検出器222を用いることにより、被検出体223が検出器221側にいるか、検出器222側にいるかだけでなく、平面228に平面228と直角の方向で投影した被検出体223の位置を検出することができる。また、数1を用いて簡易なアルゴリズムで精度よく被検出体223を検出することができる。
 次に、検出装置220を用いた車両用制御装置230について説明する。
 図4は車両用制御装置230の構成図である。図5Aは車両231の上面図である。図5Bは車両231の内部を示す。図6は車両用制御装置230の正面図である。車両231は、車室231aと、天井231bと、複数のピラー234a、234b、237a、237bと、運転席233と、助手席236とを有する。検出器221は助手席236より運転席233の近くに設置されており、検出器222は、運転席233より助手席236の近くに設置されている。
 実施の形態1における車両用制御装置230では、車両231の運転者232が座る運転席233の側のBピラー234bに検出器221が設置され、助手席乗員235が座る助手席236の側の別のBピラー237bに検出器222が設置されている。検出器221と検出器222は処理部224に接続され、処理部224は検出器221と検出器222の出力を処理し、電子機器238を制御している。検出器221の中心軸221bと検出器222の中心軸222bは被検出体223である乗員239(運転者232及び助手席乗員235)が座る座席240(運転席233及び助手席236)を向くように水平方向H220に対して下方向D220bに傾けて設置されている。検出器221の中央221cと検出器222の中央222cは1500mm離れている。座席240の車両231の上方向D220a(下方向D220b)に直角の前方向D231a(後方向D231b)において中央に設置されている。また、検出器221の中心軸221bと検出器222の中心軸222bは検出器221、222の中央221c、222cを結ぶ直線227に対して車両231のフロントガラス241に向かって傾けるように検出器221、222は設置されている。
 検出器221と検出器222は座席240の前方向D231a(後方向D231b)における中央に設置することで乗員239の頭部242が検出器221または検出器222の近い側の検出器の検出領域内に入り難くなり、乗員239の全身が検出器221または検出器222の遠い側の検出領域内に入り易くなる。したがって、車両用制御装置230の乗員239の検出精度を向上させることができる。また、検出器221と検出器222をBピラー234bとBピラー237bに設置することで、乗員239が座席240に座ったときに乗員239の視界に検出器221、222が入り難くなり運転の邪魔にならない。したがって、乗員239の快適性を損なうことなく、乗員239の動作を高精度に検出することが可能である。なお、検出器221、222のBピラー234b、237bへの前方向D231a(後方向D231b)における位置は座席240の中央が好適であるが、中央よりもフロントガラス241に近いことで、検出器221、222により近くに座っている乗員239の頭部242が邪魔になることを防止できる。すなわち、乗員239が検出器221または検出器222に近い位置にいて、検出器221の検出領域が運転者232の頭部242で占められたり、検出器222の検出領域が助手席236の乗員239の頭部242で占められたりすることによる誤検知を防止することが可能である。
 また、検出器221と検出器222は中心軸221b、222bを水平方向H220に対して座席240がある下方向D220bに傾けて設置されているので、検出器221または検出器222で乗員239の全身を検出することができ、乗員239を精度よく検出することができる。
 また、検出器221の中央221cと検出器222の中央222cとの間の距離Lは1500mmとしているが、車両用制御装置230を設置する車両231によって距離Lは適宜変更できる。特に、距離Lを500mm~1500mmの範囲とすることで車両用制御装置230を一般的な乗用車に対応させることができるので好適である。
 また、検出器221と検出器222は中心軸221b、222bを直線227に対して車両231のフロントガラス241に向けて傾けて設置してあるので、検出器221と検出器222により近い乗員239を、検出器221と検出器222からより遠い乗員239と誤検知する要因をさらに低減することができ、乗員239を精度よく検出することができるようになる。
 次に、車両用制御装置230による電子機器238の制御について説明する。
 図7は電子機器238を操作する乗員239を示す。実施の形態1では、車両用制御装置230が制御する電子機器238は空調機器とカーナビゲーションである。空調機器のスイッチ243の上方にカーナビゲーションの操作パネル244が設置されている。この状態での車両用制御装置230による電子機器238の制御を説明する。表1に車両用制御装置230の電子機器238の制御を示す。
Figure JPOXMLDOC01-appb-T000001
 助手席236から助手席乗員235が空調機器のスイッチ243に手245を伸ばし、空調機器のスイッチ243に助手席乗員235の手245が近づいた場合、検出器221と検出器222の検出結果から、助手席乗員235が空調機器を操作しようとしていると処理部224は判断する。このとき、処理部224は空調機器のスイッチ243を点燈させ、空調機器のスイッチ243を操作しやすいように制御する。
 また、助手席236の助手席乗員235がカーナビゲーションの操作パネル244に手245を近づけた場合、処理部224は手245が空調機器のスイッチ243よりも上方の操作パネル244に近いことを検出し、操作パネル244を起動したり、操作パネル244に検索画面等の必要な画面を表示したりするなど、助手席乗員235が操作しやすいように操作パネル244の表示を制御する。
 一方、運転者232が運転席233から空調機器のスイッチ243または、カーナビゲーションの操作パネル244に手246を近づけた場合、運転席233から空調機器、または、カーナビゲーションを操作しようとしていると処理部224は判断する。このとき車両231が走行中の場合、運転席233から操作するのは危険であるので、スイッチ243または操作パネル244の電源を切り、運転者232が操作することができないようにすることで危険を防止する。
 この様に、車両用制御装置230は平面228と平行な方向での被検出体223の動きを検出することができるので、乗員239が電子機器238のうちの操作しようとしている電子機器238を判断して操作しやすいように制御することができ、乗員239の快適性を向上させることができる。また、被検出体223が検出器221、222のうちの検出器221により近いか、検出器222により近いかを検出することができるので、車両231の走行中に運転者232が操作し車両231が危険な状態にならないように電子機器238を制御できるので、車両231の安全性を向上させることができる。
 なお、電子機器238の制御方法としては、上記の方法に限らず、例えば、乗員239が手を近づけた場所が音楽プレイヤーのディスクの近くだった場合にディスクを排出するなど、他の方法で乗員239の快適性が向上するように電子機器238を制御してもよい。
 なお、検出器221と検出器222をBピラー234b、237bに設置しているが、Bピラー234b、237bではなく、Aピラー234a、237aに設置しても、乗員239の視界に検出器221と検出器222が入り難く、乗員239に不快感を与えることなく乗員239の動作を検出することができる。
 特許文献1に開示されている従来の検出器201では、上下方向への複数の電子機器が搭載された車両においては、操作部以外の電装機器に対する運転者および非運転者の判別ができない。
 それに対して、実施の形態1における車両用制御装置230は、被検出体340の左右方向の判別だけではなく、上方向D220aや下方向D220bの動きを検出し、電子機器238を制御することができるので、車両231や家屋の空調機器等の制御などに特に有用である。
 検出器221は助手席236より運転席233の近くに設置されている。検出器222は運転席233より助手席236の近くに設置されている。検出装置220は、検出器221の出力と検出器222の出力とから、検出器221と検出器222とを結ぶ直線227が法線となる平面228の方向の乗員239の動きを検出する処理部224を備える。
 検出器221と検出器222とのそれぞれは、1次元アレイ状、または、2次元アレイ状に配置された複数の赤外線検知素子200yを有する赤外線センサ200xで構成されている。
 処理部224は、検出器221と検出器222との間の距離Lと、検出器221の傾き角度αと検出器222の傾き角度βと、検出器221と検出器222の焦点距離fと、検出器221の受光面221aの中央221cから乗員の熱重心221dまでの距離Caと、検出器222の受光面の中央222cから乗員の熱重心222dまでの距離Cbとにより、検出器221と検出器222から乗員までの検出器221と検出器222を結ぶ直線と直交する方向での距離Dを
Figure JPOXMLDOC01-appb-M000002
で表される式により検出してもよい。
 車両用制御装置230は、電子機器238が搭載された車両231に設けられる。車両用制御装置230は、検出装置220と、検出器221の出力と検出器222の出力とによって電子機器を制御する処理部224とを備え、検出器221と検出器222とは車両231の車室231a内に設けられる。
 検出器221と検出器222とが、検出器221と検出器222とを結ぶ直線227よりも車両231のフロントガラス241の方向に傾いて設置されていてもよい。
 検出器221と検出器222が車両231の複数のAピラー234a、237a又は複数のBピラー234b、237bに設置されていてもよい。
 検出器221は、乗員が検出器222の側にいるときに乗員の全体が検出器221の検出領域225に入るように設置され、検出器222は、乗員が検出器221の側にいるときに乗員の全体が検出器222の検出領域226に入るように設置されていてもよい。
 検出器221と検出器222との間の距離が500mm以上、1500mm未満であってもよい。
 処理部224は、検出器221の出力と検出器222の出力とから、乗員が検出器221の側と検出器222の側とのいずれにいるのかを判別してもよい。
 処理部224は乗員が複数の電子機器238のうちの一つの電子機器に近づいたことを検知したときその電子機器を制御し、他の電子機器を制御しなくてもよい。
 (実施の形態2)
 図8は実施の形態2における車両用制御装置17のブロック図である。図9は車両用制御装置17に用いられる検出装置11の正面図である。図10Aは検出装置11が設置される車両12の上面図である。図10Bは車両12の内部を示す拡大図である。図11は車両12の側面図である。
 実施の形態2の検出装置11は、車両12に設置された検出器13と、検出器13を走査する走査部14とを有する。検出器13は検出器15と検出器16とからなる。また、車両用制御装置17は、検出装置11と、検出器15と接続された検出器インターフェース(I/F)回路18と、検出器16と接続された検出器I/F回路19とを有している。車両用制御装置17は、検出器I/F回路18と検出器I/F回路19の出力から、人や、飲料物・電子機器などの物、ペットなど、飲料物・電子機器などの物、ペットなどの、赤外線を発する被検出体である乗員20の温冷感を推定する処理部21と、温冷感の推定結果に基づいて空調機器22を制御する制御部23とをさらに有している。乗員20の温冷感とは、乗員20が感じる暑さまたは寒さの度合いを示す。
 検出器15と検出器16のそれぞれは複数の赤外線センサで構成されている。赤外線センサは、感温部が埋設された熱型赤外線検出部を有しており、感温部には被検出体から放射された赤外線による熱エネルギーを電気エネルギーに変換するサーモパイルにより構成される熱電変換部が用いられている。また、赤外線センサは、感温部および感温部の出力電圧を取り出すためのMOSトランジスタをそれぞれ有したa×b個の画素部24が、半導体基板の一表面側においてa行b列の2次元アレイ状に配置されている。画素部24は非接触赤外線検知素子よりなる。実施の形態2における画素部24は8行8列のアレイ状であるマトリクス状に配置されている。検出器15と検出器16に赤外線センサを用いることによって、安価で、かつ、高精度な温度センサを実現することができる。
 車両12での検出装置11の配置について説明する。車両12は、車室12aと、天井30と、複数のピラー31a、31b、91a、91bと、運転席25と、助手席26とを有する。なお、以降の説明において、運転席25と助手席26を結ぶ方向をX軸の方向と定義する。特に助手席26から運転席25に向かう方向をX軸の正方向と定義し、運転席25から助手席26に向かう方向をX軸の負方向と定義する。フロントガラス27とリアガラス28を結ぶ方向をY軸の方向と定義する。特に、リアガラス28からフロントガラス27に向かう方向をY軸の正方向と定義し、フロントガラス27からリアガラス28に向かう方向をY軸の負方向と定義する。床面29と天井30を結ぶ方向をZ軸の方向と定義する。特に、床面29から天井30に向かう方向をZ軸の正方向と定義し、天井30から床面29に向かう方向をZ軸の負方向と定義する。X軸とY軸とZ軸は互いに直角である。
 検出器15は車両12の運転席25側のBピラー31bに設置され、検出器16は助手席26側のBピラー91bに設置されている。このように、検出器15は助手席26より運転席25の近くに設置されており、検出器16は、運転席25より助手席26の近くに設置されている。検出器15と検出器16の検出領域32に乗員20が入るように設置されている。検出器15と検出器16は座席(運転席25、助手席26)のY軸の方向の中央の位置に配置されている。検出器15と検出器16はBピラー31b、91bに設置されているので、乗員20の視界に入り難く、乗員20に不快感を与えずに乗員20を検出することが可能となっている。なお、検出器15と検出器16はBピラー31b、91bではなくAピラー31a、91aにそれぞれ設置しても良いが、Bピラー31b、91bに設置した方が乗員20の全身を検出しやすくなる。なお、検出器15と検出器16は座席のY軸方向の中央の位置に配置されているが、この限りではなく、車両12の構造に応じて配置する位置は適宜変更しても良い。
 検出器15、16の傾斜につき具体的に説明する。図9に示すように、検出器15、16は赤外線を検知する受光面15a、16aをそれぞれ有する。検出器15、16は赤外線を検出できる検出範囲をそれぞれ有する。非接触赤外線検知素子よりそれぞれなる上述の複数の画素部24は受光面15a、16aに沿って配置されている。これらの検出範囲は、受光面15a、16aの中央15c、16cをそれぞれ通り、受光面15a、16aに直角に延びる中心軸15b、16bを中心に広がり、したがって検出器15、16は中心軸15b、16bをそれぞれ中心とする指向性を有する。
 また、検出器15の中心軸15bと検出器16の中心軸16bは、検出器15の中央15cと検出器16の中央16cを結ぶ方向に対して、車両12のZ軸の負方向に60°傾いて検出器15、16が設置されている。この様に設置することにより、乗員20の手先や膝の温度まで検出することができるため、乗員20の全身を検出しやすくなる。なお、検出器15の中心軸15bと検出器16の中心軸16bはZ軸の負方向に60°の角度だけ傾いているが、この限りではなく、車両12の構造によって、適宜その角度を変更しても良い。この様に、実施の形態2の検出装置11では、車両12の構造によって、検出器15と検出器16の角度を変更することができるので、多様な車両12に適用することができる。
 次に、検出器15と検出器16の走査について、検出器15を例として説明する。図12は走査部14による検出器15の走査を示す。図13は走査された検出器15の検出領域32、34を示す。図13では、検出器15の画素部24の長軸33方向(画素部24の最も長さが長い部分)の長さDaの1/2すなわちDa/2の長さだけ画素部24を走査して得られる検出器15の検出領域34を破線で示している。なお、長さDaは説明のための一例であり、これに限定されるものではなく、検出装置11の適用条件に応じて適宜設定すればよい。
 走査部14は検出器15(16)を回転させるモーター等の機器で構成されており、回転軸35の周りを所定の時間毎に距離Daずつ画素部24の長軸33の方向に検出器15を回転させ、予め決められた距離だけ走査させる。
 検出器15は、走査されるたびに赤外線を検出し、走査が完了したら検出器I/F回路18で得られた温度分布を足し合わせて温度分布を取得する。温度分布を足し合わせることによって、得られる温度分布の解像度が高くなる。また、走査が完了した検出器15は、逆方向に走査され、同様に、距離Daだけ走査される毎に赤外線を検出し、逆方向の走査が完了したら高解像度の温度分布を取得する。
 この様に、高解像度の温度分布を得ることにより、乗員20の温度と、座席等の背景の温度とを分離することができ、乗員20の温度を正確に測定することができる。また、高解像度の温度分布を得ることにより、乗員20の判別、例えば、運転者36と助手席乗員37を精度良く判別することが可能になる。また、これによって、検出器15と検出器16の検出精度が向上し、温冷感の推定の精度を向上させ、空調を最適に制御することができる。空調を最適に制御することができるので、車両12の燃費を向上することができ、また、乗員20の快適性を向上させることができる。
 処理部21は、検出器15と検出器16で得られた温度分布を基に温冷感を推定する演算部38と、温冷感の推定に用いられる閾値が設定されている設定部39とで構成されている。
 空調機器22は、空調機器22を制御する制御部23と、ルーバー40と、コンプレッサー41と、ファン42から構成されている。ルーバー40とコンプレッサー41とファン42は制御部23に接続されている。演算部38の出力に応じて、制御部23がルーバー40、コンプレッサー41、ファン42の制御を行うことで、空調の制御をする。
 次に、演算部38による温冷感の推定について説明する。
 まず、演算部38は検出器15の出力と検出器16の出力から温度分布を取得する。
 次に、演算部38は検出器15と検出器16とから得られた温度分布から、乗員20の温度、座席等の背景温度を判別する。演算部38は、乗員20の温度の平均値(以下、乗員20の温度として説明)を算出し、乗員20の温度と背景温度から乗員20の温冷感を推定する。ここで、温冷感は、「暑い」、「非常に暑い」、「寒い」、「非常に寒い」、「ちょうど良い」等のように、乗員20の温冷感の度合いに応じて設定された段階を有する。
 温冷感の推定結果に応じて空調機器22が制御される。例えば、演算部38は、乗員20の温冷感が、乗員20が「暑い」と感じる段階であると推定した場合、空調機器22を制御して冷房の設定温度を下げる、または、風量を強くする。演算部38は、温冷感の推定結果に応じて空調機器22を制御した後、温冷感の推定処理を所定時間だけ待機する。所定時間の経過後、乗員20の温冷感が「ちょうど良い」と感じている段階になっていない場合、そのときの温冷感の推定結果に応じて空調機器22を制御する。この様に、温冷感の推定と、温冷感に応じた空調機器22の制御を所定時間だけ経過してから行うことによって、空調機器22が頻繁に制御され、乗員20が不快感を感じることを防止することができる。
 図14に実施の形態2における車両12のダッシュボード43を示す。
 実施の形態2における検出装置11は、運転席25側に設けられた検出器15と、助手席26側に設けられた検出器16と、検出器I/F回路18と、検出器I/F回路19と、検出器15と検出器16を走査する走査部14と、処理部21と、制御部23とを有している。
 検出器15と検出器16とは、検出器15の中央15cと検出器16の中央16cを結ぶ方向に対して、車両12のZ軸の負方向に60°の角度だけ傾いて設置されている。検出器15と検出器16はY軸の方向に走査されている。すなわち、検出器15の中心軸15bと検出器16の中心軸16bはY軸を含む平面上を回転する。
 車両12のダッシュボード43には、運転席25から助手席26に向かって順に、吹き出し口44、吹き出し口45、吹き出し口46、吹き出し口47が設けられている。
 実施の形態2の検出装置11では、運転者36と助手席乗員37を検出器15の出力と検出器16の出力から判定し、運転者36の温冷感と助手席乗員37の温冷感を推定する。これらの温冷感の推定結果に応じて空調機器22を運転者36と助手席乗員37で異なるように制御する。つまり、運転者36側の吹き出し口44と吹き出し口45からの送風は、運転者36の温冷感に応じて制御され、助手席26側の吹き出し口46と吹き出し口47からの送風は助手席乗員37の温冷感に応じて制御される。この様に、乗員20を判定し、乗員20毎の温冷感に応じた制御を行うことで、更に、乗員20の快適性を向上させることができる。
 図34に示す従来の車両用制御装置1では、乗員の全身を検出することができず、乗員が快適な様に空調を制御することが難しい。
 また、実施の形態2の検出装置11を適用する車両12によって、吹き出し口44からの送風と吹き出し口45からの送風を異なるように制御し、吹き出し口46からの送風と吹き出し口47からの送風を異なるように制御しても良い。この様に、同じ乗員20の側にある吹き出し口についても個別の制御を行うことで、更に乗員20の快適性を向上させることができる。
 (実施の形態3)
 図15は実施の形態3における車両用制御装置52のブロック図である。図16は車両用制御装置52の検出装置51の正面図である。図17は検出装置51の上面図である。図15から図17において、図8と図9に示す実施の形態2における車両用制御装置17と検出装置11と同じ部分には同じ参照番号を付す。実施の形態3における検出装置51は、実施の形態2における検出装置11とは検出器13(検出器15、検出器16)の配置と走査が異なる。
 実施の形態3における検出装置51は、車両12に設置された検出器13を有する。検出器13は検出器15と検出器16とからなる。また、車両用制御装置52は、検出装置51と、検出器15と接続された検出器I/F回路18と、検出器16と接続された検出器I/F回路19とをさらに有している。検出器15と検出器16は走査部14に接続されている。検出器I/F回路18と検出器I/F回路19の出力から乗員20の温冷感を推定する処理部21と、温冷感の推定結果に基づいて空調機器22を制御する制御部23とを有している。
 検出器15は車両12の運転席25側のBピラー31bに設置され、検出器16は助手席26側のBピラー91bに設置され、ている。検出器15と検出器16はBピラー31b、91bに設置されているので、乗員20の視界に入り難く、乗員20に不快感を与えずに乗員20の検出をすることが可能となっている。
 検出器15の中心軸15bと検出器16の中心軸16bは、Y軸の正方向に10~15°の角度だけ傾いて検出器15、16が設置されている。この様に設置することにより、検出器15と検出器16により近い乗員20の頭部が邪魔になって、反対側にいる乗員20が検出できなくなることを防止できる。これにより、運転者36と助手席乗員37の判定の精度がさらに向上する。検出器15と検出器16は走査部14によってZ軸方向に走査されている。すなわち、検出器15の中心軸15bと検出器16の中心軸16bはZ軸を含む平面上を回転する。検出器15の出力と検出器16の出力から乗員20の温冷感を推定し、温冷感の推定結果に応じて空調機器22を制御する。これによって、乗員20が快適な空調機器22の制御を行うことができる。なお、検出器15と検出器16はY軸の正方向に10~15°の角度だけ傾けて設置されているが、この限りではなく、車両12の構造によって適宜角度を変更しても良い。この様に、検出装置51では車両12の構造によって検出器15と検出器16の角度を変更することができるので、多様な車両12に適用することができる。
 検出装置51は、乗員20の手先や、膝の温度まで詳細に検出することができる。これによって、検出器15と検出器16の検出精度が向上し、温冷感の推定精度を向上させることができる。これにより空調を最適に制御することができるので、車両12の燃費を向上することができ、また、乗員20の快適性を向上させることができる。
 また、検出装置51は乗員20の詳細な温度分布を測定することができるので、運転者36と助手席乗員37とに対して乗員20毎の温冷感の推定もできる。乗員20毎の温冷感の推定結果を用いて、乗員20毎に空調機器22を制御しても良い。この様に制御することで、乗員20の快適性を向上させることができる。
 (実施の形態4)
 図18は実施の形態4における車両用制御装置62のブロック図である。図19は車両用制御装置62の検出装置61の正面図である。図20は検出装置61の上面図である。図18から図20において、図8と図9に示す実施の形態2における車両用制御装置17と検出装置11と同じ部分には同じ参照番号を付す。実施の形態4における検出装置61は、実施の形態2における検出装置11とは検出器13(検出器15、検出器16)の配置と走査が異なる。
 実施の形態4における検出装置61は、車両12に設置された検出器13を有し、検出器13は検出器15と、検出器16とからなる。また、車両用制御装置62は、検出装置61と、検出器15と接続された検出器I/F回路18と、検出器16と接続された検出器I/F回路19とを有している。検出器15と検出器16は走査部14に接続されている。検出器I/F回路18と検出器I/F回路19の出力から乗員20の温冷感を推定する処理部21と、温冷感の推定結果に基づいて空調機器22を制御する制御部23とを有している。
 検出器15と検出器16は車両12の天井30からの上面視で運転席25と助手席26の間、かつ、ルームミラー30aとルームランプ30bの間の中央付近に設置されている。検出器15の受光面15aは運転席25を向いて設置されており、検出器16の受光面16aは助手席26を向いて設置されている。検出器15と検出器16は天井30に設置されているので、乗員20の視界に入り難く、乗員20に不快感を与えずに乗員20の検出をすることが可能となっている。
 検出器15の中心軸15bと検出器16の中心軸16bは、検出器15の中央15cと検出器16の中央16cを結ぶ方向に対して、Z軸の負方向に45°の角度だけ傾いて設置されている。検出器15と検出器16は走査部14によってY軸の方向に走査される。すなわち、検出器15の中心軸15bと検出器16の中心軸16bはY軸を含む平面上を回転する。処理部21は検出器15の出力と検出器16の出力から乗員20の温冷感を推定し、制御部23は温冷感の推定結果に応じて空調機器22を制御する。これによって、乗員20が快適な空調機器22の制御を行うことができる。なお、検出器15の中心軸15bと検出器16の中心軸16bはZ軸の負方向に45°の角度だけ傾いて設置されているが、この限りではなく、車両12の構造によって適宜この角度を変更しても良い。
 検出装置61は、検出器15と検出器16をY軸の方向に走査することにより、乗員20の手先や、膝の温度まで詳細に検出することができる。これによって、検出器15と検出器16の検出精度が向上し、温冷感の推定精度を向上させることができる。これにより空調を最適に制御することができるので、車両12の燃費を向上することができ、また、乗員20の快適性を向上させることができる。また、検出装置61は上面視で運転席25と助手席26の間、かつ、ルームミラー30aとルームランプ30bの間の中央付近に設置されているので、設置角度が車種に依存しなく、多種多様な車両12に設置することができる。
 また、検出装置61は乗員20の詳細な温度分布を測定することができるので、運転者36と助手席乗員37の乗員20毎の温冷感の推定もできる。この乗員20毎の温冷感の推定結果を用いて、乗員20毎に空調機器22を制御しても良い。この様に制御することで、乗員20の快適性を向上させることができる。
 (実施の形態5)
 図21は実施の形態5における車両用制御装置72のブロック図である。図22は車両用制御装置72の検出装置71の正面図である。図23は検出装置71の上面図である。図21から図23において、図8と図9に示す実施の形態2における車両用制御装置17と検出装置11と同じ部分には同じ参照番号を付す。実施の形態5における検出装置71は、実施の形態2における検出装置11とは検出器13(検出器15、検出器16)の配置と走査が異なる。
 実施の形態5における検出装置71は、車両12に設置された検出器13を有し、検出器13は検出器15と、検出器16とからなる。また、車両用制御装置72は、検出装置71と、検出器15と接続された検出器I/F回路18と、検出器16と接続された検出器I/F回路19とを有している。検出器15と検出器16は走査部14に接続されている。検出器I/F回路18と検出器I/F回路19の出力から乗員20の温冷感を推定する処理部21と、温冷感の推定結果に基づいて空調機器22を制御する制御部23とを有している。
 検出器15と検出器16は車両12の天井30の上面視で運転席25と助手席26の間、かつ、ルームミラー30aとルームランプ30bの間の中央付近に設置されている。検出器15の受光面15aは運転席25を向いて設置されており、検出器16の受光面16aは助手席26を向いて設置されている。検出器15と検出器16は天井30に設置されているので、乗員20の視界に入り難く、乗員20に不快感を与えずに乗員20の検出をすることが可能となっている。
 検出器15と検出器16は走査部14によってZ軸の方向に走査されている。すなわち、検出器15の中心軸15bと検出器16の中心軸16bはZ軸を含む平面上を回転する。処理部21は、走査部14によって走査された検出器15の出力と検出器16の出力から乗員20の温冷感を推定し、制御部23は温冷感の推定結果に応じて空調機器22を制御する。これによって、乗員20が快適な空調機器22の制御を行うことができる。この様に、検出装置71では、車両12の構造によって、検出器15と検出器16の角度を変更することができるので、多様な車両12に適用することができる。
 検出装置71は、乗員20の手先や、膝の温度まで詳細に検出することができる。これによって、検出器15と検出器16の検出精度が向上し、温冷感の推定精度を向上させることができる。これにより空調を最適に制御することができるので、車両12の燃費を向上することができ、また、乗員20の快適性を向上させることができる。
 また、検出装置71は乗員20の詳細な温度分布を測定することができるので、運転者36と助手席乗員37の乗員20毎の温冷感の推定もできる。乗員20毎の温冷感の推定結果を用いて、乗員20毎に空調機器22を制御しても良い。この様に制御することで、乗員20の快適性を向上させることができる。
 なお、検出器15と検出器16はルームミラー30aやルームランプ30bに設置しても良い。ルームミラー30aやルームランプ30bに設置されることで検出器15と検出器16は車両12の内部全体を見渡すことができる。
 また、検出器15と検出器16は運転席25と助手席26の前に設置しても良い。運転席25と助手席26の前に設置することで検出器15と検出器16は乗員20の顔の温度を正面から検出することができ、より正確に温冷感の推定をすることができる。
 (実施の形態6)
 図24は実施の形態6における車両用制御装置83のブロック図である。図25は車両用制御装置83の検出装置81の正面図である。図26は検出装置81の上面図である。図24から図26において、図8と図9に示す実施の形態2における車両用制御装置17と検出装置11と同じ部分には同じ参照番号を付す。
 実施の形態6における検出装置81は、車両12に設置された検出器82を有している。車両用制御装置83は、検出装置81と、検出器82と接続された検出器I/F回路84と、検出器82を走査する走査部14とを有している。検出器I/F回路84の出力から乗員20の温冷感を推定する処理部21と、温冷感の推定結果に基づいて空調機器22を制御する制御部23とを有している。
 検出器82は車両12の天井30の上面視で運転席25と助手席26の間、かつ、ルームミラー30aとルームランプ30bの間の中央付近に設置されている。検出器82は天井30に設置されているので、乗員20の視界に入り難く、乗員20に不快感を与えずに乗員20の検出をすることが可能となっている。
 検出器82の中心軸82bは、走査部14によって、天井30と平行な水平の方向の運転席25側を向いた状態から運転席25の方向を向くように走査され、次に床面29の方向を向くように走査され、次に助手席26の方向を向くように走査され、次に天井30と平行な方向の助手席26を向くように走査される。天井30と平行な方向の助手席26を向いた状態からは、天井30と平行な方向の運転席25を向くまで逆方向に走査される。この様に、検出器82の中心軸82bは運転席25と助手席26を結ぶ方向に走査される。処理部21は、走査部14によって走査された検出器13の出力から乗員20の温冷感を推定し、制御部23は、温冷感の推定結果に応じて空調機器22を制御する。これによって、乗員20が快適になるように空調機器22の制御を行うことができる。
 検出装置81は、検出器82をX軸の方向に走査することにより、乗員20の手先や、膝の温度まで詳細に検出することができる。これによって、検出器82の検出精度が向上し、温冷感の推定精度を向上させることができる。空調を最適に制御することができるので、車両12の燃費を向上することができ、また、乗員20の快適性を向上させることができる。
 また、検出装置81では、1つの検出器82で乗員20の検出と温冷感の推定ができるため、車両用制御装置83を安価で提供することができる。
 また、検出装置81は乗員20の詳細な温度分布を測定することができるので、運転者36と助手席乗員37の乗員20毎の温冷感の推定もできる。乗員20毎の温冷感の推定結果を用いて、乗員20毎に空調機器22を制御しても良い。この様に制御することで、乗員20の快適性を向上させることができる。
 上述のように、車両12は、車室12aと、天井30と、複数のピラー31b、91b(31a、91a)と、運転席25と、助手席26とを有する。検出装置11、51、61、71、81は車両12と共に用いられる。検出装置11は、車室12a内にいる乗員20を非接触で検出する検出器13と、検出器13を走査する走査部14とを備える。検出器13は車両12の天井30またはピラー31a(31b)に設置されている。
 検出器13は、助手席26より運転席25の近くに設置された検出器15と、運転席25より助手席26の近くに設置された検出器16とを有してもよい。
 上記の場合、複数のピラーは複数のBピラー31b、91bを含む。検出器15と検出器16は複数のBピラー31b、91bに設置されている。
 車両12は、車室12aに面するフロントガラス27と、車室12aに面するリアガラス28とをさらに有する。走査部14は、フロントガラス27に向かう方向からリアガラス28に向かう方向に検出器15と検出器16を走査してもよい。
 検出器15と検出器16は、検出器15と検出器16とを結ぶ方向に対してフロントガラス27に向かう方向に傾いていてもよい。
 車両12は、車室12aに面する床面29をさらに有する。走査部14は、床面29に向かう方向から天井30に向かう方向に検出器15と検出器16を走査してもよい。
 検出器15と検出器16は、天井30から見て運転席25と助手席26との間に設置されていてもよい。
 走査部14は、床面29に向かう方向から天井30に向かう方向に検出器15と検出器16を走査してもよい。
 走査部14は、運転席25と助手席26を結ぶ方向に検出器13を走査してもよい。
 車両用制御装置17(52、62、72、83)は、検出装置11(51、61、71、81)と制御部23とを備える。制御部23は、車両用制検出装置11(51、61、71、81)の出力から乗員20の温冷感を推定し、温冷感に応じて車両に設けられた空調機器22を制御するように構成されている。
 空調機器22は運転席25の側に設けられていてもよい、この場合、制御部23は、助手席にいる乗員の温冷感を推定し、推定した温冷感に応じて車両12の助手席26の側に設けられた空調機器22を制御するように構成されていてもよい。
 (実施の形態7)
 図27は実施の形態7における赤外線センサ480の概略図である。
 画素部481は、赤外線検出部483aと画素選択用スイッチング素子であるMOSトランジスタとを有する。赤外線センサ480では、複数の画素部481が基板403の一表面側において2次元アレイ状(マトリクス状)に配列されている。なお、実施の形態7では、図27に示すように、基板403の一表面側に8×8個の画素部481が形成されているが、画素部481の数や配列はこれに限定されるものではない。赤外線センサ480は、実施の形態1における検出器221、222や実施の形態2から実施の形態6における検出器15、16として機能する。また、画素部481は、実施の形態1における画素部200pや実施の形態2から実施の形態6における画素部24として機能する。
 また、赤外線センサ480は、各列の赤外線検出部483aに対応するように、赤外線検出部483aからの信号を読み出す垂直読み出し線を有している。ここで、MOSトランジスタのドレイン電極が赤外線検出部483aに接続されており、MOSトランジスタのソース電極が垂直読み出し線に接続されている。なお、それぞれの垂直読み出し線は共通接続されている。そして、赤外線センサ480は、各行の赤外線検出部483aに対応するように、MOSトランジスタのスイッチのオンオフを切替える水平信号線を有している。つまり、MOSトランジスタのゲート電極が水平信号線に接続されている。なお、それぞれの水平信号線は共通接続されている。そして、各列の赤外線検出部483aに対応する基準バイアス線を介して基準電位に接続されている。なお、それぞれの基準バイアス線は共通グランド線を介して共通接続されている。そして、各垂直読み出し線、各基準バイアス線、各水平信号線および共通グランド線のそれぞれが、パッド482と電気的に接続されている。このような接続により、MOSトランジスタが順次オン状態になるように各パッド482の電位を制御することで各赤外線検出部483aの出力を時系列的に読み出すことができる。そして、各赤外線検出部483aから出力された信号は、信号処理回路499に出力され、信号処理回路499によって増幅される。
 図28Aは赤外線検出部483aの上面図である。図28Bは図28Aに示す赤外線検出部483aの線28B-28Bにおける断面図である。図28Cは図28Aに示す赤外線検出部483aの線28C-28Cにおける断面図である。赤外線センサ480は、空洞部401及び支持部402を有する基板403と、空洞部401上に配置される赤外線吸収部404と、空洞部401上に配置されて支持部402と赤外線吸収部404とを接続する梁部405と、梁部405と赤外線吸収部404とを接続する接続部406とを有する。梁部405は空洞部401に面している。梁部405は支持部402に接続されてかつ互いに反対側の端405a、405bを有し、端405aから端405bまで方向D405に延びる。接続部406は、梁部405から赤外線吸収部404に向かって方向D405とは異なる方向D406に延びている。こうすることで、梁部405及び接続部406の長さを短くすることができ、赤外線吸収部404の反りを小さくすることが可能となる。その結果、赤外線吸収部404が基板403に接触することによる破壊を防止することが可能となる。なお、接続部406は、梁部405の中心405cから赤外線吸収部404に向かって延びていることが好ましい。なお、実施の形態中において、「中央」「中心」とは、設計上のズレを許容する程度のことを言い、実質的に中央、中心であることを意味する。
 図28Aから図28Cに示すように、支持部402には冷接点414及び冷接点415が設けられている。そして、梁部405には温接点412及び温接点413が設けられている。赤外線検出部483aは、冷接点414と温接点412とを結ぶ熱電対416と、冷接点415と温接点413とを結ぶ熱電対417とを備える。冷接点414は配線418を介してMOSトランジスタに接続され、さらに信号処理回路499に接続されている。そして、冷接点415は配線418を介して基準電位に接続している。そして、温接点412と温接点413は配線418で接続されている。そして、赤外線吸収部404はスリット411によって囲まれている。
 また、図28Aから図28Cに示すように、赤外線検出部483aは、空洞部401上に配置された赤外線吸収部409をさらに有してもよい。赤外線吸収部404と赤外線吸収部409とは梁部405を軸として線対称になるように配置されていることが好ましい。該構成とすることで、赤外線吸収部404と赤外線吸収部409の反りをより抑制することができ、プロセス上、形成が容易である。
 以下に赤外線センサ480の動作の概略を説明する。赤外線検出部483aの赤外線吸収部404、409が赤外線すなわち熱を吸収する。吸収された熱は接続部406を介して梁部405に伝達する。梁部405に伝達した熱は温接点412、413の温度を上昇させる。基板403は赤外線吸収部404、409ほど大きい熱を吸収しないので、基板403に設けられた冷接点414、415の温度は温接点412、413ほどには上昇しない。したがって温接点412、413のそれぞれと冷接点414、415の温度の差を生じ、その差に応じて熱電対416、417により冷接点414、415間に電位差が生じる。複数の画素部481にそれぞれ設けられた複数の赤外線検出部483aのそれぞれからこの電位差が配線418やパッド482を介して信号処理回路499に供給される。信号処理回路499はこれらの電位差から複数の画素部481での温度を検出することができる。
 図28Aから図28Cに示すように、接続部406における梁部405から赤外線吸収部404に向かって延びる方向D406は、梁部405の延びる方向D405と垂直であることが好ましい。方向D405、406が互いに垂直であることにより、赤外線吸収部404は方向D406に延びる軸について線対称な構造とすることが容易となり、赤外線吸収部404の反りをより小さくすることが可能となる。なお、本明細書中において、「垂直」とは、設計上のズレを許容する程度のことを言い、実質的に垂直であることを意味する。また、「対称」とは、設計上のズレを許容する程度のことを言い、実質的に対称であることを意味する。
 また、図28Aから図28Cに示すように、赤外線吸収部404は梁部405のみに接続されていることが好ましい。該構成とすることで、赤外線吸収部の全表面積を大きくすることが可能となり、赤外線センサ480の感度を向上させることが可能となる。
 また、図28Aから図28Cに示すように、赤外線吸収部404の表面積は、梁部405の表面積よりも大きいことが好ましい。該構成とすることで、赤外線吸収部404の全表面積を大きくすることが可能となり、赤外線センサ480の感度を向上させることが可能となる。
 また、図28Aから図28Cに示すように、冷接点414と温接点412とを結ぶ熱電対416の長さと冷接点415と温接点413とを結ぶ熱電対417の長さとは等しいことが好ましい。熱電対の長さが長いほど温接点と冷接点間の断熱性が向上するため、赤外線センサの検出感度は高くなる。熱電対416を構成する材料の熱伝導率と、熱電対417を構成する材料の熱伝導率が等しい場合、赤外線吸収部404が検知する熱量の感度は、熱電対416、417のうちの長さが短い方の熱電対により強く依存する。したがって、両者の熱電対416、417の長さを等しくすることにより、赤外線センサ480の感度をより高めることができる。なお、本明細書中において、「等しい」とは、設計上のズレを許容する程度のことを言い、実質的に等しいことを意味する。また、図28Aから図28Cに示すように、平面視において、梁部405は梁部405が延びる方向D405に垂直な方向に延びる軸を対称軸として線対称に配置されていることが好ましい。該構成とすることで、赤外線吸収部404および梁部405の反りをより抑制することができ、プロセス上形成が容易である。
 また、図28Aから図28Cに示すように、温接点412と温接点413との間の距離は接続部406の方向D405での長さよりも短いことが好ましい。温接点412と温接点413との間の距離を短くすることで、熱電対416、417の長さを長くすることができ、温接点412と冷接点414間の断熱性と温接点413と冷接点415間の断熱性を向上することができるので、赤外線センサ480の感度をより高めることができる。
 また、図28Aから図28Cに示すように、接続部406の方向D405での長さは、赤外線吸収部404における方向D405の長さよりも短いことが好ましい。接続部406の方向D405での長さが短いと、長い場合に比べて赤外線吸収部404で吸収した熱を逃げにくくすることが可能となり、赤外線センサ480の感度をより高めることができる。
 また、図28Aから図28Cに示すように、梁部405と赤外線吸収部404との間にはスリット411が設けられていることが好ましい。該構成により、赤外線吸収部404で吸収した熱を逃げにくくすることが可能となり、赤外線センサ480の感度をより高めることができる。
 また、図28Aから図28Cに示すように、赤外線検出部483aは、空洞部401上に配置された赤外線吸収部409と、赤外線吸収部409を梁部405に接続する接続部410とをさらに有してもよい。赤外線吸収部404と赤外線吸収部409とは梁部405を軸として線対称になるように配置されていることが好ましい。該構成とすることで、赤外線吸収部404と赤外線吸収部409の反りをより抑制することができ、プロセス上、形成が容易である。
 また、熱電対416及び熱電対417はシリコンゲルマニウムを有する材料から構成されていることが好ましい。なお、シリコンゲルマニウムとしては、例えば、Si1-XGe(0.15≦X≦0.85)で構成されることが好ましい。赤外線吸収部404の反りを小さくするために、梁部405及び接続部406の長さが短くなっている。そのため、熱電対416、417の長さも短くなっている。熱電対416、417の長さが短いと、赤外線吸収部404、409で吸収した熱が冷接点414、415に伝わりやすくなる。熱電対416、417の材料をシリコンゲルマニウムを有する材料とすることで、シリコンあるいはゲルマニウムの一方を有する材料に比べて熱伝導率を下げることが可能となり、赤外線吸収部404、409で吸収した熱を冷接点414、415に伝えにくくすることで、赤外線センサ480の感度を良好に保つことができる。
 また、熱電対416はN型の導電型を有する材料から構成され、熱電対417はP型の導電型を有する材料から構成されていることが好ましい。これにより熱電対416、417のゼーベック係数の極性を逆にすることができ、ゼーベック効果を起こすことができる。
 また、基板403はシリコンから構成されることが好ましく、すなわち、シリコンを主成分として構成され、他の物質が混じっていても構わない。
 また、図28Aから図28Cに示すように、温接点412と温接点413とを接続する配線418が温接点412及び温接点413の上に配置されており、冷接点414又は冷接点415は赤外線吸収部404からの信号を処理する信号処理回路499に接続されていることが好ましい。これにより、信号処理回路499は赤外線吸収部404で検知した信号を処理することができ好ましい。
 また、図28Aから図28Cに示すように、赤外線吸収部404と赤外線吸収部409と梁部405はそれぞれ同一の膜構成を有していることが好ましい。具体的には、赤外線吸収部404と赤外線吸収部409と梁部405のそれぞれは膜407と膜408の積層構造を有していることが好ましい。なお、膜407は、酸化シリコンよりなるシリコン酸化膜407aと窒化シリコンよりなるシリコン窒化膜407bが積層している構造であることが好ましい。基板403上にシリコン酸化膜407aが積層され、シリコン酸化膜407a上にシリコン窒化膜407bが積層され、シリコン窒化膜407b上に膜408が積層されている。膜408の材料はBoron-doped phosopho-Silicate Glass(BPSG)膜などシリコン酸化膜であることが好ましい。また、膜408は膜407よりも厚いことが好ましい。また、配線418を覆うように、膜408上にパッシベーション膜が形成されていても構わない。ここで、パッシベーション膜は、例えば、Phosopho-Silicate Glass(PSG)膜と、PSG膜上のNon-doped Silicate Glass(NSG)膜とからなる積層構造を有する。
 (実施の形態8)
 図29Aは実施の形態8における赤外線センサの赤外線検出部483bの上面図である。図29Bは図29Aに示す赤外線検出部483bの線29B-29Bにおける断面図である。図29Cは図29Aに示す赤外線検出部483bの線29C-29Cにおける断面図である。図29Aから図29Cにおいて、図28Aから図28Cに示す実施の形態7における赤外線検出部483aと同じ部分には同じ参照番号を付す。赤外線検出部483bは、実施の形態7における赤外線検出部483aと同様に、図27に示す赤外線センサ480の画素部481に設けられて赤外線検出部483aと同様に機能する。
 図29Aから図29Cに示すように、実施の形態8における赤外線検出部483bでは、接続部406の梁部405が延びる方向D405での長さは、赤外線吸収部404、409の方向D405での長さと等しい。
 そして、赤外線吸収部404、409の方向D405での長さは実施の形態7のそれらより短くしている。該構成とすることにより、梁部405の延びる方向D405における赤外線吸収部404、409の反りを抑制することができるという効果がある。
 また、接続部406の方向D405での長さを実施の形態7のそれより長くしている。これにより接続部406の強度を高めることができ、赤外線センサの信頼性を高めることができる。
 以上のように、実施の形態8における赤外線検出部483bは、感度と信頼性の優先度に応じて、構造を調整することも可能である。
 (実施の形態9)
 図30Aは実施の形態9における赤外線センサの赤外線検出部483cの上面図である。図30Bは図30Aに示す赤外線検出部483cの線30A-30Aにおける断面図である。図30Cは図30Aに示す赤外線検出部483cの線30C-30Cにおける断面図である。図30Aから図30Cにおいて、図28Aから図28Cに示す実施の形態7における赤外線検出部483aと同じ部分には同じ参照番号を付す。赤外線検出部483cは、実施の形態7における赤外線検出部483aと同様に、図27に示す赤外線センサ480の画素部481に設けられて赤外線検出部483aと同様に機能する。
 図30Aから図30Cに示すように、実施の形態9における赤外線検出部483cでは、基板403は矩形上を有し、梁部405は基板403の矩形状の対角線に沿って配置されている。したがって、熱電対416、熱電対417の長さを実施の形態7のそれらより長くすることができる。該構成とすることにより、赤外線吸収部404、409の反りを抑制しつつ、熱電対416、417の長さを長くすることで赤外線検出部483cの感度を向上させることができるという効果がある。なお、感度は、熱電対416、417の長さのみに依存するのではなく、赤外線吸収部404、409の面積にも依存する。熱電対416、417の熱伝導率を相対的に下げることが難しい場合には、赤外線吸収部404、409の面積と熱電対416、417の長さを調整することにより、最適な値に感度に設定することができる。
 以上のように、実施の形態9における赤外線検出部483cは、最適な感度を得るために、材料と構造を調整することも可能である。
 (実施の形態10)
 図31Aは実施の形態10における赤外線センサの赤外線検出部483dの上面図である。図31Bは図31Aに示す赤外線検出部483dの線31B-31Bにおける断面図である。図31Cは図31Aに示す赤外線検出部483dの線31C-31Cにおける断面図である。ここでは、図31Aから図31Cにおいて、図28Aから図28Cに示す実施の形態7における赤外線検出部483aと同じ部分には同じ参照番号を付す。赤外線検出部483dは、実施の形態7における赤外線検出部483aと同様に、図27に示す赤外線センサ480の画素部481に設けられて赤外線検出部483aと同様に機能する。
 ここで、図31Aから図31Cに示すように、実施の形態7における赤外線検出部483dは、赤外線吸収部404、409のうち赤外線吸収部404のみを備え、梁部405を軸として線対称な構造となるようには配置されていない。また、スリット411の全面積を実施の形態7のそれよりも小さくすることができる。そのため、赤外線吸収部404の全面積を実施の形態7のそれよりも大きくすることができる。該構成とすることにより、赤外線吸収部404の全面積が大きくなった分だけ、赤外線センサ480の感度を向上させることができる。
 以上のように、実施の形態10における赤外線検出部483dでは、最適な感度を得るために、構造を調整することも可能である。
 (実施の形態11)
 図32Aは実施の形態11における赤外線センサの赤外線検出部483eの上面図である。図32Bは図32Aに示す赤外線検出部483eの線32B-32Bにおける断面図である。図32Cは図32Aに示す赤外線検出部483eの線32C-32Cにおける断面図である。図32Dは図32Aに示す赤外線検出部483eの線32D-32Dにおける断面図である。図32Aから図32Dにおいて、図28Aから図28Cに示す実施の形態7における赤外線検出部483aと同じ部分には同じ参照番号を付す。赤外線検出部483eは、実施の形態7における赤外線検出部483aと同様に、図27に示す赤外線センサ480の画素部481に設けられて赤外線検出部483aと同様に機能する。
 ここで、図32Aから図32Dに示すように、実施の形態11における赤外線検出部483eは、空洞部401上に配置されてかつ支持部402と梁部405とを接続する梁部419をさらに有する。平面視において、梁部419は赤外線吸収部404を囲っている。該構成により、熱電対416、417の長さを長くすることができる。よって、赤外線吸収部404、409の反りを抑制しつつ、熱電対416、417の長さを長くすることで赤外線センサ480の感度を向上させることができる。なお、感度は、熱電対416、417の長さのみに依存するのではなく、赤外線吸収部404の面積にも依存する。赤外線吸収部404の面積と熱電対416、417の長さを調整することにより、最適な感度に設定することができる。
 以上のように、実施の形態11における赤外線検出部483eは、最適な感度を得るために、構造を調整することも可能である。
 なお、図32Aから図32Dに示すように、梁部419はスリット411aによって囲まれていることが好ましい。梁部419よりも外側にあるスリット411aよりも内側にあるスリット411の面積は小さいことが好ましい。また、梁部419と支持部402とは接続部420を介して接続されている。接続部406の梁部405が延びる方向D405に垂直な方向D406での長さは、接続部420における方向D406の長さよりも短いことが好ましい。これにより赤外線吸収部404の反りがより抑制される。
 特許文献3に開示されている従来の赤外線センサにおいて、梁部および赤外線吸収部は、複数の積層膜からなる中空薄膜構造をなしており、製造過程において生じる残留応力によって、反りが発生する。その赤外線センサでは、赤外線吸収部が異なる2つの梁によって支持されており、2つの支持部間の道程が相対的に長いため、残留応力による反りが大きくなり、結果として、梁部または赤外線吸収部が破損してしまう可能性がある。
 実施の形態7から実施の形態11における赤外線検出部483a~483eは、赤外線吸収部404、(409)の反りを抑制することにより、赤外線吸収部404、(409)の膜破壊を抑制し、信頼性の高い赤外線センサ480を提供することが可能である。
 赤外線センサ480は、空洞部401及び支持部402を有する基板403と、空洞部401上に配置された赤外線吸収部404と、空洞部401上に配置された梁部405と、梁部405と赤外線吸収部404とを接続する接続部406とを有する。梁部405は、支持部402と赤外線吸収部404とを接続して方向D405に延びている。接続部406は、梁部405の中心405cから赤外線吸収部404に向かって方向D405とは異なる方向D406に延びている。
 方向D406は方向D405と垂直であってもよい。
 赤外線吸収部404は梁部405にのみ接続されていてもよい。
 赤外線吸収部404の表面積は梁部405の表面積よりも大きくてもよい。
 接続部406の方向D405での長さは、赤外線吸収部404の方向D405での長さよりも短くてもよい。
 梁部405と赤外線吸収部404との間にはスリット411が設けられていてもよい。
 赤外線センサ480は空洞部401上に配置される赤外線吸収部409をさらに有していてもよい。この場合、赤外線吸収部404と赤外線吸収部409とは梁部405を軸として線対称になるように配置されている。
 平面視において、梁部405は方向D405に垂直に延びる軸を対称軸として線対称になるように配置されていてもよい。
 赤外線センサは熱電対416と熱電対417とをさらに有していてもよい。熱電対416は、支持部402に設けられた冷接点414と梁部405に設けられた温接点412とを有する。熱電対417は、支持部402に設けられた冷接点415と梁部405に設けられた温接点413とを有する。冷接点414から温接点412までの熱電対416の長さと冷接点415から温接点413までの熱電対417の長さとは等しい。
 赤外線センサは、温接点412と温接点413とを接続する配線418と、赤外線吸収部404からの信号を処理する信号処理回路499とをさらに有してもよい。
 熱電対416及び熱電対417はシリコンゲルマニウムを有する材料から構成されていてもよい。
 熱電対416はN型の導電型を有する材料から構成され、熱電対417はP型の導電型を有する材料から構成されていてもよい。
 温接点412と温接点413との間の距離は、接続部406の方向D405の長さよりも短くてもよい。
 赤外線センサ480は、空洞部401上に配置されて支持部402と梁部405とを接続する梁部419をさらに有していてもよい。この場合、平面視において、梁部419は赤外線吸収部404を囲っている。
 基板403はシリコンから構成されていてもよい。
11,51,61,71,81  検出装置
12  車両
13,82  検出器
14  走査部
15  検出器(第1の検出器)
16  検出器(第2の検出器)
17,52,62,72,83  車両用制御装置
20  乗員
21  処理部
22  空調機器
23  制御部
24  画素部
25  運転席
26  助手席
27  フロントガラス
28  リアガラス
29  床面
30  天井
31b,91b  Bピラー
32  検出領域
34  走査後検出領域
35  回転軸
36  運転者
37  助手席乗員
38  演算部
39  設定部
220  検出装置
221  検出器(第1の検出器)
222  検出器(第2の検出器)
223  被検出体(乗員)
224  処理部
225  検出領域
226  検出領域
227  直線
228  平面
229a,229b  軸
230  車両用制御装置
231  車両
232  運転者
233  運転席
234a  Aピラー
234b  Bピラー
235  助手席乗員
236  助手席
237a  Aピラー
237b  Bピラー
238  電子機器
239  乗員
240  座席
241  フロントガラス
242  頭部
243  スイッチ
244  操作パネル
401  空洞部
402  支持部
403  基板
404  赤外線吸収部(第1の赤外線吸収部)
405  梁部(第1の梁部)
406  接続部(第1の接続部)
409  赤外線吸収部(第2の赤外線吸収部)
410  接続部(第2の接続部)
411  スリット
412  温接点(第1の温接点)
413  温接点(第2の温接点)
414  冷接点(第1の冷接点)
415  冷接点(第2の冷接点)
416  熱電対(第1の熱電対)
417  熱電対(第2の熱電対)
418  配線
419  梁部(第2の梁部)
480  赤外線センサ
481  画素部
483a~483e  赤外線検出部

Claims (37)

  1. 車室と天井と複数のピラーと運転席と助手席とを有する車両と共に用いられる検出装置であって、
    前記車両の前記天井または前記複数のピラーに設置された、前記車室内にある被検出体を非接触で検出する検出器と、
    前記検出器を走査する走査部と、
    を備えた検出装置。
  2. 前記検出器は、前記助手席より前記運転席の近くに設置された第1の検出器と、前記運転席より前記助手席の近くに設置された第2の検出器とを有している、請求項1に記載の検出装置。
  3. 前記複数のピラーは複数のBピラーを含み、
    前記第1の検出器と前記第2の検出器は前記複数のBピラーに設置されている、請求項2に記載の検出装置。
  4. 前記車両は、前記車室に面するフロントガラスと、前記車室に面するリアガラスとをさらに有し、
    前記走査部は、前記フロントガラスに向かう方向から前記リアガラスに向かう方向に前記第1の検出器と前記第2の検出器を走査する、請求項3に記載の検出装置。
  5. 前記車両は、前記車室に面するフロントガラスをさらに有し、
    前記第1の検出器と前記第2の検出器は、前記第1の検出器と前記第2の検出器とを結ぶ方向に対して前記フロントガラスに向かう方向に傾いている、請求項3に記載の検出装置。
  6. 前記車両は、前記車室に面する床面をさらに有し、
    前記走査部は、前記床面に向かう方向から前記天井に向かう方向に前記第1の検出器と前記第2の検出器を走査する、請求項5に記載の検出装置。
  7. 前記第1の検出器と前記第2の検出器は、前記天井から見て前記運転席と前記助手席との間に設置されている、請求項2に記載の検出装置。
  8. 前記車両は、前記車室に面するフロントガラスと、前記車室に面するリアガラスとをさらに有し、
    前記走査部は、前記フロントガラスに向かう方向から前記リアガラスに向かう方向に前記第1の検出器と前記第2の検出器を走査する、請求項7に記載の検出装置。
  9. 前記車両は、前記車室に面する床面をさらに有し、
    前記走査部は、前記床面に向かう方向から前記天井に向かう方向に前記第1の検出器と前記第2の検出器を走査する、請求項7に記載の検出装置。
  10. 前記走査部は、前記運転席と前記助手席を結ぶ方向に前記検出器を走査する、請求項1に記載の検出装置。
  11. 前記検出器は、前記助手席より前記運転席の近くに設置された第1の検出器と、前記運転席より前記助手席の近くに設置された第2の検出器とを有し、
    前記第1の検出器の出力と前記第2の検出器の出力とから、前記第1の検出器と前記第2の検出器とを結ぶ直線が法線となる平面の方向の前記被検出体の動きを検出する処理部をさらに備えた、請求項1に記載の検出装置。
  12. 前記第1の検出器と前記第2の検出器とのそれぞれは、1次元アレイ状、または、2次元アレイ状に配置された複数の赤外線検知素子を有する赤外線センサで構成されている、請求項11に記載の検出装置。
  13. 前記処理部は、前記第1の検出器と前記第2の検出器との間の距離Lと、前記第1の検出器の傾き角度αと前記第2の検出器の傾き角度βと、前記第1の検出器と前記第2の検出器の焦点距離fと、前記第1の検出器の受光面の中央から前記被検出体の熱重心までの距離Caと、前記第2の検出器の受光面の中央から前記被検出体の熱重心までの距離Cbとにより、前記第1の検出器と前記第2の検出器から前記被検出体までの前記第1の検出器と前記第2の検出器を結ぶ前記直線と直交する方向での距離Dを
    Figure JPOXMLDOC01-appb-M000003
    で表される式により検出する、請求項11に記載の検出装置。
  14. 前記検出器は赤外線センサを有し、
    前記赤外線センサは、
       空洞部及び支持部を有する基板と、
       前記空洞部上に配置される第1の赤外線吸収部と、
       前記空洞部上に配置され、前記支持部と前記第1の赤外線吸収部とを接続して第1の方向に延びる第1の梁部と、
       前記第1の梁部と前記第1の赤外線吸収部とを接続する第1の接続部と、
    を有し、
    前記第1の接続部は、前記第1の梁部の中心から前記第1の赤外線吸収部に向かって前記第1の方向とは異なる第2の方向に延びている、請求項1に記載の検出装置。
  15. 前記第2の方向は前記第1の方向と垂直である、請求項14に記載の検出装置。
  16. 前記第1の赤外線吸収部は前記第1の梁部にのみ接続されている、請求項14または15に記載の検出装置。
  17. 前記第1の赤外線吸収部の表面積は前記第1の梁部の表面積よりも大きい、請求項14から16のいずれか1つに記載の検出装置。
  18. 前記第1の接続部の前記第1の方向での長さは、前記第1の赤外線吸収部の前記第1の方向での長さよりも短い、請求項14から17のいずれか1つに記載の検出装置。
  19. 前記第1の梁部と前記赤外線吸収部との間にはスリットが設けられている、請求項14から18のいずれか1つに記載の検出装置。
  20. 前記赤外線センサは前記空洞部上に配置される第2の赤外線吸収部をさらに有し、
    前記第1の赤外線吸収部と前記第2の赤外線吸収部とは前記第1の梁部を軸として線対称になるように配置されている、請求項14から19のいずれか1つに記載の検出装置。
  21. 平面視において、前記第1の梁部は前記第1の方向に垂直に延びる軸を対称軸として線対称になるように配置されている、請求項14から20のいずれか1つに記載の検出装置。
  22. 前記赤外線センサは、
       前記支持部に設けられた第1の冷接点と前記第1の梁部に設けられた第1の温接点とを有する第1の熱電対と、
       前記支持部に設けられた第2の冷接点と前記第1の梁部に設けられた第2の温接点とを有する第2の熱電対と、
    をさらに有し、
    前記第1の冷接点から前記第1の温接点までの前記第1の熱電対の長さと前記第2の冷接点から前記第2の温接点までの前記第2の熱電対の長さとは等しい、請求項14から21のいずれか1つに記載の検出装置。
  23. 前記赤外線センサは、
       前記第1の温接点及び前記第2の温接点の上に配置されて前記第1の温接点と前記第2の温接点とを接続する配線と、
       前記第1の冷接点又は前記第2の冷接点に接続されて前記第1の赤外線吸収部からの信号を処理する信号処理回路と、
    をさらに有する、請求項22に記載の検出装置。
  24. 前記第1の熱電対及び前記第2の熱電対はシリコンゲルマニウムを有する材料から構成されている、請求項22または23に記載の検出装置。
  25. 前記第1の熱電対はN型の導電型を有する材料から構成され、前記第2の熱電対はP型の導電型を有する材料から構成されている、請求項22から24のいずれか1つに記載の検出装置。
  26. 前記第1の温接点と前記第2の温接点との間の距離は、前記第1の接続部の前記第1の方向の長さよりも短い、請求項22から25のいずれか1つに記載の検出装置。
  27. 前記赤外線センサは、前記空洞部上に配置されて前記支持部と前記第1の梁部とを接続する第2の梁部をさらに有し、
    平面視において、前記第2の梁部は前記第1の赤外線吸収部を囲っている、請求項14から26のいずれか1つに記載の検出装置。
  28. 前記基板はシリコンから構成されている、請求項14から27のいずれか1つに記載の検出装置。
  29. 請求項1から10のいずれか一項に記載の検出装置と、
       前記検出装置の出力から前記被検出体の第1の温冷感を推定し、
       前記第1の温冷感に応じて前記車両に設けられた第1の空調機器を制御する、
    ように構成された制御部と、
    を備えた車両用制御装置。
  30. 前記第1の空調機器は前記運転席の側に設けられており、
    前記制御部は、
       前記助手席にある被検出体の第2の温冷感を推定し、
       前記第1の温冷感に応じて前記第1の空調機器を制御し、
       前記第2の温冷感に応じて前記車両の前記助手席の側に設けられた第2の空調機器を制御する、
    ように構成されている、請求項29に記載の車両用制御装置。
  31. 第1の電子機器が搭載された車両に設けられる車両用制御装置であって、
    請求項11から13に記載の検出装置と、
    前記第1の検出器の出力と前記第2の検出器の出力とによって前記第1の電子機器を制御する処理部と、
    を備え、前記第1の検出器と前記第2の検出器とは前記車両の車室内に設けられる、車両用制御装置。
  32. 前記車両はフロントガラスを有し、
    前記第1の検出器と前記第2の検出器とが、前記第1の検出器と前記第2の検出器とを結ぶ前記直線よりも前記フロントガラスの方向に傾いて設置されている、請求項31に記載の車両用制御装置。
  33. 前記車両は複数のAピラーと複数のBピラーとをさらに有し、
    前記第1の検出器と前記第2の検出器が前記複数のAピラー又は前記複数のBピラーに設置されている、請求項31に記載の車両用制御装置。
  34. 前記第1の検出器は、前記被検出体が前記第2の検出器の側にいるときに前記被検出体の全体が前記第1の検出器の検出領域に入るように設置され、
    前記第2の検出器は、前記被検出体が前記第1の検出器の側にいるときに前記被検出体の全体が前記第2の検出器の検出領域に入るように設置されている、請求項31に記載の車両用制御装置。
  35. 前記第1の検出器と前記第2の検出器との間の距離が500mm以上、1500mm未満である、請求項31に記載の車両用制御装置。
  36. 前記処理部は、前記第1の検出器の出力と前記第2の検出器の出力とから、前記被検出体が前記第1の検出器の側と前記第2の検出器の側とのいずれにいるのかを判別する、請求項31に記載の車両用制御装置。
  37. 前記車両には第2の電子機器が搭載されており、
    前記被検出体が前記第1の電子機器と前記第2の電子機器のうちの一方に近づいたことを検知したとき前記第1の電子機器と前記第2の電子機器のうちの前記一方を制御する、請求項31に記載の車両用制御装置。
PCT/JP2015/005898 2014-12-08 2015-11-27 検出装置と、これを用いた車両用制御装置 WO2016092760A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/522,138 US20170320457A1 (en) 2014-12-08 2015-11-27 Detection device and vehicle control device using same
EP15866693.3A EP3232236A4 (en) 2014-12-08 2015-11-27 Detection device and vehicle control device using same
JP2016563401A JPWO2016092760A1 (ja) 2014-12-08 2015-11-27 検出装置と、これを用いた車両用制御装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-247613 2014-12-08
JP2014247613 2014-12-08
JP2015055655 2015-03-19
JP2015-055655 2015-03-19
JP2015084048 2015-04-16
JP2015-084048 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016092760A1 true WO2016092760A1 (ja) 2016-06-16

Family

ID=56106990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005898 WO2016092760A1 (ja) 2014-12-08 2015-11-27 検出装置と、これを用いた車両用制御装置

Country Status (4)

Country Link
US (1) US20170320457A1 (ja)
EP (1) EP3232236A4 (ja)
JP (1) JPWO2016092760A1 (ja)
WO (1) WO2016092760A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195797A1 (ja) * 2016-05-09 2017-11-16 東芝メディカルシステムズ株式会社 医用画像診断装置
US11319962B2 (en) * 2019-10-16 2022-05-03 Deere & Company Vehicle and system and method of controlling air movement with a fan of a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255116A (ja) * 1987-04-13 1988-10-21 Diesel Kiki Co Ltd 空気調和装置用熱源体検出装置およびその空気調和装置
JPH04103427A (ja) * 1990-08-21 1992-04-06 Zexel Corp 車両用空気調和装置
JP2005067460A (ja) * 2003-08-26 2005-03-17 Denso Corp 車両用空調装置
JP2005098886A (ja) * 2003-09-25 2005-04-14 Calsonic Kansei Corp 乗員の顔面検知装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098640A1 (en) * 2003-11-10 2005-05-12 Yoshinori Ichishi Temperature detection device and vehicle air conditioner using the same
DE102013001679B4 (de) * 2013-01-31 2022-12-29 Audi Ag Verfahren und Vorrichtung zur Bildaufnahme und Bildauswertung für eine Steuerung und/oder Regelung einer Klimaanlage
JP5853110B2 (ja) * 2013-05-17 2016-02-09 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 熱画像センサ、及び、空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255116A (ja) * 1987-04-13 1988-10-21 Diesel Kiki Co Ltd 空気調和装置用熱源体検出装置およびその空気調和装置
JPH04103427A (ja) * 1990-08-21 1992-04-06 Zexel Corp 車両用空気調和装置
JP2005067460A (ja) * 2003-08-26 2005-03-17 Denso Corp 車両用空調装置
JP2005098886A (ja) * 2003-09-25 2005-04-14 Calsonic Kansei Corp 乗員の顔面検知装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232236A4 *

Also Published As

Publication number Publication date
EP3232236A4 (en) 2018-02-28
US20170320457A1 (en) 2017-11-09
JPWO2016092760A1 (ja) 2017-10-05
EP3232236A1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
CN108909407B (zh) 控制装置及方法、空气调节机以及车辆
CN106168508B (zh) 受光传感器、使用它的空调机、电子烹饪设备和运输设备
US7476861B2 (en) Passenger detection apparatus
US6550686B2 (en) Vehicle air conditioning system with non-contact temperature sensor
US10486490B2 (en) Air-conditioning control device
US9873308B2 (en) Heating system for heating a living being
WO2016092760A1 (ja) 検出装置と、これを用いた車両用制御装置
JP2006226988A (ja) 赤外線センサシステム
ES2385668T3 (es) Sensor de carga solar para vehículos automóviles
JP2017015384A (ja) 空調制御装置
WO2017002346A1 (ja) 空調制御装置
JP6617284B2 (ja) 人検知装置と、人検知装置を用いた空調制御装置
Géczy et al. Passenger detection in cars with small form-factor IR sensors (Grid-eye)
WO2019188375A1 (ja) 赤外線センサモジュールと、空気調和機と、空気調和機制御システム
JP6872685B2 (ja) 赤外線検出装置
JP2017128243A (ja) 空調制御装置
JP2017128241A (ja) 空調制御装置
WO2019124381A1 (ja) 温度検出装置、空調制御システム、温度検出方法、及びプログラム
JPWO2020144996A1 (ja) 撮像装置およびキャリブレーション方法
KR101752955B1 (ko) 차량공조시스템 제어용 적외선 센서의 제작방법
JP2002005747A (ja) 温度分布データの処理方法
JP2004226216A (ja) サーモパイルアレイ
JP7249584B2 (ja) 赤外線センサ装置
KR102117271B1 (ko) 거리-온도 스캔형 센서 장치
JP2017128242A (ja) 空調制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522138

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016563401

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015866693

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE