WO2016090730A1 - Lc-ms/ms联用测定拉帕替尼中杂质含量的方法 - Google Patents

Lc-ms/ms联用测定拉帕替尼中杂质含量的方法 Download PDF

Info

Publication number
WO2016090730A1
WO2016090730A1 PCT/CN2015/070901 CN2015070901W WO2016090730A1 WO 2016090730 A1 WO2016090730 A1 WO 2016090730A1 CN 2015070901 W CN2015070901 W CN 2015070901W WO 2016090730 A1 WO2016090730 A1 WO 2016090730A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solution
mobile phase
lapatinib
internal standard
Prior art date
Application number
PCT/CN2015/070901
Other languages
English (en)
French (fr)
Inventor
许勇
王学海
李莉娥
夏亚子
郭涤亮
乐洋
黄璐
杨仲文
余艳平
胡斌
胡虹
田华
冯权武
朱垒
肖强
黄松
于静
Original Assignee
湖北生物医药产业技术研究院有限公司
人福医药集团股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北生物医药产业技术研究院有限公司, 人福医药集团股份公司 filed Critical 湖北生物医药产业技术研究院有限公司
Publication of WO2016090730A1 publication Critical patent/WO2016090730A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Definitions

  • the invention relates to the technical field of pharmaceutical analysis, in particular to a method for detecting the impurity content of the antitumor drug lapatinib by LC-MS/MS.
  • Lapatinib is a small molecule kinase inhibitor capable of targeting both human epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), developed by GSK and acquired in March 2007. Approved by the US FDA for combination therapy: combined with capecitabine for the treatment of advanced or metastatic breast cancer overexpressing HER2, combined with letrozole for the treatment of menopausal women with metastatic breast cancer overexpressing HER2 and hormone receptors.
  • EGFR human epidermal growth factor receptor
  • HER2 human epidermal growth factor receptor-2
  • an object of the present invention is to provide an LC-MS/MS (liquid chromatography--accurate, reliable, simple, rapid, specific, and reproducible method for simultaneous quantitative analysis of the contents of Compound 4 and Compound 9. Mass spectrometry/mass spectrometry combined detection method for quality control of lapatinib drug production.
  • the inventor limits the content of the impurity of the compound 4 to not more than 4 ⁇ g / 1 g (ie, 4 ppm), and the content of the impurity of the compound 9 is not more than 0.02%, the ordinary high-efficiency liquid
  • the detection limit of Compound 4 detected by phase chromatography was very low, and only impurities of 0.1% or more were measured.
  • Compound 9 could not be measured in the liquid phase because it had no UV absorption.
  • the inventors attempted to use evaporative light scattering, although it was detectable, but the detection limit was very low, and only impurities of 2% or more were measured.
  • the organic phase (B) is acetonitrile and the aqueous phase (A) is Water (containing 5 mM ammonium formate), the injection volume is 5.00 ⁇ L, the typical chromatogram is shown in Figure 1, the peak of lapatinib, compound 4, compound 9 and lidocaine (internal standard) The times were 2.09 min, 0.54 min, 0.81 min, and 1.21 min, respectively. Due to the high concentration of the drug substance, it was switched to the waste bottle through a six-way valve from 1.5 minutes to avoid affecting the mass spectrometer.
  • the present invention provides a method for detecting the impurity content of 4-(3-fluorobenzyloxy) 3-chloroaniline and 2-(methylsulfonyl)ethylamine hydrochloride in lapatinib. According to an embodiment of the invention, the method is carried out using a LC-MS/MS combined detection method.
  • the chromatographic conditions are: the column is octadecyl bonded silica as a filler; the mobile phase is composed of a mobile phase A and a mobile phase B, wherein the mobile phase A is an aqueous solution of ammonium formate, The mobile phase B is acetonitrile; the elution mode is gradient elution.
  • the compound 4 and the compound 9 in the lapatinib bulk drug can be quantitatively detected at the same time, and both the compound 4 and the compound 9 are well retained, and the operation is simple, convenient and quick.
  • the chromatographic conditions are: octadecyl bonded silica as a filler; the mobile phase consists of mobile phase A and mobile phase B, wherein the mobile phase A is at a concentration of 5 mmol/
  • the aqueous solution of ammonium formate is used, the mobile phase B is acetonitrile; the flow rate is 0.5 ml/min to 0.7 ml/min; the column temperature is 25 degrees Celsius to 35 degrees Celsius; the injection amount is 5 ⁇ l, the detection wavelength is 261 nm, and the elution mode is gradient elution.
  • the method of the invention can quickly and effectively detect impurities in the lapatinib bulk drug, and can simultaneously quantitatively analyze the compound 4 and the compound 9, the detection result is accurate and reliable, the operation is simple, rapid, and the specificity is strong. , repeatability is good.
  • the mass spectrometry condition is: the ion source is an ESI source, and the MRM mode is monitored by positive ion mode detection and multiple reaction; the detected ion pair of lapatinib is m/z 581-365; 4-(3 - fluorobenzyloxy) 3-chloroaniline detection ion pair is m / z 252 - 143; 2- (methylsulfonyl) ethylamine detection ion pair is m / z 124 - 79; and lidocaine detection
  • the ion pair is m/z 235-86; the ion source parameters are: gas curtain gas (CUR) 30 psi; ion spray voltage (IS) 5500 V; temperature (TEM) 550 ° C; ion source GS1 50 psi; ion source GS2 260 psi.
  • the column temperature of the column is between 25 degrees Celsius and 35 degrees Celsius. Therefore, it is advantageous to simultaneously quantitatively analyze the compound 4 and the compound 9, and the detection effect is too high or too low.
  • the flow rate of the mobile phase is from 0.5 ml/min to 0.7 ml/min.
  • the concentration of the ammonium formate is 5 mmol/liter.
  • the separation effect of the compound 4, the compound 9 and the lapatinib is good, the specificity is strong, and the detection accuracy is high.
  • the conditions for the gradient elution are:
  • Compound 4 Compound 9 and Lapatinib have no residual effects, and the detection results are accurate and sensitive.
  • the column is a C18 column, preferably the column is a Thermo aquasil C18 (50*2.1 mm, 5 ⁇ m) HPLC column.
  • both Compound 4 and Compound 9 have good retention, and can quantitatively analyze Compound 4 and Compound 9 at the same time, and the operation is simple, the accuracy is high, and the repeatability is good.
  • the method of the invention comprises the following steps:
  • Chromatographic conditions octadecyl-bonded silica gel as a filler; the mobile phase A is an aqueous solution of ammonium formate at a concentration of 5 mmol/liter, and the mobile phase B is acetonitrile; the flow rate is 0.5 ml/min ⁇ 0.7ml/min; column temperature 25 degrees Celsius to 35 degrees Celsius; injection volume 5 ⁇ l, detection wavelength 261nm, gradient elution according to the following table:
  • the ion source is the ESI source, and the MRM mode is monitored by positive ion detection and multiplex reaction;
  • the detection ion pair of 4-(3-fluorobenzyloxy)-3-chloroaniline is m/z: 252 -143;
  • 2-(methylsulfonyl)ethylamine detection ion pair is m / z: 124 - 79;
  • lidocaine internal standard detection ion pair is m / z: 235 - 86;
  • the ion source parameters are:
  • the inventors have found that by using the method of the present invention, the compound 4 and the compound 9 can be quantitatively analyzed at the same time, thereby limiting the impurities in the lapatinib bulk drug, and the operation is simple, the sensitivity is high, the repeatability is good, and the specificity is Strong.
  • the standard curve method comprises the following steps:
  • the lidocaine internal standard was dissolved in an acetonitrile-water solution with a volume ratio of 1:1 to obtain an internal standard stock solution with a lidocaine internal standard concentration of 0.200 mg/mL, and the internal standard stock was also diluted.
  • Compound 4 and Compound 9 can be quantitatively and accurately quantified, accurate, reliable, simple and convenient.
  • the method for detecting impurities in the antitumor drug lapatinib by the LC-MS/MS according to the present invention can quickly and effectively detect the impurities of the compound 4 and the compound 9 in the lapatinib bulk drug, and can simultaneously quantify The contents of Compound 4 and Compound 9 were analyzed and analyzed.
  • the LC-MS/MS combined detection and analysis method described in the invention has the advantages of accurate and reliable detection, simple and convenient operation, high specificity, good repeatability and no residual effect.
  • the method for determining the impurity content of lapatinib by the LC-MS/MS combination of the present invention can be used for quality control of lapatinib drug production.
  • Figure 1 shows a typical chromatogram of lapatinib, compound 4, compound 9 and internal standard lidocaine peak time
  • Figure 3 shows a secondary mass spectrum of Compound 4 in accordance with an embodiment of the present invention
  • Figure 4 shows a secondary mass spectrum of compound 9 in accordance with an embodiment of the invention.
  • Figure 5 shows a secondary mass spectrum of lapatinib according to an embodiment of the invention
  • Figure 6 shows a chromatogram of the specificity of Compound 4 (10.0 ng/ml) in accordance with an embodiment of the present invention
  • Figure 7 shows a chromatogram of the specificity of Compound 9 (500 ng/ml) in accordance with an embodiment of the present invention
  • Figure 8 shows a chromatogram of the specificity of the internal standard lidocaine (1.00 ng/ml) in accordance with an embodiment of the present invention
  • Figure 9 shows a residual effect chromatogram of Compound 4 and Compound 9 in accordance with an embodiment of the present invention.
  • polarity positive electrode Scan type MRM Air curtain gas 30psi Ion source (GS1) 50psi Ion source (GS2) 60psi Ion jet voltage 5500V temperature 550 ° C
  • the present invention preferably employs an Aquasil C18 column.
  • the limit of compound 4 is not higher than 4 ug / 1g
  • the limit of compound 9 is not higher than 0.02%
  • the calibration range of the two compounds is 0.200 ng / ml - 10.0 ng / ml (compound 4), 10 ng / Ml-500 ng/ml (compound 9).
  • Reagents acetonitrile (Fisher), water, ammonium formate, lapatinib bulk drug (14 batches), 4-(3-fluorobenzyloxy)-3-chloroaniline (batch number: 120814), 2-( Methylsulfonyl)ethylamine hydrochloride (batch number: 20120521CMQA-1-MZP-01-014).
  • Standard curve samples were prepared according to Table 5.
  • a standard curve sample was prepared according to Table 5, and the ratio of the peak area of the analyte to the peak area of the internal standard was plotted on the ordinate, and the concentration of the analyte was plotted on the abscissa, and a linear regression operation was performed.
  • the two compounds of Compound 4 and Compound 9 have a good linear relationship in the corresponding range.
  • the quality control samples were prepared according to Table 6. Three concentrations were prepared for each concentration, and the accuracy and precision (intraday) were examined. The results are shown in Table 8. According to the results, the accuracy of Compound 4 and Compound 9 was between 85% and 115%, and the precision RSD was in the range of ⁇ 15%.
  • Specificity refers to the method used to accurately determine the characteristics of the measured object under the conditions that other components may exist.
  • compound 4 and compound 9 were simultaneously determined. According to Fig. 6 to Fig. 8, there was no compound 4 (10.0 ng/ml), compound 9 (500 ng/ml) and internal standard lidocaine (1.00 ng/ml). Interfere with each other.
  • Reagents acetonitrile (Fisher), water, ammonium formate, lapatinib bulk drug (3 batches), 4-(3-fluorobenzyloxy)-3-chloroaniline (compound 4 batch number: CM1101-130501- F1), 2-(methylsulfonyl)ethylamine hydrochloride (Compound 9 batch number: CM1101-130801-F1).
  • the chromatographic conditions and system suitability test were carried out using octadecyl bonded silica as a filler; the mobile phase consisted of mobile phase A and mobile phase B, wherein the mobile phase A was an ammonium formate aqueous solution having a concentration of 5 mmol/liter.
  • the mobile phase B is acetonitrile; the flow rate is 0.6 ml/min; the column temperature is 30 degrees Celsius; the injection amount is 5 ⁇ l, the detection wavelength is 261 nm, and the elution mode is gradient elution. Gradient elution according to Table 10 below:
  • the experiment was carried out in series with a triple quadrupole mass spectrometer, and the MRM mode was monitored by multiple reaction: the detected ion pair of the impurity to be tested 4-(3-fluorobenzyloxy)-3-chloroaniline was m/z: 252-143; The detection ion pair of 2-(methylsulfonyl)ethylamine is m/z: 124-79; the detection ion pair of lidocaine internal standard is m/z: 235-86; typical mass spectrometer detector parameters are as follows:
  • the limit of compound 4 is not higher than 4 ⁇ g / 1g
  • the limit of compound 9 is not higher than 0.02%
  • the calibration range of the two compounds is 0.200 ng / mL - 10.0 ng / mL (compound 4), 10.0 ng /mL - 500 ng / mL (compound 9).
  • the mixed intermediate solution 1 in (2) is diluted 100 times to make 100 ng / mL of compound 4, 5000 ng / mL of the compound in the mixed intermediate solution 2;
  • Standard curve samples were prepared according to Table 11.
  • test sample Weigh the appropriate amount of this product (batch number: LT20140902), accurately weighed, prepare 5.00mg/mL stock solution with acetonitrile: water (4:1), and then use acetonitrile: water (1 : 1) Dilute to 0.500 mg / mL of the solution to be tested (with internal standard 1.00 ng / mL).
  • the peak area and internal standard peak of compound 4 and compound 9 are determined by injection analysis.
  • the area ratio is calculated by substituting into the standard curve to obtain the concentrations of the compound 4 and the compound 9 in the sample (raw drug).
  • the content of the two impurities in each batch of the drug substance is then calculated.
  • the compound 4 does not exceed 4 ⁇ g / 1 g, and the compound 9 does not exceed 0.02%.
  • the calculation results are shown in Table 12. In the three batches of the lapatinib bulk drug product, the compound 4 and the compound 9 are within the limits.
  • Reagents acetonitrile (Fisher), water, ammonium formate, lapatinib bulk drug (3 batches), 4-(3-fluorobenzyloxy)-3-chloroaniline (compound 4 batch number: CM1101-130701- F2), 2-(methylsulfonyl)ethylamine hydrochloride (Compound 9 batch number: CM1101-130901-F2).
  • the chromatographic conditions and system suitability test were carried out using octadecyl bonded silica as a filler; the mobile phase consisted of mobile phase A and mobile phase B, wherein the mobile phase A was an ammonium formate aqueous solution having a concentration of 5 mmol/liter.
  • the mobile phase B is acetonitrile; the flow rate is 0.5 ml/min; the column temperature is 25 degrees Celsius; the injection amount is 5 ⁇ l, the detection wavelength is 261 nm, and the elution mode is gradient elution. Gradient elution according to Table 13 below:
  • the experiment was carried out in series with a triple quadrupole mass spectrometer, and the MRM mode was monitored by multiple reaction: the detected ion pair of the impurity to be tested 4-(3-fluorobenzyloxy)-3-chloroaniline was m/z: 252-143; The detection ion pair of 2-(methylsulfonyl)ethylamine is m/z: 124-79; the detection ion pair of lidocaine internal standard is m/z: 235-86; typical mass spectrometer detector parameters are as follows:
  • Reagents acetonitrile (Fisher), water, ammonium formate, lapatinib bulk drug (4 batches), 4-(3-fluorobenzyloxy)-3-chloroaniline (compound 4 batch number: CM1101-130701- F2), 2-(methylsulfonyl)ethylamine hydrochloride (Compound 9 batch number: CM1101-130901-F2).
  • the chromatographic conditions and system suitability test were carried out using octadecyl bonded silica as a filler; the mobile phase consisted of mobile phase A and mobile phase B, wherein the mobile phase A was an ammonium formate aqueous solution having a concentration of 5 mmol/liter.
  • the mobile phase B is acetonitrile; the flow rate is 0.7 ml/min; the column temperature is 35 degrees Celsius; the injection amount is 5 ⁇ l, the detection wavelength is 261 nm, and the elution mode is gradient elution. Gradient elution according to Table 15 below:
  • the experiment was carried out in series with a triple quadrupole mass spectrometer, and the MRM mode was monitored by multiple reaction: the detected ion pair of the impurity to be tested 4-(3-fluorobenzyloxy)-3-chloroaniline was m/z: 252-143; The detection ion pair of 2-(methylsulfonyl)ethylamine is m/z: 124-79; the detection ion pair of lidocaine internal standard is m/z: 235-86; typical mass spectrometer detector parameters are as follows:

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提供了LC-MS/MS联用检测拉帕替尼中4-(3-氟苯甲氧基)3-氯苯胺和2-(甲砜基)乙胺盐酸盐杂质含量的方法。

Description

LC-MS/MS联用测定拉帕替尼中杂质含量的方法 技术领域
本发明涉及药物分析技术领域,具体地,涉及LC-MS/MS联用检测抗肿瘤药拉帕替尼中杂质含量的方法。
背景技术
拉帕替尼是一种能够同时靶向人表皮生长因子受体(EGFR)和人表皮生长因子受体-2(HER2)的小分子激酶抑制剂,由GSK公司开发,于2007年3月获得美国FDA批准,用于联合用药:合用卡培他滨治疗过度表达HER2的晚期或转移性乳腺癌,合用来曲唑治疗过度表达HER2、激素受体阳性的转移性乳腺癌绝经期妇女。
4-(3-氟苯甲氧基)3-氯苯胺(化合物4)和2-(甲砜基)乙胺盐酸盐(化合物9)分别是制备拉帕替尼原料药的两种生产用中间体原料(两者的结构见下图),通常最终的拉帕替尼成品原料药中会含有少量的化合物4以及化合物9杂质,为了提高拉帕替尼的质量和稳定性、以及降低供临床用拉帕替尼的药物毒副作用,故在生产中需要对化合物4和化合物9进行含量分析测定,并在拉帕替尼原料药中对化合物4和化合物9杂质的含量进行限量。
Figure PCTCN2015070901-appb-000001
现有技术中,只有针对化合物4进行杂质限量的方法,但是目前没有针对化合物4和化合物9同时进行含量测定的方法见诸报道,因而,关于拉帕替尼的杂质含量分析测定方法仍有待改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种结果准确可靠,简便,快速,专属性强,重复性好,可同时定量分析化合物4和化合物9的含量的LC-MS/MS(液相色谱-质谱/质谱)联用检测方法,用于拉帕替尼药物生产的质量控制。
本发明是基于发明人的以下发现而完成的:
发明人在制定拉帕替尼原料药的药品标准中,化合物4杂质的含量限度为不高于4μg/1g(即4ppm),化合物9杂质的含量限度为不高于0.02%,普通的高效液相色谱法检测化合物4的检测限很低,只能测定0.1%及以上的杂质。化合物9因无紫外吸收,无法用液相测定。发明人尝试用蒸发光散射虽然可以检测到,但其检测限很低,只能测定2%及以上的杂质。发明人在研究过程中,使用C8(sunfire C8 50*4.6mm,5μm)色谱柱优化分析拉帕替尼原料药及化合物4、化合物9的色谱条件,用甲醇(B)-水(A)作为流动相,进样体积为10.0μL,在实验过程中发现,在如表1所示的梯度条件、以及在这种类型的色谱柱上,化合物4及拉帕替尼原料药的保留较好,但化合物9并没有表现出良好的保留行为(化合物9基本在死时间位置出峰,该条件下的死体积约为0.5mL,而化合物9的出峰时间为1.5min)。
表1:sunfire C8的梯度条件
时间(min) 流动相B(%) 流速(ml/min)
0 30 0.3
0.4 30 0.3
2.0 60 ——
6.0 95 0.8
9.0 95 0.8
9.1 30 0.3
11 30 0.3
在LC-MS/MS分析过程中化合物的保留太弱,容易受其他极性大的化合物的干扰,从而影响化合物定量的准确性。为了能够同时准确的定量分析化合物4和化合物9,需增强化合物9的保留。所以为了增强化合物9的保留,本研究在现有的实验条件下进行方法开发,旨在建立一个简便,快速,专属性强,适用于拉帕替尼中化合物4和化合物9的杂质限量分析方法。
在研究过程中,经过大量反复试验,发明人发现采用Aquasil C18色谱柱、流动相B(有机相)使用乙腈时,效果较佳。
进一步的,为了使化合物4和化合物9在色谱柱上都有一定的保留,且没有残留效应(残留,即在注射高浓度样品之后的空白样品(溶剂)中会在相应的出峰时间出现色谱峰。在定量分析过程中,如果化合物有残留会影响定量的准确性,一般要求残留不超过定量下限的20%),本发明的发明人经过艰苦卓绝的努力和实验研究,意外地发现采用Aquasil C18色谱柱,使用表2所示的梯度条件,有机相(B)为乙腈,水相(A)为 水(含5mM甲酸铵),进样体积为5.00μL时效果较佳,典型的色谱图如图1所示,拉帕替尼,化合物4,化合物9以及利多卡因(内标)的出峰时间分别为2.09min,0.54min,0.81min,1.21min。由于原料药的浓度较高,所以通过六通阀从1.5分钟将其切换至废液瓶中,以免影响质谱。
表2:Aquasil C18的梯度条件
时间(min) 流动相B(%) 流速(ml/min)
0 55 0.6
1.0 55 0.6
1.5 95 0.6
2.5 95 0.6
2.6 55 0.6
3.6 55 0.6
因此,本发明提供了一种检测拉帕替尼中4-(3-氟苯甲氧基)3-氯苯胺和2-(甲砜基)乙胺盐酸盐杂质含量的方法。根据本发明的实施例,该方法是利用LC-MS/MS联用检测方法进行的。
根据本发明的实施例,其中色谱条件为:色谱柱以十八烷基键合硅胶为填充剂;流动相由流动相A和流动相B组成,其中,所述流动相A为甲酸铵水溶液,所述流动相B为乙腈;洗脱方式为梯度洗脱。由此,可同时对拉帕替尼原料药中的化合物4和化合物9进行定量检测,化合物4和化合物9均有较好的保留,且操作简单,方便快捷。
根据本发明的实施例,其中色谱条件为:以十八烷基键合硅胶为填充剂;流动相由流动相A和流动相B组成,其中,所述流动相A为浓度为5毫摩尔/升的甲酸铵水溶液,所述流动相B为乙腈;流速0.5ml/min~0.7ml/min;柱温25摄氏度~35摄氏度;进样量5μl,检测波长261nm,洗脱方式为梯度洗脱。发明人发现,利用本发明的该方法,能够快速有效的检测拉帕替尼原料药中的杂质,且可同时定量分析化合物4和化合物9,检测结果准确可靠,操作简便,快速,专属性强,重复性好。
根据本发明的实施例,其中质谱条件为:离子源为ESI源,采用正离子方式检测、多重反应监测MRM模式;拉帕替尼的检测离子对为m/z 581—365;4-(3-氟苯甲氧基)3-氯苯胺的检测离子对为m/z 252—143;2-(甲砜基)乙胺的检测离子对为m/z 124—79;以及利多卡因的检测离子对为m/z 235—86;离子源参数为:气帘气(CUR)30psi;离子喷射电压(IS)5500V;温度(TEM)550℃;离子源GS1 50psi;离子源GS2 260psi。由此,能够准确定量检测拉帕替尼原料药中的杂质化合物4和化合物9的含量,并对其进行限量,灵敏度高,准确性好,重复性好。
根据本发明的实施例,色谱柱的柱温为25摄氏度~35摄氏度。由此,有利于同时定量分析化合物4和化合物9,温度过高或过低检测效果均不理想。
根据本发明的实施例,所述流动相的流速为0.5ml/min~0.7ml/min。由此,化合物4、化合物9和拉帕替尼的分离效果理想,检测时间短,检测效率高。
根据本发明的实施例,在所述流动相A中,所述甲酸铵的浓度为5毫摩尔/升。由此,化合物4、化合物9和拉帕替尼的分离效果好,专属性强,检测准确度高。
根据本发明的实施例,所述梯度洗脱的条件为:
时间(分钟) 流动相A(%) 流动相B(%)
0 40~50 60~50
1.0 40~50 60~50
1.5 2~8 98~92
2.5 2~8 98~92
2.6 40~50 60~50
3.6 40~50 60~50
由此,化合物4、化合物9和拉帕替尼没有残留效应,检测结果准确好、灵敏度高。
根据本发明的实施例,所述色谱柱为C18色谱柱,优选所述色谱柱为Thermo aquasil C18(50*2.1mm,5μm)HPLC色谱柱。由此,化合物4和化合物9均有较好的保留,能够有效同时对化合物4和化合物9进行定量分析,且操作简单,准确度高,重复性好。
根据本发明的实施例,本发明所述的方法包括以下步骤:
(1)色谱条件:以十八烷基键合硅胶为填充剂;所述流动相A为浓度为5毫摩尔/升的甲酸铵水溶液,所述流动相B为乙腈;流速0.5ml/min~0.7ml/min;柱温25摄氏度~35摄氏度;进样量5μl,检测波长261nm,按照下表进行梯度洗脱:
时间(分钟) 流动相A(%) 流动相B(%)
0 40~50 60~50
1.0 40~50 60~50
1.5 2~8 98~92
2.5 2~8 98~92
2.6 40~50 60~50
3.6 40~50 60~50
(2)质谱条件:离子源为ESI源,采用正离子方式检测、多重反应监测MRM模式;4-(3-氟苯甲氧基)-3-氯苯胺的检测离子对为m/z:252—143;2-(甲砜基)乙胺的检测离子对为m/z:124—79;利多卡因内标的检测离子对为m/z:235—86;
离子源参数为:
气帘气30psi;
离子喷射电压5500V;
温度550℃;
离子源GS1 50psi;
离子源GS2 60psi,
(3)分别称取拉帕替尼原料药和利多卡因内标,用乙腈:水(体积比4:1)配制成拉帕替尼原料药浓度为5.00mg/mL的储备液,再用乙腈:水(体积比1:1)将所述储备液稀释成所述供试品溶液,在所述供试品溶液中,所述拉帕替尼原料药的浓度为0.500mg/mL,所述利多卡因内标的浓度为1.00ng/mL;
(4)吸取所述供试品溶液5μl注入LC-MS液质联用仪,按照(1)和(2)所述的色谱条件和质谱条件进行检测,记录色谱图;
(5)根据步骤(4)中所得到的色谱图,利用标准曲线法计算所述拉帕替尼原料药中4-(3-氟苯甲氧基)-3-氯苯胺和2-(甲砜基)乙胺盐酸盐的含量。
发明人发现,利用本发明的该方法,能够同时对化合物4和化合物9进行定量分析,进而对拉帕替尼原料药中的杂质进行限量,且操作简单、灵敏度高、重复性好,专属性强。
根据本发明的实施例,所述标准曲线法包括以下步骤:
(a)将4-(3-氟苯甲氧基)-3-氯苯胺和2-(甲砜基)乙胺盐酸盐分别溶于体积比为4:1的乙腈-水溶液中,得到4-(3-氟苯甲氧基)-3-氯苯胺的浓度为1.00mg/mL的第一对照品储备液和2-(甲砜基)乙胺盐酸盐的浓度为和2.00mg/mL的第二对照品储备液;
(b)利用体积比为1:1的乙腈-水溶液将所述第一对照品储备液和所述第二对照品储备液进行稀释,得到含有10.0μg/mL 4-(3-氟苯甲氧基)-3-氯苯胺和500μg/mL 2-(甲砜基)乙胺盐酸盐的混合中间溶液1;
(c)将所述混合中间溶液1稀释100倍,得到混合中间溶液2;
(d)将所述混合中间溶液2稀释10倍,得到混合中间溶液3;
(e)将利多卡因内标溶于体积比为1:1的乙腈-水溶液中,得到利多卡因内标浓度为0.200mg/mL的内标储备液,再将所述内标储备也稀释成利多卡因内标浓度为20.0ng/mL的内标中间溶液;
(f)利用所述混合中间溶液2、所述混和中间溶液3和所述内标中间溶液,按照下表配制标准曲线样品:
Figure PCTCN2015070901-appb-000002
Figure PCTCN2015070901-appb-000003
(g)吸取所述制标准曲线样品溶液5μl分别注入LC-MS液质联用仪,按照(1)和(2)所述的色谱条件和质谱条件进行检测,记录色谱图;
(h)以4-(3-氟苯甲氧基)-3-氯苯胺与内标峰面积的比值为纵坐标,4-(3-氟苯甲氧基)-3-氯苯胺的浓度为横坐标进行线性回归,制作第一标准曲线,以2-(甲砜基)乙胺盐酸盐与内标峰面积的比值为纵坐标,2-(甲砜基)乙胺盐酸盐的浓度为横坐标进行线性回归,制作第二标准曲线;
(i)将步骤(4)中所得到的色谱图中4-(3-氟苯甲氧基)-3-氯苯胺、2-(甲砜基)乙胺盐酸盐以及利多卡因内标的利多卡因内标的峰面积分别代入所述第一标准曲线和所述第二标准曲线,计算得到所述拉帕替尼原料药中4-(3-氟苯甲氧基)-3-氯苯胺和2-(甲砜基)乙胺盐酸盐的含量。
利用上述标准曲线方法,能够快速、准确的对化合物4和化合物9进行定量,且准确可靠,简单方便。
本发明的有益效果:
通过本发明所述的LC-MS/MS联用检测抗肿瘤药拉帕替尼中杂质的方法,能够快速有效地检测拉帕替尼原料药中的化合物4和化合物9杂质,且可同时定量检测分析化合物4和化合物9的含量。应用本发明所述的LC-MS/MS联用检测分析方法,检测结果准确可靠,操作简便,快速,专属性强,重复性好,且无残留效应。本发明所述LC-MS/MS联用测定拉帕替尼中杂质含量的方法,可用于拉帕替尼药物生产的质量控制。
附图说明
图1显示了拉帕替尼,化合物4,化合物9以及内标利多卡因出峰时间的典型的色谱图;
图2显示了根据本发明的实施例,化合物4,化合物9和拉帕替尼的全扫描质谱图;
图3显示了根据本发明的实施例,化合物4的二级质谱图;
图4显示了根据本发明的实施例,化合物9的二级质谱图;
图5显示了根据本发明的实施例,拉帕替尼的二级质谱图;
图6显示了根据本发明的实施例,化合物4(10.0ng/ml)的专属性考察色谱图;
图7显示了根据本发明的实施例,化合物9(500ng/ml)的专属性考察色谱图;
图8显示了根据本发明的实施例,内标利多卡因(1.00ng/ml)的专属性考察色谱图;
图9显示了根据本发明的实施例,化合物4和化合物9的残留效应色谱图。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
利用质谱仪(AB Sciex Q-Trap 4500)分别对化合物4,化合物9和拉帕替尼在正离子模式下做全扫描(Q1 Scan),找到相应的母离子,再对母离子做相应的二级,选择强度较高的子离子作为最终的检测离子,图谱见图2至图5。最后每个化合物选择强度较高的一个离子对,并优化相应的参数(离子源参数,与化合物相关的参数),结果见表3和表4。
表3:离子源参数
极性 正极
扫描类型 MRM
气帘气(CUR) 30psi
离子源(GS1) 50psi
离子源(GS2) 60psi
离子喷射电压 5500V
温度 550℃
表4:化合物相关的参数
化合物 检测离子对 驻留时间(ms) CE(V) DP(V)
拉帕替尼 581/365 100 51 150
化合物4 252/143 100 30 90
化合物9 124/79 100 20 60
利多卡因 235/86 100 15 70
(IS)        
实施例2
利用5种类型的色谱柱(Synergi Hydro-RP,50*3.0,4μm;Synergi Polar-RP 50*3.0,4μm;Aquasil C18 50*2.1mm,5μm;Kromasil silica 50*3.0mm,5μm;Betasil silica-100 50*2.1mm,5μm),以乙腈为流动相B,以水(含5mM甲酸铵)为流动相A,分别对化合物4、化合物9进行LC-MS/MS检测,并记录色谱图。
结果:
采用Hydro-RP色谱柱和Polar-RP色谱柱时,化合物9在Hydro-RP,Polar-RP色谱柱上基本没有保留。
采用Aquasil C18色谱柱时,使用低有机相(20%乙腈等度洗脱)时,化合物9没有保留,而在高有机相(95%乙腈等度洗脱)时化合物9有一定的保留。
采用Betasil silica-100色谱柱和Kromasil silica色谱柱时,化合物9的保留较强,但化合物4却没有保留。
因此本发明优选采用Aquasil C18色谱柱。
实施例3:方法学考察和样品分析
根据化合物4的限度为不高于4ug/1g,化合物9的限度为不高于0.02%,定两个化合物的标曲范围分别为0.200ng/ml—10.0ng/ml(化合物4),10ng/ml—500ng/ml(化合物9)。仪器与试药
试剂:乙腈(Fisher),水,甲酸铵,拉帕替尼原料药(14个批次),4-(3-氟苯甲氧基)-3-氯苯胺(批号:120814),2-(甲砜基)乙胺盐酸盐(批号:20120521CMQA-1-MZP-01-014)。
仪器:质    谱:AB Sciex Q-Trap 4500,
      高效液相:Shimadzu 20ACXR
(1)对照品储备液的制备:取对照品(化合物4,化合物9)适量,用溶剂(乙腈:水=4:1)溶解,制成1.00mg/ml的储备液。然后用乙腈:水(1:1)将化合物4稀释成10000ng/ml,100ng/ml,10.0ng/ml的中间溶液,将化合物9稀释成10000ng/ml,5000ng/ml,500ng/ml的中间溶液。
(2)内标溶液的制备:取利多卡因内标适量,用(乙腈:水=1:1)溶解,制成0.200mg/ml的储备液,再稀释成20.0ng/ml的中间溶液。
(3)标准曲线样品的制备:按表5制备标准曲线样品。
表5:标准曲线样品
Figure PCTCN2015070901-appb-000004
Figure PCTCN2015070901-appb-000005
(4)质控样品(QC)的制备:按表6制备质控样品。
表6:质控样品
Figure PCTCN2015070901-appb-000006
(5)样品制备
精密称取一定量的拉帕替尼原料药,用乙腈:水(体积比4:1)溶解制成1.00mg/ml的储备液,再用乙腈:水(体积比1:1)稀释2.5倍,离心5分钟(13000转/分钟),取上清液,即得,样品信息见表7。
表7:样品信息
Figure PCTCN2015070901-appb-000007
Figure PCTCN2015070901-appb-000008
(6)线性范围
按表5配制标准曲线样品,以分析物的峰面积和内标的峰面积之比为纵坐标,分析物的浓度为横坐标,进行线性回归运算。化合物4和化合物9这两个化合物在相应的范围内线性关系良好。
回归方程分别为:
化合物4:y=0.0416x+0.00195(r=0.9986);
化合物9:y=0.00416x+0.00175(r=0.9986)。
结果表明,化合物4在0.200—10.0ng/mL范围内线性关系良好,化合物9在10.0—500ng/mL范围内线性关系良好。
(7)准确度与精密度(日内)考察
按表6配制质控样品,每个浓度配制3份,考察其准确度和精密度(日内),结果见表8。根据结果显示,化合物4和化合物9的准确度在85%至115%之间,精密度RSD在±15%范围内。
表8:准确度和精密度
Figure PCTCN2015070901-appb-000009
Figure PCTCN2015070901-appb-000010
(8)专属性考察
专属性系指在其他成分可能存在的条件下,所采用的方法能准确测定出被测物的特性。该方法中同时测定化合物4和化合物9,根据图6到图8可知,化合物4(10.0ng/ml),化合物9(500ng/ml)以及内标利多卡因(1.00ng/ml)之间没有相互干扰。
(9)残留效应考察
本实验过程中,通过注射完高浓度样品(如定量上限,ULOQ)后,连续注射两个空白样品来检测残留效应。如图9所示,化合物4和化合物9在该色谱条件下没有残留。
(9)样品分析
样品按表7配制后,进样分析,将所测定的化合物4和化合物9的峰面积与内标峰面积比代入标准曲线中计算,即得样品(原料药)中化合物4和化合物9的浓度。然后计算两个杂质在各批原料药中的含量。根据规定,化合物4不超过4μg/1g,化合物9不超过0.02%,计算结果见表9。结果表明,14个批次的样品中化合物4的含量都未超过4μg/1g的限度,化合物9的含量也均未超出0.02%的限度。14个批次的拉帕替尼原料药产品中化合物4及化合物9均在限度内。
表9:样品分析结果表
Figure PCTCN2015070901-appb-000011
Figure PCTCN2015070901-appb-000012
实施例4
1.仪器与试药
试剂:乙腈(Fisher),水,甲酸铵,拉帕替尼原料药(3个批次),4-(3-氟苯甲氧基)-3-氯苯胺(化合物4批号:CM1101-130501-F1),2-(甲砜基)乙胺盐酸盐(化合物9批号:CM1101-130801-F1)。
仪器:质谱:AB Sciex Q-Trap 4500,高效液相:Shimadzu 20 ACXR
2.实验内容
2.1色谱及质谱条件
色谱条件与***适用性试验以十八烷基键合硅胶为填充剂;流动相由流动相A和流动相B组成,其中,所述流动相A为浓度为5毫摩尔/升的甲酸铵水溶液,所述流动相B为乙腈;流速0.6ml/min;柱温30摄氏度;进样量5μl,检测波长261nm,洗脱方式为梯度洗脱。照下表10进行梯度洗脱:
表10
时间(分钟) 流动相A(%) 流动相B(%)
0 45 55
1.0 45 55
1.5 5 95
2.5 5 95
2.6 45 55
3.6 45 55
与三重四级杆质谱仪串联进行试验,采用多重反应监测MRM模式:待测杂质4-(3-氟苯甲氧基)-3-氯苯胺的检测离子对为m/z:252—143;2-(甲砜基)乙胺的检测离子对为m/z:124—79;利多卡因内标的检测离子对为m/z:235—86;典型的质谱检测器参数如下:
离子源参数:
CUR:30psi,
IS:5500V,
TEM:550℃,
GS1:50psi,
GS2:60psi。
2.2样品配制
根据化合物4的限度为不高于4μg/1g,化合物9的限度为不高于0.02%,定两个化合物的标曲范围分别为0.200ng/mL—10.0ng/mL(化合物4),10.0ng/mL—500ng/mL(化合物9)。
(1)对照品储备液的配制:取对照品(化合物4,化合物9)适量,用溶剂(乙腈:水=4:1)溶解,制成1.00mg/mL、2.00mg/mL的储备液;
(2)混合中间溶液1的配制:用乙腈:水(1:1)将储备液稀释成含10.0μg/mL化合物4,500μg/mL化合物9的混合中间溶液1;
(3)混合中间溶液2的配制:将(2)中的混合中间溶液1稀释100倍,使成100ng/mL化合物4,5000ng/mL化合物就的混合中间溶液2;
(4)混合中间溶液3的配制:将(3)中的混合中间溶液2稀释10倍,使成10.0ng/mL化合物4,500ng/mL化合物9的混合中间溶液3。
(5)内标溶液的配制:取利多卡因对照品适量,用(乙腈:水=1:1)溶解,制成0.200mg/mL的储备液,再稀释成20.0ng/mL的中间溶液。
(6)标准曲线样品的配制:按表11制备标准曲线样品。
表11:标准曲线样品配制表
Figure PCTCN2015070901-appb-000013
(7)供试品配制:称取本品适量(批号分别为:LT20140902),精密称定,用乙腈:水(4:1)配制成5.00mg/mL储备液,再用乙腈:水(1:1)稀释成0.500mg/mL待测溶液(含内标1.00ng/mL)。
2.3方法学考察
2.3.1线性考察:按“2.2”项下条件配制标准曲线样品。对化合物4和化合物9进行线性回归。结果表明,化合物4在0.200—10.0ng/mL范围内线性关系良好,化合物9在10.0—500ng/mL范围内线性关系良好。
2.4样品分析
供试品按“2.2”项下配制后,进样分析,将所测定的化合物4和化合物9的峰面积与内标峰 面积比代入标准曲线中计算,即得样品(原料药)中化合物4和化合物9的浓度。然后计算两个杂质在各批原料药中的含量。根据规定,化合物4不超过4μg/1g,化合物9不超过0.02%,计算结果见表12。3个批次的拉帕替尼原料药产品中化合物4及化合物9均在限度内。
表12:样品分析结果表
Figure PCTCN2015070901-appb-000014
实施例5
1.仪器与试药
试剂:乙腈(Fisher),水,甲酸铵,拉帕替尼原料药(3个批次),4-(3-氟苯甲氧基)-3-氯苯胺(化合物4批号:CM1101-130701-F2),2-(甲砜基)乙胺盐酸盐(化合物9批号:CM1101-130901-F2)。
仪器:质谱:AB Sciex Q-Trap 4500,高效液相:Shimadzu 20ACXR
2.实验内容
2.1色谱及质谱条件
色谱条件与***适用性试验以十八烷基键合硅胶为填充剂;流动相由流动相A和流动相B组成,其中,所述流动相A为浓度为5毫摩尔/升的甲酸铵水溶液,所述流动相B为乙腈;流速0.5ml/min;柱温25摄氏度;进样量5μl,检测波长261nm,洗脱方式为梯度洗脱。照下表13进行梯度洗脱:
表13
时间(分钟) 流动相A(%) 流动相B(%)
0 40 60
1.0 40 60
1.5 2 98
2.5 2 98
2.6 40 60
3.6 40 60
与三重四级杆质谱仪串联进行试验,采用多重反应监测MRM模式:待测杂质4-(3-氟苯甲氧基)-3-氯苯胺的检测离子对为m/z:252—143;2-(甲砜基)乙胺的检测离子对为 m/z:124—79;利多卡因内标的检测离子对为m/z:235—86;典型的质谱检测器参数如下:
离子源参数:
CUR:30psi,
IS:5500V,
TEM:550℃,
GS1:50psi,
GS2:60psi。
2.2样品配制方法,同实施例4。
2.3线性考察
结果表明,化合物4在0.200—10.0ng/mL范围内线性关系良好,化合物9在10.0—500ng/mL范围内线性关系良好。
2.4样品分析
3个批次的样品分析结果,见表14。结果表明3个批次的拉帕替尼原料药产品中化合物4及化合物9均在限度内。
表14:样品分析结果表
Figure PCTCN2015070901-appb-000015
实施例6
1.仪器与试药
试剂:乙腈(Fisher),水,甲酸铵,拉帕替尼原料药(4个批次),4-(3-氟苯甲氧基)-3-氯苯胺(化合物4批号:CM1101-130701-F2),2-(甲砜基)乙胺盐酸盐(化合物9批号:CM1101-130901-F2)。
仪器:质谱:AB Sciex Q-Trap 4500,高效液相:Shimadzu 20 ACXR
2.实验内容
2.1色谱及质谱条件
色谱条件与***适用性试验以十八烷基键合硅胶为填充剂;流动相由流动相A和流动相B组成,其中,所述流动相A为浓度为5毫摩尔/升的甲酸铵水溶液,所述流动相B为乙腈;流速0.7ml/min;柱温35摄氏度;进样量5μl,检测波长261nm,洗脱方式为梯度洗脱。照下表15进行梯度洗脱:
表15
时间(分钟) 流动相A(%) 流动相B(%)
0 50 50
1.0 50 50
1.5 8 92
2.5 8 92
2.6 50 50
3.6 50 50
与三重四级杆质谱仪串联进行试验,采用多重反应监测MRM模式:待测杂质4-(3-氟苯甲氧基)-3-氯苯胺的检测离子对为m/z:252—143;2-(甲砜基)乙胺的检测离子对为m/z:124—79;利多卡因内标的检测离子对为m/z:235—86;典型的质谱检测器参数如下:
离子源参数:
CUR:30psi,
IS:5500V,
TEM:550℃,
GS1:50psi,
GS2:60psi。
2.2样品配制方法,同实施例4。
2.3线性考察
结果表明,化合物4在0.200—10.0ng/mL范围内线性关系良好,化合物9在10.0—500ng/mL范围内线性关系良好。
2.4样品分析
4个批次的样品分析结果,见表16。结果表明4个批次的拉帕替尼原料药产品中化合物4及化合物9均在限度内。
表16:样品分析结果表
Figure PCTCN2015070901-appb-000016
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种检测拉帕替尼中4-(3-氟苯甲氧基)3-氯苯胺和2-(甲砜基)乙胺盐酸盐杂质含量的方法,其特征在于,所述方法是利用LC-MS/MS联用检测方法进行的。
  2. 根据权利要求1所述的方法,其特征在于,其中,
    色谱条件为:
    色谱柱以十八烷基键合硅胶为填充剂;
    流动相由流动相A和流动相B组成,其中,所述流动相A为甲酸铵水溶液,所述流动相B为乙腈;
    洗脱方式为梯度洗脱,
    质谱条件为:
    离子源为ESI源,采用正离子方式检测、多重反应监测MRM模式;
    拉帕替尼的检测离子对为m/z581—365;4-(3-氟苯甲氧基)3-氯苯胺的检测离子对为m/z252—143;2-(甲砜基)乙胺的检测离子对为m/z124—79;以及利多卡因的检测离子对为m/z235—86;
    离子源参数为:
    气帘气30psi;
    离子喷射电压5500V;
    温度550℃;
    离子源GS150psi;
    离子源GS260psi。
  3. 根据权利要求1所述的方法,其特征在于,所述色谱柱的柱温为25摄氏度~35摄氏度。
  4. 根据权利要求1所述的方法,其特征在于,所述流动相的流速为0.5ml/min~0.7ml/min。
  5. 根据权利要求1所述的方法,其特征在于,在所述流动相A中,所述甲酸铵的浓度为5毫摩尔/升。
  6. 根据权利要求1所述的方法,其特征在于,所述梯度洗脱的条件为:
    时间(分钟) 流动相A(%) 流动相B(%) 0 40~50 60~50 1 40~50 60~50 1.5 2~8 98~92 2.5 2~8 98~92
    2.6 40~50 60~50 3.6 40~50 60~50
  7. 根据权利要求1所述的方法,其特征在于,所述色谱柱为C18色谱柱。
  8. 根据权利要求1所述的方法,其特征在于,包括:
    (1)色谱条件:以十八烷基键合硅胶为填充剂;所述流动相A为浓度为5毫摩尔/升的甲酸铵水溶液,所述流动相B为乙腈;流速0.5ml/min~0.7ml/min;柱温25摄氏度~35摄氏度;进样量5μl,检测波长261nm,按照下表进行梯度洗脱:
    时间(分钟) 流动相A(%) 流动相B(%) 0 40~50 60~50 1.0 40~50 60~50 1.5 2~8 98~92 2.5 2~8 98~92 2.6 40~50 60~50 3.6 40~50 60~50
    (2)质谱条件:离子源为ESI源,采用正离子方式检测、多重反应监测MRM模式;4-(3-氟苯甲氧基)-3-氯苯胺的检测离子对为m/z:252—143;2-(甲砜基)乙胺的检测离子对为m/z:124—79;利多卡因内标的检测离子对为m/z:235—86;
    离子源参数为:
    气帘气30psi;
    离子喷射电压5500V;
    温度550℃;
    离子源GS1 50psi;
    离子源GS2 60psi,
    (3)分别称取拉帕替尼原料药和利多卡因内标,用体积比为4:1的乙腈-水溶液配制成拉帕替尼原料药浓度为5.00mg/mL的储备液,再用体积比为1:1的乙腈-水溶液将所述储备液稀释成所述供试品溶液,在所述供试品溶液中,所述拉帕替尼原料药的浓度为0.500mg/mL,所述利多卡因内标的浓度为1.00ng/mL;
    (4)吸取所述供试品溶液5μl注入LC-MS液质联用仪,按照(1)和(2)所述的色谱条件和质谱条件进行检测,记录色谱图;
    (5)根据步骤(4)中所得到的色谱图,利用标准曲线法计算所述拉帕替尼原料药中4-(3-氟苯甲氧基)-3-氯苯胺和2-(甲砜基)乙胺盐酸盐的含量。
  9. 根据权利要求8所述的方法,其特征在于,所述标准曲线法包括以下步骤:
    (a)将4-(3-氟苯甲氧基)-3-氯苯胺和2-(甲砜基)乙胺盐酸盐分别溶于体积比为4:1的乙腈-水溶液中,得到4-(3-氟苯甲氧基)-3-氯苯胺的浓度为1.00mg/mL的第一对照品储备液和2-(甲砜基)乙胺盐酸盐的浓度为和2.00mg/mL的第二对照品储备液;
    (b)利用体积比为1:1的乙腈-水溶液将所述第一对照品储备液和所述第二对照品储备液进行稀释,得到含有10.0μg/mL4-(3-氟苯甲氧基)-3-氯苯胺和500μg/mL2-(甲砜基)乙胺盐酸盐的混合中间溶液1;
    (c)将所述混合中间溶液1稀释100倍,得到混合中间溶液2;
    (d)将所述混合中间溶液2稀释10倍,得到混合中间溶液3;
    (e)将利多卡因内标溶于体积比为1:1的乙腈-水溶液中,得到利多卡因内标浓度为0.200mg/mL的内标储备液,再将所述内标储备液稀释成利多卡因内标浓度为20.0ng/mL的内标中间溶液;
    (f)利用所述混合中间溶液2、所述混和中间溶液3和所述内标中间溶液,按照下表配制标准曲线样品:
    Figure PCTCN2015070901-appb-100001
    (g)吸取所述标准曲线样品溶液5μl分别注入LC-MS液质联用仪,按照(1)和(2)所述的色谱条件和质谱条件进行检测,记录色谱图;
    (h)以4-(3-氟苯甲氧基)-3-氯苯胺与利多卡因内标峰面积的比值为纵坐标,4-(3-氟苯甲氧基)-3-氯苯胺的浓度为横坐标进行线性回归,制作第一标准曲线,以2-(甲砜基)乙胺盐酸盐与利多卡因内标峰面积的比值为纵坐标,2-(甲砜基)乙胺盐酸盐的浓度为横坐标进行线性回归,制作第二标准曲线;
    (i)将步骤(4)中所得到的色谱图中4-(3-氟苯甲氧基)-3-氯苯胺、2-(甲砜基)乙胺盐酸盐以及利多卡因内标的峰面积分别代入所述第一标准曲线和所述第二标准曲线,计算得到所述拉帕替尼原料药中4-(3-氟苯甲氧基)-3-氯苯胺和2-(甲砜基)乙胺盐酸盐的含量。
PCT/CN2015/070901 2014-12-10 2015-01-16 Lc-ms/ms联用测定拉帕替尼中杂质含量的方法 WO2016090730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410755906.4 2014-12-10
CN201410755906.4A CN105738492B (zh) 2014-12-10 2014-12-10 Lc‑ms/ms联用测定拉帕替尼中杂质含量的方法

Publications (1)

Publication Number Publication Date
WO2016090730A1 true WO2016090730A1 (zh) 2016-06-16

Family

ID=56106524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070901 WO2016090730A1 (zh) 2014-12-10 2015-01-16 Lc-ms/ms联用测定拉帕替尼中杂质含量的方法

Country Status (2)

Country Link
CN (1) CN105738492B (zh)
WO (1) WO2016090730A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782296A (zh) * 2020-12-24 2021-05-11 上海微谱化工技术服务有限公司 一种采用液质连用仪检测抗癌药中浸出物的方法
CN112903856A (zh) * 2021-01-22 2021-06-04 青岛农业大学 一种用于检测水样中微量氯甲酰化合物的前处理方法及其应用
CN115993414A (zh) * 2023-01-18 2023-04-21 中汽研汽车零部件检验中心(宁波)有限公司 一种汽车非金属材料胺类物质测定方法
CN116068117A (zh) * 2023-01-28 2023-05-05 北京大学 一种基于液相色谱-质谱的烷基间苯二酚同系物高通量检测方法
CN116106455A (zh) * 2023-03-28 2023-05-12 上海赛默罗生物科技有限公司 取代的烟酰胺类药物中有关物质的检测方法
CN116297974A (zh) * 2023-03-30 2023-06-23 中国人民解放军军事科学院军事医学研究院 一种同时检测血浆中利多卡因及其代谢物megx和沙丁胺醇浓度的方法
CN116626145A (zh) * 2023-07-03 2023-08-22 军科正源(北京)药物研究有限责任公司 基于多反应监测的蛋氨酸亚氨基代砜的定量检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932522A (zh) * 2015-12-31 2017-07-07 上海奥博生物医药技术有限公司 一种尼罗替尼中杂质化合物i含量的测定方法
CN114594192A (zh) * 2022-03-07 2022-06-07 山东大学 一种泊沙康唑起始物料中氯苯胺和氯硝基苯胺同分异构体的检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120295928A1 (en) * 2011-05-20 2012-11-22 F.I.S. Fabbrica Italiana Sintetici S.P.A. Methods for detecting and reducing impurities of lapatinib and salts thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017387A2 (en) * 2008-08-06 2010-02-11 Teva Pharmaceutical Industries Ltd. Lapatinib intermediates
US8664389B2 (en) * 2008-11-03 2014-03-04 Natco Pharma Limited Process for the preparation of lapatinib and it's pharmaceutically acceptable salts
CA2824877A1 (en) * 2011-01-28 2012-08-02 Biodesix, Inc. Predictive test for selection of metastatic breast cancer patients for hormonal and combination therapy
CN105074469A (zh) * 2013-04-01 2015-11-18 免疫医疗公司 用于胰腺癌早期检测和治疗的抗粘蛋白抗体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120295928A1 (en) * 2011-05-20 2012-11-22 F.I.S. Fabbrica Italiana Sintetici S.P.A. Methods for detecting and reducing impurities of lapatinib and salts thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782296A (zh) * 2020-12-24 2021-05-11 上海微谱化工技术服务有限公司 一种采用液质连用仪检测抗癌药中浸出物的方法
CN112782296B (zh) * 2020-12-24 2023-01-20 上海微谱检测科技集团股份有限公司 一种采用液质连用仪检测抗癌药中浸出物的方法
CN112903856A (zh) * 2021-01-22 2021-06-04 青岛农业大学 一种用于检测水样中微量氯甲酰化合物的前处理方法及其应用
CN112903856B (zh) * 2021-01-22 2023-02-17 青岛农业大学 一种用于检测水样中微量氯甲酰化合物的前处理方法及其应用
CN115993414A (zh) * 2023-01-18 2023-04-21 中汽研汽车零部件检验中心(宁波)有限公司 一种汽车非金属材料胺类物质测定方法
CN116068117A (zh) * 2023-01-28 2023-05-05 北京大学 一种基于液相色谱-质谱的烷基间苯二酚同系物高通量检测方法
CN116106455A (zh) * 2023-03-28 2023-05-12 上海赛默罗生物科技有限公司 取代的烟酰胺类药物中有关物质的检测方法
CN116297974A (zh) * 2023-03-30 2023-06-23 中国人民解放军军事科学院军事医学研究院 一种同时检测血浆中利多卡因及其代谢物megx和沙丁胺醇浓度的方法
CN116626145A (zh) * 2023-07-03 2023-08-22 军科正源(北京)药物研究有限责任公司 基于多反应监测的蛋氨酸亚氨基代砜的定量检测方法
CN116626145B (zh) * 2023-07-03 2024-05-03 军科正源(北京)药物研究有限责任公司 基于多反应监测的蛋氨酸亚氨基代砜的定量检测方法

Also Published As

Publication number Publication date
CN105738492B (zh) 2017-12-19
CN105738492A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2016090730A1 (zh) Lc-ms/ms联用测定拉帕替尼中杂质含量的方法
Ren et al. Advances in mass spectrometry-based metabolomics for investigation of metabolites
Ding et al. Simultaneous determination of apatinib and its four major metabolites in human plasma using liquid chromatography–tandem mass spectrometry and its application to a pharmacokinetic study
Li et al. Rapid simultaneous determination of dexamethasone and betamethasone in milk by liquid chromatography tandem mass spectrometry with isotope dilution
CN108780075A (zh) 伊马替尼基因杂质的高灵敏度分析方法
Xia et al. Determination of benzimidazole residues in bovine milk by ultra-high performance liquid chromatography–tandem mass spectrometry
Wang et al. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays
JP7299586B2 (ja) 生体試料中のエチルアミン定量法
US20220003726A1 (en) Method for matrix effect correction in quantitative mass spectrometric analysis of analytes in complex matrices
Hu et al. Stand out from matrix: Ultra-sensitive LC− MS/MS method for determination of histamine in complex biological samples using derivatization and solid phase extraction
Qian et al. Rapid and sensitive determination of vinorelbine in human plasma by liquid chromatography–tandem mass spectrometry and its pharmacokinetic application
Adamowicz et al. Simple approach for evaluation of matrix effect in the mass spectrometry of synthetic cannabinoids
CN108982694B (zh) 一种n-溴代丁二酰亚胺有关物质的检测方法
Deshmukh et al. Development and validation of new high performance thin layer chromatography method for determination of aripiprazole in bulk and tablet formulation
Lin et al. Use of 4-chloro-3, 5-dinitrobenzotrifluoride (CNBF) derivatization and ultrahigh-performance liquid chromatography tandem mass spectrometry for the determination of 20 free amino acids in Chinese jujube date
CN114994213A (zh) 一种测定人血浆中抗肿瘤药物酪氨酸激酶抑制血药浓度的试剂盒及测定方法
CN104991027B (zh) 降低lc‑ms测试物中不挥发性缓冲盐含量的方法
Dettmer et al. Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS
Cheng et al. A specific UPLC-ESI-MS/MS method for analysis of cyadox and its three main metabolites in fish samples
Adireddy et al. Liquid chromatography–tandem mass spectrometric assay for aliskiren, a novel renin inhibitor in micro‐volumes of human plasma: a pharmacokinetic application in healthy South Indian male subjects
KR101718697B1 (ko) 하이드록시펜터민, 펜터민 및 메펜터민 동시 신속분석법
Urdigere et al. Sensitive liquid chromatography–tandem mass spectrometry method for the determination of olanzapine in human urine
Bharathi et al. Development and validation of a sensitive LC‐MS/MS method with electrospray ionization for quantitation of zafirlukast, a selective leukotriene antagonist in human plasma: application to a clinical pharmacokinetic study
CN110988200A (zh) 注射用重组人特立帕肽中咪唑残留的分析方法
CN110849985A (zh) 一种区分甲基***与n-异丙基苄胺的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867144

Country of ref document: EP

Kind code of ref document: A1