WO2016086690A1 - Mems双层悬浮微结构的制作方法和mems红外探测器 - Google Patents

Mems双层悬浮微结构的制作方法和mems红外探测器 Download PDF

Info

Publication number
WO2016086690A1
WO2016086690A1 PCT/CN2015/087594 CN2015087594W WO2016086690A1 WO 2016086690 A1 WO2016086690 A1 WO 2016086690A1 CN 2015087594 W CN2015087594 W CN 2015087594W WO 2016086690 A1 WO2016086690 A1 WO 2016086690A1
Authority
WO
WIPO (PCT)
Prior art keywords
film body
layer
sacrificial layer
substrate
dielectric layer
Prior art date
Application number
PCT/CN2015/087594
Other languages
English (en)
French (fr)
Inventor
荆二荣
Original Assignee
无锡华润上华半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华半导体有限公司 filed Critical 无锡华润上华半导体有限公司
Priority to EP15866031.6A priority Critical patent/EP3228583B1/en
Priority to US15/327,902 priority patent/US10301175B2/en
Priority to JP2017502648A priority patent/JP2017524126A/ja
Publication of WO2016086690A1 publication Critical patent/WO2016086690A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0278Temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0197Processes for making multi-layered devices not provided for in groups B81C2201/0176 - B81C2201/0192

Definitions

  • the present invention relates to the field of semiconductor device technologies, and in particular, to a method for fabricating a MEMS double-layer suspension microstructure and a MEMS infrared detector.
  • MEMS Micro Electro Mechanical Systems, Microelectromechanical Systems, is a micro-integrated system that uses integrated circuit fabrication technology and micromachining technology to fabricate microstructures, microsensors, microactuators, control processing circuits, and even interfaces and power supplies on one or more chips.
  • MEMS compared to traditional infrared detectors
  • the infrared detectors prepared by technology have obvious advantages in terms of volume, power consumption, weight and price.
  • infrared detectors fabricated using MEMS technology have been widely used in military and civilian applications. According to different working principles, infrared detectors are mainly divided into thermopiles, pyroelectric and thermistor detectors.
  • thermopile infrared detector converts the temperature change caused by infrared radiation into a voltage signal output through the Seebeck effect.
  • Pyroelectric infrared detectors measure the temperature change caused by infrared radiation by the accumulation of charge in a heated object.
  • the thermistor infrared detector measures the temperature change caused by infrared radiation by reading the change in resistance.
  • MEMS Infrared detectors generally use a single-layer suspension microstructure. Although this process is very simple, when the size of the infrared detector chip is reduced, the suspended absorption region (membrane-like absorption layer) used for infrared radiation absorption is correspondingly reduced. This will greatly reduce the infrared response rate of the infrared detector.
  • a method for fabricating a MEMS double-layer suspension microstructure comprising the steps of: providing a substrate; forming a first sacrificial layer on the substrate; patterning the first sacrificial layer; depositing a first dielectric layer on the first sacrificial layer; The first dielectric layer is patterned to form a first film body on the first sacrificial layer, and a cantilever beam connecting the substrate and the first film body; forming a second sacrificial layer on the first dielectric layer; a second sacrificial layer on a film is patterned to form a recess for forming a support structure, a bottom of the recess exposes a first film body; a second dielectric layer is deposited on the second sacrificial layer; The dielectric layer is patterned to fabricate a second film body and the support structure, the support structure connecting the first film body and the second film body; removing the first sacrificial layer and the second sacrificial layer to obtain a MEMS
  • Another method for fabricating a MEMS double-layer suspension microstructure includes the steps of: forming a first film body on a substrate, and connecting a cantilever beam of the substrate and the first film body; forming a sacrificial layer on the first film body and the cantilever beam Patterning a sacrificial layer on the first film body to form a recess for forming a support structure, a bottom portion of the recess exposing the first film body; depositing a dielectric layer on the sacrificial layer; and patterning the dielectric layer To fabricate a second film body and the support structure, the support structure connects the first film body and the second film body; and the sacrificial layer is removed to obtain a MEMS double-layer suspension microstructure.
  • a MEMS infrared detector comprising a MEMS double-layer suspension microstructure, the MEMS double-layer suspension microstructure comprising a substrate, a first film body on the substrate, a cantilever beam connecting the substrate and the first film body, a second film body on a film body, and a support structure connecting the first film body and the second film body.
  • the above method for fabricating the MEMS double-layer suspension microstructure can produce an infrared detector having a double-layered suspended microstructure and using the double-layer suspension microstructure (a suspended microstructure having a first dielectric layer and a second dielectric layer) Since the second dielectric layer does not need to be fabricated as a cantilever beam, the second dielectric layer can be made larger than the first dielectric layer, and thus can have a larger suspension absorption region than the single-layer suspended microstructure infrared detector, thereby providing High infrared response rate.
  • the suspension absorption region (second dielectric layer) used for infrared radiation absorption is correspondingly reduced, since the second dielectric layer does not need to be fabricated as a cantilever beam, the second dielectric layer can be made larger than the first dielectric layer, so that even when the size of the infrared detector chip is reduced, it can be more than the single-layer floating microstructure infrared detector. Large suspension absorption area, which will greatly improve the infrared response rate compared with the traditional single-layer suspension microstructure infrared detector.
  • FIG. 1 is a flow chart of a method for fabricating a MEMS double-layer floating microstructure according to an embodiment
  • FIG. 2 is a schematic structural view of a first polyimide layer
  • FIG. 3 is a schematic structural view of the first film body and the cantilever beam
  • Figure 4 is a top plan view showing the first film body and the cantilever beam
  • Figure 5 is a schematic view showing the structure after the concave portion is formed
  • Figure 6 is a top plan view showing the concave portion
  • Figure 7 is a schematic view showing the structure after the second film body and the support structure are formed
  • Fig. 8 is a schematic view showing the structure after removing the first polyimide layer and the second polyimide layer.
  • the first sacrificial layer and/or the second sacrificial layer is a polyimide layer.
  • a method for fabricating a MEMS double-layer suspension microstructure comprising the steps of:
  • Step S100 Providing the substrate 100.
  • the substrate 100 should be a substrate having a circuit structure.
  • Step S200 forming a first polyimide layer 200 on the substrate 100.
  • the first polyimide layer 200 is formed by coating, and the first polyimide layer 200 has a thickness of 500 nm to 3000 nm.
  • Step S300 The first polyimide layer 200 is patterned. Referring to Figure 2, the etched region 210 is used to form a connection region between the dielectric layer and the substrate.
  • Step S400 depositing a first dielectric layer 300 on the first polyimide layer 200.
  • the first dielectric layer 300 has a thickness of 100 nm to 2000 nm and is made of silicon dioxide, silicon nitride, silicon oxynitride or a combination of two or two or three combinations. That is, the first dielectric layer 300 may be a single layer structure of a silicon dioxide layer, a silicon nitride layer, or a silicon oxynitride layer, or may be a combination of a silicon dioxide layer, a silicon nitride layer, and a silicon oxynitride layer. A combined non-monolayer structure.
  • Step S500 The first dielectric layer 300 is patterned to form a first film body 310 on the first polyimide layer 200, and a cantilever beam 320 connecting the substrate 100 and the first film body 310. 3 and FIG. 4, in the present embodiment, there are two cantilever beams 320, which are respectively located on both sides of the first film body 310.
  • the cantilever beam 320 is very small, and the contact area with the substrate 100 is much smaller than the infrared absorption region (here, the first film body 310), preventing infrared energy from being quickly absorbed by the substrate 100.
  • the first mold body 310 is fixed to the substrate 100 using the first polyimide layer 200.
  • the first film body 310 and the connection group may be formed on the substrate 100 by other methods.
  • Step S600 forming a second polyimide layer 400 on the first dielectric layer 300.
  • the second polyimide layer 400 is formed by coating, and the second polyimide layer 400 has a thickness of 500 nm to 3000 nm.
  • Step S700 The second polyimide layer 400 on the first film body 310 is patterned to form a recess 410 for forming the support structure 520, and the bottom of the recess 410 exposes the first film body 310.
  • the recess 410 is one in this embodiment, exposed above the first film body 310 and at an intermediate position of the second polyimide layer 400.
  • Step S800 depositing a second dielectric layer 500 on the second polyimide layer 400.
  • the second dielectric layer 500 has a thickness of 100 nm to 2000 nm and is made of silicon dioxide, silicon nitride, silicon oxynitride or a combination of two or two or a combination of three. That is, the second dielectric layer 500 may be a single layer structure of a silicon dioxide layer, a silicon nitride layer, or a silicon oxynitride layer, or may be a combination of a silicon dioxide layer, a silicon nitride layer, and a silicon oxynitride layer. A combined non-monolayer structure.
  • Step S900 The second dielectric layer 500 is patterned to form a second film body 510 and a support structure 520, and the support structure 520 connects the first film body 310 and the second film body 510.
  • a dielectric layer deposited and patterned on the recess 410 of the second polyimide layer 400 serves as the support structure 520, and a region connected around the support structure 520 forms the second film body 510.
  • the cantilever beam is not required to be formed on the second dielectric layer 500, the projected area of the second film body 510 on the surface of the substrate 100 can be made larger than the projected area of the first film body 310 on the surface of the substrate 100.
  • the second mold body 510 is fixed to the first mold body 310 using the second polyimide layer 400.
  • Step S1100 removing the first polyimide layer 200 and the second polyimide layer 400 to obtain a MEMS double-layer suspension microstructure, as shown in FIG.
  • the first polyimide layer 200 and the second polyimide layer 400 are removed by an oxygen ion dry etching process to obtain a MEMS double-layer suspension microstructure.
  • the working principle of the oxygen ion dry etching process is to introduce a small amount of oxygen into the vacuum system, and to increase the voltage to ionize the oxygen, thereby forming a glow column of oxygen plasma. Reactive oxygen can quickly oxidize the polyimide and form a volatile gas to achieve etching.
  • the first polyimide layer 200 and the second polyimide layer 400 belong to the sacrificial layer in the present method, and in other embodiments, all materials that can be removed by the semiconductor etching process can replace the polyimide as the present
  • the semiconductor etching process of course includes an etching process using gas or light etching, such as an oxygen ion dry etching process.
  • the MEMS infrared detector fabricated by the above MEMS double-layer suspension microstructure, the first film body 310 and the second film body 510 can be used to absorb the infrared film-like absorption layer, and absorb the infrared light.
  • the energy converted electrical signal is transmitted through the cantilever beam 320 to the circuit structure of the substrate 100.
  • the invention also discloses a MEMS infrared detector, which can make a MEMS double-layer suspension microstructure by using the above-mentioned MEMS double-layer suspension microstructure manufacturing method.
  • the MEMS double-layer suspension microstructure includes a substrate 100, a first film body 310 on the substrate 100, and a cantilever beam 320 connecting the substrate 100 and the first film body 310.
  • the MEMS infrared detector can be, for example, a thermistor infrared detector.
  • the above method for fabricating the MEMS double-layer suspension microstructure can produce an infrared detector having a double-layered suspended microstructure and using the double-layer suspension microstructure (a suspended microstructure having a first dielectric layer and a second dielectric layer) Since the second dielectric layer does not need to be fabricated as a cantilever beam, the second dielectric layer can be made larger than the first dielectric layer, and thus can have a larger suspension absorption region than the single-layer suspended microstructure infrared detector, thereby providing High infrared response rate.
  • the suspension absorption region (second dielectric layer) used for infrared radiation absorption is correspondingly reduced, since the second dielectric layer does not need to be fabricated as a cantilever beam, the second dielectric layer can be made larger than the first dielectric layer, so that even when the size of the infrared detector chip is reduced, it can be more than the single-layer floating microstructure infrared detector. Large suspension absorption area, which will greatly improve the infrared response rate compared with the traditional single-layer suspension microstructure infrared detector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种MEMS双层悬浮微结构的制作方法,包括步骤:在基片(100)上形成第一膜体(310),及连接基片(100)和第一膜体(310)的悬臂梁(320);在第一膜体(310)和悬臂梁(320)上形成牺牲层(400);将位于第一膜体(310)上的牺牲层(400)图形化以制作出用于形成支撑结构(520)的凹部(410),所述凹部(410)的底部暴露出第一膜体(310);在牺牲层(400)上淀积介质层(500);将介质层(500)图形化以制作出第二膜体(510)和所述支撑结构(520),所述支撑结构(520)连接第一膜体(310)和第二膜体(510);以及去除所述牺牲层(400),得到MEMS双层悬浮微结构。

Description

MEMS双层悬浮微结构的制作方法和MEMS红外探测器
【技术领域】
本发明涉及半导体器件技术领域,特别涉及一种MEMS双层悬浮微结构的制作方法和MEMS红外探测器。
【背景技术】
MEMS(Micro Electro Mechanical Systems,微电子机械***)是利用集成电路制造技术和微加工技术把微结构、微传感器、微执行器、控制处理电路甚至接口和电源等制造在一块或多块芯片上的微型集成***。与传统红外探测器相比,采用MEMS 技术制备的红外探测器在体积、功耗、重量以及价格等方面有十分明显的优势。目前,利用MEMS技术制作的红外探测器已广泛用于军事和民用领域。按照工作原理的不同,红外探测器主要分为热电堆、热释电和热敏电阻探测器等。热电堆红外探测器通过塞贝克效应将红外辐射导致的温度变化转换为电压信号输出。热释电红外探测器是通过受热物体中的电荷堆积来测量红外辐射导致的温度变化。热敏电阻红外探测器通过读取电阻阻值的变化来测量红外辐射导致的温度变化。目前,MEMS 红外探测器一般都采用单层悬浮微结构,这种工艺虽很简单,但是当红外探测器芯片尺寸减小时,用作红外辐射吸收的悬浮吸收区域(膜状吸收层)相应地也会减小,这样会大大降低红外探测器的红外响应率。
【发明内容】
基于此,有必要提供一种MEMS双层悬浮微结构的制作方法,该MEMS双层悬浮微结构的制作方法可以制作出较高红外响应率的红外探测器。此外,还提供一种MEMS红外探测器。
一种MEMS双层悬浮微结构的制作方法,包括步骤:提供基片;在基片上形成第一牺牲层;将第一牺牲层图形化;在第一牺牲层上淀积第一介质层;将第一介质层图形化以制作位于所述第一牺牲层上的第一膜体,及连接基片和第一膜体的悬臂梁;在第一介质层上形成第二牺牲层;将位于第一膜体上的第二牺牲层图形化以制作出用于形成支撑结构的凹部,所述凹部的底部暴露出第一膜体;在第二牺牲层上淀积第二介质层;将第二介质层图形化以制作出第二膜体和所述支撑结构,所述支撑结构连接第一膜体和第二膜体;去除第一牺牲层和第二牺牲层,得到MEMS双层悬浮微结构。
另一种MEMS双层悬浮微结构的制作方法,包括步骤:在基片上形成第一膜体,及连接基片和第一膜体的悬臂梁;在第一膜体和悬臂梁上形成牺牲层;将位于第一膜体上的牺牲层图形化以制作出用于形成支撑结构的凹部,所述凹部的底部暴露出第一膜体;在牺牲层上淀积介质层;将介质层图形化以制作出第二膜体和所述支撑结构,所述支撑结构连接第一膜体和第二膜体;去除所述牺牲层,得到MEMS双层悬浮微结构。
一种MEMS红外探测器,包括MEMS双层悬浮微结构,所述MEMS双层悬浮微结构包括基片,基片上的第一膜体,连接所述基片和第一膜体的悬臂梁,第一膜体上的第二膜体,以及连接所述第一膜体和第二膜体的支撑结构。
上述MEMS双层悬浮微结构的制作方法,可以制作出具有双层的悬浮微结构,用该双层悬浮微结构(具备第一介质层和第二介质层的悬浮微结构)制作的红外探测器,由于第二介质层不需要制作悬臂梁,所以第二介质层可以制作得比第一介质层大,因而可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,从而具备较高的红外响应率。当红外探测器芯片尺寸减小时,相对于传统的单层悬浮微结构的红外探测器来说,尽管用作红外辐射吸收的悬浮吸收区域(第二介质层)也相应地也会减小,但是由于第二介质层不需要制作悬臂梁,所以第二介质层可以制作得比第一介质层大,因而即使当红外探测器芯片尺寸减小时也可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,这样会较传统的单层悬浮微结构的红外探测器大大提高红外响应率。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例MEMS双层悬浮微结构的制作方法的流程图;
图2是将第一聚酰亚胺层图形化后的结构示意图;
图3是制作出第一膜体和悬臂梁后的结构示意图;
图4是制作出第一膜体和悬臂梁后的俯视示意图;
图5是制作出凹部后的结构示意图;
图6是制作出凹部后的俯视示意图;
图7是制作出第二膜体和支撑结构后的结构示意图;
图8是去除第一聚酰亚胺层和第二聚酰亚胺层后的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1是一实施例MEMS双层悬浮微结构的制作方法的流程图。在本实施例中,第一牺牲层和/或第二牺牲层为聚酰亚胺层。
一种MEMS双层悬浮微结构的制作方法,包括步骤:
步骤S100:提供基片100。基片100应该是已布有电路结构的基片。
步骤S200:在基片100上形成第一聚酰亚胺层200。用涂覆的方式形成第一聚酰亚胺层200,第一聚酰亚胺层200的厚度为500nm~3000nm。
步骤S300:将第一聚酰亚胺层200图形化。见图2,被刻蚀的区域210用于形成介质层与基片的连接区域。
步骤S400:在第一聚酰亚胺层200上淀积第一介质层300。第一介质层300的厚度为100nm~2000nm,材质为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。即第一介质层300可以为二氧化硅层、氮化硅层、氮氧化硅层的单层结构,也可以是二氧化硅层、氮化硅层、氮氧化硅层两两组合层叠或三种组合层叠的非单层结构。
步骤S500:将第一介质层300图形化以制作位于第一聚酰亚胺层200上第一膜体310,及连接基片100和第一膜体310的悬臂梁320。见图3和图4,在本实施例中悬臂梁320为两条,分别位于第一膜体310的两侧。悬臂梁320十分细小,与基底100的接触面积远小于红外吸收区域(此处为第一膜体310),防止红外能量快速被基片100吸收。使用第一聚酰亚胺层200使第一模体310固定在基片100上。
由于单层悬浮微结构除前述方法外也有其他为本领域技术人员习知的制造方法,因此在其他实施例中,也可以采用其他方法在基片100上形成第一膜体310,及连接基片100和第一膜体310的悬臂梁320。
步骤S600:在第一介质层300上形成第二聚酰亚胺层400。用涂覆的方式形成第二聚酰亚胺层400,第二聚酰亚胺层400的厚度为500nm~3000nm。
步骤S700:将位于第一膜体310上的第二聚酰亚胺层400图形化以制作出用于形成支撑结构520的凹部410,凹部410的底部暴露出第一膜体310。见图5和图6,凹部410在本实施例中为一个,暴露在第一膜体310的上方且位于第二聚酰亚胺层400的中间位置。
步骤S800:在第二聚酰亚胺层400上淀积第二介质层500。第二介质层500的厚度为100nm~2000nm,材质为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。即第二介质层500可以为二氧化硅层、氮化硅层、氮氧化硅层的单层结构,也可以是二氧化硅层、氮化硅层、氮氧化硅层两两组合层叠或三种组合层叠的非单层结构。
步骤S900:将第二介质层500图形化以制作出第二膜体510和支撑结构520,支撑结构520连接第一膜体310和第二膜体510。在第二聚酰亚胺层400的凹部410上淀积并图形化的介质层作为支撑结构520,连接于支撑结构520四周的区域形成第二膜体510。见图7,由于第二介质层500上不需要制作悬臂梁,所以第二膜体510在基片100表面的投影面积可以制作得比第一膜体310在基片100表面的投影面积大。使用第二聚酰亚胺层400使第二模体510固定在第一模体310上。
步骤S1100:去除第一聚酰亚胺层200和第二聚酰亚胺层400,得到MEMS双层悬浮微结构,见图8。利用氧离子干法刻蚀工艺去除第一聚酰亚胺层200和第二聚酰亚胺层400,得到MEMS双层悬浮微结构。氧离子干法刻蚀工艺其工作原理是在真空***中通入少量氧气,加高电压使氧气电离,从而形成氧等离子的辉光柱。活性氧可以迅速将聚酰亚胺氧化并生成可挥发气体,从而实现刻蚀。第一聚酰亚胺层200和第二聚酰亚胺层400在本方法中属于牺牲层,在其他实施例中,所有能够通过半导体刻蚀工艺除去的材料都能够替代聚酰亚胺作为本方法中的牺牲层,半导体刻蚀工艺当然包括利用气体或光来刻蚀的刻蚀工艺,例如氧离子干法刻蚀工艺。
用上述MEMS双层悬浮微结构制作的MEMS红外探测器,第一膜体310和第二膜体510(主要依靠第二膜体510)都可以用来吸收红外的膜状吸收层,吸收的红外能量转化的电信号通过悬臂梁320传到基片100的电路结构。
本发明还公开了一种MEMS红外探测器,可以利用上述的MEMS双层悬浮微结构的制作方法制作MEMS双层悬浮微结构。请一并参见图8、图4及图7,MEMS双层悬浮微结构包括基片100,基片100上的第一膜体310,连接基片100和第一膜体310的悬臂梁320,第一膜体310上的第二膜体510,以及连接第一膜体310和第二膜体510的支撑结构520。MEMS红外探测器例如可以是热敏电阻红外探测器。
上述MEMS双层悬浮微结构的制作方法,可以制作出具有双层的悬浮微结构,用该双层悬浮微结构(具备第一介质层和第二介质层的悬浮微结构)制作的红外探测器,由于第二介质层不需要制作悬臂梁,所以第二介质层可以制作得比第一介质层大,因而可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,从而具备较高的红外响应率。当红外探测器芯片尺寸减小时,相对于传统的单层悬浮微结构的红外探测器来说,尽管用作红外辐射吸收的悬浮吸收区域(第二介质层)也相应地也会减小,但是由于第二介质层不需要制作悬臂梁,所以第二介质层可以制作得比第一介质层大,因而即使当红外探测器芯片尺寸减小时也可以比单层悬浮微结构的红外探测器拥有更大的悬浮吸收区域,这样会较传统的单层悬浮微结构的红外探测器大大提高红外响应率。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种MEMS双层悬浮微结构的制作方法,其特征在于,包括步骤:
    提供基片;
    在基片上形成第一牺牲层;
    将第一牺牲层图形化;
    在第一牺牲层上淀积第一介质层;
    将第一介质层图形化以制作位于所述第一牺牲层上的第一膜体,及连接基片和第一膜体的悬臂梁;
    在第一介质层上形成第二牺牲层;
    将位于第一膜体上的第二牺牲层图形化以制作出用于形成支撑结构的凹部,所述凹部的底部暴露出第一膜体;
    在第二牺牲层上淀积第二介质层;
    将第二介质层图形化以制作出第二膜体和所述支撑结构,所述支撑结构连接第一膜体和第二膜体;以及
    去除第一牺牲层和第二牺牲层,得到MEMS双层悬浮微结构。
  2. 根据权利要求1 所述的方法,其特征在于,所述第一牺牲层和/或第二牺牲层为聚酰亚胺层。
  3. 根据权利要求1 所述的方法,其特征在于,所述第一牺牲层和第二牺牲层的厚度均为500nm~3000nm。
  4. 根据权利要求1 所述的方法,其特征在于,所述第一介质层和第二介质层的厚度均为100nm~2000nm。
  5. 根据权利要求1所述的方法,其特征在于,所述第一介质层和第二介质层的材质为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。
  6. 根据权利要求1所述的方法,其特征在于,所述悬臂梁为两条,分别位于所述第一膜体的两侧。
  7. 根据权利要求1 所述的方法,其特征在于,所述凹部为一个,暴露在所述第一膜体的上方且位于第二牺牲层的中间位置。
  8. 根据权利要求1所述的方法,其特征在于,所述第二膜体在基片表面的投影面积比所述第一膜体在基片表面的投影面积大。
  9. 根据权利要求1所述的方法,其特征在于,所述去除第一牺牲层和第二牺牲层的步骤,是利用氧离子干法刻蚀工艺去除第一牺牲层和第二牺牲层,得到MEMS双层悬浮微结构。
  10. 一种MEMS双层悬浮微结构的制作方法,其特征在于,包括步骤:
    在基片上形成第一膜体,及连接基片和第一膜体的悬臂梁;
    在第一膜体和悬臂梁上形成牺牲层;
    将位于第一膜体上的牺牲层图形化以制作出用于形成支撑结构的凹部,所述凹部的底部暴露出第一膜体;
    在牺牲层上淀积介质层;
    将介质层图形化以制作出第二膜体和所述支撑结构,所述支撑结构连接第一膜体和第二膜体;以及
    去除所述牺牲层,得到MEMS双层悬浮微结构。
  11. 根据权利要求10所述的方法,其特征在于,所述牺牲层为聚酰亚胺层。
  12. 根据权利要求10所述的方法,其特征在于,所述介质层的材质为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。
  13. 根据权利要求10所述的方法,其特征在于,所述第二膜体在基片表面的投影面积比所述第一膜体在基片表面的投影面积大。
  14. 根据权利要求10所述的方法,其特征在于,所述去除牺牲层的步骤,是利用氧离子干法刻蚀工艺去除牺牲层,得到MEMS双层悬浮微结构。
  15. 一种MEMS红外探测器,其特征在于,包括MEMS双层悬浮微结构,所述MEMS双层悬浮微结构包括基片,基片上的第一膜体,连接所述基片和第一膜体的悬臂梁,第一膜体上的第二膜体,以及连接所述第一膜体和第二膜体的支撑结构。
  16. 根据权利要求15所述的MEMS红外探测器,其特征在于,所述悬臂梁为两条,分别位于所述第一膜体的两侧。
  17. 根据权利要求15所述的MEMS红外探测器,其特征在于,所述支撑结构为一个,位于所述第二膜体的中间位置。
  18. 根据权利要求15所述的MEMS红外探测器,其特征在于,所述第一介质层和第二介质层的材质为二氧化硅、氮化硅、氮氧化硅或其两两组合层叠或三种组合层叠。
  19. 根据权利要求15所述的MEMS红外探测器,其特征在于,所述第一介质层和第二介质层的厚度均为100nm~2000nm。
  20. 根据权利要求15所述的MEMS红外探测器,其特征在于,所述第二膜体在基片表面的投影面积比所述第一膜体在基片表面的投影面积大。
PCT/CN2015/087594 2014-12-02 2015-08-20 Mems双层悬浮微结构的制作方法和mems红外探测器 WO2016086690A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15866031.6A EP3228583B1 (en) 2014-12-02 2015-08-20 Method for manufacturing mems double-layer suspension microstructure, and mems infrared detector
US15/327,902 US10301175B2 (en) 2014-12-02 2015-08-20 Method for manufacturing MEMS double-layer suspension microstructure, and MEMS infrared detector
JP2017502648A JP2017524126A (ja) 2014-12-02 2015-08-20 Mems二層浮遊微小構造の製作方法とmems赤外線センサー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410723696.0A CN105712284B (zh) 2014-12-02 2014-12-02 Mems双层悬浮微结构的制作方法和mems红外探测器
CN201410723696.0 2014-12-02

Publications (1)

Publication Number Publication Date
WO2016086690A1 true WO2016086690A1 (zh) 2016-06-09

Family

ID=56090957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087594 WO2016086690A1 (zh) 2014-12-02 2015-08-20 Mems双层悬浮微结构的制作方法和mems红外探测器

Country Status (5)

Country Link
US (1) US10301175B2 (zh)
EP (1) EP3228583B1 (zh)
JP (1) JP2017524126A (zh)
CN (1) CN105712284B (zh)
WO (1) WO2016086690A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106672891A (zh) * 2017-01-24 2017-05-17 烟台睿创微纳技术股份有限公司 一种双层非制冷红外探测器结构及其制备方法
CN106629578B (zh) * 2017-02-15 2019-07-12 浙江大立科技股份有限公司 具有微桥结构的红外探测器及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129824A1 (en) * 2002-01-08 2003-07-10 Lianjun Liu Method of making a micromechanical device
US20060131697A1 (en) * 2004-12-21 2006-06-22 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor methods and structures
CN102353459A (zh) * 2011-07-05 2012-02-15 上海集成电路研发中心有限公司 探测器及其制造方法
CN102543591A (zh) * 2010-12-27 2012-07-04 上海丽恒光微电子科技有限公司 Mems开关及其制作方法
CN103569946A (zh) * 2012-07-31 2014-02-12 昆山光微电子有限公司 非制冷光读出红外成像焦平面陈列探测器制作方法
CN103759838A (zh) * 2014-01-13 2014-04-30 浙江大立科技股份有限公司 微桥结构红外探测器及其制造方法
JP2014170994A (ja) * 2013-03-01 2014-09-18 Seiko Epson Corp Mems振動子の製造方法、mems振動子、電子機器および移動体

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040356B2 (ja) * 1997-01-27 2000-05-15 三菱電機株式会社 赤外線固体撮像素子
US6329738B1 (en) * 1999-03-30 2001-12-11 Massachusetts Institute Of Technology Precision electrostatic actuation and positioning
US6307194B1 (en) * 1999-06-07 2001-10-23 The Boeing Company Pixel structure having a bolometer with spaced apart absorber and transducer layers and an associated fabrication method
JP3514681B2 (ja) * 1999-11-30 2004-03-31 三菱電機株式会社 赤外線検出器
JP3921320B2 (ja) 2000-01-31 2007-05-30 日本電気株式会社 熱型赤外線検出器およびその製造方法
US6667479B2 (en) * 2001-06-01 2003-12-23 Raytheon Company Advanced high speed, multi-level uncooled bolometer and method for fabricating same
US6813059B2 (en) * 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6958478B2 (en) * 2003-05-19 2005-10-25 Indigo Systems Corporation Microbolometer detector with high fill factor and transducers having enhanced thermal isolation
US6861277B1 (en) * 2003-10-02 2005-03-01 Hewlett-Packard Development Company, L.P. Method of forming MEMS device
JP4496751B2 (ja) * 2003-10-09 2010-07-07 日本電気株式会社 熱型赤外線固体撮像素子及びその製造方法
CN101367504B (zh) * 2007-08-17 2010-12-29 中芯国际集成电路制造(上海)有限公司 具有微镜的微电子机械***的制作方法
JP4697611B2 (ja) * 2008-03-28 2011-06-08 日本電気株式会社 熱型赤外線固体撮像素子及びその製造方法
CN101475137A (zh) * 2009-01-10 2009-07-08 大连理工大学 双层悬空梁微结构薄膜量热计
CN101570311A (zh) * 2009-06-12 2009-11-04 中国科学院上海技术物理研究所 一种高占空比绝热微桥结构及其实现方法
JP5964543B2 (ja) * 2010-06-15 2016-08-03 日本電気株式会社 ボロメータ型テラヘルツ波検出器
CN102393252B (zh) * 2011-09-29 2013-01-16 电子科技大学 一种双层微测辐射热计及其制作方法
CN102393251B (zh) * 2011-09-29 2013-03-06 电子科技大学 一种双层微测辐射热计及其制作方法
JP2013120142A (ja) * 2011-12-08 2013-06-17 Mitsubishi Electric Corp 赤外線撮像素子および赤外線撮像装置
US9102517B2 (en) * 2012-08-22 2015-08-11 International Business Machines Corporation Semiconductor structures provided within a cavity and related design structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129824A1 (en) * 2002-01-08 2003-07-10 Lianjun Liu Method of making a micromechanical device
US20060131697A1 (en) * 2004-12-21 2006-06-22 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor methods and structures
CN102543591A (zh) * 2010-12-27 2012-07-04 上海丽恒光微电子科技有限公司 Mems开关及其制作方法
CN102353459A (zh) * 2011-07-05 2012-02-15 上海集成电路研发中心有限公司 探测器及其制造方法
CN103569946A (zh) * 2012-07-31 2014-02-12 昆山光微电子有限公司 非制冷光读出红外成像焦平面陈列探测器制作方法
JP2014170994A (ja) * 2013-03-01 2014-09-18 Seiko Epson Corp Mems振動子の製造方法、mems振動子、電子機器および移動体
CN103759838A (zh) * 2014-01-13 2014-04-30 浙江大立科技股份有限公司 微桥结构红外探测器及其制造方法

Also Published As

Publication number Publication date
EP3228583B1 (en) 2023-11-01
EP3228583A4 (en) 2018-07-25
EP3228583A1 (en) 2017-10-11
US20170203960A1 (en) 2017-07-20
EP3228583C0 (en) 2023-11-01
CN105712284B (zh) 2017-09-29
JP2017524126A (ja) 2017-08-24
US10301175B2 (en) 2019-05-28
CN105712284A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016180311A1 (zh) Mems双层悬浮微结构的制作方法和mems红外探测器
CN110577188B (zh) 一种在衬底上制作悬浮红外热堆的方法
CN112461312B (zh) 热堆式气体质量流量传感器及其制造方法
WO2014063410A1 (zh) 弯折形弹性梁的电容式加速度传感器及制备方法
WO2014044122A1 (zh) 硅的刻蚀方法
JP2002283297A5 (zh)
WO2015103910A1 (zh) 薄膜支撑梁的制作方法
WO2016086690A1 (zh) Mems双层悬浮微结构的制作方法和mems红外探测器
CN112484800B (zh) 热堆式气体质量流量传感器及其制备方法
CN102649537A (zh) 一种soi mems单片集成方法
CN110627014B (zh) 一种在衬底上制作悬浮红外热堆的方法
WO2014063409A1 (zh) "h"形梁的电容式加速度传感器及制备方法
JP2015525679A (ja) Memsチップ及びその製造方法
CN107543648B (zh) 基于双f-p腔的高温剪应力传感器及其制备方法
CN106568518B (zh) 基于湿敏软管的集成温湿压柔性传感器及其制备方法
Baltes CMOS micro electro mechanical systems
CN210136193U (zh) 一种气体传感器及传感器阵列
Fedder Integrated microelectromechanical systems in conventional CMOS
CN111847372A (zh) 红外mems桥梁柱结构及工艺方法
JP5401820B2 (ja) センサ
Sanz-Velasco et al. Sensors and actuators based on SOI materials
CN112047294B (zh) 红外mems桥梁柱结构及工艺方法
CN103510088B (zh) 固态孔阵及其制作方法
Wang Methods to improve the sensitivity of micro-capacitive pressure sensors
TW200820314A (en) Method for fabricating flow channel capable of balancing air pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502648

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015866031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015866031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15327902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE