WO2016086483A1 - 可在2d和3d模式之间切换的显示器及其控制方法 - Google Patents

可在2d和3d模式之间切换的显示器及其控制方法 Download PDF

Info

Publication number
WO2016086483A1
WO2016086483A1 PCT/CN2014/095564 CN2014095564W WO2016086483A1 WO 2016086483 A1 WO2016086483 A1 WO 2016086483A1 CN 2014095564 W CN2014095564 W CN 2014095564W WO 2016086483 A1 WO2016086483 A1 WO 2016086483A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
panel
lens unit
display
state
Prior art date
Application number
PCT/CN2014/095564
Other languages
English (en)
French (fr)
Inventor
方斌
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/433,637 priority Critical patent/US20160353097A1/en
Publication of WO2016086483A1 publication Critical patent/WO2016086483A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/322Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using varifocal lenses or mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display that can be switched between 2D and 3D modes and a control method thereof.
  • 3D display has become the focus of attention, especially in the naked eye 3D, since the user does not need to wear the auxiliary device, the 3D effect can be viewed, which has attracted much attention.
  • the light barrier type 3D technology is realized by using a switch liquid crystal panel, a polarizing film and a polymer liquid crystal layer, and using the liquid crystal layer and the polarizing film to produce a series of vertical stripes with a direction of 90°. These stripes are several tens of micrometers wide, and their light forms a vertical thin-bar grid pattern called a "parallax barrier.”
  • the technology utilizes the parallax barrier disposed between the backlight module and the LCD panel.
  • the opaque stripes will block the right eye; similarly, when the image that should be seen by the right eye is displayed on the LCD screen, the opaque stripes will block the left eye, and the viewer can see the 3D image by separating the visible images of the left and right eyes.
  • the advantage of this technology is that it is advantageous in terms of cost, but the screen brightness using this technology is low.
  • the lenticular lens technique is also known as microcolumn lens 3D technology, so that the image plane of the liquid crystal panel is located on the focal plane of the lens, so that the pixels of the image under each cylindrical lens are divided into several sub-pixels, so that the lens can be different. Project each sub-pixel in the direction. So the eyes look at the display from different angles and see different sub-pixels.
  • the lenticular lens technology does not affect the brightness of the screen like the light barrier type, so the display effect is better. However, if the lens focal length is f, the lens pitch is p, the distance between the lens and the display is g, and the image imaging position is at the L distance in front of the lens, assuming that the resolution of the display is sufficiently high.
  • the imaging resolution R becomes small, and it is difficult to simultaneously improve the resolution R and the viewing angle ⁇ of the integrated imaging display.
  • the traditional method for improving the resolution without reducing the viewing angle is to use a lens moving method: the lens moves a distance in one direction (the distance is less than a lens pitch), and the display screen displays the corresponding element image.
  • the resolution in the horizontal direction can be improved (increased to n times before the improvement); if the lens moves in a direction that is constant with the horizontal direction
  • the angle f (the lens moves obliquely), the resolution of the formed image in the horizontal and vertical directions is correspondingly increased, increasing to n ⁇ cosf times in the horizontal direction and n ⁇ sinf times in the vertical direction.
  • the traditional method adopts the method of mechanical movement, which is very difficult to implement in practice, and the speed of mechanical movement is difficult to control.
  • the precise alignment problem between the lens array and the display is more difficult to solve.
  • the technical problem to be solved by the present invention is to provide a display that can be switched between 2D and 3D modes and a control method thereof, which can better improve the resolution and viewing angle of the display at the same time.
  • the present invention adopts a technical solution to provide a display that can be switched between 2D and 3D modes, wherein the display includes a first lens panel, a first display panel, and a second layer which are sequentially stacked.
  • the first lens panel and the second lens panel respectively include a first lens unit and a second lens unit arranged in a predetermined direction, the first lens unit and the second lens unit being capable of generating incident light Switching between a refracted focus state and a non-focus state that does not refract incident ray, wherein the first lens unit and the second lens unit are along a predetermined side Staggered to each other, the pitch of the first lens unit and the second lens unit in the predetermined direction is the same, and the amount of shift of the first lens unit and the second lens unit in the predetermined direction is half of the pitch, and the display further includes a control unit for controlling The unit controls the display to alternately switch between the first state and the second state in the 3D mode, wherein in the first state, the first display panel is in a display state, and the first lens unit on the first lens panel is in an in-focus state, In order to cause the element image displayed by the first display panel to be focused by the first lens unit and projected to
  • the second display panel is in a display state, and the second lens unit on the second lens panel is in an in-focus state, so that the element image displayed by the second display panel is focused by the second lens unit and passes through the first display panel and the first lens The panel is transmitted and projected to the viewer.
  • the first lens panel includes a first transparent substrate, a second transparent substrate, and a first liquid crystal layer encapsulated between the first transparent substrate and the second transparent substrate
  • the second lens panel includes a third transparent surface disposed opposite to each other.
  • the first transparent substrate is formed by a plurality of first curved structures having a curved cross section along a predetermined direction
  • the three transparent substrates are formed by a plurality of second curved structures having a curved cross section along a predetermined direction
  • the first curved surface structure and the second curved surface structure are staggered in a predetermined direction
  • the first liquid crystal layer and the second liquid crystal layer both include
  • the first axial refractive index of the liquid crystal molecules is greater than the refractive indices of the first transparent substrate and the third transparent substrate
  • the second axial refractive index of the liquid crystal molecules is equal to the refractive indices of the
  • the widths of the first curved surface structure and the second curved surface structure are equal in a predetermined direction, and the amount of the first curved surface structure and the second curved surface structure in a predetermined direction is half of the width.
  • the control unit controls the first display panel to be in a display state in the 2D mode, the first lens unit on the first lens panel is in an unfocused state, or controls the first display panel to be in a transparent state, and the second display panel is in a display state.
  • the first lens unit on the first lens panel and the second lens unit on the second lens panel are both in an unfocused state.
  • control unit is configured to control the rotation of the liquid crystal molecules, wherein the first axial rotation of the liquid crystal molecules When it is parallel to the first display panel, the corresponding first lens unit or the second lens unit is in an in-focus state, and the first axial rotation of the liquid crystal molecules is perpendicular to the first display panel, the corresponding first lens unit or the second The lens unit is in an unfocused state.
  • the first package and the second package the first package is located between the first lens panel and the first display panel, and the second package is located between the second lens panel and the second display panel, and the control unit is controlled a first package and a second package to respectively control polarization states of the polarized light incident to the first lens unit and the second lens unit, thereby respectively controlling the first lens unit and the second lens unit in an in-focus state and a non-focus state Switch between.
  • another technical solution adopted by the present invention is to provide a display that can be switched between 2D and 3D modes, and the display includes a first lens panel, a first display panel, and a second lens which are sequentially stacked. a panel and a second display panel, wherein the first lens panel and the second lens panel respectively include a first lens unit and a second lens unit arranged in a predetermined direction, the first lens unit and the second lens unit being capable of refracting incident light The focus state and the non-focus state that does not refract incident light are switched, wherein the first lens unit and the second lens unit are staggered from each other in a predetermined direction.
  • the pitch of the first lens unit and the second lens unit in the predetermined direction is the same, and the amount of the first lens unit and the second lens unit being offset in the predetermined direction is half of the pitch.
  • the first lens panel includes a first transparent substrate, a second transparent substrate, and a first liquid crystal layer encapsulated between the first transparent substrate and the second transparent substrate
  • the second lens panel includes a third transparent surface disposed opposite to each other.
  • the first transparent substrate is formed by a plurality of first curved structures having a curved cross section along a predetermined direction
  • the three transparent substrates are formed by a plurality of second curved structures having a curved cross section along a predetermined direction
  • the first curved surface structure and the second curved surface structure are staggered in a predetermined direction
  • the first liquid crystal layer and the second liquid crystal layer both include
  • the first axial refractive index of the liquid crystal molecules is greater than the refractive indices of the first transparent substrate and the third transparent substrate
  • the second axial refractive index of the liquid crystal molecules is equal to the refractive indices of the
  • the widths of the first curved surface structure and the second curved surface structure are equal in a predetermined direction, and the amount of the first curved surface structure and the second curved surface structure in a predetermined direction is half of the width.
  • the display further comprises a control unit that controls the display to alternately switch between the first state and the second state in the 3D mode, wherein in the first state, the first display panel is in the display state, on the first lens panel The first lens unit is in an in-focus state, so that the element image displayed by the first display panel is focused by the first lens unit and projected to the observer. In the second state, the first display panel is in a transparent state, on the first lens panel.
  • the first lens unit is in an unfocused state
  • the second display panel is in a display state
  • the second lens unit on the second lens panel is in an in-focus state such that an element image displayed by the second display panel is focused by the second lens unit and After being transmitted through the first display panel and the first lens panel, it is projected to the observer.
  • the control unit controls the first display panel to be in a display state in the 2D mode, the first lens unit on the first lens panel is in an unfocused state, or controls the first display panel to be in a transparent state, and the second display panel is in a display state.
  • the first lens unit on the first lens panel and the second lens unit on the second lens panel are both in an unfocused state.
  • the display further comprises a control unit, wherein the control unit is configured to control the rotation of the liquid crystal molecules, wherein when the first axial rotation of the liquid crystal molecules is parallel to the first display panel, the corresponding first lens unit or the second lens unit is in an in-focus state When the first axial rotation of the liquid crystal molecules is perpendicular to the first display panel, the corresponding first lens unit or the second lens unit is in a non-focus state.
  • the display further includes a control unit, a first package box, and a second package box, the first package box is located between the first lens panel and the first display panel, and the second package box is located between the second lens panel and the second display panel
  • the control unit controls the first package and the second package to control the polarization states of the polarized light incident on the first lens unit and the second lens unit, respectively, thereby controlling the first lens unit and the second lens unit to be respectively focused. Switch between status and non-focus state.
  • another technical solution adopted by the present invention is to provide a control method of a display that can be switched between 2D and 3D modes, the display includes a first lens panel, a first display panel, and a first display panel which are sequentially stacked.
  • the first lens panel and The second lens panels respectively include a first lens unit and a second lens unit arranged in a predetermined direction, the first lens unit and the second lens unit being capable of focusing in a state of focusing on incident light and a non-focusing state not refracting incident light Switching between, wherein the first lens unit and the second lens unit are offset from each other in a predetermined direction
  • the method comprising: controlling the display to alternately switch between the first state and the second state, wherein in the first state, the first display The panel is in a display state, and the first lens unit on the first lens panel is in an in-focus state, so that the element image displayed by the first display panel is focused by the first lens unit and projected to the observer, and in the second state, the first display The panel is in a transparent state, the first lens unit on the first lens panel is in an unfocused state, the second display panel is in a display state, and the second lens unit on the second lens panel is in an in-focus state
  • the control method further includes: controlling the first display panel to be in a display state, the first lens unit on the first lens panel is in an unfocused state, or controlling the first display panel to be in a transparent state, and the second display panel is in a display state, The first lens unit on one lens panel and the second lens unit on the second lens panel are both in an unfocused state.
  • the invention has the beneficial effects that the first lens panel and the second lens panel respectively include the first lens unit and the second lens unit arranged in a predetermined direction, and the first one is controlled by the first lens panel and the second lens panel.
  • the lens unit and the second lens unit are capable of switching between a focus state in which the incident light is refracted and a non-focus state in which the incident light is not refracted, and the first lens unit and the second lens unit are disposed to be shifted from each other in a predetermined direction, It is better to improve the resolution and viewing angle of the display at the same time.
  • FIG. 1 is a top plan view of a display of the present invention switchable between 2D and 3D modes;
  • FIG. 2 is a cross-sectional view of the display switchable between 2D and 3D modes in a predetermined direction A-A of FIG. 1 in accordance with a preferred embodiment of the present invention
  • Figure 3 is a schematic view of the long axis and the short axis of the liquid crystal molecules of Figure 2;
  • FIG. 4 is a schematic diagram showing the reverse direction of liquid crystal molecules of the display in the first lens unit or the second lens unit in a non-focus state according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the reverse direction of liquid crystal molecules in a state in which a first lens unit or a second lens unit of the display is in a focused state according to a preferred embodiment of the present invention
  • Figure 6 is a cross-sectional view of the display switchable between 2D and 3D modes in a predetermined direction A-A of Figure 1 in accordance with another embodiment of the present invention
  • FIG. 7 is a flow chart of a preferred embodiment of a control method of a display that can be switched between 2D and 3D modes of the present invention.
  • FIG. 1 is a schematic top plan view of a display switchable between 2D and 3D modes according to the present invention
  • FIG. 2 is a display capable of switching between 2D and 3D modes in a preferred embodiment of the present invention.
  • the display includes a first lens panel 11, a first display panel 12, a second lens panel 13, and a second display panel 14 which are sequentially stacked.
  • the first lens panel 11, the first display panel 12, the second lens panel 13, and the second display panel 14 are disposed in parallel with each other, and the first lens panel 11 and the first display panel 12 are sequentially arranged from top to bottom.
  • the first lens panel 11 and the second lens panel 13 respectively include a first lens unit 111 and a second lens unit 131 arranged in a predetermined direction AA, and the first lens panel 11 includes a plurality of first lens units 111 arranged in a predetermined direction AA. And the second lens panel 13 includes a plurality of second lens units 131 arranged in a predetermined direction AA.
  • the first lens unit 111 and the second lens unit 131 are capable of switching between a focus state in which the incident light is refracted and a non-focus state in which the incident light is not refracted, wherein the first lens unit The 111 and second lens units 131 are shifted from each other in a predetermined direction AA.
  • the pitch p of the first lens unit 111 and the second lens unit 131 in the predetermined direction AA is the same, and the first lens unit 111 and the second lens unit 131 are the same.
  • the amount of shift s in the predetermined direction is half of the pitch p.
  • the first lens panel 11 includes a first transparent substrate 112, a second transparent substrate 113, and a first liquid crystal layer 114, which is encapsulated between the first transparent substrate 112 and the second transparent substrate 113, and a second lens panel.
  • 13 includes a third transparent substrate 132, a fourth transparent substrate 133, and a second liquid crystal layer 134 encapsulated between the third transparent substrate 132 and the fourth transparent substrate 133.
  • the first transparent substrate 112 is formed by a plurality of predetermined directions.
  • a first curved structure 1121 having a curved cross section of AA is formed, and a third transparent substrate 132 is formed by a plurality of second curved structures 1321 having a curved cross section along a predetermined direction AA.
  • the first curved surface structure 1121 and the second curved surface are formed.
  • the structure 1321 is staggered in the predetermined direction AA.
  • the first liquid crystal layer 114 is encapsulated between the first transparent substrate 112 and the second transparent substrate 113.
  • the first lens panel 11 may also include only the first transparent layer.
  • the substrate 112 does not include the second transparent substrate 113.
  • the first liquid crystal layer 114 is encapsulated between the first display panel 12 and the first transparent substrate 112.
  • the second liquid crystal layer 134 may also be directly
  • the second lens panel 13 may also be included in the second display panel 14 and the third transparent substrate 132, and may include only the third transparent substrate 132 without including the fourth transparent substrate 133.
  • the widths p of the first curved surface structure 1121 and the second curved surface structure 1321 in the predetermined direction A-A are equal, and the amount of shift s of the first curved surface structure 1121 and the second curved surface structure 1321 in the predetermined direction is half of the width p.
  • the display further comprises a control unit (not shown), and the control unit controls the display to alternately switch between the first state and the second state in the 3D mode, wherein in the first state, the first display panel 12 is in the display In a state, the first lens unit 111 on the first lens panel 11 is in an in-focus state, so that the element image displayed by the first display panel 12 is focused by the first lens unit 111 and projected to the observer; in the second state, the first The display panel 12 is in a transparent state, the first lens unit 111 on the first lens panel 11 is in an unfocused state, the second display panel 14 is in a display state, and the second lens unit 131 on the second lens panel 13 is in an in-focus state, The element map displayed by the second display panel 14 The image is projected to the observer after being focused by the second lens unit 131 and transmitted through the first display panel 12 and the first lens panel 11. Since the amount of shift s of the first lens unit 111 and the second lens unit 131 in the predetermined direction is half of the pitch p
  • the control unit controls the first display panel 12 to be in the display state in the 2D mode, the first lens unit 111 on the first lens panel 11 is in an unfocused state, or controls the first display panel 12 to be in a transparent state, and the second display The panel 14 is in the display state, and the first lens unit 111 on the first lens panel 11 and the second lens unit 131 on the second lens panel 13 are both in an unfocused state.
  • the first liquid crystal layer 114 and the second liquid crystal layer 134 each include a plurality of liquid crystal molecules, the first liquid crystal layer 114 includes a plurality of liquid crystal molecules 1141, and the second liquid crystal layer 134 includes a plurality of liquid crystal molecules 1341.
  • control unit is configured to control the rotation of the liquid crystal molecules 1141, 1341, wherein the first axial direction X of the liquid crystal molecules 1141, 1341 is parallel to the first display panel 12, the corresponding first lens unit 111 or the second lens
  • the unit 131 is in the in-focus state
  • the corresponding first lens unit 1141 or second lens unit 1341 is in a non-focus state.
  • FIG. 3 is a schematic diagram of the long axis and the short axis of the liquid crystal molecules in FIG.
  • the first axial X refractive index n e of the liquid crystal molecules 1141, 1341 is greater than the refractive index n o of the first transparent substrate 112 and the third transparent substrate 132, and the second axial Y refractive index n o of the liquid crystal molecules 1141, 1341 is equal to the first The refractive index n o of a transparent substrate 112 and a third transparent substrate 132, the first axial X refractive index n e of the liquid crystal molecules 1141, 1341 refers to the pair of liquid crystal molecules 1141, 1341 when the direction of the light is perpendicular to the first axial direction X the refractive index of the light, the liquid crystal molecules of the second Y-axis refractive index n o 1141,1341 referring to a direction perpendicular to the light axis Y and the second liquid crystal molecules
  • the first axial direction X of the liquid crystal molecules 1141, 1341 is its long axis X
  • the second axial direction Y is its minor axis Y.
  • the refractive indices in the directions of the two axes are not equal. Assuming that the refractive index of the long axis X is n e and the refractive index of the short axis Y is n o , we take n e >n o as an example for illustration. Only liquid crystal molecules 1141 are illustrated in FIG. 3, and it is understood that liquid crystal molecules 1341 are similar to liquid crystal molecules 1141.
  • FIG. 4 is a schematic diagram showing the reverse direction of the liquid crystal molecules of the display in the first lens unit or the second lens unit in the unfocused state according to a preferred embodiment of the present invention
  • FIG. 5 is a preferred embodiment of the present invention.
  • the display is reversed in the liquid crystal molecules of the first lens unit or the second lens unit in a focused state.
  • a positive liquid crystal molecule is taken as an example (negative liquid crystal is similar)
  • the long axis X of the liquid crystal molecules 1141, 1341 is aligned in a direction perpendicular to the first display panel 12, and the polarization state of the incident polarized light is as shown in FIG.
  • the refractive index of the first liquid crystal layer 114 or the second liquid crystal layer 134 for the incident light ss is n o
  • the refractive index of the first transparent substrate 112 or the third transparent substrate 132 is also n o .
  • FIG. 5 is a voltage applied to the control unit (an electric field is generated between the first transparent substrate and the second transparent substrate, similarly, or an electric field is generated between the third transparent substrate and the fourth transparent substrate) happening, When the long axis X of the liquid crystal molecules is aligned in a direction parallel to the first display panel 12, when the polarization state of the incident polarized light is the horizontal direction BB as shown in FIG.
  • the first liquid crystal layer 114 or the second liquid crystal layer 134 is The refractive index of the incident light ss is n e , and the refractive index of the first transparent substrate 112 or the third transparent substrate 132 is n o , and n e >n o , at which time the light is refracted, and a lens focusing effect is generated, that is, the first A lens unit 111 or a second lens unit 131 is in an in-focus state.
  • the liquid crystal molecules 1141 are taken as an example. It can be understood that the corresponding liquid crystal molecules 1341 are similar.
  • FIG. 6 is a cross-sectional view of the display switchable between 2D and 3D modes in a predetermined direction A-A of FIG. 1 according to another embodiment of the present invention.
  • the embodiment differs from the above embodiment in that the display further includes a first package 15 and a second package 16 .
  • the first package 15 is located between the first lens panel 11 and the first display panel 12
  • the second package 16 is Located between the second lens panel 13 and the second display panel 14, the control unit controls the first package 15 and the second package 16 by
  • the polarization states of the polarized lights incident to the first lens unit 111 and the second lens unit 131 are separately controlled, thereby controlling the first lens unit 111 and the second lens unit 131 to switch between the in-focus state and the non-focus state, respectively.
  • the first package 15 and the second package 16 are TN cells and are parallel to the first display panel 12 and the second display panel 14.
  • the liquid crystal molecules 1141, 1341 can be switched between the in-focus state and the non-focus state without the rotation, and preferably, the liquid crystal molecules 1141, 1341 are long.
  • the axes X are arranged in a direction parallel to the first display panel 12.
  • FIG. 7 is a flow chart of a preferred embodiment of a control method of a display capable of switching between 2D and 3D modes.
  • the control method is implemented using the display described above, and the control method includes the following steps of 3D display:
  • Step S11 The control display alternately switches between the first state and the second state, wherein in the first state, the first display panel is in a display state, and the first lens unit on the first lens panel is in an in-focus state, so that The element image displayed by the first display panel is focused by the first lens unit and projected to the observer.
  • the first display panel In the second state, the first display panel is in a transparent state, and the first lens unit on the first lens panel is in an unfocused state.
  • the second display panel is in a display state, and the second lens unit on the second lens panel is in an in-focus state, so that the element image displayed by the second display panel is focused by the second lens unit and transmitted through the first display panel and the first lens panel. Projected to the observer.
  • the control method also includes the steps of 2D display:
  • Step S12 controlling the first display panel to be in a display state, the first lens unit on the first lens panel is in an unfocused state, or controlling the first display panel to be in a transparent state, and the second display panel is in a display state, on the first lens panel. Both the first lens unit and the second lens unit on the second lens panel are in an unfocused state.
  • the present invention includes a first lens unit and a second lens unit respectively arranged in a predetermined direction by providing a first lens panel and a second lens panel, and capable of refracting incident light by controlling the first lens unit and the second lens unit Focus state and non-focus state that does not refract incident light Switching is performed, and the first lens unit and the second lens unit are arranged to be shifted from each other in a predetermined direction, which can better improve the resolution and viewing angle of the display at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)

Abstract

一种可在2D和3D模式之间切换的显示器及其控制方法。显示器包括依次层叠设置的第一透镜面板(11)、第一显示面板(12)、第二透镜面板(13)以及第二显示面板(14),其中第一透镜面板(11)和第二透镜面板(13)分别包括沿预定方向排列的第一透镜单元(111)和第二透镜单元(131),第一透镜单元(111)和第二透镜单元(131)能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间进行切换,第一透镜单元(111)和第二透镜单元(131)沿预定方向彼此错开。显示器的解析度和观看视角同时得到改善。

Description

可在2D和3D模式之间切换的显示器及其控制方法 【技术领域】
本发明涉及显示技术领域,特别是涉及一种可在2D和3D模式之间切换的显示器及其控制方法。
【背景技术】
近年来,随着平板显示技术与相关材料领域技术的不断进步,3D显示成为人们关注的焦点,尤其是裸眼3D由于用户不需要穿戴辅助设备即可以观看到3D效果,备受关注。
目前,较为常见的两种方式为光屏障式3D技术和柱状透镜技术。
光屏障式3D技术的实现方法是使用一个开关液晶屏、偏振膜和高分子液晶层,利用液晶层和偏振膜制造出一系列方向为90°的垂直条纹。这些条纹宽几十微米,通过它们的光就形成了垂直的细条栅模式,称之为“视差障壁”。而该技术正是利用了安置在背光模块及LCD面板间的视差障壁,在立体显示模式下,应该由左眼看到的图像显示在液晶屏上时,不透明的条纹会遮挡右眼;同理,应该由右眼看到的图像显示在液晶屏上时,不透明的条纹会遮挡左眼,通过将左眼和右眼的可视画面分开,使观者看到3D影像。这种技术的优点是在成本上比较有优势,不过采用这种技术的屏幕亮度偏低。
柱状透镜技术也被称为微柱透镜3D技术,使液晶屏的像平面位于透镜的焦平面上,这样在每个柱透镜下面的图像的像素被分成几个子像素,这样透镜就能以不同的方向投影每个子像素。于是双眼从不同的角度观看显示屏,就看到不同的子像素。柱状透镜技术并不会像光屏障式那样影响屏幕亮度,所以显示效果要好。然而,如果透镜焦距(focal length)为f,透镜节距(lens pitch)为p,透镜与显示器之间的间距为g,影像成像的位置位于透镜前面L距离处,假设显示器的解析度足够高的情况下,此时成像的解析度为:R=L/2p,解析度单位为空 间频率(1/rad);观看视角(viewing angle)为:θ=2arctan(p/2g),因此现有技术存在的技术问题是:当透镜节距p增大时,观看视角θ变大,但是成像解析度R变小,很难同时改善集成成像显示器的解析度R和观看视角θ。
传统方法用于改善解析度而又不降低观看视角的方法是采用移动透镜(lens moving)的方式:透镜朝一个方向移动一个距离(该距离小于一个lens pitch),显示屏显示相对应的元素图像(EI),由于人眼的暂留效应,人会看到解析度增强的3D影像,并且此时观看视角不会有变化;透镜阵列移动的距离s必须小于透镜阵列的lens pitch p,一般设置p/s=n为整数,如果透镜只在水平方向上进行移动,那么在水平方向上的解析度便可以获得提高(提高为改善前的n倍);如果透镜移动的方向与水平方向成一定夹角f(透镜斜着移动),那么所成的像在水平和垂直方向上的解析度都会有相应提高,在水平方向提高为n×cosf倍,在垂直方向上提高为n×sinf倍。传统方法采用机械移动的方式,实际实现起来非常困难,而且机械移动的速度较快很难控制,lens array机械移动过程中与显示器的精确对位问题也比较难解决。
因此,需要提供一种可在2D和3D模式之间切换的显示器及其控制方法,以解决上述技术问题。
【发明内容】
本发明主要解决的技术问题是提供一种可在2D和3D模式之间切换的显示器及其控制方法,能够较好的同时改善显示器的解析度和观看视角。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种可在2D和3D模式之间切换的显示器,其中,显示器包括依次层叠设置的第一透镜面板、第一显示面板、第二透镜面板以及第二显示面板,其中第一透镜面板和第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,第一透镜单元和第二透镜单元能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间进行切换,其中第一透镜单元和第二透镜单元沿预定方 向彼此错开,第一透镜单元和第二透镜单元沿预定方向的节距相同,且第一透镜单元和第二透镜单元沿预定方向的错开量为节距的一半,显示器进一步包括控制单元,控制单元在3D模式下控制显示器交替地在第一状态和第二状态下进行切换,其中在第一状态下,第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于聚焦状态,以使第一显示面板所显示的元素图像经第一透镜单元聚焦后投射至观察者,在第二状态,第一显示面板处于透明状态,第一透镜面板上的第一透镜单元处于非聚焦状态,第二显示面板处于显示状态,第二透镜面板上的第二透镜单元处于聚焦状态,以使第二显示面板所显示的元素图像经第二透镜单元聚焦且经第一显示面板和第一透镜面板透射后投射至观察者。
其中,第一透镜面板包括相对设置的第一透明基板、第二透明基板以及封装在第一透明基板与第二透明基板之间的第一液晶层,第二透镜面板包括相对设置的第三透明基板、第四透明基板以及封装在第三透明基板与第四透明基板之间的第二液晶层,第一透明基板由多个沿预定方向的截面呈弧形的第一曲面结构连接形成,第三透明基板由多个沿预定方向的截面呈弧形的第二曲面结构连接形成,第一曲面结构和第二曲面结构在预定方向上错开设置,第一液晶层和第二液晶层均包括多个液晶分子,液晶分子的第一轴向折射率大于第一透明基板和第三透明基板的折射率,液晶分子的第二轴向折射率等于第一透明基板和第三透明基板的折射率。
其中,第一曲面结构和第二曲面结构沿预定方向的宽度相等,且第一曲面结构和第二曲面结构沿预定方向的错开量为宽度的一半。
其中,控制单元在2D模式下控制第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制第一显示面板处于透明状态,第二显示面板处于显示状态,第一透镜面板上的第一透镜单元和第二透镜面板上的第二透镜单元均处于非聚焦状态。
其中,控制单元用于控制液晶分子旋转,其中,液晶分子的第一轴向旋转 为平行于第一显示面板时,对应的第一透镜单元或第二透镜单元处于聚焦状态,液晶分子的第一轴向旋转为垂直于第一显示面板时,对应的第一透镜单元或第二透镜单元处于非聚焦状态。
其中,第一封装盒以及第二封装盒,第一封装盒位于第一透镜面板和第一显示面板之间,第二封装盒位于第二透镜面板和第二显示面板之间,控制单元通过控制第一封装盒和第二封装盒以分别控制入射到第一透镜单元和第二透镜单元的偏正光的偏振态,从而分别控制第一透镜单元和第二透镜单元在聚焦状态和非聚焦状态之间切换。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种可在2D和3D模式之间切换的显示器,显示器包括依次层叠设置的第一透镜面板、第一显示面板、第二透镜面板以及第二显示面板,其中第一透镜面板和第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,第一透镜单元和第二透镜单元能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间进行切换,其中第一透镜单元和第二透镜单元沿预定方向彼此错开。
其中,第一透镜单元和第二透镜单元沿预定方向的节距相同,且第一透镜单元和第二透镜单元沿预定方向的错开量为节距的一半。
其中,第一透镜面板包括相对设置的第一透明基板、第二透明基板以及封装在第一透明基板与第二透明基板之间的第一液晶层,第二透镜面板包括相对设置的第三透明基板、第四透明基板以及封装在第三透明基板与第四透明基板之间的第二液晶层,第一透明基板由多个沿预定方向的截面呈弧形的第一曲面结构连接形成,第三透明基板由多个沿预定方向的截面呈弧形的第二曲面结构连接形成,第一曲面结构和第二曲面结构在预定方向上错开设置,第一液晶层和第二液晶层均包括多个液晶分子,液晶分子的第一轴向折射率大于第一透明基板和第三透明基板的折射率,液晶分子的第二轴向折射率等于第一透明基板和第三透明基板的折射率。
其中,第一曲面结构和第二曲面结构沿预定方向的宽度相等,且第一曲面结构和第二曲面结构沿预定方向的错开量为宽度的一半。
其中,显示器进一步包括控制单元,控制单元在3D模式下控制显示器交替地在第一状态和第二状态下进行切换,其中在第一状态下,第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于聚焦状态,以使第一显示面板所显示的元素图像经第一透镜单元聚焦后投射至观察者,在第二状态,第一显示面板处于透明状态,第一透镜面板上的第一透镜单元处于非聚焦状态,第二显示面板处于显示状态,第二透镜面板上的第二透镜单元处于聚焦状态,以使第二显示面板所显示的元素图像经第二透镜单元聚焦且经第一显示面板和第一透镜面板透射后投射至观察者。
其中,控制单元在2D模式下控制第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制第一显示面板处于透明状态,第二显示面板处于显示状态,第一透镜面板上的第一透镜单元和第二透镜面板上的第二透镜单元均处于非聚焦状态。
其中,显示器进一步包括控制单元,控制单元用于控制液晶分子旋转,其中,液晶分子的第一轴向旋转为平行于第一显示面板时,对应的第一透镜单元或第二透镜单元处于聚焦状态,液晶分子的第一轴向旋转为垂直于第一显示面板时,对应的第一透镜单元或第二透镜单元处于非聚焦状态。
其中,显示器进一步包括控制单元、第一封装盒以及第二封装盒,第一封装盒位于第一透镜面板和第一显示面板之间,第二封装盒位于第二透镜面板和第二显示面板之间,控制单元通过控制第一封装盒和第二封装盒以分别控制入射到第一透镜单元和第二透镜单元的偏正光的偏振态,从而分别控制第一透镜单元和第二透镜单元在聚焦状态和非聚焦状态之间切换。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种可在2D和3D模式之间切换的显示器的控制方法,显示器包括依次层叠设置的第一透镜面板、第一显示面板、第二透镜面板以及第二显示面板,其中第一透镜面板和 第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,第一透镜单元和第二透镜单元能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间进行切换,其中第一透镜单元和第二透镜单元沿预定方向彼此错开,方法包括:控制显示器交替地在第一状态和第二状态下进行切换,其中在第一状态下,第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于聚焦状态,以使第一显示面板所显示的元素图像经第一透镜单元聚焦后投射至观察者,在第二状态,第一显示面板处于透明状态,第一透镜面板上的第一透镜单元处于非聚焦状态,第二显示面板处于显示状态,第二透镜面板上的第二透镜单元处于聚焦状态,以使第二显示面板所显示的元素图像经第二透镜单元聚焦且经第一显示面板和第一透镜面板透射后投射至观察者。
其中,控制方法进一步包括:控制第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制第一显示面板处于透明状态,第二显示面板处于显示状态,第一透镜面板上的第一透镜单元和第二透镜面板上的第二透镜单元均处于非聚焦状态。
本发明的有益效果是:区别于现有技术的情况,本发明通过设置第一透镜面板和第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,且通过控制第一透镜单元和第二透镜单元能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间进行切换,且设置第一透镜单元和第二透镜单元沿预定方向彼此错开,能够较好的同时改善显示器的解析度和观看视角。
【附图说明】
图1是本发明可在2D和3D模式之间切换的显示器的俯视结构示意图;
图2是本发明优选实施例的可在2D和3D模式之间切换的显示器在图1中预定方向A-A上的横截面图;
图3是图2中液晶分子的长轴与短轴示意图;
图4是本发明优选实施例的显示器在其第一透镜单元或第二透镜单元在非聚焦状态下的液晶分子倒向示意图;
图5是本发明优选实施例的显示器在其第一透镜单元或第二透镜单元在聚焦状态下的液晶分子倒向示意图;
图6是本发明另一实施例的可在2D和3D模式之间切换的显示器在图1中预定方向A-A上的横截面图;
图7是本发明可在2D和3D模式之间切换的显示器的控制方法的优选实施例的流程图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细的说明。
请参阅图1,图1是本发明可在2D和3D模式之间切换的显示器的俯视结构示意图;图2是本发明优选实施例的可在2D和3D模式之间切换的显示器在图1中预定方向A-A上的横截面图。
在本实施例中,显示器包括依次层叠设置的第一透镜面板11、第一显示面板12、第二透镜面板13以及第二显示面板14。优选地,第一透镜面板11、第一显示面板12、第二透镜面板13以及第二显示面板14相互平行设置,且由上至下依次为第一透镜面板11、第一显示面板12、第二透镜面板13以及第二显示面板14。
第一透镜面板11和第二透镜面板13分别包括沿预定方向A-A排列的第一透镜单元111和第二透镜单元131,第一透镜面板11包括多个沿预定方向A-A排列的第一透镜单元111,而第二透镜面板13包括多个沿预定方向A-A排列的第二透镜单元131。
第一透镜单元111和第二透镜单元131能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间进行切换,其中第一透镜单元 111和第二透镜单元131沿预定方向A-A彼此错开,优选地,第一透镜单元111和第二透镜单元131沿预定方向A-A的节距p相同,且第一透镜单元111和第二透镜单元131沿预定方向的错开量s为节距p的一半。
优选地,第一透镜面板11包括相对设置的第一透明基板112、第二透明基板113以及封装在第一透明基板112与第二透明基板113之间的第一液晶层114,第二透镜面板13包括相对设置的第三透明基板132、第四透明基板133以及封装在第三透明基板132与第四透明基板133之间的第二液晶层134,第一透明基板112由多个沿预定方向A-A的截面呈弧形的第一曲面结构1121连接形成,第三透明基板132由多个沿预定方向A-A的截面呈弧形的第二曲面结构1321连接形成,第一曲面结构1121和第二曲面结构1321在预定方向A-A上错开设置。值得注意的是,在本实施例中,第一液晶层114封装在第一透明基板112和第二透明基板113之间,在其他实施例中,第一透镜面板11也可以仅包括第一透明基板112,而不包括第二透明基板113,在这种情形下,第一液晶层114封装在第一显示面板12与第一透明基板112之间,同理,第二液晶层134也可以直接封装在第二显示面板14与第三透明基板132之间,即第二透镜面板13也可以仅包括第三透明基板132,而不包括第四透明基板133。
优选地,第一曲面结构1121和第二曲面结构1321沿预定方向A-A的宽度p相等,且第一曲面结构1121和第二曲面结构1321沿预定方向的错开量s为宽度p的一半。
优选地,显示器进一步包括控制单元(图未示),控制单元在3D模式下控制显示器交替地在第一状态和第二状态下进行切换,其中在第一状态下,第一显示面板12处于显示状态,第一透镜面板11上的第一透镜单元111处于聚焦状态,以使第一显示面板12所显示的元素图像经第一透镜单元111聚焦后投射至观察者;在第二状态,第一显示面板12处于透明状态,第一透镜面板11上的第一透镜单元111处于非聚焦状态,第二显示面板14处于显示状态,第二透镜面板13上的第二透镜单元131处于聚焦状态,以使第二显示面板14所显示的元素图 像经第二透镜单元131聚焦且经第一显示面板12和第一透镜面板11透射后投射至观察者。由于第一透镜单元111和第二透镜单元131沿预定方向的错开量s为节距p的一半,显示器在水平方向的解析度可以提高p/s倍,优选的情况下可以提高一倍。
优选地,控制单元在2D模式下控制第一显示面板12处于显示状态,第一透镜面板11上的第一透镜单元111处于非聚焦状态,或者控制第一显示面板12处于透明状态,第二显示面板14处于显示状态,第一透镜面板11上的第一透镜单元111和第二透镜面板13上的第二透镜单元131均处于非聚焦状态。
第一液晶层114和第二液晶层134均包括多个液晶分子,第一液晶层114包括多个液晶分子1141,第二液晶层134包括多个液晶分子1341。
优选地,控制单元用于控制液晶分子1141、1341旋转,其中,液晶分子1141、1341的第一轴向X旋转为平行于第一显示面板12时,对应的第一透镜单元111或第二透镜单元131处于聚焦状态,液晶分子1141、1341的第一轴向X旋转为垂直于第一显示面板12时,对应的第一透镜单元1141或第二透镜单元1341处于非聚焦状态。
请参阅图3,图3是图2中液晶分子的长轴与短轴示意图。液晶分子1141、1341的第一轴向X折射率ne大于第一透明基板112和第三透明基板132的折射率no,液晶分子1141、1341的第二轴向Y折射率no等于第一透明基板112和第三透明基板132的折射率no,液晶分子1141、1341的第一轴向X折射率ne指的是光线方向垂直与第一轴向X时液晶分子1141、1341对光线的折射率,液晶分子1141、1341的第二轴向Y折射率no指的是光线方向垂直与第二轴向Y时液晶分子1141、1341对光线的折射率液晶分子1141、1341有长轴X和短轴Y之分,在本实施例中,优选地,液晶分子1141、1341的第一轴向X为其长轴X,第二轴向Y为其短轴Y。在这两个轴的方向上的折射率是不相等的,假设长轴X的折射率为ne,短轴Y的折射率为no,我们以ne>no为例进行说明。图3中仅以液晶分子1141进行说明,可以理解的是液晶分子1341与液晶分子1141 类似。
请进一步参阅图4和图5,图4是本发明优选实施例的显示器在其第一透镜单元或第二透镜单元在非聚焦状态下的液晶分子倒向示意图,图5是本发明优选实施例的显示器在其第一透镜单元或第二透镜单元在聚焦状态下的液晶分子倒向示意图。本实施例以正型液晶分子为例(负型液晶类似),图4为控制单元没有加电压(在第一透明基板和第二透明基板之间不产生电场,类似的,或者是在第三透明基板和第四透明基板之间不产生电场)的情况,此时液晶分子1141、1341长轴X在垂直于第一显示面板12的方向排列,当入射偏振光的偏振态为如图4所示水平方向B-B时,此时第一液晶层114或第二液晶层134对于入射光ss的折射率为no,而第一透明基板112或第三透明基板132的折射率同样为no,由于折射率在入射光ss的传播方向上没有发生变化,入射光ss不会发生折射,第一透镜单元111或第二透镜单元131不形成透镜聚焦,即第一透镜单元111或第二透镜单元131处于非聚焦状态;图5为控制单元加电压(在第一透明基板和第二透明基板之间产生电场,类似的,或者是在第三透明基板和第四透明基板之间产生电场)的情况,此时液晶分子长轴X在平行于第一显示面板12的方向排列,当入射偏振光的偏振态为如图5所示水平方向B-B时,此时第一液晶层114或者第二液晶层134对于入射光ss的折射率为ne,而第一透明基板112或第三透明基板132的折射率为no,而ne>no,此时光会发生折射,且产生透镜聚焦效果,即第一透镜单元111或第二透镜单元131处于聚焦状态。上图4和图5中仅以液晶分子1141为例进行说明可以理解的是对应的液晶分子1341与之类似。
请进一步参阅图6,图6是本发明另一实施例的可在2D和3D模式之间切换的显示器在图1中预定方向A-A上的横截面图。本实施例与上述实施例区别在于,显示器进一步包括第一封装盒15以及第二封装盒16,第一封装盒15位于第一透镜面板11和第一显示面板12之间,第二封装盒16位于第二透镜面板13和第二显示面板14之间,控制单元通过控制第一封装盒15和第二封装盒16 以分别控制入射到第一透镜单元111和第二透镜单元131的偏正光的偏振态,从而分别控制第一透镜单元111和第二透镜单元131在聚焦状态和非聚焦状态之间切换。优选地,第一封装盒15和第二封装盒16为TN cell,且与第一显示面板12和第二显示面板14平行。即在本实施例中,液晶分子1141、1341不需要旋转即可实现第一透镜单元111和第二透镜单元131在聚焦状态和非聚焦状态之间切换,优选地,液晶分子1141、1341的长轴X沿平行于第一显示面板12的方向排列。
请参阅图7,图7是本发明可在2D和3D模式之间切换的显示器的控制方法的优选实施例的流程图。在本实施例中,该控制方法采用上文描述的显示器实现,控制方法包括以下3D显示的步骤:
步骤S11:控制显示器交替地在第一状态和第二状态下进行切换,其中在第一状态下,第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于聚焦状态,以使第一显示面板所显示的元素图像经第一透镜单元聚焦后投射至观察者,在第二状态,第一显示面板处于透明状态,第一透镜面板上的第一透镜单元处于非聚焦状态,第二显示面板处于显示状态,第二透镜面板上的第二透镜单元处于聚焦状态,以使第二显示面板所显示的元素图像经第二透镜单元聚焦且经第一显示面板和第一透镜面板透射后投射至观察者。
控制方法还包括2D显示的步骤:
步骤S12:控制第一显示面板处于显示状态,第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制第一显示面板处于透明状态,第二显示面板处于显示状态,第一透镜面板上的第一透镜单元和第二透镜面板上的第二透镜单元均处于非聚焦状态。
可以理解的是步骤S11和S12先后顺序可以相互调换。
本发明通过设置第一透镜面板和第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,且通过控制第一透镜单元和第二透镜单元能够在对入射光线产生折射的聚焦状态和不对入射光线产生折射的非聚焦状态之间 进行切换,且设置第一透镜单元和第二透镜单元沿预定方向彼此错开,能够较好的同时改善显示器的解析度和观看视角
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种可在2D和3D模式之间切换的显示器,其中,所述显示器包括依次层叠设置的第一透镜面板、第一显示面板、第二透镜面板以及第二显示面板,其中所述第一透镜面板和所述第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,所述第一透镜单元和所述第二透镜单元能够在对入射光线产生折射的聚焦状态和不对所述入射光线产生折射的非聚焦状态之间进行切换,其中所述第一透镜单元和第二透镜单元沿所述预定方向彼此错开,所述第一透镜单元和第二透镜单元沿所述预定方向的节距相同,且所述第一透镜单元和第二透镜单元沿所述预定方向的错开量为所述节距的一半,所述显示器进一步包括控制单元,所述控制单元在3D模式下控制所述显示器交替地在第一状态和第二状态下进行切换,其中在所述第一状态下,所述第一显示面板处于显示状态,所述第一透镜面板上的第一透镜单元处于聚焦状态,以使所述第一显示面板所显示的元素图像经所述第一透镜单元聚焦后投射至观察者,在所述第二状态,所述第一显示面板处于透明状态,所述第一透镜面板上的第一透镜单元处于非聚焦状态,所述第二显示面板处于显示状态,所述第二透镜面板上的第二透镜单元处于聚焦状态,以使所述第二显示面板所显示的元素图像经所述第二透镜单元聚焦且经所述第一显示面板和所述第一透镜面板透射后投射至观察者。
  2. 根据权利要求1所述的显示器,其中,所述第一透镜面板包括相对设置的第一透明基板、第二透明基板以及封装在所述第一透明基板与所述第二透明基板之间的第一液晶层,所述第二透镜面板包括相对设置的第三透明基板、第四透明基板以及封装在所述第三透明基板与所述第四透明基板之间的第二液晶层,所述第一透明基板由多个沿所述预定方向的截面呈弧形的第一曲面结构连接形成,所述第三透明基板由多个沿所述预定方向的截面呈弧形的第二曲面结构连接形成,所述第一曲面结构和第二曲面结构在所述预定方向上错开设置,所述第一液晶层和所述第二液晶层均包括多个液晶分子,所述液晶分子的第一 轴向折射率大于所述第一透明基板和所述第三透明基板的折射率,所述液晶分子的第二轴向折射率等于所述第一透明基板和所述第三透明基板的折射率。
  3. 根据权利要求2所述的显示器,其中,所述第一曲面结构和第二曲面结构沿所述预定方向的宽度相等,且所述第一曲面结构和第二曲面结构沿所述预定方向的错开量为所述宽度的一半。
  4. 根据权利要求1所述的显示器,其中,所述控制单元在2D模式下控制所述第一显示面板处于显示状态,所述第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制所述第一显示面板处于透明状态,所述第二显示面板处于显示状态,所述第一透镜面板上的第一透镜单元和所述第二透镜面板上的第二透镜单元均处于非聚焦状态。
  5. 根据权利要求2所述的显示器,其中,所述控制单元用于控制所述液晶分子旋转,其中,所述液晶分子的第一轴向旋转为平行于所述第一显示面板时,对应的所述第一透镜单元或所述第二透镜单元处于聚焦状态,所述液晶分子的第一轴向旋转为垂直于所述第一显示面板时,对应的所述第一透镜单元或所述第二透镜单元处于非聚焦状态。
  6. 根据权利要求2所述的显示器,其中,第一封装盒以及第二封装盒,所述第一封装盒位于所述第一透镜面板和所述第一显示面板之间,所述第二封装盒位于所述第二透镜面板和所述第二显示面板之间,所述控制单元通过控制所述第一封装盒和第二封装盒以分别控制入射到所述第一透镜单元和第二透镜单元的偏正光的偏振态,从而分别控制所述第一透镜单元和第二透镜单元在聚焦状态和非聚焦状态之间切换。
  7. 一种可在2D和3D模式之间切换的显示器,其中,所述显示器包括依次层叠设置的第一透镜面板、第一显示面板、第二透镜面板以及第二显示面板,其中所述第一透镜面板和所述第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,所述第一透镜单元和所述第二透镜单元能够在对入射光线产生折射的聚焦状态和不对所述入射光线产生折射的非聚焦状态之间进行 切换,其中所述第一透镜单元和第二透镜单元沿所述预定方向彼此错开。
  8. 根据权利要求7所述的显示器,其中,所述第一透镜单元和第二透镜单元沿所述预定方向的节距相同,且所述第一透镜单元和第二透镜单元沿所述预定方向的错开量为所述节距的一半。
  9. 根据权利要求7所述的显示器,其中,所述第一透镜面板包括相对设置的第一透明基板、第二透明基板以及封装在所述第一透明基板与所述第二透明基板之间的第一液晶层,所述第二透镜面板包括相对设置的第三透明基板、第四透明基板以及封装在所述第三透明基板与所述第四透明基板之间的第二液晶层,所述第一透明基板由多个沿所述预定方向的截面呈弧形的第一曲面结构连接形成,所述第三透明基板由多个沿所述预定方向的截面呈弧形的第二曲面结构连接形成,所述第一曲面结构和第二曲面结构在所述预定方向上错开设置,所述第一液晶层和所述第二液晶层均包括多个液晶分子,所述液晶分子的第一轴向折射率大于所述第一透明基板和所述第三透明基板的折射率,所述液晶分子的第二轴向折射率等于所述第一透明基板和所述第三透明基板的折射率。
  10. 根据权利要求9所述的显示器,其中,所述第一曲面结构和第二曲面结构沿所述预定方向的宽度相等,且所述第一曲面结构和第二曲面结构沿所述预定方向的错开量为所述宽度的一半。
  11. 根据权利要求7所述的显示器,其中,所述显示器进一步包括控制单元,所述控制单元在3D模式下控制所述显示器交替地在第一状态和第二状态下进行切换,其中在所述第一状态下,所述第一显示面板处于显示状态,所述第一透镜面板上的第一透镜单元处于聚焦状态,以使所述第一显示面板所显示的元素图像经所述第一透镜单元聚焦后投射至观察者,在所述第二状态,所述第一显示面板处于透明状态,所述第一透镜面板上的第一透镜单元处于非聚焦状态,所述第二显示面板处于显示状态,所述第二透镜面板上的第二透镜单元处于聚焦状态,以使所述第二显示面板所显示的元素图像经所述第二透镜单元聚焦且经所述第一显示面板和所述第一透镜面板透射后投射至观察者。
  12. 根据权利要求11所述的显示器,其中,所述控制单元在2D模式下控制所述第一显示面板处于显示状态,所述第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制所述第一显示面板处于透明状态,所述第二显示面板处于显示状态,所述第一透镜面板上的第一透镜单元和所述第二透镜面板上的第二透镜单元均处于非聚焦状态。
  13. 根据权利要求9所述的显示器,其中,所述显示器进一步包括控制单元,所述控制单元用于控制所述液晶分子旋转,其中,所述液晶分子的第一轴向旋转为平行于所述第一显示面板时,对应的所述第一透镜单元或所述第二透镜单元处于聚焦状态,所述液晶分子的第一轴向旋转为垂直于所述第一显示面板时,对应的所述第一透镜单元或所述第二透镜单元处于非聚焦状态。
  14. 根据权利要求9所述的显示器,其中,所述显示器进一步包括控制单元、第一封装盒以及第二封装盒,所述第一封装盒位于所述第一透镜面板和所述第一显示面板之间,所述第二封装盒位于所述第二透镜面板和所述第二显示面板之间,所述控制单元通过控制所述第一封装盒和第二封装盒以分别控制入射到所述第一透镜单元和第二透镜单元的偏正光的偏振态,从而分别控制所述第一透镜单元和第二透镜单元在聚焦状态和非聚焦状态之间切换。
  15. 一种可在2D和3D模式之间切换的显示器的控制方法,其中,所述显示器包括依次层叠设置的第一透镜面板、第一显示面板、第二透镜面板以及第二显示面板,其中所述第一透镜面板和所述第二透镜面板分别包括沿预定方向排列的第一透镜单元和第二透镜单元,所述第一透镜单元和所述第二透镜单元能够在对入射光线产生折射的聚焦状态和不对所述入射光线产生折射的非聚焦状态之间进行切换,其中所述第一透镜单元和第二透镜单元沿所述预定方向彼此错开,所述方法包括:
    控制所述显示器交替地在第一状态和第二状态下进行切换,其中在所述第一状态下,所述第一显示面板处于显示状态,所述第一透镜面板上的第一透镜单元处于聚焦状态,以使所述第一显示面板所显示的元素图像经所述第一透镜 单元聚焦后投射至观察者,在所述第二状态,所述第一显示面板处于透明状态,所述第一透镜面板上的第一透镜单元处于非聚焦状态,所述第二显示面板处于显示状态,所述第二透镜面板上的第二透镜单元处于聚焦状态,以使所述第二显示面板所显示的元素图像经所述第二透镜单元聚焦且经所述第一显示面板和所述第一透镜面板透射后投射至观察者。
  16. 根据权利要求15所述的控制方法,其中,所述控制方法进一步包括:
    控制所述第一显示面板处于显示状态,所述第一透镜面板上的第一透镜单元处于非聚焦状态,或者控制所述第一显示面板处于透明状态,所述第二显示面板处于显示状态,所述第一透镜面板上的第一透镜单元和所述第二透镜面板上的第二透镜单元均处于非聚焦状态。
PCT/CN2014/095564 2014-12-03 2014-12-30 可在2d和3d模式之间切换的显示器及其控制方法 WO2016086483A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/433,637 US20160353097A1 (en) 2014-12-03 2014-12-30 Display switchable between 2d and 3d modes and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410728146.8A CN104407484B (zh) 2014-12-03 2014-12-03 可在2d和3d模式之间切换的显示器及其控制方法
CN201410728146.8 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016086483A1 true WO2016086483A1 (zh) 2016-06-09

Family

ID=52645126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095564 WO2016086483A1 (zh) 2014-12-03 2014-12-30 可在2d和3d模式之间切换的显示器及其控制方法

Country Status (3)

Country Link
US (1) US20160353097A1 (zh)
CN (1) CN104407484B (zh)
WO (1) WO2016086483A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10356397B2 (en) * 2015-02-13 2019-07-16 Samsung Electronics Co., Ltd. Three-dimensional (3D) display apparatus and method
CN107797356B (zh) * 2015-05-28 2020-10-27 江苏双星彩塑新材料股份有限公司 一种具有3d显示的液晶透镜组件的显示器
CN106157835A (zh) * 2016-08-29 2016-11-23 合肥惠科金扬科技有限公司 一种可旋转液晶显示屏
CN106200072A (zh) * 2016-08-29 2016-12-07 合肥惠科金扬科技有限公司 一种360度旋转液晶显示屏
CN106200074A (zh) * 2016-08-29 2016-12-07 合肥惠科金扬科技有限公司 一种曲面液晶显示屏
CN106292028A (zh) * 2016-08-29 2017-01-04 合肥惠科金扬科技有限公司 一种大可视角度的液晶屏
CN107146566A (zh) * 2017-06-29 2017-09-08 京东方科技集团股份有限公司 一种显示装置及其显示方法
TWI685700B (zh) * 2018-08-14 2020-02-21 友達光電股份有限公司 顯示裝置與畫素結構

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070070476A1 (en) * 2005-09-20 2007-03-29 Sony Corporation Three-dimensional display
CN101876755A (zh) * 2010-02-05 2010-11-03 华映视讯(吴江)有限公司 一种立体显示器
JP4871540B2 (ja) * 2005-07-25 2012-02-08 キヤノン株式会社 立体像表示装置
CN102572477A (zh) * 2010-12-20 2012-07-11 三星电子株式会社 三维图像显示装置及其驱动方法
CN103091896A (zh) * 2013-01-25 2013-05-08 青岛海信电器股份有限公司 一种液晶显示装置及方法
KR20140003313A (ko) * 2012-06-29 2014-01-09 엘지디스플레이 주식회사 입체영상 표시장치와 그 구동방법
CN103686121A (zh) * 2012-09-19 2014-03-26 乐金显示有限公司 自动立体显示器及其控制方法
CN103926704A (zh) * 2013-06-09 2014-07-16 天马微电子股份有限公司 透镜显示设备、液晶显示设备和驱动显示的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128519B1 (ko) * 2005-08-04 2012-03-27 삼성전자주식회사 고해상도 오토스테레오스코픽 디스플레이
CN101557536A (zh) * 2009-05-14 2009-10-14 福建华映显示科技有限公司 观看景深融合显示器的方法
CN101576662B (zh) * 2009-06-17 2011-09-14 福州华映视讯有限公司 显示装置及显示三维立体影像的方法
US8582043B2 (en) * 2010-10-13 2013-11-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. 2D/3D switchable LC lens unit for use in a display device
KR101928939B1 (ko) * 2011-11-30 2019-03-13 삼성디스플레이 주식회사 2차원/3차원 전환 가능한 디스플레이 장치
CN102749717B (zh) * 2012-07-27 2017-12-08 深圳超多维光电子有限公司 一种裸眼式立体显示装置
TWI472802B (zh) * 2012-11-15 2015-02-11 Au Optronics Corp 顯示裝置
CN103744228A (zh) * 2013-11-29 2014-04-23 深圳市华星光电技术有限公司 三维液晶显示设备及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4871540B2 (ja) * 2005-07-25 2012-02-08 キヤノン株式会社 立体像表示装置
US20070070476A1 (en) * 2005-09-20 2007-03-29 Sony Corporation Three-dimensional display
CN101876755A (zh) * 2010-02-05 2010-11-03 华映视讯(吴江)有限公司 一种立体显示器
CN102572477A (zh) * 2010-12-20 2012-07-11 三星电子株式会社 三维图像显示装置及其驱动方法
KR20140003313A (ko) * 2012-06-29 2014-01-09 엘지디스플레이 주식회사 입체영상 표시장치와 그 구동방법
CN103686121A (zh) * 2012-09-19 2014-03-26 乐金显示有限公司 自动立体显示器及其控制方法
CN103091896A (zh) * 2013-01-25 2013-05-08 青岛海信电器股份有限公司 一种液晶显示装置及方法
CN103926704A (zh) * 2013-06-09 2014-07-16 天马微电子股份有限公司 透镜显示设备、液晶显示设备和驱动显示的方法

Also Published As

Publication number Publication date
CN104407484A (zh) 2015-03-11
US20160353097A1 (en) 2016-12-01
CN104407484B (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
WO2016086483A1 (zh) 可在2d和3d模式之间切换的显示器及其控制方法
US10527862B2 (en) Multiview display device
TWI574096B (zh) 光束整形裝置
JP5667928B2 (ja) 画像表示装置
CN102141714B (zh) 显示装置
TWI472802B (zh) 顯示裝置
CN103576408B (zh) 立体显示装置
US9772500B2 (en) Double-layered liquid crystal lens and 3D display apparatus
US20110205342A1 (en) Electrically-driven liquid crystal lens and stereoscopic display using the same
JP2007219526A (ja) 立体画像変換パネル及びこれを有する立体画像表示装置
US9104032B1 (en) Naked-eye 3D display device and liquid crystal lens thereof
US9497444B2 (en) Stereoscopic display device
JP2012141575A (ja) 回折素子を用いた映像表示装置
US20150362741A1 (en) Stereoscopic image display apparatus
TWI499801B (zh) 顯示裝置
KR20130112537A (ko) 액정 렌즈 패널 및 이를 포함하는 입체 영상 표시 패널
CN102200668A (zh) 电驱动液晶透镜及立体显示器
KR20080084527A (ko) 액정렌즈를 포함하는 액정표시장치
WO2023155312A1 (zh) 一种偏光式指向背光裸眼3d显示***
CN102331636A (zh) 液晶显示面板及立体显示装置
US9030614B2 (en) Liquid crystal optical element and stereoscopic image display device
KR102016054B1 (ko) 2d/3d 영상표시장치
JP5508538B2 (ja) マルチビュー表示装置
US9256074B2 (en) Liquid crystal optical element and stereoscopic image display device
CN102449539A (zh) 具有聚焦布置的液晶显示设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14433637

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907337

Country of ref document: EP

Kind code of ref document: A1