WO2016086377A1 - 3d打印机、打印方法及镜头模组 - Google Patents

3d打印机、打印方法及镜头模组 Download PDF

Info

Publication number
WO2016086377A1
WO2016086377A1 PCT/CN2014/092963 CN2014092963W WO2016086377A1 WO 2016086377 A1 WO2016086377 A1 WO 2016086377A1 CN 2014092963 W CN2014092963 W CN 2014092963W WO 2016086377 A1 WO2016086377 A1 WO 2016086377A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
galvanometer
curved surface
lens module
printer
Prior art date
Application number
PCT/CN2014/092963
Other languages
English (en)
French (fr)
Inventor
李家英
周朝明
孙博
陈玉庆
高云峰
Original Assignee
大族激光科技产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大族激光科技产业集团股份有限公司 filed Critical 大族激光科技产业集团股份有限公司
Priority to DE112014007250.8T priority Critical patent/DE112014007250T5/de
Priority to JP2017515982A priority patent/JP6397569B2/ja
Priority to PCT/CN2014/092963 priority patent/WO2016086377A1/zh
Priority to US15/517,941 priority patent/US20170307859A1/en
Priority to CN201480080221.2A priority patent/CN106470792B/zh
Publication of WO2016086377A1 publication Critical patent/WO2016086377A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a laser processing system, in particular to a 3D printer, a printing method and a lens module.
  • 3D printers have developed very rapidly.
  • the commonly used 3D printers are based on a digital model that constructs three-dimensional objects by stacking layers of wax, powdered metal or plastic.
  • the 3D printer has low processing precision and cannot process parts that require fine processing.
  • a lens module includes a first lens, a second lens, and a third lens that are sequentially arranged coaxially along a transmission direction of incident light, the first lens is a biconcave lens, and the second lens is a meniscus lens.
  • the third lens is a lenticular lens, the first lens includes a first curved surface and a second curved surface, the second lens includes a third curved surface and a fourth curved surface, and the third lens includes a fifth curved surface and a sixth curved surface,
  • the first to sixth curved surfaces are sequentially arranged along the transmission direction of the incident light, and the curvature radii of the first curved surface to the sixth curved surface are -37 ⁇ 5%, 400 ⁇ 5%, and ⁇ 130 ⁇ 5%, respectively. 60 ⁇ 5%, 360 ⁇ 5%, -68 ⁇ 5%, in millimeters.
  • the center thickness of the first to third lenses is 7 ⁇ 5%, 5 ⁇ 5%, and 13 ⁇ 5%, respectively, in millimeters.
  • the ratio of the refractive index to the Abbe number of the first lens is (1.5/64) ⁇ 5%, and the ratio of the refractive index of the second lens to the Abbe number is both (1.67/ 32) ⁇ 5%, the ratio of the refractive index of the third lens to the Abbe number is (1.67/32) ⁇ 5%.
  • the lens module further includes a fourth lens disposed behind the third lens along a transmission direction of the incident light, and the fourth lens is a planar lens.
  • the fourth lens is a protective glass having a center thickness of 3 ⁇ 5% mm, and the ratio of the refractive index to the Abbe number of the fourth lens is (1.5/64) ⁇ 5%.
  • the lens module has a focal length of 160 mm, an entrance pupil diameter of 12 mm, and an operating wavelength of 1060 nm.
  • a 3D printer comprising: a laser disposed in sequence along a transmission direction of incident light, a beam expander mirror, a first galvanometer, a second galvanometer, and a lens module as described above, the laser, the beam expander and the The first galvanometer is disposed in a line, the second galvanometer is disposed in parallel with the first galvanometer, and the 3D printer further includes a guide frame disposed adjacent to the lens module and slidably disposed on the guide frame The second galvanometer is arranged in line with the lens module and the support member in sequence.
  • a 3D printing method comprising the following steps:
  • the laser emits a laser beam, and reaches the workpiece to be processed through the beam expander, the first galvanometer, the second galvanometer, and the lens module to mark the workpiece to be processed.
  • the first galvanometer and the second galvanometer rotate to deflect the laser beam, and the carrier drives the waiting The workpiece is moved to match the deflection of the laser beam to achieve an overall imprint of the workpiece to be processed.
  • the 3D printer can obtain higher processing precision.
  • FIG. 1 is a schematic structural view of a 3D printer in an embodiment
  • FIG. 2 is a schematic diagram of a lens module of the 3D printer shown in FIG. 1;
  • FIG. 3 is an aberration diagram of the lens module shown in FIG. 2;
  • Figure 5 is an astigmatism diagram of the lens module shown in Figure 2;
  • Figure 6 is a distortion diagram of the lens module shown in Figure 2;
  • Figure 7 is a flow chart of a printing method of an embodiment.
  • the direction of propagation of light in this specification is transmitted from the left to the right of the drawing.
  • the positive and negative of the radius of curvature is based on the intersection of the spherical center position of the curved surface and the main optical axis.
  • the spherical center of the curved surface is left at this point, and the radius of curvature is negative; otherwise, the spherical center of the curved surface is right at the point, then the curvature
  • the radius is positive.
  • the object on the left side of the lens is the object side
  • the image on the right side of the lens is the image side.
  • a positive lens refers to a lens whose center thickness is larger than the edge thickness
  • a negative lens refers to a lens whose center thickness is smaller than the edge thickness.
  • the 3D printer 100 in an embodiment includes a laser 10, a beam expander 20, a first galvanometer 30, a second galvanometer 40, and a lens module 50 disposed in sequence along the light transmission direction.
  • the 3D printer 100 A guide frame 60 disposed adjacent to the lens module 50 and a carrier 70 slidably disposed on the guide frame 60 are also included.
  • the laser 10 and the beam expander 20 are disposed in line with the first galvanometer 30, and the second galvanometer 40 and the first galvanometer 30 are disposed in parallel with each other.
  • the second galvanometer 40 is sequentially disposed in line with the lens module 50 and the carrier 70, and the carrier 70 is located below the lens module 50.
  • the carrier 70 is in the form of a flat plate on which the workpiece 200 to be processed is carried.
  • the first galvanometer 30 is an X galvanometer and the second galvanometer 40 is a Y galvanometer.
  • the lens module 50 includes a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4 which are sequentially arranged coaxially along the transmission direction of the incident light.
  • the first lens L1 is a biconcave lens
  • the second lens L2 is a meniscus lens
  • the third lens L3 is a biconvex lens
  • the fourth lens L4 is a planar lens.
  • the first lens L1 includes a first curved surface S1 and a second curved surface S2
  • the second lens L2 includes a third curved surface S3 and a fourth curved surface S4
  • the third lens L3 includes a fifth curved surface S5 and a sixth curved surface S6
  • the fourth lens L4 includes
  • the seventh curved surface S7 and the eighth curved surface S8 each have two curved surfaces as the light incident surface and the light exit surface, and the first curved surface S1 to the eighth curved surface S8 are sequentially arranged in the direction in which the incident light is transmitted.
  • the first curved surface S1, the third curved surface S3, the fourth curved surface S4, and the sixth curved surface S6 have the same bending direction and protrude in the incident light direction (that is, toward the image side).
  • the second curved surface S2 and the fifth curved surface S5 have the same bending direction and protrude toward the incident light direction (ie, toward the object side).
  • the seventh curved surface S7 and the eighth curved surface S8 are both planar.
  • the fourth lens L4 is a cover glass. It can be understood that the fourth lens L4 can be omitted.
  • the ratio of the refractive index of the first lens L1 to the Abbe number is 1.5/64.
  • the first curved surface S1 of the first lens L1 is convex toward the image side, and has a radius of curvature of -37 mm.
  • the second curved surface S2 is convex toward the object side, the radius of curvature is 400 mm, and the center thickness d1 of the first lens L1 (i.e., the thickness of the lens on the optical axis) is 7 mm.
  • Each of the above parameters of the first lens L1 has a tolerance range of 5%, that is, each parameter is allowed to vary within ⁇ 5%.
  • the ratio of the refractive index of the second lens L2 to the Abbe number is 1.67/32.
  • the third curved surface S3 of the second lens L2 is convex toward the image side, the radius of curvature is -130 mm, and the fourth curved surface S4 is convex toward the image side, and the radius of curvature is -60 mm.
  • the center thickness d2 of the second lens L2 is 5 mm.
  • Each of the above parameters of the second lens L2 has a tolerance range of 5%.
  • the ratio of the refractive index of the third lens L3 to the Abbe number is 1.67/32.
  • the fifth curved surface S5 of the third lens L3 is convex toward the object side, the radius of curvature is 360 mm, and the sixth curved surface S6 is convex toward the image side, and the radius of curvature is -68 mm.
  • the center thickness d3 of the third lens L3 is 13 mm.
  • Each of the above parameters of the third lens L3 has a tolerance range of 5%.
  • the ratio of the refractive index of the fourth lens L4 to the Abbe number is 1.5/64.
  • the seventh curved surface S7 of the fourth lens L4 and the eighth curved surface S8 have a radius of curvature of ⁇ .
  • the center thickness d4 of the fourth lens L4 is 3 mm.
  • Each of the above parameters of the fourth lens L4 has a tolerance range of 5%.
  • the optical parameters of the lens module 50 are: a focal length of 160 mm, an entrance pupil diameter of 12 mm, a field of view of 50 degrees, and an operating wavelength of 1060 nm.
  • the experimental test results of the lens module 50 are shown in Figures 3-6.
  • FIG. 3 is a geometric aberration diagram of the lens module 50, in which DBJ represents the angle of view, the unit is degree; and IMA represents the imaging diameter of the image plane, in millimeters.
  • DBJ represents the angle of view, the unit is degree
  • IMA represents the imaging diameter of the image plane, in millimeters.
  • a 40 mm scale length is shown in FIG.
  • the diffuse spot shown in FIG. 3 it can be seen that the range of the focused spot of the lens module 50 is small, and the ideal resolution is achieved, and the geometric dispersion circle of all the fields of view is no more than 8 micrometers.
  • M.T.F modulation transfer function of the lens module 50.
  • Function, M.T.F where the abscissa represents the resolution in units of line pairs/mm; TS represents the field of view in degrees.
  • M.T.F is still greater than 0.6, indicating that the resolution has reached 0.01 mm, which is quite satisfactory.
  • FIG. 5 is an astigmatism diagram of the lens module 50 in the embodiment shown in FIG. 1.
  • the ordinate +Y in Fig. 5 indicates the size of the field of view, and the abscissa is in millimeters.
  • FIG. 6 is a distortion diagram of the lens module 50 in the embodiment shown in FIG. 1.
  • the ordinate +Y in Fig. 6 indicates the size of the field of view, and the abscissa unit is a percentage. As can be seen from Figures 5 to 6, both astigmatism and distortion are ideal.
  • the printing method of the 3D printer 100 as described above includes the following steps:
  • the laser 10 emits a laser beam, and reaches the workpiece to be processed 200 through the beam expander 20, the first galvanometer 30, the second galvanometer 40, and the lens module 50 to mark the workpiece to be processed 200.
  • the laser beam melts or vaporizes a portion of the material of the workpiece 200 to be processed, thereby obtaining a workpiece of a set shape.
  • the first galvanometer mirror 30 and the second galvanometer mirror 40 are rotated to deflect the laser beam, and the carrier 70 drives the workpiece 200 to be processed to move in conjunction with the deflection of the laser beam, thereby achieving integral marking of the workpiece 200 to be processed.
  • the 3D printer 100 can obtain higher processing precision, thereby being able to process parts requiring fine processing and expanding the application range thereof.
  • the 3D printer 100 can perform engraving processing on parts that cannot be pulverized by raw materials, such as diamonds, jade, crystals, precious metals, etc., by means of imprinting, and also expands the application range of the 3D printer 100.
  • the lens module 50 cooperates with the marking processing mode of the 3D printer 100, so that the marking accuracy of the 3D printer 100 reaches the silk level (ie, about 0.01 mm), and the surface finish of the processed parts is very good, and can be applied without additional machining.
  • the 3D printer 100 can process not only solid parts but also cavity parts. At the same time, the lens module 50 uses only four lenses, greatly simplifying the variety of optical materials.
  • the lens modules 50 of different focal lengths can be used for printing. It can be understood that the guide frame 60 can be omitted, and the carrier 70 carries the workpiece 200 to be processed to keep it stationary.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种镜头模组,包括沿入射光的传输方向依次共轴排列的第一透镜、第二透镜及第三透镜,所述第一透镜为双凹透镜,所述第二透镜为弯月透镜,所述第三透镜为双凸透镜,所述第一透镜包括第一曲面和第二曲面、所述第二透镜包括第三曲面和第四曲面、所述第三透镜包括第五曲面和第六曲面,所述第一至第六曲面沿入射光的传输方向依次排布,所述第一曲面至第六曲面的曲率半径依次为-37±5%、400±5%、-130±5%、-60±5%、360±5%、-68±5%,单位为毫米。由于镜头模组的第一至第三透镜的排布及参数设计,使得3D打印机可获得较高的加工精度。本发明还提供一种3D打印机及其3D打印方法。

Description

3D打印机、打印方法及镜头模组
【技术领域】
本发明涉及一种激光加工***,尤其涉及一种3D打印机、打印方法及镜头模组。
【背景技术】
近几年3D打印机发展非常迅猛,常用的3D打印机是以数字模型为基础,通过一层层地堆叠蜡材、粉末状金属或塑料等可粘合材料来构造三维的物体。然而,这种3D打印机由于打印方式及镜头模组的设计等原因,其加工精度较低,不能加工一些需要精细加工的零件。
【发明内容】
基于此,有必要提供一种加工精度较高的3D打印机、打印方法及镜头模组。
一种镜头模组,包括沿入射光的传输方向依次共轴排列的第一透镜、第二透镜及第三透镜,所述第一透镜为双凹透镜,所述第二透镜为弯月透镜,所述第三透镜为双凸透镜,所述第一透镜包括第一曲面和第二曲面、所述第二透镜包括第三曲面和第四曲面、所述第三透镜包括第五曲面和第六曲面,所述第一至第六曲面沿入射光的传输方向依次排布,所述第一曲面至第六曲面的曲率半径依次为-37±5%、400±5%、-130±5%、-60±5%、360±5%、-68±5%,单位为毫米。
在其中一个实施例中,所述第一透镜至第三透镜的中心厚度依次为7±5%、5±5%、13±5%,单位为毫米。
在其中一个实施例中,所述第一透镜的折射率与阿贝数的比例为(1.5/64)±5%、所述第二透镜的折射率与阿贝数的比例均为(1.67/32)±5%,所述第三透镜的折射率与阿贝数的比例为(1.67/32)±5%。
在其中一个实施例中,所述镜头模组还包括沿入射光的传输方向设置于所述第三透镜后的第四透镜,所述第四透镜为平面透镜。
在其中一个实施例中,所述第四透镜为保护玻璃,其中心厚度为3±5%毫米,所述第四透镜的折射率与阿贝数的比例为(1.5/64)±5%。
在其中一个实施例中,所述镜头模组的焦距为160毫米,入瞳直径为12毫米,工作波长为1060纳米。
一种3D打印机,包括:沿入射光的传输方向依次设置的激光器、扩束镜、第一振镜、第二振镜以及如上所述的镜头模组,所述激光器、扩束镜与所述第一振镜共线设置,所述第二振镜与所述第一振镜相互平行设置,所述3D打印机还包括邻近所述镜头模组设置的导向架以及滑动设置于所述导向架上的承载件,所述第二振镜与所述镜头模组及所述支撑件依次共线设置。
一种3D打印方法,包括以下步骤:
提供如上所述的3D打印机;
将一待加工工件定位于所述3D打印机的承载件上;及
所述激光器发射激光束,经由所述扩束镜、第一振镜、第二振镜以及所述镜头模组抵达待加工工件,以对待加工工件进行刻印。
在其中一个实施例中,在所述激光束对待加工工件进行刻印的过程中,所述第一振镜与第二振镜转动以使所述激光束的偏转,所述承载件带动所述待加工工件移动以配合所述激光束的偏转,从而实现待加工工件的整体刻印。
由于镜头模组的第一至第三透镜的排布及参数设计,使得3D打印机可获得较高的加工精度。
【附图说明】
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将会变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1为一实施例中的3D打印机的结构示意图;
图2为图1所示3D打印机的镜头模组示意图;
图3为图2所示镜头模组的像差图;
图4为图2所示镜头模组的调制传递函数M.T.F图;
图5是图2所示镜头模组的像散图;
图6是图2所示镜头模组的畸变图;
图7是一实施例的打印方法的流程图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
需要说明的是,本说明书中光的传播方向是从附图的左边向右边传播。曲率半径的正负以曲面的球心位置与主光轴的交点为准,曲面的球心在该点以左,则曲率半径为负;反之,曲面的球心在该点以右,则曲率半径为正。另外,位于镜头左边的为物方,位于镜头右边的为像方。正透镜是指透镜的中心厚度大于比边缘厚度的透镜,负透镜是指透镜的中心厚度小于边缘厚的透镜。
请参阅图1,一实施例中的3D打印机100包括:沿光传输方向依次设置的激光器10、扩束镜20、第一振镜30、第二振镜40以及镜头模组50。3D打印机100还包括邻近镜头模组50设置的导向架60以及滑动设置于导向架60上的承载件70。激光器10、扩束镜20与第一振镜30共线设置,第二振镜40与第一振镜30相互平行设置。第二振镜40与镜头模组50及承载件70依次共线设置,且承载件70位于镜头模组50的下方。在本实施方式中,承载件70为平板状,其上承载有待加工的工件200。第一振镜30为X振镜、第二振镜40为Y振镜。
请参阅图2,镜头模组50包括沿入射光的传输方向依次共轴排列的第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4。其中,第一透镜L1为双凹透镜,第二透镜L2为弯月透镜,第三透镜L3均为双凸透镜,第四透镜L4为平面透镜。第一透镜L1包括第一曲面S1和第二曲面S2,第二透镜L2包括第三曲面S3和第四曲面S4,第三透镜L3包括第五曲面S5和第六曲面S6,第四透镜L4包括第七曲面S7和第八曲面S8,每个透镜的两个曲面分别作为光入射面和光出射面,第一曲面S1至第八曲面S8沿入射光传输的方向依次排布。第一曲面S1、第三曲面S3、第四曲面S4、第六曲面S6的弯曲方向相同,沿入射光方向(即朝像方)凸出。第二曲面S2及第五曲面S5的弯曲方向相同,迎着入射光方向(即朝物方)凸出。第七曲面S7与第八曲面S8均为平面。在本实施方式中,第四透镜L4为保护玻璃。可以理解,第四透镜L4可以省略。
第一透镜L1的折射率与阿贝数的比例为1.5/64。第一透镜L1的第一曲面S1向像方凸出,曲率半径为-37毫米。第二曲面S2向物方凸出,曲率半径为400毫米,第一透镜L1的中心厚度d1(即透镜在光轴上的厚度)为7毫米。第一透镜L1的上述各参数均存在5%的公差范围,即允许各参数在±5%范围内变化。
第二透镜L2的折射率与阿贝数的比例为1.67/32。第二透镜L2的第三曲面S3向像方凸出,曲率半径为-130毫米,第四曲面S4向像方凸出,曲率半径为-60毫米。第二透镜L2的中心厚度d2为5毫米。第二透镜L2的上述各参数均存在5%的公差范围。
第三透镜L3的折射率与阿贝数的比例为1.67/32。第三透镜L3的第五曲面S5向物方凸出,曲率半径为360毫米,第六曲面S6向像方凸出,曲率半径为-68毫米。第三透镜L3的中心厚度d3为13毫米。第三透镜L3的上述各参数均存在5%的公差范围。
第四透镜L4的折射率与阿贝数的比例为1.5/64。第四透镜L4的第七曲面S7与第八曲面S8的曲率半径均为∞。第四透镜L4的中心厚度d4为3毫米。第四透镜L4的上述各参数均存在5%的公差范围。
通过上述设计后,镜头模组50的光学参数为:焦距为160毫米,入瞳直径为12毫米,视场为50度,工作波长为1060纳米。镜头模组50使得3D打印机100所能加工的工件尺寸为:当工件为圆柱体时,工件的体积V=Ф*L (L为加工零件的长度),其中直径Ф的最大值可达0.14米;当工件的截面为方形时,工件的体积V=S*L,其中面积S 的最大值可达0.1*0.1平方米。镜头模组50的实验测试效果如图3~6所示。
图3为镜头模组50的几何像差图,其中DBJ表示视角,单位为度;IMA表示像面的成像直径,单位为毫米。图3中示出了40毫米的标尺长度。根据图3所示的弥散斑可以看出镜头模组50的聚焦光斑的弥散范围较小,达到了理想的分辨率,全部视场的几何弥散圆都不大于8微米。
图4为镜头模组50的调制传递函数(modulation transfer function,M.T.F)图,其中横坐标表示分辨率,单位为线对/毫米;TS表示视场,单位为度。由图4可见,当分辨率为20毫米/线对时,M.T.F仍大于0.6,表示其分辨率已经达到了0.01毫米,已相当理想。
图5为图1所示实施例中的镜头模组50的像散图。图5中的纵坐标+Y表示视场的大小,横坐标单位为毫米。图6为图1所示实施例中的镜头模组50的畸变图。图6中的纵坐标+Y表示视场的大小,横坐标单位为百分比。从图5~6中可看出,无论像散还是畸变都非常理想。
请再次参阅图1及图7,如上所述3D打印机100的打印方法,其包括以下步骤:
S101,提供上述3D打印机100;
S102,将待加工工件200定位于承载件70上;及
S103,激光器10发射激光束,经由扩束镜20、第一振镜30、第二振镜40以及镜头模组50抵达待加工工件200,以对待加工工件200进行刻印。具体地,激光束使得待加工工件200的部分材料熔化或气化,从而获得设定形状的工件。在打印过程中,第一振镜30与第二振镜40转动以使激光束的偏转,承载件70带动待加工工件200移动以配合激光束的偏转,从而实现待加工工件200的整体刻印。
由于镜头模组50的第一至第四透镜的排布及参数设计,使得3D打印机100获得较高的加工精度,从而能够加工一些需要精细加工的零件,扩大了其应用范围。另外,3D打印机100通过刻印加工的方式,可以对原材料不可粉碎的零件,如钻石、玉石、晶体、贵金属等进行刻印加工,也扩大了3D打印机100的应用范围。镜头模组50配合3D打印机100的刻印加工方式,使得3D打印机100的刻印精度达到了丝级水平(即0.01mm左右),加工的零件表面光洁度非常好,而且无需另外的机械加工就可以应用。另外,3D打印机100不但可以加工实体零件,还可以加工腔体零件。同时,镜头模组50仅采用了四块透镜,极大地简化了光学材料的品种。
可以理解,当待加工工件200的大小不同时,可选用不同焦距的镜头模组50来进行打印。可以理解,导向架60可以省略,此时承载件70承载待加工工件200,使其保持不动。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种镜头模组,其特征在于:包括沿入射光的传输方向依次共轴排列的第一透镜、第二透镜及第三透镜,所述第一透镜为双凹透镜,所述第二透镜为弯月透镜,所述第三透镜为双凸透镜,所述第一透镜包括第一曲面和第二曲面、所述第二透镜包括第三曲面和第四曲面、所述第三透镜包括第五曲面和第六曲面,所述第一至第六曲面沿入射光的传输方向依次排布,所述第一曲面至第六曲面的曲率半径依次为-37±5%、400±5%、-130±5%、-60±5%、360±5%、-68±5%,单位为毫米。
  2. 如权利要求1所述的镜头模组,其特征在,所述第一透镜至第三透镜的中心厚度依次为7±5%、5±5%、13±5%,单位为毫米。
  3. 如权利要求1所述的镜头模组,其特征在于,所述第一透镜的折射率与阿贝数的比例为(1.5/64)±5%、所述第二透镜的折射率与阿贝数的比例均为(1.67/32)±5%,所述第三透镜的折射率与阿贝数的比例为(1.67/32)±5%。
  4. 如权利要求1所述的镜头模组,其特征在于,所述镜头模组还包括沿入射光的传输方向设置于所述第三透镜后的第四透镜,所述第四透镜为平面透镜。
  5. 如权利要求4所述的镜头模组,其特征在于,所述第四透镜为保护玻璃,其中心厚度为3±5%毫米,所述第四透镜的折射率与阿贝数的比例为(1.5/64)±5%。
  6. 如权利要求1所述的镜头模组,其特征在于,所述镜头模组的焦距为160毫米,入瞳直径为12毫米,工作波长为1060纳米。
  7. 一种3D打印机,其特征在于,包括:沿入射光的传输方向依次设置的激光器、扩束镜、第一振镜、第二振镜以及如权利要求1所述的镜头模组,所述激光器、扩束镜与所述第一振镜共线设置,所述第二振镜与所述第一振镜相互平行设置,所述3D打印机还包括邻近所述镜头模组设置的导向架以及滑动设置于所述导向架上的承载件,所述第二振镜与所述镜头模组及所述支撑件依次共线设置。
  8. 一种3D打印方法,包括以下步骤:
    提供如权利要求7所述的3D打印机;
    将一待加工工件定位于所述3D打印机的承载件上;及
    所述激光器发射激光束,经由所述扩束镜、第一振镜、第二振镜以及所述镜头模组抵达待加工工件,以对待加工工件进行刻印。
  9. 如权利要求8所述的3D打印方法,其特征在于:在所述激光束对待加工工件进行刻印的过程中,所述第一振镜与第二振镜转动以使所述激光束的偏转,所述承载件带动所述待加工工件移动以配合所述激光束的偏转,从而实现待加工工件的整体刻印。
PCT/CN2014/092963 2014-12-03 2014-12-03 3d打印机、打印方法及镜头模组 WO2016086377A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112014007250.8T DE112014007250T5 (de) 2014-12-03 2014-12-03 3D-Drucker, 3D-Druckverfahren und Linsenmodul
JP2017515982A JP6397569B2 (ja) 2014-12-03 2014-12-03 3dプリンタ、印刷方法および鏡筒モジュール
PCT/CN2014/092963 WO2016086377A1 (zh) 2014-12-03 2014-12-03 3d打印机、打印方法及镜头模组
US15/517,941 US20170307859A1 (en) 2014-12-03 2014-12-03 3d printer, 3d printing method and lens module
CN201480080221.2A CN106470792B (zh) 2014-12-03 2014-12-03 3d打印机、打印方法及镜头模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092963 WO2016086377A1 (zh) 2014-12-03 2014-12-03 3d打印机、打印方法及镜头模组

Publications (1)

Publication Number Publication Date
WO2016086377A1 true WO2016086377A1 (zh) 2016-06-09

Family

ID=56090824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092963 WO2016086377A1 (zh) 2014-12-03 2014-12-03 3d打印机、打印方法及镜头模组

Country Status (5)

Country Link
US (1) US20170307859A1 (zh)
JP (1) JP6397569B2 (zh)
CN (1) CN106470792B (zh)
DE (1) DE112014007250T5 (zh)
WO (1) WO2016086377A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505687A (zh) * 2017-09-05 2017-12-22 大族激光科技产业集团股份有限公司 透镜组、光学镜头组件及激光标识设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984813B (zh) * 2017-04-14 2019-08-20 华南理工大学 一种激光选区熔化加工过程同轴监测方法及装置
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866043A (zh) * 2010-05-27 2010-10-20 深圳市大族激光科技股份有限公司 一种紫外激光应用的光学镜头
CN101866044A (zh) * 2010-05-27 2010-10-20 深圳市大族激光科技股份有限公司 一种光学镜头
CN101881875A (zh) * 2010-06-22 2010-11-10 深圳市大族激光科技股份有限公司 f-theta光学镜头
CN103341625A (zh) * 2013-07-10 2013-10-09 湖南航天工业总公司 一种金属零件的3d打印制造装置及方法
EP2673106A1 (de) * 2011-02-10 2013-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, anordnung und verfahren zur interferenzstrukturierung von flächigen proben

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856475B2 (ja) * 1990-02-14 1999-02-10 リコー光学株式会社 光走査装置のfθレンズ
JP3024906B2 (ja) * 1994-07-01 2000-03-27 大日本スクリーン製造株式会社 光走査装置
CN2731485Y (zh) * 2004-07-24 2005-10-05 鸿富锦精密工业(深圳)有限公司 数码相机镜头及其应用该镜头的数码相机模组
JP2008203290A (ja) * 2007-02-16 2008-09-04 Sony Corp ビューファインダー
CN100593742C (zh) * 2008-04-28 2010-03-10 深圳市大族激光科技股份有限公司 光学镜头
CN101609191A (zh) * 2008-06-20 2009-12-23 鸿富锦精密工业(深圳)有限公司 镜头模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866043A (zh) * 2010-05-27 2010-10-20 深圳市大族激光科技股份有限公司 一种紫外激光应用的光学镜头
CN101866044A (zh) * 2010-05-27 2010-10-20 深圳市大族激光科技股份有限公司 一种光学镜头
CN101881875A (zh) * 2010-06-22 2010-11-10 深圳市大族激光科技股份有限公司 f-theta光学镜头
EP2673106A1 (de) * 2011-02-10 2013-12-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, anordnung und verfahren zur interferenzstrukturierung von flächigen proben
CN103341625A (zh) * 2013-07-10 2013-10-09 湖南航天工业总公司 一种金属零件的3d打印制造装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505687A (zh) * 2017-09-05 2017-12-22 大族激光科技产业集团股份有限公司 透镜组、光学镜头组件及激光标识设备
CN107505687B (zh) * 2017-09-05 2020-08-04 大族激光科技产业集团股份有限公司 透镜组、光学镜头组件及激光标识设备

Also Published As

Publication number Publication date
US20170307859A1 (en) 2017-10-26
CN106470792A (zh) 2017-03-01
JP6397569B2 (ja) 2018-09-26
CN106470792B (zh) 2018-09-18
JP2017538953A (ja) 2017-12-28
DE112014007250T5 (de) 2017-08-31

Similar Documents

Publication Publication Date Title
CN104781716B (zh) 一种超紫外激光打标Fθ镜头及激光加工设备
WO2014012416A1 (zh) 一种红外激光变倍扩束***及激光加工设备
US6226120B1 (en) Three-dimensional microstructures, and methods for making three-dimensional microstructures
WO2016086377A1 (zh) 3d打印机、打印方法及镜头模组
EP3083215A1 (en) Reusable castings molds and method of making such molds
Yi et al. Development of a compression molding process for three-dimensional tailored free-form glass optics
WO2014067097A1 (zh) 一种远红外激光加工用Fθ镜头及激光加工设备
CN102902058B (zh) 连续变倍目镜
CN107505687B (zh) 透镜组、光学镜头组件及激光标识设备
WO2014012417A1 (zh) 一种绿光激光变倍扩束***及激光加工设备
WO2014012415A1 (zh) 一种紫外激光变倍扩束***及激光加工设备
CN104280859B (zh) 成像光学装置
CN101776790B (zh) 激光内雕聚焦光学镜头及其使用方法
WO2016086376A1 (zh) 3d打印机及其采用的镜头模组
CN112578538B (zh) 一种蓝色激光加工远心F-Theta扫描透镜
CN114924403A (zh) 一种低倍双远心显微成像物镜***及其应用
Shu et al. Fabrication of Fresnel lens arrays by a rapid non-isothermal imprinting process
WO2016033730A1 (zh) 光学镜头
CN114326055A (zh) 一种大扫描角度的红外场镜
US20170312851A1 (en) Optical lenses for laser marking
CN107797225B (zh) 光学镜头及其激光加工设备
WO2015024231A1 (zh) 大视场消色差镜头
CN207301460U (zh) 一种实现激光扫描与同轴监控一体的高倍显微物镜光路***
WO2016029396A1 (zh) 光学镜头
CN109445062A (zh) 三维动态调焦透镜组、光学镜头、激光加工设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515982

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007250

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 24.10.17)

122 Ep: pct application non-entry in european phase

Ref document number: 14907429

Country of ref document: EP

Kind code of ref document: A1