WO2016084892A1 - タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ - Google Patents

タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ Download PDF

Info

Publication number
WO2016084892A1
WO2016084892A1 PCT/JP2015/083220 JP2015083220W WO2016084892A1 WO 2016084892 A1 WO2016084892 A1 WO 2016084892A1 JP 2015083220 W JP2015083220 W JP 2015083220W WO 2016084892 A1 WO2016084892 A1 WO 2016084892A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber
parts
rubber composition
bead insulation
Prior art date
Application number
PCT/JP2015/083220
Other languages
English (en)
French (fr)
Inventor
強 野間口
克典 清水
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2016084892A1 publication Critical patent/WO2016084892A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a rubber composition for tire bead insulation and a pneumatic tire using the same, and more particularly, a tire having various properties required for tire bead insulation improved while effectively using recycled rubber.
  • the present invention relates to a rubber composition for bead insulation and a pneumatic tire using the same.
  • a pneumatic tire is mainly composed of a pair of left and right bead portions and sidewall portions, and a tread portion connected to both sidewall portions, and a bead core in the bead portion is composed of a plurality of bead wires and insulation rubber covering the bead wires.
  • Insulation rubber has high hardness to bundle and integrate bead wires with large Young's modulus, and unvulcanized rubber has high viscosity to ensure dimensional stability of the bead wire during tire manufacture. There is a need to be. Therefore, a large amount of carbon black, inorganic filler, and sulfur are often used in the tire bead insulation rubber composition.
  • An object of the present invention is to provide a rubber composition for tire bead insulation in which various properties required for tire bead insulation are improved while effectively using recycled rubber, and a pneumatic tire using the same.
  • the present inventors have blended a specific amount of carbon black, a specific amount of inorganic filler, and a specific amount of recycled rubber having a specific particle size with a diene rubber having a specific composition.
  • the present inventors have found that the above problems can be solved and have completed the present invention. That is, the present invention is as follows. 1.
  • a rubber composition for tire bead insulation obtained by blending 60 to 160 mesh recycled rubber with the inorganic filler in an amount of 4 to 50% by mass. 2.
  • N 2 SA nitrogen adsorption specific surface area
  • a specific amount of carbon black, a specific amount of inorganic filler and a specific amount of recycled rubber having a specific particle size are blended with a diene rubber having a specific composition, so that the recycled rubber is effectively utilized
  • a rubber composition for tire bead insulation and a pneumatic tire using the same which have improved various properties such as viscosity, hardness, adhesion to bead wire, etc. particularly required for tire bead insulation.
  • the diene rubber used in the present invention contains natural rubber (NR) as an essential component.
  • NR natural rubber
  • the blending amount of NR needs to be 60 parts by mass or more, preferably 80 to 100 parts by mass when the total amount of the diene rubber is 100 parts by mass.
  • the blending amount of NR is less than 60 parts by mass, the elongation at break and the exothermic property deteriorate, which is not preferable.
  • other diene rubbers can be used.
  • isoprene rubber IR
  • butadiene rubber BR
  • styrene-butadiene copolymer rubber SBR
  • acrylonitrile-butadiene copolymer rubber NBR
  • the molecular weight and microstructure are not particularly limited, and may be terminally modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or may be epoxidized.
  • the carbon black used in the present invention is not particularly limited, but from the viewpoint of the effects of the present invention, those having a nitrogen adsorption specific surface area (N 2 SA) of 30 to 125 m 2 / g are preferable.
  • the nitrogen adsorption specific surface area (N 2 SA) is a value determined in accordance with JIS K6217-2.
  • the inorganic filler is not particularly limited and may be appropriately selected. Examples thereof include silica, clay, talc, calcium carbonate and the like.
  • the recycled rubber used in the present invention needs to have a particle size measured according to JIS K6220 of 60 to 160 mesh. That is, the recycled rubber used in the present invention is composed of a particle size that passes through 60 mesh and does not pass through 160 mesh. In addition, the thing outside the range of the above-mentioned particle size can exist in the range which does not impair the effect of the present invention.
  • the recycled rubber used in the present invention has a particle size of 30% by mass or less. Can include out of range. If the particle size is less than 60 mesh, the particle size is too large and the adhesion to the bead wire deteriorates. Conversely, if it exceeds 160 mesh, the particle size is too small and the viscosity of the unvulcanized rubber increases extremely. , Workability deteriorates. A more preferable particle size is 80 to 140 mesh.
  • the rubber composition of the present invention contains 80 parts by mass or more of carbon black and 40 parts by mass or more of an inorganic filler with respect to 100 parts by mass of a diene rubber containing 60 parts by mass or more of natural rubber. The total is 120 to 180 parts by mass, and further, 60 to 160 mesh recycled rubber is blended in an amount of 4 to 50% by mass with respect to the inorganic filler.
  • the blending amount of the carbon black is less than 80 parts by mass, the elastic modulus is deteriorated.
  • An elastic modulus will deteriorate that the compounding quantity of the said inorganic filler is less than 40 mass parts.
  • the elastic modulus is deteriorated.
  • a more preferable blending amount of the carbon black is 80 to 110 parts by mass with respect to 100 parts by mass of the diene rubber.
  • a more preferable blending amount of the inorganic filler is 40 to 70 parts by mass with respect to 100 parts by mass of the diene rubber.
  • a more preferable total of the carbon black and the inorganic filler is 130 to 160 parts by mass with respect to 100 parts by mass of the diene rubber.
  • a more preferable blending amount of the recycled rubber is 10 to 40% by mass with respect to the inorganic filler.
  • the rubber composition of the present invention is generally blended with a rubber composition such as a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various oils, an anti-aging agent, and a plasticizer.
  • a rubber composition such as a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various oils, an anti-aging agent, and a plasticizer.
  • Various additives can be blended, and such additives can be kneaded by a general method to form a composition, which can be used for vulcanization or crosslinking.
  • the blending amounts of these additives can be set to conventional general blending amounts as long as the object of the present invention is not violated.
  • the rubber composition of the present invention can be used for producing a pneumatic tire according to a conventional method for producing a pneumatic tire.
  • the rubber composition of the present invention can be suitably used as a bead insulation rubber.
  • Examples 1-6 and Comparative Examples 1-2 Sample Preparation In the formulation (parts by mass) shown in Table 1, the components except the vulcanization accelerator and sulfur were kneaded for 5 minutes with a 1.7 liter closed Banbury mixer, and then added with the vulcanization accelerator and sulfur. The rubber composition was obtained by kneading. Next, the obtained rubber composition was press vulcanized at 160 ° C. for 20 minutes in a predetermined mold to obtain a vulcanized rubber test piece, and the physical properties of the vulcanized rubber test piece were measured by the following test method.
  • Mooney viscosity The viscosity of unvulcanized rubber at 100 ° C. was measured in accordance with JIS K6300 using the rubber composition. The result was expressed as an index with the value of Comparative Example 1 as 100. The larger the index is, the higher the viscosity is, which indicates that it is better for ensuring the dimensional stability of the bead wire during tire manufacture.
  • Hardness (20 ° C.) Measured at 20 ° C. based on JIS K6253. The results are shown as an index with the value of Comparative Example 1 being 100. The larger the index, the higher the hardness.
  • Adhesion performance test Brass plated steel cords arranged in parallel at 12.7 mm intervals were covered with the rubber composition, embedded at an embedding length of 12.7 mm, and vulcanized and bonded under vulcanization conditions of 160 ° C. for 20 minutes. A sample was prepared. A steel cord was pulled out from the sample in accordance with ASTM D-1871, and the pulling force was evaluated. The results are shown as an index with the value of Comparative Example 1 being 100. The larger this index, the better the adhesion to rubber.
  • Dimensional stability of bead wire A tire (tire size: 215 / 45R17) was prepared using the rubber composition as a rubber for bead insulation, and the maximum width of the bead wire was measured at four circumferential positions of the completed tire. The difference between the maximum and minimum measured values was indicated by an index. The smaller this index, the better the dimensional stability. The results are also shown in Table 1.
  • Niteron #G, Nitrogen adsorption specific surface area (N 2 SA) 30 m 2 / g) * 6: Clay (Sanyo Clay Industry Co., Ltd. Catalpo YK) * 7: Petroleum-based resin (Quinton A100 manufactured by Nippon Zeon Co., Ltd.) * 8: Oil (Extract No. 4 S manufactured by Showa Shell Sekiyu KK) * 9: Zinc oxide (3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.) * 10: Industrial stearic acid (industrial stearic acid manufactured by Chiba Fatty Acid Co., Ltd.) * 11: Sulfur (Tsurumi Chemical Industry Co., Ltd. Jinhua Indian Oil Fine Powdered Sulfur) * 12: Vulcanization accelerator (Noxeller NS-P manufactured by Ouchi Shinsei Chemical Co., Ltd.)
  • the rubber compositions prepared in Examples 1 to 6 were a specific amount of carbon black, a specific amount of inorganic filler and a specific particle size in a diene rubber having a specific composition. Since the specific amount of the recycled rubber having the above ratio is blended, the rubber composition of the comparative example 1 not blended with the recycled rubber has the same or higher characteristics, in particular, various properties such as viscosity, hardness, and adhesion to the bead wire. I understand that. Therefore, the rubber compositions of Examples 1 to 5 can be suitably used for tire bead insulation rubber. On the other hand, in Comparative Example 2, since the blended amount of the recycled rubber exceeded the upper limit defined in the present invention, the adhesiveness deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の課題は、再生ゴムを有効に活用しつつ、タイヤビードインシュレーションに求められる諸特性を向上したタイヤビードインシュレーション用ゴム組成物を提供することであり、該課題は、天然ゴムを60質量部以上含むジエン系ゴム100質量部に対し、カーボンブラックを80質量部以上および無機充填剤を40質量部以上含み、前記カーボンブラックおよび無機充填剤の合計が120~180質量部であり、さらに、60~160メッシュの再生ゴムを前記無機充填剤に対し、4~50質量%配合してなるタイヤビードインシュレーション用ゴム組成物によって解決される。

Description

タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ
 本発明は、タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤに関するものであり、詳しくは、再生ゴムを有効に活用しつつ、タイヤビードインシュレーションに求められる諸特性を向上したタイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤに関するものである。
 空気入りタイヤは左右一対のビード部およびサイドウォール部と、両サイドウォール部に連なるトレッド部から主に構成され、ビード部におけるビードコアは、複数本のビードワイヤとこれを被覆するインシュレーションゴムとから構成されている。インシュレーションゴムは、大きくヤング率が異なるビードワイヤを束ね、一体化するために高硬度であること、また、タイヤ製造中におけるビードワイヤの寸法安定性を確保するために未加硫のゴムが高粘度であることが求められている。そのため、タイヤビードインシュレーション用ゴム組成物には、カーボンブラック、無機充填剤および硫黄の多量配合が多く用いられている。
 一方、近年においては、環境負荷低減の観点から、廃ゴム製品を例えば冷凍粉砕し粉末状にした再生ゴムの活用が望まれている。しかし、再生ゴムはタイヤ中で異物であるため、多量に配合するとタイヤの強度を悪化させる等の問題点があった。とくにビードインシュレーションゴムはタイヤの中でもゴム量が少量であるため、再生ゴムの配合による影響が大きくなる懸念がある。
 なお、再生ゴムを用いたタイヤ用ゴム組成物に配合する従来技術としては、例えば下記特許文献1~2が挙げられる。
特許第5380962号公報 特許第5487559号公報
 本発明の目的は、再生ゴムを有効に活用しつつ、タイヤビードインシュレーションに求められる諸特性を向上したタイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤを提供することにある。
 本発明者らは鋭意研究を重ねた結果、特定の組成を有するジエン系ゴムにカーボンブラックの特定量、無機充填剤の特定量および特定の粒径を有する再生ゴムの特定量を配合することにより、上記課題を解決できることを見出し、本発明を完成することができた。
 すなわち本発明は以下のとおりである。
 1.天然ゴムを60質量部以上含むジエン系ゴム100質量部に対し、カーボンブラックを80質量部以上および無機充填剤を40質量部以上含み、前記カーボンブラックおよび無機充填剤の合計が120~180質量部であり、さらに、60~160メッシュの再生ゴムを前記無機充填剤に対し、4~50質量%配合してなるタイヤビードインシュレーション用ゴム組成物。
 2.80~140メッシュの前記再生ゴムを使用する前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 3.前記ジエン系ゴム100質量部中、前記天然ゴムが80~100質量部を占める前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 4.前記カーボンブラックの窒素吸着比表面積(NSA)が30~125m/gである前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 5.前記カーボンブラックの配合量が、前記ジエン系ゴム100質量部に対し、80~110質量部である前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 6.前記無機充填剤の配合量が、前記ジエン系ゴム100質量部に対し、40~70質量部である前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 7.前記カーボンブラックおよび無機充填剤の合計が、前記ジエン系ゴム100質量部に対し、130~160質量部である前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 8.前記再生ゴムの配合量が、前記無機充填剤に対し、10~40質量%である前記1に記載のタイヤビードインシュレーション用ゴム組成物。
 9.前記1~8のいずれかに記載のゴム組成物をタイヤビードインシュレーションに使用してなる空気入りタイヤ。
 本発明によれば、特定の組成を有するジエン系ゴムにカーボンブラックの特定量、無機充填剤の特定量および特定の粒径を有する再生ゴムの特定量を配合したので、再生ゴムを有効に活用しつつ、とくにタイヤビードインシュレーションに求められる粘度、硬度、ビードワイヤに対する接着性等の諸特性を向上したタイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤを提供することができる。
 以下、本発明をさらに詳細に説明する。
(ジエン系ゴム)
 本発明で使用されるジエン系ゴムは、天然ゴム(NR)を必須成分とする。NRの配合量は、本発明の効果の観点から、ジエン系ゴム全体を100質量部としたときに60質量部以上であることが必要であり、80~100質量部が好ましい。NRの配合量が60質量部未満であると、破断伸び発熱性が悪化し、好ましくない。なお、NR以外にも他のジエン系ゴムを用いることができ、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。
(カーボンブラック)
 本発明で使用されるカーボンブラックは特に制限されないが、本発明の効果の観点から、窒素吸着比表面積(NSA)が30~125m/gであるものが好ましい。なお、窒素吸着比表面積(NSA)はJIS K6217-2に準拠して求めた値である。
(無機充填剤)
 無機充填剤としては、とくに制限されず、適宜選択すればよいが、例えばシリカ、クレー、タルク、炭酸カルシウム等を挙げることができる。
(再生ゴム)
 本発明で使用される再生ゴムは、JIS K6220に準拠して測定した粒径が、60~160メッシュであることが必要である。すなわち、本発明で使用される再生ゴムは、60メッシュを通過し、かつ160メッシュを通過しない粒径のものから構成される。なお、上記粒径の範囲外のものも、本発明の効果を損なわない範囲で存在することができ、例えば本発明で使用される再生ゴムは、30質量%以下の割合で、上記粒径の範囲外のものを含み得る。
 前記粒径が60メッシュ未満であると、粒径が大きすぎてビードワイヤに対する接着性が悪化し、逆に160メッシュを超えると、粒径が小さすぎて未加硫ゴムの粘度が極端に上昇し、加工性が悪化する。
 さらに好ましい粒径は、80~140メッシュである。
(ゴム組成物の配合割合)
 本発明のゴム組成物は、天然ゴムを60質量部以上含むジエン系ゴム100質量部に対し、カーボンブラックを80質量部以上および無機充填剤を40質量部以上含み、前記カーボンブラックおよび無機充填剤の合計が120~180質量部であり、さらに、60~160メッシュの再生ゴムを前記無機充填剤に対し、4~50質量%配合してなることを特徴とする。
 前記カーボンブラックの配合量が80質量部未満であると、弾性率が悪化する。
 前記無機充填剤の配合量が40質量部未満であると、弾性率が悪化する。
 前記カーボンブラックおよび無機充填剤の合計が120質量部未満であると、弾性率が悪化する。逆に180質量部を超えると、加工性が悪化する。
 再生ゴムの配合量が無機充填剤に対し、4質量%未満であると、配合量が少ないため環境上有利にはなり難い。逆に50質量%を超えると、ビードワイヤとの接着性が悪化する。
 さらに好ましい前記カーボンブラックの配合量は、ジエン系ゴム100質量部に対し、80~110質量部である。
 さらに好ましい前記無機充填剤の配合量は、ジエン系ゴム100質量部に対し、40~70質量部である。
 さらに好ましい前記カーボンブラックおよび無機充填剤の合計は、ジエン系ゴム100質量部に対し、130~160質量部である。
 さらに好ましい前記再生ゴムの配合量は、無機充填剤に対し、10~40質量%である。
 本発明のゴム組成物には、前記した成分に加えて、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
 また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに使用することができる。本発明のゴム組成物は、ビードインシュレーション用ゴムに好適に利用できる。
 以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。
実施例1~6および比較例1~2
サンプルの調製
 表1に示す配合(質量部)において、加硫促進剤と硫黄を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練した後、加硫促進剤および硫黄を加えてさらに混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を得、以下に示す試験法で加硫ゴム試験片の物性を測定した。
 ムーニー粘度:前記ゴム組成物を用い、JIS K6300に従い、100℃における未加硫ゴムの粘度を測定した。結果は比較例1の値を100として指数表示した。指数が大きいほど粘度が高く、タイヤ製造中におけるビードワイヤの寸法安定性を確保するのに良好であることを示す。
 硬度(20℃):JIS K6253に基づき、20℃にて測定した。結果は、比較例1の値を100として指数で示した。指数が大きいほど硬度が高いことを示す。
 接着性能試験:12.7mm間隔で平行に並べたブラスめっきスチールコードを上記ゴム組成物で被覆すると共に、埋め込み長さ12.7mmで埋め込み、160℃×20分間の加硫条件で加硫接着してサンプルを作製した。ASTM D-1871に準拠して前記サンプルからスチールコードを引き抜き、引抜力を評価した。結果は、比較例1の値を100として指数で示した。この指数が大きいほどゴムに対する接着性が優れていることを示す。
 ビードワイヤの寸法安定性:上記ゴム組成物をビードインシュレーション用ゴムとして用いてタイヤ(タイヤサイズ:215/45R17)を作成し、完成したタイヤの周状4箇所でビードワイヤの最大幅を測定した。測定値の最大値と最小値の差を指数で示した。この指数が小さいほど寸法安定性が優れていることを示す。
 結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
*1:NR(STR20)
*2:SBR(日本ゼオン(株)製Nipol1502)
*3:再生ゴム1(LEHIGH TECHNOLOGIES PD-80。JIS K6220に準拠して測定した粒径が、80メッシュ以上(80メッシュふるい残分=10質量%未満、かつ60メッシュふるい残分=1質量%未満)
*4:再生ゴム2(LEHIGH TECHNOLOGIES PD-140。JIS K6220に準拠して測定した粒径が、140メッシュ以上(140メッシュふるい残分=10質量%未満、かつ120メッシュふるい残分=1質量%未満)
*5:カーボンブラック(新日化カーボン(株)製ニテロン#G、窒素吸着比表面積(NSA)=30m/g)
*6:クレー(山陽クレー工業(株)製カタルポY-K)
*7:石油系樹脂(日本ゼオン(株)製クイントンA100)
*8:オイル(昭和シェル石油(株)製エキストラクト4号S)
*9:酸化亜鉛(正同化学工業(株)製酸化亜鉛3種)
*10:工業用ステアリン酸(千葉脂肪酸(株)製工業用ステアリン酸)
*11:硫黄(鶴見化学工業(株)製金華印油入微粉硫黄)
*12:加硫促進剤(大内新興化学工業(株)製ノクセラーNS-P)
 上記の表1から明らかなように、実施例1~6で調製されたゴム組成物は、特定の組成を有するジエン系ゴムにカーボンブラックの特定量、無機充填剤の特定量および特定の粒径を有する再生ゴムの特定量を配合したので、再生ゴムを配合しない比較例1のゴム組成物と比べて、同等あるいはそれ以上の特性、とくに粘度、硬度、ビードワイヤに対する接着性等の諸特性を有することが分かる。したがって、実施例1~5のゴム組成物は、タイヤビードインシュレーションゴムに好適に採用することができる。
 これに対し、比較例2は、再生ゴムの配合量が本発明で規定する上限を超えているので、接着性が悪化した。

Claims (9)

  1.  天然ゴムを60質量部以上含むジエン系ゴム100質量部に対し、カーボンブラックを80質量部以上および無機充填剤を40質量部以上含み、前記カーボンブラックおよび無機充填剤の合計が120~180質量部であり、さらに、60~160メッシュの再生ゴムを前記無機充填剤に対し、4~50質量%配合してなるタイヤビードインシュレーション用ゴム組成物。
  2.  80~140メッシュの前記再生ゴムを使用する請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  3.  前記ジエン系ゴム100質量部中、前記天然ゴムが80~100質量部を占める請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  4.  前記カーボンブラックの窒素吸着比表面積(NSA)が30~125m/gである請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  5.  前記カーボンブラックの配合量が、前記ジエン系ゴム100質量部に対し、80~110質量部である請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  6.  前記無機充填剤の配合量が、前記ジエン系ゴム100質量部に対し、40~70質量部である請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  7.  前記カーボンブラックおよび無機充填剤の合計が、前記ジエン系ゴム100質量部に対し、130~160質量部である請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  8.  前記再生ゴムの配合量が、前記無機充填剤に対し、10~40質量%である請求項1に記載のタイヤビードインシュレーション用ゴム組成物。
  9.  請求項1~8のいずれかに記載のゴム組成物をタイヤビードインシュレーションに使用してなる空気入りタイヤ。
PCT/JP2015/083220 2014-11-28 2015-11-26 タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ WO2016084892A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-241016 2014-11-28
JP2014241016A JP2016102150A (ja) 2014-11-28 2014-11-28 タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2016084892A1 true WO2016084892A1 (ja) 2016-06-02

Family

ID=56074442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083220 WO2016084892A1 (ja) 2014-11-28 2015-11-26 タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ

Country Status (2)

Country Link
JP (1) JP2016102150A (ja)
WO (1) WO2016084892A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993778B2 (ja) * 2016-12-21 2022-01-14 Toyo Tire株式会社 ゴム組成物
JP6915431B2 (ja) * 2017-07-31 2021-08-04 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7243036B2 (ja) * 2018-04-24 2023-03-22 横浜ゴム株式会社 空気入りタイヤ
JP7339503B2 (ja) * 2019-06-14 2023-09-06 横浜ゴム株式会社 空気入りタイヤ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335488A (ja) * 1998-05-26 1999-12-07 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2009269961A (ja) * 2008-05-01 2009-11-19 Yokohama Rubber Co Ltd:The ビードフィラー用ゴム組成物
JP2010132011A (ja) * 2008-12-02 2010-06-17 Yokohama Rubber Co Ltd:The ゴム組成物およびそれを用いた空気入りタイヤ
JP2012062429A (ja) * 2010-09-17 2012-03-29 Yokohama Rubber Co Ltd:The リムクッション用ゴム組成物
JP2012116977A (ja) * 2010-12-02 2012-06-21 Yokohama Rubber Co Ltd:The タイヤキャップトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2013043915A (ja) * 2011-08-23 2013-03-04 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335488A (ja) * 1998-05-26 1999-12-07 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
JP2009269961A (ja) * 2008-05-01 2009-11-19 Yokohama Rubber Co Ltd:The ビードフィラー用ゴム組成物
JP2010132011A (ja) * 2008-12-02 2010-06-17 Yokohama Rubber Co Ltd:The ゴム組成物およびそれを用いた空気入りタイヤ
JP2012062429A (ja) * 2010-09-17 2012-03-29 Yokohama Rubber Co Ltd:The リムクッション用ゴム組成物
JP2012116977A (ja) * 2010-12-02 2012-06-21 Yokohama Rubber Co Ltd:The タイヤキャップトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2013043915A (ja) * 2011-08-23 2013-03-04 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ

Also Published As

Publication number Publication date
JP2016102150A (ja) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5445638B2 (ja) タイヤリムクッションまたはガムフィニッシング用ゴム組成物およびそれを用いた空気入りタイヤ
JP2011246685A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2011246563A (ja) タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
WO2016084892A1 (ja) タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ
JP6439417B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP5552730B2 (ja) アンダートレッド用ゴム組成物
JP2010013494A (ja) アンダートレッド用ゴム組成物
JP6540263B2 (ja) ゴム組成物
JP2011246565A (ja) タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP6424594B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP6446890B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2009138094A (ja) タイヤ用ゴム組成物
JP2016155980A (ja) 建設車両用タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2013023675A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2016166297A (ja) タイヤアンダートレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP5463734B2 (ja) タイヤ用ゴム組成物
JP5949820B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2007217465A (ja) タイヤ用ゴム組成物
JP5700063B2 (ja) タイヤ用ゴム組成物
JP5593669B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP2011157495A (ja) タイヤリムクッション用ゴム組成物およびそれを用いた空気入りタイヤ
JP5772226B2 (ja) タイヤビードインシュレーション用ゴム組成物およびそれを用いた空気入りタイヤ
JP6428371B2 (ja) ランフラットライナー用ゴム組成物およびそれを用いた空気入りタイヤ
JP6933042B2 (ja) サイドトレッド用ゴム組成物
JP2009091375A (ja) ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862522

Country of ref document: EP

Kind code of ref document: A1