WO2016084833A1 - 光モジュールの製造方法 - Google Patents

光モジュールの製造方法 Download PDF

Info

Publication number
WO2016084833A1
WO2016084833A1 PCT/JP2015/083034 JP2015083034W WO2016084833A1 WO 2016084833 A1 WO2016084833 A1 WO 2016084833A1 JP 2015083034 W JP2015083034 W JP 2015083034W WO 2016084833 A1 WO2016084833 A1 WO 2016084833A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
optical fiber
frame body
frame
optical
Prior art date
Application number
PCT/JP2015/083034
Other languages
English (en)
French (fr)
Inventor
忠嘉 佐山
洋平 葛西
望 豊原
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2016084833A1 publication Critical patent/WO2016084833A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements

Definitions

  • the present invention relates to an optical module manufacturing method, which is suitable for downsizing an optical module to be manufactured.
  • an optical module in which light emitted from a plurality of laser diodes is emitted through an optical fiber is known.
  • an optical fiber is led out from the inside of the housing, and a plurality of laser diodes, a plurality of mirrors, lenses, and the like are arranged in the housing. The light emitted from each laser diode is collected and then incident on the optical fiber, and is emitted from the optical fiber outside the housing.
  • Patent Document 1 describes a method for manufacturing such an optical module.
  • a laser diode is arranged on the bottom plate of the casing, and then a frame body serving as a side surface of the casing is arranged on the bottom plate.
  • the frame is provided with an optical fiber connector and a power connector. And after arrange
  • an object of the present invention is to provide an optical module manufacturing method capable of downsizing the optical module.
  • an optical module manufacturing method includes an optical component including the light source so that light emitted from a light source disposed on a base plate serving as a bottom plate of a housing enters an optical fiber; A component fixing step of fixing the incident end of the optical fiber on the base plate; and a frame fixing step of fixing a frame body serving as a side wall of the housing on the base plate so as to surround the optical component and the incident end.
  • the frame body is formed with a notch for leading out the optical fiber, and after the frame body and the base plate are fixed by screwing in the frame body fixing step, A gap between the frame and the optical fiber in the notch is sealed with an elastically deformable bush.
  • the optical component and the optical fiber are fixed so that the light emitted from the light source enters the optical fiber before the frame is fixed to the base plate.
  • the relative position between the optical component and the optical fiber is finely adjusted.
  • the optical fiber is fixed.
  • a jig such as a hand that holds the optical component or the optical fiber does not hit the frame. Therefore, even when the space between the frame and the optical component or the optical fiber is narrow in the manufactured optical module, the position of the optical component or the optical fiber can be adjusted.
  • the space for adjusting the position of the optical component and the optical fiber can be narrowed or omitted, and thus the manufactured optical module can be reduced in size. .
  • the frame is easily fixed to the base plate so that the optical fiber is led out from the frame after the optical fiber is placed on the base plate. can do.
  • the light source emits light
  • the light source generally generates heat. Due to this heat generation, the frame surrounding the light source may be slightly deformed. Even when the frame body is deformed in this way, the notch can absorb the deformation, so that the stress due to the deformation of the frame body can be prevented from being transmitted to the base plate. Therefore, even when the frame is deformed by the heat generated by the light source, the deformation of the base plate can be suppressed, and the optical fiber axis and the optical axis of the light incident on the optical fiber can be prevented from shifting. it can.
  • the bush fills an unnecessary gap in the notch for leading out the optical fiber, it is possible to prevent dust and the like from entering the casing through the gap. Further, since at least a portion of the bush contacting the frame body can be elastically deformed, the notch can absorb the deformation of the frame body while sealing the gap.
  • the frame is fixed to the base plate by screwing, the manufactured optical module can be easily maintained. Furthermore, by fixing the frame and the base plate by screwing, the relative positions of the frame and the base plate are determined by the positions of the screw holes. Thus, after the relative position between the frame body and the base plate is determined, sealing is performed by the bush, so that the bush can be arranged according to the position of the cutout of the frame body, and the deformation of the bush is reduced. be able to. Therefore, the bush is deformed to such an extent that no gap is formed, but stress is suppressed from being applied to the optical fiber.
  • the bush has an outer shape along an edge of the notch for leading out the optical fiber and a surface of the base plate on the frame body side.
  • the outer shape of the bush is the above shape, so that the bush is less susceptible to stress from the frame body and the base plate while the bush fills the notch, and stress is applied to the optical fiber via the bush. Can be suppressed.
  • a connector for supplying power to the light source is disposed on the base plate, and the frame is formed with a notch for leading out the connector.
  • the frame By forming the connector lead-out in the frame, the frame can be easily fixed to the base plate so that the connector is led out from the frame after the connector is arranged on the base plate. Further, even when the frame body is deformed as described above, the connector lead-out notch can absorb the deformation, so that the stress due to the deformation of the frame body is prevented from being transmitted to the base plate. And the deformation of the base plate can be suppressed.
  • a gap between the frame body and the connector in the connector lead-out notch is sealed by a bush capable of elastically deforming at least a portion in contact with the frame body.
  • a flange extending along the base plate is connected to an edge of the frame on the base plate side, and the flange and the base plate are fixed to each other.
  • the collar part becomes a heat radiating fin, and the efficiency of heat radiation can be increased. Therefore, the deformation of the base plate can be further suppressed.
  • a position adjacent to the notch for leading out the optical fiber of the frame body in the collar portion is notched.
  • the notch of the flange is deformed to absorb the distortion and the distortion of the frame. Can be prevented from being transmitted to the base plate.
  • a top plate serving as a top plate of the housing is connected to the frame.
  • top plate Since the top plate is connected to the frame body, it is not necessary to connect the plate as the top plate to the frame body after the frame body is fixed to the base plate, and the manufacturing process of the optical module can be simplified.
  • an optical module manufacturing method capable of reducing the size of an optical module is provided.
  • FIG. 1 It is a figure which shows the optical module which concerns on embodiment of this invention. It is a figure which shows the optical module shown in FIG. 1 from another viewpoint. It is the figure which removed the cover body of the optical module shown in FIG. It is a figure which sees the lid shown in Drawing 1 from the back. It is a flowchart which shows the process of the manufacturing method of an optical module. It is a figure which shows the mode of a component fixing process. It is a figure which shows the mode of a frame fixing process.
  • FIG. 1 is a diagram showing an optical module according to this embodiment
  • FIG. 2 is a diagram showing the optical module of FIG. 1 from a different viewpoint from FIG.
  • the optical module 1 of the present embodiment includes a casing made up of a base plate 2 and a lid 3, optical components to be described later fixed in the casing, and some optical components.
  • the connector 41 for supplying the optical fiber 50 and the optical fiber 50 are provided as main components.
  • FIG. 3 is a diagram with the cover of the optical module shown in FIG. 1 removed. In FIG. 3, the state of light is indicated by broken lines.
  • the base plate 2 is a metal plate serving as a bottom plate of the housing, and is a flat plate member as shown in FIG. A plurality of screw holes 27 are formed in the outer peripheral portion of the base plate 2.
  • the optical component, the optical fiber 50, and the connector 41 are fixed on the base plate 2.
  • the optical component of this embodiment includes a laser diode 11, a mirror 13, a first lens 14, and a second lens 15.
  • a plurality of laser diodes 11 serving as light sources are elements having a Fabry-Perot structure formed by laminating a plurality of semiconductor layers, and emit laser light having a wavelength of, for example, 900 nm.
  • Each laser diode 11 is fixed on the laser mount 12 with solder or the like, and is fixed on the base plate 2 via the laser mount 12.
  • the laser mount 12 is a table for adjusting the height of the laser diode 11, and each laser mount 12 is fixed to a predetermined position on the base plate 2 by, for example, soldering. In this way, the laser mount 12 may be separated from the base plate 2 and the laser mount 12 may be fixed on the base plate 2, but the laser mount 12 may be molded integrally with the base plate 2. Alternatively, the laser mount 12 may be omitted when the height adjustment of the laser diode 11 is unnecessary.
  • a plurality of mirrors 13 are arranged on the base plate 2 corresponding to the respective laser diodes 11. Each mirror 13 is adjusted to reflect light emitted from the corresponding laser diode 11 vertically along the surface direction of the base plate 2.
  • the mirror 13 of the present embodiment is composed of a prism and is fixed on the base plate 2 with an adhesive.
  • the mirror 13 may be comprised other than a prism like the glass body in which the reflecting film was formed.
  • the first lens 14 and the second lens 15 are each formed of a cylindrical lens, and are fixed on the base plate 2 by adhesion.
  • the first lens 14 condenses the fast direction component of the light reflected by each mirror 13, and the second lens 15 condenses the slow direction component of the light emitted from the first lens 14.
  • the light emitted from the second lens 15 collects the light at a predetermined position.
  • a condensing lens that collects the light emitted from the second lens 15 may be further disposed on the base plate 2.
  • the optical fiber 50 is inserted into a pipe-shaped holder 51 and fixed to the holder 51.
  • one end serving as the light incident end of the optical fiber 50 is slightly led out from the holder 51.
  • the holder 51 is fixed to the fiber mount 52, and the fiber mount 52 is fixed to the base plate 2.
  • One end of the optical fiber 50 is at a position where light emitted from the second lens 15 can enter the core.
  • the optical fiber 50 is fixed to the holder 51 by an adhesive or soldering, the holder 51 is fixed by being bonded to the fiber mount 52, and the fiber mount 52 is fixed to the base plate 2 by bonding. Has been.
  • the incident end of the optical fiber 50 is indirectly fixed on the base plate 2.
  • the connector 41 is formed of a pair of rod-shaped conductors, and each conductor is fixed to a pair of connector holders 42. Each connector holder 42 is bonded and fixed to the base plate 2.
  • One conductor of the connector 41 is connected to the laser diode 11 closest to the connector 41 by a gold wire (not shown), and each laser diode 11 is daisy chain connected by a gold wire (not shown).
  • the laser diode 11 farthest from the connector 41 is connected to the other conductor of the connector 41 by a gold wire (not shown).
  • FIG. 4 is a view of the lid shown in FIG. 1 viewed from the back side.
  • the lid body 3 of the present embodiment is formed by pressing a metal plate, and includes a top plate 31, a frame body 32, and a flange portion 33.
  • the top plate 31 is a part that becomes a top plate of the casing, and is made of a flat plate-like member.
  • the frame body 32 is a part that is vertically connected to the top plate 31 at the periphery of the top plate 31. Further, the frame body 32 is sized to surround the optical component, the incident end of the optical fiber, and the like in a state where the lid body 3 is disposed on the base plate 2 as shown in FIGS. Further, the frame 32 is formed with a notch 35a for leading the optical fiber 50 from the inside of the housing to the outside of the housing, and a notch 35b for leading the connector 41 from the inside of the housing to the outside of the housing.
  • the flange portion 33 is a portion connected to the frame body 32 on the side opposite to the top plate 31 side of the frame body 32, and is outside the frame body 32 perpendicular to the frame body 32 (parallel to the top plate 31). It extends to spread. Moreover, the position adjacent to each notch 35a, 35b of the frame 32 in the collar part 33 is each notched.
  • a plurality of screw holes 37 are formed in the flange portion 33, and the positions where these screw holes 37 are formed are arranged on the base plate 2 with the lid 3 as shown in FIGS. In this state, the position overlaps with the screw hole 27 formed in the base plate 2.
  • the base plate 2 and the lid body 3 are arranged on the base plate 2, as shown in FIGS. 1 and 2, and the screw holes 27 of the base plate 2 and the lid body 3. It is fixed by a plurality of screws 25 screwed into the screw holes 37.
  • a silicone resin is interposed between the base plate 2 and the flange portion 33 of the lid 3 so that the airtightness between the base plate 2 and the flange portion 33 is maintained. Further, even when the frame body 32 is deformed by the silicone resin, the space between the frame body 32 and the base plate 2 can be filled and the deformation can be absorbed.
  • the holder 51 is led out from the notch 35a together with the optical fiber 50 as shown in FIG.
  • a bush 55 is disposed between the holder 51 and the frame body 32 to fill a gap between the holder 51 and the frame body 32.
  • the bush 55 is configured such that at least a portion in contact with the frame body 32 can be elastically deformed.
  • a part in contact with the frame body 32, a part in contact with the base plate 2, and a part in contact with the holder 51 are made of an adhesive resin whose main component is a modified silicone resin. It is mentioned that the part surrounded by the resin is made of a hard resin such as polyetheretherketone resin (PEEK).
  • PEEK polyetheretherketone resin
  • the entire bush 55 may be made of an elastically deformable resin.
  • the bush 55 has an outer shape along the edge of the notch 35a and the surface of the base plate 2 on the frame body 32 side. Since the outer shape of the bush 55 has such a shape, the bush 55 hardly receives stress from the frame body 32 and the base plate 2 while the bush 55 fills the gap of the notch 35a. Thus, the stress applied to the optical fiber 50 can be suppressed.
  • the connector 41 is led out from the notch 35b as shown in FIG.
  • a bush 45 is disposed between the connector 41 and the frame 32, and a gap between the frame 32 and the connector 41 in the notch 35 b is sealed by the bush 45.
  • the bush 45 is made of an elastically deformable resin at least at a portion in contact with the frame body 32, for example, made of the same resin as the bush 55.
  • each laser diode 11 When desired power is supplied to each laser diode 11 from the connector 41, each laser diode 11 emits light toward each mirror 13 corresponding to each laser diode 11, as shown in FIG. To do.
  • This light is, for example, laser light having a wavelength of 900 nm as described above.
  • Each mirror 13 reflects incident light vertically along the surface direction of the base plate 2.
  • the light reflected by the mirror 13 enters the first lens 14, and the fast direction component of the light is collected by the first lens 14.
  • the light emitted from the first lens 14 enters the second lens 15, and the slow direction component of the light is collected by the second lens 15.
  • the light collected by the second lens 15 enters the core of the optical fiber 50 and propagates through the optical fiber 50. Thus, light is emitted from the other end of the optical fiber 50.
  • the optical module 1 when the optical module 1 operates in this way, a part of the input electric power is emitted as optical energy, while the other part is thermal energy. Most of this thermal energy is generated from the laser diode 11, and most of the heat generated in the laser diode 11 is transmitted to the base plate 2, but the base plate 2 is cooled by a cooling device installed on the lower surface of the base plate 2.
  • the base plate 2 When the base plate 2 is deformed by heat, the relative position between the optical components and the relative position between the optical component and the optical fiber may change, and the incident efficiency of light into the optical fiber may be reduced. Therefore, the base plate 2 is cooled, so that the base plate 2 is prevented from being deformed by heat.
  • the lid 3 When heat is transmitted to the lid 3, the top plate 31 and the frame 32 are deformed to expand.
  • the frame 32 is formed with a notch 35a for leading out the optical fiber and a notch 35b for leading out the connector 41.
  • This notch absorbs at least a part of the stress caused by the deformation of the frame body 32. For this reason, it is possible to suppress the stress due to the deformation of the frame body 32 from being transmitted to the base plate 2. Therefore, even if the frame 32 is deformed, the deformation of the base plate 2 can be suppressed, and the light incident efficiency on the optical fiber 50 can be suppressed from being reduced.
  • the bushes 55 and 45 of the present embodiment at least a portion in contact with the frame body 32 can be elastically deformed. Therefore, an unnecessary gap in the notch 35a for leading out the optical fiber 50 or the notch 35b for leading out the connector 41 is filled to prevent dust and the like from entering the housing from the gap, while the notch is not as described above. The deformation of the frame can be absorbed.
  • the lid 3 since the lid 3 has the flange portion 33 and the flange portion 33 is fixed to the base plate 2, the flange portion 33 becomes a radiating fin and can increase the efficiency of heat dissipation. . Therefore, the deformation of the base plate 2 can be further suppressed.
  • the optical module 1 of this embodiment can be easily maintained.
  • FIG. 5 is a flowchart showing the steps of the method for manufacturing the optical module 1 of the present embodiment.
  • the optical module manufacturing method of the present embodiment includes a component fixing step P1 and a frame fixing step P2.
  • Part fixing process P1 In the component fixing step P1, the optical component including the laser diode 11 and the incident end of the optical fiber 50 are fixed on the base plate 2 so that the light emitted from the laser diode 11 disposed on the base plate 2 enters the optical fiber 50. It is a process to do.
  • FIG. 6 is a diagram showing the state of this process.
  • the laser diode 11 is fixed on the base plate 2 via the laser mount 12 as described above. Therefore, before the laser diode 11 is disposed on the base plate 2, the laser diode 11 is disposed and fixed on the laser mount 12. Fixing is performed by soldering, for example. Thereafter, the laser mount 12 on which the laser diode 11 is mounted is arranged on the base plate 2 and fixed. The main fixing is performed by soldering, for example.
  • the connector 41 is disposed on the base plate 2 via the connector holder 42 as described above. Therefore, before the connector 41 is disposed on the base plate 2, the respective rod-shaped conductors are inserted into the connector holder 42 to fix the conductors to the connector holder. This fixing is performed by adhesion, for example. And each connector holder 42 to which the conductor is fixed is arranged on the base plate 2 and fixed. This fixing is performed by adhesion, for example. Next, one conductor of the connector 41 and the laser diode 11 closest to the connector 41 are connected by a gold wire, and further, each laser diode 11 is daisy chain connected by a gold wire, and further away from the connector 41. The laser diode 11 and the other conductor of the connector 41 are connected by a gold wire. Thus, the connector 41 and each laser diode 11 are electrically connected, and power can be supplied to each laser diode 11 via the connector 41.
  • the optical fiber 50 is arranged on the base plate 2 via the fiber mount 52 in a state of being fixed to the holder 51 as described above. Therefore, the optical fiber 50 is inserted into the holder 51 and fixed before the optical fiber 50 is arranged on the base plate 2. At this time, as shown in FIG. 6, a bush 55 is inserted into the optical fiber 50 in advance. Furthermore, when the optical fiber 50 is covered with a coating layer, the coating layer is peeled off by a predetermined distance from one end that is the incident end of the optical fiber 50. Then, the optical fiber 50 is inserted into the holder 51, and the optical fiber 50 is fixed to the holder. At this time, in the present embodiment, the incident end of the optical fiber 50 is slightly led out from the holder 51.
  • the optical fiber 50 may be fixed to the holder 51 by soldering or a resin such as a thermosetting resin.
  • the holder 51 is fixed to the fiber mount 52. This fixing is performed by adhesion, for example.
  • the holder 51 and the fiber mount 52 may be integrally formed.
  • the fiber mount 52 to which the optical fiber 50 is fixed is arranged on the base plate 2 and fixed. This fixing is performed by adhesion, for example.
  • the first lens 14 and the second lens 15 are directly arranged and fixed on the base plate 2 as described above. This fixing is performed by adhesion, for example. Specifically, an adhesive is applied to each position on the base plate 2 where the first lens 14 and the second lens 15 are arranged, and the first lens 14 and the second lens 14 are applied on the base plate 2 to which the adhesive is applied. The lens 15 is arranged and fixed by solidifying the adhesive.
  • Each mirror 13 is directly arranged and fixed on the base plate 2 as described above. This fixing is performed by adhesion, for example. Specifically, an adhesive is applied to each position on the base plate 2 where the mirror 13 is disposed, and the mirror 13 is disposed on the base plate 2 to which the adhesive is applied to solidify the adhesive. Fix it.
  • the position needs to be finely adjusted.
  • the position of the mirror 13 is finely adjusted. Specifically, an optical component other than the mirror 13 and the connector 41 are fixed on the base plate 2 and power is supplied from the connector 41 so that light can be emitted from the laser diode 11. Further, the optical fiber 50 is fixed on the base plate 2. Thereafter, the mirror 13 is disposed on the base plate 2 to which the adhesive is applied, electric power is applied from the connector 41 to the laser diode 11, and light is emitted from each laser diode 11.
  • each mirror 13 is finely adjusted so that the light emitted from the laser diode 11 enters the core of the optical fiber 50.
  • the position of the mirror 13 is finely adjusted so that the energy of light emitted from the other end of the optical fiber 50 is maximized.
  • the position of the mirror 13 is determined.
  • the adhesive on which the mirror 13 is disposed is solidified and the mirror 13 is fixed.
  • the respective optical components, the optical fiber 50, and the connector 41 are fixed on the base plate 2.
  • the frame fixing step is a step of fixing the frame 32 serving as the side wall of the housing on the base plate 2 so as to surround the optical component and the incident end of the optical fiber 50.
  • FIG. 7 is a diagram showing the state of this process.
  • the lid 3 including the frame 32 is placed on the base plate 2 to which the optical component, the optical fiber 50, and the connector 41 are fixed.
  • the frame 32 surrounds the optical component and the incident end of the optical fiber 50, the optical fiber 50 is led out of the frame 32 together with the holder 51 from the notch 35a, and the connector 41 is framed from the notch 35b.
  • the base plate 2 and the lid 3 are aligned so that the screw holes 27 of the base plate 2 and the screw holes 37 of the flange portion 33 penetrate through the body 32.
  • the silicone resin is interposed between the base plate 2 and the flange portion 33 of the lid 3 as described above, the silicone resin is previously attached to the surface of the flange portion 33 on the base plate 2 side.
  • the lid 3 is arranged on the base plate 2.
  • the screw 25 is screwed into each of the screw hole 27 of the base plate 2 and the screw hole 37 of the flange 33 that penetrate each other, and the lid 3 is fixed on the base plate 2.
  • the bush 55 previously inserted into the optical fiber 50 as described above is fitted into the notch 35a and fixed.
  • each conductor of the connector 41 is inserted into the hole of the bush 45, and the bush 45 is fitted into the notch 35b and fixed.
  • the bush 55 and the bush 45 are fixed by, for example, adhesion.
  • the light emitted from the laser diode 11 as the light source before the lid 3 including the frame 32 is fixed to the base plate 2 is the optical fiber 50.
  • the optical components such as the laser diode 11 and the mirror 13 are fixed so as to be incident on. Therefore, a jig for finely adjusting the position of the optical component, the optical fiber 50 or the like does not hit the frame body 32. Therefore, even when the space between the frame 32 and the optical component or the optical fiber 50 in the optical module 1 is narrow, the position of the optical component or the optical fiber 50 can be adjusted. For this reason, according to the manufacturing method of the optical module 1 of this invention, since the space for adjusting the position of an optical component or the optical fiber 50 can be narrowed or abbreviate
  • the frame 32 is formed with a notch 35a for leading out the optical fiber 50 and a notch 35b for leading out the connector 41, even after the optical fiber 50 and the connector 41 are arranged on the base plate 2, the frame The frame body 32 can be easily fixed to the base plate 2 so that the optical fiber 50 and the connector 41 are led out from the body 32.
  • the lid body 3 is formed by integrating the frame body 32 and the top plate 31. Therefore, there is no need to connect a plate as a top plate to the frame after the frame 32 is fixed to the base plate 2, and the optical module manufacturing process can be simplified.
  • the optical fiber 50 and the connector 41 can be led out, at least one of the notch 35a and the notch 35b of the frame 32 is unnecessary. In this case, for example, the optical fiber 50 and the connector 41 are not attached to the frame 32.
  • a lead-out opening may be formed.
  • a cutout 35 a and a cutout 35 b are formed in the frame 32.
  • the lid 3 is integrated with the frame 32 and the top plate 31 serving as the top plate of the housing.
  • the frame body 32 and the top plate 31 may be separate members, and after the frame body 32 is fixed on the base plate 2, the top plate 31 may be joined to the frame body.
  • the frame body 32 and the top plate 31 are preferably integrated from the viewpoint of easily manufacturing the optical module 1.
  • the buttock 33 is not an essential configuration.
  • the frame body 32 When there is no flange 33, the frame body 32 is directly fixed on the base plate 2. In this case, it may be fixed by soldering, or a screw hole may be formed in the frame 32 and fixed to the base plate 2 by screwing. Thus, when it does not have the collar part 33, the optical module 1 can be reduced in size.
  • the flange portion 33 the frame body 32 can be fixed on the base plate 2 stably and easily.
  • the lid 3 is fixed on the base plate 2 by screwing, but may be fixed on the base plate 2 by a method other than screwing such as welding.
  • an optical module manufacturing method capable of reducing the size of the optical module 1 is provided, and can be used in the field of, for example, a fiber laser device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 光モジュールの製造方法は、筐体の底板となるベースプレート2上に配置された光源から出射する光が光ファイバ50に入射するように、光源を含む光学部品及び光ファイバ50の入射端をベースプレート2上に配置する部品固定工程P1と、筐体の側壁となる枠体32を光学部品及び光ファイバの入射端を囲むようにベースプレート2上に固定する枠体固定工程P2と、を備え、枠体32には光ファイバ導出用の切り欠き35aが形成されており、枠体固定工程P2において枠体32とベースプレート2とがねじ止めにより固定された後、光ファイバ導出用の切り欠き35aにおける枠体32と光ファイバ50との間の隙間は、弾性変形可能なブッシュ55により封止される。

Description

光モジュールの製造方法
 本発明は、光モジュールの製造方法に関し、製造される光モジュールを小型化する場合に好適なものである。
 光モジュールの一つとして、複数のレーザダイオードから出射する光が光ファイバを介して出射する光モジュールが知られている。この光モジュールでは、筐体内から筐体外に光ファイバが導出されており、筐体内には、複数のレーザダイオード、複数のミラー、レンズ等が配置されている。それぞれのレーザダイオードから出射する光は、集光された後に光ファイバに入射して、筐体外において光ファイバから出射する。
 下記特許文献1には、このような光モジュールの製造方法が記載されている。この光モジュールの製造方法においては、筐体の底板上にレーザダイオードを配置した後に筐体の側面部となる枠体を底板上に配置する。この枠体には、光ファイバのコネクタと電源コネクタとが設けられている。そして、枠体を底板上に配置後、レーザダイオードから出射する光が光ファイバに入射するように光ファイバの位置調整を行う。
国際公開第2013/123001号
 光ファイバに光が入射するよう光ファイバの位置調整を行うためには、ハンド等の治具で光ファイバを把持して、その位置を調整する必要がある。しかし、上記特許文献1に記載の光モジュールの製造方法では、光ファイバが配置される位置と枠体との間の距離が小さいと、ハンドが枠体に当たり、光ファイバを把持することができない場合がある。このため、光ファイバと枠体との間には、光ファイバをハンドが把持するための空間が必要となる。一方、光モジュールを小型化したいという要請がある。
 そこで、本発明は、光モジュールを小型化することができる光モジュールの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明の光モジュールの製造方法は、筐体の底板となるベースプレート上に配置された光源から出射する光が光ファイバに入射するように、前記光源を含む光学部品及び前記光ファイバの入射端を前記ベースプレート上に固定する部品固定工程と、前記筐体の側壁となる枠体を前記光学部品及び前記入射端を囲むように前記ベースプレート上に固定する枠体固定工程と、を備え、前記枠体には前記光ファイバ導出用の切り欠きが形成されており、前記枠体固定工程において前記枠体と前記ベースプレートとがねじ止めにより固定された後、前記光ファイバ導出用の切り欠きにおける前記枠体と前記光ファイバとの間の隙間は、弾性変形可能なブッシュにより封止されることを特徴とするものである。
 このような光モジュールの製造方法によれば、枠体をベースプレートに固定する前に光源から出射する光が光ファイバに入射するように、光学部品及び光ファイバを固定する。このように光学部品や光ファイバを固定するには、一般的にベースプレート上に光学部品や光ファイバが配置された後、光学部品と光ファイバとの相対位置の微調整が行われて、光学部品や光ファイバが固定される。この際、枠体の固定前に当該調整を行うことができるため、光学部品や光ファイバを把持するハンド等の治具が枠体に当たることが無い。従って、製造される光モジュールにおいて枠体と光学部品や光ファイバとの間の空間が狭い場合であっても、光学部品や光ファイバの位置調整を行うことができる。このように本発明の光モジュールの製造方法によれば、光学部品や光ファイバの位置調整を行うための空間を狭くしたり省略したりできるため、製造される光モジュールを小型化することができる。
 また、枠体に光ファイバ導出用の切り欠きが形成されていることで、光ファイバがベースプレート上に配置された後において、枠体から光ファイバが導出するように枠体をベースプレートに容易に固定することができる。また、光源が光を出射する際において、一般的に光源は発熱する。この発熱により光源を囲む枠体が僅かに変形する場合がある。このように枠体が変形する場合であっても、切り欠きが当該変形を吸収することができるため、枠体の変形による応力がベースプレートに伝達することを抑制することができる。従って、光源の発熱により枠体が変形する場合であっても、ベースプレートの変形を抑制することができ、光ファイバの軸と光ファイバに入射する光の光軸とがずれることを抑制することができる。
 また、光ファイバ導出用の切り欠きにおける不要な隙間をブッシュが埋めることで、当該隙間から埃等が筐体内に侵入することを防止することができる。また、ブッシュの少なくとも前記枠体と接する部位が弾性変形可能なため、隙間を封止しつつも、切り欠きが上記の枠体の変形を吸収することができる。
 また、ねじ止めにより枠体がベースプレートに固定されることで、製造された光モジュールを容易にメンテナンスすることができる。さらに、枠体とベースプレートとがねじ止めにより固定されることによって、ねじ孔の位置により枠体とベースプレートとの相対的位置が確定する。このように枠体とベースプレートとの相対的位置が確定した後にブッシュにより封止が行われることによって、ブッシュを枠体の切り欠きの位置に合わせて配置することができ、ブッシュの変形を低減することができる。よって、ブッシュは隙間が形成されない程度に変形しつつも、光ファイバに応力が加わることが抑制される。
 また、前記ブッシュは、前記光ファイバ導出用の切り欠きの縁と前記ベースプレートの前記枠体側の面とに沿う外形を有していることが好ましい。
 ブッシュの外形が上記形状をしていることによって、ブッシュが切り欠きの隙間を埋めつつも、ブッシュが枠体からもベースプレートからも応力を受け難く、ブッシュを介して光ファイバに応力が加わることを抑制することができる。
 また、前記部品固定工程において、前記光源に電力を供給するコネクタが前記ベースプレート上に配置され、前記枠体には前記コネクタ導出用の切り欠きが形成されていることが好ましい。
 枠体にコネクタ導出用の切り欠きが形成されることで、コネクタがベースプレート上に配置された後において、枠体からコネクタが導出するように枠体をベースプレートに容易に固定することができる。また、上記のように枠体が変形する場合であっても、コネクタ導出用の切り欠きが当該変形を吸収することができるので、枠体の変形による応力がベースプレートに伝達することを抑制することができ、ベースプレートの変形を抑制することができる。
 またこの場合、前記コネクタ導出用の切り欠きにおける前記枠体と前記コネクタとの間の隙間は、少なくとも前記枠体と接する部位が弾性変形可能なブッシュにより封止されることが好ましい。
 この場合、コネクタ導出用の切り欠きにおける不要な隙間から埃等が筐体内に侵入することを防止することができる。また、ブッシュの少なくとも前記枠体と接する部位が弾性変形可能なため、隙間を封止しつつも切り欠きが枠体の変形を吸収することができる。
 また、前記枠体固定工程において、前記枠体の前記ベースプレート側の縁には、前記ベースプレートに沿って広がる鍔部が連結され、前記鍔部と前記ベースプレートとが互いに固定されることが好ましい。
 鍔部がベースプレートに固定されることで、鍔部が放熱フィンとなり放熱の効率を挙げることができる。従って、ベースプレートの変形をより抑制することができる。
 また、前記鍔部における前記枠体の前記光ファイバ導出用の切り欠きと隣り合う位置は切り欠かれていることが好ましい。
 鍔部が上記のように切り欠かれていることによって、枠体がベースプレートに取り付けられる前に歪み有している場合、鍔部の切り欠きが変形してその歪みを吸収し、枠体の歪みがベースプレートに伝わることを抑制することができる。
 また、前記枠体固定工程において、前記枠体には前記筐体の天板となるトッププレートが連結されていることが好ましい。
 枠体にトッププレートが連結されていることにより、枠体をベースプレートに固定した後に天板となるプレートを枠体に接続する必要が無く、光モジュールの製造工程を簡易にすることができる。
 以上のように、本発明によれば、光モジュールを小型化することができる光モジュールの製造方法が提供される。
本発明の実施形態に係る光モジュールを示す図である。 図1に示す光モジュールを別の視点から示す図である。 図1に示す光モジュールの蓋体を外した図である。 図1に示す蓋体を裏面から見る図である。 光モジュールの製造方法の工程を示すフローチャートである。 部品固定工程の様子を示す図である。 枠体固定工程の様子を示す図である。
 以下、本発明に係る光モジュールの製造方法の好適な実施形態について図面を参照しながら詳細に説明する。
 <光モジュール>
 まず、本実施形態の光モジュールについて説明する。
 図1は、本実施形態に係る光モジュールを示す図であり、図2は、図1の光モジュールを図1と別の視点から示す図である。
 図1、図2に示すように、本実施形態の光モジュール1は、ベースプレート2及び蓋体3から成る筐体と、筐体内に固定される後述の光学部品と、一部の光学部品に電力を供給するコネクタ41と、光ファイバ50とを主な構成として備える。
 図3は、図1に示す光モジュールの蓋体を外した図である。なお、図3では破線で光の様子が示されている。ベースプレート2は、筐体の底板となる金属製のプレートであり、図3に示すように平板状の部材である。ベースプレート2には外周部に複数のねじ孔27が形成されている。
 ベースプレート2上には、光学部品、光ファイバ50及びコネクタ41が固定されている。本実施形態の光学部品は、レーザダイオード11、ミラー13、第1レンズ14、第2レンズ15を含んで構成される。
 光源である複数のレーザダイオード11は、複数の半導体層が積層されて成るファブリペロー構造を有する素子であり、例えば波長が900nm帯のレーザ光を出射する。それぞれのレーザダイオード11は、レーザマウント12上にはんだ等により固定されており、レーザマウント12を介してベースプレート2上に固定されている。レーザマウント12は、レーザダイオード11の高さを調整するための台であり、それぞれのレーザマウント12は、ベースプレート2における所定位置に例えばはんだ付け等により固定されている。なお、このようにレーザマウント12がベースプレート2と別体とされて、レーザマウント12がベースプレート2上に固定されても良いが、レーザマウント12がベースプレート2と一体に成型されても良い。或いは、レーザダイオード11の高さ調整が不要の場合、このレーザマウント12は省略されても良い。
 ミラー13は、それぞれのレーザダイオード11に対応してベースプレート2上に複数配置されている。それぞれのミラー13は、対応するレーザダイオード11から出射する光をベースプレート2の面方向に沿って垂直に反射するよう調整されている。本実施形態のミラー13は、プリズムから構成されており、ベースプレート2上に接着剤により固定されている。なお、ミラー13は、反射膜が形成されたガラス体のように、プリズム以外から構成されても良い。
 また、第1レンズ14及び第2レンズ15は、それぞれシリンドリカルレンズから成り、ベースプレート2上に接着により固定されている。第1レンズ14は、それぞれのミラー13で反射される光のファスト方向成分を集光し、第2レンズ15は、第1レンズ14から出射する光のスロー方向成分を集光する。こうして、第2レンズ15から出射する光は所定の位置において光を集光する。なお、第2レンズ15から出射する光が所望の位置で集光しない場合には、第2レンズ15から出射する光を集光する集光レンズが更にベースプレート2上に配置されても良い。
 光ファイバ50は、パイプ状のホルダ51に挿通されて、ホルダ51に固定されている。本実施形態では、光ファイバ50の光の入射端となる一端がホルダ51から僅かに導出されている。ホルダ51はファイバマウント52に固定され、ファイバマウント52はベースプレート2に固定されている。光ファイバ50の一端は、第2レンズ15から出射する光が、コアに入射可能な位置とされる。なお、本実施形態では、光ファイバ50はホルダ51に接着剤やはんだ付けにより固定されており、ホルダ51はファイバマウント52に接着されることで固定され、ファイバマウント52はベースプレート2に接着により固定されている。こうして、光ファイバ50の入射端がベースプレート2上に間接的に固定されている。
 コネクタ41は、一対の棒状の導体から形成されており、それぞれの導体は一対のコネクタホルダ42に固定されている。それぞれのコネクタホルダ42は、ベースプレート2に接着されて固定されている。コネクタ41の一方の導体は、コネクタ41に最も近いレーザダイオード11と図示しない金線により接続されており、それぞれのレーザダイオード11は図示しない金線によりデイジーチェーン接続されている。また、コネクタ41から最も離れたレーザダイオード11は、コネクタ41の他方の導体に図示しない金線により接続されている。
 図4は、図1に示す蓋体を裏面から見る図である。図4に示すように、本実施形態の蓋体3は、金属板がプレス加工されて成り、トッププレート31と、枠体32と、鍔部33とから成る。
 トッププレート31は、筐体の天板となる部位であり、平板状の部材からなる。枠体32は、トッププレート31の周縁においてトッププレート31に垂直に連結される部位である。また、枠体32は、図1、図2に示すように蓋体3がベースプレート2上に配置された状態で、光学部品や光ファイバの入射端等を囲む大きさとされる。また、枠体32には、光ファイバ50を筐体内から筐体外に導出するための切り欠き35a、および、コネクタ41を筐体内から筐体外に導出するための切り欠き35bが形成されている。鍔部33は、枠体32のトッププレート31側とは反対側において、枠体32に連結される部位であり、枠体32に対して垂直(トッププレート31と平行)に枠体32の外側に広がるように延在している。また、鍔部33における枠体32のそれぞれの切り欠き35a,35bと隣り合う位置は、それぞれ切り欠かれている。鍔部33がこのように切り欠かれていることによって、枠体32がベースプレート2に取り付けられる前に歪みを有している場合、鍔部33の切り欠きがその歪みを吸収し、枠体32の歪みがベースプレート2に伝わることを抑制することができる。また、鍔部33には、複数のねじ孔37が形成されており、これらのねじ孔37が形成されている位置は、図1、図2に示すように蓋体3がベースプレート2上に配置された状態で、ベースプレート2に形成されたねじ孔27と重なる位置とされている。
 この蓋体3が、図1、図2に示すように、ベースプレート2上に配置された状態で、ベースプレート2と蓋体3とは、ベースプレート2のそれぞれのねじ孔27と蓋体3のそれぞれのねじ孔37とに螺入される複数のねじ25により固定される。なお、特に図示しないが、本実施形態では、ベースプレート2と蓋体3の鍔部33との間にシリコーン樹脂が介在して、ベースプレート2と鍔部33との間の気密が保たれている。また、このシリコーン樹脂により、枠体32が変形する場合であっても、枠体32とベースプレート2との間を埋め当該変形を吸収することができる。
 また、このように蓋体3がベースプレート2上に配置された状態で、図1に示すように、ホルダ51が光ファイバ50と共に切り欠き35aから導出している。そして、切り欠き35aにおいて、ホルダ51と枠体32との間には、ブッシュ55が配置されて、ホルダ51と枠体32との間の隙間が埋められている。こうして、切り欠き35aにおける枠体32と光ファイバとの間の隙間はブッシュ55により封止されている。ブッシュ55は、少なくとも枠体32と接する部位が弾性変形可能な構成とされる。このようなブッシュ55の構成としては、例えば、枠体32と接する部位、ベースプレート2と接する部位及びホルダ51と接する部位が変性シリコーン樹脂を主成分とする接着性の樹脂からなり、当該接着性の樹脂で囲まれる部位がポリエーテルエーテルケトン樹脂(PEEK)等の硬質な樹脂から成ることが挙げられる。なお、ブッシュ55全体が弾性変形可能な樹脂から構成されても良い。
 なお、ブッシュ55は切り欠き35aの縁とベースプレート2の枠体32側の面とに沿う外形を有している。ブッシュ55の外形がこのような形状をしていることによって、ブッシュ55が切り欠き35aの隙間を埋めつつも、ブッシュ55が枠体32からもベースプレート2からも応力を受け難く、ブッシュ55を介して光ファイバ50に応力が加わることを抑制することができる。
 また、蓋体3がベースプレート2上に配置された状態で、図2に示すように、コネクタ41が切り欠き35bから導出している。そして、コネクタ41と枠体32との間には、ブッシュ45が配置されており、切り欠き35bにおける枠体32とコネクタ41との間の隙間はブッシュ45により封止されている。ブッシュ45は、少なくとも枠体32と接する部位が弾性変形可能な樹脂からなり、例えば、ブッシュ55と同様の樹脂からなる。
 次に、光モジュール1の光学的な動作について説明する。
 コネクタ41からそれぞれのレーザダイオード11に所望の電力が供給されると、図3に示すように、それぞれのレーザダイオード11は、それぞれのレーザダイオード11に対応するそれぞれのミラー13に向かって光を出射する。この光は、上記のように例えば波長が900nm帯のレーザ光とされる。それぞれのミラー13は、入射する光をベースプレート2の面方向に沿って垂直に反射する。ミラー13で反射された光は第1レンズ14に入射して、第1レンズ14により光のファスト方向成分が集光される。第1レンズ14から出射する光は、第2レンズ15に入射して、第2レンズ15により光のスロー方向成分が集光される。第2レンズ15により集光された光は、光ファイバ50のコアに入射して、光ファイバ50を伝搬する。こうして、光ファイバ50の他端から光が出射する。
 ところで、このように光モジュール1が動作する際、入力する電力の一部が光エネルギーとして出射するが、他の一部は熱エネルギーとなる。この熱エネルギーの多くはレーザダイオード11から発生し、レーザダイオード11で発生する熱の多くはベースプレート2に伝達するが、ベースプレート2は、ベースプレート2の下面に設置される冷却装置により冷却される。ベースプレート2が熱により変形すると、光学部品間の相対的位置や、光学部品と光ファイバとの相対的位置が変化して、光ファイバへの光の入射効率が低下する場合がある。そこで、ベースプレート2が冷却されることにより、ベースプレート2が熱により変形することを抑制しているのである。
 しかし、熱の一部は、蓋体3に伝達する。蓋体3に熱が伝達すると、トッププレート31や枠体32が膨張することで変形する。しかし、本実施形態の光モジュール1では、枠体32には、光ファイバ導出用の切り欠き35aや、コネクタ41導出用の切り欠き35bが形成されている。この切り欠きが枠体32の変形による応力の少なくとも一部を吸収する。このため、枠体32の変形による応力がベースプレート2に伝達することを抑制することができる。従って、枠体32が変形する場合であっても、ベースプレート2の変形を抑制することができ、光ファイバ50への光の入射効率が低減することを抑制することができる。
 しかも、本実施形態のブッシュ55,45は、いずれも少なくとも枠体32と接する部位が弾性変形可能とされる。従って、光ファイバ50導出用の切り欠き35aやコネクタ41導出用の切り欠き35bにおける不要な隙間を埋めて当該隙間から埃等が筐体内に侵入することを防止しつつも、切り欠きが上記の枠体の変形を吸収することができる。
 また、本実施形態の光モジュール1は、蓋体3が鍔部33を有し、鍔部33がベースプレート2に固定されているため、鍔部33が放熱フィンとなり放熱の効率を挙げることができる。従って、ベースプレート2の変形をより抑制することができる。
 また、本実施形態の光モジュール1は、蓋体3とベースプレート2とがねじ止めにより固定されるため、光モジュール1を容易にメンテナンスすることができる。
 <光モジュールの製造方法>
 次に本実施形態の光モジュールの製造方法について説明する。
 図5は、本実施形態の光モジュール1の製造方法の工程を示すフローチャートである。図5に示すように、本実施形態の光モジュールの製造方法は、部品固定工程P1と、枠体固定工程P2とをそなえる。
 (部品固定工程P1)
 部品固定工程P1は、ベースプレート2上に配置されたレーザダイオード11から出射する光が光ファイバ50に入射するように、レーザダイオード11を含む光学部品及び光ファイバ50の入射端をベースプレート2上に固定する工程である。図6は、本工程の様子を示す図である。
 レーザダイオード11は、上記のようにレーザマウント12を介してベースプレート2上に固定される。従って、レーザダイオード11をベースプレート2上に配置する前に、レーザダイオード11をレーザマウント12上に配置して固定する。固定は、例えばはんだ付けにより行う。その後、レーザダイオード11が搭載されたレーザマウント12をベースプレート2上に配置して固定する。本固定は、例えばはんだ付けにより行う。
 コネクタ41は、上記のようにコネクタホルダ42を介してベースプレート2上に配置される。従って、コネクタ41をベースプレート2上に配置する前に、それぞれの棒状の導体をコネクタホルダ42に挿通して、導体をコネクタホルダに固定する。この固定は、例えば接着により行う。そして、導体が固定されたそれぞれのコネクタホルダ42をベースプレート2上に配置して固定する。この固定は、例えば接着により行う。次に、コネクタ41の一方の導体と最もコネクタ41に近いレーザダイオード11とを金線により接続し、さらに、それぞれのレーザダイオード11を金線によりデイジーチェーン接続し、さらに、コネクタ41から最も離れたレーザダイオード11とコネクタ41の他方の導体とを金線により接続する。こうして、コネクタ41とそれぞれのレーザダイオード11とが電気的に接続され、コネクタ41を介してそれぞれのレーザダイオード11に電力を供給可能な状態となる。
 光ファイバ50は、上記のように、ホルダ51に固定された状態で、ファイバマウント52を介して、ベースプレート2上に配置される。従って、光ファイバ50をベースプレート2上に配置する前に、光ファイバ50をホルダ51に挿通して固定する。この際、図6に示すように、事前に光ファイバ50にブッシュ55を挿通しておく。更に、光ファイバ50が被覆層で被覆されている場合には、光ファイバ50の入射端となる一方の端部から所定の距離だけ被覆層を剥離する。そして、光ファイバ50をホルダ51に挿通して、光ファイバ50をホルダに固定する。このとき、本実施形態では、ホルダ51から光ファイバ50の入射端が僅かに導出された状態とする。光ファイバ50のホルダ51への固定は、はんだ付けや熱硬化性樹脂等の樹脂等により行えばよい。次に、ホルダ51をファイバマウント52に固定する。この固定は、例えば接着により行う。なお、ホルダ51とファイバマウント52とが一体形成されていても良い。そして、光ファイバ50が固定されたファイバマウント52をベースプレート2上に配置して固定する。この固定は、例えば接着により行う。
 第1レンズ14、第2レンズ15は、上記のようにベースプレート2上に直接配置され固定される。この固定は、例えば接着により行う。具体的には、ベースプレート2上の第1レンズ14、第2レンズ15が配置されるそれぞれの位置に接着剤を塗布して、接着剤が塗布されたベースプレート2上に第1レンズ14、第2レンズ15を配置して、接着剤を固化することで固定する。
 それぞれのミラー13は、上記のようにベースプレート2上に直接配置され固定される。この固定は、例えば接着により行う。具体的には、ベースプレート2上のミラー13が配置されるそれぞれの位置に接着剤を塗布して、接着剤が塗布されたベースプレート2上にミラー13を配置して、接着剤を固化することで固定する。
 なお、全ての光学部品及び光ファイバ50をベースプレート2上に固定する前に、レーザダイオード11から出射する光が光ファイバ50のコアの入射するように、いずれかの光学部品或いは光ファイバ50をベースプレート2上において、位置の微調整をする必要がある。ミラー13の位置を微調整する。具体的には、ミラー13以外の光学部品及びコネクタ41がベースプレート2上に固定し、コネクタ41から電力を供給することでレーザダイオード11から光が出射可能な状態とする。また、光ファイバ50をベースプレート2上に固定する。その後、接着剤が塗布されたベースプレート2上にミラー13を配置して、コネクタ41から電力をレーザダイオード11に印加し、それぞれのレーザダイオード11から光を出射する。このレーザダイオード11から出射する光が光ファイバ50のコアに入射するようにそれぞれのミラー13の位置を微調整する。例えば、光ファイバ50の他端から出射する光のエネルギーが最大となるように、ミラー13の位置を微調整する。こうしてミラー13の位置が確定する。そして、ミラー13の位置が確定した後に、ミラー13が配置されている接着剤を固化して、ミラー13を固定する。
 こうして、図3に示すようにそれぞれの光学部品、光ファイバ50、コネクタ41がベースプレート2上に固定される。
 (枠体固定工程P2)
 枠体固定工程は、筐体の側壁となる枠体32を光学部品及び光ファイバ50の入射端を囲むようにベースプレート2上に固定する工程である。図7は、本工程の様子を示す図である。
 本工程では、まず、光学部品、光ファイバ50、コネクタ41が固定されたベースプレート2上に枠体32を含む蓋体3を配置する。このとき、枠体32が光学部品及び光ファイバ50の入射端を囲むようにし、切り欠き35aからホルダ51と共に光ファイバ50を枠体32の外側に導出させると共に、切り欠き35bからコネクタ41を枠体32の外側に導出させ、ベースプレート2のそれぞれのねじ孔27と鍔部33のそれぞれのねじ孔37とが貫通するように、ベースプレート2と蓋体3とを位置合わせする。なお、上記のようにベースプレート2と蓋体3の鍔部33との間にシリコーン樹脂を介在させる場合には、当該シリコーン樹脂を予め鍔部33におけるベースプレート2側の面に貼り付けておく。こうして、ベースプレート2上に蓋体3が配置される。
 次に、互いに貫通したベースプレート2のねじ孔27と鍔部33のねじ孔37のそれぞれにねじ25を螺入して、蓋体3をベースプレート2上に固定する。更に、上記のように予め光ファイバ50に挿通しておいたブッシュ55を切り欠き35aに嵌め込んで固定する。また、コネクタ41のそれぞれの導体をブッシュ45の孔に挿通して、ブッシュ45を切り欠き35bに嵌め込んで固定する。ブッシュ55やブッシュ45の固定は、例えば接着により行う。
 こうして、図1、図2に示す光モジュールを得る。
 以上説明したように、本実施形態の光モジュール1の製造方法によれば、枠体32を含む蓋体3をベースプレート2に固定する前に光源であるレーザダイオード11から出射する光が光ファイバ50に入射するように、レーザダイオード11やミラー13等の光学部品を固定する。従って、光学部品や光ファイバ50等の位置を微調整するための治具が枠体32に当たることが無い。従って、光モジュール1において枠体32と光学部品や光ファイバ50との間の空間が狭い場合であっても、光学部品や光ファイバ50の位置調整を行うことができる。このため、本発明の光モジュール1の製造方法によれば、光学部品や光ファイバ50の位置調整を行うための空間を狭くしたり省略したりできるため、光モジュール1を小型化することができる。
 また、枠体32には光ファイバ50導出用の切り欠き35aやコネクタ41導出用の切り欠き35bが形成されているため、光ファイバ50やコネクタ41がベースプレート2上に配置された後でも、枠体32から光ファイバ50やコネクタ41が導出するように枠体32をベースプレート2に容易に固定することができる。
 また、蓋体3は、枠体32とトッププレート31とが一体となっている。従って、枠体32をベースプレート2に固定した後に天板となるプレートを枠体に接続する必要が無く、光モジュールの製造工程を簡易にすることができる。
 以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、光ファイバ50やコネクタ41を導出することができれば、枠体32の切り欠き35a及び切り欠き35bの少なくとも一方は不要であり、この場合、例えば、枠体32に光ファイバ50やコネクタ41の導出用の開口が形成されていても良い。ただし、上記のように枠体32の変形を吸収することができる観点や、光ファイバ50やコネクタ41が配置された状態で枠体32を容易にベースプレート2上に配置することができる観点から、枠体32に切り欠き35aや切り欠き35bが形成されていることが好ましい。
 また、上記実施形態では、蓋体3が枠体32と筐体の天板となるトッププレート31とが一体とされた。しかし、例えば、枠体32と、トッププレート31とが別部材とされ、枠体32がベースプレート2上に固定された後、トッププレート31が枠体に接合されても良い。ただし、光モジュール1を簡易に製造する観点から枠体32とトッププレート31とは一体をされていることが好ましい。
 また、鍔部33は必須の構成ではない。鍔部33が無い場合、枠体32を直接ベースプレート2上に固定する。この場合、はんだ付けにより固定したり、枠体32にねじ孔を形成しておきベースプレート2にねじ止めして固定したりすれば良い。このように鍔部33を有さない場合、光モジュール1を小型化することができる。ただし、鍔部33を有することで、安定して容易に枠体32をベースプレート2上に固定することができる。
 また、蓋体3は、ベースプレート2上にねじ止めにより固定されたが、溶接等のねじ止め以外の方法により、ベースプレート2上に固定されても良い。
 以上説明したように、本発明によれば、光モジュール1を小型化することができる光モジュールの製造方法が提供され、例えば、ファイバレーザ装置等の分野において使用することができる。
1・・・光モジュール
2・・・ベースプレート
3・・・蓋体
11・・・レーザダイオード
12・・・レーザマウント
13・・・ミラー
14・・・第1レンズ
15・・・第2レンズ
31・・・トッププレート
32・・・枠体
33・・・鍔部
41・・・コネクタ
42・・・コネクタホルダ
45・・・ブッシュ
50・・・光ファイバ
51・・・ホルダ
52・・・ファイバマウント
55・・・ブッシュ
P1・・・部品固定工程
P2・・・枠体固定工程

 

Claims (7)

  1.  筐体の底板となるベースプレート上に配置された光源から出射する光が光ファイバに入射するように、前記光源を含む光学部品及び前記光ファイバの入射端を前記ベースプレート上に固定する部品固定工程と、
     前記筐体の側壁となる枠体を前記光学部品及び前記入射端を囲むように前記ベースプレート上に固定する枠体固定工程と、
    を備え、
     前記枠体には前記光ファイバ導出用の切り欠きが形成されており、
     前記枠体固定工程において前記枠体と前記ベースプレートとがねじ止めにより固定された後、前記光ファイバ導出用の切り欠きにおける前記枠体と前記光ファイバとの間の隙間は、弾性変形可能なブッシュにより封止される
    ことを特徴とする光モジュールの製造方法。
  2.  前記ブッシュは、前記光ファイバ導出用の切り欠きの縁と前記ベースプレートの前記枠体側の面とに沿う外形を有している
    ことを特徴とする請求項1に記載の光モジュールの製造方法。
  3.  前記部品固定工程において、前記光源に電力を供給するコネクタが前記ベースプレート上に配置され、
     前記枠体には前記コネクタ導出用の切り欠きが形成されている
    ことを特徴とする請求項1または2に記載の光モジュールの製造方法。
  4.  前記コネクタ導出用の切り欠きにおける前記枠体と前記コネクタとの間の隙間は、少なくとも前記枠体と接する部位が弾性変形可能なブッシュにより封止される
    ことを特徴とする請求項3に記載の光モジュールの製造方法。
  5.  前記枠体の前記ベースプレート側の縁には、前記ベースプレートに沿って広がる鍔部が連結され、
     前記枠体固定工程において、前記鍔部と前記ベースプレートとが互いに固定される
    ことを特徴とする請求項1から4のいずれか1項に記載の光モジュールの製造方法。
  6.  前記鍔部における前記枠体の前記光ファイバ導出用の切り欠きと隣り合う位置は切り欠かれている
    ことを特徴とする請求項5に記載の光モジュールの製造方法。
  7.  前記枠体固定工程において、前記枠体には前記筐体の天板となるトッププレートが連結されている
    ことを特徴とする請求項1から6のいずれか1項に記載の光モジュールの製造方法。

     
PCT/JP2015/083034 2014-11-25 2015-11-25 光モジュールの製造方法 WO2016084833A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014238131A JP2016099573A (ja) 2014-11-25 2014-11-25 光モジュールの製造方法
JP2014-238131 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084833A1 true WO2016084833A1 (ja) 2016-06-02

Family

ID=56074385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083034 WO2016084833A1 (ja) 2014-11-25 2015-11-25 光モジュールの製造方法

Country Status (2)

Country Link
JP (1) JP2016099573A (ja)
WO (1) WO2016084833A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103765A (zh) * 2020-11-13 2020-12-18 深圳市星汉激光科技有限公司 一种半导体激光器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033068B2 (ja) 2016-09-05 2022-03-09 古河電気工業株式会社 レーザ装置及び光源装置
JP6844993B2 (ja) * 2016-11-25 2021-03-17 古河電気工業株式会社 レーザ装置及び光源装置
JP6844994B2 (ja) * 2016-11-25 2021-03-17 古河電気工業株式会社 レーザ装置及び光源装置
CN110199447A (zh) * 2016-12-23 2019-09-03 恩耐公司 低成本光学泵浦激光器封装件
JP7030417B2 (ja) * 2017-03-27 2022-03-07 日本ルメンタム株式会社 光サブアセンブリ、光モジュール、及び光伝送装置
US10833482B2 (en) 2018-02-06 2020-11-10 Nlight, Inc. Diode laser apparatus with FAC lens out-of-plane beam steering
CN110488429A (zh) * 2019-07-08 2019-11-22 广东工业大学 一种千瓦级半导体激光器光纤耦合模块
JP7502151B2 (ja) 2020-10-28 2024-06-18 矢崎総業株式会社 半導体レーザモジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230010A (ja) * 1994-02-18 1995-08-29 Sumitomo Electric Ind Ltd 光導波路の実装構造
JPH10206680A (ja) * 1997-01-16 1998-08-07 Sumitomo Electric Ind Ltd 光導波路モジュール
JP2004128291A (ja) * 2002-10-04 2004-04-22 Hitachi Ltd 半導体レーザモジュールおよび光伝送器
JP2005115310A (ja) * 2003-10-10 2005-04-28 Samsung Electro Mech Co Ltd 超小型光通信素子パッケージ
WO2011105078A1 (ja) * 2010-02-23 2011-09-01 パナソニック電工株式会社 光モジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152203A (ja) * 1982-03-08 1983-09-09 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ密封引出方法
JP2780622B2 (ja) * 1993-12-27 1998-07-30 日本電気株式会社 光半導体素子モジュールの気密封止構造
JP2013225658A (ja) * 2012-03-22 2013-10-31 Furukawa Electric Co Ltd:The 半導体レーザモジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230010A (ja) * 1994-02-18 1995-08-29 Sumitomo Electric Ind Ltd 光導波路の実装構造
JPH10206680A (ja) * 1997-01-16 1998-08-07 Sumitomo Electric Ind Ltd 光導波路モジュール
JP2004128291A (ja) * 2002-10-04 2004-04-22 Hitachi Ltd 半導体レーザモジュールおよび光伝送器
JP2005115310A (ja) * 2003-10-10 2005-04-28 Samsung Electro Mech Co Ltd 超小型光通信素子パッケージ
WO2011105078A1 (ja) * 2010-02-23 2011-09-01 パナソニック電工株式会社 光モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103765A (zh) * 2020-11-13 2020-12-18 深圳市星汉激光科技有限公司 一种半导体激光器

Also Published As

Publication number Publication date
JP2016099573A (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
WO2016084833A1 (ja) 光モジュールの製造方法
US7255496B2 (en) Package for housing an optoelectronic assembly
US20090212306A1 (en) Device for an optoelectronic component and module with an optoelectronic component and a device
CN103250471B (zh) 印刷电路板组件及用于制造该印刷电路板组件的方法
US7176436B2 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
JP5636877B2 (ja) 半導体レーザ装置及びその製造方法
KR20100107467A (ko) 반사형 2차 렌즈 시스템 및 반도체 조립체 그리고 그 제조 방법
TW200421742A (en) An optical module and a method of fabricating the same
JP6272067B2 (ja) レーザ光源モジュールおよびレーザ光源装置
US7223629B2 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
JP2016143704A (ja) 複合基板の製造方法
JP2004253638A (ja) 光部品とその製造方法
US20050129372A1 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
JP5982457B2 (ja) 光モジュールの製造方法
JP2018164019A5 (ja)
US10277003B2 (en) Laser device and laser device manufacturing method
JP7014645B2 (ja) 半導体発光装置
WO2023042461A1 (ja) 半導体発光デバイス
JP2020046584A (ja) 光トランシーバ
US7201521B2 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
JP5295003B2 (ja) 光半導体素子収納用パッケージ、および光半導体装置
JP2005190520A (ja) 光ヘッド装置
JP2008041918A (ja) 光学装置および光学モジュール
WO2016093262A1 (ja) 光モジュール
WO2022050212A1 (ja) 半導体レーザモジュール及びその組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862940

Country of ref document: EP

Kind code of ref document: A1