WO2016082933A1 - Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur - Google Patents

Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur Download PDF

Info

Publication number
WO2016082933A1
WO2016082933A1 PCT/EP2015/002381 EP2015002381W WO2016082933A1 WO 2016082933 A1 WO2016082933 A1 WO 2016082933A1 EP 2015002381 W EP2015002381 W EP 2015002381W WO 2016082933 A1 WO2016082933 A1 WO 2016082933A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
target
diagnostic
signal
local
Prior art date
Application number
PCT/EP2015/002381
Other languages
English (en)
Inventor
David MIRASSOU
Marie-Nathalie LARUE
Yann DINARD
Olivier Marle
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201580074757.8A priority Critical patent/CN107209025B/zh
Priority to US15/531,338 priority patent/US11112277B2/en
Publication of WO2016082933A1 publication Critical patent/WO2016082933A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • G01D1/12Measuring arrangements giving results other than momentary value of variable, of general application giving a maximum or minimum of a value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24495Error correction using previous values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention belongs to the field of motor vehicle sensors, and relates more particularly to a cam or crank shaft sensor, as well as to a method and a module for diagnosing such a cam or crank shaft sensor. .
  • a camshaft or crankshaft sensor is used in a motor vehicle to determine the angular position of the camshaft or crankshaft of the engine of the motor vehicle.
  • Such a sensor comprises a target, mounted on the camshaft or on the crankshaft, and a measuring cell (Hall effect cell, magneto-resistive cell, GMR magneto-resistive cell, etc.) which provides a raw signal representative of the intensity of a magnetic field at said measuring cell.
  • the magnetic field measured by the measuring cell is for example formed by the target itself, which is optionally composed of a magnetic material, or by a magnetic field generator separate from the target, such as a permanent magnet. .
  • the target is in the form of a disk whose periphery is toothed.
  • said target is "geometrically” toothed, that is to say that the geometry of the periphery of said target has teeth and valleys.
  • said target is "magnetically” toothed, that is to say that the periphery of said target has an alternation of North poles (hereinafter referred to as teeth) and South (assimilated below to hollows).
  • the teeth of the target are generally the same height, but may have spacings (notch) and not all lengths identical, so as to perform a coding of the angular positioning of the target.
  • the rotation of the target will cause variations of the magnetic field measured by the measuring cell, variations that can be analyzed to recognize the different teeth of the target and decode the angular position of said target and, ultimately, the angular position camshaft or crankshaft secured to said target.
  • the sensor also includes a processing module connected to the output of the measuring cell. From the raw signal supplied by the measuring cell, the processing module provides, on an output port of the sensor, a measurement signal representative of the moments of passage of the teeth of the target in front of the measuring cell.
  • the measurement signal can typically take two states, depending on whether the raw signal is, for example, greater or less than a predefined threshold value.
  • the passage of a tooth of the target in front of the measuring cell corresponds to a slot of the measurement signal.
  • a The computer connected to the output port can therefore, from the slots of the measurement signal, recognize the different teeth of the target and decode the angular position of said target.
  • the targets are mass-produced and often exhibit manufacturing defects, which lead to imperfect knowledge of the angular positions of the geometric or magnetic rising and falling fronts of the target.
  • the teeth do not always have the same height relative to the center of the target ("false round").
  • Other manufacturing defects are possible, in particular a magnetic material target may have scratches likely to locally change the magnetic field generated by the target.
  • the target may be added defects introduced during mounting of the target on the camshaft or on the crankshaft.
  • the camshaft or crankshaft may not pass exactly through the center of the target and / or the target may be damaged during engine assembly.
  • the present invention aims to overcome all or part of the limitations of the solutions of the prior art, including those described above, by proposing a solution that can diagnose a camshaft or crankshaft sensor while reducing the cost of manufacturing said sensor relative to known sensors.
  • the present invention relates to a camshaft or crankshaft sensor for a motor vehicle, said sensor comprising a toothed target, a measuring cell adapted to provide a raw signal representative of the variations of a magnetic field induced by the rotation of the target and a raw signal processing module.
  • the processing module comprises two modes of operation:
  • a first mode of operation in which the processing module is adapted to provide, on a sensor output port, a measurement signal representative of the moments of passage of the target teeth at the level of the measuring cell,
  • a second operating mode in which the processing module is adapted to supply, on said output port of the sensor, a diagnostic signal different from the measurement signal and representative of the amplitude of the signal gross.
  • the sensor processing module can be configured either in measurement mode or in diagnostic mode.
  • the processing module also uses the same output port of the sensor to provide, during different time intervals, the measurement signal or the diagnostic signal. It is therefore not necessary to provide a dedicated diagnostic port, which reduces the manufacturing cost compared to known sensors. It is therefore possible, from the signal received on the output port of the sensor, either to determine the angular position of the target, or to diagnose said sensor.
  • the camshaft or crankshaft sensor may further comprise one or more of the following characteristics, taken individually or in any technically possible combination.
  • the processing module is adapted to be configured via the output port and / or via a power supply port of said sensor.
  • the use of the output port and / or the power supply port is advantageous in that these ports are always present on the existing sensors, and thus ensures that the configuration of the processing module does not require a dedicated port .
  • the diagnostic signal corresponds to one or more values of local maxima and / or local minima of the raw signal.
  • the diagnostic signal is representative of the amplitude of the raw signal.
  • the rate needed to provide the amplitude values at all sampling times of the raw signal may require changing the output port to increase the bit rate.
  • an open-collector output stage might not provide sufficient throughput and should, if necessary, be replaced by a "push-pull" stage, which is more expensive and more cumbersome from a chip surface point of view.
  • the processing module By entrusting the processing module with the task of identifying local maxima and / or minima local raw signal, and limiting the diagnostic signal to only values of said local maxima and / or local minima, the required rate is significantly reduced. This rate is compatible with the use of an inexpensive and space-saving output port, such as an open-collector output stage.
  • the values of local maxima and / or local minima can advantageously be extremely precise, that is to say coded with a large number of bits, since the number of these values transmitted on the output port is very small. .
  • the diagnostic signal corresponds to the value of the last local maximum identified and / or the value of the last local minimum identified.
  • the present invention relates to a method of diagnosing a camshaft or crankshaft sensor according to any one of the embodiments of the invention, said method comprising:
  • a step of configuring the processing module in diagnostic mode a recurrent step of recovering the diagnostic signal on the output port, said diagnostic signal corresponding to the value of a local maximum and / or a minimum local raw signal,
  • the camshaft or crankshaft sensor diagnosis method may further comprise one or more of the following characteristics, taken in isolation or in any technically possible combination.
  • the recovery step is executed at determined times, according to a predefined maximum value of the rotational speed of the target, so as to ensure the recovery, in a rotation of the target, values of the local maxima and / or local minima corresponding to each of the teeth of said target.
  • the recovery step is executed at determined times, according to an estimate of the real speed of rotation of the target, so as to ensure the recovery, in a rotation of the target , values of the local maxima and / or local minima corresponding to each of the teeth of said target.
  • the present invention relates to a diagnostic module of a camshaft or crankshaft sensor, comprising means configured to diagnose said sensor according to a method according to any one of the embodiments of the invention. the invention.
  • the processing module is for example embedded in a computer of the motor vehicle in which is mounted the sensor, such as the engine computer, or in a diagnostic tool external to said motor vehicle and intended to be connected thereto.
  • FIG. 1 a schematic representation of an embodiment of a camshaft or crankshaft sensor
  • FIG. 2 curves illustrating examples of a raw signal supplied by a measurement cell and of a measurement signal determined from said raw signal
  • FIG. 3 a diagram illustrating the main steps of an exemplary implementation of a diagnostic method of a camshaft or crankshaft sensor.
  • FIG. 1 schematically represents an exemplary embodiment of a camshaft or crankshaft sensor 10 of a motor vehicle (not shown in the figures).
  • the sensor 10 comprises a toothed target 11 integral with the camshaft or crankshaft (not shown in the figures).
  • the sensor 10 also comprises a measurement cell 12 (Hall effect cell, magneto-resistive cell, GMR giant magnetoresistive cell, etc.) which provides a raw signal representative of the intensity of a magnetic field at said level. measuring cell.
  • a measurement cell 12 Hall effect cell, magneto-resistive cell, GMR giant magnetoresistive cell, etc.
  • the target 1 1 is therefore "geometrically" toothed, and is in the form of a disk whose periphery comprises a plurality of teeth D1, D2, D3, D4, D5, considered in a nonlimiting manner as being all the same height when said target 11 has a perfect geometry.
  • the target 1 1 has five teeth D1, D2, D3, D4, D5 of lengths not all identical. More particularly, the teeth D2, D3, D4 and D5 have the same length, while the tooth D1 has a different length, greater than that of the teeth D2, D3, D4, D5.
  • the spacing between teeth that is to say the length of the recesses, is the same for all the teeth D1, D2, D3, D4, D5.
  • the magnetic field generated by the generator 13 is modified by the rotation of the target 11, integral with the camshaft or crankshaft.
  • the measurement cell 12 provides an analog signal, called” raw signal ", which is representative of the variations in the magnetic field induced by the rotation of the target 1 1.
  • the sensor 10 further comprises a module 14 for processing the raw signal, as well as three ports:
  • a power supply port 15 of the sensor 10 connected to a source of power supply,
  • a reference port 16 connected to the electrical earth
  • the processing module 14 has two modes of operation:
  • a first mode of operation in which the processing module 14 is adapted to supply, on the output port 17, a measurement signal representative of the instants of passage of the target teeth D1-D5. 11 in front of the measuring cell 12 (and possibly, in particular embodiments of the sensor 10, a measurement signal representative of the direction of rotation of the target 11),
  • a second mode of operation in which the processing module 14 is adapted to supply, on the output port 17, a diagnostic signal different from the measurement signal and representative of the amplitude of the signal gross.
  • the processing module 14 comprises, for example, an analog / digital converter which supplies a digital signal from the raw signal.
  • the processing module 14 comprises for example at least one processor and at least one electronic memory in which is stored a computer program product, in the form of a set of program code instructions to be executed for forming, from the digital signal, the measurement signal and the diagnostic signal.
  • the processing module 14 alternatively or additionally comprises one or more programmable logic circuits, of the FPGA, PLD, etc. type, and / or specialized integrated circuits (ASIC) adapted to implement all or part of the necessary operations. to form the measurement signal and the diagnostic signal.
  • ASIC specialized integrated circuits
  • the processing module 14 comprises a set of means configured in software (specific computer program product) and / or hardware (FPGA, PLD, ASIC, etc.) to form the measurement signal and the diagnostic signal from the raw signal.
  • the processing module 14 thus provides on the same port of the sensor 10, in this case the output port 17, the measurement signal or the next diagnostic signal that it is configured in measurement mode or in diagnostic mode.
  • the output port 7 of the sensor 10 is connected to an electronic computer 30, for example the engine computer of the motor vehicle, and to a diagnostic module 40.
  • the processor module 14 is adapted to be configured, in measurement mode or in diagnostic mode, through one or more ports of the power supply port 15. , the reference port 16 and the output port 17. Thus, no additional port, dedicated to the configuration, is necessary.
  • the processing module 14 may be configured to use the diagnostic mode if, after the start of the sensor 10, a predefined message for entering the diagnostic mode is received on the power supply port or on the port 17 Release. If no message to enter diagnostic mode is received during a predefined time interval, the processing module 14 uses the measurement mode. In this case, the transition from the measurement mode to the diagnostic mode therefore requires restarting the sensor 10, for example by temporarily stopping the power supply, and sending the message to switch to diagnostic mode in module 14 of treatment. The transition from the diagnostic mode to the measuring mode only requires restarting the sensor 10. None however, however, excludes, according to other examples, to implement a communication protocol making it possible to pass, at any moment, the sensor 10 of the measurement mode to diagnostic mode.
  • the measurement signal is representative of the instants of passage of the teeth D1-D5 of the target 11 in front of the measuring cell 12. Indeed, by analyzing the instants of passage, the computer 30 can distinguish said teeth D1-D5 (in particular the tooth D1), and thus determine the angular position of the target 1 1, and deduce the angular position of the shaft cam or crankshaft.
  • Part a) of FIG. 2 represents an example of a raw signal supplied by the measurement cell 12, representative of the variations in the magnetic field induced by the rotation of the target 1 1 shown in FIG. 1. It can be seen that the raw signal comprises an alternation of local maxima and local minima. More particularly, the measurement signal:
  • Part (b) of FIG. 2 schematically represents a nonlimiting example of a measuring signal that can be supplied, from the raw signal illustrated on part a), by the processing module 14.
  • the measurement signal is a signal that can take two states, a high state V1 and a low state V0, depending on whether the raw signal is, for example, greater or less than a predefined threshold value VS.
  • the measurement signal is an alternation of rising edges and falling edges.
  • the passage of a tooth D1-D5 of the target 11 in front of the measurement cell 12 corresponds to a slot of the measurement signal, and said slots correspond to a temporal representation of the geometry of the periphery of the target 11. It is therefore easy to understand that the computer 30 can, from the slots of the measurement signal, distinguish the different teeth of the target 1 1.
  • the slot of longer duration corresponds to the tooth D1 of the target 11.
  • the diagnostic signal is representative of the amplitude of the raw signal. Indeed, the deformations of the teeth D1-D5 of the target 11 will result in particular in fluctuations of the values of local maxima and local minima of the raw signal. It is therefore mainly from the amplitude of the raw signal that the diagnostic module 40 can diagnose the target 11 of the sensor 10.
  • the diagnostic signal may correspond directly to the digital signal obtained at the output of the analog / digital converter of the processing module 14.
  • the rate needed to transfer such a diagnostic signal to the diagnostic module 40 may be significant.
  • the diagnostic signal corresponds to one or more local maxima values of the raw signal.
  • the processing module 14 identifies the local maxima of the digital signal obtained from the raw signal, and the diagnostic signal consists of these local maxima values. In such a case, the number of values to be transmitted to the diagnosis module 40 is strongly reduced, and the flow required between the processing module 14 and the diagnostic module 40 is therefore limited.
  • the processing module 14 may, for example, automatically provide, continuously, the successive values of the local maxima of the raw signal on the output port 17 of the sensor. According to another nonlimiting example, the processing module 14 may only provide, on the output port 17, the values of the local maxima of the raw signal on request of the diagnostic module 40.
  • Figure 3 schematically shows the main steps of a camshaft or crank shaft sensor diagnosis method 50, which is implemented by the diagnostic module 40.
  • the diagnostic method 50 firstly comprises a step 51 of configuring the processing module 14 in the diagnostic mode, for example via the power supply port 15 and / or the output port 17, as described above.
  • the diagnostic method 50 then comprises a recurrent step 52 of recovery of the diagnostic signal on the output port 17.
  • the step 52 of recovery of the diagnostic signal can implement any suitable communication protocol, and the choice of a particular communication protocol being only an implementation variant of the invention.
  • the diagnostic method 50 then comprises a step 53 for diagnosing the sensor 10 during which the processing module 14 determines whether the sensor 10 is faulty ("out-of-round", etc.) by comparing the diagnostic signals recovered on the port
  • the sensor 10 is considered to be faulty when the ratio between the maximum value and the minimum value of the local maxima of the raw signal is greater than a predefined threshold value.
  • the processing module 14 provides, at each execution of the step 52 of recovery of the diagnostic signal, only the value of the last local maximum identified by the processing module 14.
  • the processing module 14 must memorize only one local maximum value.
  • the processing module 14 is configured to write to a register the value of the last local maximum identified, by overwriting the value of the identified local maximum above.
  • the recovery step 52 is preferably executed with a sufficiently high frequency to ensure the recovery, in a rotation of the target 11, of the values of the local maxima corresponding to each of the teeth D1-D5 of said target. 11.
  • the recovery step 52 is executed with a frequency, constant over time, determined according to a predefined maximum value of the rotation speed of the target 1. It is possible to estimate the actual rotational speed of said target 11, and to dynamically adapt the execution frequency of the recovery step 52 as a function of the actual rotational speed of said target 11.
  • the diagnostic module 40 comprises for example at least one processor and at least one electronic memory in which is stored a computer program product, in the form of a set of program code instructions to be executed to implement the programs. steps of the diagnostic method 50.
  • the diagnostic module 40 alternatively or additionally comprises one or more programmable logic circuits, of the FPGA, PLD, etc. type, and / or specialized integrated circuits (ASIC) adapted to implement all or some of the steps of FIG. method 50 for diagnosing the sensor 10.
  • the diagnostic module 40 comprises a set of means configured in software (specific computer program product) and / or hardware (FPGA, PLD, ASIC, etc.) to implement the method 50 of sensor diagnosis 10.
  • the diagnostic module 40 is separate from the computer 30.
  • the diagnostic module 40 is connected to the output port 17 of the sensor 10 to perform the control operations, and is disconnected after have carried out these operations before putting the motor vehicle into circulation.
  • the diagnostic module 40 is preferably integrated in the calculator 30.
  • the invention has been described by considering, in order to limit the necessary flow rate between the processing module 14 and the diagnostic module 40, that the diagnostic signal included only the values of the local maxima of the raw signal.
  • the diagnostic signal supplied by the processing module 14 corresponds to the values of the last local maximum identified and the last local minimum, then these can for example be stored in separate registers (in which case the diagnostic module 40 can recover simultaneously these two values), or in the same register (in which case the diagnostic module 40 recovers alternately the value of the last local maximum identified or the value of the last local minimum identified).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

La présente invention concerne un capteur (10) d'arbre à came ou de vilebrequin comportant une cible (11) dentée, une cellule (12) de mesure adaptée à fournir un signal brut et un module (14) de traitement comportant deux modes de fonctionnement : • un mode de mesure dans lequel le module (14) de traitement est adapté à fournir, sur un port (17) de sortie du capteur (10), un signal de mesure représentatif des instants de passage des dents de la cible (11) au niveau de la cellule (12) de mesure, • un mode de diagnostic dans lequel le module (14) de traitement est adapté à fournir, sur ledit port (17) de sortie du capteur (10), un signal de diagnostic différent du signal de mesure et représentatif de l'amplitude du signal brut. La présente invention concerne également un procédé (50) et un module (40) de diagnostic d'un tel capteur (10).

Description

Capteur d'arbre à came ou de vilebrequin pour véhicule automobile et procédé de diagnostic d'un tel capteur
La présente invention appartient au domaine des capteurs de véhicules automobiles, et concerne plus particulièrement un capteur d'arbre à came ou de vilebrequin, ainsi qu'un procédé et un module de diagnostic d'un tel capteur d'arbre à came ou de vilebrequin.
Un capteur d'arbre à came ou de vilebrequin est utilisé dans un véhicule automobile pour déterminer la position angulaire de l'arbre à came ou du vilebrequin du moteur du véhicule automobile.
Un tel capteur comporte une cible, montée sur l'arbre à came ou sur le vilebrequin, et une cellule de mesure (cellule à effet Hall, cellule magnéto-résistive, cellule magnéto-résistive géante GMR, etc.) qui fournit un signal brut représentatif de l'intensité d'un champ magnétique au niveau de ladite cellule de mesure. Le champ magnétique mesuré par la cellule de mesure est par exemple formé par la cible elle-même, qui le cas échéant est composée d'un matériau magnétique, ou par un générateur de champ magnétique distinct de la cible, tel qu'un aimant permanent.
La cible se présente sous la forme d'un disque dont la périphérie est dentée.
Dans le cas d'un capteur comportant un générateur de champ magnétique distinct de la cible, ladite cible est « géométriquement » dentée, c'est-à-dire que la géométrie de la périphérie de ladite cible présente des dents et des creux. Dans le cas où le générateur de champ magnétique est la cible, ladite cible est « magnétiquement » dentée, c'est-à- dire que la périphérie de ladite cible présente une alternance de pôles Nord (assimilés ci- après à des dents) et Sud (assimilés ci-après à des creux).
Les dents de la cible ont généralement une même hauteur, mais peuvent avoir des espacements (creux) et des longueurs non tous identiques, de manière à réaliser un codage du positionnement angulaire de la cible.
Ainsi, la rotation de la cible va entraîner des variations du champ magnétique mesuré par la cellule de mesure, variations qui pourront être analysées pour reconnaître les différentes dents de la cible et décoder la position angulaire de ladite cible et, in fine, la position angulaire de l'arbre à came ou du vilebrequin solidaire de ladite cible.
Le capteur comporte également un module de traitement relié à la sortie de la cellule de mesure. A partir du signal brut fourni par la cellule de mesure, le module de traitement fournit, sur un port de sortie du capteur, un signal de mesure représentatif des instants de passage des dents de la cible devant la cellule de mesure. Le signal de mesure peut prendre typiquement deux états, suivant que le signal brut est par exemple supérieur ou inférieur à une valeur seuil prédéfinie. Ainsi, le passage d'une dent de la cible devant la cellule de mesure correspond à un créneau du signal de mesure. Un calculateur connecté au port de sortie peut donc, à partir des créneaux du signal de mesure, reconnaître les différentes dents de la cible et décoder la position angulaire de ladite cible.
A cet effet, il est important de garantir une bonne correspondance entre les instants des fronts montants et descendants du signal de mesure et les positions angulaires des fronts montants et descendants géométriques ou magnétiques de la cible.
Toutefois, pour des questions de coût, les cibles sont réalisées en grande série et présentent souvent des défauts de fabrication, qui entraînent une connaissance imparfaite des positions angulaires des fronts montants et descendants géométriques ou magnétiques de la cible. Notamment, les dents ne présentent pas toujours une même hauteur par rapport au centre de la cible (« faux rond »). D'autres défauts de fabrication sont possibles, notamment une cible en matériau magnétique pourra présenter des rayures susceptibles de modifier localement le champ magnétique généré par la cible.
A ces défauts de fabrication de la cible peuvent s'ajouter des défauts introduits lors du montage de la cible sur l'arbre à came ou sur le vilebrequin. Par exemple, l'arbre à came ou le vilebrequin peut ne pas passer exactement par le centre de la cible et/ou la cible peut être endommagée lors de l'assemblage du moteur.
Il en résulte qu'il est nécessaire de pouvoir diagnostiquer le capteur d'arbre à came ou de vilebrequin, en particulier la cible de ce capteur, afin d'identifier au plus tôt, typiquement avant la mise en circulation du véhicule, un défaut dudit capteur pouvant nécessiter son remplacement.
A cet effet, il est connu de relier en outre la sortie de la cellule de mesure à un port dédié de diagnostic. Ainsi, il est possible, en connectant un dispositif de diagnostic au port de diagnostic, d'analyser directement le signal brut fourni par la cellule de mesure pour détecter les défauts de la cible. Toutefois, une telle capacité de diagnostic du capteur s'accompagne d'une augmentation importante du coût de fabrication dudit capteur.
La présente invention a pour objectif de remédier à tout ou partie des limitations des solutions de l'art antérieur, notamment celles exposées ci-avant, en proposant une solution qui permette de diagnostiquer un capteur d'arbre à came ou de vilebrequin tout en réduisant le coût de fabrication dudit capteur par rapport aux capteurs connus.
A cet effet, et selon un premier aspect, la présente invention concerne un capteur d'arbre à came ou de vilebrequin pour véhicule automobile, ledit capteur comportant une cible dentée, une cellule de mesure adaptée à fournir un signal brut représentatif des variations d'un champ magnétique induites par la rotation de la cible et un module de traitement du signal brut. Selon l'invention, le module de traitement comporte deux modes de fonctionnement :
• un premier mode de fonctionnement, dit « mode de mesure », dans lequel le module de traitement est adapté à fournir, sur un port de sortie du capteur, un signal de mesure représentatif des instants de passage des dents de la cible au niveau de la cellule de mesure,
• un second mode de fonctionnement, dit « mode de diagnostic », dans lequel le module de traitement est adapté à fournir, sur ledit port de sortie du capteur, un signal de diagnostic différent du signal de mesure et représentatif de l'amplitude du signal brut.
Ainsi, le module de traitement du capteur peut être configuré soit en mode de mesure, soit en mode de diagnostic. Le module de traitement utilise en outre le même port de sortie du capteur pour fournir, au cours d'intervalles de temps différents, le signal de mesure ou le signal de diagnostic. Il n'est par conséquent pas nécessaire de prévoir un port dédié de diagnostic, ce qui permet de réduire le coût de fabrication par rapport aux capteurs connus. Il est donc possible, à partir du signal reçu sur le port de sortie du capteur, soit de déterminer la position angulaire de la cible, soit de diagnostiquer ledit capteur.
Dans des modes particuliers de réalisation, le capteur d'arbre à came ou de vilebrequin peut comporter en outre l'une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles.
Dans des modes particuliers de réalisation, le module de traitement est adapté à être configuré par l'intermédiaire du port de sortie et/ou par l'intermédiaire d'un port d'alimentation électrique dudit capteur.
L'utilisation du port de sortie et/ou du port d'alimentation électrique est avantageuse en ce que ces ports sont toujours présents sur les capteurs existants, et qu'on assure ainsi que la configuration du module de traitement ne nécessite pas de port dédié.
Dans des modes particuliers de réalisation, le signal de diagnostic correspond à une ou plusieurs valeurs de maxima locaux et/ou de minima locaux du signal brut.
En mode de diagnostic, le signal de diagnostic est représentatif de l'amplitude du signal brut. Toutefois, le débit nécessaire pour fournir les valeurs de l'amplitude à tous les instants d'échantillonnage du signal brut peut nécessiter de modifier le port de sortie pour en augmenter le débit. Par exemple, un étage de sortie à collecteur ouvert pourrait ne pas offrir un débit suffisant et devrait, le cas échéant, être remplacé par un étage « push-pull », plus coûteux et plus encombrant d'un point de vue surface de puce. En confiant au module de traitement la tâche d'identifier les maxima locaux et/ou les minima locaux du signal brut, et en limitant le signal de diagnostic aux seules valeurs desdits maxima locaux et/ou minima locaux, le débit nécessaire est significativement réduit. Ce débit est compatible avec l'utilisation d'un port de sortie peu coûteux et peu encombrant, tel qu'un étage de sortie à collecteur ouvert. En outre, les valeurs des maxima locaux et/ou des minima locaux peuvent être avantageusement extrêmement précises, c'est-à- dire codées avec un nombre important de bits, puisque le nombre de ces valeurs transmises sur le port de sortie est très réduit.
Dans des modes particuliers de réalisation, le signal de diagnostic correspond à la valeur du dernier maximum local identifié et/ou à la valeur du dernier minimum local identifié.
Selon un second aspect, la présente invention concerne un procédé de diagnostic d'un capteur d'arbre à came ou de vilebrequin selon l'un quelconque des modes de réalisation de l'invention, ledit procédé comportant :
• une étape de configuration du module de traitement en mode de diagnostic, · une étape récurrente de récupération du signal de diagnostic sur le port de sortie, ledit signal de diagnostic correspondant à la valeur d'un maximum local et/ou d'un minimum local du signal brut,
• une étape de diagnostic du capteur par comparaison des signaux de diagnostic récupérés sur le port de sortie du capteur.
Dans des modes particuliers de mise en œuvre, le procédé de diagnostic de capteur d'arbre à came ou de vilebrequin peut comporter en outre l'une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles.
Dans des modes particuliers de mise en œuvre, l'étape de récupération est exécutée à des instants déterminés, en fonction d'une valeur maximale prédéfinie de la vitesse de rotation de la cible, de sorte à assurer la récupération, en une rotation de la cible, des valeurs des maxima locaux et/ou des minima locaux correspondant à chacune des dents de ladite cible.
Dans des modes particuliers de mise en œuvre, l'étape de récupération est exécutée à des instants déterminés, en fonction d'une estimation de la vitesse réelle de rotation de la cible, de sorte à assurer la récupération, en une rotation de la cible, des valeurs des maxima locaux et/ou des minima locaux correspondant à chacune des dents de ladite cible.
Dans des modes particuliers de mise en œuvre, au cours de l'étape de diagnostic, le capteur est considéré comme défaillant lorsque le rapport entre la valeur maximale et la valeur minimale des maxima locaux du signal brut est supérieur à une valeur seuil prédéfinie. Selon un troisième aspect, la présente invention concerne un module de diagnostic d'un capteur d'arbre à came ou de vilebrequin, comportant des moyens configurés pour diagnostiquer ledit capteur conformément à un procédé selon l'un quelconque des modes de mise en œuvre de l'invention. Le module de traitement est par exemple embarqué dans un calculateur du véhicule automobile dans lequel est monté le capteur, tel que le calculateur moteur, ou dans un outil de diagnostic externe audit véhicule automobile et destiné à être connecté à celui-ci.
L'invention sera mieux comprise à la lecture de la description suivante, donnée à titre d'exemple nullement limitatif, et faite en se référant aux figures qui représentent :
- Figure 1 : une représentation schématique d'un exemple de réalisation d'un capteur d'arbre à came ou de vilebrequin,
- Figure 2 : des courbes illustrant des exemples d'un signal brut fourni par une cellule de mesure et d'un signal de mesure déterminé à partir dudit signal brut,
- Figure 3 : un diagramme illustrant les principales étapes d'un exemple de mise en œuvre d'un procédé de diagnostic d'un capteur d'arbre à came ou de vilebrequin.
Dans ces figures, des références identiques d'une figure à une autre désignent des éléments identiques ou analogues. Pour des raisons de clarté, les éléments représentés ne sont pas à l'échelle, sauf mention contraire.
La figure 1 représente schématiquement un exemple de réalisation d'un capteur 10 d'arbre à came ou de vilebrequin d'un véhicule automobile (non représenté sur les figures).
Tel qu'illustré par la figure 1 , le capteur 10 comporte une cible 11 dentée, solidaire de l'arbre à came ou du vilebrequin (non représentés sur les figures). Le capteur 10 comporte également une cellule 12 de mesure (cellule à effet Hall, cellule magnéto-résistive, cellule magnéto-résistive géante GMR, etc.) qui fournit un signal brut représentatif de l'intensité d'un champ magnétique au niveau de ladite cellule de mesure.
Dans l'exemple illustré par la figure 1 , on se place de manière non limitative dans le cas où le capteur 10 comporte un générateur 13 de champ magnétique distinct de la cible 1 1 , tel qu'un aimant permanent. La cible 1 1 est par conséquent « géométriquement » dentée, et se présente sous la forme d'un disque dont la périphérie comporte une pluralité de dents D1 , D2, D3, D4, D5, considérées de manière non limitative comme étant toutes de même hauteur lorsque ladite cible 11 présente une géométrie parfaite. Dans l'exemple illustré par la figure 1 , la cible 1 1 comporte cinq dents D1 , D2, D3, D4, D5 de longueurs non toutes identiques. Plus particulièrement, les dents D2, D3, D4 et D5 ont la même longueur, tandis que la dent D1 a une longueur différente, supérieure à celle des dents D2, D3, D4, D5. Dans l'exemple représenté, l'espacement entre dents, c'est-à-dire la longueur des creux, est le même pour toutes les dents D1 , D2, D3, D4, D5.
Rien n'exclut, suivant d'autres exemples, d'avoir un champ magnétique généré par la cible 11 qui, le cas échéant, est « magnétiquement » dentée, c'est-à-dire que la périphérie de ladite cible présente une alternance de pôles Nord (assimilés à des dents) et Sud (assimilés à des creux).
De manière conventionnelle, le champ magnétique généré par le générateur 13 est modifié par la rotation de la cible 11 , solidaire de l'arbre à came ou du vilebrequin." La cellule 12 de mesure fournit un signal analogique, dit « signal brut », qui est représentatif des variations du champ magnétique induites par la rotation de la cible 1 1.
Le capteur 10 comporte en outre un module 14 de traitement du signal brut, ainsi que trois ports :
• un port 15 d'alimentation électrique du capteur 10, relié à une source 20 d'alimentation électrique,
• un port 16 de référence, relié à la masse électrique,
• un port 17 de sortie du capteur 10, sur lequel le module 14 de traitement fournit les signaux obtenus par traitement du signal brut.
Avantageusement, le module 14 de traitement comporte deux modes de fonctionnement :
• un premier mode de fonctionnement, dit « mode de mesure », dans lequel le module 14 de traitement est adapté à fournir, sur le port 17 de sortie, un signal de mesure représentatif des instants de passage des dents D1-D5 de la cible 11 devant la cellule 12 de mesure (et éventuellement, dans des modes particuliers de réalisation du capteur 10, un signal de mesure représentatif du sens de rotation de la cible 11),
• un second mode de fonctionnement, dit « mode de diagnostic », dans lequel le module 14 de traitement est adapté à fournir, sur le port 17 de sortie, un signal de diagnostic différent du signal de mesure et représentatif de l'amplitude du signal brut.
Le module 14 de traitement comporte par exemple un convertisseur analogique/numérique qui fournit un, signal numérique à partir du signal brut. En outre, le module 14 de traitement comporte par exemple au moins un processeur et au moins une mémoire électronique dans laquelle est mémorisé un produit programme d'ordinateur, sous la forme d'un ensemble d'instructions de code de programme à exécuter pour former, à partir du signal numérique, le signal de mesure et le signal de diagnostic. Dans une variante, le module 14 de traitement comporte alternativement ou en complément un ou des circuits logiques programmables, de type FPGA, PLD, etc., et/ou circuits intégrés spécialisés (ASIC) adaptés à mettre en œuvre tout ou partie des opérations nécessaires pour former le signal de mesure et le signal de diagnostic.
En d'autres termes, le module 14 de traitement comporte un ensemble de moyens configurés de façon logicielle (produit programme d'ordinateur spécifique) et/ou matérielle (FPGA, PLD, ASIC, etc.) pour former le signal de mesure et le signal de diagnostic à partir du signal brut.
Le module 14 de traitement fournit donc sur un même port du capteur 10, en l'occurrence le port 17 de sortie, le signal de mesure ou le signal de diagnostic suivant qu'il est configuré en mode de mesure ou en mode de diagnostic. Dans l'exemple illustré par la figure 1 , le port 7 de sortie du capteur 10 est relié à un calculateur 30 électronique, par exemple le calculateur moteur du véhicule automobile, et à un module 40 de diagnostic.
Dans des modes préférés de réalisation du capteur 10, le module 14 de traitement est adapté à être configuré, en mode de mesure ou en mode de diagnostic, par l'intermédiaire d'un ou de plusieurs ports parmi le port 15 d'alimentation électrique, le port 16 de référence et le port 17 de sortie. Ainsi, aucun port supplémentaire, dédié à la configuration, n'est nécessaire.
Par exemple, le module 14 de traitement peut être configuré pour utiliser le mode de diagnostic si, après le démarrage du capteur 10, un message prédéfini de passage en mode de diagnostic est reçu sur le port 15 d'alimentation électrique ou sur le port 17 de sortie. Si aucun message de passage en mode de diagnostic n'est reçu au cours d'un intervalle de temps de durée prédéfinie, le module 14 de traitement utilise le mode de mesure. Dans ce cas, le passage du mode de mesure au mode de diagnostic nécessite donc de redémarrer le capteur 10, par exemple par un arrêt provisoire de l'alimentation électrique, et d'envoyer le message de passage en mode de diagnostic au module 14 de traitement. Le passage du mode de diagnostic au mode de mesure nécessite uniquement de redémarrer le capteur 10. Rien n'exclut cependant, suivant d'autres exemples, d'implémenter un protocole de communication permettant de faire passer, à tout moment, le capteur 10 du mode de mesure au mode de diagnostic.
Tel qu'indiqué précédemment, le signal de mesure est représentatif des instants de passage des dents D1-D5 de la cible 11 devant la cellule 12 de mesure. En effet, en analysant les instants de passage, le calculateur 30 pourra distinguer lesdites dents D1-D5 (en particulier la dent D1 ), et donc déterminer la position angulaire de la cible 1 1 , et en déduire la position angulaire de l'arbre à came ou du vilebrequin. La partie a) de la figure 2 représente un exemple de signal brut fourni par la cellule 12 de mesure, représentatif des variations du champ magnétique induites par la rotation de la cible 1 1 représentée sur la figure 1. On constate que le signal brut comporte une alternance de maxima locaux et de minima locaux. Plus particulièrement, le signal de mesure :
• est sensiblement sinusoïdal lorsque les dents D2, D3, D4 et D5 passent devant la cellule 12 de mesure,
• stagne plus longuement sur un maximum local lorsque la dent D1 passe devant la cellule 12 de mesure.
La partie b) de la figure 2 représente schématiquement un exemple non limitatif de signal de mesure pouvant être fourni, à partir du signal brut illustré sur la partie a), par le module 14 de traitement. Dans cet exemple, le signal de mesure est un signal pouvant prendre deux états, un état haut V1 et un état bas V0, suivant que le signal brut est par exemple supérieur ou inférieur à une valeur seuil VS prédéfinie. Ainsi, le signal de mesure est une alternance de fronts montants et de fronts descendants. Le passage d'une dent D1-D5 de la cible 11 devant la cellule 12 de mesure correspond à un créneau du signal de mesure, et lesdits créneaux correspondent à une représentation temporelle de la géométrie de la périphérie de la cible 11. On comprend donc que le calculateur 30 peut, à partir des créneaux du signal de mesure, distinguer les différentes dents de la cible 1 1. En particulier, le créneau de plus longue durée correspond à la dent D1 de la cible 11.
Le signal de diagnostic est représentatif de l'amplitude du signal brut. En effet, les déformations des dents D1-D5 de la cible 11 se traduiront notamment par des fluctuations des valeurs des maxima locaux et des minima locaux du signal brut. C'est donc principalement à partir de l'amplitude du signal brut que le module 40 de diagnostic pourra diagnostiquer la cible 11 du capteur 10.
Plusieurs formes sont possibles pour le signal de diagnostic. Par exemple, le signal de diagnostic peut correspondre directement au signal numérique obtenu en sortie du convertisseur analogique/numérique du module 14 de traitement. Toutefois, le débit nécessaire pour transférer un tel signal de diagnostic au module 40 de diagnostic peut s'avérer important.
Dans des modes préférés de réalisation, le signal de diagnostic correspond à une ou plusieurs valeurs de maxima locaux du signal brut. En d'autres termes, le module 14 de traitement identifie les maxima locaux du signal numérique obtenu à partir du signal brut, et le signal de diagnostic consiste en ces valeurs de maxima locaux. Dans un tel cas, le nombre de valeurs à transmettre au module 40 de diagnostic est fortement réduit, et le débit nécessaire entre le module 14 de traitement et le module 40 de diagnostic est par conséquent limité.
Dans la suite de la description, on se place de manière non limitative dans le cas où le signal de diagnostic ne comporte que des valeurs de maxima locaux du signal brut.
En mode de diagnostic, le module 14 de traitement peut par exemple fournir automatiquement, en continu, les valeurs successives des maxima locaux du signal brut sur le port 17 de sortie du capteur. Suivant un autre exemple non limitatif, le module 14 de traitement peut ne fournir, sur le port 17 de sortie, les valeurs des maxima locaux du signal brut que sur requête du module 40 de diagnostic.
La figure 3 représente schématiquement les principales étapes d'un procédé 50 de diagnostic de capteur 10 d'arbre à came ou de vilebrequin, qui est mis en œuvre par le module 40 de diagnostic.
Tel qu'illustré par la figure 3, le procédé 50 de diagnostic comporte tout· d'abord une étape 51 de configuration du module 14 de traitement en mode de diagnostic, par exemple par l'intermédiaire du port 15 d'alimentation électrique et/ou du port 17 de sortie, tel que décrit précédemment.
Le procédé 50 de diagnostic comporte ensuite une étape 52 récurrente de récupération du signal de diagnostic sur le port 17 de sortie. L'étape 52 de récupération· du signal de diagnostic peut mettre en oeuvre tout protocole de communication adapté, et le choix d'un protocole particulier de communication n'étant qu'une variante de mise en œuvre de l'invention.
Le procédé 50 de diagnostic comporte ensuite une étape 53 de diagnostic du capteur 10 au cours de laquelle le module 14 de traitement détermine si le capteur 10 est défaillant (« faux rond », etc.) par comparaison des signaux de diagnostic récupérés sur le port 17 de sortie du capteur 10. Suivant un exemple non limitatif, le capteur 10 est considéré comme défaillant lorsque le rapport entre la valeur maximale et la valeur minimale des maxima locaux du signal brut est supérieur à une valeur seuil prédéfinie.
Dans des modes préférés de réalisation du capteur 10, le module 14 de traitement fournit, à chaque exécution de l'étape 52 de récupération du signal de diagnostic, uniquement la valeur du dernier maximum local identifié par le module 14 de traitement. De telles dispositions sont avantageuses en ce que les besoins en termes d'espace mémoire sont très réduits. En effet, à chaque instant, le module 14 de traitement ne doit mémoriser qu'une seule valeur de maximum local. Le module 14 de traitement est par exemple configuré pour écrire dans un registre la valeur du dernier maximum local identifié, en écrasant la valeur du précédent maximum local identifié. Dans un tel cas, l'étape 52 de récupération est de préférence exécutée avec une fréquence suffisamment élevée pour assurer la récupération, en une rotation de la cible 1 1 , des valeurs des maxima locaux correspondant à chacune des dents D1-D5 de ladite cible 11.
Dans des modes particuliers de mise en œuvre, l'étape 52 de récupération est exécutée avec une fréquence, constante au cours du temps, déterminée en fonction d'une valeur maximale prédéfinie de la vitesse de rotation de la Cible 1 1. Alternativement, il est possible d'estimer la vitesse réelle de rotation de ladite cible 11 , et d'adapter de façon dynamique la fréquence d'exécution de l'étape 52 de récupération en fonction de la vitesse réelle de rotation de ladite cible 1 1.
Le module 40 de diagnostic comporte par exemple au moins un processeur et au moins une mémoire électronique dans laquelle est mémorisé un produit programme d'ordinateur, sous la forme d'un ensemble d'instructions de code de programme à exécuter pour mettre en œuvre les étapes du procédé 50 de diagnostic. Dans une variante, le module 40 de diagnostic comporte alternativement ou en complément un ou des circuits logiques programmables, de type FPGA, PLD, etc., et/ou circuits intégrés spécialisés (ASIC) adaptés à mettre en œuvre tout ou partie des étapes du procédé 50 de diagnostic du capteur 10.
En d'autres termes, le module 40 de diagnostic comporte un ensemble de moyens configurés de façon logicielle (produit programme d'ordinateur spécifique) et/ou matérielle (FPGA, PLD, ASIC, etc.) pour mettre en œuvre le procédé 50 de diagnostic du capteur 10.
Dans l'exemple illustré par la figure 1 , le module 40 de diagnostic est distinct du calculateur 30. Par exemple, le module 40 de diagnostic est connecté au port 17 de sortie du capteur 10 pour effectuer les opérations de contrôle, et est déconnecté après avoir effectué ces opérations, avant la mise en circulation du véhicule automobile. Rien n'exclut, suivant d'autres exemples, d'avoir un module 40 de diagnostic embarqué dans le véhicule automobile, afin de surveiller régulièrement l'état du capteur 10. Dans un tel cas, le module 40 de diagnostic est de préférence intégré dans le calculateur 30.
De manière plus générale, il est à noter que les modes de mise en œuvre et de réalisation considérés ci-dessus ont été décrits à titre d'exemples non limitatifs, et que d'autres variantes sont par conséquent envisageables.
Notamment, l'invention a été décrite en considérant, pour limiter le débit nécessaire entre le module 14 de traitement et le module 40 de diagnostic, que le signal de diagnostic ne comportait que les valeurs des maxima locaux du signal brut. Rien n'exclut, suivant d'autres exemples, de considérer un signal de diagnostic comportant uniquement les valeurs des minima locaux du signal brut, ou encore comportant uniquement les valeurs des maxima locaux et des minima locaux du signal brut, etc. Si le signal de diagnostic fourni par le module 14 de traitement correspond aux valeurs du dernier maximum local identifié et du dernier minimum local, alors celles-ci peuvent par exemple être mémorisées dans des registres distincts (auquel cas le module 40 de diagnostic peut récupérer simultanément ces deux valeurs), ou dans un même registre (auquel cas le module 40 de diagnostic récupère alternativement la valeur du dernier maximum local identifié ou la valeur du dernier minimum local identifié).

Claims

REVENDICATIONS
1. Capteur (10) d'arbre à came ou de vilebrequin pour véhicule automobile, ledit capteur comportant une cible (1 1 ) dentée, une cellule (12) de mesure adaptée à fournir un signal brut représentatif des variations d'un champ magnétique induites par la rotation de la cible (1 1 ) et un module (14) de traitement du signal brut, caractérisé en ce que le module (14) de traitement comporte deux modes de fonctionnement :
• un premier mode de fonctionnement, dit « mode de mesure », dans lequel le module (14) de traitement est adapté à fournir, sur un port (17) de sortie du capteur (10), un signal de mesure représentatif des instants de passage des dents de la cible (1 1 ) au niveau de la cellule (12) de mesure,
« un second mode de fonctionnement, dit « mode de diagnostic », dans lequel le module (14) de traitement est adapté à fournir, sur ledit port (17) de sortie du capteur (10), un signal de diagnostic différent du signal de mesure et représentatif de l'amplitude du signal brut.
2. Capteur (10) selon la revendication 1 , caractérisé en ce que le module (14) de traitement est adapté à être configuré par l'intermédiaire du port (17) de sortie et/ou par l'intermédiaire d'un port (15) d'alimentation électrique dudit capteur.
3. Capteur (10) selon l'une * quelconque des revendications précédentes, caractérisé en ce que le signal de diagnostic correspond à une ou plusieurs valeurs de maxima locaux et/ou de minima locaux du signal brut.
4. Capteur (10) selon la revendication s, caractérisé en ce que le signal de diagnostic correspond à la valeur du dernier maximum local identifié et/ou à la valeur du dernier minimum local identifié.
5. Procédé (50) de diagnostic d'un capteur (10) d'arbre à came ou de vilebrequin selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte :
· une étape (51 ) de configuration du module (14) de traitement en mode de diagnostic,
• une étape (52) récurrente de récupération du signal de diagnostic sur le port (17) de sortie, le signal de diagnostic correspondant à la valeur d'un maximum local et/ou d'un minimum local du signal brut,
· une étape (53) de diagnostic du capteur (10) par comparaison des signaux de diagnostic récupérés sur le port de sortie du capteur.
6. Procédé (50) selon la revendication 5, caractérisé en ce que l'étape (52) de récupération est exécutée à des instants déterminés, en fonction d'une valeur maximale prédéfinie de la vitesse de rotation de la cible, de sorte à assurer la récupération, en une rotation de la cible, des valeurs des maxima locaux et/ou des minima locaux correspondant à chacune des dents de ladite cible.
7. Procédé (50) selon la revendication 5, caractérisé en ce que l'étape (52) de récupération est exécutée à des instants déterminés, en fonction d'une estimation de la vitesse réelle de rotation de la cible, de sorte à assurer la récupération, en une rotation de la cible, des valeurs des maxima locaux et/ou des minima locaux correspondant à chacune des dents de ladite cible.
8. Procédé (50) selon l'une quelconque des revendications 5 à 7, caractérisé en ce que, au cours de l'étape (53) de diagnostic, le capteur (10) est considéré comme défaillant lorsque le rapport entre la valeur maximale et la valeur minimale des maxima locaux du signal brut est supérieur à une valeur seuil prédéfinie.
9. Module (40) de diagnostic d'un capteur (10) d'arbre à came ou de vilebrequin, caractérisé en ce qu'il comporte des moyens configurés pour diagnostiquer ledit capteur (10) conformément à un procédé (50) selon l'une quelconque des revendications 5 à 8.
PCT/EP2015/002381 2014-11-28 2015-11-26 Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur WO2016082933A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580074757.8A CN107209025B (zh) 2014-11-28 2015-11-26 机动车辆的凸轮轴或曲轴的传感器及此类传感器的诊断方法
US15/531,338 US11112277B2 (en) 2014-11-28 2015-11-26 Camshaft or crankshaft sensor for automotive vehicle and diagnostic method for such a sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461639 2014-11-28
FR1461639A FR3029283B1 (fr) 2014-11-28 2014-11-28 Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur

Publications (1)

Publication Number Publication Date
WO2016082933A1 true WO2016082933A1 (fr) 2016-06-02

Family

ID=52392125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/002381 WO2016082933A1 (fr) 2014-11-28 2015-11-26 Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur

Country Status (4)

Country Link
US (1) US11112277B2 (fr)
CN (1) CN107209025B (fr)
FR (1) FR3029283B1 (fr)
WO (1) WO2016082933A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10243724B2 (en) 2014-02-12 2019-03-26 Infineon Technologies Ag Sensor subassembly and method for sending a data signal
WO2019063594A1 (fr) * 2017-09-29 2019-04-04 Continental Automotive Gmbh Capteur de vilebrequin, de transmission ou d'arbre à cames, système et procédé de diagnostic mettant en œuvre un tel capteur
FR3071921A1 (fr) * 2017-09-29 2019-04-05 Continental Automotive France Capteur de vilebrequin, de transmission ou d'arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
WO2022013046A1 (fr) * 2020-07-16 2022-01-20 Continental Automotive Gmbh Capteur magnétique d'arbre d'entraînement pour véhicule

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088718B1 (fr) 2018-11-16 2020-11-06 Continental Automotive France Cible reversible pour moteur a 3, 4 ou 6 cylindres
FR3090859B1 (fr) 2018-12-19 2021-09-10 Continental Automotive France Synchronisation d’un moteur à combustion interne
FR3090858B1 (fr) 2018-12-19 2020-11-27 Continental Automotive France Synchronisation d’un moteur à combustion interne
FR3097010B1 (fr) * 2019-06-07 2021-06-11 Continental Automotive Gmbh Procédé de validation d’une disparition de défaillance transitoire du signal issu d’un capteur de vilebrequin
FR3127027B1 (fr) * 2021-09-10 2023-08-04 Vitesco Technologies Calculateur de contrôle moteur

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001965A1 (en) * 2007-06-28 2009-01-01 Udo Ausserlechner Magnetic-Field Sensor and Method of Calibrating a Magnetic-Field Sensor
WO2013017211A1 (fr) * 2011-08-04 2013-02-07 Continental Automotive France Procede de calibration automatique d'un capteur d'arbre a cames pour vehicule automobile

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409846B4 (de) 1993-03-23 2005-06-02 Denso Corp., Kariya Drehzahlerfassungsgerät für einen rotierenden Körper
US6100682A (en) 1998-09-28 2000-08-08 General Motors Corporation Three-element angular position sensor
DE60032617T2 (de) * 1999-09-17 2007-10-11 Melexis N.V. Multimedialer hall-effekt-sensor
DE102007026786A1 (de) * 2006-08-21 2008-04-03 Continental Teves Ag & Co. Ohg Aktiver Sensor mit Betriebsmodus-Umschaltung
US8234055B2 (en) * 2008-02-25 2012-07-31 GM Global Technology Operations LLC Engine movement detection systems and methods
CN102032891B (zh) 2009-09-28 2012-12-26 中国科学院国家天文台 一种自适应靶标装置及实现方法
US8442793B2 (en) 2010-09-28 2013-05-14 Ford Global Technologies, Llc System for determining quality of a rotating position sensor system
DE102011083775B4 (de) * 2011-09-29 2013-12-05 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
CN102638249A (zh) * 2012-04-23 2012-08-15 山东大学 一种磁电传感器转速信号调理电路
US10102992B2 (en) * 2014-02-25 2018-10-16 Infineon Technologies Ag Switching apparatus, switching system and switching method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001965A1 (en) * 2007-06-28 2009-01-01 Udo Ausserlechner Magnetic-Field Sensor and Method of Calibrating a Magnetic-Field Sensor
WO2013017211A1 (fr) * 2011-08-04 2013-02-07 Continental Automotive France Procede de calibration automatique d'un capteur d'arbre a cames pour vehicule automobile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10243724B2 (en) 2014-02-12 2019-03-26 Infineon Technologies Ag Sensor subassembly and method for sending a data signal
WO2019063594A1 (fr) * 2017-09-29 2019-04-04 Continental Automotive Gmbh Capteur de vilebrequin, de transmission ou d'arbre à cames, système et procédé de diagnostic mettant en œuvre un tel capteur
FR3071921A1 (fr) * 2017-09-29 2019-04-05 Continental Automotive France Capteur de vilebrequin, de transmission ou d'arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
FR3072166A1 (fr) * 2017-09-29 2019-04-12 Continental Automotive France Capteur de vilebrequin, de transmission ou d’arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
US11530935B2 (en) 2017-09-29 2022-12-20 Continental Automotive France Crankshaft, transmission or camshaft sensor, diagnosis system and method implementing such a sensor
WO2022013046A1 (fr) * 2020-07-16 2022-01-20 Continental Automotive Gmbh Capteur magnétique d'arbre d'entraînement pour véhicule
FR3112571A1 (fr) * 2020-07-16 2022-01-21 Continental Automotive Capteur magnétique d’arbre d’entraînement pour véhicule

Also Published As

Publication number Publication date
FR3029283B1 (fr) 2016-12-23
FR3029283A1 (fr) 2016-06-03
CN107209025A (zh) 2017-09-26
US20170322053A1 (en) 2017-11-09
US11112277B2 (en) 2021-09-07
CN107209025B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2016082933A1 (fr) Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur
FR3027388A1 (fr) Procede de communication d'un dysfonctionnement d'un systeme de mesure de vitesse et de sens de rotation d'un arbre rotatif
EP0949510B1 (fr) Joint dynamique de type "cassette" à dispositif de repérage angulaire; procédé pour sa mise en oeuvre
FR3041426A1 (fr) Procede de calibration automatique d'un capteur d'arbre a cames pour moteur de vehicule automobile
FR3072166A1 (fr) Capteur de vilebrequin, de transmission ou d’arbre a cames, systeme et procede de diagnostic mettant en œuvre un tel capteur
FR2880682A1 (fr) Capteur de position a rapport cyclique desequilibre
WO2014207369A1 (fr) Ecrou de palier pour la mesure de regime de rotation d'un arbre lie a une turbomachine et dispositif de mesure associe
EP2499464B1 (fr) Capteur de position angulaire, et ensemble comportant un système rotatif et un tel capteur
WO2019193271A1 (fr) Procédé de calibration automatique d'un capteur d'arbre à cames pour corriger un faux rond de cible
FR3025601A1 (fr) Calculateur de vehicule et procede de detection de type de capteur de vilebrequin
FR2894665A1 (fr) Procede et dispositif de determination de la position d'une piece rotative, tel qu'un vilebrequin, d'un moteur a combustion interne
FR2862822A1 (fr) Systeme et procede de determination d'au moins un parametre d'au moins un organe tournant au moyen d'un signal de position
EP4042113B1 (fr) Procede de detection d'une position angulaire absolue ou d'une course de deplacement angulaire absolue d'un organe tournant
WO2019063594A1 (fr) Capteur de vilebrequin, de transmission ou d'arbre à cames, système et procédé de diagnostic mettant en œuvre un tel capteur
WO2014140489A1 (fr) Methode de calibration d'un capteur de position dans une machine electrique synchrone
FR2818737A1 (fr) Procede de detection d'une singularite notamment d'un repere de reference d'un disque phonique associe a l'arbre d'un moteur a combustion interne
FR3069636B1 (fr) Procede et dispositif de detection d'une inversion d'un capteur vilebrequin
FR2864615A1 (fr) Dispositif de detection d'un element tournant tel que la turbine d'un compteur d'eau
EP2997334B1 (fr) Codeur de position
WO2009013424A2 (fr) Procede et dispositif de determination du sens de rotation d'une roue
EP1570238A1 (fr) Capteur de position a tres haute resolution
EP1533620B1 (fr) Système et procédé de determination d'au moins un paramètre d'au moins un organe tournant au moyen d'un signal de position absolue
FR3037137A1 (fr) Systeme de mesure, estimateur, procede pour estimer au moins une variable ; machine tournante ou a comportement cyclique comportant le systeme de mesure
WO2020011941A1 (fr) Procédé de traitement pour capteur arbre à cames
FR3142249A1 (fr) Procédé de détermination de la position angulaire d’un arbre de véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15531338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15801682

Country of ref document: EP

Kind code of ref document: A1