WO2016082441A1 - 一种试条电极的控制方法和*** - Google Patents

一种试条电极的控制方法和*** Download PDF

Info

Publication number
WO2016082441A1
WO2016082441A1 PCT/CN2015/077044 CN2015077044W WO2016082441A1 WO 2016082441 A1 WO2016082441 A1 WO 2016082441A1 CN 2015077044 W CN2015077044 W CN 2015077044W WO 2016082441 A1 WO2016082441 A1 WO 2016082441A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
control
current
test strip
strip
Prior art date
Application number
PCT/CN2015/077044
Other languages
English (en)
French (fr)
Inventor
蔡晓华
车宏莉
戴永胜
黄泽存
张伟
Original Assignee
三诺生物传感股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三诺生物传感股份有限公司 filed Critical 三诺生物传感股份有限公司
Priority to US14/888,399 priority Critical patent/US10156538B2/en
Publication of WO2016082441A1 publication Critical patent/WO2016082441A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration

Definitions

  • the invention belongs to the technical field of blood sugar detection, and in particular relates to a method and a system for controlling a strip electrode.
  • the blood glucose test strip has three electrodes: a working electrode W, a background electrode B, and a reference electrode R.
  • the three electrodes are arranged in an inverted triangle, and the optimal arrangement order is that the upper two are the background electrode B and the reference electrode R.
  • the lower part of the middle is the working electrode W.
  • the three electrodes When the blood glucose test is performed on the blood sample in the blood glucose test strip by using the blood glucose meter, the three electrodes have a fixed function, wherein the reference electrode is grounded, the voltage is 0, and the working electrode W and the background electrode B are applied with different working voltages.
  • a loop is formed between the specific electrode R and the working electrode W to generate a detection current signal, and a loop is formed between the background electrode B and the reference electrode R to generate a correction current signal for correcting the detection current signal, and the corrected detection current can be used subsequently.
  • the signal gives the amount of blood sugar in the blood sample.
  • the injection opening of the test strip is too wide, and the blood sample can enter the reaction chamber from any part of the front end of the test strip, so that the blood sample may first contact the background electrode B or may first contact the reference electrode R.
  • the test current signal will be affected by the injection direction due to the randomness of the sample loading. Specifically, referring to FIG. 2, if the blood sample first contacts the background electrode B (eg, from the left side), when the background electrode B is covered and the reference electrode R is not in contact with the blood sample, neither electrode generates a current signal.
  • the detection signal is generated simultaneously with the correction signal, and the intensity of the two signals at this time depends on the extent to which the reference electrode R is covered by the blood sample, so that the signal strengths of the two signals are relatively matched, and the detection result is matched. More accurate.
  • the reference electrode R If the blood sample first contacts the reference electrode R (as injected from the right side), there is a time difference between the two signals, and when the background electrode B contacts the blood sample, the reference electrode R has been completely covered, at this time the reference electrode
  • the signal intensity on R is the highest, that is, the detection signal intensity is the highest, and the background electrode B is affected by the blood sample volume and the sample suction time, and the coverage degree is uncontrollable, resulting in a mismatch in the signal strength of the detection signal and the correction signal, which affects the detection.
  • the accuracy of the results will eventually lead to inaccurate detection of blood glucose levels. Caused a waste of test strips.
  • an object of the present invention is to provide a method and system for controlling a strip electrode, which overcomes the defects of low accuracy of the existing blood glucose meter detection test and waste of the test strip.
  • the present invention provides a method for controlling a strip electrode, comprising:
  • test strip After the test strip is inserted into the blood glucose meter, a predetermined voltage is applied to the working electrode W of the test strip, and the test strip is loaded, the current generation on the electrode R1 and the electrode R2 of the test strip is obtained in real time;
  • the first control command is issued to control the electrode R1 as the background electrode B, and the electrode R2 is controlled as the reference electrode R;
  • the current generation on the electrode R1 and the electrode R2 of the test strip is obtained in real time, including:
  • the method further includes:
  • the current detecting control is performed on the electrodes of the R1 and R2 that do not measure the current, and when the current is not detected by the electrode for a predetermined period of time, the control error is reported, including :
  • the working electrode W is controlled to output a pulse of 300 mv to 0 mv and control R1.
  • the electrode that first detects the current is suspended, and the other electrode is grounded;
  • the method further includes:
  • Both the working electrode W and the background electrode B of the control strip output a voltage of 0 mv for 200 ms.
  • control system for the test strip electrode comprising:
  • the obtaining module is configured to insert a test strip into the blood glucose meter, apply a voltage of a first preset value to the working electrode W of the test strip, and obtain a current on the electrode R1 and the electrode R2 of the test strip in real time after loading the test strip Produce the situation;
  • a judging module configured to determine whether the electrode R1 generates a current before the electrode R2;
  • the first control module is configured to, when the determination result is yes, issue a first control instruction to control the electrode R1 as the background electrode B, and control the electrode R2 as the reference electrode R;
  • the second control module is configured to, when the determination result is no, issue a second control instruction to control the electrode R1 as the reference electrode R and the electrode R2 as the background electrode B.
  • the obtaining module comprises:
  • a first control unit configured to control the working electrode W to continuously output a voltage of 300 mv, and control the electrode R1 and the electrode R2 to alternately ground every 10 ms, wherein the ungrounded electrodes of R1 and R2 are suspended;
  • the obtaining unit is configured to perform current detection control on the grounded electrode of the electrodes R1 and R2 in real time to obtain a current generation condition on the electrode R1 or R2 when the electrode R1 or R2 is grounded.
  • the above system preferably, further comprises:
  • the error module is configured to determine the electrode in which the current is first detected in R1 and R2, and under the preset condition, the current detection control is performed on the electrode not measured in R1 and R2, and the detection is not detected for more than the predetermined time period. When the electrode generates a current, the control reports an error.
  • the error module includes:
  • a delay waiting unit for stopping the pressurization of the working electrode W after detecting the presence of a current on R1 or R2, and controlling the electrodes R1 and R2 to be grounded, and then waiting for 80 ms;
  • a second control unit configured to control the working electrode W to output a pulse of 300mv-0mv form after the end of the delay, and control the electrode in which the current is first detected in R1 and R2 to be suspended, and the other electrode is grounded;
  • the error reporting unit is configured to obtain the current generated on the ground electrode. If no current is generated on the ground electrode for more than 1.5 seconds, the control reports an error.
  • the above system preferably, further comprises:
  • the delay module is used to control the working electrode W and the background electrode B of the test strip to output a voltage of 0 mv for 200 ms.
  • the control method and system of the test strip electrode of the present invention inserts a test strip, applies a predetermined voltage to the working electrode W of the test strip, and acquires the electrodes R1 and R2 of the test strip in real time after loading the test strip.
  • the current is generated, and it is judged which electrode first generates current; when the electrode R1 first generates current, R1 is controlled as the background electrode, and R2 is controlled as the reference electrode; otherwise, R1 is controlled as the reference electrode, and R2 is controlled as the background. electrode.
  • the invention can realize reasonable control of the electrode of the test strip according to the injection direction of the user, and control the electrode close to the injection direction as the background electrode, thereby avoiding the detection signal, the correction signal being generated at different times, and the two signals.
  • the problem of signal strength mismatch and thus, when applying the invention, when the sample is injected from various directions, the detection result of the blood sugar content can be ensured to have high accuracy, and the test strip caused by the sample is reduced. waste.
  • Figure 1 is a schematic view of each electrode in a conventional blood glucose test strip
  • FIG. 2 is a schematic view showing the injection of different directions in the blood glucose test using the blood glucose test strip in the prior art
  • FIG. 3 is a flow chart of a method for controlling a strip electrode according to a first embodiment of the present invention
  • FIG. 4 is a schematic view of each electrode of the blood glucose test strip disclosed in the first embodiment of the present invention.
  • FIG. 5 is another flow chart of a method for controlling a strip electrode disclosed in Embodiment 2 of the present invention.
  • FIG. 6 is still another flow chart of a method for controlling a strip electrode according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a strip electrode control system disclosed in Embodiment 4 of the present invention.
  • FIG. 8 is another schematic structural diagram of a strip electrode control system disclosed in Embodiment 4 of the present invention.
  • FIG. 9 is still another schematic structural view of a strip electrode control system disclosed in Embodiment 4 of the present invention.
  • the first embodiment of the present invention discloses a method for controlling a strip electrode. Referring to FIG. 3, the method includes:
  • the method of the present invention is described in detail using an ABA type test strip.
  • the left side of the test strip is the electrode R1
  • the right side is the electrode R2
  • the middle is the working electrode W.
  • the working electrode W of the test strip is continuously applied with a voltage of 300 mv, at which time the test strip is injected, and the sample suction process is waited after the injection: the R1 is specifically adopted at a time interval of 10 ms. R2 is alternately grounded, and the ungrounded electrode is suspended. The purpose of the grounding of the electrode is to eliminate the interference signal.
  • the current is detected on R1 or R2 accordingly, to determine whether current is generated on R1 or R2, and after determining that one of the electrodes generates current, the electrode that maintains the current is grounded, and every 10 ms is passed.
  • the current on the electrode is detected again to confirm it, and it is confirmed twice (for 20 ms) to ensure that the detected current signal is not an interference signal. After two current confirmations, the injection can be considered valid.
  • this step specifically determines which electrode first generates a current.
  • the electrode R1 If it is detected that the electrode R1 first generates a current, it indicates that the injection direction of the user on the test strip is left, the time when the electrode R1 is covered by the blood sample is earlier than R2, and the effect of coating the blood sample on the final electrode R1 is better, in order to ensure In the subsequent detection process, the electrodes R1 and R2 can simultaneously generate a current signal, and ensure that the two current signals generated, that is, the signal intensity of the detected current signal and the corrected current signal are matched, thereby making the detection result highly accurate. Sex, the electrode R1 needs to be controlled as the background electrode, R2 is controlled as the reference electrode, and R2 is kept grounded.
  • R2 is controlled to be the background electrode
  • R1 is controlled as the reference electrode (R1 is kept grounded) to ensure that the electrodes R1 and R2 can simultaneously generate current signals during the subsequent detection process. And to ensure that the signal strength of the generated current signal is relatively matched, thereby ultimately ensuring the accuracy of the blood glucose content detection result.
  • the voltages of the electrodes R1 and R2 can be respectively controlled by the control chip, that is, by applying different voltages to the electrodes R1 and R2, respectively, the two electrodes have the desired electrode functions. For example, if the detection result is that the electrode R1 first generates a current, a higher voltage is applied to the electrode R1 under the control of the chip, and a lower voltage (0v) is applied to the electrode R2, so that the electrode R1 has the function of the background electrode.
  • the electrode R2 is provided with a function of a reference electrode.
  • the detection result is that the electrode R2 first generates a current, by applying a higher voltage to R2 and applying a lower voltage (0v) to R1, the purpose of controlling R2 as the background electrode and controlling R1 as the reference electrode is achieved. .
  • the subsequent blood glucose value detection process can be continued.
  • the present invention inserts a test strip, applies a predetermined voltage to the working electrode W of the test strip, and adds the current on the electrodes R1 and R2 of the test strip in real time after adding the test strip, and determines which one
  • the electrode first generates a current; when the electrode R1 first generates a current, R1 is controlled as a background electrode, and R2 is controlled as a reference electrode; otherwise, R1 is controlled as a reference electrode and R2 is controlled as a background electrode. It can be seen that the invention can realize reasonable control of the electrode of the test strip according to the injection direction of the user, and control the electrode (background electrode or reference electrode) close to the injection direction as the background electrode, thereby avoiding the detection signal and the correction signal.
  • the method may further include the following steps:
  • S105 determining an electrode that first detects a current in R1 and R2, and performing current detection control on an electrode that does not measure current in R1 and R2 under a preset condition, and the electrode is not detected until a predetermined time period is exceeded.
  • the control reports an error.
  • This step specifically includes the following processing:
  • the pressurization to the working electrode W is stopped. That is, it is made to output a voltage of 0 mv, and the electrodes R1, R2 are both kept grounded, and then, for 80 ms, waiting for the sample to be completed, or fully aspirating;
  • the working electrode W is controlled to output a pulse of 300mv (10ms) - 0mv (30ms), and the first aspirating electrode (ie, the electrode that first generates current) is left floating, and the other electrode is kept grounded;
  • the working electrode W When the working electrode W outputs 300mv, whether the current is generated by the sample aspirating electrode, and after detecting the current generated by the sample aspirating electrode, the current is detected and confirmed again every 10ms, and the total confirmation is twice, which lasts for 20ms. To ensure that the current signal is not an interference signal (ie, the sample is covered after the blood sample is covered); if the current of the electrode has not been detected for more than 1.5 seconds, an error is reported (the sample is not covered after the blood sample is covered).
  • the sample aspirating process of the back sample sample electrode is continued, so as to make the back sample electrode cover the blood sample as much as possible, if the preset time is exceeded.
  • the blood sample still does not cover the electrode, an error is reported, thereby further improving the accuracy of the blood glucose content detection result.
  • the method may further include the following steps:
  • the working electrode W and the background electrode B of the control strip each output a voltage of 0 mv for 200 ms.
  • the aspiration phase is judged, and then the subsequent blood glucose value detection process can be performed.
  • the electrode close to the injection side is switched to the background electrode, and the electrode away from the injection side is switched to the reference electrode.
  • This step is intended to continue to delay for a period of time, waiting for the sample suction process to Ensure that the blood sample completely covers the electrodes of the strip, thus improving the accuracy of the blood glucose test results to a higher degree.
  • the fourth embodiment discloses a control system for a test strip electrode, and the system corresponds to the control method of the test strip electrode disclosed in the first embodiment to the third embodiment.
  • the system includes an obtaining module 100, a determining module 200, a first control module 300, and a second control module 400.
  • the obtaining module 100 is configured to insert the test strip into the blood glucose meter and apply the first to the working electrode W of the test strip After the voltage of the preset value is applied to the test strip, the current generation on the electrode R1 and the electrode R2 of the test strip is obtained in real time.
  • the obtaining module 100 includes a first control unit and an obtaining unit.
  • a first control unit configured to control the working electrode W to continuously output a voltage of 300 mv, and control the electrode R1 and the electrode R2 to alternately ground every 10 ms, wherein the ungrounded electrodes of R1 and R2 are suspended;
  • the obtaining unit is configured to perform current detection control on the grounded electrode of the electrodes R1 and R2 in real time to obtain a current generation condition on the electrode R1 or R2 when the electrode R1 or R2 is grounded.
  • the determining module 200 is configured to determine whether the electrode R1 generates a current before the electrode R2.
  • the first control module 300 is configured to, when the determination result is yes, issue a first control instruction to control the electrode R1 as the background electrode B and the electrode R2 as the reference electrode R.
  • the second control module 400 is configured to, when the determination result is no, issue a second control instruction to control the electrode R1 as the reference electrode R and the electrode R2 as the background electrode B.
  • the system further includes an error reporting module 500, configured to determine an electrode that first detects a current in R1 and R2, and, under a preset condition, an unmeasured current in R1 and R2.
  • the electrode performs current detection control, and when the electrode is not detected to be generated for more than a predetermined period of time, the control reports an error.
  • the error module 500 includes a delay waiting unit, a second control unit, and an error reporting unit.
  • a delay waiting unit for stopping the pressurization of the working electrode W after detecting the presence of a current on R1 or R2, and controlling the electrodes R1 and R2 to be grounded, and then waiting for 80 ms;
  • a second control unit configured to control the working electrode W to output a pulse of 300mv-0mv form after the end of the delay, and control the electrode in which the current is first detected in R1 and R2 to be suspended, and the other electrode is grounded;
  • the error reporting unit is configured to obtain the current generated on the ground electrode. If no current is generated on the ground electrode for more than 1.5 seconds, the control reports an error.
  • the system further includes a delay module 600 for controlling the working electrode W and the background electrode B of the strip to output a voltage of 0 mv for 200 ms.
  • control system of the test strip electrode disclosed in the fourth embodiment of the present invention since it corresponds to the control method of the test strip electrode disclosed in the first embodiment to the third embodiment, the description is relatively simple, and the related similarities are referred to the implementation.
  • the description of the control method part of the test strip electrode in the first to third embodiments may be omitted here.
  • the present invention can increase the detection, judgment and switching control process of the test strip electrode.
  • the waste of the test strip caused by the suction sample is reduced, and the final blood sugar content detection result has high accuracy when the test strip is sucked from all directions. .
  • the present application can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present application may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM or a disk. , an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present application or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种试条电极的控制方法和***,所述方法包括:在将试条***血糖仪、向试条的工作电极W施加一预定电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况(S101);判断电极R1是否先于电极R2产生电流(S102);若判断结果为是,则发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R(S103);若判断结果为否,则发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B(S104)。该方法可实现依据用户的进样方向,对试条的电极进行合理控制,避免了检测信号与修正信号不同时产生,以及两个信号的信号强度不匹配的问题,保证检测结果具有较高的准确性,减少了因吸样方位不同而造成的试条浪费。

Description

一种试条电极的控制方法和***
本申请要求于2014年11月27日提交中国专利局、申请号为2014106976224、发明名称为“一种试条电极的控制方法和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于血糖检测技术领域,尤其涉及一种试条电极的控制方法和***。
背景技术
参考图1,血糖试条有三个电极:工作电极W、背景电极B和参比电极R,三个电极呈倒三角排列,其优化的排列顺序为上面两个为背景电极B和参比电极R,中间偏下的为工作电极W。
在利用血糖仪对血糖试条中的血样进行血糖检测时,三个电极具有固定的功能,其中,参比电极接地,电压为0,工作电极W和背景电极B施加有不同的工作电压,参比电极R与工作电极W之间形成回路产生检测电流信号,背景电极B与参比电极R之间形成回路产生修正电流信号,用于对检测电流信号进行修正,后续可利用修正后的检测电流信号得到血样中血糖的含量。
然而,试条的进样开口超宽,血样可从试条前端的任一部位进入反应腔,从而血样可能先接触背景电极B,也可能先接触参比电极R。如此以来,由于加样的随机性,测试电流信号将受进样方向的影响。具体地,参考图2,若血样先接触背景电极B(如从左侧进样),则当背景电极B被覆盖而参比电极R未接触血样时,两个电极均不产生电流信号,当参比电极R接触到血样时,检测信号与修正信号同时产生,且此时两个信号的强度均取决于参比电极R被血样覆盖的程度,从而两个信号的信号强度较为匹配,检测结果较为准确。若血样先接触参比电极R(如从右侧进样),则两个信号的产生存在时间差,且当背景电极B接触到血样时,参比电极R已经被完全覆盖,此时参比电极R上的信号强度达到最高,即检测信号强度最高,而背景电极B受到血样量和吸样时间的影响,其覆盖程度不可控,从而导致检测信号和修正信号的信号强度不匹配,影响了检测结果的准确性,最终会导致血糖含量的检测结果不准确, 造成了试条的浪费。
发明内容
有鉴于此,本发明的目的在于提供一种试条电极的控制方法和***,以克服现有血糖仪检测结果准确率较低、浪费试条的缺陷。
为了解决以上技术问题,本发明提供一种试条电极的控制方法,包括:
在将试条***血糖仪、向试条的工作电极W施加一预定电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况;
判断电极R1是否先于电极R2产生电流;
若判断结果为是,则发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R;
若判断结果为否,则发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B。
上述方法,优选的,所述在向试条的工作电极W施加一预定电压后,实时获取试条的电极R1及电极R2上的电流产生情况,包括:
控制所述工作电极W持续输出300mv电压,并控制电极R1及电极R2每间隔10ms交替接地,其中,R1、R2中不接地的电极悬空;
实时对电极R1、R2中接地的电极进行电流检测控制,以实现在电极R1或R2接地时获取电极R1或R2上的电流产生情况。
上述方法,优选的,在所述判断电极R1是否先于电极R2产生电流之前还包括:
确定R1、R2中先检测出电流的电极,并在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,且在超过预定时长一直未检测到所述电极产生电流时,控制报错。
上述方法,优选的,所述在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,并在超过预定时长一直未检测到所述电极产生电流时,控制报错,包括:
检测出R1或R2上存在电流后,停止向所述工作电极W加压,并控制电极R1、R2均保持接地,之后,延迟等待80ms;
延迟结束后,控制所述工作电极W输出300mv-0mv形式脉冲,并控制R1、 R2中先检测出电流的电极悬空,另一电极接地;
获取接地电极上的电流产生情况,若超过1.5s所述接地电极上一直未产生电流,则控制报错。
上述方法,优选的,在发出第一控制指令或第二控制指令之后还包括:
控制试条的工作电极W及背景电极B均输出0mv电压,并持续200ms。
同时,提供一种试条电极的控制***,包括:
获取模块,用于在将试条***血糖仪、向试条的工作电极W施加第一预设值的电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况;
判断模块,用于判断电极R1是否先于电极R2产生电流;
第一控制模块,用于在判断结果为是时,发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R;
第二控制模块,用于在判断结果为否时,发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B。
上述***,优选的,所述获取模块包括:
第一控制单元,用于控制所述工作电极W持续输出300mv电压,并控制电极R1及电极R2每间隔10ms交替接地,其中,R1、R2中不接地的电极悬空;
获取单元,用于实时对电极R1、R2中接地的电极进行电流检测控制,以实现在电极R1或R2接地时获取电极R1或R2上的电流产生情况。
上述***,优选的,还包括:
报错模块,用于确定R1、R2中先检测出电流的电极,并在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,且在超过预定时长一直未检测到所述电极产生电流时,控制报错。
上述***,优选的,所述报错模块包括:
延迟等待单元,用于在检测出R1或R2上存在电流后,停止向所述工作电极W加压,并控制电极R1、R2均保持接地,之后,延迟等待80ms;
第二控制单元,用于在延迟结束后,控制所述工作电极W输出300mv-0mv形式脉冲,并控制R1、R2中先检测出电流的电极悬空,另一电极接地;
报错单元,用于获取接地电极上的电流产生情况,若超过1.5s所述接地电极上一直未产生电流,则控制报错。
上述***,优选的,还包括:
延迟模块,用于控制试条的工作电极W及背景电极B均输出0mv电压,并持续200ms。
由以上方案可知,本发明的试条电极的控制方法和***,在***试条、向试条的工作电极W施加一预定电压,并向试条加样后实时获取试条的电极R1及R2上的电流产生情况,并判断哪个电极先产生电流;在电极R1先产生电流时,将R1控制为背景电极、R2控制为参比电极;否则,将R1控制为参比电极、R2控制为背景电极。可见,本发明可实现依据用户的进样方向,对试条的电极进行合理控制,将靠近进样方向的电极控制为背景电极,避免了检测信号、修正信号不同时产生,以及两个信号的信号强度不匹配的问题,从而,应用本发明时,当从各个方向向试条进样时,均可保证血糖含量的检测结果具有较高的准确性,减少了因吸样而造成的试条浪费。
附图说明
图1是现有血糖试条中各个电极的示意图;
图2是现有技术中利用血糖试条进行血糖检测时不同进行方向的进样示意图;
图3是本发明实施例一公开的试条电极控制方法的一种流程图;
图4是本发明实施例一公开的血糖试条各个电极的示意图;
图5是本发明实施例二公开的试条电极控制方法的另一种流程图;
图6是本发明实施例三公开的试条电极控制方法的又一种流程图;
图7是本发明实施例四公开的试条电极控制***的一种结构示意图;
图8是本发明实施例四公开的试条电极控制***的另一种结构示意图;
图9是本发明实施例四公开的试条电极控制***的又一种结构示意图。
具体实施方式
为了进一步了解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例一
本实施例一公开一种试条电极的控制方法,参考图3,所述方法包括:
S101:在将试条***血糖仪、向试条的工作电极W施加一预定电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况。
具体地,本实施例采用ABA型试条对本发明方法进行详细说明,如图4所示,试条的左边为电极R1、右边为电极R2、中间为工作电极W。
在将血糖试条***血糖仪后,试条的工作电极W被持续施加300mv的电压,此时向试条进样,并在进样后等待吸样过程:具体采用10ms的时间间隔使R1、R2交替接地,不接地的电极悬空,其中,电极接地的目的是为了消除干扰信号。
同时,在R1或R2接地期间,相应地对R1或R2进行电流检测,判断R1或R2上是否产生电流,并在判断出其中一个电极产生电流后,保持产生电流的电极接地,且每经过10ms再次检测该电极上的电流,以对其进行确认,共确认两次(历时20ms),确保所检测的电流信号不是干扰信号,经过两次电流确认后,可认为进样有效。
S102:判断电极R1是否先于电极R2产生电流。
在步骤S101实时对电极R1、R2进行电流检测的基础上,本步骤具体判断哪个电极先产生电流。
S103:若判断结果为是,则发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R。
S104:若判断结果为否,则发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B。
如果检测出电极R1先产生电流,则表征用户在试条上的进样方向为左边,电极R1被血样包覆的时间早于R2,且最终电极R1被血样包覆的效果较好,为了保证在后续的检测过程中,电极R1、R2能够同时产生电流信号,且保证所产生的两个电流信号,即检测电流信号与修正电流信号的信号强度较为匹配,进而使检测结果具有较高的准确性,需将电极R1控制为背景电极,R2控制为参比电极,并使R2保持接地。
相反,如果检测出电极R2先产生电流,则表征用户在试条上的进样方向为右边,吸样过程中,血样会先到达R2,而后达到R1,从而最终R2的包覆效 果较好,因此,此种情况下,需将R2控制为背景电极、R1控制为参比电极(R1保持接地),以保证在后续的检测过程中,电极R1、R2能够同时产生电流信号,且保证所产生电流信号的信号强度较为匹配,从而最终保证了血糖含量检测结果的准确性。
具体地,可采用控制芯片分别对电极R1及电极R2的电压进行相应控制,即通过分别对电极R1及电极R2施加不同的电压,使两个电极具有所需的电极功能。例如,若检测结果为电极R1先产生电流,则在芯片的控制下为电极R1施加一较高的电压、为电极R2施加一较低的电压(0v),使电极R1具备背景电极的功能、使电极R2具备参比电极的功能。相反,若检测结果为电极R2先产生电流,则通过为R2施加一较高电压、为R1施加一较低电压(0v),达到将R2控制为背景电极、将R1控制为参比电极的目的。
在依据用户的进样方向,对试条的电极进行合理控制后,可以继续进行后续的血糖值检测过程。
由以上方案可知,本发明在***试条、向试条的工作电极W施加一预定电压,并向试条加样后,实时获取试条的电极R1及R2上的电流产生情况,并判断哪个电极先产生电流;在电极R1先产生电流时,将R1控制为背景电极、R2控制为参比电极;否则,将R1控制为参比电极、R2控制为背景电极。可见,本发明可实现依据用户的进样方向,对试条的电极进行合理控制,将靠近进样方向的电极(背景电极或参比电极)控制为背景电极,避免了检测信号、修正信号不同时产生,以及两个信号的信号强度不匹配的问题,保证了检测电流的准确性,从而,应用本发明时,当从各个方向向试条进样时,均可保证血糖含量的检测结果具有较高的准确性,减少了因吸样而造成的试条浪费。
实施例二
本实施例二中,参考图5,所述方法还可以包括以下步骤:
S105:确定R1、R2中先检测出电流的电极,并在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,且在超过预定时长一直未检测到所述电极产生电流时,控制报错。
该步骤具体包括以下处理过程:
在检测出R1或R2中任意一个电极存在电流后,停止向工作电极W加压, 即,使其输出0mv电压,且使电极R1、R2均保持接地,之后,持续80ms,等待吸样完成,或充分吸样;
80ms结束后,控制工作电极W输出300mv(10ms)-0mv(30ms)形式脉冲,并使先吸样电极(即先产生电流的电极)保持悬空,另一电极保持接地;
在工作电极W输出300mv时,检测后吸样电极是否产生电流,并在检测出后吸样电极产生电流后,每经过10ms再次对该电极进行电流检测、确认,共确认两次,历时20ms,以确保其电流信号不是干扰信号(即血样覆盖后吸样电极);如果超过1.5s一直未检测到该电极的电流,则进行报错(血样未覆盖后吸样电极)。
本实施例在判断、确定出先吸样电极及后吸样电极的基础上,继续对后吸样电极的吸样过程进行等待,以尽量使后吸样电极被血样覆盖,若在超过预设时长血样仍未覆盖该电极时,进行报错,从而可进一步提升血糖含量检测结果的准确率。
实施例三
本实施例三中,参考图6,所述方法还可以包括以下步骤:
S106:控制试条的工作电极W及背景电极B均输出0mv电压,并持续200ms。
等待200ms后,吸样阶段判断完毕,之后,可以进行后续的血糖值检测过程。
在对试条的电极进行合理控制,将靠近进样侧的电极切换为背景电极、远离进样侧的电极切换为参比电极后,本步骤旨在继续延迟一段时间,等待吸样过程,以确保血样对试条各电极的完全覆盖,从而更高程度地提升了血糖含量检测结果的准确度。
实施例四
本实施例四公开一种试条电极的控制***,所述***与实施例一至实施例三公开的试条电极的控制方法相对应。
首先,相应于实施例一,参考图7,所述***包括获取模块100、判断模块200、第一控制模块300和第二控制模块400。
获取模块100,用于在将试条***血糖仪、向试条的工作电极W施加第一 预设值的电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况。
其中,获取模块100包括第一控制单元和获取单元。
第一控制单元,用于控制所述工作电极W持续输出300mv电压,并控制电极R1及电极R2每间隔10ms交替接地,其中,R1、R2中不接地的电极悬空;
获取单元,用于实时对电极R1、R2中接地的电极进行电流检测控制,以实现在电极R1或R2接地时获取电极R1或R2上的电流产生情况。
判断模块200,用于判断电极R1是否先于电极R2产生电流。
第一控制模块300,用于在判断结果为是时,发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R。
第二控制模块400,用于在判断结果为否时,发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B。
相应于实施例二,参考图8,所述***还包括报错模块500,用于确定R1、R2中先检测出电流的电极,并在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,且在超过预定时长一直未检测到所述电极产生电流时,控制报错。
其中,报错模块500包括延迟等待单元、第二控制单元和报错单元。
延迟等待单元,用于在检测出R1或R2上存在电流后,停止向所述工作电极W加压,并控制电极R1、R2均保持接地,之后,延迟等待80ms;
第二控制单元,用于在延迟结束后,控制所述工作电极W输出300mv-0mv形式脉冲,并控制R1、R2中先检测出电流的电极悬空,另一电极接地;
报错单元,用于获取接地电极上的电流产生情况,若超过1.5s所述接地电极上一直未产生电流,则控制报错。
相应于实施例三,参考图9,所述***还包括延迟模块600,用于控制试条的工作电极W及背景电极B均输出0mv电压,并持续200ms。
对于本发明实施例四公开的试条电极的控制***而言,由于其与实施例一至实施例三公开的试条电极的控制方法相对应,所以描述的比较简单,相关相似之处请参见实施例一至实施例三中试条电极的控制方法部分的说明即可,此处不再详述。
综上所述,本发明通过增加试条电极的检测、判断及切换控制过程,可使 试条从左边,右边、中间等各个方向吸样时,减少因吸样而造成的试条浪费,保证了试条从各方向吸样时,最终的血糖含量检测结果均具有较高的准确性。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
为了描述的方便,描述以上装置时以功能分为各种模块或单元分别描述。当然,在实施本申请时可以把各模块、单元的功能在同一个或多个软件和/或硬件中实现。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。
最后,还需要说明的是,在本文中,诸如第一、第二、第三和第四等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种试条电极的控制方法,其特征在于,包括:
    将试条***血糖仪、向试条的工作电极W施加一预定电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况;
    判断电极R1是否先于电极R2产生电流;
    若判断结果为是,则发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R;
    若判断结果为否,则发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B。
  2. 根据权利要求1所述的方法,其特征在于,所述在向试条的工作电极W施加一预定电压后,实时获取试条的电极R1及电极R2上的电流产生情况,包括:
    控制所述工作电极W持续输出300mv电压,并控制电极R1及电极R2每间隔10ms交替接地,其中,R1、R2中不接地的电极悬空;
    实时对电极R1、R2中接地的电极进行电流检测控制,以实现在电极R1或R2接地时获取电极R1或R2上的电流产生情况。
  3. 根据权利要求2所述的方法,其特征在于,在所述判断电极R1是否先于电极R2产生电流之前还包括:
    确定R1、R2中先检测出电流的电极,并在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,且在超过预定时长一直未检测到所述电极产生电流时,控制报错。
  4. 根据权利要求3所述的方法,其特征在于,所述在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,并在超过预定时长一直未检测到所述电极产生电流时,控制报错,包括:
    检测出R1或R2上存在电流后,停止向所述工作电极W加压,并控制电极R1、R2均保持接地,之后,延迟等待80ms;
    延迟结束后,控制所述工作电极W输出300mv-0mv形式脉冲,并控制R1、R2中先检测出电流的电极悬空,另一电极接地;
    获取接地电极上的电流产生情况,若超过1.5s所述接地电极上一直未产 生电流,则控制报错。
  5. 根据权利要求4所述的方法,其特征在于,在发出第一控制指令或第二控制指令之后还包括:
    控制试条的工作电极W及背景电极B均输出0mv电压,并持续200ms。
  6. 一种试条电极的控制***,其特征在于,包括:
    获取模块,用于在将试条***血糖仪、向试条的工作电极W施加一预定电压,并向试条加样后,实时获取试条的电极R1及电极R2上的电流产生情况;
    判断模块,用于判断电极R1是否先于电极R2产生电流;
    第一控制模块,用于在判断结果为是时,发出第一控制指令,以将所述电极R1控制为背景电极B,将所述电极R2控制为参比电极R;
    第二控制模块,用于在判断结果为否时,发出第二控制指令,以将所述电极R1控制为参比电极R,将所述电极R2控制为背景电极B。
  7. 根据权利要求6所述的***,其特征在于,所述获取模块包括:
    第一控制单元,用于控制所述工作电极W持续输出300mv电压,并控制电极R1及电极R2每间隔10ms交替接地,其中,R1、R2中不接地的电极悬空;
    获取单元,用于实时对电极R1、R2中接地的电极进行电流检测控制,以实现在电极R1或R2接地时获取电极R1或R2上的电流产生情况。
  8. 根据权利要求7所述的***,其特征在于,还包括:
    报错模块,用于确定R1、R2中先检测出电流的电极,并在预设条件下,对R1、R2中未测出电流的电极进行电流检测控制,且在超过预定时长一直未检测到所述电极产生电流时,控制报错。
  9. 根据权利要求8所述的***,其特征在于,所述报错模块包括:
    延迟等待单元,用于在检测出R1或R2上存在电流后,停止向所述工作电极W加压,并控制电极R1、R2均保持接地,之后,延迟等待80ms;
    第二控制单元,用于在延迟结束后,控制所述工作电极W输出300mv-0mv形式脉冲,并控制R1、R2中先检测出电流的电极悬空,另一电极接地;
    报错单元,用于获取接地电极上的电流产生情况,若超过1.5s所述接地电极上一直未产生电流,则控制报错。
  10. 根据权利要求9所述的***,其特征在于,还包括:
    延迟模块,用于控制试条的工作电极W及背景电极B均输出0mv电压, 并持续200ms。
PCT/CN2015/077044 2014-11-27 2015-04-21 一种试条电极的控制方法和*** WO2016082441A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/888,399 US10156538B2 (en) 2014-11-27 2015-04-21 Control method and system for test strip electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410697622.4A CN104407028B (zh) 2014-11-27 2014-11-27 一种试条电极的控制方法和***
CN201410697622.4 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016082441A1 true WO2016082441A1 (zh) 2016-06-02

Family

ID=52644675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077044 WO2016082441A1 (zh) 2014-11-27 2015-04-21 一种试条电极的控制方法和***

Country Status (3)

Country Link
US (1) US10156538B2 (zh)
CN (1) CN104407028B (zh)
WO (1) WO2016082441A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407028B (zh) 2014-11-27 2017-01-11 三诺生物传感股份有限公司 一种试条电极的控制方法和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093784A2 (en) * 2003-04-21 2004-11-04 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
CN1633596A (zh) * 2001-10-12 2005-06-29 爱科来株式会社 浓度测定方法和浓度测定装置
CN103487476A (zh) * 2009-05-25 2014-01-01 利多(香港)有限公司 生物传感器
CN203724101U (zh) * 2014-01-26 2014-07-23 三诺生物传感股份有限公司 一种生物传感器
CN104407028A (zh) * 2014-11-27 2015-03-11 三诺生物传感股份有限公司 一种试条电极的控制方法和***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351323B2 (en) * 2001-01-17 2008-04-01 Arkray, Inc. Quantitative analyzing method and quantitative analyzer using sensor
US8409424B2 (en) * 2006-12-19 2013-04-02 Apex Biotechnology Corp. Electrochemical test strip, electrochemical test system, and measurement method using the same
CN101887047A (zh) * 2009-05-12 2010-11-17 华广生技股份有限公司 一种判断样品布满状况的侦测方法
CN202583211U (zh) * 2012-03-29 2012-12-05 长沙三诺生物传感技术股份有限公司 试条、试条校正参数自动识别***及血糖仪
CN202939151U (zh) * 2012-11-29 2013-05-15 南京鱼跃软件技术有限公司 一种血糖试纸及应用此血糖试纸的血糖仪
CN203534868U (zh) * 2013-11-18 2014-04-09 三诺生物传感股份有限公司 一种生物传感器
CN203535003U (zh) * 2013-11-18 2014-04-09 三诺生物传感股份有限公司 一种生物传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633596A (zh) * 2001-10-12 2005-06-29 爱科来株式会社 浓度测定方法和浓度测定装置
WO2004093784A2 (en) * 2003-04-21 2004-11-04 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
CN103487476A (zh) * 2009-05-25 2014-01-01 利多(香港)有限公司 生物传感器
CN203724101U (zh) * 2014-01-26 2014-07-23 三诺生物传感股份有限公司 一种生物传感器
CN104407028A (zh) * 2014-11-27 2015-03-11 三诺生物传感股份有限公司 一种试条电极的控制方法和***

Also Published As

Publication number Publication date
US10156538B2 (en) 2018-12-18
CN104407028B (zh) 2017-01-11
US20160334355A1 (en) 2016-11-17
CN104407028A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
CN104374353B (zh) 一种用于三点法圆度误差分离技术的传感器安装角度选择方法
AU2009331596A8 (en) Method for detecting an electric arc in photovoltaic equipment
CN105004789B8 (zh) 一种超声波测量焊接残余应力的误差修正方法
WO2005045635A3 (en) Method and apparatus to reject electrical interference in a capacitive liquid level sensor system
WO2017011850A8 (en) Method and system for pipeline condition analysis
WO2005076796A3 (en) Systems and methods for calibrating osmolarity measuring devices
RU2012123738A (ru) Система распознавания недостаточного заполнения для биосенсора
WO2013137999A3 (en) Method and system for determining body impedance
WO2012054171A3 (en) Method and apparatus for adjusting the level of a response signal from an ultrasound transducer
WO2016000490A1 (zh) 电子检测判读方法及电子检测判读装置
WO2012158388A3 (en) Method and apparatus for determination of haloacetic acid ("haa") presence in aqueous solutions
JP2006098233A5 (zh)
WO2016082441A1 (zh) 一种试条电极的控制方法和***
CN104501750A (zh) 一种超声相控阵测量u肋焊缝熔深的方法
JP2018529964A (ja) マグネシウムイオン測定用流体分析装置及びその中の電位差式マグネシウムイオンセンサの較正方法
JP2016510124A5 (zh)
CN103364108A (zh) 焊接温度检测装置、焊接机及焊接温度的校准方法
KR20210059924A (ko) 금속 물성 측정 시스템 및 그 측정 방법
US20190072512A1 (en) Whole blood measurement method associated to hematocrit
WO2021137227A3 (en) Active reflected wave monitoring
CN111288941A (zh) 电池贴胶检测方法及电池贴胶***
CN109093240A (zh) 中频逆变直流焊接质量监控方法及监控***
JP2017538942A5 (zh)
CN106093170A (zh) 分析物浓度的检测方法
CN203275374U (zh) 钢箱梁u肋检测用试块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14888399

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862981

Country of ref document: EP

Kind code of ref document: A1